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Density functional theory (DFT) is widely used to study defects in monolayer graphene with a
view to applications ranging from water filtration to electronics to investigation of radiation damage
in graphite moderators. To assess the accuracy of DFT in such applications, we report diffusion
quantum Monte Carlo (DMC) calculations of the formation energies of some common and important
point defects in monolayer graphene: monovacancies, Stone-Wales defects, and silicon substitutions.
We find that standard DFT methods underestimate monovacancy formation energies by around 1
eV. The disagreement between DFT and DMC is somewhat smaller for Stone-Wales defects and
silicon substitutions. We examine vibrational contributions to the free energies of formation for
these defects, finding that vibrational effects are non-negligible. Finally, we compare the DMC
atomization energies of monolayer graphene, monolayer silicene, and bulk silicon, finding that bulk
silicon is significantly more stable than monolayer silicene by 0.7522(5) eV per atom.

I. INTRODUCTION

Graphene, an atomically thin sheet of carbon atoms
forming a honeycomb lattice, is one of the most promis-
ing materials for future technological applications [1–3].
However, producing large, defect-free sheets of graphene
on insulating substrates remains a significant technologi-
cal challenge [4]. Point defects may appear naturally dur-
ing the growth of graphene, or they may be deliberately
inserted into pristine graphene by processing [5]. Point
defects can have a major impact on the electronic and op-
tical properties of graphene [6, 7], so it is necessary to un-
derstand their structure and characteristics to gain a full
understanding of the performance of graphene-based de-
vices. High-resolution transmission electron microscopy
and related techniques have been employed to obtain
clear imaging of defect structures in graphene [8, 9], but
these methods inevitably introduce further defects. The-
oretical methods have also played a key role in studies
of defects in graphene. In particular, there are numer-
ous works in which density functional theory (DFT) has
been used to evaluate defect formation energies and other
properties pertaining to a range of applications and de-
vices featuring graphene [10–12], graphite [13–15], and
other two-dimensional (2D) or layered materials [16–18].
The main purpose of the present work is to provide quan-
tum Monte Carlo (QMC) defect-formation energy data
to assess the accuracy of DFT in studies of defects in
graphene.

Monovacancies (MVs) in graphene have been stud-
ied for both their desired and undesired effects on the
graphene lattice. Graphite has long been used as a neu-
tron moderator in nuclear reactors, which exposes the
lattice to radiation damage [19–21]. It is essential to
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understand the formation of radiation-induced vacancies
and how these defects alter or weaken the structure of
graphene layers, and in turn graphite itself [14]. Vacan-
cies in graphene also arise due to damage by electron
beams in transmission electron microscopy [22]. Vacancy
defects can in fact be useful for some applications and
hence may be deliberately introduced into the lattice.
Graphite/graphene has commonly been used as an an-
ode material in lithium-ion batteries, with the lithium
ions able to intercalate in the lattice [23]. A move to-
wards sodium- or calcium-ion batteries is desirable owing
to the greater abundance and lower cost of these metals;
unfortunately, the larger size of sodium and calcium ions
inhibits intercalation. However, the additional space cre-
ated by vacancy defects allows larger atoms to intercalate
into the anode material [24, 25]. Likewise, sub-nm pores,
of which the MV is the smallest possible example, allow
ion-selective transport for applications such as desalina-
tion of seawater [26, 27]. The studies cited here depend
on DFT calculations to explore the behavior of MVs and
their interaction with other defects and chemical species.

The most important feature in the electronic struc-
ture of graphene is the Dirac point at the Fermi level of
pristine graphene. Many types of defect at finite con-
centration break the sublattice symmetry and/or shift
the Fermi level, significantly altering the electronic prop-
erties of graphene [28]. Substitutional impurity atoms
are among the most common defects in graphene, and
have been extensively studied using DFT [29]. Several
studies [30–32] have shown that nitrogen and boron im-
purities in graphene act as donors and acceptors, respec-
tively. DFT has been used to investigate the electronic
and magnetic properties of a graphene sheet doped by
iron, cobalt, silicon, and germanium impurities at 3%
concentration, finding that the substitution of a carbon
atom with silicon or germanium can open a band gap in
the electronic spectrum of graphene, while the insertion
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of iron or cobalt produces a metallic phase [33]. Sili-
con substitutions (SiSs) in graphene are an attractive
approach for engineering the band structure [34]. The
silicon atom, which has the same number of valence elec-
trons as carbon, has been shown to be able to modulate
the electronic structure of graphene without significantly
changing its carrier mobility [7].

Stone-Wales (SW) defects in graphene are some of
the most commonly observed intrinsic topological de-
fects [28]. SW defects influence the electronic, structural,
chemical, and mechanical properties of graphene [35–40].
SW defects result in a tendency for monolayer graphene
to bend, and therefore can be used in the fabrication of
nonplanar carbon nanostructures [41]. SW defects show
mutual attraction [42], and the formation of clusters of
SW defects at high temperature is one of the first steps
in the melting of graphene [43]. Once again, DFT has
played a key role in elucidating the properties of SW de-
fects.

The single most important thermodynamic property of
a point defect is its formation energy E f, which is the dif-
ference in free energy between the defected material and
the pristine material, together with any changes in the
energies of reservoirs of the atoms that are added or re-
moved when the defect is formed (i.e., E f is the change in
the grand potential when the defect is formed). At zero
external stress and low defect concentration, and assum-
ing thermal equilibrium with appropriate reservoirs, the
point defect concentration in a 2D material is given by
n = exp[−E f/(kBT )]/A, where kB is Boltzmann’s con-
stant, T is temperature, and A is the primitive-cell area.

