
1

Delve into Neural Activations:
Towards Understanding Dying Neurons
Ziping Jiang, Yunpeng Wang, Chang-Tsun Li, Plamen Angelov and Richard Jiang

Abstract—Theoretically, a deep neuron network with non-
linear activation is able to approximate any function, while em-
pirically the performance of the model with different activations
varies widely. In this work, we investigate the expressivity of
the network from an activation perspective. In particular, we
introduce a generalized activation region/pattern to describe the
functional relationship of the model with an arbitrary activation
function and illustrate its fundamental properties. We then
propose a metric named pattern similarity to evaluate the practical
expressivity of neuron networks regarding datasets based on the
neuron level reaction toward the input. We find an undocumented
dying neuron issue that the post-activation value of most neurons
remain in the same region for data with different labels, implying
that the expressivity of the network with certain activations is
greatly constrained. For instance, around 80% of post-activation
values of a well-trained Sigmoid net or Tanh net are clustered in
the same region given any test sample. This means most of the
neurons fail to provide any useful information in distinguishing
the data with different labels, suggesting that the practical
expressivity of those networks are far below the theoretical. By
evaluating our metrics and the test accuracy of the model, we
show that the seriousness of the dying neuron issue is highly
related to the model performance. At last, we also discussed the
cause of the dying neuron issue, providing an explanation of the
model performance gap caused by choice of activation.

Impact Statement—The activation function is a crucial com-
ponent of deep learning models. Many previous works focus on
developing efficient activations to promote model performance.
However, how the activation function affects the performance of
the model is still an unsolved question. In this work, we document
a novel dying neuron issue that affects the model performance.
We first introduce a generalized activation pattern to analyze the
neuron level response of a model with arbitrary activation. Based
on that, we further propose a pattern similarity that illustrates the
expressivity of a model on a dataset. We show that the pattern
similarity can be used to investigate the severity of the dying
neuron issue and explain the performance gap caused by different
activations.

Index Terms—Artificial intelligence, neural computation, neu-
ral activation, neural networks, dying neurons

This manuscript was submitted on 15/03/2022. This work was supported in
part by the Huawei Technologies Co., Ltd under Grant HIRP2019041002010,
the UK EPSRC under Grant EP/P009727/1, and the Leverhulme Trust
under Grant RF-2019-492. (Correspondent author: Dr Richard Jiange-mail:
r.jiang2@lancaster.ac.uk).

Ziping Jiang, Plamen Angelov and Richard Jiang are with the LIRA Center,
Lancaster University, Lancaster, LA1 4YW, United Kingdom.

Yunpeng Wang is with the Huawei Technologies Co., Ltd, Huawei Base,
Bantian, Longgang District, Shenzhen, Guangdong, 518129, China.

Chang-Tsun Li is with Deakin University, 75 Pigdons Rd, Waurn Ponds
VIC 3216, Australia.

Here we thank Huawei Technologies Co., Ltd. for providing computational
resources on MindSpore platform.

I. INTRODUCTION

In recent years, deep neural network methods have achieved
state-of-art results on applications in various fields, from
computer vision to natural language processing [1], [2], [3].
Theoretically, a non-linear model with the suitable depth
and width is able to approximate an objective function at
an arbitrarily precision [4], [5], while the empirical studies
show that the choice of activation can greatly affect the
potential performance of a model. In this work, we attempt to
provide a fundamental analysis of the expressive ability and
generalization of deep neuron networks to better understand
the performance gap caused by different activations.

The most notable case of model performance gap caused
by activation function can be observed from the comparison
between ReLU net and Sigomid net [6]. It is widely recognized
that the poor performance of the Sigmoid net is caused by the
vanishing gradient issue attributed to the over-saturation of the
hidden units. However, we find that issue is already fixed by
the lately proposed techniques, such as batch-normalization
[7] and weight initialization techniques [6], [8]. Then what
else remains that cause the difference in the performance of
the network with different activations?

We start with investigating the training dynamic of net-
works. We find that training of networks with non-piecewise
linear activation can be affected by the current weight, there-
fore, is less stable. Then we use a simple model to track the
change of weights as well as the ability in approximating an
objective function of each neuron during training and find an
undocumented dying neuron issue. Different from the gradient
vanishing issue, the gradient of dead neurons is non-zero while
the model still fails to update.

To better understand the issue and investigate the expres-
sivity of networks, we extend the linear activation region for
analyzing the complexity of ReLU networks to the general
case. Intuitively, a network with ReLU activation computes a
piecewise linear function consisting of a set of local linear
functions. For a network N with an arbitrary activation, the
input domain can be split into many regions in a similar way
where each region is described by an activation pattern. The
proposed generalized activation region allow us to investigate
the expressivity and generalization of deep network with
different activation functions.

We then discuss the properties of the activation region. In
particular, we introduce a metric named pattern similarity to
evaluate the topological distance of data on space defined by
network N . By means of the transition density of trajectory
proposed in [9], we build connections between pattern sim-

https://www.mindspore.cn/

2

ilarity, transition density and prediction difference of data.
We show that the pattern similarity metrics can be used as
an indicator of network expressivity and generalization. By
monitoring the change of pattern similarity of network change
of networks, we find that the dying neuron issue is severe
for certain networks. For instance, we find that for data with
different labels, the pattern similarity of Sigmoid net and
TanH-net was given threshold λ = 80% is still around 1. This
means for any two data, there are 80% of the neurons have
similar post-activation values, suggesting that the practical
expressivity of the network is far below that of the theoretical.
At last, we also discussed the cause of the dying neuron issue
and show that the seriousness of the dying neuron issue is
highly related to the model performance.

The contributions of this work can be summarized as
follows:

• We introduce a generalized activation region/pattern for
analyzing the neuron network with different activations
and illustrate its properties;

• We propose a metric named pattern similarity to evaluate
expressivity and generalization of network dynamically
based on the neuron-level responses towards dataset;

• We document an undocumented dying neuron issue that
greatly affects the model performance and discuss the
cause of the issue.

This work is organized as follows. In Section II, we review
previous research of activation function and neuron network
expressivity. In Section III, we review the gradient vanishing
issue and introduce the dying neuron issue by analyzing
the learning dynamic from an activation perspective. Section
IV-A introduces the generalized activation pattern as a tool
for investigating the model expressivity and discusses its
basic properties. Section V proposes a metrics named pattern
similarity that is able to evaluate the model expressivity and
severity of dying neuron issue. In Section VI, we present
experiments to support the arguments proposed in this work
and illustrate that the model performance is highly related to
the severity of dying neuron issue.

II. RELATD WORKS

The research of activation function has a long history.
The Sigmoid activation once was widely adopted on neural
network models due to its statistical explainability but was
proven less suitable for training models with a deep structure.
On the other hand, the rectified linear unit (ReLU) activation
is considered as a suitable replacement due to its linearity
[10], [11]. The Leaky ReLU [12] then addresses the dying
ReLU [13] issue that occurs when too many neurons are
deactivated. The PReLU [8] makes the slope of the negative
part trainable by introducing a coefficient controlling factor,
followed by an adaptive piecewise linear unit [14]. Other
attempts on developing piecewise linear activation including
the including ReLU-6 [15] and hard Sigmoid [16]. At the same
time, research in continuous activation function also provide
satisfying result, including penalized Tanh [17], penalized
Tanh [12], SiLU [18], ELU [19], Swish activation [20] and
state-of-art GeLU activation [18].

