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Abstract

Leibniz algebras are a non-anticommutative version of Lie algebras.
They play an important role in different areas of mathematics and
physics and have attracted much attention over the last thirty years.
In this paper we investigate whether conditions such as being a Lie
algebra, cyclic, simple, semisimple, solvable, supersolvable or nilpotent
in such an algebra are preserved by lattice isomorphisms.
Mathematics Subject Classification 2000: 17B05, 17B20, 17B30, 17B50.
Key Words and Phrases: Lie algebras, Leibniz algebras, cyclic, simple,
semisimple, solvable, supersolvable, nilpotent, lattice isomorphism.

1 Introduction

An algebra L over a field F is called a Leibniz algebra if, for every x, y, z ∈ L,
we have

[x, [y, z]] = [[x, y], z]− [[x, z], y]

In other words the right multiplication operator Rx : L→ L : y 7→ [y, x] is a
derivation of L. As a result such algebras are sometimes called right Leibniz

1



algebras, and there is a corresponding notion of left Leibniz algebras, which
satisfy

[x, [y, z]] = [[x, y], z] + [y, [x, z]].

Clearly the opposite of a right (left) Leibniz algebra is a left (right) Leibniz
algebra, so, in most situations, it does not matter which definition we use.
Leibniz algebras which satisfy both the right and left identities are sometimes
called symmetric Leibniz algebras.

Every Lie algebra is a Leibniz algebra and every Leibniz algebra satis-
fying [x, x] = 0 for every element is a Lie algebra. They were introduced in
1965 by Bloh ([7]) who called them D-algebras, though they attracted more
widespread interest, and acquired their current name, through work by Lo-
day and Pirashvili ([18], [19]). They have natural connections to a variety of
areas, including algebraic K-theory, classical algebraic topology, differential
geometry, homological algebra, loop spaces, noncommutative geometry and
physics. A number of structural results have been obtained as analogues of
corresponding results in Lie algebras.

The Leibniz kernel is the set I = span{x2 : x ∈ L}. Then I is the
smallest ideal of L such that L/I is a Lie algebra. Also [L, I] = 0.

We define the following series:

L1 = L,Lk+1 = [Lk, L](k ≥ 1) and L(0) = L,L(k+1) = [L(k), L(k)](k ≥ 0).

Then L is nilpotent of class n (resp. solvable of derived length n) if Ln+1 =
0 but Ln 6= 0 (resp.L(n) = 0 but L(n−1) 6= 0) for some n ∈ N. It is
straightforward to check that L is nilpotent of class n precisely when every
product of n + 1 elements of L is zero, but some product of n elements is
non-zero.The nilradical, N(L), (resp. radical, R(L)) is the largest nilpotent
(resp. solvable) ideal of L.

The set of subalgebras of a nonassociative algebra forms a lattice under
the operations of union, ∪, where the union of two subalgebras is the subal-
gebra generated by their set-theoretic union, and the usual intersection, ∩.
The relationship between the structure of a Lie algebra L and that of the
lattice L(L) of all subalgebras of L has been studied by many authors. Much
is known about modular subalgebras (modular elements in L(L)) through
a number of investigations including [1, 12, 14, 27, 28, 29]. Other lattice
conditions, together with their duals, have also been studied. These include
semimodular, upper semimodular, lower semimodular, upper modular, lower
modular and their respective duals (see [8] for definitions). For a selection
of results on these conditions see [9, 13, 15, 16, 17, 20, 24, 26, 30, 31].
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The subalgebra lattice of a Leibniz algebra, however, is rather differ-
ent; in a Lie algebra every element generates a one-dimensional subalgebra,
whereas in a Leibniz algebra elements can generate subalgebras of any di-
mension. So, one could expect different results to hold for Leibniz algebras
anf this has been shown to be the case in [21]..

Of particular interest is the extent to which important classes of Leibniz
algebras are determined by their subalgebra lattices. In order to investigate
this question we introduce the notion of a lattice isomorphism. If we denote
the subalgebra lattice of L by L(L), then a lattice isomorphism from L to
L∗ is a bijective map θ : L(L) → L(L∗) such that θ(A ∪ B) = θ(A) ∪ θ(B)
and θ(A ∩ B) = θ(A) ∩ θ(B) for all A,B ∈ L(L). If L is a Lie algebra over
a field of characteristic zero the following were proved in [23].

