Weak c-ideals of a Lie algebra

Zekiyé CILOGLU SAHIN¹; David Anthony TOWERS²

¹Department of Mathematics, Faculty of Arts and Sciences, Suleyman Demirel University, Isparta, Turkey.
²Department of Mathematics and Statistics, Fylde College, Lancaster University, Lancaster, United Kingdom.

Received: .201 • Accepted/Published Online: .201 • Final Version: ..201

Abstract: A subalgebra B of a Lie algebra L is called a weak c-ideal of L if there is a subideal C of L such that $L = B + C$ and $B \cap C \leq B_L$, where B_L is the largest ideal of L contained in B. This is analogous to the concept of weakly c-normal subgroups, which has been studied by a number of authors. We obtain some properties of weak c-ideals and use them to give some characterisations of solvable and supersolvable Lie algebras. We also note that one-dimensional weak c-ideals are c-ideals.

Key words: Weak c-ideal, Frattini ideal, Lie algebras, Nilpotent, Solvable, Supersolvable.

1. Introduction

Throughout L will denote a finite-dimensional Lie algebra over a field F. If B is a subalgebra of L we define B_L, the core (with respect to L) of B to be the largest ideal of L contained in B. We say that a subalgebra B of L is a weak c-ideal of L if there is a subideal C of L such that $L = B + C$ and $B \cap C \leq B_L$. This is a generalisation of the concept of a c-ideal which was studied in [9]. It is analogous to the concept of weakly c-normal subgroups as introduced by Zhu, Guo and Shum in [15]; this concept has since been further studied by a number of authors, including Zhong and Yang ([14]), Zhong, Yang, Ma and Lin ([13]), Tashtoush ([7]) and Jehad ([4]) who called them c-subnormal subgroups.

The maximal subalgebras of a Lie algebra L and their relationship to the structure of L have been studied extensively. It is well known that L is nilpotent if and only if every maximal subalgebra of L is an ideal of L (see [1]). A further result is that if L is solvable then every maximal subalgebra of L has codimension one in L if and only if L is supersolvable (see [2]). In [9] similar characterisations of solvable and supersolvable Lie algebras were obtained in terms of c-ideals. The purpose here is to generalise these results to ones relating to weak c-ideals.

In section two we give some basic properties of weak c-ideals; in particular, it is shown that weak c-ideals inside the Frattini subalgebra of a Lie algebra L are necessarily ideals of L. In section three we first show that all maximal subalgebras of L are weak c-ideals of L if and only if L is solvable and that L has a solvable maximal subalgebra that is a weak c-ideal if and only if L is solvable. Unlike the corresponding results for c-ideals, it is necessary to restrict the underlying field to characteristic zero, as is shown by an example. Finally we have that if all maximal nilpotent subalgebras of L are weak c-ideals, or if all Cartan subalgebras of L are...
weak c-ideals and F has characteristic zero, then L is solvable.

In section four we show that if L is a solvable Lie algebra over a general field and every maximal subalgebra of each maximal nilpotent subalgebra of L is a weak c-ideal of L then L is supersolvable. If each of the maximal nilpotent subalgebras of L has dimension at least two then the assumption of solvability can be removed. Similarly if the field has characteristic zero and L is not three-dimensional simple then this restriction can be removed. In the final section we see that every one-dimensional subalgebra is a weak c-ideal if and only if it is a c-ideal.

If A and B are subalgebras of L for which $L = A + B$ and $A \cap B = 0$ we will write $L = A \oplus B$. The ideals $L^{(k)}$ and L^k are defined inductively by $L^{(1)} = L^1 = L$, $L^{(k+1)} = [L^{(k)}, L^{(k)}]$, $L^{k+1} = [L, L^k]$ for $k \geq 1$. If A is a subalgebra of L, the centralizer of A in L is $C_L(A) = \{ x \in L : [x, A] = 0 \}$.

2. Preliminary Results

Definition 2.1 Let I be a subalgebra of L. We call I a subideal of L if there is a chain of subalgebras

$I = I_0 < I_1 < ... < I_n = L$,

where I_j is an ideal of I_{j+1} for each $0 \leq j \leq n - 1$.

Definition 2.2 A subalgebra B of a Lie algebra L is a weak c-ideal of L if there exists a subideal C of L such that

$L = B + C$ and $B \cap C \leq B_L$,

where B_L, the core of B, is the largest ideal of L contained in B.

