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Delve into Neural Activations:
Towards Understanding Dying Neurons
Ziping Jiang, Yunpeng Wang, Chang-Tsun Li, Plamen Angelov and Richard Jiang

Abstract—Theoretically, a deep neuron network with non-
linear activation is able to approximate any function, while em-
pirically the performance of the model with different activations
varies widely. In this work, we investigate the expressivity of
the network from an activation perspective. In particular, we
introduce a generalized activation region/pattern to describe the
functional relationship of the model with an arbitrary activation
function and illustrate its fundamental properties. We then
propose a metric named pattern similarity to evaluate the practical
expressivity of neuron networks regarding datasets based on the
neuron level reaction toward the input. We find an undocumented
dying neuron issue that the post-activation value of most neurons
remain in the same region for data with different labels, implying
that the expressivity of the network with certain activations is
greatly constrained. For instance, around 80% of post-activation
values of a well-trained Sigmoid net or Tanh net are clustered in
the same region given any test sample. This means most of the
neurons fail to provide any useful information in distinguishing
the data with different labels, suggesting that the practical
expressivity of those networks are far below the theoretical. By
evaluating our metrics and the test accuracy of the model, we
show that the seriousness of the dying neuron issue is highly
related to the model performance. At last, we also discussed the
cause of the dying neuron issue, providing an explanation of the
model performance gap caused by choice of activation.

Impact Statement—The activation function is a crucial com-
ponent of deep learning models. Many previous works focus on
developing efficient activations to promote model performance.
However, how the activation function affects the performance of
the model is still an unsolved question. In this work, we document
a novel dying neuron issue that affects the model performance.
We first introduce a generalized activation pattern to analyze the
neuron level response of a model with arbitrary activation. Based
on that, we further propose a pattern similarity that illustrates the
expressivity of a model on a dataset. We show that the pattern
similarity can be used to investigate the severity of the dying
neuron issue and explain the performance gap caused by different
activations.

Index Terms—Artificial intelligence, neural computation, neu-
ral activation, neural networks, dying neurons

This manuscript was submitted on 15/03/2022. This work was supported in
part by the Huawei Technologies Co., Ltd under Grant HIRP2019041002010,
the UK EPSRC under Grant EP/P009727/1, and the Leverhulme Trust
under Grant RF-2019-492. (Correspondent author: Dr Richard Jiange-mail:
r.jiang2@lancaster.ac.uk).

Ziping Jiang, Plamen Angelov and Richard Jiang are with the LIRA Center,
Lancaster University, Lancaster, LA1 4YW, United Kingdom.

Yunpeng Wang is with the Huawei Technologies Co., Ltd, Huawei Base,
Bantian, Longgang District, Shenzhen, Guangdong, 518129, China.

Chang-Tsun Li is with Deakin University, 75 Pigdons Rd, Waurn Ponds
VIC 3216, Australia.

Here we thank Huawei Technologies Co., Ltd. for providing computational
resources on MindSpore platform.

I. INTRODUCTION

In recent years, deep neural network methods have achieved
state-of-art results on applications in various fields, from
computer vision to natural language processing [1], [2], [3].
Theoretically, a non-linear model with the suitable depth
and width is able to approximate an objective function at
an arbitrarily precision [4], [5], while the empirical studies
show that the choice of activation can greatly affect the
potential performance of a model. In this work, we attempt to
provide a fundamental analysis of the expressive ability and
generalization of deep neuron networks to better understand
the performance gap caused by different activations.

The most notable case of model performance gap caused
by activation function can be observed from the comparison
between ReLU net and Sigomid net [6]. It is widely recognized
that the poor performance of the Sigmoid net is caused by the
vanishing gradient issue attributed to the over-saturation of the
hidden units. However, we find that issue is already fixed by
the lately proposed techniques, such as batch-normalization
[7] and weight initialization techniques [6], [8]. Then what
else remains that cause the difference in the performance of
the network with different activations?

We start with investigating the training dynamic of net-
works. We find that training of networks with non-piecewise
linear activation can be affected by the current weight, there-
fore, is less stable. Then we use a simple model to track the
change of weights as well as the ability in approximating an
objective function of each neuron during training and find an
undocumented dying neuron issue. Different from the gradient
vanishing issue, the gradient of dead neurons is non-zero while
the model still fails to update.

To better understand the issue and investigate the expres-
sivity of networks, we extend the linear activation region for
analyzing the complexity of ReLU networks to the general
case. Intuitively, a network with ReLU activation computes a
piecewise linear function consisting of a set of local linear
functions. For a network N with an arbitrary activation, the
input domain can be split into many regions in a similar way
where each region is described by an activation pattern. The
proposed generalized activation region allow us to investigate
the expressivity and generalization of deep network with
different activation functions.