In this paper, we present QMC calculations of the for-
mation energies of isolated MVs, SiSs, and SW defects.
Our intention is to benchmark the accuracy of the DFT
methods that have been widely used in studies of defects
in graphene. Given the lack of precise experimental re-
sults in this area, comparing first-principles methods in
this way is the only method of assessing the accuracy of
the calculations. Since this work necessitates the calcu-
lation of the energy per atom of both graphene and bulk
silicon, we also take this opportunity to investigate the
energetic stability of silicene, the 2D allotrope of silicon,
relative to bulk diamond-structure silicon.

Silicene, the silicon counterpart of graphene, is a hon-
eycomb structure of silicon atoms with slightly buckled
hexagonal sublattices that result from mixing sp2 and sp3

hybridization. The dynamical stability of free-standing
silicene has been demonstrated theoretically using DFT
calculations [44, 45]; however, in practice it can only
be synthesized experimentally on metal surfaces [46–48].
This new 2D material has been extensively studied the-
oretically due to the many remarkable properties that
result from its relatively large spin-orbit coupling and
buckled structure [49, 50]. Under external electric field,
silicene undergoes a transition from a topologically insu-
lating phase arising from the spin-orbit coupling into a
variety of quantum phases [51, 52]. Silicene holds great
promise for a variety of applications in spintronic and

optoelectronic devices [53, 54]. However, a fundamental
issue for any attempt to use silicene in practical devices
is its lack of thermodynamic stability. Here, we report
QMC simulations performed to compare the ground-state
energies per atom of bulk silicon and free-standing sil-
icene.

Our calculations make use of two QMC methods,
namely variational Monte Carlo (VMC) and diffusion
Monte Carlo (DMC), in tandem. VMC uses Monte Carlo
integration to evaluate expectation values with respect
to a many-body trial wave function; this, in combination
with the variational principle, can be used to optimize
free parameters in the trial wave function. The result-
ing optimized wave function is then used as the starting
point for a DMC calculation. The DMC method projects
out the ground-state component of the wave function
by simulating the evolution of a population of walkers
governed by the imaginary-time-dependent Schrödinger
equation. Fermionic antisymmetry is maintained using
the fixed-phase approximation [55, 56]. All our QMC
calculations were performed using the casino code [57]
to study supercells of graphene, bulk silicon, and sil-
icene subject to twisted periodic boundary conditions.
A “twist-blocking” method is introduced to evaluate the
error on twist-averaged results, accounting for the ran-
dom errors due to both Monte Carlo integration and the
random sampling of twists.

The rest of the paper is organized as follows. In Sec.
II we describe our computational methodology. In Sec.
III we present and analyze our numerical results. Finally
we draw our conclusions in Sec. IV.

II. COMPUTATIONAL METHODOLOGY

A. Defect formation energies

We define the “pure” formation energy Epf of an iso-
lated defect in graphene as the free-energy difference be-
tween a large region of graphene containing a single de-
fect and pristine graphene. The defect formation energy
E f is the sum of the pure defect formation energy and
the changes in the free energies of reservoirs of the atoms
that are added or removed, i.e., E f is defined via a dif-
ference in grand potentials. For the SW defect, MV, and
SiS these are

E f
MV = Epf

MV + µC (1)

E f
SiS = Epf

SiS + µC − µSi (2)

E f
SW = Epf

SW, (3)

where the chemical potentials µC and µSi are taken to
be the Helmholtz free energies per atom of monolayer
graphene and bulk diamond-structure silicon, respec-
tively. The pure defect formation energy is not in gen-
eral physically meaningful by itself, because it depends
on the choice of pseudopotentials. However, it is theo-
retically useful because it allows us to distinguish finite-
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concentration and finite-size effects purely due to defect
formation in a periodic supercell from finite-size errors in
the energy per atom of graphene and silicon. We approx-
imate that the pure defect formation energy is the sum
of the difference of static-nucleus electronic ground-state
energies of defective and pristine graphene, which we
evaluate by both DFT and DMC, and the temperature-
dependent difference of vibrational Helmholtz free ener-
gies, which we evaluate by DFT. Likewise, each chemi-
cal potential is taken to be the sum of the static-nucleus
electronic ground-state energy per atom and the DFT-
calculated temperature-dependent vibrational Helmholtz
free energy per atom.

Details of the DFT and DMC calculations can found
in Appendix A.

B. Free energies of atomization

We define the free energy of atomization of bulk sili-
con as the difference of the energy of an isolated, spin-
polarized silicon atom in its 3P0 ground state and the
Helmholtz free energy per atom in bulk silicon. The at-
omization energies of silicene and graphene are defined in
an analogous manner. This provides a pseudopotential-
independent (in principle) free energy per atom that can
be used to compare the stability of different condensed
phases. Note, however, that the temperature dependence
of the free energy of the reference gaseous atomic state
is neglected.

C. Finite-concentration and finite-size effects

1. Periodic supercells

Our QMC calculations of defect formation energies
were performed in finite supercells subject to periodic
boundary conditions, with a single point defect in the
simulation cell. This leads to a number of physical dif-
ferences from the dilute limit of isolated point defects
in which we are interested. Firstly, there are finite-
concentration effects due to the fact that we are sim-
ulating a periodic array of point defects rather than
an isolated defect. Leading-order systematic finite-
concentration effects are due to screened electrostatic in-
teractions between periodic images of defects and elas-
tic interactions between defects [58]. Finite concentra-
tion effects can also arise due to the unwanted dispersion
of localized defect states. There are also nonsystematic
finite-concentration effects due to interactions between
charge-density oscillations around defects. We reduce
the systematic effects and average out the nonsystem-
atic effects by extrapolation to infinite cell size using an
appropriate fitting function. Secondly, at a given defect
concentration there are finite-size effects arising from the
simulation of periodic supercells rather than infinite sys-
tems. These include quasirandom, oscillatory effects due

to momentum quantization, which we address by aver-
aging over twisted boundary conditions on the supercell
[59]. Long-range finite-size effects largely cancel out of
the pure defect formation energies: the expressions for
the leading-order corrections are the same for pristine
and defective cells.