Theoretically, many works provide discussion regarding
the activation functions. One of the famous findings is the
vanishing gradient issue [6], [21], [22]. The widely adopted
solution to the issue is to initialize the model with weights
that maintain the activation variance and the gradient variance
[8], [6], adopting batch normalization to standardise the input
signal of each layer [7], [23], [24], [25], [26].

Another strand of literature focus on the expressive power
of the deep network. The first topic is how deep learning is
able to approximate an objective function [27], [4], [5] and the
relationship between performance and model complexity[28],
[29]. Following work then evaluate the expressive power
of deep model complexity [30], [31]. In particular, due to
the outstanding performance of the ReLU net, many works
focus on investigating the number of linear regions provided
by a ReLU net [32], [33], [34]. In particular, recent works
investigate the properties of linear activation regions [35], [36]
and adopt it as a metric to evaluate ReLU models [9], [37].

III. LEARNING DYNAMIC OF MODEL

In this section, we investigate the learning dynamic of a
deep network. We first show that the gradient vanishing issue
is fixed with lately proposed techniques. Then we discuss the
training dynamic of a network with different activations to
investigate the undiscovered issue. At last, we use a toy model
to illustrate the neuron level reaction of the network regarding
inputs.

A. Review of Gradient Vanishing

The gradient vanishing issue of Sigmoid activation refers to
the phenomenon that when the inputs of neurons are extremely
large or small, the Sigmoid function saturates at regions where
gradients are almost zero. This results in a failure in the
backpropagation of the network. Thus, the network fails to
converge. Since it was proposed, it is widely accepted as
the cause of the poor performance of Sigmoid and other
activations, such as Tanh. However, the issue was observed in
the early days before the introduction of other deep neuron
network techniques, such as [7] and weight initialization
techniques [6], [8]. In this section, we re-examine the issue
using the same network settings but with batch-normalization
layer and weight initialization.

Figure 1 compares the post-activation values of Sigmoid
net and ReLU net trained on MNIST dataset. We notice
that the gradient vanishing issue no longer exists with the
lately proposed techniques introduced. To be specific, for the
Sigmoid net the post-activation value of neurons are evenly
distributed around 0.5 at which region the gradient of Sigmoid
activation does not vanish. Moreover, Figure 4 shows that
the unit-wise average gradient of the networks with different
activations has similar properties during training. Detailed
experiment settings and discussion can be found in section
VI.

The above observations indicate that when batch-
normalization is introduced to the model, the post-activation
values and gradients of the Sigmoid net are no longer satu-
rated. This suggests that the vanishing gradient issue of the

3

(a) Post Activatoin of Sigmoid net

(b) Post Activatoin of ReLU net

Fig. 1. The mean and variance of post-activation values of a network with
9 layers, with 256 neurons within each layer.

Sigmoid net can be fixed by re-centring and re-scaling the
values of each layer. However, empirically, the performance of
the Sigmoid net is still far behind the state-of-art activations.
We contend that there are other issues that prevent the Sigmoid
activation from performing well.

B. Learning Dynamic of Neuron Networks

Theoretically, a deep neuron network with non-linear ac-
tivation is able to approximate any function. However, the
performance of models with different activations varies widely.
To provide an explanation to the conflict, we start with
investigating the training dynamic of neuron network.

A stacked neural network can be expressed as F = f1 ◦
f2 ◦ f . . . fn, where F : Rin → Rout is a mapping function
from input domain Rin to output domain Rout, and fk is
the activation function of layer k. Denote xk, yk and θk =
{W k, bk} are the input, output and parameters of layer k,
respectively. Therefore, we have

xk = W k−1yk−1 + bk−1, yk = fk(xk), (1)

where weight W i−1 ∈ Rni×ni−1 and the bias bi−1 ∈ Rni .
Given a loss function L and training sample (x, y), the change
of weight ∆W i−1 regarding learning rate η is:

∆W i−1 =
∂L

∂yi
∂yi

∂xi

∂xi

∂W i−1
η =

∂L

∂yi
∂yi

∂xi
yi−1η. (2)

where ∆W i−1 is a function of xi, yi, θ. Denote C1 = yi−1η,
now we consider the derivative of ∆W i−1:

∂∆W i−1

∂W i−1
= C1

[
∂2L

∂yi∂W i−1

∂yi
∂xi

+
∂L

∂yi
∂2yi

∂xi∂W i−1

]
(3)

Since,
∂L

∂yi
=

∂L

∂yn

n−1∏
j=i

∂yj+1

∂xj
W j , (4)

for a fixed model Fθ, given training sample (x, y),

∂L

∂yi
= C2

∂L

∂yn
(5)

where C2 is defined as the value of C2(x, y, θ) =∏n−1
j=i

∂yj+1

∂xj W j given sample (x, y) and model parameters θ.
Equation 3 then can be formatted as:

∂∆W i−1

∂W i−1
= C1C2

[
∂2L

∂yn∂W i

∂yi

∂xi
+

∂L

∂yn
∂2yi

∂xi∂W i−1

]
(6)

Now we consider the loss function L. For the activations
function with linear derivatives, such as widely adopted mean
square error (MSE) and softmax cross-entropy loss, their
derivatives can be written as

∂L

∂yn
= a× yn + b, (7)

where ŷ and y are predicted vector and ground truth vector, a
and b are coefficients of the derivative of the loss function.

We first consider the former part of Equation 6 given a
piecewise linear activation. Since F is a stacked model, W i is
multiple once during the forward propagation, so yn ∝ W i−1.
By combining Equation 7 we know that the first multiplier
of the former part is inrelevant with W i−1. On the other
hand, since ∂yi

∂xi is a constant, the latter part of Equation 6
is zero. Recall that the variable C1 and C2 are also inrelevant
with W i−1. For a network with piecewise linear activation,
Equation 6 can be written as

∂∆W i−1

∂W i−1
= C0(x, y, θ\{W i−1}) (8)

where

C0 = C1C2
∂2L

∂yn∂W i

∂yi

∂xi
. (9)

is a function of x, y and θ\{W i−1}. Based on above analysis,
we now can yield our theorem for comparing the learning
dynamic of two activations.

Theorem 1. Given a deep neural network with piecewise
linear activation, if the derivative of loss function L(ŷ, y) is
linear, then for a given training sample (x, y), ∆W i ∝ W i,
i = 1, 2,n, where W i is the weigth of ith layer.

Theorem 1 suggests that, if the loss function of a model
has a linear derivative and is built with the piecewise linear
activation function, the gradient of each neuron is linear to its
current weight value, which implies that the weight W i can
be viewed as a scale of learning rate. In particular, with other

4

(a) Sigmoid(1, 1) (b) Sigmoid(15, 1) (c) Sigmoid(15, 0) (d) ReLU(1, 1) (e) ReLU(15, 1) (f) ReLU(15, 0)

Fig. 2. The performance and gradients of the model with ReLU activation. The upper graphs show the objective function, predicted results and the post-
activation of each neuron of 1000 epoch training. In each of the figures, the red and blue lines represent the objective function and the predicted result, while
each other line represents the post-activation (upper) and gradient (lower) value of a neuron.

layers frozen, given training sample (x, y), the weight update
can be written as

∆W i = C(x, y,W i) · η (10)

where C is a function of the training sample and current
weight. By the nature of the deep neuron network, the
complexity of function C complexity grows as the model
goes deeper. For a network with piecewise linear activations,
according to Theorem 1, the ∆W i can be reformated as
C ′(x, y) ·W i ·η. In other words, the training of such networks
is dependent only on the provided sample thus more stable.

