
001

Code and Data Synthesis for Genetic Improvement in
Emergent Software Systems

PENNY FAULKNER RAINFORD, School of Computing and Communications, Lancaster University, UK
BARRY PORTER, School of Computing and Communications, Lancaster University, UK

Emergent software systems are assembled from a collection of small code blocks, where some of those blocks
have alternative implementation variants; they optimise at run-time by learning which compositions of
alternative blocks best suit each deployment environment encountered.

In this paper we study the automated synthesis of new implementation variants for a running system using
genetic improvement (GI). Typical GI approaches, however, rely on large amounts of data for accurate training
and large code bases from which to source genetic material. In emergent systems we have neither asset, with
sparsely sampled runtime data and small code volumes in each building block.

We therefore examine two approaches to more effective GI under these constraints: the synthesis of data
from sparse samples to construct statistically representative larger training corpora; and the synthesis of code
to counter the relative lack of genetic material in our starting population members.

Our results demonstrate that a mixture of synthesised and existing code is a viable optimisation strategy,
and that phases of increased synthesis can make GI more robust to deleterious mutations. On synthesised
data, we find that we can produce equivalent optimisation compared to GI methods using larger data sets, and
that this optimisation can produce both useful specialists and generalists.

CCS Concepts: • Computing methodologies→ Genetic algorithms; Artificial life.

Additional Key Words and Phrases: genetic improvement, optimization, emergent systems, data synthesis,
data sampling, fitness function, language

1 INTRODUCTION
Emergent software systems are assembled from a large collection of small code blocks, where some
of those blocks have alternative implementation variants available [Porter 2014; Porter et al. 2016].
Emergent systems optimise at run-time by learning which compositions of alternative building
blocks are best suited to each set of deployment conditions encountered. In order to do this, at least
some building blocks must have available implementation variants that are likely to be useful in
different environments – such as different cache replacement algorithms or buffer management
strategies. The more useful variation points there are available, the more likely it is that a system
can closely optimise to its current deployment conditions.

At present the creation of alternative building blocks for emergent software systems – or any self-
adaptive system based on component hot-swapping – is manual, requiring non-trivial programmer
effort to design and develop variations that are likely to be useful in the different deployment
conditions a system may encounter. This process is challenging firstly because it takes effort to
create multiple correct versions of the same high-level functionality, but also because creating
useful variants for a given deployment entails significant uncertainty for the developer – it is
difficult to guess at design-time variations for each building block are likely to be of high utility. In
this paper we study how the creation of such high-utility variations may be automated, based on the
real-time observed experiences of a deployed system. In an emergent web server, for example, the
input sequences issued to a memory cache component may be captured over a short time window
for offline replay – to then derive a more effective cache eviction policy for a particular request
sequence that typifies a given deployment environment experienced by the web server.

Authors’ addresses: Penny Faulkner Rainford, School of Computing and Communications, Lancaster University, Lancaster,
UK, faulknerrainford@gmail.com; Barry Porter, School of Computing and Communications, Lancaster University, Lancaster,
UK, b.f.porter@lancaster.ac.uk.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



001:2 Penny Faulkner Rainford and Barry Porter

The most common approach to automated enhancement of source code is genetic improvement,
which uses an evolutionary algorithm inspired by biological evolution – as Darwin described
it: “descent with modification” [Darwin 1859]. Evolutionary algorithms have been studied for
decades, and used for a wide range of purposes from data mining to parameter optimization [Bäck
and Schwefel 1993; Freitas 2009]; in many cases they have proven able to find more efficient and
sometimes unexpected solutions to problems such as antenna design [Torresen 2002].
In existing research, genetic improvement (GI) for source code is most widely applied for bug-

fixing, in which a bug is discovered in a large code base and a GI process is used to mutate that
code base to a state in which the bug is corrected [Arcuri and Xin Yao 2008; Forrest et al. 2009;
Sidiroglou-Douskos et al. 2015]. GI for bug-fixing relies on the well-established hypothesis that in a
large code base the fix for a given bug is likely to exist elsewhere in the same code base [Barr et al.
2014]. In this context mutations – and particularly crossover – draw on existing genetic material
elsewhere in the code base being improved. GI has been applied to a lesser extent for performance
optimisation of source code, which we expand on in Sec. 3.
In the context of emergent software systems we have two specific challenges that go beyond

common GI solutions. The first is that genetic material is limited: building blocks in emergent
systems are typically 100-200 lines of code, offering little to draw on for a GI process. In order to
improve the chance of finding improved versions of a given building block we therefore need a
way to synthesise new genetic material in addition to more traditional mutations. Adding enough
genetic material to the system without preventing the system from optimising is a careful balance.
In this work we will show that this is possible, that increased use of synthesised code may be
beneficial and that it is vital that we consider length to maximise optimisation by preventing the
code from becoming bloated.

The second is that we are attempting to optimise to a set of environment conditions detected by a
running system in real-time; the function calls on a given building block in such an environment can
be captured by the live system, but only for short periods of time to avoid unreasonable disruption
to the running system. The data to which a building block is being optimised is therefore sparse
and may provoke over-specialisation to a particular input sequence which is of limited use to the
wider environment class from which that sequence was sampled. We therefore need to synthesise
additional input data from our sparse sample to counter such tendencies for over-specialisation.
Here we show that we can use synthesised data both partially and on its own in place of using larger
amounts of data to optimize a function to the same or better level than the larger data methods.

We distill these challenges into two specific reseach questions:

(1) Can synthesised genetic material improve the ability of a GI process to find high-utility
implementations from limited source material starting points?

(2) Can synthetic training data, based on sparse sampled data, reduce over-specialisation and
improve a generated implementation’s performance in the general environment class from
which a sparse sample was drawn?

Our studies specifically examine hash table implementations, which use a hash function to take a
text-based key, and map that key to an integer value within a fixed range. A hash table then uses a
fixed-size number of buckets, and the key is used to calculate which bucket a given key/value pair is
stored in. This allows for quick retrieval as only that bucket needs to be searched for the key/value
pair (rather than the entire contents of the hash table). An ideal hash function will disperse the
given keys equally between the available buckets, ensuring the fastest average retrieval time. Hash
tables are very common to a wide range of systems, representing a useful way to study our research
questions for wide applicability.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



Code and Data Synthesis for Genetic Improvement in Emergent Software Systems 001:3

Our study of research question (1) is partly based on a prototype investigation into blended syn-
thesis [McGowan et al. 2018]. We partly replicate these results, with an entirely novel GI framework
implementation, but also examine multiple different synthesis methods, multiple different fitness
functions, and we more deeply study the potential side-effects of synthesis phases. Our results
demonstrate that (i) mixed synthesis mutations do contribute positively to enhanced individuals
(a 2% improvement over 200 generations); (ii) small samples of source code subjected to GI can
rapidly experience ‘burn out’ across a generation as useful elements of that code are removed; and
(iii) dedicated expansion/synthesis phases interleaved with regular GI phases do not appear to
contribute to long-term improvement, but do prevent burn-out effects.
Our study of research question (2) examines multiple different data sampling and synthesis

approaches to help understand how data synthesis from sparse sample data impacts a GI process.
Using the same GI framework as above, our results show that synthesised data can indeed produce
statistically equivalent results to larger data sets training and performance on unseen data of the
same class, gaining up to 40% performance gains on improved candidates – but that over-fitting to
training data is still possible using our current approach. We also find that GI processes tended
to generalise or specialise based on the class of data used (e.g., English words, or Polish words) in
addition to whether it is using sampled or synthesised data. Some classes of data prove to be ‘easier’
to train for, and are more likely to lead to generalist individuals, while ‘harder’ classes to train for
are more likely to produce specialists which are statistically significantly better than generalist
results. The source code used in all of our experiments is made available online for repeatability,
including detailed instructions and the data analysis scripts used [Rainford 2022].
In the remainder of this paper we first briefly introduce background on emergent software

systems, then present closely related work in Sec. 3. In Sec. 4 we present our study methodology
for both research questions, and in Sec. 5 and Sec. 6 we present our results for research questions
(1) and (2) respectively.

2 EMERGENT SOFTWARE SYSTEMS
The concept of self-assembling systems has been examined in various forms, from hardware systems
such as space telescopes and satellites [Rognant et al. 2019; Underwood et al. 2015], and swarm
robotics [O’Hara et al. 2014].

Emergent software systems aim to bring these ideas to everyday software, such as web servers,
caches and databases, big data processing frameworks, and microservices [Dean and Porter 2021;
Filho et al. 2018; Rodrigues-Filho and Porter 2022]. Emergent software combines the general ability
to wire units of logic together to form a system, and rewire those units safely while a system is
running, with real-time machine learning which quantifies the current operating environment and
learns online which combination of building blocks has the highest utility in each environment.
Emergent software systems therefore automatically discover all possible ways to construct a target
system, assuming various building blocks have implementation variations, and then use a process
of continuous learning and re-assembly to optimise to the current environment. Emergent software
systems generalise long-running trends towards autonomous and self-adaptive systems [Kephart
and Chess 2003; Salehie and Tahvildari 2009], placing self-adaptive behaviours directly into the
real-time logic composition of running systems.
At present, emergent software requires developers to manually design multiple variations of

each building block – such as different sorting algorithms, cache eviction policies, or scheduling
algorithms. In this paper we proposed and study a fully automated approach to variant generation
using GI, able to generate variations that are of high utility to the deployment conditions actually
experienced by a running system.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



001:4 Penny Faulkner Rainford and Barry Porter

Our GI framework targets a novel programming language called Dana that underpins a large
range of emergent software research. This is a full-stack object-oriented systems language which
supports ubiquitous hot-swapping of components with soundness guarantees for the running
system [Porter and Filho 2021]; the language is predominantly used in research, particularly in
the self-adaptive systems community. Our research work is the first major example of genetic
improvement which targets Dana. We note that while our results are likely to generalise to other
programming languages, using Dana allows us to complement and integrate with the existing tool
support and experimental testbeds commonly used in emergent software systems.

3 RELATEDWORK
To date, GI for source code has been deployed predominantly for automated bug-fixing, with a
smaller volume of research on automated optimisation. In wider research, GI-based optimisation to
an environment has more typically been applied to parameter tuning or non-code domains, though
work has also been done on using GI to update hard coded parameters and data [Langdon and
Krauss 2021]. In this section we cover relevant research in GI for both areas.
In source-code bug-fixing and optimisation research [Langdon and Harman 2014; Petke et al.

2018, 2013], GI methods have long relied heavily on the use of an existing code base of a large
project to source solutions to problems, where insertion of genetic source code material draws on
existing code elsewhere. This technique is formalized as the ‘plastic surgery hypothesis’, with the
finding that in large bodies of Java code 43% of human commits could be sourced from the existing
code base [Barr et al. 2014]. This is a challenge for our emergent systems application domain of
GI, in which there is no ‘large body’ of code because each building block is developed in isolation;
within the scope of a single building block there are very few lines of code (around 100-200) in
total, giving us a far smaller chance of finding useful existing code as a source for improvement.
Our approach of starting from such a small code base in some ways has closer kinship to the

field of genetic programming for program synthesis, which start from no existing source code. This
generally includes an element of code reuse from already-synthesised populations members, partly
similar to our methods here. A particular example of this is n-version program synthesis [Chen
and Avizienis 1978] which produces multiple versions of the same software to provide redundancy
for fault tolerance. However, this kind of research differs in that it expects to start from multiple
separate populations and will attempt to yield distinct software variations which will likely have
different faults so that in combination they provide fault tolerance. Our work starts from a single
population member and attempts to create new variations which are all equally correct but have
different performance characteristics in different deployment conditions.

Beyond source-code, GI-based optimization to a deployment environment has often been consid-
ered with a focus on optimization to hardware such as battery usage and screen resolution [Li et al.
2014; Linares-Vásquez et al. 2015] rather than to data input. The focus of the challenge here is on
multi-objective approaches that balance issues like battery usage and aesthetics to gain the best
user experience, rather than on synthesising genetic material for starting individuals with a low
amount of initial material.