To calculate chemical potentials we must find the
ground-state energies per atom of graphene and bulk sil-
icon. In a finite simulation cell these suffer from quasir-
andom momentum-quantization effects as well as long-
range effects due to the evaluation of the interaction
between each electron and the surrounding exchange-
correlation hole using the Ewald interaction rather than
1/r [60] and the neglect of long-range two-body correla-
tions [61, 62].

2. Twist averaging

Unlike DFT, only a single k point can be used in each
QMC calculation. We use twist averaging in the canon-
ical ensemble [59] to reduce momentum-quantization er-
rors in our results. All our graphene and bulk silicon
DMC calculations were carried out at 24 random twists,
while our silicene calculations used 48 random twists.
Since momentum quantization is a single-particle effect,
it is well described by DFT, so that the QMC and DFT
energies are correlated as a function of twist. DFT en-
ergies can therefore be used as a control variate (CV)
when evaluating the twist-averaged (TA) DMC energy.
The TA energy ETA

DMC was found by fitting

EDMC(ks) = ETA
DMC + b

[
EDFT(ks)− Efine

DFT

]
(4)

to the DMC energy EDMC(ks) at twist ks, where b is
a fitting parameter and EDFT(ks) is the corresponding
DFT energy, and Efine

DFT is the DFT energy evaluated
using a fine k-point grid. Equation (4) simultaneously
removes most of the quasirandom noise due to momen-
tum quantization and corrects for residual errors in the
TA energy by virtue of the fact that the correlator is
the DFT energy relative to the DFT energy with a fine
k-point mesh rather than the TA-DFT energy. The pris-
tine and defective graphene calculations were performed
at identical twists, so the twist-sampling error in the dif-
ference is much smaller than the twist-sampling errors in
the total energies. When calculating the TA pure defect
formation energy, we used DMC and DFT pure defect
formation energies Epf(ks) in Eq. (4) rather than total
energies E(ks).

There are two very different sources of (quasi-)random
error in the TA-DMC energy for a given supercell: the
statistical error from the Monte Carlo simulation, and the
residual momentum quantization error that is not fully
removed by fitting Eq. (4) to Epf(ks). The statistical er-
ror can easily be accounted for by Gaussian propagation
of errors; however the residual momentum quantization
error is unknown at the outset. To quantify the remain-
ing error, a “twist-blocking” procedure has been used.



4

For example, 24 twists can be grouped into four blocks
of six twists, and within each block the TA energy can
be calculated by fitting Eq. (4). An estimate of the true
TA energy is then given by the mean of the four inde-
pendent values of ETA

DMC, while the standard error in the
mean quantifies both the residual momentum quantiza-
tion error and the Monte Carlo errors. The mean energy
obtained by this procedure is a biased estimate of the TA
energy due to the small number of twists used in each fit;
however, we can check for bias in both the mean and the
standard error in the mean by increasing the block size.
In fact we minimize the bias in the mean by using Eq.
(4) with all the twists to obtain the TA energy, and only
use the twist-blocking method to estimate the error bar
on the TA energy.

Figure 1 shows the twist-blocked (TB) standard error
in the mean pure MV formation energy in a 3×3 supercell
against the number of blocks into which the 24 original
twists are divided. Where there is just one block of twists
the standard error is obtained by Gaussian propagation
of the Monte Carlo standard errors, with no attempt to
quantify the errors due to the random sampling of twists.
Due to the uncertainty in the estimated standard error,
Fig. 1 does not provide evidence that there are signifi-
cant k-point sampling errors after fitting Eq. (4) to all
24 twists. Furthermore, there is no evidence to suggest
that the random error obtained by Gaussian propagation
of the Monte Carlo errors in the fit to all 24 twists is un-
reliable. The behavior of the TB standard error is similar
for the other two supercell sizes studied.
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FIG. 1. TB standard error in the TA-DMC pure MV for-
mation energy in a 3 × 3 supercell against the number of
blocks into which the 24 original twists are divided. Within
each block, Eq. (4) is used to find the TA pure formation en-
ergy. The standard error in the single-block case is obtained
by Gaussian propagation of the Monte Carlo random errors,
with no account being taken of residual twist-sampling errors.

To our knowledge this is the first work to use twist-
averaging to evaluate a defect formation energy. The ap-
proach is valid, since TA and non-TA finite-size energies
agree in the infinite-system-size limit. Twist-averaging
has the considerable advantage of greatly reducing non-

systematic finite-size effects by turning a sum over su-
percell reciprocal lattice vectors into an integral over k,
aiding extrapolation to the thermodynamic limit. For
example, the standard deviations of the DMC pure MV
formation energies as functions of twist are 0.3 eV, 0.2
eV, and 0.1 eV in 3×3, 4×4, and 5×5 supercells, respec-
tively, indicating the likely size of the quasirandom error
in the pure defect formation energy that would arise from
the use of a non-TA calculation.

3. Long-range effects

To deal with long-range finite-concentration and finite-
size effects, defect-formation energies have been calcu-
lated at various supercell sizes N , where N is the num-
ber of pristine primitive cells in the supercell, and then
extrapolated to infinite system size using an appropriate
scaling law.

In the case of the SiS, there is some charge trans-
fer from the silicon atom to the graphene sheet, giv-
ing the defect a dipole moment. Defects in neighbor-
ing supercells lead to the inclusion of unwanted elec-
trostatic dipole-dipole interactions. The screened in-
teraction between charges in a 2D semiconductor is of
Rytova-Keldysh form [63, 64], which is logarithmic at
short range, before crossing over to a 1/r interaction at
a lengthscale typically of order many tens of Å. The
supercell sizes that we study here are comparable with
this length scale. Rytova-Keldysh dipole-dipole interac-
tion energies go as r−3 at long range and as r−2 at short
range; this leads to finite-concentration errors that go as
O(N−1) in small supercells, then as O(N−3/2) in very
large supercells.

