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Abstract

In recent years, artificial intelligence (AI) has been applied in many

fields of research. It is particularly well suited to astronomy, in which

very large datasets from sky surveys cover a wide range of observations.

The upcoming Legacy Survey of Space and Time (LSST) presents

unprecedented big data challenges, requiring state-of-the-art methods

to produce, process and analyse information. Observations of Type Ia

supernovae help constrain cosmological parameters such as the dark

energy equation of state, and AI will be instrumental in the next

generation of cosmological measurements due to limited spectroscopic

resources. AI also has the ability to improve our astrophysical under-

standing by perceiving patterns in data which may not be obvious to

humans.

In this thesis we investigate how advanced AI methods can be used

in classification tasks: to identify Type Ia supernovae for cosmol-

ogy from photometry using supervised learning; by determining a

low-dimensional representation of stellar spectra, and inferring astro-

physical concepts through unsupervised learning.

In preparation for photometric classification of transients from LSST we

run tests with different training samples. Using estimates of the depth

to which the 4-metre Multi-Object Spectroscopic Telescope (4MOST)

Time-Domain Extragalactic Survey (TiDES) can classify transients, we

simulate a magnitude-limited training sample reaching rAB ≈ 22.5 mag.

We run our simulations with the software snmachine, a photometric

classification pipeline using machine learning. The machine-learning

algorithms struggle to classify supernovae when the training sample

is magnitude-limited as its features are not representative of the test



set. In contrast, representative training samples perform very well,

particularly when redshift information is included. Classification

performance noticeably improves when we combine the magnitude-

limited training sample with a simulated realistic sample of faint,

high-redshift supernovae observed from larger spectroscopic facilities;

the algorithms’ range of average area under ROC curve (AUC) scores

over 10 runs increases from 0.547–0.628 to 0.946–0.969 and purity of

the classified sample reaches 95% in all runs for 2 of the 4 algorithms.

By creating new, artificial light curves using the augmentation software

avocado, we achieve a purity in our classified sample of 95% in all

10 runs performed for all machine-learning algorithms considered. We

also reach a highest average AUC score of 0.986 with the artificial

neural network algorithm. Having real faint supernovae to complement

our magnitude-limited sample is a crucial requirement in optimisation

of a 4MOST spectroscopic sample. However, our results are a proof

of concept that augmentation is also necessary to achieve the best

classification results.

During our investigation into an optimised training sample, we assumed

that every training object has the correct class label. Spectroscopy is a

reliable method to confirm object classification and is used to define our

training sample. However, it is not necessarily perfect and we therefore

consider the impact of potential misclassifications of training objects.

Taking the predicted error rates in spectroscopic classification from the

literature, we apply contamination to a TiDES training sample using

simulated LSST data. With the recurrent neural network from the

software SuperNNova, we determine appropriate hyperparameters

using a perfect, uncontaminated TiDES training sample and then

train a model on its contaminated counterpart to study its effects

on photometric classification. We find that a contaminated training

sample produces very little difference in classification performance, even

when increasing contamination to 5%. Contamination causes more

objects of both Type Ia and non-Ia to be classified as Ia, increasing

efficiency, but decreasing purity, with changes of less than 1% on



average. Similarly, we see a decrease of 0.1% in average accuracy, and

no clear difference in AUC score, only varying at the fourth significant

figure. These results are promising for photometric classification.

Contaminated training appears to have little impact and propagation

to cosmological measurements is expected to be minimal.

In a separate study, we apply deep learning to data in the European

Southern Observatory (ESO) archive using an autoencoder neural

network with the aim of improving similarity-based searches using the

network’s own interpretation of the data. We train the network to

reconstruct stellar spectra by passing them through an information

bottleneck, creating a low-dimensional representation of the data. We

find that this representation includes several informative dimensions

and, comparing to known astrophysical labels, see clear correlations

for two key nodes; the network learns concepts of radial velocity and

effective temperature, completely unsupervised. The interpretation

of the other informative nodes appears ambiguous, leaving room for

future investigation.

The results presented in this thesis emphasise the practical capabilities

of AI in an astronomical context: Classification of astrophysical objects

can be conducted through supervised learning using known labels, as

well as unsupervised learning in a physics-agnostic process.
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Chapter 1

Introduction

We are truly in the era of big data. Research institutes, companies and businesses

are relying more and more on data-driven approaches to achieve their objectives.

Thanks to advancements in computer hardware1 and the world wide web it is

easier than ever to access huge datasets and program scripts that can extract

useful information – often described as data mining. This is particularly relevant

to the astronomical community, as increasingly large sky surveys provide vast

multi-dimensional observations of celestial objects (Baron, 2019; Boffin et al.,

2019). Preparations for the Vera C. Rubin Observatory2 (Ivezić et al., 2019)

and its Legacy Survey of Space and Time (LSST) present perhaps the biggest

of these challenges. The survey will accumulate ∼20 TB of data per night and,

considering just one aspect of LSST science, an astounding 3–4 million supernova

discoveries are anticipated over its 10-year duration. This will include hundreds of

thousands of Type Ia supernovae. Compared to previous studies such as a Joint

Light-curve Analysis of 740 spectroscopically confirmed Type Ia supernovae in

Betoule et al. (2014) and a few thousand candidates from the recent Dark Energy

Survey (Smith et al., 2020), it is clear that conducting Type Ia cosmology with

LSST data will require state-of-the-art methods. Research in modern astrophysics

is more commonly relying on artificial intelligence (AI) to generate and process

1The progress in: memory http://www.jcmit.net/memoryprice.htm; FLOPS https://

ourworldindata.org/grapher/supercomputer-power-flops
2https://www.lsst.org/

1

http://www.jcmit.net/memoryprice.htm
https://ourworldindata.org/grapher/supercomputer-power-flops
https://ourworldindata.org/grapher/supercomputer-power-flops
https://www.lsst.org/


1.1 Big data and artificial intelligence

whole datasets in order to classify, make predictions, and potentially discover new

physics. This can immensely speed up the scientific process; ‘big data is often

available in real-time’ (Mickaelian, 2020). In the pursuit of new astrophysics,

development of AI methods should face the same scientific rigour, which itself

helps pioneer advancements in big data analyses (Fluke & Jacobs, 2020).

1.1 Big data and artificial intelligence

One of the main benefits of using AI over traditional methods it that the algorithms

can perceive patterns in data that humans cannot. Typical tasks in AI (with

some overlap) are classification, regression, detection, image recognition and trend

predictions. There are multiple approaches to achieve these. Broadly speaking,

AI comprises machine learning and deep learning. Before we discuss the wider

astrophysical context of this thesis, it is important to describe the background to

the data science methods that are ubiquitous throughout this research.

1.1.1 Machine learning

Traditional data analysis methods are complemented incredibly well when incor-

porated into machine learning. Machine learning requires the programmer or

user to specify what the machine is required to learn in order to process new

information (Blum & Langley, 1997). Typically, these are defined as ‘features’

of the data; a model is trained to recognise features associated with data in a

training set, and then apply what it has learnt about those features to new data

in a test set. How the features are extracted from the data can also have a large

effect on the outcome of the machine learning, which is seen when extracting

features of supernova light curves in Lochner et al. (2016). See Li et al. (2017) for

a comprehensive review on feature selection and class separation in many different

applications. The basic principle of training and then testing data is prevalent

across all forms of AI, but what distinguishes machine learning is the human input

to tell the machine what form the useful information should be in.

2



1.1 Big data and artificial intelligence

Common machine learning models include, but are not limited to: support

vector machines (Cortes & Vapnik, 1995), where a model tries to find the hyper-

plane in feature-space that best separates the data; decision trees, that can be

incorporated into ensemble methods that combine weaker models into a strong one

(Friedman, 2002); k-nearest neighbours (Altman, 1992), that works in a similar

way to certain clustering algorithms by considering the distance between dataset

objects defined in multi-dimensional feature-space and associating objects with

their most similar neighbours; artificial neural networks, that are inspired by brain

functionality where the strength of connections between neurons provides the

required flow of information (Rosenblatt, 1960).

These algorithm examples are typically used with supervised learning, in

which the training data is labelled (e.g. with a classification or category). The

opposite is unsupervised learning (usually found in deep learning, clustering and

dimensionality reduction tasks), in which training data is unlabelled and it is up

to the algorithm to determine how the data is digested for its given task. In these

cases, a model is developed from its own interpretation of training data and can

then be applied to new data. Other options are semi-supervised learning, where

only some of the data is labelled, and reinforcement learning, where the algorithm

is rewarded or penalised for making the correct or wrong decisions (Géron, 2017).

Algorithms can be adjusted for the specific context and optimised by altering

the hyperparameters that control how the information is handled. However, over-

reliance on traditional machine learning models can introduce systematic biases,

which is particularly problematic if there is uncertainty in the physics that is put

into the machine.

1.1.2 Deep learning

It is impossible to eliminate all bias when creating a learning machine, however,

arguably the best way to remove bias is to adopt a purely unsupervised deep

learning approach where human input is minimal (Hinton & Sejnowski, 1999).

Here we can apply the mantra of ‘letting the data speak for itself’. In such models,

the machine itself learns what features distinguish different types of data, and uses

what it learns to complete its given task. Neural networks bridge the gap between

3



1.1 Big data and artificial intelligence

machine learning and deep learning. ‘Deep’ refers to the multiple layers within a

network, although its main distinction from machine learning is representation

learning (Bengio et al., 2013; Rumelhart et al., 1986; Sedaghat et al., 2021); in

machine learning, the input is a set of features chosen by a human, whereas in

deep learning, the network is only fed the original data and it will determine itself

how to interpret the given information to construct its own representation.

Deep learning models consist of many various types of network, with architec-

tures suited to different tasks. In convolutional neural networks information is

processed via kernels with shared weights to take advantage of data that possesses

a hierarchical structure or continuum (e.g. stellar spectra, Sedaghat et al. 2021),

and is therefore generally suited for tasks such as image recognition (Simonyan

& Zisserman, 2015). In recurrent neural networks, each layer corresponds to a

point in a sequence, making these algorithms well-suited to temporal information

(e.g. light curves, Möller & de Boissière 2020) and analysing real-time data such

as audio (Sutskever et al., 2014). Autoencoders can combine different types of

network. They compress data into a low-dimensional representation, and then

attempts to reconstruct the original data in order to find a meaningful encoding

at the information bottleneck (Tishby et al., 1999).

A common method to train deep neural networks is by minimisation of a loss

function, where the amount of loss is calculated as the difference between the

desired output and actual output, e.g. for a reconstruction task, the loss function

is easily defined by calculating the difference between the original input and output.

Minimisation of the loss function is achieved through gradient descent. Back

propagation (Werbos, 1974) can be applied, calculating the weight-dependent

gradient through each layer. Weights are updated in such a way that the high-

dimensional loss function approaches a minimum, ideally the global minimum.

