Experimental and numerical study on tensile properties of bolted GFRP joints at high and low temperatures

Xue, C. and Yu, M. and Yang, B. and Wang, T. and Saafi, M. and Ye, J. (2022) Experimental and numerical study on tensile properties of bolted GFRP joints at high and low temperatures. Composite Structures, 293. ISSN 0263-8223

[img]
Text (FRP Joints)
FRP_Joints.pdf - Accepted Version
Available under License Creative Commons Attribution.

Download (3MB)

Abstract

This paper presents both experimental and numerical studies on bolted glass fiber reinforced polymer (GFRP) joints subjected to uniaxial tension and different thermal conditions (−20 ℃, 20 ℃ and 60 ℃). Laboratory tests are conducted to obtain strength, elastic modulus and deformation of the joints. The numerical model is developed using the discrete element method (DEM) that can predict not only the above properties of the joints, but also the failure modes with detailed meso/micro damages that are in consistent with the observations from the tests. The DEM model is also used in the parametric studies to study the influence of the end distance to bolt/hole diameter ratio and the lap width to bolt/hole diameter ratio on the mechanical properties and failure models of the joints.

Item Type:
Journal Article
Journal or Publication Title:
Composite Structures
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2500/2503
Subjects:
ID Code:
171559
Deposited By:
Deposited On:
09 Jun 2022 10:15
Refereed?:
Yes
Published?:
Published
Last Modified:
04 Jan 2023 02:22