Theorem 1.1 (i) If L is simple then either

(a) L∗ is simple, or

(b) L is three-dimensional non-split simple and L∗ is two-dimensional.

(ii) If L is semisimple then either

(a) L∗ is semisimple, or

(b) L is three-dimensional non-split simple and L∗ is two-dimensional.

(iii) If dimL,L∗ > 2 and R is the radical of L, then R∗ is the radical of
L∗.

(iv) If L is supersolvable of dimension > 2, then L∗ is supersolvable.

In [15] the following was proved.

Theorem 1.2 If L is a solvable Lie algebra over a perfect field of charac-
teristic different from 2, 3, then either

(i) L∗ is solvable, or

(ii) L∗ is three-dimensional non-split simple.

We say that a Lie algebra L is almost abelian if it is a split extension
L = L2+̇Fa with ad a acting as the identity map on the abelian ideal L2;
L is quasi-abelian if it is abelian or almost abelian. The quasi-abelian Lie
algebras are precisely the ones in which every subspace is a subalgebra. The
following is well-known and easy to show.
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Proposition 1.3 If L is a quasi-abelian Lie algebra over a field of char-
acteristic zero then L∗ is quasi-abelian unless dimL = 2 and L∗ is three-
dimensional non-split simple.

In this paper we consider corresponding results for Leibniz algebras.
First, in section two, we show that cyclic Leibniz algebras are characterised
by their subalgebra lattice, and that a non-Lie Leibniz algebra cannot be
lattice isomorphic to a Lie algebra. In section three we see that if L is a
non-Lie simple or semisimple Leibniz algebra then so is L∗. In section four,
it is shown that if L is a non-Lie solvable or supersolvable Leibniz algebra
then so is L∗. It is also proved that the radical of a non-Lie Leibniz algebra
is preserved by lattice isomorphisms. The final section is devoted to showing
that if L is a non-Lie nilpotent Leibniz algebra then so is L∗. Most of the
above results are over fields of characteristic zero.

Throughout, L will denote a finite-dimensional Leibniz algebra over a
field F . Algebra direct sums will be denoted by ⊕, whereas vector space
direct sums will be denoted by +̇. The notation ‘A ⊆ B’ will indicate that
A is a subset of B, whereas ‘A ⊂ B’ will mean that A is a proper subset of
B. If A and B are subalgebras of L we will write 〈A,B〉 for A ∪B.

The centre of L is Z(L) = {z ∈ L | [z, x] = [x, z] = 0 for all x ∈ L}. The
Frattini ideal of L, φ(L), is the largest ideal of L contained in all maximal
subalgebras of L .

2 Cyclic Leibniz algebras

The only previous paper that we are aware of on this topic is by Barnes ([5]).
The following example shows that the Leibniz kernel of a non-Lie Leibniz
algebra is not necessarily preserved by a lattice isomorphism.

Example 2.1 Let L = Fb+Fa where the only non-zero products are [b, b] =
a, [a, b] = a. Then the only subalgebras of L are 0, Fa, F (b−a) and L, and
I = Fa. Then we can define a lattice automorphism of L which interchanges
Fa and F (b− a), and the latter is not an ideal of L as [b, b− a] = a.

Barnes called the above example the diamond algebra because of the
structure of its lattice of subalgebras as a Hasse diagram, but that name has
since been used for a different Leibniz algebra. He further showed that this
example is exceptional in the following result.
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Theorem 2.1 ([5, Theorem 3.1]) Let L,L∗ be Leibniz algebras with Leibniz
kernels I, I∗ respectively, and let θ : L → L∗ be a lattice isomorphism.
Suppose that dimL ≥ 3. Then θ(I) = I∗.

However, this paper does not appear to have been followed by further
investigations into the subalgebra structure of a Leibniz algebra. Theorem
2.1, of course, has an immediate corollary.