Optimising training time and loss minimisation depends on the learning rate,

which controls the change in weights at each iteration.

The similarities between how our minds work compared to machines is still

not well established (Licata, 2015) and, whilst the successes of AI are incredibly

impressive, AI is always prone to flaws as it is programmed by non-perfect humans1.

1For now, although even the idea of AI creating new AI has to start with a human.
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1.1.3 Human vs. artificial intelligence

Understanding of consciousness and how the mind works has become more im-

portant in recent decades with the rise of AI. In the nineteenth century, classical

physics described a shared reality (before the revolutionary scientific advancements

of relativity and quantum mechanics), yet the concept of the mind did not fit in

this framework (Heisenberg, 1958). The ability of focused and sophisticated cog-

nition appears to be a solely human trait, and a subjective experience (Tegmark,

2017). However, this breaks down if we consider machines to ‘think’ for themselves

when they are programmed to learn. AI is an incredibly broad term, but this is

particularly relevant when talking about neural network architectures, inspired by

the network of biological neurons in the brain, i.e., the functionality of the mind.

To improve understanding of consciousness, there is a developing modern math-

ematical framework that describes consciousness based on information, defined

as integrated information theory (Oizumi et al., 2014; Tononi, 2004) that can,

in principle, be programmed into a machine. Computations within both man

and machine seem to rely on how information is processed. Conversely, Roger

Penrose famously said that consciousness is not a computation (Penrose, 1989), a

rather controversial statement, particularly among computer scientists. Penrose’s

idea is that true conscious thought is non-deterministic due to quantum origins,

and cannot be imitated by a machine. With respect to the mind, AI seems to

most resemble unconscious thought, i.e., it learns things through computation

and applies what it has learnt, but without consciously knowing it has done so1.

We deal with both deterministic and non-deterministic algorithms (e.g. de-

terministic autoencoder vs. non-deterministic variational autoencoder), although

this definition relies on the assumption that true randomness can be programmed2.

Relaxing this assumption, even the deepest of artificial neural networks are deter-

ministic, as a model given pre-determined information to learn from (with initial

weights that can only ever be pseudo-random) will converge to the same state

1This topic probably requires its own thesis.
2“Any random number generated by a computer can be thought of as a member of a

pseudo-random sequence. But in good implementations it usually can draw randomness from
other things such as the clock, other external physical parameters, making it quite close to what
we think is truly random.” - Dr Nima Sedaghat.
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(given a sufficient epoch of training), creating an unambiguous input-to-output

function. We may not know the true nature of the human mind, but the pro-

grammable aspect of AI is fundamentally deterministic. This is not necessarily a

bad thing; if an AI was developed that was inherently non-deterministic, then

it would be impossible to say with absolute certainty how it learns anything.

AI can be an incredibly useful tool, but its programmer must have a thorough

understanding of how it reaches its conclusions.

It has been proven that machines have the potential to surpass human intelli-

gence, with a notable turning point in the development of AI being the computer

Deep Blue beating world chessmaster Garry Kasparov in 19971. From then, it

was clear that development of AI will lead to creation of machines that can see

further and further beyond human comprehension. However, there is the caveat

that, because they are originally programmed by humans, machines are prone

to human error and artificial intelligence is still limited by human intelligence.

Computers can be powerful, but one should be cautious; evidence of this is echoed

by anybody who has experience in coding: “Why is it doing what I tell it, rather

than what I want it to do?”.

Common pitfalls when working with AI may be (but are certainly not limited

to): optimising the wrong performance metrics (e.g. classification of a dataset with

large class imbalance may have a high level of accuracy, but a low purity), where

the correct choice of metrics should be dependent on the scientific context; not

understanding whether an algorithm is actually learning from intrinsic information

across the dataset, or is simply memorising specific instances in the training data

(the question of ‘if’ a machine is learning something, rather than ‘how’); not

accounting for unknowns in the test set (a type of object may be present in the

test set, but not in the training set); limited focus on homogenising the data

(data preparation is arguably the most crucial aspect of a data-mining pipeline,

e.g. consistent resolutions or boundary conditions), as the information supplied

should be easily readable by the machine; over/under-fitting data, which occurs

when a model’s generalisation of training data does not reflect what we observe

(often due to problems with the model, or with datasets that are either too small

1https://www.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
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or ‘noisy’). A lot of these instances are discussed throughout this thesis in their

scientific contexts.

With all these potential pitfalls, it is paramount to have an understanding of

what exactly an AI is learning and whether or not it is suited to its given task.

AI is becoming the go-to tool for solving big data problems in the 21st century

across all disciples in research and industry, but its users should absolutely have a

firm grasp of how they are using it.

1.2 Background cosmology

Cosmology was one of the defining fields of modern physics in the 20th century.

It developed from a philosophical question about the realm of our existence to a

study of the whole Universe as a physical system. Nowadays we have astronomical

observations that allow us to probe the biggest questions in physics. One cannot

go through life without considering one’s place in the Universe, and building on

the pioneering physics of the last century will edge us ever closer to the truth of

that place. The rest of this chapter introduces our current understanding of the

Universe and the physical background motivating the work in this thesis.

Modern cosmology had its genesis when distant galaxies were first observed to

all be moving away from us. The evidence of this is found in the characteristic

absorption and emission lines of galaxy spectra. As galaxies recede, the lines are

shifted towards redder wavelengths and the separation between them increased,

reducing the frequency and energy of light waves, and creating a Doppler shift.

We define this as redshift z, which is calculated as

z =
λobserved − λemitted

λemitted
, (1.1)

for observed and emitted wavelengths λ. The extent of this redshift provides a

way of measuring the velocity of the galaxy, where redshift z and recession speed

v are related by

1 + z =

√
1 + v/c

1− v/c
, (1.2)
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where c is the speed of light. This is often simplified to

z =
v

c
, (1.3)

when special relativity can be ignored (v � c). This technique was first used to

measure a galaxy’s velocity in 1912 when Vesto Slipher found that the Andromeda

galaxy (M31) is blueshifted and, hence, moving towards us (Slipher, 1912). It

was not until 1929 that Edwin Hubble applied this technique to more distant

galaxies that are not gravitationally bound to the Milky Way (Hubble, 1929). He

found that the recession speed of galaxies is proportional to their distance away d,

something we refer to now as the Hubble-Lemâıtre law :

v = H0d, (1.4)

where H0 is the Hubble constant1. Not only are galaxies moving away from

us, but also from each other. To emphasise this point, we often write the Hubble-

Lemâıtre law in a more general vector form:

v = H0r, (1.5)

which holds true between comparison of galaxies with positions r and velocities

v; for an observer anywhere in the Universe, the same phenomenon would be

seen as there is no special position or direction, i.e. there is no ‘centre’ to the

Universe. This is succinctly described by the cosmological principle, which states

that on large enough scales the Universe is homogenous and isotropic. When we

describe galaxies as ‘moving away’, it is not that they are travelling through space,

it is that the space between galaxies is expanding, and we can translate this to

observed expansion everywhere in the Universe. It is then not a vast leap in logic

to conclude that there must have been a moment from which expansion began –

this is what we refer to as the Big Bang. An attempt to understand the nature of

expansion is what constitutes cosmology. Studying distant light sources and their

motion offers a glimpse into the mechanisms of the entire Universe.

1H0 is not actually a constant, but the present-day value of the time-dependent Hubble
parameter: H0 = H(t = t0)

8
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1.2.1 The ΛCDM model

For a distant object with a certain flux f , its luminosity distance dL is the distance

that it appears to have based on its luminosity L. This assumes a reduction of

light intensity following the inverse square law (Liddle, 2003), where observed flux

is given by

f =
L

4πd2
L

. (1.6)

The luminosity distance is different to the actual physical distance due to

expansion and any deviations from a perfectly flat geometry. Expansion causes

photons to lose energy and rate of emission to drop, resulting in objects appearing

dimmer and seeming further away. Assuming a flat geometry across the Universe,

the physical distance is given by

d =
dL

(1 + z)
. (1.7)

As Type Ia supernovae have a known luminosity (discussed in § 1.2.3.1), a

luminosity distance can be calculated from their flux. In the late 1990s, two

teams, the High-z Supernova Search Team and the Supernova Cosmology Project,

independently found that at given redshifts, observed Type Ia supernovae appeared

fainter than expected, implying that the expansion rate of the Universe is actually

accelerating (Perlmutter et al., 1999; Riess et al., 1998). To explain the observed

relationship between supernova luminosity distances and redshift, cosmological

models required that, in a geometrically flat universe (where the total density

parameter is Ωtot = 1), the density parameter1 of matter is Ωm ≈ 0.3.

The discrepancy could not be explained without cosmological models includ-

ing an additional energy density term Knop et al. (2003). Assuming that this

contribution has a constant energy density, it is referred to as the cosmological

constant, represented by Λ. This lead to the ΛCDM model of the Universe, in

1The density parameter is defined as a fraction of the critical density (ρc ≡ 3H2
0/8πG), i.e.

the density of a perfectly flat Universe: Ωi ≡ ρi/ρc. Hence, in a geometrically flat universe,
Ωtot = 1, as opposed to spherical Ωtot > 1 or hyperbolic Ωtot < 1 geometries.
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1.2 Background cosmology

which the total energy density is dominated by two terms – the energy densities

of a cosmological constant and matter:

ρtot = ρΛ + ρm. (1.8)

The matter (m) term consists of primarily cold dark matter (CDM), as opposed

to baryonic matter that makes up observables such as stars, planets and nebulae.

Cold dark matter is named as such as it is weakly interacting; its existence can

only be inferred by gravitational effects and is not seen through direct interaction

with ordinary matter or light. Dark matter has been postulated to explain galactic

motion in clusters (Zwicky, 1937) and also the rotation curves of galaxies (Rubin

& Ford, 1970), to account for ‘missing’ mass following the established knowledge of

gravity. Observations also suggest that dark matter has played a crucial role in the

growth of large scale structure (galaxies and galaxy clusters): structure formation

relies on gravitational attraction in the potential wells caused by primordial density

perturbations, and observed structure can only be explained by the existence of

dark matter (Einasto, 2001).

The cosmological constant (Λ) energy density term corresponds to a constant,

non-zero vacuum density that is defined by

ρΛ ≡
Λc2

8πG
(1.9)

where G is the Newtonian gravitational constant.

The luminosity distance depends on cosmological parameters as follows:

dL(z) =
c(1 + z)

H0

∫ z

0

dz′

E(z′)
, (1.10)

where

E(z′) =
√

Ωm(1 + z′)3 + ΩΛ. (1.11)

Under the assumption of a flat geometry in the ΛCDM model, ΩΛ can be

replaced by 1− Ωm, allowing Ωm to be numerically evaluated.