Definition 2.3 A Lie algebra L is called weak c-simple if L does not contain any weak c-ideals except the trivial subalgebra and L itself.

Lemma 2.4 Let L be a Lie algebra. Then the following statements hold:

1. Let B be a subalgebra of L. If B is a c-ideal of L then B is a weak c-ideal of L.

2. L is weak c-simple if and only if L is simple.

3. If B is a weak c-ideal of L and K is a subalgebra with $B \leq K \leq L$, then B is a weak c-ideal of K.

4. If I is an ideal of L and $I \leq B$, then B is a weak c-ideal of L if and only if B/I is a weak c-ideal of L/I.

Proof (1) By the definition every ideal is a c-ideal and every c-ideal is a weak c-ideal so the proof is obvious.

(2) Suppose first that L is simple and let B be a weak c-ideal with $B \neq L$. Then

$L = B + C$ and $B \cap C \leq B_L$

where C is a subideal of L. But, since L is simple, B_L must be 0. Moreover, $C \neq 0$ so $C = L$. Hence $B = 0$ and L is weak c-simple.

Conversely, suppose L is weak c-simple. Then, since every ideal of L is a weak c-ideal, L must be simple.

(3) If B is a weak c-ideal of L then there exists a subideal C of L such that

$L = B + C$ and $B \cap C \leq B_L$
Then $K = K \cap L = K \cap (B + C) = B + (K \cap C)$. Since C is a subideal of L there exists a chain of subalgebras

$$C = C_0 < C_1 < \ldots < C_n = L$$

where C_j is an ideal of C_{j+1} for each $0 \leq j \leq n - 1$. If we intersect this chain with K we get

$$C \cap K = C_0 \cap K < C_1 \cap K < \ldots < C_n \cap K = L \cap K = K$$

and obviously $C_j \cap K$ is an ideal of $C_{j+1} \cap K$ for each $0 \leq j \leq n - 1$. Hence $C \cap K$ is a subideal of K. Also,

$$B \cap (C \cap K) \leq B_K$$

so that B is a weak c-ideal of L.

(4) Suppose first that B/I is a weak c-ideal of L/I. Then there exists a subideal C/I of L/I such that

$$L/I = B/I + C/I \text{ and } B/I \cap C/I \leq (B/I)_{L/I} = B_L/I$$

It follows that $L = B + C$ and $B \cap C \leq B_L$ where C is a subideal of L.

Suppose conversely that I is an ideal of L with $I \leq B$ and B is a weak c-ideal of L. Then there exists a C subideal of L such that

$$L = B + C \text{ and } B \cap C \leq B_L.$$

Since I is an ideal and $I \leq B$ the factor algebra

$$L/I = (B + C)/I = B/I + (C + I)/I$$

where $(C + I)/I$ is a subideal of L/I and

$$(B/I) \cap (C + I)/I = (B \cap (C + I))/I = (I + B \cap C)/I \leq B_L/I = (B/I)_{L/I}$$

so B/I is a weak c-ideal of L/I. \hfill \Box

The Frattini subalgebra of L, $F(L)$, is the intersection of all of the maximal subalgebras of L. The Frattini ideal, $\varphi(L)$, of L is $F(L)_L$. The next result is a generalisation of [9, Proposition 2.2]. The same proof works but we will include it for completeness.

Proposition 2.5 Let B, C be subalgebras of L with $B \leq F(C)$. If B is a weak c-ideal of L then B is an ideal of L and $B \leq \varphi(L)$.

Proof Suppose that $L = B + K$ where K is a subideal of L and $B \cap K \leq B_L$. Then $C = C \cap L = C \cap (B + K) = B + C \cap K = C \cap K$ since $B \leq F(C)$. Hence $B \leq C \leq K$, giving $B = B \cap K \leq B_L$ and B is an ideal of L. It then follows from [8, Lemma 4.1] that $B \leq \varphi(L)$. \hfill \Box

An ideal A is complemented in L if there is a subalgebra U of L such that $L = A + U$ and $A \cap U = 0$.

We adapt this to define a complemented weak c-ideal as follows.