C. Illustrations

In this section, we provide a unit-level analysis of the neuron
network. To be specific, we compare the ability of networks
with different activations in approximating an objective func-
tion. Given a network with 1d input, 1 hidden layer with 10
neurons, and 1d output, consider an objective function:

y = 2 cos(πx) + x(x− 1) + 1. (11)

To investigate how weights affect the training of the model,
we initialize the weights and biases of the network with
different settings. Denote ReLU(w, b) as a network with
ReLU activation function of which the weight and bias are
initialized from a random uniform distribution [−w,w] and
[−b, b], respectively, and so is the Sigmoid(w,b). During the
training, an epoch of sample is set as data pair {xi, f(xi)}
where xi is an arithmetic sequence in [−1, 1]. In Figure 2, we
present the contributed value of each neuron, predicted value
of the network, and ground-truth value of the function in upper
graphs. The predicted value and ground truth value are shown
in blue and red as illustrated in the figure, while other curves
are the contributed value of each neuron to the output. That is,
the sum of other curves equals the predicted value. The lower
graphs show the gradient value of each neuron at the y-axis in
response to input at the x-axis. All of the models are trained
for 1000 epochs with a learning rate of 0.001 at which time
the models already reach their convergence.

Among three of the Sigmoid models, Sigmoid(1, 1) shown
in 2(a) has the worst performance where almost all of the
neurons yield a constant regardless of the input. However,
the gradients of the model regarding an epoch of inputs are
non-zero. Because of the symmetry and limited range of
sigmoid activation function, the gradient of different samples
are cancelling each other out, therefore instead of finding the
global optimum, the training merely adjusts each neuron as a
constant c that

∫
(f ′

i(x)−c)dx ≈ 0, where f ′
i is the gradient of

neuron i. The only neuron that can provide useful information
is coloured purple due to the relatively high gradients around
1. Apart from that, as the initialization of weight is centred
with less diversity, for each of the inputs, the backpropagation
process fails to find the steepest direction. Comparing with
Sigmoid(1, 1), Sigmoid(15, 0) and Sigmoid(15, 15) have better
performances. However, the dying neuron issue still exists. For
the Sigmoid(15, 0) due to the small initialized bias, most of
the post-activation functions are centred around zero, resulting
in an underfitting of the non-zero region.

Figure 2(d)-2(f) is the results for ReLU(1, 1), ReLU(15,
1) and ReLU(15, 0). Notice that due to the different forms
of ReLU and Sigmoid, we choose different parameter set
so that the contributed value of each pair of models are
comparable around 0. We find that the three models have
similar performance regardless of the initialization. This can
be explained by the weight gradients graphs. As the ReLU is
known as asymmetric, the ReLU only responds to the given
input x at half of its domain, therefore, the gradients of ReLU
are not neutralized by the evenly distributed inputs within a
defined domain.

To conclude, we find a dying neuron issue that occurs when
the model is trapped in the local optimum. Similar to that
of the gradient vanishing issue, the dying neuron issue also
prevents the model from updating its weights. However, the
gradient vanishing issue is raised due to the over-saturated
gradient, while the dying neuron issue is because the gradient
of the model regarding different samples can cancel each other
out so that the model can hardly update. Moreover, once a
neuron is trapped into the local optimum, it outputs similar

5

results regardless of the input. Due to the symmetry of Sigmoid
activation, the issue is worse for the Sigmoid net which results
in the performance gap between the ReLU net and Sigmoid
net.

IV. GENERALIZED ACTIVATION REGIONS AND BASIC
PROPERTIES

The analysis of the toy model provides some insights into
the differences between the Sigmoid net and the ReLU net.
However, we are interested in a more general and practical
result for detecting the dying neuron issue and comparing the
expressivity of networks.

In this section, we aim to provide a toolbox for analyzing
the complexity of models with arbitrary activation functions.
In particular, we first generalize the definition of activation pat-
tern from piece-wise linear activation to any activation. Then
we discuss the basic properties of activation regions locally.
At last, we focus on the global information that activation
patterns can provide in evaluating model performance.

A. Generalized Activation Pattern / Regions

Consider a network N with a set of parameters θ and the
activation function σ. If σ is a piece-wise linear function, it is
natural the mapping function from input domain Rin to output
range Rout has piece-wise linearity. The activation pattern and
linear region for a network with piece-wise linear activation
are defined based on the above observation [35]. To be specific,
an activation pattern is an assignment to each neuron of a sign
that determines which linear part the neuron is for given inputs.

Here we generalize the definition by specifying the break-
point of the activation function to provide a way to separate
the input domain for a network with an arbitrary activation
function.

Definition 1 (Generalized Activation Region). Denote N as
a feedforward network with activation σ and input dimension
fin. Given a set of breakpoints Γ = {γ0, γ1, . . . , γn−1, γn},
the activation pattern A regarding the parameters θ is defined
as:

A := {az : z is a neuron in N} ∈ {1, . . . , n− 1}#neurons

For a fixed model with a set of parameters θ and any input
x ∈ Rin, denote zin(x; θ), wz and bz as input, weight vector
and bias for neuron z, respectively. The activation region
then can be defined according to the activation function σ,
activation pattern A, breakpoints Γ and model parameters θ:

R(σ,A, θ, γ) :=
{
x ∈ Rin|γaz−1 < z(x; θ) <= γaz

}
, (12)

where γ0 is −∞ and γn is ∞.
For any x ∈ Rin, denote the activation pattern of x as A(x).

Moreover, given σ and a set of breakpoints Γ, σ is continues
within every interval (γ0, γ1), (γ1, γ2) . . . (γn−1, γn), we say
the Γ is a continuous separation of net N .

In the following part of this section, for a fixed model with
parameters θ and activation σ, given an activation pattern A,

Fig. 3. An illustration of generalized activation region for Sigmoid net with
3 layers, with 64 neurons within each layer. The continuous separation is set
as Γ = {−1, 1}.

breakpoints Γ and an input x within the corresponding activa-
tion region. We denote zi,jin (x;A,Γ, θ) and zi,jout(x;A,Γ, θ) as
the input and output of the jth neuron in layer i. ziin(x;A,Γ, θ)
and ziout(x;A,Γ, θ) as the input and output vector in layer i.
Therefore,

ziout(x;A,Γ, θ) = σ(ziin(x;A,Γ, θ)Twz + bz).

For reading convenience, we short them as zi,jin (x) and zi,jout(x).
The generalized activation pattern is an extension of linear

activation regions. For instance, given ReLU activation and
breakpoints Γ = {0}, it is equivalent to the definition from
previous works. On the other hand, it provides a way to
separate the input domain into different subspaces where each
of the subspaces has a different reaction regarding the input.
The generalized activation pattern can be viewed as a toolbox
to further investigate the model performance with different
activations. Figure 3 shows the activation regions of a Sigmoid
net trained on the MNIST dataset. Notice that the activation
regions themselves can hardly provide any information since it
is just a separation of the input space according to the model.
To make it useful for our analysis, it is necessary to illustrate
some basic properties.

