
ON CERTAIN CLASSES OF ALGEBRAS IN WHICH CENTRALIZERS ARE
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Abstract. This paper is primarily concerned with studying finite-dimensional anti-
commutative nonassociative algebras in which every centralizer is an ideal. These are
shown to be anti-associative and are classified over a general field F; in particular, they
are nilpotent of class at most 3 and metabelian. These results are then applied to show
that a Leibniz algebra over a field of charactersitic zero in which all centralizers are
ideals is solvable.
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1. Introduction

Centralizers in algebras have been studied in many papers, including [1], [3], [4], [7],
[9] (though this paper contains errors as we will point out below) and [12]. In particular,
in [3] the authors studied Leibniz algebras in which all of the centralizers are ideals. In
this paper we will continue that study for other classes of algebras and answer one of
the questions raised in that paper.

Throughout, A will denote a finite-dimensional nonassociative algebra over a field F.
We will denote the product in A by juxtaposition unless A is a Lie or Leibniz algebra, in
which case we will use the usual bracket notation, [, ]. We will call A anti-commutative
if x2 = 0 for all x ∈ A; of course, in such an algebra xy = −yx for all x, y ∈ A. Clearly,
all Lie algebras are anti-commutative. In such an algebra, when specifying the non-zero
products, we will only specify xy, leaving it assumed that yx = −xy
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The centralizer of an element x ∈ A is the set

CA(x) = {y ∈ A | xy = yx = 0 for all y ∈ A}.

Following [3] we call A a CL-algebra if every centralizer in A is an ideal of A. We
will say that elements x, y ∈ A have commutative bonding (CB) if xy = 0 implies that
(xz)y = 0 for all z ∈ A. The algebra A is then defined to be a CB-algebra if every pair
of elements of A have commutative bonding. For anti-commutative algebras we will see
that these two conditions are equivalent. It is easy to see that not all nonassociative alge-
bras have the CB-property. The smallest such example is the two-dimensional solvable
Lie algebra L with basis e1, e2 and non-zero product [e1, e2] = e2. Then [e1, e1] = 0 but
[[e1, e2], e1] = [e2, e1] = −e2.

The Frattini subalgebra, F(A), of A is the intersection of the maximal subalgebras
of A. The Frattini ideal, φ(A), of A is the biggest ideal contained in F(A). If φ(A) = 0
we say that A is φ-free. As pointed out above, there are errors in [9]. In particular,
Proposition 3.4, which claims that a non-abelian Lie algebra L with φ(L) , 0 has only
one maximal abelian subalgebra, is false. For example, let L be the three-dimensional
Heisenberg Lie algebra with basis e1, e2, e3 and non-zero product [e1, e2] = e3. Then
φ(L) = L2 = Fe3 , 0 and Fe1 + Fe3, Fe2 + Fe3 are maximal abelian subalgebras of L.

In the following four sections we will consider anti-commutative algebras. In sec-
tion 2 we introduce some terminology and notation that we use throughout. In section
3 we introduce CB-elements and CB-algebras and show that anti-commutative alge-
bras are CB-algebras if and only if they are anti-associative. It is also shown that anti-
commutative algebras are CB-algebras if and only if they are CL-algebras and that the
set of such CB-algebras is closed under subalgebras, factor algebras and direct sums.

In section 4 we give a characterisation of all anti-commutative CB-algebras over a
general field F. In particular, we show that they are all metabelian and nilpotent of
class at most three. In section 5 we determine which of the nilpotent Lie algebras of
dimension at most six are CB-algebras.

In section 6 we consider the consequences of our earlier results for Leibniz CL-
algebras. In particular, we show that, over a field of characteristic zero, all such algebras
are solvable, thereby answering a question raised in [3]. In the final section we consider
group actions on algebras and show that CB-elements are preserved by such actions.

We will denote the subspace spanned by e1, . . . , en by Fe1 + . . .+ Fen. Algebra direct
sums will be denoted by ⊕, whereas +̇ will indicate a vector space direct sum.