Corollary 2.2 Let L be a non-Lie Leibniz algebra. Then L cannot be lattice
isomorphic to a Lie algebra L∗.

Proof. If dimL ≥ 3 then I 6= 0 if and only if I∗ 6= 0. If dimL = 2
there are only two possibilities for L, both of them cyclic with basis x, x2.
In the first, [x2, x] = 0 and the only proper subalgebra is Fx2, and in the
second, [x2, x] = x2 and the only proper subalgebras are Fx2 and F (x−x2).
However, every Lie algebra of dimension greater than one has more than
two proper subalgebras.

There is no non-Lie Leibniz algebra of dimension one. �

A Leibniz algebra L is called cyclic if it is generated by a single element.
In this case, L has a basis x, x2, . . . , xn(n > 1) and products [xi, x] = xi+1

for 1 ≤ i ≤ n− 1, [xn, x] = α2x
2 + . . .+αnx

n, all other products being zero.
Then we have the following.

Theorem 2.3 If L is a cyclic Leibniz algebra over an infinite field F , then
L∗ is also a cyclic Leibniz algebra of the same dimension.

Proof. Over an infinite field a Leibniz algebra is cyclic if and only if it has
finitely many maximal subalgebras, by [21, Corollary 2.3]. Moreover, the
length of a maximal chain of subalgebras of a cyclic algebra is equal to its
dimension. �

Corollary 2.4 If L is a nilpotent cyclic Leibniz algebra, then L∗ ∼= L.

Proof. A nilpotent cyclic Leibniz algebra has only one maximal subalgebra,
namely I, its Leibniz kernel. It follows that L∗ is nilpotent of the same
dimension. Note that the restriction on the field is unnecessary here, since,
if M is the only maximal subalgebra of L and x ∈ L \M , we must have
L = 〈x〉. �

Note that, in both of the above results, if L = 〈x〉 then L∗ = 〈x∗〉,
since x does not belong to any of the maximal subalgebras of L, and this is
inherited by x∗ in L∗.
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Proposition 2.5 Let L = A+̇Fx be a non-Lie Leibniz algebra in which A
is a minimal abelian ideal of L and x2 = 0. Then L is cyclic and A = I.

Proof. Since L is not a Lie algebra, A = I, [L,A] = 0 and [A,L] 6= 0, so
[A, x] = A. Let 0 6= a ∈ A. Then (x + a)n = Rn−1

x (a) for n ≥ 2, which
implies that [(x+a)n, x] = Rn

x(a) ∈ 〈x+a〉 for n ≥ 1. Hence 〈x+a〉∩A is an
ideal of L and so equals A or 0. However, the latter implies that [a, x] = 0,
whence A = Fa and [A, x] = 0, a contradiction. It follows that L = 〈x+ a〉.
�

3 Semisimple Leibniz algebras

The following useful result was proved by Barnes in [4]. Note that we have
modified the statement to take account of the fact that Barnes’ result is
stated for left Leibniz algebras and we are dealing with right Leibniz alge-
bras.

Lemma 3.1 Let A be a minimal ideal of the Leibniz algebra L. Then
[L,A] = 0 or [x, a] = −[a, x] for all a ∈ A, x ∈ L.

A Leibniz algebra L is called simple if its only ideals of L are 0, I and
L, and L2 6= I. If L/I is a simple Lie algebra then L is not necessarily
a simple Leibniz algebra. It is said to be semisimple if R(L) = I. This
definition agrees with that of a semisimple Lie algebra, since, in this case,
I = 0. Semisimple Leibniz algebras are not necessarily direct sums of simple
Leibniz algebras (see [10] or [2]).

We have the following version of Levi’s Theorem.

Theorem 3.2 (Barnes [3]) Let L be a finite-dimensional Leibniz algebra
over a field of characteristic 0. Then there is a semisimple Lie subalgebra S
of L such that L = S+̇R(L).

We shall need the following result which was proved by Gein in [11, p.
23].

Lemma 3.3 Let S be a three-dimensional non-split simple Lie algebra, and
let R be an irreducible S-module. Then, for any s ∈ S, R has an ad s-
invariant subspace of dimension less than or equal to two.