Eq. 1.10 can be expanded in a Taylor series to give
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dL(z) =
c

H0

[
z +

1

2
(1− q0)z2 + ...

]
(1.12)

where q0 is the deceleration parameter. Luminosity distance measurements

of Type Ia supernovae imply that q0 < 0, providing evidence that expansion is

accelerating. q0 can be expressed in terms of the different forms of energy density:

q0 =
1

2

∑
i

(1 + 3wi)Ωi, (1.13)

where wi is the equation of state of energy component i. The equation of state

describes how the pressure pi of a material in our Universe depends on its energy

density, given by

wi ≡
pi
ρic2

. (1.14)

For the constant Λ contribution, its equation of state is wΛ = −1. The speed

of light c is a positive constant, and energy density ρΛ cannot be negative, hence it

is its negative pressure that appears to counteract gravity and drive an accelerated

expansion. In this model, matter is a pressureless fluid, meaning that wm = 0.

Hence, current estimates suggest that q0 ≈ −0.55 (Camarena & Marra, 2020).

The ΛCDM model relies on the assumption that Albert Einstein’s general

theory of relativity is correct, as it is derived using the Friedmann-Lemâıtre-

Robertson-Walker metric. Close to home we have strong observational evidence

that this is the case, e.g., the precession of Mercury’s perihelion, the bending of

starlight around the Sun (Dyson et al., 1920)1, and also on satellites: atomic clocks

need to take into account the effects of relativity for accurate global positioning

systems (GPS). In recent years we have also obtained evidence from much further

away, such as the first detection of gravitational waves (Abbott et al., 2016), and

the first image of a black hole (Event Horizon Telescope Collaboration et al., 2019),

confirming predictions from general relativity. However, extending relativity across

the whole Universe requires energy beyond that of ‘ordinary’ baryonic matter.

1This was first observed by Arthur Eddington during the solar eclipse of 1919, launching
Einstein’s theory into the public eye.
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If we calculate the theoretical age of the Universe assuming that there exists

no Λ contribution, and using the H0 value from Planck Collaboration et al. (2020),

we compute an age of t0 = 9.64± 0.06 Gyr. We know this cannot be correct as the

Universe cannot be younger than any of the physical objects it contains. Perhaps

most convincingly, globular clusters were some of the first structures to form in

the Milky Way; Hansen et al. (2002) used the white dwarf cooling sequence to

constrain the age of globular cluster M4 to be 12.7 ± 0.7 Gyr. Combined with

observational evidence of accelerating expansion, there is clearly a significant

gap in our understanding of the Universe and, using the well-established basis of

general relativity, one must conclude that there is an energy contribution other

than matter influencing expansion. This form of energy does not appear to emit

any detectable radiation, nor can it be inferred through gravitational effects. It is

not currently known whether this energy density is exactly constant in time. To

describe this energy generally (as not necessarily constant), it is often defined as

dark energy (Huterer & Turner, 1999) due to its elusive nature.

1.2.2 Dark Energy

Dark energy appeared to have overtaken matter as the most-dominant contribution

relatively recently (z . 0.5; Huterer & Shafer 2017), causing late-time cosmic

acceleration. Depending on the assumed model, dark energy’s effects on cosmic

dynamics is different at high redshifts, although has been a significant contribution

(≥5% of the total energy density) out to z ≈ 2.5 (Linder, 2021). One of the main

issues surrounding dark energy as a cosmological constant is that its appearance as

a vacuum energy density (Eq. 1.9), with ρΛ ' 10−47GeV4, is wildly incompatible

with the standard model of particle physics, that predicts a density of ρvac '
1074GeV4. To solve this massive discrepancy from a cosmological perspective,

we can consider the cosmological dynamics that are dictated by the Einstein

equations:

Gµν =
8πG

c4
Tµν , (1.15)
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where either gravity needs modifying in a departure from general relativity

(modifying the left-hand side – the Einstein tensor Gµν), or we need to consider

alternative dark energy models (specific forms of the energy-momentum tensor

Tµν with a negative pressure on the right-hand side, Amendola & Tsujikawa 2010),

such as the so-called quintessence (dynamical dark energy; Caldwell et al. 1998;

Ratra & Peebles 1988).

If we relax the assumption that dark energy has a constant density contribution

across cosmic time, its equation of state can be expressed as

wDE(z) = w0 + w1
z

(1 + z)p
, (1.16)

following the suggested parametrisation in Linder (2003b) where p = 1 and

generalised in Jassal et al. (2005) to also consider p = 2. This variable form of

the dark energy equation of state (Eq. 1.16, with p = 1) is also often expressed in

terms of the scale factor a, a relative measure of the size of the Universe:

w(a) = w0 + wa(1− a). (1.17)

a is related to z following a0/a = 1 + z and at the present a0 = 1. This means

that, e.g., at z = 2 the Universe was 1/3 of its current size. Observing an object

at redshift z is seeing the Universe when it was 1/(1 + z) of its present size and

in the time the object’s light has taken to reach us, it has been redshifted by a

factor of 1 + z (Liddle, 2003).

The Friedmann continuity equation is a differential equation for energy density

as followed:

ρ̇+ 3H
(
ρ+

p

c2

)
= 0. (1.18)

We hence find that the energy density of a contribution i depends on its

equation of state wi (Eq. 1.14) and evolves with expansion following

ρi ∝ a−3(1+wi). (1.19)

For matter, wm = 0 and so its energy density reduces with expansion following
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ρm ∝ a−3. The nature of the dark energy equation of state will tell us how it

changes with respect to expansion. For wi = −1, ρi is described by a cosmological

constant (in which case we would use i = Λ).

Solving the continuity equation (Eq. 1.18) with the dark energy equation of

state in the form given in Eq. 1.16 and p = 1 gives the more generalised

E(z′) =

√
Ωm(1 + z′)3 + ΩDE(1 + z′)3(1+w0+w1)exp

(
−3w1

z′

1 + z′

)
(1.20)

which can go into calculation of the luminosity distance (Eq. 1.10) and can

therefore be used to test the validity of a variable dark energy.

1.2.2.1 Cosmic inflation

It is believed that in the very early Universe cosmic inflation occurred, an epoch

of extreme accelerated expansion (Guth, 1981). This was likely driven by a form

of dark energy (Liddle & Lyth, 2000), offering further evidence to the presence of

an unknown energy contribution present in the Universe.

The first evidence is seen in the cosmic microwave background radiation (CMB)

that permeates the Universe, as regions thought to be causally disconnected are

in thermal equilibrium (Fixsen et al., 1996). Inflation is a mechanism in which

these regions could grow beyond the limit of causal contact. This does not violate

relativity, as the speed of light is a limit to transport of matter and energy, but

does not apply to space itself and expansion of space is not bound by this limit.

Inflation also offers an explanation of the observed flat geometry. Flat geometry

appears to be an unstable solution, in which any slight deviation from perfectly flat

geometry will increase rapidly in time. However, in a period of cosmic inflation,

any deviation from flatness will be inflated away, and the geometry will resemble

flatness on the scale of the observable Universe.
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Figure 1.1: A basic summary of supernova classification, based on spectral
signatures in the optical regime at maximum light and light curves for Type II.
Credit: Carroll & Ostlie (2007).

1.2.3 Supernovae types

Supernovae are an incredibly diverse group of celestial objects, varying across

progenitor models, explosion mechanics and chemical signatures (Filippenko, 1997).

Such events have the ability to shine as bright as their host galaxies. They can be

generally be split into two distinct groups: Type I and Type II.

Type I supernovae do not exhibit any hydrogen lines in their spectra, indicating

that the stars have been stripped of their hydrogen envelopes, whereas spectra of

Type II supernovae have strong hydrogen lines. These can be split further into

subtypes. The presence of silicon is associated with Type Ia supernovae. Type I

supernovae with no silicon are either Ib if they have helium or Ic otherwise. Type

II supernovae are split based on their light curve profiles: Type II-P (plateau)

or Type II-L (linear). Doggett & Branch (1985) is a comparative study of light
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curves of different supernovae, presenting typical examples of the above types.

These supernova types are summarised in a decision tree in Fig. 1.1 taken from

Carroll & Ostlie (2007).

Collectively, Type Ib, Type Ic and Type II supernovae are known as core-

collapse supernovae. At the end of a massive (& 8M�) star’s life, the combination

of photodisintegration of iron and electron capture quickly removes the stellar

core’s support, resulting in a rapid collapse. The excessive core density causes the

strong nuclear force to enter its repulsive regime, sending a rebounding shockwave

outwards and ejecting the star’s envelope. This process is well-simulated, although

occurrence and nature of a core-collapse explosion seems to be sensitive to stellar

masses and metallicities (Heger et al., 2003). This does not cover all potential core-

collapse supernovae, as there are a multitude of peculiar and separate subclasses,

e.g. Type IIn which possesses narrow emission lines (Filippenko, 1997).

Type IIn supernovae originate from explosion ejecta interacting with dense

circumstellar material. Aside from broader hydrogen lines characteristic of Type

II supernovae, the presence of narrow emission lines indicates emission from this

circumstellar material, as the radiative shock of the ejecta passes through the

surrounding gas (Salamanca et al., 2002). These include lines with a P-Cygni

profile, where there is absorption and emission of the same spectral line in the gas

expanding away from the star (e.g. stellar winds, Scuderi et al. 1994).

Type Ia supernovae are a result of thermonuclear explosion and constitute

a relatively homogenous subclass, making them the most useful supernovae for

studying cosmic expansion (§ 1.2.3.1). However, there exists some ambiguities in

classification due to variations within this subclass. Cosmologists use ‘normal’ Type

Ia supernovae. Other Type Ia supernovae exist such as the bright 91T-like and

faint 91bg-like and super-Chandrasekhar transients (Taubenberger, 2017). While

relatively uncommon, their presence is an obstacle due to potential contamination

of a cosmological sample of Type Ia supernovae.

1.2.3.1 Type Ia supernovae

Type Ia supernovae play a key role in cosmology as they are standardisable.

Phillips (1993); Hamuy et al. (1996) demonstrate the positive correlation between
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Figure 1.2: Top: the Hubble diagram constructed with the DES-SN3YR sample
from Abbott et al. (2019). The grey line is the best fit model and the green are
blue lines represent theoretical models considering no Λ component with Ωm = 0.3
and 1.0 respectively. Bottom: residuals to the best fit model.

their luminosity and light curve width. After applying corrections for light curve

shape and colour (Tripp, 1998), and also host-galaxy properties (Murakami et al.,

2021), they exhibit very similar peak luminosity. Combining this with redshift

measurements, Type Ia supernovae therefore provide an excellent standardisable

candle with which to measure the Universe’s expansion. Their standardisable

nature originates as stars exploding at the same mass. The Chandrasekhar

mass (1.44M�) was calculated as the theoretical limit at which a white dwarf

can be supported by electron degeneracy pressure (Chandrasekhar, 1931). If

a carbon-oxygen white dwarf accretes matter from a binary companion, as it

approaches this mass limit it will reach the ignition temperature for carbon fusion

and undergo a runaway thermonuclear explosion (Filippenko, 1997). Progenitors

of such explosions are believed to be very similar, leading to supernovae of a

characteristic brightness (Liddle, 2003).