The MV and SW defects are neutral and do not involve
charge transfer between atoms, so they have no dipole
moment. In principle there exists a quadrupole moment
associated with these defects, giving rise to weak elec-
trostatic interactions between periodic images falling off
rapidly as O(N−2–N−5/2).

In addition to image interactions, there are elastic
finite-concentration effects due to the stress arising from
the change in the size and shape of the unit cells around
a point defect in a fixed supercell [58]. For example,
if a point defect is associated with an area change δA
and the supercell area is fixed at NA, and there is
a uniform, isotropic contraction of the lattice around
the defect, the resulting leading-order elastic energy is
(λ + µ)δA2/(2AN), where λ and µ are the Lamé coef-
ficients of graphene. In general, assuming the defects
result in isotropic stress, the elastic finite-concentration
effects in the energy go as O(N−1).

In summary the scaling of the elastic finite-size error
(and the electrostatic finite-size error in the case of the
SiS) suggest that TA pure defect formation energies Epf

should be extrapolated to the thermodynamic limit by
fitting

Epf(N) = Epf(∞) + CN−1, (5)
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where C is a fitting parameter. Using DFT calcula-
tions, we confirm in Fig. 2 that O(N−1) systematic finite-
concentration errors are dominant in MV, SW, and SiS
defects in graphene.

The pristine graphene, bulk silicon, and silicene ener-
gies per atom were extrapolated to infinite system size
by fitting the TA energies per atom 〈eP(N)〉TA to

〈eP(N)〉TA = eP(∞) + c N−γ , (6)

where eP(∞) and c are fitting parameters. For graphene
and silicene, γ = 5/4 [62], while for bulk silicon γ = 1
[61].

After separately dealing with the finite-size effects in
the pure defect formation energies and chemical poten-
tials, graphene defect formation energies were calculated
using Eqs. (1)–(3).

D. Backflow

DMC calculations in a 3× 3 supercell at a single twist
for the MV show that the inclusion of backflow corre-
lations with polynomial electron-electron and electron-
nucleus terms lowers the pure defect formation energy
by 41(30) meV, while the addition of the plane-wave
electron-electron term further lowers the pure defect for-
mation energy by 16(29) meV, giving a total lowering of
58(31) meV. These differences are statistically insignif-
icant, and are an order of magnitude smaller than the
error bars on the TA SJ-DMC pure defect formation en-
ergies reported in Table I; fixed-node errors are there-
fore well controlled. A backflow function with electron-
electron and electron-nucleus terms lowers the energy per
atom of graphene by 46(9) meV, and the inclusion of the
plane-wave electron-electron term does not have a statis-
tically significant effect. Again, however, the effects of
backflow are insignificant on the 0.1 eV scale of the error
bars on our SJ-DMC defect-formation energies.

III. RESULTS AND DISCUSSION

A. Atomic structures

1. Pristine graphene, silicene, and bulk silicon

We have used a carbon-carbon bond length of 1.42 Å
in all our pristine graphene calculations [72, 73], and we
have used exactly the same supercell lattice parameters
for our pristine and defective graphene calculations. For
bulk silicon and silicene we used lattice parameters of
5.469 and 3.866 Å, respectively, obtained using DFT with
the Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional [74]. The sublattice buckling of silicene (0.458
Å) was also obtained by relaxing within DFT-PBE [49].
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(b) SiS
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FIG. 2. DFT pure formation energies of (a) MV, (b) SiS, and
(c) SW defects in graphene against the reciprocal of the su-
percell size N . Fine k-point grids were used in each supercell.
Ultrasoft pseudopotentials were used. The dashed lines show
fits of Eq. (5) to the data.

2. MV

It has previously been shown that a graphene MV un-
dergoes a Jahn-Teller distortion, with two neighbors of
the missing atom moving together to form a weak, re-
constructed bond, and lowering the symmetry from D3h

point group [14]. One DFT work on MVs has found and
used a C2v structure (a planar structure with a single hor-
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TABLE I. Theoretical static-nucleus formation energies for various point defects in monolayer graphene. The carbon and
silicon chemical potentials are the energies per atom of graphene and bulk silicon, respectively. Results without citations were
obtained in the present work. “NTBM” refers to a nonorthogonal tight-binding model. “DFT-B3LYP-D*” refers to DFT
with a self-interaction-corrected hybrid B3LYP functional [65, 66]. To compare with experimental results, the vibrational free
energies reported in Table IV should be added to the static-nucleus data reported in this table.

Method
Defect formation energy (eV)

MV SiS SW
DFT-PBE 7.64 [29], 7.65 [34], 7.97 3.77 [34], 6.85 [67]a 3.59 4.71 [68], 4.32
DFT-LDA 8.02 [29], 7.40 [69], 8.25 4.66 [70],b 4.86 [69], 5.42 [68]
DFT-B3LYP-D* 8.05 [71]
NTBM 4.60 [36]
DMC 5.82(3) [68]
DMC-corrected DFT 9.0(1) 4.4(1) 4.9(1)

a Reference 67 uses the ground-state energies of isolated atoms as chemical potentials; for comparison with the other defect formation
energies reported in this table, the atomization energies of graphene and bulk silicon should be, respectively, added to and subtracted
from the formation energy of Ref. 67.

b This work extrapolates DFT energies at different system sizes in the same fashion we do here. All other cited DFT works are
performed at finite supercell size.

izontal mirror plane and a single vertical mirror plane)
[29]; other DFT works have found that when two neigh-
bors of the missing atom form a reconstructed bond, the
third neighbor moves out of plane [14, 71, 75], resulting
in a structure of Cs point group (a nonplanar structure
with just a single vertical mirror plane).