We then discuss the properties of the activation region. In
particular, we introduce a metric named pattern similarity to
evaluate the topological distance of data on space defined by
network N . By means of the transition density of trajectory
proposed in [9], we build connections between pattern sim-
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ilarity, transition density and prediction difference of data.
We show that the pattern similarity metrics can be used as
an indicator of network expressivity and generalization. By
monitoring the change of pattern similarity of network change
of networks, we �nd that thedying neuronissue is severe
for certain networks. For instance, we �nd that for data with
different labels, the pattern similarity of Sigmoid net and
TanH-net was given threshold� = 80% is still around 1. This
means for any two data, there are 80% of the neurons have
similar post-activation values, suggesting that the practical
expressivity of the network is far below that of the theoretical.
At last, we also discussed the cause of thedying neuronissue
and show that the seriousness of thedying neuronissue is
highly related to the model performance.

The contributions of this work can be summarized as
follows:

� We introduce a generalized activation region/pattern for
analyzing the neuron network with different activations
and illustrate its properties;

� We propose a metric namedpattern similarityto evaluate
expressivity and generalization of network dynamically
based on the neuron-level responses towards dataset;

� We document an undocumenteddying neuronissue that
greatly affects the model performance and discuss the
cause of the issue.

This work is organized as follows. In Section II, we review
previous research of activation function and neuron network
expressivity. In Section III, we review the gradient vanishing
issue and introduce thedying neuron issue by analyzing
the learning dynamic from an activation perspective. Section
IV-A introduces the generalized activation pattern as a tool
for investigating the model expressivity and discusses its
basic properties. Section V proposes a metrics namedpattern
similarity that is able to evaluate the model expressivity and
severity of dying neuronissue. In Section VI, we present
experiments to support the arguments proposed in this work
and illustrate that the model performance is highly related to
the severity ofdying neuronissue.

II. RELATD WORKS

The research of activation function has a long history.
The Sigmoid activation once was widely adopted on neural
network models due to its statistical explainability but was
proven less suitable for training models with a deep structure.
On the other hand, the recti�ed linear unit (ReLU) activation
is considered as a suitable replacement due to its linearity
[10], [11]. The Leaky ReLU [12] then addresses thedying
ReLU [13] issue that occurs when too many neurons are
deactivated. The PReLU [8] makes the slope of the negative
part trainable by introducing a coef�cient controlling factor,
followed by an adaptive piecewise linear unit [14]. Other
attempts on developing piecewise linear activation including
the including ReLU-6 [15] and hard Sigmoid [16]. At the same
time, research in continuous activation function also provide
satisfying result, including penalized Tanh [17], penalized
Tanh [12], SiLU [18], ELU [19], Swish activation [20] and
state-of-art GeLU activation [18].

Theoretically, many works provide discussion regarding
the activation functions. One of the famous �ndings is the
vanishing gradient issue [6], [21], [22]. The widely adopted
solution to the issue is to initialize the model with weights
that maintain the activation variance and the gradient variance
[8], [6], adopting batch normalization to standardise the input
signal of each layer [7], [23], [24], [25], [26].

Another strand of literature focus on the expressive power
of the deep network. The �rst topic is how deep learning is
able to approximate an objective function [27], [4], [5] and the
relationship between performance and model complexity[28],
[29]. Following work then evaluate the expressive power
of deep model complexity [30], [31]. In particular, due to
the outstanding performance of the ReLU net, many works
focus on investigating the number of linear regions provided
by a ReLU net [32], [33], [34]. In particular, recent works
investigate the properties of linear activation regions [35], [36]
and adopt it as a metric to evaluate ReLU models [9], [37].

III. L EARNING DYNAMIC OF MODEL

In this section, we investigate the learning dynamic of a
deep network. We �rst show that the gradient vanishing issue
is �xed with lately proposed techniques. Then we discuss the
training dynamic of a network with different activations to
investigate the undiscovered issue. At last, we use a toy model
to illustrate the neuron level reaction of the network regarding
inputs.

A. Review of Gradient Vanishing

The gradient vanishing issue of Sigmoid activation refers to
the phenomenon that when the inputs of neurons are extremely
large or small, the Sigmoid function saturates at regions where
gradients are almost zero. This results in a failure in the
backpropagation of the network. Thus, the network fails to
converge. Since it was proposed, it is widely accepted as
the cause of the poor performance of Sigmoid and other
activations, such as Tanh. However, the issue was observed in
the early days before the introduction of other deep neuron
network techniques, such as [7] and weight initialization
techniques [6], [8]. In this section, we re-examine the issue
using the same network settings but with batch-normalization
layer and weight initialization.