Similar to Hubble’s original galaxy recession diagram (Hubble, 1929), we can

construct Hubble diagrams with any standard candle. Hubble diagrams with

Type Ia supernovae are constructed as a function of redshift, where a distance

modulus µ = 5log10(dL/10 pc) is used as a proxy for distance, characterised by the
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apparent magnitude mB (at peak, in rest-frame B band) of Type Ia supernovae

(Betoule et al., 2014):

µ = mB − (MB − α×X1 + β × C) (1.21)

where α, β and MB
1 are nuisance parameters, and mB, X1 and C are light-

curve parameters fit using a spectral sequencing model, typically SALT2 (Guy

et al., 2007). Fig. 1.2 shows a Hubble diagram constructed with Type Ia supernovae

from DES-SN3YR sample, including the binned and unbinned data.

At different redshifts we observe different parts of a source’s spectrum. Ap-

plying a K-correction converts an observed magnitude into one that would be

observed in the rest frame in another filter, in this case the B band (Hsiao et al.,

2007; Oke & Sandage, 1968). For a source observed in filter R with apparent

magnitude mR, to transform into an absolute magnitude MQ in another filter Q,

the K-correction term KQR is defined by

mR = MQ + µ+KQR (1.22)

and is calculated by the following:

KQR = −2.5log10

 1

1 + z

∫
dλoλoLλ

(
λo

1+z

)
R(λo)

∫
dλeλeg

Q
λ (λe)Q(λe)∫

dλoλogRλ (λo)R(λo)

∫
dλeλeLλ(λe)Q(λe)

 , (1.23)

where λo and λe are the observed and emitted wavelengths respectively, Lλ is

the source luminosity, gλ is the spectral flux density for the zero-magnitude source

in the given filter, and R(λ) and Q(λ) are the mean contributions to the detector

signal in their respective filters, i.e. the probability of a photon with wavelength

λ being counted (Hogg et al., 2002).

From these diagrams we can parametrise the luminosity distance following a

cosmological model, and constrain values in different cosmological models, e.g.,

1MB is the absolute magnitude, i.e. the apparent magnitude at a distance of 10 pc, at peak.
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Ωm in a ΛCDM model, Ωm and dark energy equation of state w in a flat, non-

cosmological constant (wCDM) model, or Ωm, w0 and wa in a flat, variable dark

energy (w0waCDM) model.

1.2.4 Best current measurements

Type Ia supernovae offer a parametrisation of the Universe’s expansion up to

redshifts of approximately z ∼ 1 (Betoule et al., 2014). It becomes difficult to

observe supernovae beyond this and there are few samples that reach further,

although recent efforts have been able to observe Type Ia supernovae at redshifts

as high as z ∼ 2.3 using photometry from the Hubble Space Telescope (Hayden

et al., 2021; Riess et al., 2018; Williams et al., 2020). For a more complete

analysis, cosmological measurements are often combined from multiple independent

methods.

1.2.4.1 The cosmic microwave background

The cosmic microwave background radiation is an almost perfect black body spec-

trum, with a precise estimation in temperature of T0 = 2.72548± 0.00057 K from

the literature (Fixsen, 2009). It permeates the whole Universe and we can observe

its surface of last scattering from when CMB photons decoupled from matter in

the Early Universe1, therefore providing a very high-redshift anchor (z ∼ 1100) to

cosmological constraints from supernovae. Jones & Wyse (1985) determined that,

modelling a ‘visibility function’ that measures the probability of photon scattering

within redshift dz, the last scattering surface is well-approximated by a Gaussian

with mean z = 1067 and width ∆z ∼ 80.

Cosmology with the CMB comes from observation of anisotropies in its tem-

perature, due to primordial density fluctuations. The origins of the temperature

anisotropies found in the CMB are discussed in Hogan et al. (1982); White et al.

(1994). To determine cosmological parameters from the CMB, the temperature

fluctuations of each pair of points in the sky separated by angle θ are combined

1The existence of the CMB is further evidence for Big Bang cosmology as decoupling of
light from matter occurred due to the Universe’s cooling and decreasing density with expansion.
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and described by the angular power spectrum, a spherical harmonic expansion

of CMB temperatures. These fluctuations has previously been observed by the

COBE (Boggess et al., 1992) and WMAP (Bennett et al., 2013) missions.

de Bernardis et al. (2000) provides an explanation of determining cosmological

parameters from the angular power spectrum: The angular scale θ between

fluctuations depends on multipoles l, where θ = π/l. The position of peaks in the

power spectrum therefore depends on multipole values. The Planck mission offers

the latest and highest resolution measurements of CMB anisotropies. Constraints

on cosmological parameters from seven acoustic peaks in the CMB are discussed

in Planck Collaboration et al. (2020). The position of the first peak depends on

the geometry of the Universe Ω0, and observations suggest that the Universe is flat

(where l ∼ 200); combining with baryon acoustic oscillation (BAO; § 1.2.4.2) data,

Planck Collaboration et al. (2020) constrains an energy density term for curvature

to be ΩK = 0.0007 ± 0.0019 (ΩK = 0 implies flat geometry). We can include

energy density terms for both radiation Ωr(1 + z)4 and curvature ΩK(1 + z)2

into equation 1.20, although Planck data suggests both of these are negligible.

Using the ΛCDM model of the Universe, results from Planck imply the density

of matter to be Ωm = 0.3158± 0.0073. Constraints are strengthened further to

Ωm = 0.3111± 0.0056 when combining with BAO measurements.

1.2.4.2 Baryon acoustic oscillations

Another independent method for constraining cosmological parameters comes

from baryon acoustic oscillations, that can also be combined with both CMB

and supernova data. The primordial density perturbations in the early Universe

that are responsible for temperature fluctuations also give rise to BAO. Before

the decoupling of light from matter, density perturbations in the dense plasma

of electrons, baryons, dark matter and photons would produce sound waves,

resulting in acoustic signatures that are seen much later in large-scale structure.

Eisenstein et al. (2005) presents the first detections of the BAO signature. Using

a spectroscopic sample of 46,748 galaxies between z = 0.16–0.47 from the Sloan

Digital Sky Survey (SDSS), they find a characteristic peak in the redshift-space
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correlation function ξ1 at a comoving separation of approximately 150 Mpc (the

BAO length scale, lBAO) that matches predictions from theory.

The angles θBAO between acoustic peaks provide a measure of the Universe’s

geometry and can be used to test cosmological models. The BAO angle relates the

comoving length scale and the angular diameter distance dA to the peak (θBAO =

lBAO/dA). Using spectroscopic redshift information, the given cosmological model

can be numerically solved to determine parameters such as Ωm and w. BAO

therefore provides robust constraints on the accelerated expansion of the Universe

as an independent probe to investigate the presence of dark energy (Blake &

Glazebrook, 2003; Linder, 2003a).

Percival et al. (2010) provides a more up-to-date cosmological BAO study,

comprising ∼900,000 SDSS galaxies, and Alam et al. (2017) provides a much more

recent analysis, using a total sample of ∼1.2 million SDSS galaxies. Future BAO

observations will come from the Euclid mission (Laureijs et al., 2011), which will

map out large-scale structure covering the last 10 billion years.

1.2.4.3 Cosmology analyses with Type Ia supernovae

The most recent cosmological analyses using Type Ia supernovae are those from

the Dark Energy Survey (3-year sample; DES-SN3YR, Abbott et al. 2019) and

Pantheon (Scolnic et al., 2018b) samples.

Similar to the Hubble diagram (Fig. 1.2), cosmology parameters can be calcu-

lated assuming a model and solving numerically. Constraints on Ωm and ΩΛ, and

Ωm and w are shown in Figs. 1.3 and 1.4 respectively. Using a flat ΛCDM model,

DES-SN3YR obtains Ωm = 0.331±0.038 (and therefore ΩΛ = 0.669±0.038). Com-

bining with Planck CMB data, relaxing the cosmological constant assumption and

assuming a flat geometry (the wCDM model), they find Ωm = 0.321± 0.018 with

w = −0.978±0.059. Finally, combining with CMB data and BAO data from three

different studies, assuming a flat geometry with a variable dark energy equation

of state (w0waCDM model) they find Ωm = 0.316± 0.011, w0 = −0.885± 0.114

and wa = −0.387± 0.430.

1ξ is a measure of the probability that a galaxy will be found at a given comoving distance
from another.
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Figure 1.3: Inclusion of CMB data with the DES-SN3YR sample puts tight
constraints on the densities of matter and Λ. This assumes a ΛCDM model and
includes 68% and 95% confidence levels. Credit: Abbott et al. (2019).
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Figure 1.4: Constraints on the density of matter and dark energy equation of state
using CMB data with the DES-SN3YR sample. This is relaxing the assumption of
a cosmological constant (a wCDM model) and includes 68% and 95% confidence
levels. Credit: Abbott et al. (2019).
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Similarly, assuming a flat wCDM the Pantheon sample combined with Planck

CMB data yields Ωm = 0.307± 0.012 and w = −1.026± 0.041. Combining the

Pantheon sample and CMB measurements with BAO data, and assuming a flat

w0waCDM model, they find w0 = −1.007± 0.089 and wa = −0.222± 0.407.

The consistency between different studies appears to indicate that, assuming

a geometrically flat Universe, matter makes up approximately 30% of the total

energy density, with dark energy making up the remaining 70%. Furthermore, the

dark energy density is close to constant with expansion.
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Chapter 2

Next Generation Cosmology

2.1 Upcoming ground-based astronomical

facilities

In this chapter we discuss the innovative upcoming facilities that will be useful

for Type Ia supernova cosmology and then we will introduce the surveys that are

relevant to our research.

2.1.1 Vera C. Rubin Observatory

The Vera C. Rubin Observatory (Fig. 2.1) is currently being built at the summit of

Cerro Pachón in the Northern Chilean Andes, one of the best sites in the world for

astronomical observations. The local atmosphere is very dry, providing clear skies,

and weather data from Cerro Tololo Inter-American Observatory (10 km from the

Rubin site) suggests that observations can be conducted on >80% of nights, with a

mean astronomical seeing of 0.67 arcsec in the g band (LSST Science Collaboration

et al., 2009). It will be built among other facilities including Gemini-South and

the Southern Astrophysical Research telescopes, where the exceptional quality of

observational images has been proven. The Rubin Observatory’s main function

will be carrying out the Legacy Survey of Space and Time (LSST, §2.2.1), with

operations currently expected to start around the end of 2023.
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Figure 2.1: The Vera C. Rubin Observatory at the summit of Cerro Pachón, taken
in September 2021. Credit: Bruno C. Quint, Rubin Obs/NSF/AURA lsst.org.
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The Rubin Observatory will revolutionise astronomical sky surveys due to

its large primary mirror (diameter of 8.4 m) and wide field of view (9.6 deg2),

but also in particular its immense data stream, gathering ∼20 TB of data per

night and covering the visible night sky every 3–4 nights. With this however,

comes the enormous task of finding the information that is useful for astronomers.