B. Properties In Single Region

In this section, we first illustrate the properties of a sin-
gle activation region, including the convexity, continuity and
Lipschitz continuity.

Previous works suggest that for a network with piece-
wise linear activation and measure zero parameters set θ with
respect to Lebesgue measure, the linear activation regions are
convex [35]. Here we claim that the convexity of activation
regions holds for any monotonous activation function.

Lemma 1. Denote N as a net with activation σ, if σ is
monotonous and Γ is a continuous separation of net N , any
activation pattern R and parameter set θ for N , the activation
region R(σ,A, θ,Γ) is convex.

6

With convexity, we know that for any x1, x2 ∈ Ri, the
segment connecting x1 and x2 are completely included in the
region. Further, if all the activation regions are convex, the
straight line connecting any two points in Rin can only cross
each activation region once. This property is useful in building
the connection between model performance and similarity of
activation patterns, which we will discuss in the next section.

Starting with the continuity of the local mapping function,
we next consider the Lipschitz continuity in an activation
region.

Lemma 2. Given N as a feed forward network with non-
linearity σ and a set of breakpoints Γ, for any activation region
defined by R(σ,A, θ,Γ), the mapping from R(σ,A, θ,Γ) →
N(R(σ,A, θ,Γ)) is continuous.

The continuity of the activation region the analysis of
Lipschitz property of an activation region. Notice that given a
neuron z, its pattern az and the activation function σ, the post-
activation and of its output with respect to the input vector are
bounded, formally:

Lemma 3. Denote R(σ,A, θ,Γ) as an activation region
defined on network N . For any x1, x2 ∈ R(σ,A, θ,Γ), there
is a Lipschitz constant ρi for layer i that:

∥ziin(x1)− ziin(x2)∥2 ≤ ρi∥ziout(x1)− ziout(x2)∥2. (13)

The Lipschitz constant ρi is:

ρi = max
z

sup
x∈Rz

in

∂σ(x)

∂x
· Norm(Wi), (14)

where z is neuron in layer i, Rz
in is the input domain of

activation function defined by the pattern of neuron z, i.e.,
(γaz − 1, γaz), and Norm(wi) is the spectral norm of weights
in layer i.

By generalizing the above Lemma to the network, we then
yield the Lipschitz continuity of the network N within an
activation region.

Lemma 4. Given an activation region R(σ,A, θ,Γ) where
Γ is a continuous separation of net N with depth n, denote
the local mapping function defined on R as FR, then for any
x1, x2 ∈ R, there exist an upper Lipschitz constant ρ that:

∥FR(x1)− FR(x2)∥ ≤ ρ∥x1 − x2∥, (15)

where

ρ =

n∏
i

ρi, (16)

and ρi is the Lipschitz constant of layer i defined in Equation
14.

Empirically, the ρ can also be estimated by [38]:

ρ = sup
ϵ,x∈R,

∥
`
f(x)ϵ∥2
∥ϵ∥2

= sup
x∈R

∥Jf (x)∥2, (17)

∥Jf (x)∥2 is the Jacobian matrix of function f at x.
Above theorem bounds the difference between predictions

of data within an activation region given its activation pattern.

C. Properties Across Regions

In this section, we discuss the distance between predictions
of data in different activation regions. For a network, N
with activation σ, the continuous separation Γ splits the input
space into many connected components. Formally, if θ and Γ
are measure zero set with respect to Lebesgue measure, the
separation is given by hyperplane arrangements in Rin where
each of the hyperplanes is defined as:

Hz(γ, θ) := {x ∈ Rin|zin(x)Twz + bz = γ} (18)

If two activation regions R1 and R2 are partition by a single
hyperplane, then R1 and R2 are adjacent regions. Naturally,
the activation pattern for R1 and R2 are identical to expect
for the pattern of neuron z on which the hyperplane is defined,
formally:

Definition 2 (Adjacent Activation Regions). Denote N is a
deep network with activation σ and parameters θ. Γ is a
continuous separation of N . R1 and R2 are two activation
regions, Hzs(γs, θ) is a hyperplane defined by neuron zs and
breakpoint γs. For any x1 ∈ R1 and x2 ∈ R2, if:

h(x1, z, γ) · h(x2, z, γ)

{
<0, z = zs, γ = γs;

>0, otherwise,
(19)

where h(x, z, γ) = zin(x)
Twz + bz − γ, then R1 and

R2 are adjacent activation regions separated by hyperplane
Hzs(γs, θ).

The h(x, z, γ) above is introduced to indicate which side
of a data is located regarding a hyperplane. Geometrically,
two adjacent activation regions can be merged into one by
removing the hyperplane that separates them. Therefore, every
x1 ∈ R1 and x2 ∈ R2 are at the same side of other
hyperplanes except for the one that separates them.

Lemma 5. If R1 and R2 are adjacent activation regions
separated by H1,2, then for an arbitrary small ϵ > 0, there
exist x1 ∈ R1 and x2 ∈ R2 s.t.

D(x1, x2) < ϵ (20)

where D(·, ·) is a distance metric defined on input space.

Here we remark that the choice of distance metric does
not affect our results. In the following of this work, we use
D(·, ·) as the distance metric on the corresponding space
unless specifically stated.

This observation is useful for the analysis of model per-
formance on multi-class classification tasks. Now we start to
build a connection between the activation region and model
prediction. In particular, we are interested in the bound of
prediction differences between data in the same region and
data in different regions.

Let N be a network with activation σ and parameters θ
that computes a function F : Rin → Rn. Γ is a continuous
separation of N . Given data x1 ∈ R1, we consider the data
inside R1 and outside R1 with same distance to x1. That is,
x3 ∈ R1 and x2 /∈ R1 with D(x1, x2) = D(x1, x3). Denote l1
and l2 are the lines connecting x1, x2 and x1, x3 respectively.

7

To simplify our analysis here, we assume that x2 located in
an adjacent region of R1 which we denote as R2. R1 and R2

are separated by hyperplane H12(γ, θ), and l does not cross
any other activation regions. Notice that the above assumption
can be removed in the formal statement of the theorem. Denote
the piece-wise function on each region as Fi : Ri → Rout.
From Lemma 4, there is a Lipschitz constant ρi for each of
the Fi. From Lemma 5, given an arbitrary small ϵ > 0, we
can find m1 ∈ R1 and m2 ∈ R2 on l, so that

D(m1, H12(γ, θ)) < ϵ,

D(m2, H12(γ, θ)) < ϵ.
(21)

where D(mi, H12(γ, θ)) is distance between mi to the hyper-
plane H12(γ, θ).