Figure 1 compares the post-activation values of Sigmoid
net and ReLU net trained on MNIST dataset. We notice
that the gradient vanishing issue no longer exists with the
lately proposed techniques introduced. To be speci�c, for the
Sigmoid net the post-activation value of neurons are evenly
distributed around 0.5 at which region the gradient of Sigmoid
activation does not vanish. Moreover, Figure 4 shows that
the unit-wise average gradient of the networks with different
activations has similar properties during training. Detailed
experiment settings and discussion can be found in section
VI.

The above observations indicate that when batch-
normalization is introduced to the model, the post-activation
values and gradients of the Sigmoid net are no longer satu-
rated. This suggests that the vanishing gradient issue of the
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(a) Post Activatoin of Sigmoid net

(b) Post Activatoin of ReLU net

Fig. 1. The mean and variance of post-activation values of a network with
9 layers, with 256 neurons within each layer.

Sigmoid net can be �xed by re-centring and re-scaling the
values of each layer. However, empirically, the performance of
the Sigmoid net is still far behind the state-of-art activations.
We contend that there are other issues that prevent the Sigmoid
activation from performing well.

B. Learning Dynamic of Neuron Networks

Theoretically, a deep neuron network with non-linear ac-
tivation is able to approximate any function. However, the
performance of models with different activations varies widely.
To provide an explanation to the con�ict, we start with
investigating the training dynamic of neuron network.

A stacked neural network can be expressed asF = f 1 �
f 2 � f : : : f n , whereF : Rin ! Rout is a mapping function
from input domainRin to output domainRout , and f k is
the activation function of layerk. Denotexk , yk and � k =
f W k ; bk g are the input, output and parameters of layerk,
respectively. Therefore, we have

xk = W k � 1yk � 1 + bk � 1; yk = f k (xk ); (1)

where weightW i � 1 2 Rn i � n i � 1 and the biasbi � 1 2 Rn i .
Given a loss functionL and training sample(x; y), the change
of weight � W i � 1 regarding learning rate� is:

� W i � 1 =
@L
@yi

@yi

@xi
@xi

@Wi � 1 � =
@L
@yi

@yi

@xi
yi � 1�: (2)

where� W i � 1 is a function ofx i ; yi ; � . DenoteC1 = yi � 1� ,
now we consider the derivative of� W i � 1:

@� W i � 1

@Wi � 1 = C1

�
@2L

@yi @Wi � 1

@yi
@xi

+
@L
@yi

@2yi

@xi @Wi � 1

�
(3)

Since,
@L
@yi

=
@L
@yn

n � 1Y

j = i

@yj +1

@xj
W j ; (4)

for a �xed model F� , given training sample(x; y),

@L
@yi

= C2
@L
@yn

(5)

where C2 is de�ned as the value ofC2(x; y; � ) =
Q n � 1

j = i
@yj +1

@xj W j given sample(x; y) and model parameters� .
Equation 3 then can be formatted as:

@� W i � 1

@Wi � 1 = C1C2

�
@2L

@yn @Wi

@yi

@xi
+

@L
@yn

@2yi

@xi @Wi � 1

�
(6)

Now we consider the loss functionL . For the activations
function with linear derivatives, such as widely adopted mean
square error (MSE) and softmax cross-entropy loss, their
derivatives can be written as

@L
@yn

= a � yn + b; (7)

whereŷ andy are predicted vector and ground truth vector,a
andb are coef�cients of the derivative of the loss function.

We �rst consider the former part of Equation 6 given a
piecewise linear activation. SinceF is a stacked model,W i is
multiple once during the forward propagation, soyn / W i � 1.
By combining Equation 7 we know that the �rst multiplier
of the former part is inrelevant withW i � 1. On the other
hand, since@yi

@xi is a constant, the latter part of Equation 6
is zero. Recall that the variableC1 andC2 are also inrelevant
with W i � 1. For a network with piecewise linear activation,
Equation 6 can be written as

@� W i � 1

@Wi � 1 = C0(x; y; � nf W i � 1g) (8)

where

C0 = C1C2
@2L

@yn @Wi

@yi

@xi
: (9)

is a function ofx; y and� nf W i � 1g. Based on above analysis,
we now can yield our theorem for comparing the learning
dynamic of two activations.

Theorem 1. Given a deep neural network with piecewise
linear activation, if the derivative of loss functionL(ŷ; y) is
linear, then for a given training sample(x; y), � W i / W i ,
i = 1 ; 2; ::::n, whereW i is the weigth ofi th layer.