In this research we draw from these areas to focus on blending traditional genetic improvement
with synthesis of new geneticmaterial, enabling us to generate new variants from a single population
member to optimize towards the deployment conditions in which that code is operating. In creating
these new variants, and pushing them as alternatives to the deployed system, this should provide
optimized code blocks for an emergent software system to dynamically learn and utilize for the
specific deployment conditions that it experiences.
Outside of the code re-use vs. synthesis question, the above GI methods generate improved

candidates either by testing against a series of established test cases or by relying on a large data

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



Code and Data Synthesis for Genetic Improvement in Emergent Software Systems 001:5

corpus to train. This is a practical approach as most of these systems are designed to just train once
they can take time to collect data and develop test cases. Our emergent software systems domain
differs, however, in that these systems experience changing deployment environments (some of
which are likely to recur) and try to optimise towards each one; because each environment may be
new, we must sample input data from the running system to replay offline as an optimisation target.
Because these systems are operating live, such samples must be short so that there is a low impact
on the performance of the system’s primary operations. For GI, this prompts the question of how
we go from a small data sample to one that is large enough to train on without over-specialising.
In existing work, data corpora have been expanded using various methods for data synthesis,
particularly in image categorization [Alhammady and Ramamohanarao 2005]. Genetic methods, for
example, are used to mutate and crossover existing data to create new data to expand categorisation
data and data to help with the recognition of sign language [Wang et al. 2006]. Other systems have
used neural networks to partly synthesise data by adding synthesised elements to images in order
to make early training easier [Stergiou et al. 2018]. Very few systems generate entirely new data,
though there are some examples of generating meta-data as a new data set to work with instead of
the original visual data set [Long et al. 2018].
Finally, while we focus in this work on the optimisation of a hash function in the Dana pro-

gramming language, previous attempts have been made to repair and optimize hash functions in
other languages such as Java; in particular the work on Kocsis et al [Kocsis et al. 2014] relies on
inheritance and the need of the hash function to meet contractual requirements and produce a
uniform distribution. In this work we focus on the requirement for speed from our hash function;
in many cases this should equate to uniformity of distribution, but in edge cases may also offer
advantages of ignoring uniformity – such as when dealing with natural language on a small hash
table, where an optimal solution would place more common words in less-used hash codes and
rarer words in more full ones, thereby allowing for quick retrieval on more common words. As far
as we are aware, our work is the first example of automated variant generation at a source-code
level for self-adaptive systems and yields a number of questions that are specific to this domain.

4 METHODS
Our overall framework is illustrated in Fig. 1. An emergent software system is assembled from a
large collection of small building blocks, and is deployed into a real environment. Once that system
has learned the best composition of blocks for a given environment, it will select one of those
building blocks and capture a short trace of the method calls that are issued to that block within
the present environment. This trace is then sent to a GI system, along with the source code of
the building block from which it was captured, so that the GI system can attempt to generate an
improved variation of that building block which has higher performance for the given input data
sample. If the GI system is successful, the improved building block is pushed back to the emergent
software system which uses real-time learning to determine if the proposed improvement really
does yield higher performance for the intended environment conditions in deployment.

For the purposes of this study we examine only the GI element of this overall concept. We focus
on one particular building block throughout our experiments (a hash table), and we assume that
short traces of function calls to this block have already been captured by the emergent system. We
also assume that the GI process is able to identify the hash function of the hash table implementation
as the specific area in which to focus when generating improved variations; in practice this focus
area could be determined using function call frequency or CPU intensity analysis.
The core of our system is then based on a typical genetic improvement process, Algorithm 1,

using mutation (line 5), fitness (line 6), selection (line 10), and crossover (line 11). We include
crossover in this work to make use of existing code in expanding the code base of members of our

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



001:6 Penny Faulkner Rainford and Barry Porter

Emergent System

Data

Genetic Improver

Original Code

Sparse Trace

Code Synthesis

Data Synthesis
Improved Candidate

Capture

Fig. 1. Our overall approach, with data capture from a running emergent software system, requests for
improved variations of particular building blocks to a GI system, and a GI process which uses mixed code
synthesis to counter a low volume of available genetic material, along with input data synthesis to counter a
sparsely sampled input trace towards which we are optimising.

Algorithm 1 Genetic Improvement Algorithm
1: for 𝑖 = 0 to 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
2: if 𝑖 == 0 then
3: create initial population of clones
4: end if
5: mutate a % of the population
6: check fitness of all population members
7: if 𝑖%5 == 0 then
8: check performance on unseen data of all population members
9: end if
10: select new population (roulette wheel)
11: crossover a % of the population
12: end for

population. We also include new code synthesis in our mutations, in combination with more typical
mutation types, and a performance check (lines 7-9) which does not effect training but is used to
examine whether the algorithm is training to the data class (and performs similarly on unseen data
of that class) or to the specific data (and performs poorly on unseen data of the same class). In the
remainder of this section we describe how each element of the algorithm works in detail.

Initial Population. The initial population of hash functions in the system are clones of an initial
small, simple function, which is shown in Listing 1 .

There are 30 copies of this code in the initial population which will be mutated before assessment.
This initial hash works by treating the input ‘key’ string as a character array and computing the
sum of the numerical (binary) value of each cell of that array. The result is then restricted to be
within the range of the hash bucket count by using a modulo operator.

Mutation. In this stage we apply a single mutation to a percentage of the population – where a
single mutation is a change to one line of code. This change may be either adding a new line of
code (insertion), removing a line of code (deletion) or changing variables or operations in a line of
code (modification). Our mutation logic is aware of the grammar of the language and is designed
to yield code which is both syntactically correct and also type-compatible for operations such as
variable assignments. More detail on mutation, and code synthesis, is given in Section 4.1.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



Code and Data Synthesis for Genetic Improvement in Emergent Software Systems 001:7� �
1 int hash(char key[])
2 {
3 int result = 1
4 for (int i = 0; i < key.arrayLength; i++)
5 {
6 result = result * key[i]
7 }
8 return result % HT_LEN
9 }� �

Listing 1. Original Hash Function

Fitness. The fitness function takes a genome, in this case the code of a hash function, and evaluates
it to provide a fitness score. Here we test the phenotype of the code by loading it into a testing
environment. We then time how long it takes the code to input 1,000 words as a key/value pair to
the put() function of the has table, with the key and value being two copies of the same word. We
then retrieve the same set of 1,000 words from the hash table using the get() function, checking
to make sure the returned value still matches the string (and that the hash function has remained
deterministic). Each incorrect return in the get() stage incurs a time penalty of 10 milliseconds for
fitness evaluation, such that an implementation which returns an incorrect value for all 1,000 words
will gain a total time penalty of 10,000ms. This value was selected to be significant when it produces
errors above the noise introduced by our unreliable timing mechanism (native machine clock time
comparisons), while also being proportional to the faster fitness times so as not to reward fast but
incorrect solutions – where faster fitness times are in the region of 150 milliseconds in total. During
fitness testing we also set a maximum time limit for the above tests to run, with a forced stop of
the test if the running time exceeds this. This defends against the potential for infinite loops that
are created through mutations. The same maximum fitness time is also assigned to population
members that fail to compile – though this is rare as our mutation approach is grammar-aware.
The above fitness testing results in a speed score of 𝑠𝑛 , which we combine with the length of the
code measured in lines 𝑙𝑛 to give a fitness score, 𝑓𝑛 :

𝑓𝑛 = 𝑠𝑛 + 5𝑙𝑛 (1)
In the above equation we multiply 𝑙𝑛 by 5 to bring it into a similar range to average measurements

for 𝑠𝑛 in our starting individual, such that both parts of the equation have similar weight. Because
we base our fitness score on speed, we are seeking a minimum value, so lower scores are better; we
consequently approximate that lower scores for length (fewer lines of code) are also better, which
helps to avoid uncontrolled code bloat through insertion mutations that could slow down the GI
process to an ineffective level. In our experimental results we list the “relative" fitness scores of our
code, using Equation 2. This is the fitness score of each hash function relative to the fitness score of
the original code as assessed with the same fitness function. We use this relative approach to allow
us to compare values across variations in the fitness functions.

𝑟𝑛 = 𝑓𝑛/𝑓0 (2)

Performance. This stage works in the same way as the fitness function, but uses different input
data – with the results of this test not used in the selection process. We call this performance as it is
tested on unseen data which mimics the performance of the solutions in deployment after training.
This allows us to measure over-specialisation to training data as the GI process progresses.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



001:8 Penny Faulkner Rainford and Barry Porter

Selection. This phase copies selected individuals from the current population into the next
population. There are three common methods for doing this: tournament, universal random, and
roulette wheel. We use roulette wheel selection, proportional to the normalised inverse value of
the fitness of a population member, so that their chance of selection is based on their score relative
to the rest of the population. If the individual has the best score, under this approach, it will have
the best chance of selection. We supplement this selection method with elitism, in which the best
𝑛 members of the population are copied to the next generation unchanged. We use elitism with
𝑛 = 2, with the rest of a generation formed by a weighted random sampling with replacement of
the previous generation, using the roulette wheel selection method.

Crossover. This phase is designed to mimic biologic reproduction which causes gene transfer
between two individuals. We use one-way crossover, which selects code from one individual and
copies it and inserts it in another piece of code; we specifically take a single line from one piece of
code and insert it in another. More detail on the process of crossover can be found in Section 4.2.
Crossover is applied to a percentage of the population, such that for each population member (𝑀𝑜 )
we select a second population member (𝑀𝑠 ), then select a line in𝑀𝑜 , 𝑇𝑜 , and a line from𝑀𝑠 , 𝑇𝑠 ; we
then check scope issues and insert 𝑇𝑠 at 𝑇𝑜 .

4.1 Genetic Mutations
In this section we present the detail of how mutations work, including how we mix code synthesis
with more traditional mutation types. We first describe our approach to sythesising new genetic
material for insertion, then present our general mutation approach.

4.1.1 Synthesis. Whenever an insert mutation is selected, we synthesize basic code of three types:
variable declarations (Listing 2), operations (Listing 3), and control structures (Listing 4). All three
are restricted to the use of primitive types only (integers (int) range: 0 - 1000, characters (char)
range: a - z, decimal (dec) range: 0 - 1 and booleans (bool) 0 or 1), and are inserted either before or
after a code token in the existing code (including potentially inside existing control structures).
Example variable declarations are shown in Listing 2, and involve a type declaration and a

variable name, using a lowercase letter string (generated in alphabetical order, e.g. x, y, z, aa, ab,
ac), with an equals operator and a randomly generated constant which matches the declared type.� �

1 int a = 26
2 dec b = 0.029817845987
3 bool c = false
4 char d = "g"� �

Listing 2. Synthesized declaration examples

Example synthesised operations are shown in Listing 3. These are synthesised using pre-existing
variables that are in-scope at the intended insertion point. Depending on the types of in-scope
variables an operation is chosen at random (to make sure we have variables of the type needed).
Once an operation is chosen, variables are chosen at random to serve as operands from among
those that are in-scope. Operations use between one and three variables, e.g. 𝑎 = 𝑏 ∗ 𝑐 or 𝑎 + +.� �

1 result = a + result
2 a += result
3 result ++
4 result = result % a� �

Listing 3. Synthesized operation examples

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



Code and Data Synthesis for Genetic Improvement in Emergent Software Systems 001:9

An example control structure is shown in Listing 4; we support for-loops, while-loops, and
if-statements. In the case of for-loops the variable name for the loop is chosen from the same list as
other variable declarations, and the limiter on the loop is set using either a variable that is in-scope
or from a randomly generated integer. In the case of if and while structure the Boolean condition is
generated using existing variables. All control structures are generated with an empty body (which
can be filled in with future mutations).� �

1 for(e = 0; e < result; e++) { }� �
Listing 4. Synthesized control structure example

4.1.2 Mutations. Overall we use three types of mutation: insertion, deletion, and modification,
each on which has different conditions placed on them. We select which type of mutation to apply
randomly based on a configurable parameterised weighting (the specific values we choose are
presented in our experiment setup in Sec. 5.1).
Insert mutations are always possible, but the inserted code must not cause scope problems in

terms of variable usage. The checks to prevent this slow down the insertion process to a degree,
but are assumed to speed up the overall genetic improvement process by ensuring that a larger
proportion of the population remains viable code. An example of an insertion mutation applied
to the original code in Listing 1 would be Listing 5, where the variable 𝑎 has been added with the
integer type and a random integer as its initial value.