As shown in Table II, our non-spin-polarized DFT cal-
culations in the local density approximation (LDA) and
DFT-PBE calculations with and without many-body dis-
persion (MBD*) corrections [76, 77] find the Cs MV
structure to be favored (with the sole exception of DFT-
LDA in a small, 3 × 3 supercell). The energy differ-
ences between the different non-spin-polarized MV struc-
tures oscillate significantly with supercell size, but are
less than 0.3 eV. This is just about large enough to be
non-negligible on the scale of our DMC error bars (see
Sec. III B). The difference between the Cs DFT-PBE and
DFT-PBE-MBD* structures is small. For example, in a
3 × 3 supercell, the DFT-PBE energy is only increased
by 1.5 meV when the DFT-PBE-MBD* structure is used
instead of the DFT-PBE structure. We have used the
non-spin-polarized Cs-symmetry structures obtained by
relaxing within DFT-PBE in our QMC calculations; the
MV structure in a 5× 5 supercell is shown Fig. 3.

Previous DFT calculations have found that the MV
has a magnetic moment of 1.04µB–2µB, where µB is
the Bohr magneton [78–80]. We examine the effect of
performing spin-polarized DFT calculations in Table II.
Within DFT-LDA, the MV is unambiguously nonmag-
netic. Within DFT-PBE and DFT-PBE-MBD*, spin-
polarized structures of C2v and Cs symmetry are found
to be stable. Convergence to the lowest-energy atomic
structure is challenging in spin-polarized DFT calcula-
tions, where we often find structures with energies that
are either greater than the non-spin-polarized energy for
the same point group or greater than the energy of a
higher-symmetry structure, demonstrating that we have
not obtained the global minimum of the energy. To try to

(a) (b)

FIG. 3. (a) Top-down and (b) in-plane views of the DFT-
PBE-relaxed MV structure in a 5 × 5 supercell. The under-
coordinated carbon atom is shown in red.

address this problem we have performed repeated spin-
polarized calculations with different initial plane-wave co-
efficients and different initial geometries. Our DFT-PBE
calculations in a 7 × 7 supercell suggest that the spin-
polarized Cs MV structure is more stable than the non-
spin-polarized Cs structure by about 0.1 eV, in agree-
ment with previous DFT calculations [78], with mag-
netic moment 1.4µB. However, the energy differences
between magnetic and nonmagnetic MV structures are
less than or comparable to the error bars on our DMC
defect-formation energies reported in Sec. III B. Further-
more, there is no sign of convergence with respect to su-
percell size of the difference between the DFT energies of
the magnetic and nonmagnetic structures. In a 3× 3 su-
percell, the DMC pure formation energy obtained using
spin-polarized orbitals is within error bars of that ob-
tained with non-spin-polarized orbitals. For consistency,
we have used nonmagnetic MV structures and non-spin-
polarized orbitals in our QMC calculations.
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TABLE II. DFT energies of the most stable D3h, C2v, and Cs structures relative to the most stable non-spin-polarized Cs

structure. Different exchange-correlation functionals and supercell sizes are used. Spin-polarized and non-spin-polarized results
are labelled by “(p)” and “(u)”, respectively. Ultrasoft pseudopotentials and fine k-point grids are used.

Energy relative to non-spin-polarized Cs defect (meV)
Functional Supercell ED3h(u) − ECs(u) EC2v(u) − ECs(u) EC2v(p) − ECs(u) ECs(p) − ECs(u)

LDA 3 × 3 0 0 0 0
LDA 5 × 5 94.6 92.4 71.5 0
LDA 7 × 7 120.2 115.4 88.7 0
PBE 3 × 3 21.5 21.5 −36.4 −36.5
PBE 5 × 5 214.8 211.6 −96.8 −96.8
PBE 7 × 7 274.2 268.6 85.6 −113.8
PBE-MBD* 3 × 3 19.6 19.6 15.4 19.8
PBE-MBD* 5 × 5 195.6 193.7 −105.7 0
PBE-MBD* 7 × 7 245.9 250.8 −128.0 −122.3

3. SiS

Replacing a single carbon atom by a silicon atom re-
sults in a defect of Cs point group, rather than D3h, due
to a Jahn-Teller distortion [28]. The DFT-PBE-relaxed
geometry shown in Fig. 4 has the silicon atom bonded
with three carbon atoms and lying above the graphene
plane due to partial sp3 hybridization.

(a) (b)

FIG. 4. (a) Top-down and (b) in-plane views of the DFT-
PBE-relaxed SiS structure in a 5 × 5 supercell. The silicon
atom is shown in blue.

4. SW defect

In graphene, a SW defect is formed by an in-plane ro-
tation of a single carbon-carbon bond through 90◦ about
its midpoint. This transforms four hexagonal unit cells
into two pentagons and two heptagons, as shown in Fig.
5(a), with the same number of carbon atoms as pristine
graphene and without any dangling bonds. The SW ro-
tation compresses or stretches many bonds, resulting in a
wave of significant vertical displacement of carbon atoms
around the defect, as shown in Fig. 5(b). The relaxed
lattice will adopt either a “sine-like” buckled structure,
in which the two rotated carbon atoms are slightly dis-

placed in opposite out-of-plane directions, or a “cosine-
like” buckled structure, in which the two rotated car-
bon atoms are slightly displaced in the same out-of-plane
direction. The “sine-like” structure is the lower-energy
configuration [68, 81], and is the structure studied in this
work.

(a) (b)

FIG. 5. (a) Top-down and (b) in-plane views of the DFT-
PBE-relaxed “sine-like” SW defect structure in a 5×5 super-
cell.