Definition 2.6 Let L be a Lie algebra and B is a weak c-ideal of L. A weak c-ideal B is complemented in L if there is a subideal C of L such that $L = B + C$ and $B \cap C = 0$.

Then we can give the following lemma:
Lemma 2.7 If B is a weak c-ideal of a Lie algebra L, then B/B_L has a subideal complement in L/B_L, i.e., there exists a subideal subalgebra C/B_L of L/B_L such that L/B_L is semidirect sum of C/B_L and B/B_L. Conversely, if B is a subalgebra of L such that B/B_L has a subideal complement in L/B_L then B is a weak c-ideal of L.

Proof Let B be a weak c-ideal of L. Then there exists a subideal C of L such that $B + C = L$ and $B \cap C \leq B_L$. If $B_L = 0$ then $B \cap C = 0$ and so that C is a subideal complement of B in L. Assume that $B_L \neq 0$, then we can construct the factor algebras B/B_L and $(C + B_L)/B_L$. If we intersect these two factor algebras we have

\[
\frac{B}{B_L} \cap \frac{C + B_L}{B_L} = \frac{B \cap (C + B_L)}{B_L} = \frac{B_L + (B \cap C)}{B_L} = \frac{B_L}{B_L} = 0
\]

Hence, $(C + B_L)/B_L$ is a subideal complement of B/B_L in L/B_L. Conversely, if K is a subideal of L such that K/B_L is a subideal complement of B/B_L in L/B_L then we have that

\[
L/B_L = (B/B_L) + (K/B_L) \text{ and } (B/B_L) \cap (K/B_L) = 0
\]

Then $L = B + K$ and $B \cap K \leq B_L$. Therefore B is a weak c-ideal of L. \qed

3. Some characterisations of soluble algebras

We will use the following Lemma which is due to Stewart [6, Lemma 4.2.5]

Lemma 3.1 Let L be a Lie algebra over any field having two subideals H and K such that K is simple and not abelian. Suppose that $H \cap K = 0$. Then $[H, K] = 0$.

Theorem 3.2 Let L be a Lie-algebra over a field F of characteristic zero and let B be an ideal of L. Then B is soluble if and only if every maximal subalgebra of L not containing B is a weak c-ideal of L.

Proof Suppose every maximal subalgebra of L not containing B is a weak c-ideal of L. Then we need to show B is soluble. Assume that this is false and let L be a minimal counter-example. Let A be a minimal ideal of L and assume that M/A is a maximal subalgebra of L/A such that $(B + A)/A \not\subseteq M/A$. Then M is a maximal subalgebra of L with $B \not\subseteq M$, so M is a weak c-ideal of L. It follows that M/A is a weak c-ideal of L/A, and hence that $(B + A)/A$ is solvable. If $B \cap A = 0$, then $B \cong B/B \cap A \cong (B + A)/A$ is solvable. So we can assume that every minimal ideal of L is contained in B. Moreover, B/A is soluble for each such minimal ideal. If L has two distinct minimal ideals A_1 and A_2 then $B \cong B/A_1 \cap A_2$ is solvable, so L is monolithic with monolith A, say.

If A is abelian then B is soluble, so we must have that A is simple. Clearly, $B \not\subseteq \varphi(L)$, since $\varphi(L)$ is nilpotent, so there is a maximal subalgebra M of L such that $B \not\subseteq M$. Then M must be a weak c-ideal of L, so there is a subideal C of L such that $L = M + C$ and $M \cap C \subseteq M_L$. Since $B \not\subseteq M_L$ we have that $M_L = 0$.

1
It follows that L is primitive of type 2 and hence that $C_L(A) = 0$, by [10, Theorem 1.1]. But $[C, A] = 0$ by Lemma 3.1, so $C = 0$, a contradiction. Hence B is solvable. So suppose now that B is solvable and let M be a maximal ideal of L not containing B. Then there exists $k \in \mathbb{N}$ such that $B^{(k+1)} \subseteq M$, but $B^{(k)} \not\subseteq M$.

Clearly $L = M + B^{(k)}$ and $B^{(k)} \cap M$ is an ideal of L, so $B^{(k)} \cap M \subseteq M_L$. It follows that M is a c-ideal and hence a weak c-ideal of L.

Corollary 3.3 Let L be a Lie algebra over a field F of characteristic zero. Then L is solvable if and only if every maximal subalgebra of L is a weak c-ideal of L.