If U is a subalgebra of L and 0 = U0 < U1 < . . . < Un = U is a maximal
chain of subalgebras of U we will say that U has length n.
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Theorem 3.4 Let L = S+̇A be a Leibniz algebra over a field of character-
istic zero, where S is a three-dimensional non-split simple Lie algebra and
A is a minimal abelian ideal of L. Then L∗ has a simple Lie subalgebra.

Proof. Suppose that L∗ does not have a simple Lie subalgebra. Then
R(L∗) 6= 0, by Theorem 3.2, and so L∗ has a minimal abelian ideal B∗.
As S∗ is a maximal subalgebra of L∗ we must have that L∗ = S∗+̇B∗. If
dimA = 1 we have that L = S ⊕ A is a Lie algebra and hence, so is L∗,
giving that S∗ ∼= S, by [23, Lemma 3.3] and contradicting our supposition.
Hence dimA ≥ 2.

Now maximal subalgebras of L are of two types: they are isomorphic to
S, and so have length 2, or they are of the form Fs+̇A, where s ∈ S, and so
are solvable of length at least 3. Moreover, A is the intersection of those of
the second type. The same must be true of the maximal subalgebras of L∗

and so B∗ = A∗ and L∗ = S∗+̇A∗. Also, dimS∗ = 2, by Theorem 1.1. Now
φ(L∗) = (φ(L))∗ = 0, so L∗ = A∗+̇C∗, where C∗ is abelian, by [6, Corollary
2.9]. Since S∗ ∼= C∗, we have that S∗ is abelian.

Let 0 6= s∗ ∈ S∗, 0 6= a∗ ∈ A∗ and let f(θ) be the polynomial of smallest
degree for which f(Rs∗)(a∗) = 0. It follows from the fact that S∗ is abelian
that {x∗ ∈ A∗ : f(Rs∗)(x∗) = 0} is an ideal of L∗, and hence that it coincides
with A∗. Clearly then f(θ) is the minimum polynomial of Rs∗ |A∗ .

Suppose that there is an s∗1 ∈ S∗ for which the minimum polynomial for
Rs∗1

has degree two. and let this polynomial be f(θ) = θ2 − λ2θ − λ1. Pick
s∗2 ∈ S∗ linearly independent of s∗1. Then

[[a∗, s∗1], s
∗
1] = λ1a

∗ + λ2[a
∗, s∗1] and

[[a∗, s∗2], s
∗
2] = α1a

∗ + α2[a
∗, s∗2] so

[[a∗, s∗1], s
∗
2] = [a∗, [s∗1, s

∗
2]] + [[a∗, s∗2], s

∗
1] = [[a∗, s∗2], s

∗
1]

= β1a
∗ + β2[a

∗, s∗1] + β3[a
∗, s∗2],

since [[a∗, s∗1 + s∗2], s
∗
1 + s∗2] ∈ Fa∗ + F [a∗, s∗1 + s∗2]. Now

[[[a∗, s∗2], s
∗
1], s

∗
1] = λ1[a

∗, s∗2] + λ[[a∗, s∗2], s
∗
1],

so

(β2λ1 + β3β1)a
∗ + (β1 + β2λ2)[a

∗, s∗1] + β23 [a∗, s∗2]

= λ2β1a
∗ + λ2β2[a

∗, s∗1] + (λ1 + λ2β3)[a
∗, s∗2].

Since f(θ) is irreducible, β23 6= λ1 + λ2β3 and so [a∗, s∗2] = γ1a
∗ + γ2[a

∗, s∗1].
Hence A∗ is two dimensional.
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Put A = Fa+F [a, s]. Choose s1, s2 to be elements of S such that s, s1, s2
are linearly independent. Then [a, s1] = αa+β[a, s] and [a, s2] = γa+δ[a, s]
for some α, β, γ, δ ∈ F . Thus [a, s1 − βs] = αa and [a, s2 − δs] = γa. But
s1 − βs and s2 − δs are linearly independent, so

[a, S] = [a,< s1 − βs, s2 − δs >] ⊆ Fa

and A is one dimensional, a contradiction. �

Corollary 3.5 Let L be a non-Lie semisimple Leibniz algebra over a field
of characteristic zero. Then L∗ is a non-Lie semisimple Leibniz algebra.