B. Defect formation energies

Figure 6 shows DMC and DFT defect formation ener-
gies against system size. Twist averaging is either per-
formed directly (without a CV), or by using the DFT
results as a CV [i.e., fitting Eq. (4)]. Also shown are
DFT results obtained with a fine k-point mesh. The er-
ror bars on the “TA-DMC with CV” data were obtained
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FIG. 6. DFT and DMC formation energies against reciprocal
of supercell size N , using different methods for dealing with
momentum quantization errors, for (a) MV, (b) SiS, and (c)
SW defects. The red dashed lines show an unweighted least-
squares fit of Eq. (5) to the TA-DMC data. Both the DFT and
DMC calculations used Dirac-Fock pseudopotentials. The
carbon and silicon chemical potentials were taken to be the
energy per atom of monolayer graphene and bulk silicon, ex-
trapolated to infinite system size; hence the N -dependence
shown in this figure only arises from the finite-concentration
and finite-size effects in the pure formation energy.

using Gaussian propagation of errors through the fit of
Eq. (4) to the DMC results at all 24 twists. The “TB-
DMC” data were obtained using twist-blocking, in which
six blocks of four twists were used to obtain a standard
error estimate that includes both Monte Carlo random
errors and finite-twist-sampling random errors. Figure 6
demonstrates that the use of a CV significantly reduces
the random errors in the DMC energy data, and that
subsequent twist-blocking to account for the remaining
twist-sampling errors does not affect the random error
estimate significantly (as we have also shown in Fig. 1).
In theory, the most accurate way to obtain the TA energy
is to fit Eq. (4) to formation energies in a single block of
all the twists, and then to use TB to obtain the error
bars, but the difference between the TA and TB mean
energies is negligible in practice. However, the TB errors
are not large enough to quantify the quasirandom finite-
size errors in the formation energies at different supercell
sizes; this finite-size noise must therefore arise from ef-
fects such as the enforced supercell commensurability of
Ruderman-Kittel oscillations in the density and pair den-
sity rather than momentum quantization. Quasirandom
finite-size effects are larger in the DMC formation ener-
gies than in the DFT results, presumably because of the
explicit treatment of correlation in QMC methods. The
obvious (but expensive) way to reduce this would be to
perform DMC calculations in a larger range of supercell
sizes and possibly shapes.

At each system size we evaluate a correction to the
DFT formation energy as a difference between the TA-
DMC result and the DFT result with a fine k-point grid.
The DMC corrections to the defect formation energies in
different supercells (including the chemical potentials ex-
trapolated to the thermodynamic limit) are given in Ta-
ble III. In general, the difference between the DFT and
DMC formation energies is expected to be dominated by
short-range effects, with systematic finite-concentration
errors (due to electrostatic and elastic effects) being simi-
lar in DFT and DMC; this is confirmed by the similar gra-
dients of the fitted lines in Fig. 6. However, the difference
between DFT and DMC shows quasirandom fluctuations
as a function of system size. This suggests that the best
scheme for using DMC to evaluate defect formation en-
ergies is to average the difference between TA-DMC and
fine-k-point DFT formation energies obtained in multi-
ple supercells, and then to apply the resulting correction
to DFT results extrapolated to the dilute limit of infi-
nite supercell size. Averaging over multiple supercells is
clearly necessary, because the difference between DMC
and DFT results obtained in different cell sizes in Table
III fluctuates randomly by an amount that is significantly
larger than the error bars on the individual differences.
DFT-PBE significantly underestimates the formation en-
ergy for all three defects. The larger DMC correction for
the MV formation energy compared to the SiS and SW
defects reported in Table III suggests that DFT performs
relatively poorly when evaluating energy differences be-
tween structures with very different chemical bonding.
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TABLE III. Difference between DMC and DFT-PBE static-
nucleus formation energies for various defects, evaluated as
the difference between defect-formation energies calculated
with TA-DMC [using Eq. (4)] and DFT-PBE using a fine k-
point grid. The DFT calculations use ultra-soft pseudopoten-
tials rather than the Trail-Needs Dirac-Fock pseudopotentials
used by the QMC calculations.

Supercell
DMC correction to formation energy (eV)

MV SiS SW
3 × 3 1.09(3) 1.07(9) 0.65(2)
4 × 4 0.78(3) 0.54(9) 0.27(2)
5 × 5 1.28(2) 0.91(9) 0.70(3)
Mean 1.1(1) 0.8(1) 0.5(1)

Our final DFT and DMC defect formation energies are
shown in Table I, along with DFT results from the liter-
ature. The DMC literature result for the SW formation
energy [68], which has a comparatively tiny standard er-
ror, was only calculated in a 5 × 5 supercell with no at-
tempt to control finite-size effects; our standard error is
larger because it accounts for quasirandom finite-size ef-
fects.

The DFT-PBE differences in the zero-point vibrational
energies and Helmholtz free energies at 298 K between
defective and pristine graphene for the MV, SiS, and
SW defects are shown in Table IV. These vibrational
free energy contributions should be added to the static-
nucleus defect formation energies in Table I. The vi-
brationally corrected DMC defect formation energies are
8.3(1), 3.6(1), and 4.4(1) at 298 K for MV, SiS, and SW
defects, respectively. The vibrationally corrected DMC
MV formation energy may be compared with an exper-
imentally determined MV formation energy, 7.0(5) eV
[82]. While the difference between this experimental re-
sult and our result is statistically significant, it should
be noted that the uncertainty in the experimental result
is fairly large. Furthermore, there are some systematic
errors that affect our DMC result, such as the use of
DFT-relaxed geometries and estimating the Helmholtz
free energy using the harmonic approximation.

TABLE IV. DFT-PBE vibrational contributions to the
Helmholtz free energies of formation of various point defects
in monolayer graphene. The contributions are extrapolated
to the dilute limit.