Unlike the corresponding results for c-ideals, the above two results do not hold in characteristic $p > 0$, as the following example shows.

Example 3.4 Let $L = sl(2) \otimes O_1 + 1 \otimes F(\frac{\partial}{\partial x} + x \frac{\partial}{\partial y})$, where $O_1 = F[x]$ with $x^p = 0$ is the truncated polynomial algebra in 1 indeterminate and the ground field, F, is algebraically closed of characteristic $p > 2$.

Then $A = sl(2) \otimes O_1$ is the unique minimal ideal of L. Put $S = sl(2) = Fu_{-1} + Fu_0 + Fu_1$ with $[u_{-1}, u_0] = u_{-1}$, $[u_{-1}, u_1] = u_0$, $[u_0, u_1] = u_1$ and let $M = (Fu_0 + Fu_1) \otimes O_1 + 1 \otimes F(\frac{\partial}{\partial x} + x \frac{\partial}{\partial y})$. This is a maximal subalgebra of L which doesn’t contain A. Suppose that it is a weak c-ideal of L. Then there is a subideal C of L such that $L = C + M$ and $C \cap M \subseteq M_L = 0$.

Let $C = C_0 < C_1 < \ldots < C_n = L$

where C_j is an ideal of C_{j+1} for each $0 \leq j \leq n - 1$. Then $A \subseteq C_{n-1}$, so $A = C_{n-1}$ or $C_{n-1} = A + 1 \otimes F \frac{\partial}{\partial x}$.

In the latter case it is straightforward to check that $C_{n-2} \subseteq A$. In either case, C must be inside a proper ideal of A, and hence inside $S \oplus O_1^+$, where O_1^+ is spanned by x, x^2, \ldots, x^{p-1}. But now $u_{-1} \otimes 1 \not\subseteq C + M$. Hence M is not a weak c-ideal of L.

Lemma 3.5 Let $L = U + C$ be a Lie algebra, where U is a solvable subalgebra of L and C is a subideal of L. Then there exists $n_0 \in \mathbb{N}$ such that $L^{(n_0)} \subseteq C$.

Proof Let $C = C_0 < C_1 < \ldots < C_k = L$ where C_i is an ideal of C_{i+1} for $0 \leq i \leq k - 1$. Then L/C_{k-1} is solvable and so there exists n_{k-1} such that $L^{(n_{k-1})} \subseteq C_{k-1}$. Suppose that $L^{(n_i)} \subseteq C_i$ for some $0 \leq i \leq k - 1$.

Now C_i/C_{i-1} is solvable, and so there is r_i such that $C_i^{(r_i)} \subseteq C_{i-1}$. Hence $L^{(n_i + r_i)} = (L^{(n_i)})^{(r_i)} \subseteq C_{i-1}$. Put $n_{i-1} = n_i + r_i$. The result now follows by induction.

Theorem 3.6 Let L be a Lie algebra over a field F of characteristic zero. Then L has a solvable maximal subalgebra that is a weak c-ideal of L if and only if L is solvable.

Proof Suppose first that L has a solvable maximal subalgebra M that is a weak c-ideal of L. We show that L is solvable. Let L be a minimal counter-example. Then there is a subideal K of L such that $L = M + K$ and $M \cap K \subseteq M_L$. If $M_L \neq 0$ then L/M_L is solvable, by the minimality assumption, and M_L is solvable, whence L is solvable, a contradiction. It follows that $M_L = 0$ and $L = M + K$. If R is the solvable radical of L then $R \subseteq M_L = 0$, so L is semisimple. But now, for all $n \geq 1$, $L = L^{(n)} \subseteq K \neq L$, by Lemma 3.5, a contradiction. The result follows. The converse follows from Corollary 3.3.
Theorem 3.7 Let \(L \) be a Lie algebra over a field of characteristic zero such that all maximal nilpotent subalgebras are weak \(c \)-ideals of \(L \). Then \(L \) is solvable.