Modifications can be performed on operations or conditions in control constructs; in both cases
they can modify either the operator or the operands. In the case of operands we replace an operand
with a variable of the same type. In the case of operators, we select an operator that works on the
quantity and types of operands. In the example Listing 5 we have mutated the operator and one of
the variables to use the inserted 𝑎 variable. Thus in the operation within the for-loop, the operation
has changed from ∗ to + and 𝑟𝑒𝑠𝑢𝑙𝑡 is now 𝑎.� �

1 int hash(char key[])
2 {
3 int result = 1
4 int a = 36
5 for (int i = 0; i < key.arrayLength; i++) {
6 result = a + key[i]
7 }
8 return result % HT_LEN
9 }� �

Listing 5. One inserting and two modification mutations example

Deletions have conditions on their use to ensure that the resulting code is still compilable.
Simple operations can always be deleted, but control structures and declarations have restrictions.
Specifically, we can only delete a variable declaration if that variable is not used later in the code;
and we can be only delete control structures if there is no code in the body of the control structure.
This check is very simple due to our code representation in which we simply check for a lack of
child nodes within the structure’s scope. Two separate deletions are therefore needed to remove
the control structure in Listing 5: the first to delete the content, Listing 6, and the second to delete
the structure itself.� �

1 int hash(char key[])
2 {
3 int result = 1

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



001:10 Penny Faulkner Rainford and Barry Porter� �
1 int hash (char key[])
2 {
3 ...
4 result = 1
5 result = result * result
6 result = result * result
7 result = result * result
8 i = 0 i = 0 i = 0 i = 0
9 e = 843 bool a = 1 i = 0

10 h = 823 i = 0 i = 0
11 result = result * key[i]
12 result = result * result
13 result = result * result
14 result = result + result
15 for (i=0; i<key.arrayLength; i++)
16 {
17 result = result * key[i]
18 result = result * key[i]
19 }
20 return result % HT_LEN
21 }� �

Listing 7. Actual optimized population member at 200 generation, truncated to active part of code

4 int a = 36
5 for (int i = 0; i < key.arrayLength; i++)
6 {
7 }
8 return result % HT_LEN
9 }� �

Listing 6. First deletion example

This particular example series of deletions does not create a good hash function (it always returns
1 and so places everything in a single bucket); by comparison, one of the best population members
from our experiments after 200 generations is given in Listing 7.

By this stage the hash function has gone from the simple original hash function:

𝑟𝑛 =
∏
𝑖

𝑘𝑖 (3)

To become a more complex hash function which projects key values into a larger space before the
modulus is taken:

𝑟𝑛 = 2𝑘30 +
∏
𝑖

𝑘2𝑖 (4)

4.2 Genetic Crossover
Genetic crossover works in much the same way as insertion, except that the code inserted is taken
from another member of the population. This creates additional issues surrounding scope. Since
all population members use the same set of names for synthesised variables, and have the same
original source code, there is a very high likelihood of variable name conflict in the inserted code.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



Code and Data Synthesis for Genetic Improvement in Emergent Software Systems 001:11

If the code is inserted without consideration then variables could be: undeclared at the point of
insertion, declared twice in the same scope or have different types at different points in the code.

To resolve issues of this sort we will often rename the variable in the code being inserted as well
as adding additional declarations with the inserted code for it’s renamed variables. Renaming of
variables uses the same name list as synthesis of variable declarations.

An example of crossover is visible in Listing 7 where a second copy of the 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡𝑠∗𝑘𝑒𝑦 [𝑖]
line has been inserted. In this case all the variables used were declared in the insert location scope
with the same type so there was no need to rename. If this was inserted before the declaration
of 𝑟𝑒𝑠𝑢𝑙𝑡 then we would copy the declaration for the insert code and insert it with the line. This
would mean there were two declarations for the variable so the second one would be deleted.

5 GI WITH MIXED SYNTHESIS STUDY (RQ1)
Our first study examines the problem of limited genetic material in an initial candidate, and the
use of mixed code synthesis with more traditional GI mutations. We use four different fitness
approaches to examine the efficacy of this approach, and understand two sub-topics: (i) the extent
to which genetic improvement with synthesised genetic material for insert/modify mutations can
improve source code; and (ii) how specific ‘expansion’ phases, where high synthesis rates of new
code are used periodically to add larger amounts of new genetic material, affect the improver. We
also compare our approach against a simple hill-climbing implementation to verify the utility of
the overall GI method.

In detail, the four fitness variants used in this study are referred to as Speed Static, Length Static,
Length Dynamic, and Speed Dynamic. The first three of these variants are different versions of the
fitness function alone, while the fourth (Speed Dynamic) also changes mutation probabilities.
Speed Static Keeps a fixed fitness function and mutation/crossover probabilities over time, using a
fitness function which focuses only on performance 𝑠𝑛 in clock time of a population member 𝑛,
where a lower time to complete the fitness test is better. We can express this fitness function 𝑓𝑛 as
simply:

𝑓𝑛 = 𝑠𝑛

Length Static This fitness function uses speed measurements, 𝑠𝑛 , and combines this with a mea-
surement of the total length of code 𝑙𝑛 measured in abstract syntax tree nodes; we also weight the
total code length to be of a similar range to typical speed measurements. Experiments following
this fitness function reward code which is both fast and short:

𝑓𝑛 = 𝑠𝑛 + (𝑙𝑛 ∗ 5)
Length Dynamic This is a dynamic fitness approach which starts using the fitness function from
Length Static but switches to an alternate fitness function every 5 generations, so that half the time
it encourages expansion by rewarding longer code. The length-static fitness function is exactly as
defined above, and the alternative expansion-oriented fitness function is given below.

𝑓𝑛 = (𝑠𝑛 − (𝑠𝑛%10)) + 5(200 − 𝑙𝑛)
Our expansion-oriented fitness function, which is used alternately with the length-static fitness

function, does two things: it reduces the importance of speed without removing it entirely, and it
inverts the code-length part of the fitness equation. The importance of speed is reduced partly by
smoothing out minor variations to round speed to the nearest 10ms, and partly by multiplying the
code-length component by a factor of 5. The code-length element is inverted by assuming that 200
lines of code is the largest hash function that might be used, and subtracting the actual code-length
of the individual from 200. A hash function with a length of 10 lines therefore yields a code-length
measure of 190, while a hash function with a length of 50 lines yields a code-length measure of

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



001:12 Penny Faulkner Rainford and Barry Porter

150. Because this fitness function overall still favours lower values, the longer hash function would
therefore be considered better in this case.
Speed Dynamic Lastly, to help understand whether there is a better way to encourage code
expansion than through the fitness function, we also test a system which uses a common fitness
function of speed-based measurements, but every five generations increases the likelihood of
insertion mutations and the proportion of crossover.
Our evaluation examines the effects of our genetic improvement method on a real hash table

implementation, using curated key/value input data as our improvement target as described next.
All of our source code, with instructions on how to reproduce the results in these experiments, is
available online [Rainford 2022].

5.1 Experimental Set Up
Throughout all of our experiments in this study, the specific parameter settings used for the genetic
algorithm are listed below; the majority of these were based on a previous study [McGowan et al.
2018] which chose them after a limited manual search of the parameter space to determine a good
configuration. Note that we have specifically changed the population size and generation count
compared to this previous study in order to increase the search power of the GI process and better
test the method. The ‘speed dynamic’ study variant switches between the standard and alternate
settings to examine our second variant of mixed expansion phases.

• Population Size: 30
• Generation Count: 200
• Dynamic interval: 5 time steps
• Mutation proportion: 80%
• Crossover proportion (Normal): 20%
• Alternate crossover proportion (Speed Dynamic): 30%
• Mutation weights (Normal): insert - 30%, modify - 30%, delete - 30%
• Alternate mutation weights (Speed Dynamic): insert - 50%, modify - 25%, delete - 25%
• Number of Elite population members: 2
• Number of replicates: 30

The key/value improvement data that we use is designed to emulate a dataset that could be
captured from a live deployed system. The characteristics of this data imply the direction that
genetic improvement is likely to take the initial source code in deriving an improved version which
is more specialised to this input sequence. In general, a hash function is likely to be influenced by
(a) the average key length; and (b) the distribution of characters within keys. Our input data for the
keys used here is based on a uniform random list of English words with a maximum length of 15
characters. The actual distribution of lengths and characters in the training and testing data (used
for fitness calculations and performance testing respectively) are shown in Fig. 6. The distributions
are broadly similar, but also have clear differences in average lengths and character distributions –
indicating that we should be able to detect over-specialised output solutions of the genetic improver.

5.2 Results
We begin with our Speed Static study setting, in which our fitness function is fixed and only
considers performance. This demonstrates the baseline effects of our synthesis elements in insert
and modify mutations, without any specific expansion phases.

The results for all of our study settings are show in Fig. 3, Fig. 4, and Fig. 5, in which the x-axes
represent generations over time, and the y-axes represent fitness or performance score for that
generation. In all of our results, when calculating fitness or performance, we use the equation:

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



Code and Data Synthesis for Genetic Improvement in Emergent Software Systems 001:13

Fig. 2. Comparison of the raw millisecond speed of the final best individual from each GI variant, plotted
against their relative fitness; each algorithm variant is highlighted on the left graph, with a line of best fit
showing positive correlation (right).

𝑟𝑛 = 𝑓𝑛/𝑓0 (5)
This is the fitness score of each hash function, relative to the fitness of the original code assessed

with the same fitness function. This allows us to consider a single set of values over time when the
fitness function used changes. In all of our graphs, a lower value on y-axes is therefore better.
To show that this correlates with improvements in the millisecond speed of the final best

individual across our different fitness functions, in Figure 2 we plot relative fitness against raw
millisecond speed (Speed) of the best individual from the final generation of each fitness function
condition. This shows the different data points by algorithm variant (left) and the complete data
set with a line of best fit (right). While there are clear outliers, the best fit line does show a clear
positive correlation between the two metrics; to aid in comparisons across conditions we therefore
use relative fitness as our main measurement throughout the remainder of our results.

Considering our Speed Static study setting (bottom right), we see that fitness of the best individual
(Fig. 3) does improve across generations by 10%, and that the majority of this improvement occurs
within the first 50 generations1. The average fitness of all population members shows a similar
trend (Fig. 4), but also shows the effect of elitism and fragility: after 100 generations, the population
overall begins to show markedly poorer fitness. This trend is only just shown in the previous graph
of single-best-individual fitness because elitism carries over the best two population members
un-modified between generations. To help understand why the general population incurs this more
significant drop in fitness we examine the best single population member from this experiment
group, shown in (Lst. 8).
Here we see that the mutations and crossover deployed into the population member change

significantly how keys are derived. We can summarise this as moving from the original hash
function which generates a hash index 𝑟𝑛 using a formula:

𝑟𝑛 =
∏
𝑖

𝑘𝑖 (6)

1Note that, on many of our elite-individual graphs, we see that fitness appears to get worse at some points during a run.
This would not normally be possible, but is a result of slight changes in the environment: because we measure fitness as
execution-time of a real running system, we see natural variation in these measurements caused by perturbations in OS
scheduling policy or low-level CPU cache behaviour. This timing variation occasionally manifests as ‘worse fitness’ of an
elite across subsequent generations.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



001:14 Penny Faulkner Rainford and Barry Porter� �
1 int hash (char key[])
2 {
3 int result = 1
4 result = result + result
5 int i = 0
6 result = result * key[i]
7 result = result * key[i]
8 for (i = 0 ; i < key.arrayLength ; i ++)
9 {

10 result = result * key[i]
11 result = result * key[i]
12 }
13 return result % HT_LEN
14 }
15 � �

Listing 8. best code after 200 generations from a single run

To the example best population member shown in Listing 8, which effectively uses a formula:

𝑟𝑛 = 2𝑘20
∏
𝑖

𝑘2𝑖 (7)

The effect of this is to project the original value generated by the original function into a much
larger range within the 100 available hash buckets. This spreads the values out further before we
take the modulus, giving a better distribution of values for this particular set of input keys. The
majority of this effect comes from the duplicate line, created by crossover, within the for-loop –
and so we can say that the optimisation of the best population member depends on a single line of
code. This makes the optimisation very fragile to delete or modify mutations, which explains the
way in which the overall population for Speed Static can easily drift into far worse territory from
which it is difficult to recover.