Proof. We have that I 6= 0, so L = I+̇S where S is a semisimple Lie algebra,
by Theorem 3.2. Then L∗/I∗ is a semisimple Lie algebra or dimL∗/I∗ = 2
and S is 3-dimensional non-split simple, by Theorem 1.1(ii).

Suppose that the latter holds, so L∗ is solvable. Let A be a minimal ideal
of L inside I and put B = A+̇S. Then B∗ has a simple Lie subalgebra, by
Theorem 3.4 and L∗ cannot be solvable. Hence the former holds and L∗ is
a non-Lie semsimple Leibniz algebra. �

A subalgebra U of L is called upper semi-modular if U is a maximal
subalgebra of 〈U,B〉 for every subalgebra B of L such that U ∩B is maximal
in B. Using this concept we have a further corollary.

Corollary 3.6 Let L be a non-Lie simple Leibniz algebra over a field of
characteristic zero. Then L∗ is a non-Lie simple Leibniz algebra.

Proof. We have that L = I+̇S where S is a simple Lie subalgebra of L and
I 6= 0. If L∗/I∗ is not simple then S must be three-dimensional non split
simple, by Theorem 1.1(i), and we get a contradiction as in the previous
corollary.

Let 0 6= A∗ be an ideal of L∗. Suppose first that A∗ ⊆ I∗. Then
A is an upper semi-modular subalgebra of L with A ⊆ I. Let s ∈ S.
Then A ∩ Fs = 0 is a maximal subalgebra of Fs. Hence A is a maximal
subalgebra of C = 〈A, s〉. Now A ⊆ C ∩ I ⊂ C, so A = C ∩ I. Thus
[s,A], [A, s] ⊆ C ∩ I = A, so A is an ideal of L, whence A = I. It follows
that A∗ = I∗.

Next, suppose that A∗ 6⊆ I∗. Then I∗ + A∗ = L∗ and I∗ ∩ A∗ = I∗ or
0, by the previous paragraph. The former implies that A∗ = L∗; the latter
gives that L∗ = I∗ ⊕A∗ giving I∗ = 0 and L∗ = A∗ again.

Clearly (L∗)2 6= I∗, so L∗ is a non-Lie simple Leibniz algebra. �
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4 Solvable and supersolvable Leibniz algebras

Proposition 4.1 Let L be a non-Lie solvable Leibniz algebra over a field of
characteristic zero. Then L∗ is a non-Lie solvable Leibniz algebra.

Proof. Let L be a minimal counter-example. Then L∗ has a semisimple
Lie subalgebra S∗, and so S( 6= L) must be two dimensional and S∗ must be
three-dimensional non-split simple. Moreover, L∗ = S∗+̇A∗, where A∗ is a
minimal ideal of L∗, since, otherwise, this is a smaller counter-example. But
then L has a simple subalgebra, by Theorem 3.4, a contradiction. �

Lemma 4.2 Let L be a Leibniz algebra over a field of characteristic zero.
Then the radical, R, of L is the intersection of the maximal solvable subal-
gebras of L.

Proof. Let Γ be the intersection of the maximal solvable subalgebras of L.
Then R ⊆ Γ. Furthermore, Γ is invariant under all automorphisms of L,
and hence is invariant under all derivations of L, by [22, Corollary 3.2]. It
follows that Γ is a right ideal of L. But [x, y] + [y, x] ∈ I ⊆ Γ for all x ∈ L,
y ∈ Γ, so Γ is an ideal of L, whence Γ ⊆ R. �

Then we have the following corollaries to Proposition 4.1.

Corollary 4.3 Let L be a non-Lie Leibniz algebra over a field of character-
istic zero, and let R be the radical of L. Then R∗ is the radical of L∗.

Proof. Let U be a maximal solvable subalgebra of L. If U is non-Lie then
U is solvable, by Proposition 4.1. If U is Lie, then U∗ is solvable, unless
dimU = 2 and U∗ is three-dimensional non-split simple. If R∗ = 0 then L∗,
and hence L, is a Lie algebra, a contradiction. Hence dimR∗ 6= 0.