Proof Suppose that \(L \) is not solvable but that all maximal nilpotent subalgebras of \(L \) are weak \(c \)-ideals of \(L \). Let \(L = R \oplus S \) be the Levi decomposition of \(L \), where \(S \neq 0 \). Let \(B \) be a maximal nilpotent subalgebra of \(S \) and \(U \) be a maximal nilpotent subalgebra of \(L \) containing it. Then there is a subideal \(C \) of \(L \) such that \(L = U + C \) and \(U \cap C \subseteq U_L \). It follows from Lemma 3.5 that \(S = S^{(n_0)} \subseteq L^{(n_0)} \subseteq C \), and so \(B \subseteq U \cap C \subseteq U_L \), whence \(S \cap U_L \neq 0 \). But \(S \cap U_L \) is an ideal of \(S \) and so is semisimple. Since \(U \) is nilpotent this is a contradiction. \(\square \)

Theorem 3.8 Let \(L \) be a Lie algebra, over a field \(F \) of characteristic zero, in which every Cartan subalgebra of \(L \) is a weak \(c \)-ideal of \(L \). Then \(L \) is solvable.

Proof Suppose that every Cartan subalgebra of \(L \) is a weak \(c \)-ideal of \(L \), and that \(L \) has a non-zero Levi factor \(S \). Let \(H \) be a Cartan subalgebra of \(S \) and let \(B \) be a Cartan subalgebra of its centralizer in the solvable radical of \(L \). Then \(C = H + B \) is a Cartan subalgebra of \(L \) (see [3]) and there is a subideal \(K \) of \(L \) such that \(\bar{L} = \bar{C} + \bar{K} \) and \(\bar{C} \cap \bar{K} \leq \bar{C}_L \). Now there is an \(r \geq 2 \) such that \(L^{(r)} \leq K \), by Lemma 3.5. But \(S \leq L^{(r)} \leq K \), so \(C \cap S \leq C \cap K \leq C_L \) giving \(C \cap S \leq C_L \cap S = 0 \), a contradiction. It follows that \(S = 0 \) and hence that \(L \) is solvable. \(\square \)

4. Some characterisations of supersolvable algebras

The following is proved in [9, Lemma 4.1]

Lemma 4.1 Let \(L \) be a Lie algebra over any field \(F \), let \(A \) be an ideal of \(L \) and let \(U/A \) be a maximal nilpotent subalgebra of \(L/A \). Then \(U = C + A \), where \(C \) is a maximal nilpotent subalgebra of \(L \).

We will also need the following result.

Lemma 4.2 Let \(L \) be a Lie algebra over any field \(F \) and suppose that \(L = B + K \), where \(B \) is a nilpotent subalgebra and \(K \) is a subideal of \(L \). Then there exists \(s \in \mathbb{N} \) such that \(L^s \subseteq K \). Moreover, if \(A \) is a minimal ideal of \(L \) then either \(A \subseteq K \) or \([L, A] = 0 \).

Proof Since \(K \) is a subideal of \(L \), there exists \(r \in \mathbb{N} \) such that \(L \) \((\text{ad } K)^r \subseteq K \). As \(B \) is nilpotent, there exists \(s \in \mathbb{N} \) such that \(L^s = (B + K)^s \subseteq K \). Now \([L, A] = A \) or \([L, A] = 0 \) and the former implies that \(A \subseteq L^s \subseteq K \). \(\square \)

Lemma 4.3 Let \(L \) be a Lie algebra, over any field \(F \), in which every maximal subalgebra of each maximal nilpotent subalgebra of \(L \) is a weak \(c \)-ideal of \(L \), and let \(A \) be a minimal abelian ideal of \(L \). Then every maximal subalgebra of each maximal nilpotent subalgebra of \(L/A \) is a weak \(c \)-ideal of \(L/A \).

Proof Suppose that \(U/A \) is a maximal nilpotent subalgebra of \(L/A \). Then \(U = C + A \) where \(C \) is a maximal nilpotent subalgebra of \(L \) by Lemma 4.1. Let \(B/A \) be a maximal subalgebra of \(U/A \). Then \(B = B \cap (C + A) = B \cap C + A = D + A \) where \(D \) is a maximal subalgebra of \(C \) with \(B \cap C \leq D \). Now \(D \) is a weak \(c \)-ideal of \(L \) so there is a subideal \(K \) of \(L \) with \(L = D + K \) and \(D \cap K \leq D_L \).
If \(A \leq K \) we have
\[
\frac{L}{A} = \frac{D + K}{A} = \frac{D + A}{A} + \frac{K}{A} = \frac{B}{A} + \frac{K}{A},
\]
and
\[
\frac{B \cap K}{A} = \frac{B \cap K}{A} = \frac{(D + A) \cap K}{A} = \frac{D \cap K + A}{A} \leq \frac{D_L + A}{A} \leq \left(\frac{B}{A} \right)_{L/A}.
\]