We next examine the results from the second study group, Length Static (Top Right). In this
experiment we add a reward to the system for shorter code. This tests if length is an important
factor in our experiments and provides a contrast for our dynamic fitness function which rewards
expansion and contraction in the genome alternately.
In fitness of the best individuals (Fig. 3), we see that once again most of the improvement is in

the first 30 to 40 generation but after this the results vary less than in the Speed Static experiment,
possibly due to the smaller amount of bloat in the code meaning less variance due to bloat. We see
reduction in fitness at times despite the use of elites in these results due to the errors in our timing
mechanism (comparison of two calls to the system clock, which has a small error), including the
same reduction just after 100 generations which we see in Speed Static. The average fitness of all
members of the population (Fig. 4) reflects this instability due to increased fragility when there is
statistical difference between it and Speed Static both of which are very noisy.
We next examine the results from the third study group, Length Dynamic (Top left). Here we

are looking to see if the introduction of an alternating fitness function, which switches between
rewarding shorter and longer code, can help to better optimize our hash function by increasing
the amount of genetic material available. Considering the fitness of the best population members
(Fig. 3) we can immediately see the periodicity in the results caused by the changing fitness function
as it re-optimises with each switch. Much like in the Static experiments, however, we see the main

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



Code and Data Synthesis for Genetic Improvement in Emergent Software Systems 001:15

0.80

0.85

0.90

0.95

1.00

re
l_
fit
ne
ss

Length_dynamic Length_static

0 100 200
generation

0.80

0.85

0.90

0.95

1.00

re
l_
fit
ne
ss

Speed_dynamic

0 100 200
generation

Speed_static

Fig. 3. Mean fitness of the best population member in each generation against training data, given as mean
value of 30 repeats for each algorithm variant: Length Dynamic (Top left), Length Static (Top right), Speed
Dynamic (Bottom left) and Speed Static (Bottom right).

improvements occur in the first 50 generations. Beyond this point, besides oscillations caused by
our changing fitness function, the average fitness improves a little until just after generation 100
where it does not noticeably out-perform the Length Static experiment for fitness when on the
same fitness metric.

Examining the average population fitness under these conditions (Fig. 4) we see that the Length
Dynamic experiment does not experience any distinct periods of fitness degradation.We hypothesise
here that the increased size of the code during expansion makes it less likely that the optimizing
line of code is removed or modified, and the decreased size of code during contraction phases
would make it easier for the population to recover within the fitness function cycle that already
encourages continual re-optimization.

We next examine the results from the fourth study group, Speed Dynamic (Bottom left), which
provided an alternative form of expansion phase by explicitly increasing the probability of insertion
mutations and crossover (rather than rewarding longer program length). This expansion phase
matches the frequency and length of the expansion phase in Length Dynamic. Examining the fitness
of the best individuals here (Fig. 3) we do not see the same periodicity in the fitness scores as with
Length Dynamic. This is because the increased length of the code will not always directly effect
the fitness score and the best individuals will not necessarily expand. While the overall fitness of
Speed Dynamic is the same as Length Static, it doesn’t perform as strongly as Speed Static, which
suggests that their contraction-based fitness functions may them more consistent but less effective.

Considering the whole population (Fig. 4), however, we see that Speed Dynamic does not have a
noticeable fitness decline like the Speed Static and Length Static experiments. This is likely due

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



001:16 Penny Faulkner Rainford and Barry Porter

0 25 50 75 100 125 150 175 200
Generation

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Fi
tn

es
s 

re
la

tiv
e 

to
 o

rig
in

al
 c

od
e

run_name
 LengthDynamic 
 LengthStatic 
 SpeedDynamic 
 SpeedStatic 

Fig. 4. Mean fitness of all members (30) of the population against training data for all repeats (30), for each
of the four algorithm variants.

to the longer code making it less likely for an important line of code to be modified or deleted.
Overall, the population here (despite being more robust) is periodic like Length Dynamic but does
not perform as well as other algorithm variants at the end of the experiment – likely because the
increased length of the code slows it down.

Finally, we consider how well the best populations members from all four experiments perform
on unseen data generated in an identical manner to the training data. This allows us to assess
whether evolution is specialising to the particular input data or the general class of training data.
This is important in a real deployment environment as the actual data from the live system will
vary over time and will include values not in training data.

Starting with Speed Static we see more clearly here that the decline in performance of the overall
population, which was not very visible in the best members when tested on the training data, as a
sudden increase in spiking in the performance. It is likely that the elite members of the population
had remained better only due to features of the training data. There are small differences in the
length and letter distributions (Fig. 6) between the two data sets. Given that the hash function is
evolving only to distribute the keys into a larger space, to increase the chance of an even distribution,
small variations may better suit one data set’s particular words than the other.
The other three experiments: Length Static and Speed Dynamic perform very similarly on the

unseen data suggesting that the evolved hash solution of squaring the values, which occurred in all
experiments, is a good general solution to hashing English words. The Length Dynamic variant has
more robust results and a clear periodicity caused by the changing fitness metric but the overall
performance is statistically the same as the other variants. The experiments which incorporated
length in their fitness functions were able to specialise to the particular word set better than the
others but this did not produce better general performance than the general trend of evolution on
unseen data.
Across all results we used a signed-rank Wilcoxon test to gauge statistical significance, which

suits data that may not have a normal distribution. Using a significance threshold of 0.05, the
results in this study indicate that all GI variants clearly produce a better hash table implementation

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



Code and Data Synthesis for Genetic Improvement in Emergent Software Systems 001:17

0.6

0.8

1.0

1.2

re
l_
pe
rfo
rm
an
ce

Length_dynamic Length_static

0 100 200
generation

0.6

0.8

1.0

1.2

re
l_
pe
rfo
rm
an
ce

Speed_dynamic

0 100 200
generation

Speed_static

Fig. 5. Mean performance of best population members on unseen data. Performance is assessed every 5
generations. The x-axis on all graphs is the generation number, and the y-axis is the relative performance
compared to the first generation (lower is better).

than that of the starting individual, but that the GI variants in comparison with each other are not
differentiable in a statistically significant way. As an example, the largest statistical difference in
this data is between speed-static and speed-dynamic, at a value of 0.125, which is clearly not below
our significance threshold of 0.05. Full statistical results for all conditions are given in Appendix A.

5.3 Comparison with hill-climbing
To date there have not been any prior attempts to optimise source code in the way that we do
here, leaving us without a viable direct comparator for evaluation. In order to confirm that the
GI method in general is successful, compared to a simpler approach, we therefore implement a
hill-climbing alternative. Our hill-climber uses the same set of mutations as our GI approach, but
without crossover. At each time-step in our hill-climbing algorithm up to 100 attempts are made
to find a successful step, using mutations, for a single population member which yields a better
performance level (we note that the 100 attempts is more than 3x the size of our GI population). If
no step is found the hill-climb run finishes there.
The results are shown in Fig. 7, using the same fitness function as in our length-static GI

experiment, where each point represents the best individual at the end of one of the 30 runs. This
demonstrate that the level of improvement seen here is far more limited than the GI method using
the same fitness function, which achieved a best individual fitness of 0.57 compared to 0.75 will
hill climbing (where lower is better). From a manual analysis of the best individuals in both cases
we can infer that this poor performance in hill-climbing is essentially due to a lack of crossover:
our GI runs benefit from duplication of an existing line of code during crossover which provides

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



001:18 Penny Faulkner Rainford and Barry Porter

2 3 4 5 6 7 8 9 10 11 121314
Length

0

50

100

150

200

250

C
ou
nt

Training

a b c d e f g h i j k l m n o p q r s t u v w x y z

Letter
0

100

200

300

400

500

600

700

800

C
ou
nt

Training

2 3 4 5 6 7 8 9 10 11 121314
Length

0

50

100

150

200

250

C
ou
nt

Performance

a b c d e f g h i j k l m n o p q r s t u v w x y z

Letter
0

100

200

300

400

500

600

700

800

C
ou
nt

Performance

Fig. 6. Length (left) and Letter (right) distribution of the training data (top) and the unseen testing data
(bottom)

significant performance increase in a child individual, and further crossover then spreads this code
to other individuals in the population in successive generations.

5.4 Discussion
Our results demonstrate firstly that GI with mixed synthesis operators, for insertion and mutation,
produces positive results with hash table implementations that are better tuned to a particular envi-
ronment – and, as demonstrated by our example best population member, that these improvements
can arise from synthesised code.

We also see that the use of specific phases of expansion, in which the GI process has a preference
to insert more genetic material and/or reward longer programs before returning to its normal fitness
function, does not affect overall performance – with no statistical differences in the final generations.
It does, however, show a benefit of protecting more fragile optimisations and preventing burn
out. This could also indicate that introducing a level of dynamism in the improvement algorithm
(forcing re-optimization) may prevent detrimental mutations from staying in the population. Further
investigation into this effect would be worthwhile and would require consideration to eliminate
other variables that might effect “burn out" in our algorithms.
Phases to encourage expansion in our code (Length dynamic and speed dynamic) demonstrate

almost equivalent optimization levels in terms of our final best individual fitness of the algorithms
with our static experiments. The inclusion of a specific length measure in our fitness function, in

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



Code and Data Synthesis for Genetic Improvement in Emergent Software Systems 001:19

Fig. 7. Results of an alternative hill climb only algorithm, where each point is the final best individual of one
of 30 repeats, where fitness is measured using our length-static fitness function. Results are significantly
worse than GI using the length-static fitness function.

addition to simple performance testing, actually has a stronger effect on improving optimization
for best individual fitness, though does appear to introduce a significant increase in noise to the
best-fit individual.
On unseen data, outside of the training set, we see relatively minor improvements. While

performance improves to an extent, indicating that the improvement process is yielding candidates
which somewhat generalise to a class of data rather than over-specialising to their training data,
the level of improvement here is significantly less than the improvement seen on training data. Our
next study examines the question of specialisation vs. generalisation in detail.

6 DATA SYNTHESIS STUDY (RQ2)
Our first study demonstrates the potential to mitigate limited genetic material by blending code
synthesis with traditional mutations. However, it also demonstrates a tendency for an improved
candidate to over-specialise to the data that it is being trained on, rather than the broader class
that this training data represents.

In our second study we examine whether GI using synthesised data can avoid over-specialisation
while still yielding candidates that specifically fit a particular deployment environment (rather than
being good at all environments). As hash functions are often applied to natural language words as
keys, we draw sample data from the text of news articles from four different newspapers. Two are
UK-based as English examples (The Economist and The Sun) and two are non-English examples (Le
Monde, in French, and Rzeczpospolita and Wyborcza, in Polish). These use of both different writing
styles and different languages so serves as a good target to study specialization and generalisation.
We use our length-static fitness function for all experiments in this study and the default parameter
settings reported in Section 5.1, therefore having a fixed parameterisation, and instead vary our
training regimes. Again, all of our source code, with instructions on how to reproduce the results
in these experiments, is available online [Rainford 2022].