2. Preliminaries for anti-commutative algebras

Definition 2.1. An ideal of an algebra A is a subspace I with the property that IA ⊆ A.

Note that, as A is anti-commutative, all ideals are two-sided.

Example 2.2. The center Z(A) = {x ∈ A | xy = 0, for all y ∈ A} of A is an ideal of A.

Example 2.3. We define the subalgebras Ak inductively by A2 = span{xy | x, y ∈ A},
Ak = Ak−1A for all k ≥ 3. Then a straightforward induction argument shows that Ak ⊆

Ak−1 for all k ≥ 2, and Ak is an ideal of A for all k ≥ 1.

Definition 2.4. A is said to be nilpotent of class n if An+1 = 0 but An , 0.
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Example 2.5. Similarly, we define the subalgebras A(k) inductively by A(0) = A, A(k) =

A(k−1)A(k−1) for all k ≥ 2. Then a straightforward induction argument shows that A(k) ⊆

A(k−1) for all k ≥ 1, and A(k) is an subalgebra of A for all k ≥ 1, but may not be an ideal
of A.

Definition 2.6. A is said to be solvable if A(n) = 0 for some n ≥ 1. If A(2) = 0 we say
that A is metabelian.

Definition 2.7. We define the centralizer of x in A as

CA(x) = {y ∈ A : xy = 0}.

Definition 2.8. We say that A is a CL-algebra if CA(x) is an ideal of A for all x ∈ A.

3. Anti-commutative CB-algebras

Definition 3.1. Two elements x, y ∈ A are said to have commutative bonding if xy = 0
imples (xz)y = 0 for all z ∈ A.

Definition 3.2. The anti-commutative algebra A is called a CB-algebra if it satisfies the
following property: whenever x, y ∈ A are such that xy = 0 then (xz)y = 0 for all z ∈ A.

Example 3.3. An algebra A in which A2 = 0 is automatically a CB-algebra.

Example 3.4. Any nilpotent algebra A of class 2 is a CB-algebra.

Definition 3.5. We define the linear transformation Rx : A → A : a 7→ ax. An element
x ∈ L such that R2

x = 0 is called an absolute zero divisor.

Remark 3.6. In the early 1960’s Kostrikin showed that absolute zero divisors play a
special and very important role in the theory of Lie algebras over fields of prime charac-
teristic. Since Lie algebras containing absolute zero divisors have a degenerate Killing
form, Kostrikin called them algebras with strong degeneration.

Theorem 3.7. The following are equivalent:

(i) A is a CB-algebra;
(ii) every element of A is an absolute zero divisor;

(iii) A is anti-associative.

Proof. (i) ⇒ (ii): Let x, y ∈ A. Then x2 = 0, so 0 = −(xy)x = (yx)x. As this is true
for all x, y ∈ A we have R2

x = 0 for all x ∈ A, so every element of A is an absolute zero
divisor, giving (ii).

(ii)⇒ (iii): Let x, y, z be arbitrary elements of A. Then (xy)x = 0. Hence

0 = ((x + z)y)(x + z) = (xy)x + (xy)z + (zy)x + (zy)z
= (xy)z + (zy)x.

It follows that (xy)z = −x(yz) and A is anti-associative.

(iii)⇒ (i): Suppose that xy = 0. Then

(xz)y = −y(xz) = (yx)z = −(xy)z = 0.

Thus, A is a CB-Lie algebra. �

Corollary 3.8. The set of finite-dimensional CB-algebras form a pseudo-variety; that
is, they are closed under subalgebras, factor algebras and direct sums.



4 RIPAN SAHA AND DAVID A. TOWERS

Proof. It is clear that anti-associativity is preserved under the taking of subalgebras,
factor algebras and direct sums. �

Theorem 3.9. The anti-commutative algebra A is a CL-algebra if and only if it is a
CB-algebra.