According to Lemma 4 and triangle inequality of norms,
when ϵ → 0 we have:

∥F (x1)− F (x2)∥2 ≤ ρ1∥x1 −m1∥2 + ρ2∥x2 −m2∥2
∥F (x1)− F (x3)∥2 ≤ ρ1∥x1 − x3∥2

(22)

For a network with high complexity, almost surely there
exists an adjacent activation region of R1, denoted as Rh,
that satisfies ρh > ρ1, where ρh is the Lipschitz constant of
activation region Rh. Therefore, the upper bound of ∥F (x1)−
F (x3)∥2 is lower than that of ∥F (x1)− F (x2)∥2. By nature,
the mapping of network N is equivalent to the combination
of all the piece-wise functions. The above equation can be
generalized to the network:

Theorem 2. Let N : Rin → Rn be a network with parameters
θ and activation σ. Γ is a continuous separation of N . For any
x ∈ Rin, denote the activation region on which x is located
within as R. Given r > 0, almost surely:

sup
x′∈R,

D(x,x′)=r

∥F (x)−F (x′)∥2 ≤ sup
x′ /∈R,

D(x,x′)=r

∥F (x)−F (x′)∥2. (23)

In other words, for network N , the bounds of the spread
between the prediction of data in the same activation region are
lower than that of data in different activation regions. Similar
results can also be obtained for the lower bound. When the
number of activation regions is large enough, the volume of
each region is bounded [33] and the above theorem can be
generalized globally.

Intuitively, for data x and x′, if there exist a continuous sep-
aration and activation pattern A that both x, y ∈ R(σ,A, θ,Γ),
then the differences between predicted result of x and x′ has
a tighter bound. On the other hand, for any data two x and x′,
if they are located in activation regions that far apart, then the
bound of difference between their prediction is much looser.
Therefore, the similarity between activation patterns can be
used as a measure of the topological distance between data on
the network.

V. PATTERN SIMILIARITY AND MODEL PERFORMANCE

In this section, we aim to utilize the activation pattern to
evaluate model expressivity. In particular, we propose a pattern
similarity metric to evaluate neuron networks based on the
neuron level response toward the data. We then illustrate the
relationship between our metrics and the performance of a

deep network. To build the connection, we use the transition
density proposed in earlier work as a bridge. To be specific,
we first show that for a dataset with large enough capacity,
a high transition density of trajectories connecting pairs of
data implies high prediction differences. Then we show that
our metric has an inverse relationship with the aggregated
transition density.

A. Pattern Similiarity

We start with review the transition density of trajectoreis
proposed in earlier work [9]. Given two close points x1 and
x2 in the input domain, if the activation patterns are different
for x1 and x2, we say there is a transition between x1 and
x2. For a one-dimensional trajectory connecting x0 and xk in
the input space, if we sample k − 1 equidistant points on the
trajectory, the transition density is defined as the number of
transitions for the set {x0, x1, x2, . . . , xk}:

TD(lx1,x2) = lim
k→inf

k−1∑
i=0

Tra(xi, xi+1), (24)

where

Tra(xi, xi+1) =

{
1 A(xi) ̸= A(xi+1)

0 elsewise
(25)

It was introduced to evaluate the sensitivity of a network
by measuring the transition density of a trajectory around real
data. However, the metric is not suitable for evaluating model
performance on the dataset due to the following reason. First,
the average volume of each activation region is relatively small
for a network with high complexity, which means empirically
the transition density of a trajectory can be imprecise. Second,
computing the transition density of numerous trajectories
connecting data pairs is a computational task. To address the
issue, we introduce our pattern similarity metric.

Definition 3 (Pattern Similiarity). Denote N as a feedforward
network with non-linearity σ and parameters θ. Γ is a contin-
uous separation of net N . θ and Γ are measure zero set with
respect to Lebesgue measure. Denote the activation pattern
for any x ∈ Rin as:

AP (x;σ, θ,Γ) = {(z, az)|zis a neuron inN},

shortened as AP (x) if other settings are fixed. The pattern
similarity between two data x1, x2 ∈ Rin is then defined as:

PS(x1, x2;σ, θ,Γ) =
#(AP (x1)

⋂
AP (x2))

#number of neurons inN
.

Additionally, given a dataset distribution X , the pattern sim-
iliarity of dataset X :

PSE(X) = E
xi,xj∼X

JPS(xi, xj ;σ, θ,Γ)K (26)

The pattern similiarity distribution of X for a given λ > 0 is:

PSD(X,λ) = P(PS(xi, xj ;σ, θ,Γ) > λ|xi, xj ∼ X) (27)

Pattern simliarity illustrates how the model responses to
single data as well as a dataset. The provided information

8

is useful in analyzing the model performance. Next, we
aim to describe the relationship between pattern similiarity
and transition density of trajectories. Lemma 1 suggests that
activation regions of a network with monotonous activation
function are convex. Here we show that, with convexity, the
trnasition density of a straight line can only accross each
activation region once.

Lemma 6. Let N be a network with monotonous activ-
tion σ. Given a continuous seperation Γ of net N , denote:
Hz(θ, γz) := {x ∈ Rin|Wzzin+ bz = γz} as the hyperplanes
defined by neuron z. Then for any two points x, y ∈ Rin, the
line l that connecting x and y intersects each Hz(σ, θ, γz) at
most once.

In the following, we denote the set of regions crossed by
line l as S(l). As two adjacent activation regions are separated
by a hyperplane defined by the state of a neuron, their
activation patterns have limited differences. Lemma 6 suggests
that, given a continuous separation under certain conditions,
a straight line crosses each region only once, which implies a
lower transition density always comes with a higher pattern
similarity. However, for any two points located in regions
far apart, it is hard to determine the qualitative relationship
between their pattern similarity and the transition density of
the line connecting them. In particular, for a network with a
complex structure, there exist closed patterns whose regions
are measure zero set in the input space. Therefore,

TD(lx1,x2
) + #(AP (x1)

⋂
AP (x2)) = #neurons in N

(28)
does not always hold.

To describe the relationship between transition density and
pattern similarity formally, we have to add additional con-
straints.

Theorem 3. Let N be a net with monotonous non-linearity σ,
measure zero parameter set θ and Γ is continuous speration
of net N . Given dataset distribution X1 and X2, almost surely
following statements are equivalent:

E
xi,xj∼X1

JTD(lxi,xj
)K ≤ E

xi,xj∼X2

JTD(lxi,xj
)K,

PSE(X1) ≥ PSE(X2).
(29)

Theorem 3 builds a connection between the pattern similar-
ity metric and trajectory transition density. For any two data
in the input space, the lower transition density of the segment
connecting them implies higher pattern similarity between the
data. The result also holds for dataset distributions. Notice that
for the data distribution case, the assumption is satisfied with
probability 1 therefore can be removed.

B. Pattern Similiarity and Model Performance

This section aims to build a connection between pattern sim-
ilarity and model expressive ability as well as generalization.