Temperature (K)
Vib. contrib. to form. energy (eV)
MV SiS SW

0 −0.74 −0.44 −0.49
298 −0.68 −0.41 −0.47

C. Atomization energies

DMC atomization energies are plotted against sys-
tem size in Fig. 7 for graphene, bulk silicon, and sil-

icene, respectively, showing that finite-size effects are
largely removed by extrapolation. DFT-PBE vibrational
Helmholtz free energies are reported in Table V. In
graphene the vibrational free energy is relatively small,
due to the extreme stiffness of the lattice. At room tem-
perature, vibrational effects stabilize silicene with respect
to bulk diamond-structure silicon.

TABLE V. DFT-PBE vibrational Helmholtz free energies per
atom for pristine graphene, bulk silicon, and silicene.

Temperature (K)
Vibrational free energy (meV/atom)

Graphene Silicon Silicene
0 3.0 61.9 50.6
298 3.2 36.1 3.0

Vibrationally corrected DMC atomization energies for
free-standing graphene, bulk silicon, and free-standing
silicene, extrapolated to infinite system size, are reported
in Table VI, along with DFT results. The atomization
energies of both bulk silicon and silicene are significantly
overestimated in DFT compared with DMC. Bulk silicon
is energetically more stable than silicene by a huge mar-
gin of 0.7522(5) eV/atom. By contrast, the atomization
energies of graphite, graphene, and carbon diamond are
very similar, at about 7.43 eV/atom [83, 84]. Our DMC
result for graphene compares extremely well with the ex-
perimental result for graphite [83], the two differing by
only ∼ 0.02 eV/atom. For the atomization energy of bulk
silicon there is a small but statistically significant differ-
ence between our DMC result and earlier works [85, 86];
this is probably due to the fact that the earlier works
did not use twist averaging. The DMC and DFT-PBE
results are in reasonable agreement with the experimen-
tally determined atomization energy of bulk silicon.

IV. CONCLUSIONS

We have used QMC methods to investigate the ac-
curacy of DFT in first-principles studies of point defect
formation in monolayer graphene. Over accessible ranges
of supercell size (3× 3–5× 5 primitive cells), both DFT
and QMC formation energies are affected by both sys-
tematic and quasirandom finite-concentration effects on
a ∼ 1 eV energy scale. Systematic finite-concentration
effects are similar in QMC and DFT, but the difference
between the QMC and DFT formation energies is still
subject to quasirandom errors, of order 0.5 eV. To re-
duce these errors, the difference between QMC and DFT
formation energies may be averaged over supercell sizes,
providing a correction that can be applied to the DFT
formation energy obtained using large supercell sizes. We
find that DFT-PBE underestimates the formation ener-
gies of isolated monovacancies, silicon substitutions, and
Stone-Wales defects by a significant margin of order 1
eV. Vibrational contributions to the free energies of for-
mation of point defects in graphene have also been found
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TABLE VI. Helmholtz free energies of atomization of graphene, bulk silicon, and silicene. The DFT-PBE vibrational free-
energies shown in Table V have been subtracted from our static-nucleus atomization energies. Unlike the present work, the
silicene DFT calculations in Refs. 45 and 49 used a non-spin-polarized (1S0) Si atom as the atomic reference state, obtaining
DFT-LDA atomization energies of 5.06 [45] and 5.12 eV [49] and DFT-PBE and DFT-HSE06 atomization energies of 4.69
and 4.70 eV, respectively [49]. The difference between the single-determinant DMC energies of a non-spin-polarized (1S0)
and a spin-polarized (3P0) silicon atom is 1.1506(6) eV. The difference is 0.6107 eV within DFT-LDA and 0.7987 eV within
DFT-PBE. The atomic reference state for the graphene atomization energies is the spin-polarized (3P0) ground state of an
isolated carbon atom. Results without citations were obtained in the present work.

Method
Atomization energies (eV/atom)

Graphene Bulk silicon Silicene
Temperature 0 K 298 K 0 K 298 K 0 K 298 K
DFT-LDA 8.96 [87], 8.632 [84], 8.912 8.912 5.34 [85], 5.3 [88], 5.29 5.31 4.5414 4.5869
DFT-PW91 4.653 [85]
DFT-PBE 7.93 [87], 7.873 [84], 7.916 7.915 4.55 4.58 3.9238 3.9714
GFMC 4.51(3) [88] a

DMC 7.395(3) [84], 7.388(2) 7.388(2) 4.62(1) [85], 4.63(2) [86], 4.4815(6) 4.5073(6) 3.7075(4) 3.7551(4)
Experiment 7.357(5) [83] 4.62(8) [89, 90]

a Green’s function Monte Carlo method.

to be non-negligible, on a 0.5–1 eV energy scale. Thus
there are many factors to balance when evaluating de-
fect formation energies in 2D materials from first prin-
ciples. Similarly challenging behavior is expected for re-
lated quantities such as defect migration energy barriers.

We have also compared the QMC atomization energies
of monolayer graphene, silicene, and bulk silicon, finding
that bulk silicon is more stable than silicene by 0.7522(5)
eV per atom. This quantifies the significant thermody-
namic challenge involved in producing free-standing sil-
icene.

All relevant data present in this paper can be accessed
at Lancaster University’s research dataset repository [91].
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FIG. 7. TA-DMC static-nucleus atomization energies of (a)

graphene, (b) bulk silicon, and (c) silicene against N−5/4 for
graphene and silicene, and N−1 for bulk silicon, where N is
the number of primitive cells in the supercell. The atom-
ization energies are defined with respect to the DMC spin-
polarized 3P0 ground states of isolated carbon and silicon
atoms.
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Appendix A: Computational details

1. DFT calculations

a. Total energy, geometry optimization, and phonon
calculations

Our DFT calculations were performed using the PBE
generalized gradient approximation exchange-correlation
functional [74] and the plane-wave-basis code castep
[92]. The total energy, geometry optimization, and
phonon calculations all used ultrasoft pseudopotentials
[93] to represent the nuclei and core electrons. A plane-
wave cutoff energy of 556 eV was used for pristine and
defective graphene and a cutoff energy of 305 eV was used
for bulk silicon and silicene. For pristine graphene and
silicene, the total energies were calculated using 51× 51
and 53× 53 Monkhorst-Pack k-point grids, respectively.
The total energies of defective graphene were calculated
for supercells of N primitive cells in a