Proof. Suppose CA(x) is an ideal of A for all x ∈ A. Let for some x, y ∈ A, xy = 0. This
implies that x ∈ CA(y). Now for any z ∈ A, xz ∈ CA(y) as CA(y) is an ideal of A. Thus,
(xz)y = 0. Therefore, A is a CB-algebra.

Conversely, supoose A is a CB-algebra. We need to show CA(x) is an ideal of A for
all x ∈ A. Let y ∈ CA(x) and z ∈ A. We need to verify yz ∈ CA(x). This clearly follows
from the definition of CB-algebra. �

Definition 3.10. An element z ∈ A is said to have the CB-property if (xz)y = 0 for all
x ∈ A and y ∈ CA(x). We will call such an element a CB-element.

Remark 3.11. Note that CB-elements are those elements of the algebra which do not
break the commutativity between any two elements. For example, 0 is a CB-element. All
the elements in a CB-algebra are CB-elements.

Lemma 3.12. If z ∈ A be a CB-element then x(zy) = −(xz)y for all x, y ∈ A.

Proof. If z ∈ A is a CB-element then (xz)x = 0 for all x ∈ A. Observe that

0 = ((x + y)z)(x + y) = (xz)x + (yz)x + (xz)y + (yz)y = (yz)x + (xz)y.

Thus, we have x(zy) = −(xz)y. �

Lemma 3.13. Let x ∈ A, y ∈ CA(x). Then z ∈ A is a CB-element if and only if
zy ∈ CA(x).

Proof. Let z ∈ A be a CB-element. For all x ∈ A and y ∈ CA(x), we have

(zy)x = −x(zy) = (xz)y = 0,

using anti-commutativity and Lemma 3.12. Thus, zy ∈ CA(x).

Conversely, suppose zy ∈ CA(x) for some z ∈ A. Interchanging the role of x and y, we
have zx ∈ CA(y). Observe that

(xz)y = 0.

Therefore, z is a CB-element. �

Proposition 3.14. The collection K of all CB-elements is a subalgebra of A. Thus, K is
a CB- algebra.

Proof. As 0 ∈ K, the set K is non-empty; it is clearly a subspace of A. Let z1, z2 ∈ K
and y ∈ CA(x). We need to show that z = z1z2 ∈ K.

As z1, z2 are CB-elements, using Lemma (3.12) and (3.13) for z1 and z2, we have

zy = (z1z2)y = −z1(z2y) ∈ CA(x).

Again using the Lemma 3.13 for z, we get z = z1z2 is a CB-element. Thus, the collection
K of CB-elements is a subalgebra, and K is a CB-algebra. �

Proposition 3.15. Let A1 and A2 be non-associative algebras with x2 = 0 for all x ∈
A1, A2 and φ : A1 → A2 be a homomorphism. If z is a CB-element of A1 then φ(z) is a
CB-element of φ(A1).
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Proof. Let z1 ∈ A1 be a CB-element and z2 = φ(z1). Suppose x2 ∈ φ(A1) and y2 ∈

Cφ(A1)(x2), so x2 = φ(x1) and y2 = φ(y1) for some x1, y1 ∈ A1. Then

(x2z2)y2 = (φ(x1)φ(z1))φ(y1)
= φ(x1z1)φ(y1)
= φ((x1z1)y1)
= φ(0) = 0.

Therefore, z2 = φ(z1) is a CB-element in φ(A1). �

Corollary 3.16. Let A1 and A2 be non-associative algebras with x2 = 0 for all x ∈
A1, A2 and φ : A1 → A2 be an isomorphism. If A1 is a CB-algebra then so is A2.

4. Classification of anti-commutative CB-algebras

First we show that all anti-commutative CB-algebras are metabelian and nilpotent of
index at most three.

Theorem 4.1. Let A be a CB-algebra over any field F. If F has characteristic different
from two then A4 = 0. Moreover, A is metabelian (that is, A(2) = 0). If A is a Lie algebra
and F has characteristic different from three then A3 = 0. If A is an associative algebra
and F has characteristic different from two then A3 = 0.

