Three-fold way of entanglement dynamics in monitored quantum circuits

Kalsi, Tara and Romito, Alessandro and Schomerus, Henning (2022) Three-fold way of entanglement dynamics in monitored quantum circuits. Journal of Physics A: Mathematical and Theoretical, 55 (26): 264009. ISSN 1751-8113

Full text not available from this repository.


We investigate the measurement-induced entanglement transition in quantum circuits built upon Dyson's three circular ensembles (circular unitary, orthogonal, and symplectic ensembles; CUE, COE and CSE). We utilise the established model of a one-dimensional circuit evolving under alternating local random unitary gates and projective measurements performed with tunable rate, which for gates drawn from the CUE is known to display a transition from extensive to intensive entanglement scaling as the measurement rate is increased. By contrasting this case to the COE and CSE, we obtain insights into the interplay between the local entanglement generation by the gates and the entanglement reduction by the measurements. For this, we combine exact analytical random-matrix results for the entanglement generated by the individual gates in the different ensembles, and numerical results for the complete quantum circuit. These considerations include an efficient rephrasing of the statistical entangling power in terms of a characteristic entanglement matrix capturing the essence of Cartan's KAK decomposition, and a general result for the eigenvalue statistics of antisymmetric matrices associated with the CSE.

Item Type:
Journal Article
Journal or Publication Title:
Journal of Physics A: Mathematical and Theoretical
Uncontrolled Keywords:
?? entanglementrandom matrix theoryphase transitionsquantum circuitsphysics and astronomy(all)modelling and simulationmathematical physicsstatistical and nonlinear physicsstatistics and probability ??
ID Code:
Deposited By:
Deposited On:
30 May 2022 11:15
Last Modified:
16 May 2024 02:41