√
N×
√
N arrange-

ment containing a single defect, using Monkhorst-Pack
grids of approximately (51/

√
N)× (51/

√
N) k-points; in

the following we refer to the use of these grids as “fine”
k-point sampling. The geometry in each of the defective
graphene supercells was optimized to a force tolerance of
0.0025 eV Å−1 with fixed lattice vectors corresponding to
a pristine-graphene carbon-carbon bond length of 1.42 Å
[72, 73]. Our bulk silicon calculations used 17× 17× 17
Monkhorst-Pack k-point grids. All our 2D DFT calcu-
lations were performed using an artificial periodicity of
30 bohr in the out-of-plane direction. Non-spin-polarized
calculations were used except where stated otherwise.

Phonon calculations using the finite displacement
method in DFT were used to evaluate the vibrational
contributions to the free energy. These calculations were
performed using atomic displacements of 0.005, 0.01,
0.015, 0.02, and 0.025 bohr, with the final energies ob-
tained by linearly extrapolating to zero atomic displace-
ment. For each supercell 5×5 Monkhorst-Pack supercell
k-point grids were used. Geometries were first optimized
to a force tolerance of 0.0005 eV Å−1.

b. QMC orbital generation

Our DFT orbital-generation calculations used the PBE
functional together with Trail-Needs Dirac-Fock pseu-
dopotentials [94, 95] to represent the nuclei and core elec-
trons, with s being the angular momentum of the local
component when the pseudopotentials are re-represented
in Kleinman-Bylander form [96]. The geometry was fixed
at the DFT-PBE geometry obtained using ultrasoft pseu-
dopotentials. The graphene supercells used for the QMC
calculations consisted of 3× 3, 4× 4, and 5× 5 primitive
cells, where the plane-wave cutoff energy for the smaller
two supercells was 3401 eV, and the plane-wave cutoff
energy for the larger supercell was 2231 eV. These cutoff
energies are such that the DFT energy per atom is con-

verged to within, respectively, 0.1 mHa and 1.59 mHa
(known as chemical accuracy) [97]. For bulk silicon, su-
percells of 2×2×2, 3×3×3, and 4×4×4 primitive cells
were used with a plane-wave cutoff energy of 2231 eV for
all system sizes, while the silicene supercells comprised
3×3 and 6×6 arrays of primitive cells. An artificial peri-
odicity of 30 bohr was used for the graphene and silicene
calculations. Non-spin-polarized DFT calculations were
used except where otherwise stated.

2. QMC calculations

a. Trial wave functions

The trial wave functions used for the QMC calculations
were of Slater-Jastrow (SJ) form, containing a product of
determinants of spin-up and spin-down orbitals; see Ap-
pendix A 1 b. Different sets of orbitals were generated for
each twist (i.e., offset ks to the grid of Bloch k vectors).
The plane-wave orbitals were re-represented in a blip (B-
spline) basis [98] both for computational efficiency in the
QMC calculations and to remove the unwanted period-
icity in the out-of-plane direction. The Jastrow factor,
a nodeless function of the interparticle distances con-
taining optimizable free parameters, consisted of poly-
nomial electron-electron, electron-nucleus, and electron-
electron-nucleus terms, and plane-wave electron-electron
terms [99]. Trial wave functions were optimized first by
minimizing the variance of the energy [100, 101] and then
by minimizing the energy expectation value [102]. For
a given supercell, this optimization was performed at a
single, randomly chosen twist, with the resulting Jastrow
factor being used at all twists.

For some test cases at individual twists, Slater-
Jastrow-backflow trial wave functions were used to in-
vestigate the fixed-node errors in our SJ-DMC results.
These wave functions were obtained by optimizing the
backflow and Jastrow parameters together using energy
minimization. The backflow functions contained polyno-
mial electron-electron and electron-nucleus terms [103].
Further tests using a long-range plane-wave electron-
electron backflow function were also carried out: see Sec.
II D.

Trail-Needs Dirac-Fock pseudopotentials [94, 95] were
used to represent the ionic cores, with d being the angular
momentum of the local component.

b. DMC calculations

To calculate the pure defect formation energy of each
of the three defects we have studied in graphene, pairs of
DMC calculations were carried out at each twist in all the
defective and pristine graphene supercells. Time steps of
τ = 0.04 and 0.16 Ha−1 were used in these calculations,
with the corresponding target walker populations being
varied in inverse proportion to the time step. In all cases
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the target population was at least 256 walkers. The en-
ergies were then extrapolated linearly to zero time step.
For the total energies of defective and pristine graphene
we would not expect these time steps to be small enough
to be in the linear bias regime (as confirmed by the re-
sults shown in Fig. 8); however, as shown in Fig. 9, the
nonlinear parts of the time-step bias largely cancel out
of the pure defect formation energy.
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FIG. 8. DMC total energies per supercell of (a) MV, (b) SiS,
and (c) SW defects in a 3 × 3 supercell of graphene against
DMC time step τ at a single, randomly chosen twist ks. The
dashed lines show quadratic fits to the energy as a function
of time step.
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FIG. 9. DMC pure formation energies of (a) MV, (b) SiS, and
(c) SW defects in a 3 × 3 supercell of graphene against DMC
time step τ at the twist ks used in Fig. 8. The dashed lines
show linear fits to the pure formation energy as a function of
time step.

To calculate the energies per atom of graphene and
bulk silicon we used smaller time steps of τ = 0.01 and
0.04 Ha−1, allowing time-step bias in the total energy
per atom to be largely removed by linear extrapolation.
Again, we varied the target walker population inversely
with time step.