Proof. Let x, y, z,w be arbitrary elements of A. Then A is anti-associative, by Proposition
3.7 and so (xy)z = −x(yz).

Now
((xy)z)w = −(x(yz))w = x((yz)w) = −x(y(zw)).

But also
((xy)z)w = −(xy)(zw) = x(y(zw)).

Hence, if F has characteristic different from two, we have that x(y(zw)) = 0.

Now suppose that A satisfies the Jacobi identity. Then

0 = x(yz) + y(zx) + z(xy) = x(yz) − (zx)y − (xy)z
= x(yz) + (xz)y + x(yz) = 2x(yz) − x(zy) = 3x(yz).

If F has characteristic different from three this implies that x(yz) = 0, whence A3 = 0.

If A is associative, then x(yz) = −(xy)z = (xy)z which implies that x(yz) = 0 if F has
characteristic different from two. �

Proposition 4.2. Let A be a CB-algebra with dim(A/A2) = 2. Then A3 = 0.

Proof. Suppose that A3 , 0. Then there exist x, y ∈ A such that xy ∈ A2 \ Z(A). If
either x or y is in A2 we have xy ∈ A3 ⊆ Z(A), since A4 = 0, by Proposition 4.1. Hence
A = Fx + Fy + A2. Now x(xy) = y(xy) = 0 implies that A(xy) = 0, since A is metabelian,
by Proposition 4.1 again. It follows that either x(xy) , 0 or y(xy) , 0, both of which
imply that A is not a CB-algebra, a contradiction. The result follows. �

Definition 4.3. A nilpotent Lie algebra L of dimension n is called filiform if dim Li =

n − i for each i ≥ 2.
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Filiform Lie algebras are nilpotent Lie algebras with maximal nilindex: a filiform Lie
algebra L of dimension n has Ln = 0. They were introduced by Vergne in [11] and have
attracted much attention since then as they have important properties; in particular, every
filiform Lie algebra can be obtained by a deformation of the model filiform algebra.
However, very few are Lie CB-algebras as the following corollary shows.

Corollary 4.4. If L is a filiform Lie CB-algebra then L is two- or three-dimensional
abelian or the three-dimensional Heisenberg algebra.

Proof. If L is filiform then dim(L/L2) = 2. It follows from Proposition 4.2 that dim L ≤
3. Hence L is two- or three-dimensional abelian or the three-dimensional Heisenberg
algebra. �

In order to classify CB-algebras we follow the ideas in [8, Theorem 2.4(a)]. Let A be
a CB-algebra, let B be a subspace of A2 which is complementary to Z(A) and let C be a
subspace of A which is complementary to A2, so that A = (Z(A)+̇B)+̇C. Choose a basis
{ei, . . . , er} for C and put

(1) eie j = ei j + zi j and eie jk = zi jk, where ei j ∈ B, zi j, zi jk ∈ Z(A) for 1 ≤ i, j, k ≤ r.
(2) B2 = 0 (since A is metabelian) and AZ(A) = 0.
(3) e2

i = 0, ei j = −e ji, zi j = −z ji (by anticommutativity) and, for all permutations
σ ∈ S 3,

zσ(i)σ( j)σ(k) = sign(σ)zi jk

(by anti-associativity).
(4) The set {ei j | 1 ≤ i, j ≤ r} span B, since e1, . . . , er are the generators of A and

AB ⊆ Z(A).
(5)
∑
λ jkei j = 0⇒

∑
λ jkzi jk = 0 for all 1 ≤ i ≤ r (λ jk ∈ F).

(6) If x ∈ B + C then there is y ∈ C such that xy , 0.

Conversely, if we have three subspaces, Z, A, B such that A = (Z+̇B)+̇C with
{ei, . . . , er} a basis for C and satisfying (1)-(6) then A is a well-defined algebra, x2 = 0
for all x ∈ A and A is anti-associative, by (1), (2), (3). It follows from Theorem 3.7 that
A is a CB-algebra.