Moreover, R ⊆ U . If R = U then R is a maximal solvable subalgebra
of L, which is impossible unless R = L. But then the result follows from
Proposition 4.1. So suppose dimR = 0, 1. The former implies that L is a
semisimple Lie algebra, which is impossible. The latter implies that L =
S ⊕ Fa, where S is a semisimple Lie algebra. But this is also a Lie algebra
and so is impossible.

It follows that U∗ must be a maximal solvable subalgebra of L∗. The
result now follows from Lemma 4.2. �

A subalgebra U of L is called lower semi-modular in L if U∩B is maximal
in B for every subalgebra B of L such that U is maximal in 〈U,B〉. We say
that L is lower semi-modular if every subalgebra of L is lower semi-modular
in L.
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Corollary 4.4 Let L be a non-Lie supersolvable Leibniz algebra over a field
of characteristic zero. Then L∗ is supersolvable.

Proof. We have that L is solvable and lower semi-modular, by [21, Proposi-
tion 5.1]. It follows from Proposition 4.1 that the same is true of L∗. Hence
L∗ is supersolvable, by [21, Proposition 5.1] again. �

5 Nilpotent Leibniz algebras

A Lie algebra L is callled almost nilpotent of index n if it has a basis

{x; e11, . . . , e1r1 ; . . . ; en1, . . . , enrn}

such that

−[eij , x] = [x, eij ] = eij + ei+1,j for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ ri,
−[enj , x] = [x, enj ] = enj and rj ≤ rj+1 for 1 ≤ j ≤ n− 1

all other products being zero.

The following result was proved in [25]

Theorem 5.1 Let L be a nilpotent Lie algebra of index n and of dimension
greater than two for which L∗ is not nilpotent, over a field of characteris-
tic zero. Then L∗ is almost nilpotent of index n. Moreover, every almost
nilpotent Lie algebra is lattice isomorphic to a nilpotent Lie algebra.

For non-Lie Leibniz algebras we have the following result.

Theorem 5.2 Let L be a nilpotent non-Lie Leibniz algebra over a field of
characteristic zero. Then L∗ is a non-Lie nilpotent Leibniz algebra.

First we need a lemma.

Lemma 5.3 Let L be a nilpotent Leibniz algebra and let W = Fw be a
minimal ideal of L contained in the Leibniz kernel, I, of L. Then W ∗ is a
minimal ideal of L∗ and W ∗ ⊆ Z(L∗).

Proof. Suppose that x /∈ I, where xn = 0 but xn−1 6= 0. Then S =
〈x,W 〉 = 〈x〉 + W and 〈x〉 ∩W = 0 or 1. The former implies that 〈x〉 is a
maximal subalgebra of S, whence 〈x∗〉 is a maximal subalgebra, and hence
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an ideal, of S∗ = 〈x∗,W ∗〉. The latter implies that W ⊆ 〈x〉, whence W ∗ ⊆
〈x∗〉. In either case, [w∗, x∗] ∈ 〈x∗〉 ∩ I∗. Hence [w∗, x∗] =

∑n
i=2 λi(x

∗)i.
Suppose that λ2 6= 0 and consider 〈λ2x−w〉. If W ⊆ 〈x〉 then W = Fxn

and 〈λ2x−w〉 = 〈x〉. If W 6⊆ 〈x〉 then (λ2x−w)k = λk2x
k−λk−1

2 µk−1w, where
[w, x] = µw. In either case, 〈λ2x−w〉 is a cyclic subalgebra of dimension n.

However,

(λ2x
∗ − w∗)2 = λ22(x

∗)2 − λ2
n∑

i=2

λi(x
∗)i = λ2

n∑
i=3

λi(x
∗)i,

so 〈λ2x∗ − w∗〉 is a cyclic subalgebra of dimension n − 1, contradicting
Corollary 2.4. It follows that λ2 = 0. A similar argument shows that λi = 0
for all 2 ≤ i ≤ n, so [w∗, x∗] = 0. Also, [x∗, w∗] = 0, since w∗ ∈ I∗, from
which the result follows. �

Now we can prove Theorem 5.2.