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



001:20 Penny Faulkner Rainford and Barry Porter

6.1 Data Sources
We use the following articles from the online versions of each newspaper:

• Economist training (1754 words)
– Covid-19 vaccines have alerted the world to the power of RNA therapies [eco 2021b]

• Economist test (1511 words)
– Are vaccine passports a good idea? [eco 2021a]

• Sun training (1685 words)
– Elon Musk changes his official job title to ‘Tecknoking’ of Tesla [Pettit 2021]
– Official covid R rate creeps up again - but still hovers below crucial 1 [Williams 2021]
– Monaco’s Prince Albert slams Harry & Megan for ‘inappropriate’ oprah interview [Fuller
2021]

• Sun test (1213 words)
– EU to agree covid passport scheme allowing vaccinated brits to travel [Aoraha 2021]
– Quirky uk summer holiday homes from £20pp -including treehouses & lighthouses [Hop-
kins 2021]

• French training (1214 words)
– Rencontres RH : l’agacement est plus difficile à résoudre que le conflit [Rodier 2021]
– Covid-19 : Olivier Véran confirme la réouverture des terrasses des cafés et restaurants le 19
mai [Le Monde 2021a]

• French test (1274 words)
– Féminicide de Mérignac : une mission d’inspection relève [Le Monde 2021c]
– Covid-19 dans le monde : le Brésil suspend la vaccination avec AstraZeneca pour les femmes
enceintes [Le Monde 2021b]

• Polish training (1073 words)
– Studentce wstrzyknięto za dużo dawek szczepionki Pfizer [Hlebowicz 2021]
– Niemedyczni pracownicy szpitali jednak z dodatkiem za pracę przy Covid-19 [Kowalska
2021c]

• Polish test (1459)
– Aptekarze dostaną za szczepienia mniej niż lekarze [Kowalska 2021a]
– Czy Unia Europejska poprze centralizację szpitali w Polsce [Kowalska 2021b]
– Nowe obostrzenia covidowe - jest jednolity tekst rozporządzenia [Kuraś 2021]

As shown in the list, for each of the language classes: Economist, Sun, French, and Polish, we
group the resultant word lists into two sets: training and test. The specific articles used to form
word lists for each set are noted in the above list, alongside exactly how many words are in each
set. In order to reach a target of 1,000 words for both training data and testing data we combined
words drawn from multiple articles listed above. All together this yields eight data sets with words
from four different sources.
Note that we use slightly different numbers of articles from different publications to gain an

equivalent number of words from each one to reach our 1,000 word target (as each article length
varies between different sources). In order to focus on the different tones of the publications we
perform stop word removal on the text, leaving words that represent the content of each sentence.
For English we remove stop words using the default Gensim stop word list in Python; we treat the
French and Polish data in the same manner with language-appropriate stop word removal.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



Code and Data Synthesis for Genetic Improvement in Emergent Software Systems 001:21

6.2 Experimental Set Up
Throughout this study we use our length-static fitness function using the default parameters noted
in 5.1, and instead vary the way in which we train our GI system. Our data sets are used in different
ways during GI to examine the effects of synthesis or sampling of training data.

In all cases our test data sets, used for performance testing without affecting fitness, are formed
from the first 1,000 words of the respective data sources as shown in the above list; this selection
does not change across the different studies.
For our training data sets, which inform fitness scores and so shape how the improved source

code evolves across generations, we use four different approaches which we term Static, Sampling,
Synthesis, and Mixed Sampling/Synthesis. In each generation of improvement, 1,000 keys are issued
to the put() and get() functions of the hash table implementation for each population member,
with the time taken to complete that of operations taken as the fitness score. The way in which
these 1,000 training keys are derived for each generation works as follows:

Static. In this approach the set of keys used for training data is taken in the same way every
generation, so there is no change in the data used for training over time. This data is formed from
the first 1,000 words of the training data set we are attempting to specialize towards.

Sampling. Here the set of keys used for training data is randomly selected from the whole file of
words, with a uniform weighting on all available words. This gives a different selection of words in
each generation, but because we need 1,000 keys per generation this still entails significant overlap
in keys used between each generation as there are less than 2,000 words in each word list. This
sampling approach is a common solution used in machine learning to prevent over-fitting when
there is plenty of data to sample from, and serves as a useful comparison to our synthesis approach.

Synthesis. Here the data is analysed for the distribution of word lengths, and frequency of letter
usage in each word. These distributions are then used to randomly produce 1,000 strings with the
same length and letter frequency distribution. This means the genetic improvement algorithm
is no longer training on real words from a given language but on different random strings each
generation. In emergent software systems, where we can only sample small amounts of real-world
data, this synthesis method is a possible solution to creating a more robust training set for genetic
improvement based on only a small amount of available “real" data.

Mixed Sampling and Synthesis. Here we mix together sampled with synthesized data to form
our 1,000 keys per generation. We sample from the real word lists as above to provide 500 words
per generation, which will have less overlap between generations than in the above sampling.
This sample is then analysed for our length and letter distributions and the other 500 words are
synthesized as above. This means our data set now includes both real words and entirely new string
data at each generation. This serves as a comparison point to help understand how mixtures of
sampled and synthesized training data may affect the outcome of genetic improvement, compared
to pure sampled or synthesized training data.
Our evaluation examines how sampled and synthesised training data affects the outcomes

of genetic improvement – and specifically whether synthesised data is a viable replacement to
gain equivalent results. To do this we consider how well our GI process can specialise a hash
table implementation towards either the language or class of data, and how the use of synthesised
training data affects this specialisation capability. As an example, an ideal improved implementation
for English words operates very well on both the training and test data for The Sun and Economist,
but operates poorly on data from other languages. This would demonstrate that, despite limited

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



001:22 Penny Faulkner Rainford and Barry Porter

trace data from the emergent system, a candidate has specialised to the general case of English
words, rather than specialising only to its limited training data.

6.3 Results
We report results in three categories: (i) effectiveness of training on different data choice methods,
as measured by fitness to the training data; (ii) the performance of the trained systems of unseen
data from the same source (testing generalisation to a class, rather than over-specialisation to
training data); and (iii) the performance of different training regimes on different unseen data from
each language (testing over-generalisation to all environments).

We start with the training performance shown in Figure 8. Training on real world data achieves
higher optimisation of 10-25%. Here we see that for the Economist data the most effective training
was using the fully synthesised data, with the partially synthesised data a close second. This is a
positive result for our hypothesis that equivalent results can be achieved from synthesised data
rather than a large data source or a sample of a larger data set. This trend is also seen with the
French and Sun data. The Polish trained data also gets its best results from the synthesised data,
while the mixed data training is slightly worse than the sampled data.

We also noted in this figure that the different language types do appear to have different properties,
as the training runs level off at different fitness scores and do so at different generations. The Polish
experiment in particular appears to be a difficult language to generate a good hash function for
as it takes longer to reach a consistent fitness level and does not optimise as well as the other
experiment data sets.

Conversely, the Economist data has the effect of being easier to optimize to, with on average 5%
greater optimization than the others.

This training is only useful if the optimization to the general class of data is correct. To determine
this, every 5 generations we test our population against unseen data from the same class. The
results of this are shown in Figure 9.
We can confirm from these results that the Economist data class is easy to optimize to as the

performance on unseen data is even better that the optimization on the training data, at 40%
improvement. We see that the static trained populations slightly outperform the synthesized and
mixed populations in performance on unseen data, but the differences are very small and still
support both methods as good alternatives in case of small training data sets.
The French data shows the synthesised data trained populations performing best but again

the performances on the unseen data are very similar across all four methods. The Polish data
populations all perform poorly, supporting our speculation that Polish is particularly hard to train
on with only a 10% optimization.
The Sun data shows notably higher difference between different training regimes, with the

synthesis and mixed data yielding very poor results and the sample and static regimes performing
better on unseen data. This is because the Sun class training data has an abnormal word length
distribution, Figure 14. Data samples with abnormalities from the general data class are a common
issue in sampled real world data which we discuss further in Section 6.4.3
Finally, in order to examine whether these systems are finding over-general solutions, rather

than specialising to a data class, we consider their performance (tested on unseen data once every 5
generations) on the different language classes. For useful specialisationwewould expect to see better
performance on the class theywere trained on, with worse performance on unfamiliar classes of data.
This matches our motivation of synthesising good candidates for each environment encountered
by an emergent software system. If, however, improved candidates are over-generalising they will
uniformly perform well on easier data classes (Economist) and worse on harder classes (Polish).

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



Code and Data Synthesis for Genetic Improvement in Emergent Software Systems 001:23

0.7

0.8

0.9

1.0

re
l_

fit
ne

ss

Economist_mixed

 EconomistMixed 

Economist_sample

 EconomistSample 

Economist_static

 EconomistStatic 

Economist_synthesis

 EconomistSynth 

0.7

0.8

0.9

1.0

re
l_

fit
ne

ss

French_mixed

 FrenchMixed 

French_sample

 FrenchSample 

French_static

 FrenchStatic 

French_synthesis

 FrenchSynth 

0.7

0.8

0.9

1.0

re
l_

fit
ne

ss

Polish_mixed

 PolishMixed 

Polish_sample

 PolishSample 

Polish_static

 PolishStatic 

Polish_synthesis

 PolishSynth 

0 100 200
generation

0.7

0.8

0.9

1.0

re
l_

fit
ne

ss

Sun_mixed

 SunMixed 

0 100 200
generation

Sun_sample

 SunSample 

0 100 200
generation

Sun_static

 SunStatic 

0 100 200
generation

Sun_synthesis

 SunSynth 

Fig. 8. Results of training for all algorithms with all languages as training data. Grey lines show average
results of training for each language. The graph only shows the fitness of the best individual in a population,
for each run and in each generation.

The results of testing against the Economist data are given in Figure 10. The gray lines on these
plots show the average performance for all training set ups on the language.
We can see that all Economist trained candidates perform better than average on their general

class, suggesting some level of useful specialization, with the same being true for the French trained
populations. It could be possible then that both of these configurations simply produce better
generalists than the other training configurations – though we can also see that the economist data
is easy to hash with an average of 35% improvement by generation 100.
The Polish trained populations do better on the Economist class than they did on their own,

supporting the idea of some generalisation and that the Economist class is easier to optimize to but

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



001:24 Penny Faulkner Rainford and Barry Porter

0.4

0.6

0.8

1.0

1.2

re
l_

pe
rfo

rm
an

ce
_n

EconomistMixed

 EconomistMixed 

EconomistSample

 EconomistSample 

EconomistStatic

 EconomistStatic 

EconomistSynthesis

 EconomistSynth 

0.4

0.6

0.8

1.0

1.2

re
l_

pe
rfo

rm
an

ce
_n

FrenchMixed

 FrenchMixed 

FrenchSample

 FrenchSample 

FrenchStatic

 FrenchStatic 

FrenchSynthesis

 FrenchSynth 

0.4

0.6

0.8

1.0

1.2

re
l_

pe
rfo

rm
an

ce
_n

PolishMixed

 PolishMixed 

PolishSample

 PolishSample 

PolishStatic

 PolishStatic 

PolishSynthesis

 PolishSynth 

0 100 200
generation

0.4

0.6

0.8

1.0

1.2

re
l_

pe
rfo

rm
an

ce
_n

SunMixed

 SunMixed 

0 100 200
generation

SunSample

 SunSample 

0 100 200
generation

SunStatic

 SunStatic 

0 100 200
generation

SunSynthesis

 SunSynth 

Fig. 9. Results for all training setups when tested on unseen data from the same class of data. The grey lines
show the average performance for that class of data.

also supporting the idea that the Polish trained populations may be worse than the Economist and
French outcomes on the Economist class due to some specialization.
The Sun populations trained on static or sampled data also do well, with the synthesised data

doing worse, supporting the theory that theymay have trained to an unusual data set and specialised
to that rather than generalising to a normal language letter and length distribution.