We have proved the following result.

Theorem 4.5. An algebra A is a CB-algebra if and only if it has three subspaces Z, B,C
such that A = (Z+̇B)+̇C and satisfying (1)-(6) above.

Example 4.6. The smallest example of a CB-algebra such that A3 , 0 will be seven-
dimensional in which C is spanned by e1, e2, e3, B is spanned by e1e2, e1e3, e2e3 and Z
is spanned by e1(e2e3). If we denote e1e2 by e4, e1e3 by e5, e2e3 by e6 and e1(e2e3) by
e7, this has multiplication

e1e2 = e4 e1e3 = e5 e2e3 = e6

e1e6 = e7 e2e5 = −e7 e3e4 = e7

Notice that this is Lie algebra if and only if F has characteristic three, and is an associa-
tive algebra if and only if F has characteristic two.



ON CERTAIN CLASSES OF ALGEBRAS IN WHICH CENTRALIZERS ARE IDEALS 7

5. Low dimensional Lie CB-algebras

Here we look at the nilpotent Lie algebras of dimension less than or equal to six to
see which of them are CB-algebras. We use the classification over a field of character-
istic different from two given in [5], and will employ the same notation as there. For
the reader’s convenience we list the algebras here. Throughout, I will denote a one-
dimensional ideal of L.

Proposition 5.1. Nilpotent Lie algebras of dimensions one or two are abelian; in di-
mension three there are two non-isomorphic algebras, L3,1, which is abelian, and the
Heisenberg algebra L3,2 with [e1, e2] = e3. All of these are CB-algebras.

Proof. These all have L3 = 0. �

Proposition 5.2. In dimension 4 there are three non-isomorphic nilpotent Lie algebras:

• L4,1 = L3,1 ⊕ I;
• L4,2 = L3,2 ⊕ I; and
• L4,3 with non-zero products [e1, e2] = e3, [e1, e3] = e4.

Of these, L4,1 and L4,2 are CB-Lie algebras, but L4,3 is not.

Proof. The first two have L3 = 0. The third has [e1, [e1, e2]] , 0, so this is not a CB-
algebra. �

Proposition 5.3. In dimension 5 there are nine non-isomorphic nilpotent Lie algebras:

• L5,k = L4,k ⊕ I for k = 1, 2, 3;
• L5,4: [e1, e2] = e5, [e3, e4] = e5;
• L5,5: [e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e5;
• L5,6: [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5;
• L5,7: [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5;
• L5,8: [e1, e2] = e4, [e1, e3] = e5; and
• L5,9: [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5.

Of these, L5,1, L5,2, L5,4 and L5,8 are CB-Lie algebras, but the others are not.

Proof. L5,1, L5,2, L5,4 and L5,8 all have L3 = 0.

L5,3 is not a CB-Lie algebra because L4,3 isn’t one.

L5,5, L5,6, L5,7 and L5,9 all have [e1, [e1, e2]] , 0, and so they are not CB-Lie algebras.
�

Proposition 5.4. In dimension 6 we get the following nilpotent Lie algebras:

• L6,k = L5,k ⊕ I for k = 1, . . . , 9;
• L6,10: [e1, e2] = e3, [e1, e3] = e6, [e4, e5] = e6;
• L6,11: [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e2, e3] = e6, [e2, e5] = e6;
• L6,12: [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e2, e5] = e6;
• L6,13: [e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e5, [e1, e5] = e6, [e3, e4] = e6;
• L6,14: [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5, [e2, e5] = e6,

[e3, e4] = −e6;
• L6,15: [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5, [e1, e5] = e6,