Proof. We have L/L2 is abelian and L2 = φ(L), so L∗/φ(L∗) is almost
abelian or three-dimensional non-split simple. The latter is impossible, as it
would imply that L∗ = φ(L∗)+̇S∗ = S∗, where S∗ is three-dimensional non-
split simple, by Theorem 3.2. But then L is a two-dimensional Lie algebra,
by Theorem 2.2, a contradiction. It follows that L∗/φ(L∗), and hence L∗, is
supersolvable (see [5, Theorems 3.9 and 5.2]) and has nilradical

N∗ = φ(L∗) + Fe∗11 + · · ·+ Fe∗1r1 .

Let L be a minimal counter-example, so L is non-Lie and nilpotent, but L∗

is not nilpotent.
Now I is non-zero, so choose a minimal ideal W = Fw of L inside I.

We have that W ∗ is a minimal ideal of L∗ inside Z(L∗), by Lemma 5.3.
Then L∗/W ∗ is not nilpotent, so L/W is a Lie algebra and L∗/W ∗ is almost
nilpotent. Hence there is a basis

{x∗; e∗11, . . . , e∗1r1 ; . . . ; e∗n1, . . . , e
∗
nrn , w

∗} for L∗

such that

[x∗, e∗ij ] = e∗ij + e∗i+1,j + λijw
∗ for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ ri,

[x∗, e∗nj ] = e∗nj + λnjw
∗ and rj ≤ rj+1 for 1 ≤ j ≤ n− 1,

where λij ∈ F , I∗ = Fw∗ and (N∗)2 ⊆ W ∗. Let M∗ be spanned by all of
the basis vectors for L∗ apart from e∗11. Then M∗ is not nilpotent and has

11



nilradical F ∗ spanned by all of the basis vectors apart from e∗11 and x∗. By
the minimality, we must have that M is Lie and M∗ is almost nilpotent, so
(F ∗)2 = 0, (x∗)2 = 0 and [e∗ij , x

∗] = −[x∗, e∗ij ] for all of the e∗ij ’s apart from
e∗11. But also [e∗11, x

∗] = −e∗11 − e∗21 + µw∗ for some µ ∈ F , so

[e∗11, x
∗] = [[x∗, e∗11], x

∗]− [e∗21, x
∗]

= [x∗, [e∗11, x
∗]] + [(x∗)2, e11] + [x∗, e∗21]

= −[x∗, e∗11]− [x∗, e∗21] + [x∗, e∗21] = −[x∗, e∗11]

We now claim that (N∗)2 = 0. It suffices to show that [N∗, e∗11] = 0,
which we do by a backwards induction argument. We have, for any f∗ ∈ F ∗,

[f∗, e∗11] = [f∗, [x∗, e∗11]− e∗21 − λ11w∗] = [f∗, [x∗, e∗11]]

= [[f∗, x∗], e∗11]− [[f∗, e∗11], x
∗] = [[f∗, x∗], e∗11], (1)

since [f∗, e∗11] ∈W ⊆ Z(L∗). Now putting f∗ = e∗nj gives

[e∗nj , e
∗
11] = [[e∗nj , x

∗], e∗11] = −[e∗nj , e
∗
11],

whence [e∗nj , e
∗
11] = 0. So now suppose that [e∗ij , e

∗
11] = 0 for some 2 ≤ i ≤ n.

Putting f∗ = e∗i−1,j ((i− 1, j) 6= (2, 1)) in (1) gives

[e∗i−1,j , e
∗
11] = [[e∗i−1,j , x

∗].e∗11] = −[e∗i−1,j , e
∗
11]

which, again, yields that [e∗i−1,j , e
∗
11] = 0. Finally, note that, if we now put

f∗ = e∗11, then (1) remains valid, so (e∗11)
2 = 0 and (N∗)2 = 0.

Now replace e∗nj by e∗nj +λnjw
∗, e∗ij by e∗ij + (−1)n−iλi+1,jw

∗ to see that
L∗ is almost nilpotent and L is a Lie algebra, a contradiction. Hence the
result holds. �
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