Processing such a huge amount of data puts Rubin’s output firmly in the scope of

big data. Humans performing traditional data analysis methods will be insufficient

in keeping up with the volume of data streaming from Rubin. Alert brokers are

softwares being developed that receive information from the Rubin Observatory’s

difference imaging for identifying new astronomical sources, including transients.

Once an alert of a new discovery is created, the broker distributes the data to

the scientific community. During operations this will be the first step in the data

pipeline to translate raw data into science1.

The raw data will be images taken using the Rubin Observatory LSST Camera.

This digital camera will be the largest ever constructed (1.65 m × 3 m), comprising

189 16-megapixel CCDs (charge-coupled devices – silicon-based detectors)2. Pho-

tometry will be determined by the camera’s filters u, g, r, i, z and y, spanning the

ultraviolet (330 nm) to near-infrared (1080 nm). Each filter has a wavelength range

of approximately 100 nm. Multiple filters are used to make comparisons between

flux measurements to help understand light curve characteristics. Exposure times

for each image will be either 2 × 15 s or 1 × 30 s, which both have advantages

and disadvantages for different science goals. Final choice will be decided in the

commissioning phase of LSST (Lochner et al., 2021).

The Rubin Observatory will be a cornerstone of next-generation astronomy and

will be such an advancement that data-mining techniques and artificial intelligence

will be instrumental in taking our understanding of astrophysics and cosmology

to an unprecedented level.
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Figure 2.2: The hexagonal array of 4MOST’s 2436 fibres. Credit: Joe Liske,
4most.eu.
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2.1.2 4MOST

Whilst Rubin will provide the photometry for astronomical observations in the

coming years, a deeper understanding can be established with spectroscopy. The

4-metre Multi-object Spectroscopic Telescope1 (4MOST) is an instrument under

construction by the European Southern Observatory2 (ESO). It will be installed

on the Visible and Infrared Survey Telescope for Astronomy3 (VISTA) in Chile,

at a similar latitude to the Rubin Observatory and is expected to have its first

light at a similar time.

For at least 5 years, VISTA will be dedicated purely to 4MOST, in which

observing time will be split between consortium (70%) and community (30%)

surveys. There are 10 consortium surveys, including 5 galactic and 5 extragalactic

surveys. Survey 10, the Time-Domain Extragalactic Survey (TiDES §2.2.2), will

be conducting a follow-up campaign for transient events discovered by the Rubin

Observatory’s LSST survey.

The 4MOST facility will be able to operate multiple astronomical surveys simul-

taneously thanks to its unique multi-plex fibre system. The 4MOST instrument

comprises 2436 individual fibres, that split into two low-resolution spectrographs

and one high-resolution spectrograph. This multitude of fibres means that in a

given 4MOST pointing (a hexagonal 4.2 deg2 field of view), each fibre can be

directed towards their own individual targets. Fibre positioning is controlled by

the AESOP fibre positioner (Brzeski et al. 2018, Fig. 2.2) and takes less than

2 minutes. The accuracy of fibre positioning is expected to be better than 0.2 arc-

seconds (de Jong et al., 2019). 4MOST’s wavelength coverage is 370–950 nm and

it has a spectral resolving power of 4,000–21,000.

Spectroscopy exposures typically take much longer than those for photometry

as the incoming light is dispersed; it takes time for a spectrum to reach a high-

enough signal-to-noise ratio (SNR) to be considered useful, depending on the

scientific objective. Current 4MOST simulations combine observing fields of the

1https://www.lsst.org/scientists/alert-brokers
2https://www.lsst.org/about/camera
1https://www.4most.eu/cms/
2https://www.eso.org/public/
3https://www.eso.org/sci/facilities/paranal/telescopes/vista.html
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same sky coordinates and instrument position angle into observing blocks (OBs,

Tempel et al. 2020a) and the duration of the OBs are limited to a total exposure

time of 1 h to follow ESO’s scheduling constraints. If objects are too faint, then

the 1 h exposure will not be long enough to reach a desired SNR. The 4MOST

exposure time limit therefore creates a magnitude limit for observations, depending

on a SNR criterion.

2.1.3 Extremely Large Telescope

ESO has begun construction of the Extremely Large Telescope (ELT) which

will be the world’s largest optical and near infrared telescope, with a 39 m

diameter primary mirror1. To complement its immense size, it will operate with

an adaptive optics system in order to ameliorate the effects of astronomical

seeing on observations and produce sharp images with very high resolution over a

1 arcminute2 field of view (Ciliegi et al., 2021). The ELT will join its many other

ESO cohorts in Chile. It is being built on Cerro Armazones, not far from Cerro

Paranal, the site of the Very Large Telescope2 (VLT).

The ELT will be used to implement a wide range of scientific endeavours,

using both imaging and spectroscopy. ELT science will extend from local solar

system observations, to exoplanets and stellar and galactic physics within the

Milky Way, and beyond to extragalactic sources and into the early Universe.

Observations of the most distant sources will include Type Ia supernovae for

probing cosmology and some of our most fundamental understanding of physics.

The ELT will provide extension of the Type Ia supernova Hubble diagram to

currently unexplored redshifts, beyond z = 2 and up to z ≈ 4 (Hook, 2013).

2.2 Upcoming surveys

With these new facilities and instruments, the organisation of putting the science

objectives into practice requires formulation of telescope surveys. For dark energy

1https://elt.eso.org/telescope/
2https://www.eso.org/public/unitedkingdom/teles-instr/paranal-observatory/

vlt/
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science, we discuss some of the frontrunners in next generation surveys.

2.2.1 LSST

The Rubin Observatory’s main mission during its first 10 years of operations

will be the Legacy Survey of Space and Time (LSST1). As mentioned in §2.1.1,

this survey will be revolutionary for astronomy due to its immense intake of

data. To accommodate the large scope of science in LSST, survey strategy and

cadence optimisation is a highly non-trivial task and details are still being finalised

(LSST Science Collaboration et al., 2017). LSST’s primary focus will be its main,

wide-fast-deep (WFD) survey, which will cover ∼18,000 deg2 every 3–4 nights. In

the ugrizy bands, the 5σ single-visit depths are 23.9, 25.0, 24.7, 24.0, 23.3, 22.1

(AB magnitudes) respectively (Ivezić et al., 2019). For supernova discovery, the

WFD survey will reach up to z ∼ 0.8. LSST’s deep drilling fields (DDFs) are at

least four fields covering tens of square degrees that will be visited with a much

higher cadence to reach deeper coadded magnitudes (∼10× fainter, LSST Science

Collaboration et al. 2009). These will yield well-sampled supernovae peaking

around z ∼ 0.7 and reaching beyond z = 1 (Ivezić et al., 2019).

The Dark Energy Science Collaboration2 (DESC) is the division of LSST that

is focused on exploring the nature of dark energy. DESC itself is also split into

its own working groups: Weak Lensing; Large Scale Structure; Time Domain;

Clusters; Modelling and Combined Probes; Photometric Redshifts; Observing

Strategy; External Synergies; Dark Matter. Our work on photometric classification

of supernovae is conducted as part of the Time Domain working group.

2.2.2 TiDES

The Time-Domain Extragalactic Survey (TiDES) is one of ten 4MOST consortium

surveys (de Jong et al., 2019; Swann et al., 2019). It will be dedicated to spectro-

scopic follow-up of transients for cosmology. TiDES is split into three sub-surveys:

(i) TiDES-SN, which will focus on spectroscopic classification of live transients;

1The acronym LSST was formerly the Large Synoptic Survey Telescope, encompassing both
the observatory and survey.

2https://lsstdesc.org/
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(ii) TiDES-Hosts, which will provide spectroscopic redshifts of supernova host

galaxies; (iii) TiDES-RM, which will produce reverberation mapping of active

galactic nuclei (AGN) from DDF observations.

Over the 5 year survey, TiDES will accumulate >30,000 live transient spectra1.

These will reach magnitudes as faint as rAB ≈ 22.5 mag, given by TiDES’ SNR

criterion, discussed in detail in § 4.4. Reverberation mapping of at least 700–1,000

AGN from repeat observations in deep drilling fields will provide a complementary

cosmological analysis on the Hubble diagram, extending to redshifts as high as

z ≈ 2.5. Host-galaxy spectroscopic redshifts are used to plot Type Ia supernovae

on the Hubble diagram. The final cosmological sample will not only be Type Ia

supernovae from TiDES-SN, but will also include those identified from photometric

classification by using the TiDES-SN sample as a spectroscopic training sample.

This means that even those LSST transients without live spectra, but with host-

galaxy redshifts, can be included in a cosmological analysis after being identified

as Type Ia by photometric classification. The study Mitra & Linder (2021) finds

that robust supernova cosmology requires spectroscopic redshifts, particularly

at redshifts z . 0.2–0.3 where photometric redshifts are not reliable. Graham

et al. (2020) also finds that 10% of galaxy photometric redshifts from LSST

photometry will be outliers at z = 0.5, reaching even higher percentages at lower

redshifts (where outliers are those with redshift error greater than 3 times the

robust standard deviation, or 0.06). This is true of host galaxies of any type

of object, both Ia and non-Ia (including potential contaminants) and will be

relevant later in § 3.5 where we discuss results of photometric classification using

different redshift estimates. TiDES will ensure a large sample (70,000) of reliable

spectroscopic host-galaxy redshifts, enabling the largest cosmological sample of

Type Ia supernovae to date, by at least an order of magnitude.

To achieve its scientific goals, TiDES will be using its allocated 250,000 fibre-

hours on 4MOST. TiDES is different from other 4MOST consortium surveys as it

will not be driving the pointings of 4MOST, but will instead be exploiting the fact

that wherever 4MOST points in the sky there will be recently discovered LSST

transients to follow-up. TiDES will be ‘piggy-backing’ on the other consortium

1The sample numbers have been provided through private communication in TiDES.
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surveys as the target density of transients is not high enough for efficient obser-

vations on its own; TiDES utilises approximately 2% of 4MOST fibres (30–35

low-resolution spectrograph fibres), so it would not be efficient to use 4MOST

exclusively for LSST transients. There will be a rapid turnaround time of 3–4

days in which to target the allocated fibres onto objects identified from LSST

transient alert brokers.
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Chapter 3

Photometric Classification of

Supernovae

With the many Type Ia supernova discoveries from LSST, we will be able to test

cosmological models and constrain parameters such as the dark energy equation

of state to a much higher degree of precision than from any previous dataset.