Theorem 1 suggests that, if the loss function of a model
has a linear derivative and is built with the piecewise linear
activation function, the gradient of each neuron islinear to its
current weight value, which implies that the weightW i can
be viewed as a scale of learning rate. In particular, with other
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(a) Sigmoid(1, 1) (b) Sigmoid(15, 1) (c) Sigmoid(15, 0) (d) ReLU(1, 1) (e) ReLU(15, 1) (f) ReLU(15, 0)

Fig. 2. The performance and gradients of the model with ReLU activation. The upper graphs show the objective function, predicted results and the post-
activation of each neuron of 1000 epoch training. In each of the �gures, the red and blue lines represent the objective function and the predicted result, while
each other line represents the post-activation (upper) and gradient (lower) value of a neuron.

layers frozen, given training sample(x; y), the weight update
can be written as

� W i = C(x; y; W i ) � � (10)

where C is a function of the training sample and current
weight. By the nature of the deep neuron network, the
complexity of function C complexity grows as the model
goes deeper. For a network with piecewise linear activations,
according to Theorem 1, the� W i can be reformated as
C0(x; y) � W i � � . In other words, the training of such networks
is dependent only on the provided sample thus more stable.

C. Illustrations

In this section, we provide a unit-level analysis of the neuron
network. To be speci�c, we compare the ability of networks
with different activations in approximating an objective func-
tion. Given a network with 1d input, 1 hidden layer with 10
neurons, and 1d output, consider an objective function:

y = 2 cos(�x ) + x(x � 1) + 1 : (11)

To investigate how weights affect the training of the model,
we initialize the weights and biases of the network with
different settings. Denote ReLU(w, b) as a network with
ReLU activation function of which the weight and bias are
initialized from a random uniform distribution[� w; w] and
[� b; b], respectively, and so is the Sigmoid(w,b). During the
training, an epoch of sample is set as data pairf x i ; f (x i )g
wherex i is an arithmetic sequence in[� 1; 1]. In Figure 2, we
present the contributed value of each neuron, predicted value
of the network, and ground-truth value of the function in upper
graphs. The predicted value and ground truth value are shown
in blue and red as illustrated in the �gure, while other curves
are the contributed value of each neuron to the output. That is,
the sum of other curves equals the predicted value. The lower
graphs show the gradient value of each neuron at the y-axis in
response to input at the x-axis. All of the models are trained
for 1000 epochs with a learning rate of 0.001 at which time
the models already reach their convergence.

Among three of the Sigmoid models, Sigmoid(1, 1) shown
in 2(a) has the worst performance where almost all of the
neurons yield a constant regardless of the input. However,
the gradients of the model regarding an epoch of inputs are
non-zero. Because of the symmetry and limited range of
sigmoid activation function, the gradient of different samples
are cancelling each other out, therefore instead of �nding the
global optimum, the training merely adjusts each neuron as a
constantc that

R
(f 0

i (x) � c)dx � 0, wheref 0
i is the gradient of

neuroni . The only neuron that can provide useful information
is coloured purple due to the relatively high gradients around
1. Apart from that, as the initialization of weight is centred
with less diversity, for each of the inputs, the backpropagation
process fails to �nd the steepest direction. Comparing with
Sigmoid(1, 1), Sigmoid(15, 0) and Sigmoid(15, 15) have better
performances. However, thedying neuronissue still exists. For
the Sigmoid(15, 0) due to the small initialized bias, most of
the post-activation functions are centred around zero, resulting
in an under�tting of the non-zero region.

Figure 2(d)-2(f) is the results for ReLU(1, 1), ReLU(15,
1) and ReLU(15, 0). Notice that due to the different forms
of ReLU and Sigmoid, we choose different parameter set
so that the contributed value of each pair of models are
comparable around 0. We �nd that the three models have
similar performance regardless of the initialization. This can
be explained by the weight gradients graphs. As the ReLU is
known as asymmetric, the ReLU only responds to the given
input x at half of its domain, therefore, the gradients of ReLU
are not neutralized by the evenly distributed inputs within a
de�ned domain.

To conclude, we �nd adying neuronissue that occurs when
the model is trapped in the local optimum. Similar to that
of the gradient vanishing issue, thedying neuronissue also
prevents the model from updating its weights. However, the
gradient vanishing issue is raised due to the over-saturated
gradient, while thedying neuronissue is because the gradient
of the model regarding different samples can cancel each other
out so that the model can hardly update. Moreover, once a
neuron is trapped into the local optimum, it outputs similar
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