Given any x ∈ Rin, consider X1, X2 ∈ Rin with
D(x,X1) = D(x,X2) and S(l1) ⊆ S(l2) where l1 and l2
are the lines x,X1 and x,X2 respecitvely. With Lemma 6 we
know that l1 and l2 cross each activation region only once.
According to the definition of adjacent activation region, a set

of adjacent actviation regions can be merged into one region by
removing the hyperplanes seprates them. Therefore, we denote
the R0 as the union of all activation regions crossed by l1:

R0 =
⋃

Ri∈S(l1)

Ri (30)

Then l1 is within the region R0. Denote the Lipschitz constant
of R0 as ρ0, which equals to:

ρ0 = max
i

ρi (31)

where ρi is the Lipschitz constant of Ri ∈ S(l1).
Now we consider l2. Since S(l1) ⊂ S(l2), there are

other regions crossed by l2, which we denote as R1, . . . , Rn

with x2 ∈ Rn. Now the comparison between D(x, x1) and
D(x, x2) can be conducted by Theorem 2:

sup
x1

D(F (x), F (x1)) ≤ sup
x2

D(F (x), F (x2)) (32)

By loosing the restraint of input we have:

sup
x1

R(x, x1) ≤ sup
x1

R(x, x2) (33)

where R(x, y) = D(F (x), F (y))/D(x, y) is the distance of
prediction to distance between data ratio. Formally, we have
the following theorem:

Theorem 4. Let N be a net with monotonous non-linearity
σ, measure zero parameter set θ and a continuous speration
Γ. Given x, for any x1, x2 ∈ Rin, if S(lx1,x2

) ⊂ S(lx3,x4
),

then following statements are equivalent:

TD(lx,x1
) ≤ TD(lx,x2

)

sup
x1

R(x, x1) ≤ sup
x2

R(x, x2)
(34)

In particular, given dataset distribution X1 and X2, if:

E
xi,xj∼X1

JTD(lxi,xj)K ≤ E
xi,xj∼X2

JTD(lxi,xj)K, (35)

then

E
xi,xj∼X1

Jsup
x1

R(xi, xj)K ≤ E
xi,xj∼X2

Jsup
x1

R(xi, xj)K (36)

Combining Theorem 3 and Theorem 4, the connection
between activation pattern, transition density and bound of
prediction difference can be obtained. To be specific, given
data x and x′, lower transition density of line l connecting
x and x′ indicates a tighter upper bound and lower bound of
distance between F (x) and F (x′), as well as a high pattern
similarity between x and x’. In practice, when evaluating
dataset capacity is large enough, the statement still holds
empirically as shown in Figure 5. Experiment detail will be
discussed in section VI.

For any continuous separation, a well-behaved model should
satisfy that the difference between predictions is small for
data with the same label but large for data with different
labels. To illustrate the statement, image a worst case of a
deep model. Suppose that there are n classes of data and
N different connected components provided by hyperplanes,
where N ≫ n. Given a model with fixed parameters θ, if

9

there exist a continuous separation Γ satisfies, for any sample
(x, y), where y is the label of x:

x

{
∈R1, y ̸= 1

/∈R1, elsewise
(37)

Then for any data x1, x2 from class {2, 3, . . . , N}, we have:

∥F1(x1)− F1(x2)∥2 ≤ ρ1∥x1 − x2∥2, (38)

where ρ1 is the Lipschitz constant of R1.
For a set of data with different labels drawn from region Ri,

the above equation constraints the distance of their prediction.
In other words, the model fails to distinguish the differences
between samples with different labels. Conversely, data with
label 1 are distributed within N − 1 different regions, there-
fore having lower pattern similarity and looser bound of the
prediction distance. By such means, we are able to use pattern
similarity as a metric to evaluate the model expressivity and
generalization towards different datasets.

One of the difficulties that always encountered during un-
derstanding deep learning models is that we hardly know how
the neurons act in the black box. The pattern similarity fills
the gap and can be used for evaluating the model expressivity
and generalization. Moreover, it is able to provide a glimpse
of the inference mechanism of the model. In the next section,
we use experiments to illustrate the usage of our metrics.

VI. EXPERIMENTS AND DISCUSSION

In this section, we first illustrate properties of the pattern
similarity metric following our previous discussion, then we
return to the objective of this work and evaluate the model
with different activations using our metric.

A. Re-examine Over-Saturation

We first re-examine the over-saturation issue for network
with batch normalization and weight initialization.

Experiment Settings. We use a stacked fully connected
neuron network (FCNN) to examine the over-saturation issue
in coincidence with the experiments which discovered the
issue. The Sigmoid net and ReLU net both consist of 9 hidden
layers, with 256 neurons within each layer, and a softmax
logistic regression for the output layer. The cost function we
use is the cross-entropy loss which was widely adopted in the
classification task. Both of the nets are trained on the MNIST
dataset for 24000 iterations with a batch size of 128 using the
SGD optimizer and a linear rate scheduler decaying from 0.1
to 0.0001

Post Activation. Figure 1 shows the mean and variance of
the post-activation value for 128 fixed test samples and 64
fixed neurons for each layer. For the Sigmoid net, the post-
activation of all the layers have a mean around 0.5 and a
variance around 0.05. Layer 8 and 0 have the highest variance
while the others have a relatively lower variance. For the ReLU
net, the mean of post-activation values is around 0.1, and the
variance decreases as the model converges. Notice that for any
arbitrary neuron set and test sample set, the results are similar.

Weights and Gradients. Next, we compare the weights,
gradients and gradient to weight ratio during the training. The
objectives are: (1) to further examine the gradient vanishing
issue from gradient perspective, and (2) to illustrate Theorem
1 empirically. The experiment setting is same as above.

Figure 4(b) and Figure 4(c) present the absolute value of
unit-wise gradient and weights. Generally, during the early
and middle of the training, the gradients and weights of both
of the nets have similar performance, which means that the
differences of unit-wise variance of the gradient to weight ratio
between the two nets are not caused by the difference between
weights and gradients alone.

Combining the result from Figure 1, Figure 4(b) and Figure
4(c), we find that the neurons in both of the networks are
activated, implying the gradient facing the issue is not the
major cause of the gap between their performance.

Figure 4(a) compares the |∂L/∂W
W | ratio. At each step, after

the backward propagation, we compute |∂L/∂W
W | for each

neuron and average the value every 200 steps. We use the
lines to represent the mean and the shaded area to represent the
variance of the ratio of neurons at each layer. The solid lines
and dashed lines show the ratio of Sigmoid net and ReLU net,
respectively. Due to the high ratio variance of the Sigmoid net,
we scale the variance to 0.25 for both of the nets for aesthetic
reasons.

The variance of the gradient to weight ratio can be viewed
as an indicator of training stableness. For the ReLU net,
the lower variance of the ratio suggests that the gradient
are proportional to their current weights at neuron level as
Theorem 1 suggested, and the current value of the weights
can be viewed as a scale factor of the learning rate. In
particular, the variance gradually decreases as the training
proceeds. However, for the Sigmoid net, the gradient to weight
ratio of neurons high diverge through the training. Equation
6 and 10 provide an explanation of such performance. As the
model goes deeper, the weight update ∆Wi is more likely to
be affected by its current weight Wi other than the training
samples, therefore the training is less stable. The experiment
results support our theoretical analysis in Section III.

B. Evaluating Pattern Similarity
We present Figure 5 to illustrate the relationships between

pattern similarity, transition density and prediction distance of
model with Sigmiod, Tanh, ReLU and GeLU activations.

Experiment Settings The model structure and training
schedules are the same as that in Section VI-A. Since the
choice of distance metric does not affect our result, we use
the Euclidean distance to evaluate the prediction difference.
The transition density is calculated using 512 points on the
line connecting two samples.

Choice of Γ. As the activation pattern is proposed to
describe the regional mapping relationship of a network, the
Γ for each model is set according to the activation properties.
For the Sigmoid-net and Tanh-net, we set Γ1 = {−0.5, 0, 0.5},
which partition the activation functions into two deactivated
regions and one semi-linear region. For the ReLU net and
GeLU net, we set Γ2 = {0}, which partition the activation
function into one deactivated region and one activated region.