So suppose that \(A \not\leq K \). Then Lemma 4.2 shows that \([L, A] = 0\). It follows that \(A \leq C \) and \(B = D \). We have \(L = B + K \) and \(B \cap K \leq B_L \), so
\[
\frac{L}{A} = \frac{B}{A} + \frac{K + A}{A}
\]
and
\[
\frac{B \cap (K + A)}{A} = \frac{B \cap (K + A)}{A} = \frac{B \cap K + A}{A} \leq \frac{B_L + A}{A} \leq \left(\frac{B}{A} \right)_{L/A}.
\]

\(\square \)

Lemma 4.4 Let \(L \) be a Lie algebra over any field \(F \), in which every maximal nilpotent subalgebra of \(L \) is a weak c-ideal of \(L \), and suppose that \(A \) is a minimal abelian ideal of \(L \) and \(M \) is a core-free maximal subalgebra of \(L \). Then \(A \) is one dimensional.

Proof We have that \(L = A + M \) and \(A \) is the unique minimal ideal of \(L \), by [10, Theorem 1.1]. Let \(C \) be a maximal nilpotent subalgebra of \(L \) with \(A \leq C \). If \(A = C \), choose \(B \) to be a maximal subalgebra of \(A \), so that \(A = B + Fa \) and \(B_L = 0 \). Then \(B \) is a weak c-ideal of \(L \). So there is a subideal of \(K \) of \(L \) with \(L = B + K \) and \(B \cap K \leq B_L = 0 \). Now \(L = B + K = B + K^L = K^L \), since \(B \leq A \leq K^L \). It follows that \(K = L \), whence \(B = 0 \) and \(A = Fa \) is one dimensional.

So suppose that \(C \neq A \). Then \(C = A + M \cap C \). Let \(B \) be a maximal subalgebra of \(C \) containing \(M \cap C \). Then \(B \) is a weak c-ideal of \(L \), so there is a subideal \(K \) of \(L \) with \(L = B + K \) and \(B \cap K \leq B_L \). If \(A \leq B_L \leq B \), we have \(C = A + M \cap C \leq B \), a contradiction. Hence \(B_L = 0 \) and \(L = B + K \). Now \(C = B + C \cap K \) and \(B \cap C \cap K = B \cap K = 0 \). As \(C \) is nilpotent this means that \(\dim(C \cap K) = 1 \). If \(A \subseteq K \) we have that \(A \leq C \cap K \), so \(\dim A = 1 \), as required. Otherwise, \([L, A] = 0\), by Lemma 4.2 and again \(\dim A = 1 \).

We can now prove our main result.

Theorem 4.5 Let \(L \) be a solvable Lie algebra over any field \(F \) in which every maximal subalgebra of each maximal nilpotent subalgebra of \(L \) is a weak c-ideal of \(L \). Then \(L \) is supersolvable.

Proof Let \(L \) be a minimal counter-example and let \(A \) be a minimal abelian ideal of \(L \). Then \(L/A \) satisfies the same hypothesis by Lemma 4.3 We thus have that \(L/A \) is supersolvable and it remains to show that \(\dim A = 1 \).

If there is another minimal ideal \(I \) of \(L \), then
\[
A \cong (A + I)/I \leq L/I
\]
which is supersolvable and so \(\dim A = 1 \). So we can assume that \(A \) is the unique minimal ideal of \(L \). Also, if \(A \leq \varphi(L) \), we have that \(L/\varphi(L) \) is supersolvable, whence \(L \) is supersolvable by [2, Theorem 7]. We therefore, further assume that \(A \not\leq \varphi(L) \). It follows that \(L = A + M \), where \(M \) is a core-free maximal subalgebra of \(L \). The result now follows from Lemma 4.4. \(\square \)
If L has no one-dimensional maximal nilpotent subalgebras, we can remove the solvability assumption from the above result provided that F has characteristic zero.