The performance against French data is given in Figure 11 and is not as impressive with an average
improvement of 15%. Again we see the Economist and French populations performing similarly.
Their synthesis trained populations do better than the sample trained, suggesting agreeing that
these methods are valid alternatives. It also suggests that both these systems have not specialised
to their data classes but have both generalised.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



Code and Data Synthesis for Genetic Improvement in Emergent Software Systems 001:25

0.4

0.6

0.8

1.0

re
l_

pe
rfo

rm
an

ce
_3

Economist_mixed

 EconomistMixed 

Economist_sample

 EconomistSample 

Economist_static

 EconomistStatic 

Economist_synthesis

 EconomistSynth 

0.4

0.6

0.8

1.0

re
l_

pe
rfo

rm
an

ce
_3

French_mixed

 FrenchMixed 

French_sample

 FrenchSample 

French_static

 FrenchStatic 

French_synthesis

 FrenchSynth 

0.4

0.6

0.8

1.0

re
l_

pe
rfo

rm
an

ce
_3

Polish_mixed

 PolishMixed 

Polish_sample

 PolishSample 

Polish_static

 PolishStatic 

Polish_synthesis

 PolishSynth 

0 100 200
generation

0.4

0.6

0.8

1.0

re
l_

pe
rfo

rm
an

ce
_3

Sun_mixed

 SunMixed 

0 100 200
generation

Sun_sample

 SunSample 

0 100 200
generation

Sun_static

 SunStatic 

0 100 200
generation

Sun_synthesis

 SunSynth 

Fig. 10. Testing against the unseen Economist class data every 5 generations for each language and data
preparation. The grey lines show the average performance on the Economist class data.

Interestingly the specialised Polish trained populations perform well on the french data class.
Better that the French trained data. This suggests that it has specialised on features that are shared
between French and Polish. Possibly due to both having an expanded alphabet.

The Sun populations perform similarly to the economist and french sets for the sample and static
trained populations. This is not the case for the specialised synthesis and mixed systems.

The results of testing against Polish class data Figure 12 show that Polish is a harder class with
the average improvement 1-2%. It confirms the theory that the Polish trained populations have
specialised to work with the Polish class data. They far outperform all other populations. It also
confirms the difficulty of the Polish data class. All the generalized optimisations of the Economist,
French and Sun populations seem to perform worse on the Polish data. They all level out worse

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



001:26 Penny Faulkner Rainford and Barry Porter

0.4

0.6

0.8

1.0

1.2

re
l_

pe
rfo

rm
an

ce
_1

Economist_mixed

 EconomistMixed 

Economist_sample

 EconomistSample 

Economist_static

 EconomistStatic 

Economist_synthesis

 EconomistSynth 

0.4

0.6

0.8

1.0

1.2

re
l_

pe
rfo

rm
an

ce
_1

French_mixed

 FrenchMixed 

French_sample

 FrenchSample 

French_static

 FrenchStatic 

French_synthesis

 FrenchSynth 

0.4

0.6

0.8

1.0

1.2

re
l_

pe
rfo

rm
an

ce
_1

Polish_mixed

 PolishMixed 

Polish_sample

 PolishSample 

Polish_static

 PolishStatic 

Polish_synthesis

 PolishSynth 

0 100 200
generation

0.4

0.6

0.8

1.0

1.2

re
l_

pe
rfo

rm
an

ce
_1

Sun_mixed

 SunMixed 

0 100 200
generation

Sun_sample

 SunSample 

0 100 200
generation

Sun_static

 SunStatic 

0 100 200
generation

Sun_synthesis

 SunSynth 

Fig. 11. Testing against the unseen French class data every 5 generations for each language and data
preparation. The grey lines show the average performance on the French class data.

than the starting values after optimizing to different data classes. This is particularly true of our
training data specialist the mixed and synthesis populations of the Sun class.
Lastly the results of testing against the Sun class data are given in Figure 13 with the second

best average improvement at just over 20%. It suggests there is nothing strange about the unseen
performance data for the Sun class as our generalists all perform well (economist, french and sample
and static sun populations) while our specialists such as themixed Polish trained population struggle
more. This includes the Sun-trained populations which used synthesis and seem to specialised to
the point of over fitting to the training data. This also indicates that the Sun class testing data is
easy to optimize to as so many of the generalist perform so similarly on it.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



Code and Data Synthesis for Genetic Improvement in Emergent Software Systems 001:27

0.6

0.8

1.0

1.2

re
l_

pe
rfo

rm
an

ce
_0

Economist_mixed

 EconomistMixed 

Economist_sample

 EconomistSample 

Economist_static

 EconomistStatic 

Economist_synthesis

 EconomistSynth 

0.6

0.8

1.0

1.2

re
l_

pe
rfo

rm
an

ce
_0

French_mixed

 FrenchMixed 

French_sample

 FrenchSample 

French_static

 FrenchStatic 

French_synthesis

 FrenchSynth 

0.6

0.8

1.0

1.2

re
l_

pe
rfo

rm
an

ce
_0

Polish_mixed

 PolishMixed 

Polish_sample

 PolishSample 

Polish_static

 PolishStatic 

Polish_synthesis

 PolishSynth 

0 100 200
generation

0.6

0.8

1.0

1.2

re
l_

pe
rfo

rm
an

ce
_0

Sun_mixed

 SunMixed 

0 100 200
generation

Sun_sample

 SunSample 

0 100 200
generation

Sun_static

 SunStatic 

0 100 200
generation

Sun_synthesis

 SunSynth 

Fig. 12. Testing against the unseen Polish class data every 5 generations for each language and data prepara-
tion. The grey lines show the average performance on the Polish class data.

We test all results using a signed-rank Wilcoxon test to gauge statistical differences in the final
trained individuals, again using values below 0.05 as indicators of statistical significance. These
are presented in full in Appendix A. In terms of the data treatments training we see significant
differences in almost all cases between the Mixed and Synthesis variants (e.g., French Mixed v
Static p=0.00927, Synth v Sample p=0.000831) and between the Sample and Static variants. The
data treatments with and without synthesized data are generally similar (French Mixed v Synth
p=0.371, Sample v Static p=0.750) with small effect sizes when they are different (exception Static
and Sample trained on Sun).

Looking at the final individuals, in terms of performance on different languages, we see a strong
pattern of Polish finalists being different from the others, including when testing against Polish; the

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



001:28 Penny Faulkner Rainford and Barry Porter

0.4

0.6

0.8

1.0

1.2

re
l_

pe
rfo

rm
an

ce
_2

Economist_mixed

 EconomistMixed 

Economist_sample

 EconomistSample 

Economist_static

 EconomistStatic 

Economist_synthesis

 EconomistSynth 

0.4

0.6

0.8

1.0

1.2

re
l_

pe
rfo

rm
an

ce
_2

French_mixed

 FrenchMixed 

French_sample

 FrenchSample 

French_static

 FrenchStatic 

French_synthesis

 FrenchSynth 

0.4

0.6

0.8

1.0

1.2

re
l_

pe
rfo

rm
an

ce
_2

Polish_mixed

 PolishMixed 

Polish_sample

 PolishSample 

Polish_static

 PolishStatic 

Polish_synthesis

 PolishSynth 

0 100 200
generation

0.4

0.6

0.8

1.0

1.2

re
l_

pe
rfo

rm
an

ce
_2

Sun_mixed

 SunMixed 

0 100 200
generation

Sun_sample

 SunSample 

0 100 200
generation

Sun_static

 SunStatic 

0 100 200
generation

Sun_synthesis

 SunSynth 

Fig. 13. Testing against the unseen Sun class data every 5 generations for each language and data preparation.
The grey lines show the average performance on the Sun class data.

highest p-value for Polish v Economist, or French systems on Economist data, was p=0.0175. The
mixed data treatment is the main difference between the Sun and other systems, with a significant
difference between Sun and the Economist and French systems on all data sets. Finally the French
and Economist systems perform the same on almost all systems, with only two significant results
and the lowest p-value otherwise p=0.136.

6.4 Discussion
This study has revealed three different results of training on a single language: generalists, high-
utility specialists, and over-fitting to the training data. Each of these will effect the use of the

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



Code and Data Synthesis for Genetic Improvement in Emergent Software Systems 001:29

resultant function in a dynamic deployment environment where it may see unexpected data such
as from a different language, or class within a language.

6.4.1 Generalists. The development of generalists indicates training data that provokes optimisa-
tion towards most data, rather than data from a particular environment. We view this as a mostly
positive result; while a generalist might not be as optimal as a specialist, it will better survive
environment change and be of some utility until retaining has created a new specialist.

In detail, almost all evolutionary optimization is likely to produce some general optimization, as
well as specialization. This is often a positive feature that could be used to advantage in an emergent
systems context: if, over the course of multiple retrainings, we can identify generalist optimizations
we can then potentially improve the base (pre evolution) population to include those enhancements.
This offers good general-purpose behaviour for unseen environments as and when they arise, but
does not prevent those optimizations being removed in future to allow for specialization.

6.4.2 Specialists. The specialists shown here, in particular those trained on the Polish data, emerge
from exposure to a hard class on which the generalist optimisations are less effective. While still
performing worse on unseen Polish data than most other systems on familiar class data, it is the
only improved version that achieves better than starting results on Polish.

This kind of specialisation is one of the core reasons to use evolutionary algorithms and retraining
in an emergent software system. We cannot easily predict the existence of these classes of data prior
to deployment a system, and encountering them unexpectedly can strongly effect the performance
of a system if there is no mechanism to create improvements. By retraining using an evolutionary
technique we can develop a solution from sparse sample data captured at runtime. The interaction
between this capability, and the ideal method of improving the base population as a curated genetic
pool over time, is a topic of future work.

6.4.3 Over fitting. Our Sun-trained populations did not behave as expected on the unseen data.
Based on the results in Figure 8, the populations have all successfully trained to the data with
similar curves to those trained by other language classes.

However, the populations which have trained on synthesised data perform as well on the unseen
data. This is consistent and statistically significant across all unseen data (again using a signed-rank
Wilcoxon test). This suggests that the training over-fitted to the synthesised data, also suggesting
that some aspect of the synthesised data was different from the raw data.

On further investigation we find that the training data for the Sun has a particularly high number
of single letter words (6% in the training data vs 3.1% in the testing data). This is also true in the
synthesised data, and the sampled and static data sets drawn from it. The functions produced by
training on this data have a strong preference for additional increments in the hash function’s
for-loop. These operations may assist in ensuring that single-letter keys are better distributed across
hash buckets. The challenges appears to arise in that the single letter words in the random strings
of our synthesis model come from the entire character set of English, while in the sampled or static
data single letters in English generally fall into the set: a, i, r, s, t (where r, s, and t are a result of
our stop-word removal approach from words such as “don’t”). Because this bias is not present in
the synthetic data, the improved versions are good at distributing single-letters uniformly, but may
cluster the letters {a, i, r, s, t} in similar buckets (r is included in this list as one of the articles used
was about covid infections and referenced r values heavily). This will be a fragile solution when
the single letter words are from a different distribution, or are not as common.

To confirm this, we training with the performance data set and check again the original training
set; when doing this, we find that the full synthesis system still specialises but does not over fit
based on its relative performance to the other systems (Figure 15).

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



001:30 Penny Faulkner Rainford and Barry Porter

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
op
or
tio
n

Testing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16
Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
op
or
tio
n

Static

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
op
or
tio
n

Sample

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
Pr
op
or
tio
n

Synthesised

Fig. 14. Histograms of length distributions for (from top to bottom) the testing data, static training data,
sampled training data, and synthesised training data for the Sun class.

This identifies a very specific issue with our synthesis method, and this data set. Correcting it
requires a more tailored synthesis model which better captures the underlying trends in the data,
such as by considering frequency of letters on a per-word-length basis, or treating short words as
coming from a preset dictionary of words for synthesis.
In general, to avoid problems like this we need to check if a sample of data is representative of

ongoing reality. This is a particularly challenging issue as it requires us to differentiate between a
bad sample and a real change in the data to a different environment or class. This is an interesting
direction for future investigation.

7 CONCLUSIONS
Synthesis is a powerful tool for augmenting GI systems with small amounts of code and data.
Insertion of synthesised code allows us to optimise initial candidates, by as much as 40%, that
have very little genetic material, and also creates more robust evolutionary systems that work on
small code fragments by maintaining a stable level of genetic material which can guard against the
probability of “burn out" of a population. Our goal in future is to improve the sophistication of our
synthesised insert code to increase its utility to the function and find parameter setting based on
initial code and data which will help to achieve more consistently strong optimisation.