10

(a) Gradients to Weights Ratio (b) Unit-wise Average Gradients (c) Average Weights

Fig. 4. We present (a) gradient to weight ratio (∂L/∂W
W

), (b) average gradient and (c) average weight for activations across different layers. We use solid
lines and dotted lines to represent the Sigmoid net and the ReLU net.

(a) Sigmoid Net (b) TanH net

(c) ReLU net (d) GeLU net

Fig. 5. Distance of predictions, transition density and pattern similiarity of
1225 pair of data.

Generally, the samples are clustered into two strips facing
the upper left. The points in the upper space mostly consist
of pair data with different labels, which have higher transition
density, prediction distance and lower pattern similarity, while
the points in the lower space are contrary. The results are
coincidence with Theorem 3 and 4.

The two clustered strips are separated clearly for ReLU
net and GeLU net, suggesting that data with different labels
and data with the same labels have distinguishable different
metric features. However, for that Sigmoid net and Tanh-net,
the data scatters are interspersed together, which means that
those networks fail to provide a clear separation for different
data.

Additionally, we find that the pattern similarity of Sigmoid
net and Tanh-net have limited range are relatively higher, sug-
gesting there are fewer activation regions for those networks.
As the number of activation regions relates to the expressive
power of the network, the Sigmoid-net and Tanh-net have the
worse ability in approximating complex functions.

(a) Pattern Similiarity of Sigmoid net

(b) Pattern Similiarity of ReLU net

Fig. 6. Pattern Similiarity of ReLU net and Sigmoid net calculated on given
datasets.

C. Insights from Pattern Similarity

Here we further discuss the insights provided by pattern
similarity. In particular, we show that the pattern similarity
can be viewed as an indicator of the severity of dying neuron
issue.

We construct 2 datasets to evaluate the model performance.
The single dataset is constructed by selecting 1000 samples
with label same, while the combined dataset is 1000 samples
randomly selected from the test dataset. We compare the
pattern similarity of the two datasets on the trained and
untrained models.

Experiment settings. The model structure and training
scheduler is same as previous. We evaluate the pattern simi-
larity using Γs1 = {−0.25, 0.25} and Γs2 = {−0.5, 0.5} for

11

(a) Full training of Sigmoid net (b) Full training of Tanh net

(c) Full training of ReLU net (d) Full training of GeLU net

Fig. 7. Pattern similarity, prediction distance of fully connected network with different activations during the training. The network consists of 9 layers fully
connected network with 256 neurons within each layer.

Fig. 8. Pattern Similiarity of fully connected network with different
activations at early stage of training. The network consists of 9 layers fully
connected network with 256 neurons within each layer.

Sigmoid net and Γr = {0} for ReLU net.
Figure 6 presents the experiment results for Sigmoid net

and ReLU net. The gap between pattern similarity of single
dataset and combined dataset can be viewed as an indicator
of the practical model expressivity. To be specific, since the
pattern similarity measures the neuron level response towards
a dataset, a model with high expressivity should be able to
distinguish the difference between data with different labels,
therefore has low pattern similarity for combined dataset and
the opposite for the single dataset.

The dashed lines show the pattern similarity of the untrained
models on different datasets. For both of the models, the
dashed lines start to decline at around λ = 0.90, suggesting
the activation pattern of the dataset are around 90 % the same

for untrained models.
The blue solid line of 6(a) shows that, after the model

is trained, the pattern similarity for the combined dataset
decreases dramatically compared with the blue dashed line.
This means that the model is able to capture the essential
features of data with different labels. Meanwhile, for the red
solid line, the pattern similarity remains at a high level till
λ reaches 0.7, indicating that for data with the same label,
around 70% of activation patterns are the same.

On the contrary, 6(a) shows that the expressivity of the
Sigmoid net is relatively worse. For both of the separations,
the gap between combined and single is less than 10%. In
particular, solid lines remains at 1 until λ reaches around 0.8,
which means that for any input data, there are 80% of neurons
yield similarity post-activation values. In other words, neurons
fail to learn the determinate features of data with different
labels. This result in a novel dying neuron issue that even most
of the neurons are activated, their post-activation value remains
in the same region for data with different labels, therefore
failing to provide useful information.

D. Expressivity during Training

In this section, we investigate the dying neuron issue during
the training of neuron networks to compare the expressivity
of network with different activations.

Experiment Settings. We consider both stacked fully con-
nected neuron networks (FCNN) and convolutional neuron
networks (CNN). The structure and training scheduler of
FCNN is the same as we introduced in Section VI-A. The

12

MNIST CIFAR10

Model FCNN VGG16
Sigmoid 98.28 82.45
Tanh 98.25 84.30
ReLU 98.45 92.27
GeLU 99.17 92.73

TABLE I
TEST ACCURACY OF NETWORK DIFFERENT ACTIVATIONS.

CNN we use in this work is the VGG16 network [39] that
trained on the CIFAR10 dataset for 120 epochs with a batch
size of 128 and SGD optimized with linear decay learning
rate from 0.1 to 0.0001. The pattern similarity and prediction
distance are computed using fixed 1000 pairs of test data with
different labels.

Early Stage. We first discuss the change of pattern similar-
ity in the early stage of the training. For both the FCNN and
VGG16 networks, the pattern similarity is recorded every 5
iterations. Figure 8 presents the result of the FCNN network.
For all of the models, the pattern similarity gradually decreases
to around 0.5. However, the Sigmoid net showed to converge
slower.

This phenomenon is even more severe when it comes to
a larger network. Figure 9(a) presents the change of pattern
similarity in early stage of training for the VGG network. The
pattern similarity of the Sigmoid net remains at 100% at the
very beginning of training, which means the network fails to
learn valid information at the beginning of the training.

General Performance. We then illustrate the general per-
formance of the models. The metrics are recorded every 100
iterations for the FCNN and every epoch while for the VGG16
network.

Figure 7 shows the change of pattern similarity and predic-
tion distance for the FCNN. For the Sigmoid net and Tanh-
net, the pattern similarity first decreases, and then gradually
increases to around 0.95, while that of ReLU net and GeLU-
net remains at the same level. Additionally, the prediction
distance of the Sigmoid net has a higher variance, which means
the model performance of the Sigmoid net is less stable.

Figure 9(b) shows the change of pattern similarity of the
VGG16 network with different activations. During the train-
ing, the pattern similarity of the GeLU-network and ReLU
network is relatively more stable. At the end of the training,
GeLU-network has the lowest pattern similarity for data with
different labels, implying that the GeLU-network has better
expressivity.

The expressivity provided by our matrices is directly related
to the model performance. Table I shows the test accuracy of
different networks. The GeLU activation has the highest test
accuracy for both of the networks, with 99.17% on MNIST
and 92.73% on CIFAR10, followed by ReLU net with slightly
lower accuracy. On the other hand, the Sigmoid net and Tanh
net have has lower test accuracy. In particular, combing with
the result from Figure 9(b), we find that the accuracy ranking
is the same as the pattern similarity ranking. As the pattern
similarity is an indicator of the severity dying neuron issue,

(a) Early Stage

(b) Full training

Fig. 9. Pattern Similiarity of VGG16 network with different activations.

the performance gap between models then can be explained
by the dying neuron.