[e2, e4] = e6;
• L6,16: [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e5] = e6, [e3, e4] = −e6;
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• L6,17: [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e6:
• L6,18: [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6:
• L6,19(ε): [e1, e2] = e4, [e1, e3] = e5, [e2, e4] = e6, [e3, e5] = εe6;
• L6,20: [e1, e2] = e4, [e1, e3] = e5, [e1, e5] = e6, [e2, e4] = e6;
• L6,21(ε): [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5, [e1, e4] = e6, [e2, e5] = εe6;
• L6,22(ε): [e1, e2] = e5, [e1, e3] = e6, [e2, e4] = εe6, [e3, e4] = e5;
• L6,23: [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6, [e2, e4] = e5;
• L6,24(ε): [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = εe6, [e2, e3] = e6, [e2, e4] = e5;
• L6,25: [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6; and
• L6,26: [e1, e2] = e4, [e1, e3] = e5, [e2, e3] = e6,

where ε ∈ F. Of these, L6,1, L6,2, L6,4, L6,8, L6,22(ε) and L6,26 are CB-Lie algebras, but
the others are not.

Proof. L6,1, L6,2, L6,4, L6,8, L6,22(ε) and L6,26 all have L3 = 0.

L6,3, L6,5, L6,6, L6,7 and L6,9 are not CB-Lie algebras because the corresponding L5,k
isn’t one.

L6,10, L6,11, L6,12, L6,13, L6,14, L6,15, L6,16, L6,17, L6,18, L6,21(ε), L6,23, L6,24(ε) and L6,25
all have [e1, [e1, e2]] , 0 and so are not CB-Lie algebras.

L6,19 and L6,20 have [[e1, e2], e2] , 0 and so are not CB-Lie algebras. �

Note that the above results confirm that the seven-dimensional Lie algebra given in
the Example 4.6 is the smallest nilpotent CB-Lie algebra L with L3 , 0.

6. Leibniz algebras

An algebra L over a field F is called a Leibniz algebra if, for every x, y, z ∈ L, we
have

[x, [y, z]] = [[x, y], z] − [[x, z], y].
In other words the right multiplication operator Rx : L → L : y 7→ [y, x] is a derivation
of L. As a result such algebras are sometimes called right Leibniz algebras, and there is
a corresponding notion of left Leibniz algebras, which satisfy

[x, [y, z]] = [[x, y], z] + [y, [x, z]].

Clearly the opposite of a right (left) Leibniz algebra is a left (right) Leibniz algebra, so,
in most situations, it doesn’t matter which definition we use.

Every Lie algebra is a Leibniz algebra and every Leibniz algebra satisfying [x, x] = 0
for every element is a Lie algebra. The usual definitions for subalgebra, right (left) ideal,
ideal, homomorphism apply for Leibniz algebras. Put I = 〈{x2 : x ∈ L}〉. Then

[y, x2] =[[y, x], x] − [[y, x], x] = 0 and

[x2, y] =[x, [x, y]] + [[x, y], x] = (x + [x, y])2 − x2 − [x, y]2 ∈ I,

so I is an ideal; in fact, I is the smallest ideal of L such that L/I is a Lie algebra; L/I is
sometimes called the liesation of L.

In [3] the authors asked whether Leibniz CL-algebras are solvable. For Leibniz alge-
bras over a field F of characteristic zero, using our previous results, we can answer this
in the affirmative.
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Theorem 6.1. Let L be a Leibniz CL-algebra over a field of characteristic zero. Then L
is solvable.

Proof. By Levi’s Theorem (see [2]) we have L = R+̇S where R is the radical and S is
a semisimple Lie subalgebra of L. Now S is a Lie CB-algebra and so is nilpotent, by
Theorem 4.1. It follows that S = 0, whence the result. �

Over more general fields we have the following results.

Theorem 6.2. If L is a φ-free Leibniz CL-algebra over any field then L(3) = 0.

Proof. Since L is φ-free we have L = I+̇B where B is a subalgebra of L, by [10, Lemma
7.2]. Now B is a Lie CB-algebra and so B(2) = 0, by Theorem 4.1. It follows that
L(3) ⊆ I2 = 0, as claimed. �

The following is proved in [6, Lemma 1].