Our overall approach demonstrates that we can generate high-utility generalists and specialists,
offering good indicators that the system can adapt to change and remain useful during retraining,
as well as adapt to new challenges in the deployment environment. This makes them perfect as

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



Code and Data Synthesis for Genetic Improvement in Emergent Software Systems 001:31

0 50 100 150 200
generation

0.6

0.7

0.8

0.9

1.0

re
l_p

er
fo

rm
an

ce
_3

Econ Performance
 sun_mixed_test 

0 50 100 150 200
generation

Econ Performance
 sun_sample_test 

0 50 100 150 200
generation

Econ Performance
 sun_static_test 

0 50 100 150 200
generation

Econ Performance
 sun_synth_test 

0 50 100 150 200
generation

0.80

0.85

0.90

0.95

1.00

re
l_p

er
fo

rm
an

ce
_1

French Performance
 sun_mixed_test 

0 50 100 150 200
generation

French Performance
 sun_sample_test 

0 50 100 150 200
generation

French Performance
 sun_static_test 

0 50 100 150 200
generation

French Performance
 sun_synth_test 

0 50 100 150 200
generation

0.96

0.98

1.00

1.02

1.04

1.06

re
l_p

er
fo

rm
an

ce
_0

Polish Performance
 sun_mixed_test 

0 50 100 150 200
generation

Polish Performance
 sun_sample_test 

0 50 100 150 200
generation

Polish Performance
 sun_static_test 

0 50 100 150 200
generation

Polish Performance
 sun_synth_test 

0 50 100 150 200
generation

0.7

0.8

0.9

1.0

re
l_p

er
fo

rm
an

ce
_2

Sun Performance
 sun_mixed_test 

0 50 100 150 200
generation

Sun Performance
 sun_sample_test 

0 50 100 150 200
generation

Sun Performance
 sun_static_test 

0 50 100 150 200
generation

Sun Performance
 sun_synth_test 

Fig. 15. Training with the Sun test data with the normal length distribution tested against original test sets
for the Economist, French and Polish data, and the original training data for the Sun.

variants to be changed in and out of an emergent system in response to changes in the deployment
environment.

The use of synthesised training data for GI systems can add to or replace sparsely sampled data
for training in low data environments to give results equivalent to those for methods with more
data available. Our results there demonstrate that, if the sampled data used to synthesise the new
data is representative of the class we wish to fit to, synthesis can help to prevent over-fitting to the
sample. There is, however, still work to be done here on how to shape a system that is robust to
bad samples without being prevented from identifying change in the system.

8 ACKNOWLEDGEMENTS
This work was partly supported by the Leverhulme Trust Research Grant ‘The Emergent Data
Centre’, RPG-2017-166.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.



001:32 Penny Faulkner Rainford and Barry Porter

REFERENCES
2021a. Are vaccine passports a good idea? https://www.economist.com/science-and-technology/2021/03/13/are-vaccine-

passports-a-good-idea
2021b. Covid-19 vaccines have alerted the world to the power of RNA therapies. https://www.economist.com/briefing/

2021/03/27/covid-19-vaccines-have-alerted-the-world-to-the-power-of-rna-therapies
Hamad Alhammady and Kotagiri Ramamohanarao. 2005. Expanding the Training Data Space Using Emerging Patterns and

Genetic Methods. In Proceedings of the 2005 SIAM International Conference on Data Mining (SDM). Society for Industrial
and Applied Mathematics, 481–485.

Claudia Aoraha. 2021. EU to agree Covid passport scheme allowing vaccinated Brits to travel. https://www.thesun.co.uk/
travel/14363494/covid-passport-eu-holiday-summer-britain/

A Arcuri and Xin Yao. 2008. A novel co-evolutionary approach to automatic software bug fixing. In 2008 IEEE Congress on
Evolutionary Computation (IEEE World Congress on Computational Intelligence). ieeexplore.ieee.org, 162–168.

Thomas Bäck and Hans-Paul Schwefel. 1993. An overview of evolutionary algorithms for parameter optimization. Evol.
Comput. 1, 1 (March 1993), 1–23.

Earl T Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica Sarro. 2014. The plastic surgery hypothesis.
(Nov. 2014), 306–317.

Liming Chen and Algirdas Avizienis. 1978. N-version programming: A fault-tolerance approach to reliability of software
operation. In Proc. 8th IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-8), Vol. 1. 3–9.

Charles Darwin. 1859. The Origin of Species (penguin classics, 1985 ed.). John Murray.
Paul Dean and Barry Porter. 2021. The Design Space of Emergent Scheduling for Distributed Execution Frameworks.

In 2021 International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). 186–195.
https://doi.org/10.1109/SEAMS51251.2021.00032

Roberto Rodrigues Filho, Marcio Pereira de Sá, Barry Porter, and Fábio M. Costa. 2018. Towards Emergent Microservices for
Client-Tailored Design. In Proceedings of the 19th Workshop on Adaptive and Reflexive Middleware (Rennes, France) (ARM
’18). Association for Computing Machinery, New York, NY, USA, Article 2, 6 pages. https://doi.org/10.1145/3289175.
3289177

Stephanie Forrest, Thanhvu Nguyen, Westley Weimer, and Claire Le Goues. 2009. A genetic programming approach to
automated software repair. In Proceedings of the 11th Annual conference on Genetic and evolutionary computation (Montreal,
Québec, Canada) (GECCO ’09). Association for Computing Machinery, New York, NY, USA, 947–954.

A A Freitas. 2009. A review of evolutionary algorithms for data mining. Data Mining and Knowledge Discovery Handbook
(2009).

Alice Fuller. 2021. Monaco’s Prince Albert slams Harry & Meghan for ’inappropriate’ Oprah interview. https://www.thesun.
co.uk/news/14462468/prince-albert-monaco-slams-harry-meghan-oprah/

Bartoz Hlebowicz. 2021. Studentce wstrzyknięto za dużo dawek szczepionki Pfize. wyborcza.pl (May 2021). https:
//wyborcza.pl/7,75399,27069101,studentce-wstrzyknieto-przez-pomylke-szesc-dawek-szczepionki.html

Hannah Hopkins. 2021. Quirky UK summer holiday homes from £20pp - including treehouses& lighthouses. https:
//www.thesun.co.uk/travel/14431435/quirky-uk-properties-summer/

J.O. Kephart and D.M. Chess. 2003. The vision of autonomic computing. Computer 36, 1 (2003), 41–50. https://doi.org/10.
1109/MC.2003.1160055

ZoltanAKocsis, GeoffNeumann, Jerry Swan,Michael G Epitropakis, Alexander E I Brownlee, Sami OHaraldsson, and Edward
Bowles. 2014. Repairing and Optimizing Hadoop hashCode Implementations. In Search-Based Software Engineering.
Springer International Publishing, 259–264.

Karolina Kowalska. 2021a. Aptekarze dostaną za szczepienia mniej niż lekarze. Rzeczpospolita (May 2021). https:
//www.rp.pl/prawo-dla-ciebie/art146801-aptekarze-dostana-za-szczepienia-mniej-niz-lekarze

Karolina Kowalska. 2021b. Czy Unia Europejska poprze centralizację szpitali w Polsce. Rzeczpospolita (May 2021). https:
//www.rp.pl/prawo-dla-ciebie/art141111-czy-unia-europejska-poprze-centralizacje-szpitali-w-polsce

Karolina Kowalska. 2021c. Niemedyczni pracownicy szpitali jednak z dodatkiem za pracę przy Covid-19. Rzeczpospolita
(Apr 2021). https://www.rp.pl/prawo-dla-ciebie/art8602191-niemedyczni-pracownicy-szpitali-jednak-z-dodatkiem-za-
prace-przy-covid-19

Jagoda Kuraś. 2021. Nowe obostrzenia covidowe - jest jednolity tekst rozporządzenia. Rzeczpospolita (Feb 2021). https:
//www.rp.pl/prawo-dla-ciebie/art8660791-nowe-obostrzenia-covidowe-jest-jednolity-tekst-rozporzadzenia

William B Langdon and Mark Harman. 2014. Genetically Improved CUDA C++ Software. In Genetic Programming. Springer
Berlin Heidelberg, 87–99.

William B Langdon and Oliver Krauss. 2021. Genetic Improvement of Data for Maths Functions. ACM Trans. Evol. Learn.
Optim. 1, 2 (July 2021), 1–30.

Le Monde. 2021a. Covid-19 : Olivier Véran confirme la réouverture des terrasses des cafés et restaurants le 19mai. Le Monde
(May 2021). https://www.lemonde.fr/planete/article/2021/05/10/covid-19-olivier-veran-confirme-la-reouverture-des-

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.

https://www.economist.com/science-and-technology/2021/03/13/are-vaccine-passports-a-good-idea
https://www.economist.com/science-and-technology/2021/03/13/are-vaccine-passports-a-good-idea
https://www.economist.com/briefing/2021/03/27/covid-19-vaccines-have-alerted-the-world-to-the-power-of-rna-therapies
https://www.economist.com/briefing/2021/03/27/covid-19-vaccines-have-alerted-the-world-to-the-power-of-rna-therapies
https://www.thesun.co.uk/travel/14363494/covid-passport-eu-holiday-summer-britain/
https://www.thesun.co.uk/travel/14363494/covid-passport-eu-holiday-summer-britain/
https://doi.org/10.1109/SEAMS51251.2021.00032
https://doi.org/10.1145/3289175.3289177
https://doi.org/10.1145/3289175.3289177
https://www.thesun.co.uk/news/14462468/prince-albert-monaco-slams-harry-meghan-oprah/
https://www.thesun.co.uk/news/14462468/prince-albert-monaco-slams-harry-meghan-oprah/
https://wyborcza.pl/7,75399,27069101,studentce-wstrzyknieto-przez-pomylke-szesc-dawek-szczepionki.html
https://wyborcza.pl/7,75399,27069101,studentce-wstrzyknieto-przez-pomylke-szesc-dawek-szczepionki.html
https://www.thesun.co.uk/travel/14431435/quirky-uk-properties-summer/
https://www.thesun.co.uk/travel/14431435/quirky-uk-properties-summer/
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://www.rp.pl/prawo-dla-ciebie/art146801-aptekarze-dostana-za-szczepienia-mniej-niz-lekarze
https://www.rp.pl/prawo-dla-ciebie/art146801-aptekarze-dostana-za-szczepienia-mniej-niz-lekarze
https://www.rp.pl/prawo-dla-ciebie/art141111-czy-unia-europejska-poprze-centralizacje-szpitali-w-polsce
https://www.rp.pl/prawo-dla-ciebie/art141111-czy-unia-europejska-poprze-centralizacje-szpitali-w-polsce
https://www.rp.pl/prawo-dla-ciebie/art8602191-niemedyczni-pracownicy-szpitali-jednak-z-dodatkiem-za-prace-przy-covid-19
https://www.rp.pl/prawo-dla-ciebie/art8602191-niemedyczni-pracownicy-szpitali-jednak-z-dodatkiem-za-prace-przy-covid-19
https://www.rp.pl/prawo-dla-ciebie/art8660791-nowe-obostrzenia-covidowe-jest-jednolity-tekst-rozporzadzenia
https://www.rp.pl/prawo-dla-ciebie/art8660791-nowe-obostrzenia-covidowe-jest-jednolity-tekst-rozporzadzenia
https://www.lemonde.fr/planete/article/2021/05/10/covid-19-olivier-veran-confirme-la-reouverture-des-terrasses-des-cafes-et-restaurants-le-19-mai_6079722_3244.html
https://www.lemonde.fr/planete/article/2021/05/10/covid-19-olivier-veran-confirme-la-reouverture-des-terrasses-des-cafes-et-restaurants-le-19-mai_6079722_3244.html


Code and Data Synthesis for Genetic Improvement in Emergent Software Systems 001:33

terrasses-des-cafes-et-restaurants-le-19-mai_6079722_3244.html
Le Monde. 2021b. Covid-19 dans le monde : le Brésil suspend la vaccination avec AstraZeneca pour les femmesenceintes. Le

Monde (May 2021). https://www.lemonde.fr/planete/article/2021/05/11/astrazeneca-l-union-europeenne-reclame-en-
justice-les-90-millions-de-doses-non-livrees-au-premier-trimestre_6079871_3244.html

Le Monde. 2021c. Féminicide de Mérignac : une mission d’inspection relève. Le Monde (May 2021).
https://www.lemonde.fr/societe/article/2021/05/12/feminicide-de-merignac-une-mission-d-inspection-releve-
une-serie-de-defaillances-dans-le-suivi-du-mari-violent_6079956_3224.html

Ding Li, Angelica Huyen Tran, and William G J Halfond. 2014. Making web applications more energy efficient for OLED
smartphones. In Proceedings of the 36th International Conference on Software Engineering (Hyderabad, India) (ICSE 2014).
Association for Computing Machinery, New York, NY, USA, 527–538.