VII. CONCLUSION AND FUTURE WORK

This work documents a novel dying neuron issue that ex-
plains the performance gap caused by the choice of activations.
To be specific, the issue refers to the phenomenon that most of
the neurons yield similar results for any data, which resulted
in a loss of practical expressivity. Different from the gradient
vanishing issue, the gradient of dying neuron is non-zero, but
still fails to provide useful information.

In Section III, we first show that with state-of-art techniques,
the gradient vanishing issue is no longer the major reason that
causes the poor performance of Sigmoid nets. By investing
in the learning dynamic of a deep network, we find that the
training of certain networks is less stable. In particular, once
a neuron is trapped into the local optimum region, any update
of weights are cancelling each other out and the neuron can
hardly escape the region.

To better understand the issue, we introduce the general-
ized activation pattern as a toolbox and discuss some basic
properties of the activation pattern in Section IV. Based on
our discussion, we propose a metrics named pattern similarity
to evaluate the expressivity of neuron networks in Section
V. The pattern similarity measures the neuron level response
toward the input. Given a model, high pattern similarity of
data with different labels implies that most of the neurons in
the model fails to distinguish the difference between inputs. In
other words, the network suffers a severe dying neuron issue.

13

In Section VI we illustrate the properties of the proposed
metric and investigate the dying neuron issue. We find that
the dying neuron issue widely exists, which is the reason that
network has practically less expressivity than theoretical. Apart
from that, the severity of the dying neuron issue can explain
the difference between the model performance.

The objective of this work is to analyze the expressivity of
neuron network expressivity from an activation perspective.
In particular, we provide some insights on explaining the
difference in model performance caused by activation func-
tions with proposed tools and metrics. Interesting directions
of future works include investigating the regional performance
and illustrating the mapping relationship of the network using
the activation patterns.

VIII. ACKNOWLEDGEMENT

This work is supported in part by the Huawei Technologies
Co., Ltd under Grant HIRP2019041002010, the UK EPSRC
under Grant EP/P009727/1, and the Leverhulme Trust under
Grant RF-2019-492.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[2] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[4] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359–366, 1989.

[5] S. Park, C. Yun, J. Lee, and J. Shin, “Minimum width for universal
approximation,” arXiv preprint arXiv:2006.08859, 2020.

[6] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pp. 249–
256, 2010.

[7] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
pp. 1026–1034, 2015.

[9] R. Novak, Y. Bahri, D. A. Abolafia, J. Pennington, and J. Sohl-Dickstein,
“Sensitivity and generalization in neural networks: an empirical study,”
arXiv preprint arXiv:1802.08760, 2018.

[10] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pp. 315–323, 2011.

[11] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Icml, 2010.

[12] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified
activations in convolutional network,” arXiv preprint arXiv:1505.00853,
2015.

[13] L. Lu, Y. Shin, Y. Su, and G. E. Karniadakis, “Dying relu and initializa-
tion: Theory and numerical examples,” arXiv preprint arXiv:1903.06733,
2019.

[14] F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi, “Learning
activation functions to improve deep neural networks,” arXiv preprint
arXiv:1412.6830, 2014.

[15] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[16] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” arXiv
preprint arXiv:1511.00363, 2015.

[17] B. Xu, R. Huang, and M. Li, “Revise saturated activation functions,”
arXiv preprint arXiv:1602.05980, 2016.

[18] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv
preprint arXiv:1606.08415, 2016.

[19] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” arXiv preprint
arXiv:1511.07289, 2015.

[20] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” arXiv preprint arXiv:1710.05941, 2017.

[21] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in International conference on machine
learning, pp. 1310–1318, 2013.

[22] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, et al., “Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies,”
2001.

[23] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[24] S. Santurkar, D. Tsipras, A. Ilyas, and A. Mkadry, “How does batch nor-
malization help optimization?,” in Proceedings of the 32nd international
conference on neural information processing systems, pp. 2488–2498,
2018.

[25] G. Yang, J. Pennington, V. Rao, J. Sohl-Dickstein, and S. S. Schoen-
holz, “A mean field theory of batch normalization,” arXiv preprint
arXiv:1902.08129, 2019.

[26] J. Kohler, H. Daneshmand, A. Lucchi, T. Hofmann, M. Zhou, and
K. Neymeyr, “Exponential convergence rates for batch normalization:
The power of length-direction decoupling in non-convex optimization,”
in The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 806–815, PMLR, 2019.

[27] H. W. Lin, M. Tegmark, and D. Rolnick, “Why does deep and cheap
learning work so well?,” Journal of Statistical Physics, vol. 168, no. 6,
pp. 1223–1247, 2017.

[28] J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein,
and J. Pennington, “Wide neural networks of any depth evolve as
linear models under gradient descent,” Advances in neural information
processing systems, vol. 32, pp. 8572–8583, 2019.

[29] P. L. Bartlett, “The sample complexity of pattern classification with
neural networks: the size of the weights is more important than the
size of the network,” IEEE transactions on Information Theory, vol. 44,
no. 2, pp. 525–536, 1998.

[30] M. Telgarsky, “Benefits of depth in neural networks,” in Conference on
learning theory, pp. 1517–1539, PMLR, 2016.

[31] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, “The expressive power of
neural networks: A view from the width,” in Proceedings of the 31st
International Conference on Neural Information Processing Systems,
pp. 6232–6240, 2017.

[32] R. Pascanu, G. Montufar, and Y. Bengio, “On the number of response re-
gions of deep feed forward networks with piece-wise linear activations,”
arXiv preprint arXiv:1312.6098, 2013.

[33] B. Hanin and D. Rolnick, “Complexity of linear regions in deep
networks,” in International Conference on Machine Learning, pp. 2596–
2604, 2019.

[34] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number
of linear regions of deep neural networks,” in Advances in neural
information processing systems, pp. 2924–2932, 2014.

[35] B. Hanin and D. Rolnick, “Deep relu networks have surprisingly few
activation patterns,” in Advances in Neural Information Processing
Systems, pp. 361–370, 2019.

[36] P. Bartlett, D. J. Foster, and M. Telgarsky, “Spectrally-normalized margin
bounds for neural networks,” arXiv preprint arXiv:1706.08498, 2017.

[37] B. Neyshabur, S. Bhojanapalli, and N. Srebro, “A pac-bayesian approach
to spectrally-normalized margin bounds for neural networks,” arXiv
preprint arXiv:1707.09564, 2017.

[38] H. Federer, Geometric measure theory. Springer, 2014.
[39] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

	Introduction
	Relatd Works
	Learning dynamic of Model
	Review of Gradient Vanishing
	Learning Dynamic of Neuron Networks
	Illustrations

	Generalized Activation Regions and Basic Properties
	Generalized Activation Pattern / Regions
	Properties In Single Region
	Properties Across Regions

	Pattern Similiarity and Model Performance
	Pattern Similiarity
	Pattern Similiarity and Model Performance

	Experiments and Discussion
	Re-examine Over-Saturation
	Evaluating Pattern Similarity
	Insights from Pattern Similarity
	Expressivity during Training

	Conclusion and Future Work
	Acknowledgement
	References