To use supernovae as cosmological probes, we first need to be sure that they

are in fact Type Ia. Supernova type is traditionally determined by the chemical

signatures that appear in their spectra, for example the presence of silicon in Type

Ia supernovae (Filippenko, 1997; Walker et al., 2010), however, getting spectra of

all LSST transients is not realistic due to expensive spectroscopic resources. Not

wanting to waste the potential supernova science of all these objects, we therefore

need to consider other methods of classification for the transient events that are

not spectroscopically followed-up. Hence, photometric classification of supernovae

using machine learning provides a solution.

Photometric classification with machine learning is a process that takes super-

nova light curve observations, generally with multiple filters, and determines their

types based on information learnt from a given training sample of supernova light

curves with confirmed type. In preparation for LSST and other future surveys,

there has recently been a great focus into what makes a good training sample for

photometric classification of supernovae. As with many typical machine learning
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problems, a training sample that is representative of the whole dataset that is to

be classified – the ‘test set’ or ‘target sample’ – seems a necessity (Lochner et al.

2016; Charnock & Moss 2017; Ishida et al. 2019; Muthukrishna et al. 2019a; Möller

& de Boissière 2020). A representative training sample is one whose feature-space

distributions are similar to those of the test set. Machine-learning models trained

on samples that are representative of the target distribution are expected to

perform well in classification tasks, so long as they have sufficient coverage of

the test data (Beck et al., 2017). There are broad variations in light curves and

supernovae have a wide range of magnitudes and redshifts. A representative

training sample should include the features associated with these variations.

None the less, works into data augmentation methods show that focusing on

accumulating a spectroscopic sample of supernovae that is fully representative

may not be necessary. As long as one starts with a sample that has reasonable

coverage of the full test set, augmentation can fill the gaps to create a much more

representative training sample. Using Gaussian processes to model supernova

light curves, it is possible to create new simulated light curves that cover more

of the test set feature space and add them into the training sample, making it

artificially more representative. This approach is used in the works by Revsbech

et al. (2018) and Boone (2019), yielding very promising classification results.

The latter of these was the winning solution to the Photometric Light Curve

Astronomical Time-Series Classification Challenge1 (PLAsTiCC; results of the

challenge are discussed in Hložek et al. 2020), which required classifying simulated

LSST data using a provided non-representative training sample. The training

sample mimicked a real set of light curves (of many types of object, not just

supernovae) with spectroscopically-confirmed type and a preference to brighter,

low-redshift objects. With augmentation to create artificial light curves and help

cover the whole feature space, less time is required from spectroscopic resources

to build a faint training sample.

We also consider the role of redshift in the photometric classification of super-

novae. For Type Ia cosmology we require spectroscopic redshifts of supernovae, as

cosmology with photometric redshifts will be skewed and is prone to contamination

(Linder & Mitra, 2019; Mitra & Linder, 2021). At the end of the TiDES survey, we

1https://www.kaggle.com/c/PLAsTiCC-2018
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will have a spectroscopically confirmed sample of supernovae that will be used as

the basis of our training sample. We will also have spectroscopic redshifts for many

host galaxies of LSST supernovae for which we do not have a classification. These

are the supernovae that we will want to photometrically classify for cosmology.

Spectroscopic redshifts are necessary for cosmology, but can also be used as an

additional feature in our classifiers. Lochner et al. (2016) concluded that including

photometric redshifts of supernova host galaxies does not have a significant impact

on classification when using representative training samples, although the level of

accuracy is model- and algorithm-dependent. We investigate the three cases of

using spectroscopic, photometric and no redshift in classification.

In this research, we investigate the potential success of photometric classifica-

tion using machine learning by simulating a realistic training sample. The training

sample will be the TiDES spectroscopic supernova sample, which is discussed in

Chapter 4.

3.1 Choice of software

Before we could test photometric classification of transients, we had to choose

an appropriate software to use. At the start of the project we decided to use

snmachine (Lochner et al., 2016), a classification pipeline using machine-learning

algorithms that is available through the Rubin Observatory LSST Dark Energy

Science Collaboration1 (DESC). This was chosen because snmachine matches

our goals as it is designed for photometric classification of supernovae in the Dark

Energy Survey (DES) and LSST, and was readily available at the time.

In recent years there have been a myriad of photometric classifiers created.

SuperNNova (Möller & de Boissière, 2020) includes a deep recurrent neural

network architecture for transient classification. Following our main investigation,

we applied this software to a simulated LSST dataset to investigate contamination

in the spectroscopic sample, discussed in Chapter 6.

1https://lsstdesc.org/
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Another notable software example is ActSNClass (Ishida et al., 2019) a

constituent of the COINtoolbox1. This framework applies active learning (Cohn

et al., 1996), a method to statistically select the most appropriate objects for

optimal training. While blanket targeting of all possible transients for spectroscopic

follow-up will produce an unbiased sample, active learning offers a way to plan

follow-up strategy to create an optimal training sample using limited spectroscopic

resources.

Other examples include PELICAN (Pasquet et al., 2019), SCONE (Qu et al.,

2021) and RAPID (Muthukrishna et al., 2019a).

3.1.1 Dataset

For our simulations we use the Supernova Photometric Classification Challenge

(SPCC) dataset (we use the simulations that were updated following the original

challenge, Kessler et al. 2010a,b). The data are simulated light curves of 21,319

supernovae of different types: Ia, Ib, Ic, Ibc, II, IIP, IIL and IIn. Later in § 5.4

we discuss the balance of classes and how they are affected by different types of

training sample, with respect to the test set.

The SPCC light curves have been simulated to mimic DES observations, using

the filters g, r, i and z. LSST has additional filters u and y, which may improve

classification, although is very close to the SPCC as LSST’s supernova cosmology

focus will be on the g, r, i, z bands (The LSST Dark Energy Science Collaboration

et al. 2018 finds that filters u and y provide negligible cosmological information),

with a similar cadence of observations every few days in each filter. The light

curves consist of flux measurements and associated uncertainties in the four bands

at times specified by the Modified Julian Date. In snmachine, the light curves

are aligned such that they all start at time t = 0.

In this work we primarily consider the binary classification of Type Ia vs.

non-Ia (which we define as the positive class vs. negative class), due to our focus

on applications to Type Ia cosmology. However, we also run a few tests in which

snmachine returns a classification probability for each supernova being either a

1https://github.com/COINtoolbox; the COIN (COsmostatistics INitiative) collaboration
is an international community focused on data-driven astronomy research
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Type Ia, Ibc (which includes types Ib, Ic, Ibc) or II (which includes types II, IIP,

IIL, IIn), as in, e.g. Möller & de Boissière (2020) and also the many solutions to

the SPCC and PLAsTiCC challenges. In this case, we still apply a binary Ia vs.

non-Ia classification, but with the aim of investigating whether considering Type

Ibc and Type II light curves separately in the training would reduce the number

of false positives (non-Ia light curves classified as Ia).

3.1.2 Feature extraction

The process for classification starts with extracting features from all the supernova

light curves in the dataset. We use the wavelet decomposition method implemented

in snmachine that extracts the wavelet coefficients that parametrise the light

curves of each supernova using a Gaussian process regression. An advantage

of this feature extraction method is that it requires no prior information about

supernova light curves. It is therefore independent of any physical assumptions

and is a purely mathematical framework.

For extraction of wavelet features, each supernova light curve is first interpo-

lated onto a uniform grid of 100 points and each point in time is associated with

a Gaussian distribution. The Gaussian process generalises across all distributions,

encompassing the mean and covariance functions between points (MacKay, 2003).

The mean function and covariance matrix hyperparameters are determined using

GaPP (the Gaussian process regression software used in Seikel et al. 2012). Next,

a two-level wavelet transform decomposes the light curve into a set of wavelets.

This results in a highly redundant 1,600 (400 per filter) wavelet coefficients per

supernova. The wavelet coefficients define the position of a wavelet basis (shape

of a specific type of wavelet) on the light curve.

To reduce the dimensionality whilst preserving the useful information, a

principal component analysis (PCA, Hotelling 1933; Pearson 1901) is applied to

the wavelet coefficients. PCA derives the eigenvalues of the correlation matrix

that represent the variability of each feature. Large eigenvalues imply high levels

of variability. Therefore, features with negligible eigenvalues are discarded. After

PCA, there are 20 features per light curve. This was chosen as Lochner et al.

(2016) finds that reducing the number of features from 1,600 to 20 using PCA
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retains 98% of the dataset’s information (by weighting the significance of features

based on their eigenvalues). If redshift is included as an additional feature, we

add this to the feature set for each supernova, making a total of 21 features.

Feature extraction is the main computational bottleneck in the snmachine

pipeline. However, after extracting light curve features from a dataset, e.g. SPCC,

they can be saved and used again to avoid extracting features every run. When

introducing new dataset objects, e.g. augmented supernovae, features must be

extracted with every new training sample. This means that the pipeline is much

more efficient using training samples that are constructed from only the original

dataset.

Assuming that photometric or spectroscopic redshift information is available,

this can be included in the table of light curve features independently following

the wavelet feature extraction. Hence, the same saved set of wavelet features

can be used in all tests using the same dataset (e.g. original, or original plus

augmented objects), and if necessary, can be merged with redshift information

prior to the machine learning.

The whole classification pipeline was run on the Lancaster University High

End Computing (HEC) cluster. Feature extraction was run in parallel across many

CPUs (Central Processing Units; 16 CPUs on one core) to speed up computation.

To allocate optimal computing resources, the training and classification stages

were run separately on a single CPU.

3.1.3 Machine-learning algorithms

snmachine’s machine-learning classification algorithms are trained to associate

feature values with the chosen classes (e.g. Ia vs. non-Ia) from supernovae in

the training sample. When presented with the test set light curves, snmachine

returns a probability of each supernova being either Type Ia or non-Ia. The

classification algorithms are k-nearest neighbours (KNN), support vector machines

(SVM), artificial neural networks (ANN) and boosted decision trees (BDT), and

they are constructed from the sklearn implementations (Pedregosa et al., 2011)1.

For the case of wavelet decomposition feature extraction, snmachine’s naive

1https://scikit-learn.org/stable/
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Bayes algorithm performs barely better than randomly in classification (even in

the case of a representative training sample) and is therefore disregarded.