Lemma 6.3. If a right Leibniz algebra L is also a left Leibniz algebra, then, for all
x, y, z ∈ L,

(i) [[x, y], z] + [z, [x, y]] = 0; and
(ii) 2[[x, y], [x, y]] = 0.

Definition 6.4. We call L a symmetric Leibniz algebra if it is both a right and left Leibniz
algebra and [[x, y], [x, y]] = 0. Note that if F has characteristic different from two the
added identity is not needed because of Lemma 6.3(ii).

Proposition 6.5. If L is a symmetric Leibniz algebra over any field then L2 is a Lie
algebra.

Proof. This follows easily from Lemma 6.3 and remarks made at the beginning of this
section. �

Corollary 6.6. If L is a symmetric Leibniz CL-algebra over any field then L(3) = 0.

Proof. It follows from Proposition 6.5 that L2 is a Lie CB-algebra, so L(3) = (L(1))(2) = 0,
by Theorem 4.1. �

7. Group actions on CB-algebras

In this section, we study a finite group action on algebras and show that CB-elements
is preserved under the group action.

Definition 7.1. Let A be an algebra and G be a finite group. We say the group G is
acting on A if there exists a function

φ : G × A→ A, (g, x) 7→ φ(g, x) = gx

satisfying the following conditions.

(1) For each g ∈ G the map x 7→ gx, denoted by ψg is linear.
(2) ex = x for all x ∈ A, where e ∈ G is the group identity.
(3) g1(g2x) = (g1g2)x for all g1, g2 ∈ G and x ∈ A.
(4) g(xy) = (gx)(gy) for all g ∈ G and x, y ∈ A.

The above definition of group action can be equivalently stated as follows:
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Proposition 7.2. A finite group G acts on A if and only if there exists a group homomor-
phism

ψ : G → Aut(A), g 7→ ψ(g) = ψg,

from the group G to the automorphism group of A, where ψg(x) = gx is the left transla-
tion by g.

Remark 7.3. Let G be a finite group and F[G] be the associated group algebra. If G
acts on a algebra A then A may be viewed as a F[G]-module.

Theorem 7.4. Let x ∈ A be a CB-element. Then x is preserved under the action of G,
that is, gx is also a CB-element for all g ∈ G.

Proof. Let A be equipped with an action of a group G. Let z ∈ A be a CB-element. For
all x ∈ A, y ∈ CA(x), g ∈ G, we have

(x(gz))y = g(((g−1x)z)g−1y) = 0.(1)

Observe that in the above computation, we have used the fact that g−1y ∈ CA(g−1x) as
(g−1x)(g−1y) = g−1(xy) = g−10 = 0. Equation (1) shows gz are also CB-elements for all
g ∈ G. Therefore, CB-elements are preserved under the group action. �

Suppose the given algebra A is equipped with an action of a finite group G. Let x ∈ A,
we define an orbit of x under the action of G as follows:

G(x) = {gx | g ∈ G} ⊆ A.

It is easy to check orbits G(x) and G(y) of any two points x, y ∈ A are either equal or
disjoint. Note that if x ∈ A is a CB-element then all the elements in the corresponding
orbit G(x) are also CB-elements. Let S be the collection of all CB-elements of A.

Proposition 7.5. The set B =
⋃

x∈S G(x) is a CB-subalgebra of A.

Proof. Note that B is non-empty as 0 ∈ B. It is clear from the construction of B that
every elements of B are CB-elements. We only need to show that B is a subalgebra of A.
Let b1, b2 ∈ B. Then b1 = g1x and b2 = g2y for some g1, g2 ∈ G and x, y ∈ A. Observe
that

ab = (g1x)(g2y) = g1(x(g−1
1 g2y)) ∈ B.

As the group action is linear, this proves B is a subalgebra of A. Therefore, B is a
CB-algebra. �
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