Mario Linares-Vásquez, Gabriele Bavota, Carlos Eduardo Bernal Cárdenas, Rocco Oliveto, Massimiliano Di Penta, and Denys
Poshyvanyk. 2015. Optimizing energy consumption of GUIs in Android apps: a multi-objective approach. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association for
Computing Machinery, New York, NY, USA, 143–154.

Yang Long, Li Liu, Fumin Shen, Ling Shao, and Xuelong Li. 2018. Zero-Shot Learning Using Synthesised Unseen Visual
Data with Diffusion Regularisation. IEEE Trans. Pattern Anal. Mach. Intell. 40, 10 (Oct. 2018), 2498–2512.

Christopher McGowan, Alexander Wild, and Barry Porter. 2018. Experiments in genetic divergence for emergent systems.
In Proceedings of the 4th International Workshop on Genetic Improvement Workshop (Gothenburg, Sweden) (GI ’18).
Association for Computing Machinery, New York, NY, USA, 9–16.

Ian O’Hara, James Paulos, Jay Davey, Nick Eckenstein, Neel Doshi, Tarik Tosun, Jonathan Greco, Jungwon Seo, Matt Turpin,
Vijay Kumar, and Mark Yim. 2014. Self-assembly of a swarm of autonomous boats into floating structures. In 2014 IEEE
International Conference on Robotics and Automation (ICRA). ieeexplore.ieee.org, 1234–1240.

Justyna Petke, Saemundur O Haraldsson, Mark Harman, William B Langdon, David R White, and John R Woodward. 2018.
Genetic Improvement of Software: A Comprehensive Survey. IEEE Trans. Evol. Comput. 22, 3 (June 2018), 415–432.

Justyna Petke, William B Langdon, and Mark Harman. 2013. Applying Genetic Improvement to MiniSAT. In Search Based
Software Engineering. Springer Berlin Heidelberg, 257–262.

Harry Pettit. 2021. Elon Musk changes his official job title to ’Technoking’ of Tesla. https://www.thesun.co.uk/tech/
14352831/elon-musk-tesla-job-title-technoking/

Barry Porter. 2014. Runtime modularity in complex structures: a component model for fine grained runtime adaptation. In
Proceedings of the 17th international ACM Sigsoft symposium on Component-based software engineering (Marcq-en-Bareul,
France) (CBSE ’14). Association for Computing Machinery, New York, NY, USA, 29–34.

Barry Porter and Roberto Rodrigues Filho. 2021. A Programming Language for Sound Self-Adaptive Systems. In 2021 IEEE
International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). ieeexplore.ieee.org, 145–150.

Barry Porter, Matthew Grieves, Roberto Rodrigues Filho, and David Leslie. 2016. {REX}: A Development Platform and
Online Learning Approach for Runtime Emergent Software Systems. In 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16). usenix.org, 333–348.

Penelope Rainford. 2022. Replication package for experiments in this paper. http://www.projectdana.com/research/
telo2022rainford

Anne Rodier. 2021. Rencontres RH : l’agacement est plus difficile à résoudre que le conflit. Le Monde (May
2021). https://www.lemonde.fr/emploi/article/2021/05/12/rencontres-rh-l-agacement-est-plus-difficile-a-resoudre-
que-le-conflit_6079952_1698637.html

Roberto Rodrigues-Filho and Barry Porter. 2022. Hatch: Self-distributing systems for data centers. Future Generation
Computer Systems 132 (2022), 80–92. https://doi.org/10.1016/j.future.2022.02.008

M Rognant, C Cumer, J M Biannic, M Roa, and others. 2019. Autonomous assembly of large structures in space: a technology
review. EUCASS (2019).

Mazeiar Salehie and Ladan Tahvildari. 2009. Self-Adaptive Software: Landscape and Research Challenges. ACM Trans.
Auton. Adapt. Syst. 4, 2, Article 14 (may 2009), 42 pages. https://doi.org/10.1145/1516533.1516538

Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and Martin Rinard. 2015. Automatic error elimination by horizontal
code transfer across multiple applications. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Portland, OR, USA) (PLDI ’15). Association for Computing Machinery, New York, NY, USA,
43–54.

Alexandros Stergiou, Grigorios Kalliatakis, and Christos Chrysoulas. 2018. Traffic Sign Recognition based on Synthesised
Training Data. Big Data and Cognitive Computing 2, 3 (July 2018), 19.

Jim Torresen. 2002. A Dynamic Fitness Function Applied to Improve the Generalisation when Evolving a Signal Processing
Hardware Architecture. In Applications of Evolutionary Computing. Springer Berlin Heidelberg, 267–279.

Craig Underwood, Sergio Pellegrino, Vaios J Lappas, Christopher P Bridges, and John Baker. 2015. Using CubeSat/micro-
satellite technology to demonstrate the Autonomous Assembly of a Reconfigurable Space Telescope (AAReST). Acta

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.

https://www.lemonde.fr/planete/article/2021/05/10/covid-19-olivier-veran-confirme-la-reouverture-des-terrasses-des-cafes-et-restaurants-le-19-mai_6079722_3244.html
https://www.lemonde.fr/planete/article/2021/05/10/covid-19-olivier-veran-confirme-la-reouverture-des-terrasses-des-cafes-et-restaurants-le-19-mai_6079722_3244.html
https://www.lemonde.fr/planete/article/2021/05/11/astrazeneca-l-union-europeenne-reclame-en-justice-les-90-millions-de-doses-non-livrees-au-premier-trimestre_6079871_3244.html
https://www.lemonde.fr/planete/article/2021/05/11/astrazeneca-l-union-europeenne-reclame-en-justice-les-90-millions-de-doses-non-livrees-au-premier-trimestre_6079871_3244.html
https://www.lemonde.fr/societe/article/2021/05/12/feminicide-de-merignac-une-mission-d-inspection-releve-une-serie-de-defaillances-dans-le-suivi-du-mari-violent_6079956_3224.html
https://www.lemonde.fr/societe/article/2021/05/12/feminicide-de-merignac-une-mission-d-inspection-releve-une-serie-de-defaillances-dans-le-suivi-du-mari-violent_6079956_3224.html
https://www.thesun.co.uk/tech/14352831/elon-musk-tesla-job-title-technoking/
https://www.thesun.co.uk/tech/14352831/elon-musk-tesla-job-title-technoking/
http://www.projectdana.com/research/telo2022rainford
http://www.projectdana.com/research/telo2022rainford
https://www.lemonde.fr/emploi/article/2021/05/12/rencontres-rh-l-agacement-est-plus-difficile-a-resoudre-que-le-conflit_6079952_1698637.html
https://www.lemonde.fr/emploi/article/2021/05/12/rencontres-rh-l-agacement-est-plus-difficile-a-resoudre-que-le-conflit_6079952_1698637.html
https://doi.org/10.1016/j.future.2022.02.008
https://doi.org/10.1145/1516533.1516538


001:34 Penny Faulkner Rainford and Barry Porter

Astronaut. 114 (Sept. 2015), 112–122.
Chunli Wang, Xilin Chen, and Wen Gao. 2006. Expanding Training Set for Chinese Sign Language Recognition. In 7th

International Conference on Automatic Face and Gesture Recognition (FGR06). 323–328.
Terri-Ann Williams. 2021. Official Covid R rate creeps up AGAIN - but still hovers below crucial 1. https://www.thesun.co.

uk/news/14465292/covid-r-rate-creeps-up-again-hovers-below-1/

A STATISTICAL TEST RESULTS

Length Dynamic Speed Static Speed Dynamic

Length Static 0.192 0.199 0.0148
Length Dynamic - 0.614 0.704
Speed Static - - 0.289

Table 1. RQ1 Generation 194 fitness comparison for best individuals (the last generation with the same fitness
function for both length variants)

Economist Synth Static Sample

Mixed 0.0195 0.0230 0.781
Synth - 0.000136 0.0316
Static - - 0.0571

Sun Synth Static Sample

Mixed 0.0218 3.88e-06 0.00129
Synth - 1.92e-06 0.000771
Static - - 0.000894

French Synth Static Sample

Mixed 0.371 0.00927 0.00258
Synth - 0.0243 0.000831
Static - - 0.750

Polish Synth Static Sample

Mixed 0.629 0.0207 0.00727
Synth - 0.0111 0.00411
Static - - 0.750

Table 2. RQ2 Comparison of distributions of final generation fitness between systems trained on the same
language, statistically significant results shown in bold.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.

https://www.thesun.co.uk/news/14465292/covid-r-rate-creeps-up-again-hovers-below-1/
https://www.thesun.co.uk/news/14465292/covid-r-rate-creeps-up-again-hovers-below-1/


Code and Data Synthesis for Genetic Improvement in Emergent Software Systems 001:35

Unseen Economist Data Mixed Sample Static Synthesis

Sun v Economist 3.41e-05 0.0387 0.271 0.0598
Sun v French 7.51e-05 0.465 0.00411 0.0428
Sun v Polish 0.465 0.000332 0.000136 0.0218

Polish v Economist 0.0175 0.00822 0.000125 0.00567
Polish v French 0.0148 0.000716 0.00226 0.00604

French v Economist 0.199 0.141 0.00927 0.894

Unseen French Data Mixed Sample Static Synthesis

Sun v Economist 0.000831 0.237 0.504 0.688
Sun v French 0.000106 0.530 0.141 0.943
Sun v Polish 0.318 1.80e-05 1.80e-05 0.0786

Polish v Economist 0.280 0.000490 1.97e-05 0.136
Polish v French 0.131 0.000174 0.000174 0.120

French v Economist 0.165 0.781 0.229 0.959

Unseen Polish Data Mixed Sample Static Synthesis

Sun v Economist 0.00385 0.0598 0.362 0.229
Sun v French 2.60e-05 0.178 0.0350 0.0387
Sun v Polish 0.00411 1.92e-06 3.88e-06 0.558

Polish v Economist 0.165 6.89e-05 4.73e-06 0.688
Polish v French 0.734 9.32e-06 6.99e-06 0.766

French v Economist 0.0175 0.572 0.165 0.629

Sun Performance Mixed Sample Static Synthesis

Sun v Economist 0.000490 0.289 0.318 0.943
Sun v French 0.000205 0.453 0.116 0.975
Sun v Polish 0.600 0.000283 4.86e-05 0.0132

Polish v Economist 0.0752 0.00411 6.89e-05 0.0132
Polish v French 0.0428 0.000222 0.000222 0.0256

French v Economist 0.136 0.572 0.309 0.6889
Table 3. RQ2 Performance on final individuals on different languages compared with like data treatments
and unlike training languages. Statistically significant results are shown in bold.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article 001. Publication date: June 2022.


	Abstract
	1 Introduction
	2 Emergent Software Systems
	3 Related work
	4 Methods
	4.1 Genetic Mutations
	4.2 Genetic Crossover

	5 GI with Mixed Synthesis Study (RQ1)
	5.1 Experimental Set Up
	5.2 Results
	5.3 Comparison with hill-climbing
	5.4 Discussion

	6 Data Synthesis Study (RQ2)
	6.1 Data Sources
	6.2 Experimental Set Up
	6.3 Results
	6.4 Discussion

	7 Conclusions
	8 Acknowledgements
	References
	A Statistical Test Results