3.1.3.1 Hyperparameters

Rather than choosing an arbitrary set of hyperparameters for each algorithm

or running our own validation tests, we run the snmachine pipeline with its

built-in classifier optimisation method. The training sample is split into five

‘folds’, comprising four separate training subsamples and a validation sample. This

follows k-fold cross-validation (note that this is not the same ‘k’ as in KNN) from

Kohavi (1995). From a given range, the final hyperparameters that are used in

classification of the test set are chosen in a grid search algorithm as the ones that

maximise the validation sample’s AUC scores. We will next spend some time

describing each algorithm and the hyperparameters considered.

3.1.3.2 k-nearest neighbours

KNN is a clustering algorithm that assigns classifications based on

its k-nearest neighbours in feature space (Altman, 1992). Using

sklearn.neighbors.KNeighborsClassifer, the only hyperparameter allowed

to vary was the number of neighbours (n neighbors) from 1 to 176 in steps of 5.

The weights parameter was chosen as ‘distance’, in which points are weighted

by the inverse of their Euclidean distance. Other parameters were taken as their

default values. The probability of an object belonging to a given class is calculated

as the sum of neighbours’ weights of that class divided by the sum all neighbours’

weights. Classification of an object is then the class with the highest probability.

For this algorithm, it is obvious why a representative training sample is necessary;

if there are no close training neighbours to test set objects in feature space, it is

unlikely that the algorithm can easily determine accurate classification.

3.1.3.3 Support vector machine

SVM is an algorithm that attempts to find the hyperplane that best separates

classes in feature space (Cortes & Vapnik, 1995). The ‘support vectors’ are the

40



3.1 Choice of software

object vectors that define the margin that creates the largest separation between

classes, and therefore generalises classification best. Using sklearn.svm.SVC, the

C regularisation parameter is varied between 10−2 to 105 including 5 values equally

separated in log space. By the use of a kernel function (Aizerman et al., 1964),

complex, high-dimensional datasets can be classified with SVMs by transforming

the feature space into one in which linear separation is possible (Géron, 2017).

This is known as the ‘kernel trick’. gamma is a fine-tuning shape parameter of the

kernel, in this case a Gaussian radial basis function (RBF), and is also varied on

a log scale, including 5 values between 10−8 to 103. Other parameters used are

the function’s default values. After training the SVM model to separate classes,

class probabilities of test objects are obtained by Platt scaling (Platt, 1999), a

logistic regression of the SVM’s scores that are fit by additional cross-validation

on the training sample data.

3.1.3.4 Artificial neural network

ANNs are algorithms inspired by biological neural networks. Their versatility in

how they are constructed (e.g. number of layers and neurons1, convolutional and

fully connected layers, etc.) makes them highly prevalent in both machine learning

and deep learning tasks. In our case, the ANN takes the input features and maps

them to output classes. The ANN is trained by back propagation, in which each

neuron’s weights are updated in order to minimise the loss function, where the

loss function represents how erroneous the output is. The architecture used in

this case is very simple, including only one fully-connected hidden layer, and

created with sklearn.neural network.MLPClassifier. The size of this layer

(hidden layer sizes) is the only hyperparameter allowed to vary to optimise this

algorithm, with its single layer going from 80 to 115 neurons in steps of 5. MLP

stands for Multi-Layer Perceptron, used to describe this very simple form of input-

to-output network and based on threshold logic unit neurons (Rosenblatt, 1960),

where each input connection has an associated weight (Géron, 2017). The neuron’s

output is the weighted sum of its inputs (in our case the light curve features)

1Neurons are the connecting nodes in a network. They take input values, multiplying them
by weights, summing them up and finally applying an activation function. This results in a
single output that then connects to another layer’s nodes or output classes.
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applied to a hyperbolic tan activation function (the activation parameter). By

normalising the activation function output values so that they sum to one, they

effectively represent probabilities of an object belonging to the given classes.

3.1.3.5 Boosted decision tree

A BDT is an ensemble algorithm comprising many decision trees (Friedman,

2002). A decision tree algorithm maps input features to output classes through a

series of decisions, i.e. testing whether feature values fall within particular ranges.

These algorithms are simple and their decisions are easy to interpret, often being

described as white box models, as opposed to black box models that are commonly

associated with neural networks (Géron, 2017). On their own, decision trees can

develop robust models on training data, although do not generalise well to other

datasets, causing overfitting. Boosting is an ensemble method that is used to

improve decision tree classifiers in which multiple models are combined into a

stronger one. Boosting trains the same model on the same data multiple times,

trying to improve at each iteration by focusing on incorrectly classified objects. The

sklearn.ensemble.AdaBoostClassifier (Freund & Schapire, 1997) is used with

a base estimator defined by a DecisionTreeClassifier object with entropy

(the criterion parameter measuring information gain) and min samples leaf

between 5 and 45 in steps of 10. This final parameter gives the minimum number

of samples required to be at a leaf node, where leaf nodes represent class labels,

i.e. it is a limit to how far the samples can be split in a decision tree. In a decision

tree, the probability of an object belonging to a given class is proportional to the

fraction of trained objects of that class on the corresponding leaf node. Applying

the ensemble method, the final probability is an average of all the probabilities of

each decision tree. The other hyperparameter allowed to vary is n estimators

which gives the maximum number of estimators at which boosting is terminated,

with values between 5 and 75 in steps of 10. An alternative ensemble method is a

random forest, in which the same training algorithm is used on random subsets

of the training data. In bagging (bootstrap aggregating), subsets are sampled

with replacement (objects may appear more than once). The alternative to this is

pasting where there is no replacement.
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3.2 Classification performance and metrics

To assess the levels of success in photometric classification, we need to choose

specific metrics to optimise. Our choice of metrics is determined by the problems

we are considering. When looking at the overall performance of classification

algorithms, we refer to their Receiver Operator Characteristic (ROC) area-under-

the-curve (AUC) parameter, a common tool used with binary classification. ROC

curves compare the True Positive Rate (TPR, a.k.a. completeness, efficiency)

against False Positive Rate (FPR, a.k.a. contamination) for a range of probability

thresholds, i.e. the threshold that the algorithm requires to apply the Type Ia

classification to a supernova (the ‘positive’ class). TPR and FPR are defined as

TPR =
TP

TP + FN
, (3.1)

FPR =
FP

FP + TN
, (3.2)

where TP is the number of true positives (Ia classified as Ia), FP is the number

of false positives (non-Ia classified as Ia), TN is the number of true negatives

(non-Ia classified as non-Ia) and FN is the number of false negatives (Ia classified

as non-Ia).

For each run with snmachine we produced ROC curves for each machine-

learning algorithm. A ROC curve’s AUC value equals 1 for a perfect classifier

(TPR = 1 and FPR = 0) and 0.5 for a completely random classifier. However,

high AUC does not reveal the full story and is not necessarily indicative of ‘good’

classification.

Given the large scope of objects to be observed by LSST, there may be the

caveat of a small, ‘strange’ population of objects, e.g. superluminous supernovae,

which could be completely misclassified. In the context of using Type Ia supernovae

for cosmology, it is crucial that our classified sample has very low contamination

and so we also consider purity as an essential metric. Purity is defined as

Purity =
TP

TP + FP
. (3.3)
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In general, there is a trade-off between TPR and purity.

For any classification problem, the measure of success depends on the choice

of metric. For increasingly large datasets, e.g. from LSST, there will come a point

at which systematic error dominates over statistical error1. Therefore, we assume

that our classified sample is above the completeness level at which contamination

from systematic effects dominates statistical error and we set a high target purity

value of 95%. An in-depth look into when exactly this occurs for LSST requires

further studies.

3.3 Visualising feature space – t-SNE

After extracting features from a dataset, it is useful to see how these features are

related, especially with respect to the different classes and across training and

test samples. In snmachine, 21 features are extracted per supernova light curve

(20 wavelet features plus redshift). An inspection between each supernova’s set of

features is therefore highly non-trivial. Visualisation of high-dimensional data is

possible, however, if each datapoint is reduced to a 2D or 3D representation of

feature space. This is achieved by adopting t-distributed stochastic neighbour em-

bedding (t-SNE, Van der Maaten & Hinton, 2008), a method which clusters similar

high-dimensional objects together. In this work we look at 2D representations of

the 21-dimension feature space describing each supernova light curve. The t-SNE

method shares a lot of similarities with both the k-nearest neighbours algorithm

and PCA, namely a similarity calculation based on distances between points in

high-dimensional feature space, and reducing dimensionality to a comprehendible

level.

t-SNE calculates the pairwise Euclidean distance, giving the probability2 of

similarity between each pair of objects. To create a low-dimensional representation

of the feature space, the 2D values that preserve these probabilities are determined3.

1Statistical error increases by
√
N , where N is the number of objects in the dataset, whereas

contamination rate caused by systematic error is proportional to N .
2This is the conditional probability that one object would pick another as its neighbour,

assuming a Gaussian centered on the object.
3The units of these values, referred to as t-SNE X and Y, are arbitrary.

44



3.4 Representative training sample

This is done by minimising the sum of Kullback-Leibler divergences (Kullback &

Leibler, 1951) between the joint probabilities in the high- and low-dimensional

spaces over all data points and using a gradient descent method. Generally, the

closer together the objects are in a plot of the 2D values, the more similar they

are in nature. Hence, clear separation between classes is indicative of intrinsic

differences in their respective features and suggests that accurate classification is

possible. It should be highlighted that these plots are for visual purposes only,

and do not have any influence on actual classification.

In our t-SNE plots, we use sklearn.manifold.TSNE with the following pa-

rameter values: perplexity = 200 (related to the number of nearest neighbours);

n iter = 1000 (maximum number of iterations); learning rate = 200 (for tuning

the rate of gradient descent). Other parameters are their default values. This

selection of (seemingly arbitrary) values was chosen by inspecting t-SNE plots of

many different values and finding that this combination produces clear results.

3.4 Representative training sample

Before we explore photometric classification with our 4MOST training sample,

we first follow the procedure from Lochner et al. (2016) to demonstrate what is

possible when using representative training. First, we discuss what we mean by

‘representative’.

In a given dataset with well-defined classes, a randomly drawn training sample

of sufficient size has proportions of different supernova types equal to those in the

test set (we discuss class balance in § 5.4). It is blind to supernova light curve

parameters and has similar distributions in magnitude and redshift, shown in

Figs. 3.1 and 3.2. Consequently, a randomly drawn training set samples the full

range of feature values existing in the test set. To illustrate this, we show a two-

dimensional representation of the 21 wavelet features (after PCA and including

spectroscopic redshift), separated into training and test sets, and also by type (Ia

vs. non-Ia). Shown in Fig. 3.3 for a randomly drawn training sample, training

and test Type Ia supernovae occupy the same feature space, and similarly for

training and test non-Ia supernovae. Hence, given sufficient size, a randomly
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Figure 3.1: Stacked magnitude histogram of a random sample of 1,103 training
supernovae and the corresponding test set.
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Figure 3.2: 2D histogram of the relative distributions of redshift and magnitude
in a random sample of 1,103 training supernovae and the corresponding test set.
Note that the bin containing a single faint supernova (rAB > 27.5), which appears
anomalous to the rest of the dataset, is a result of this particular simulated light
curve only having two very faint observations in the r-band.
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Figure 3.3: A t-SNE 2D representation of the 21-dimensional feature space after
PCA and including spectroscopic redshift. Type Ia and non-Ia supernovae are found
in their own respective clusters and regions of the plot. A randomly drawn training
sample has supernovae of the same types occupying the same feature space as those
in the corresponding test set. This plot only includes one tenth of the test set for
clarity.
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drawn training sample can be considered to be representative of the corresponding

test, and, for the rest of this work, we therefore refer to a randomly selected

training sample as being representative, as in Lochner et al. (2016).