Corollary 4.6 Let L be a Lie algebra over a field F of characteristic zero in which every maximal nilpotent subalgebra has dimension at least two. If every maximal subalgebra of each maximal nilpotent subalgebra of L is a weak c-ideal of L, then L is supersolvable.

Proof Let N be the nilradical of L, and let $x \notin N$. Then $x \in C$ for some maximal nilpotent subalgebra C of L. Since $\dim C > 1$, there is a maximal subalgebra B of C with $x \in B$. Then there is a subideal K of L such that $L = B + K$ and $B \cap K \subseteq B_L \leq C_L \leq N$. Clearly, $x \notin K$, since otherwise $x \in B \cap K \leq N$. Moreover, $L' \subseteq K$ for some $r \in \mathbb{N}$, by Lemma 4.2. We have shown that if $x \notin N$ there is a subideal K of L with $x \notin K$ and $L' \subseteq K$.

Suppose that L is not solvable. Then there is a semisimple Levi factor S of L. Choose $x \in S$. Then $x \in S = S' \subseteq K$, a contradiction. Thus L is solvable and the result follows from Theorem 4.5. □

If L has a one-dimensional maximal nilpotent subalgebra, then we can also remove the solvability assumption from Theorem 4.4, provided that underlying field F has again characteristic zero and L is not three-dimensional simple.

Corollary 4.7 Let L be a Lie algebra over a field F of characteristic zero. If every maximal nilpotent subalgebra of each maximal nilpotent subalgebra of L is a weak c-ideal of L, then L is supersolvable or three dimensional simple.

Proof If every maximal nilpotent subalgebra of L has dimension at least two, then L is supersolvable by Corollary 4.6. So we need only consider the case where L has a one-dimensional maximal nilpotent subalgebra, say Fx. Suppose first that L is semisimple, so $L = S_1 \oplus \ldots \oplus S_n$, where S_i is a simple ideal of L for $1 \leq i \leq n$.

Let $n > 1$. If $x \in S_i$, then choosing $s \in S_j$ with $j \neq i$, we have that $Fx + Fs$ is a two dimensional abelian subalgebra, which contradicts the maximality of Fx. If $x \notin S_i$ for every $1 \leq i \leq n$, then x has nonzero projections in at least two of the S_k’s, say $s_i \in S_i$ and $s_j \in S_j$. But then $Fx + Fs_i$ is a two-dimensional abelian subalgebra, a contradiction again. It follows that L is simple. But then Fx is a Cartan subalgebra of L, which yields that L has rank one and thus is three dimensional.

So now let L be a minimal-counter example. We have seen that L is not semisimple, so it has a minimal abelian ideal A. By Lemma 4.3, L/A is supersolvable or three-dimensional simple. In the former case, L is solvable and so is supersolvable, by Theorem 4.5.

In the latter case, $L = A \oplus S$ where S is three-dimensional simple, and so a core-free maximal subalgebra of L. It follows from Lemma 4.4 that $\dim A = 1$. But now $C_L(A) = A$ or L. In the former case $S \cong L/A = L/C_L(A) \cong Inn(A)$, a subalgebra of $Der(A)$, which is impossible. Hence $L = A \oplus S$, where A and S are both ideals of L and again L has no one-dimensional maximal nilpotent subalgebras. □

5. One dimensional weak c-ideals

Lemma 5.1 Let L be a Lie algebra over any field F. Then the one-dimensional subalgebra Fx of L is a weak c-ideal of L if and only if it is a c-ideal of L.

Proof Let Fx be a weak c-ideal of L. Then there is a subideal K of L such that $L = Fx + K$ and $Fx \cap K \leq (Fx)_L$. Since either $K = L$ or K has codimension one in L, it is an ideal of L and Fx is a c-ideal
We say that L is almost abelian if $L = L^2 \oplus Fx$, where L^2 is abelian and $[x, y] = y$ for all $y \in L^2$. Then
the following result follows from Lemma 5.1 and [9, Theorem 5.2].

Theorem 5.2 Let L be a Lie algebra over any field F. Then all one-dimensional subalgebras of L are weak c-ideals of L if and only if:

(i) $L^3 = 0$; or

(ii) $L = A \oplus B$, where A is an abelian ideal of L and B is an almost abelian ideal of L.

Acknowledgment

The authors would like to thank the referees for their valuable comments.

References