3.5 Results using representative training

In our tests, representative training samples are created by taking a random

selection of 1,103 objects from the SPCC. This is the same size as the original

sample in the classification challenge. We compare using the same training sample

in an individual run, but with either the ‘true’ redshift1, a photometric redshift

or no redshift information used in both training and test samples to investigate

which case is most successful for classification. The ‘true’ redshift is used to mimic

a spectroscopic redshift and is defined as such from this point onwards. We do

this for 20 runs and present the ROC curves and TPR-purity relationship for a

typical example in Fig. 3.4.

To assess classification performance, we refer to ROC and purity curves

throughout this work. The ROC curves’ AUC scores are shown in brackets for

each algorithm. The diagonal dashed lines in the ROC curve plots represent the

case for a completely random classifier. The ANN algorithm is outperformed by

the other algorithms, which all have comparably higher AUC scores and manage

to reach our target purity of 95% (shown by the horizontal dashed line) with

TPR ≈ 0.4–0.6 in all three redshift scenarios. Our ROC curves pass through the

two theoretical classification extremes: (TPR,FPR) = (0, 0), in which everything

is classified as non-Ia, and (TPR,FPR) = (1, 1), in which everything is classified

as Ia. It should be noted that our AUC scores are calculated using only TPR and

FPR values from classification based on the used range of probability thresholds.

If TP = FP = 0, then the purity is undefined. In these cases, the purity curve

may not start at TPR = 0. This also occurs if the minimum TPR value from our

range of probability thresholds is non-zero, as purity is undefined below this TPR.

The resulting AUC scores for all runs with representative training are shown as

boxplots in Fig. 3.5 and summarised in Table 3.1. For all three redshift scenarios

1This is the SIM REDSHIFT parameter in the header of each supernova file.
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No-z

Photo-z

Spec-z

Figure 3.4: Results for the use of redshift for the same representative training
sample, a typical example out of 20 runs. In the left column are the ROC curves,
comparing TPRs and FPRs. In the right column are plots comparing purity with
TPR.
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Figure 3.5: Boxplots showing the AUC scores over 20 classification runs for
representative training samples comparing the use of no redshift information (No-z),
photometric redshifts (Photo-z) and spectroscopic redshifts (Spec-z). The boxes
span the interquartile range with whiskers extending out to the full range of AUC
values.
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Table 3.1: AUC means, medians, interquartile ranges, maxima and minima for
representative training samples over 20 runs, and the number of those runs that
reached 95% purity. These summarise the results shown in Fig. 3.5 for the four
different algorithms, comparing the cases of no redshift (No-z), photometric redshift
(Photo-z) and spectroscopic redshift (Spec-z).

Algorithm Redshift Mean Median IQR Max Min Purity 95%

KNN
No-z 0.959 0.958 0.003 0.964 0.953 20

Photo-z 0.962 0.963 0.003 0.969 0.956 20
Spec-z 0.964 0.965 0.004 0.970 0.959 20

SVM
No-z 0.947 0.949 0.008 0.955 0.929 18

Photo-z 0.963 0.964 0.004 0.967 0.950 11
Spec-z 0.963 0.965 0.005 0.969 0.949 12

ANN
No-z 0.914 0.913 0.008 0.926 0.906 0

Photo-z 0.934 0.936 0.007 0.943 0.920 1
Spec-z 0.934 0.935 0.006 0.942 0.924 1

BDT
No-z 0.953 0.954 0.004 0.959 0.938 20

Photo-z 0.965 0.964 0.005 0.973 0.958 20
Spec-z 0.966 0.967 0.007 0.971 0.959 20

we managed to reach our target purity of 95% in three out of four algorithms. The

relatively poor performance of ANN is attributed to the fact that these training

samples are small compared to the test set. However, neural networks are known

to perform well with large training samples (Goodfellow et al. 2016, Section 1.2.2).

Fig. 3.5 shows that, whilst there is overlap in the spread of AUC scores, the

trend for all algorithms is an increase in mean and median, suggesting that redshift

is a significantly impactful feature to the outcome of classification performance.

The extent of improvement seems to be in agreement with the example of ROC

curve results in Lochner et al. (2016) (with the exception of KNN): their AUC

scores increase by -0.026, 0.016, 0.016 and 0.010 for KNN, SVM, ANN and BDT

respectively. We see an increase in the average AUC scores of 0.003, 0.016, 0.020

and 0.012 (comparing No-z and Photo-z). The slight numerical discrepancies in

AUCs may be due to splitting classification probabilities between the types Ia,

Ibc and II, rather than just Ia and non-Ia as we have done here. Our finding that

there is noticeable improvement when including redshift is in contrast to their

conclusion that, when considering relative feature importance, redshift is fairly

unimportant to this wavelet feature extraction method.
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Figure 3.6: Photometric and spectroscopic redshifts of SPCC supernovae. The
black dashed line represents equal photometric and spectroscopic redshift values.
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We find similar results for photometric and spectroscopic redshift, which

may be explained by the absence of any catastrophic outliers in the simulated

photometric redshifts in the SPCC; there is little scatter when comparing the two

(Fig. 3.6), with a root mean square error of only 0.028. This is perhaps optimistic,

as it is estimated that around 10% of galaxy photometric redshift results using

LSST photometry will be outliers at z = 0.5, reaching even higher percentages at

lower redshifts (where outliers are those with redshift error greater than 3 times

the robust standard deviation, or 0.06, as defined in Graham et al. 2020).

Furthermore, the study Mitra & Linder (2021) finds that robust supernova

cosmology cannot solely rely on photometric redshifts. Investigating the systematic

requirements for a LSST-like survey, photometric redshifts at z . 0.2 in particular

are found to be problematic, causing bias in dark energy cosmological inference.

They conclude photometric redshifts should be used for cosmology only for z > 0.3

and spectroscopic classification should be conducted for all supernovae at z . 0.2–

0.3.

In this comparison for representative samples we did not alter the photometric

redshifts and we used them as they are in the SPCC. Irrespective of the use of either

photometric or spectroscopic redshift as an additional feature for classification in

this dataset, when the training sample is representative of the test set we observe

promising results, including very high purity values. For the rest of this work we use

spectroscopic redshifts, as discussed later in § 4.4.3. Our aim is to at least match the

classification performance that we would get when using a representative training

sample, although, as we show in the next section, current 4MOST capabilities

would only deliver a magnitude-limited sample. Our task is consequentially to

improve upon a magnitude-limited sample to increase representativity. To address

this, we add more training objects at fainter magnitudes and higher redshifts

through two routes: observation with larger telescopes and augmentation.
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Chapter 4

The Time-Domain Extragalactic

Survey

Given the constraints on observing resources for spectroscopic follow-up, we set

out to determine how these limited resources would be best used, i.e. how to

get the best resulting photometric classification of the remaining sample. In

particular we consider the use of the 4MOST (4-metre Multi-Object Spectroscopic

Telescope1) instrument, which will carry out the Time-Domain Extragalactic

Survey (TiDES, Swann et al. 2019), a campaign for spectroscopic follow-up. The

follow-up potential with 4MOST is determined by its survey overlap (both angular

and temporal) with LSST’s observing strategy, its cadence, and TiDES’ allocated

250,000 fibre-hours. Despite not being able to follow up every transient event

from LSST, TiDES will obtain as many spectra as possible for the purposes of

cosmology and creating a basis for a training sample. 4MOST, ESO’s newest

upcoming spectroscopic facility, is particularly well-suited for this task, with first

light expected in 2023. It will be installed on the 4-m VISTA telescope in Chile,

at a similar latitude to the Rubin Observatory.

1https://www.4most.eu/cms/
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4.1 Science goals of TiDES

In the context of this thesis, we particularly consider the TiDES science goals (i)

spectroscopic classification of live transients (TiDES-SN) and (ii) spectroscopy of

supernova host galaxies (TiDES-Hosts) (Swann et al., 2019).

Science goal (i) enables us to determine which LSST transients are Type Ia

supernovae. We can also obtain a spectroscopic redshift from these spectra as the

light from the supernovae and their host galaxies will be combined, allowing us to

conduct cosmology with these objects. This goal also provides classification of

transients (both Ia and non-Ia), which is important for a training sample.

Science goal (ii) will provide us with spectroscopic redshifts of many host

galaxies of supernovae observed by LSST for which live spectroscopy was not

possible. Hence, these are the transient objects that will define the test sample,

i.e. the supernovae that we want to photometrically classify. We will therefore

have a spectroscopic redshift for anything that makes it into our cosmological

sample. As we will have spectroscopic redshift information for our training and

test samples, we use the spectroscopic redshifts of the SPCC simulated supernovae

as an ancillary feature in all following classification simulations. This is the same

as the spectroscopic redshift mentioned in § 3.5.

Hence, TiDES’ full cosmological sample will consist of LSST Type Ia supernovae

identified by spectroscopic classification in science goal (i) and combined with

those that have a spectroscopic host-galaxy redshift obtained by science goal (ii)

and are identified using photometric classification.

4.2 Synergy with LSST

Thanks to the relative proximity of VISTA to the Rubin Observatory, there is

naturally a lot of overlap in the regions of the sky that these two facilities can

observe. Ideally, TiDES wants to follow LSST’s survey strategy (in terms of field

pointings) as much as possible in order to quickly obtain live transient spectra

close to maximum light. Near the start of this project, investigation of both

4MOST and LSST survey strategies was done to explore the synergy between the

surveys.
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2022 2023

2024 2025

Figure 4.1: LSM for TiDES-SN: maps for observation of live transients. The sky
maps are updated for each year to reflect the planned footprint during that year.
As LSST begins part-way through the second year of 4MOST’s survey, the 2022
map does not have as many observations as the other years.

In order to develop the 4MOST survey strategy, its consortium surveys are

required to provide a figure of merit comprising large and small scale merits. The

small scale merit (SSM) is based on the survey’s ability to meet its science goals.

For TiDES, this depends on the success of observing supernovae, host galaxies

and AGN. The large scale merit (LSM) is defined as the area of the sky we want

to observe. TiDES’ LSM is therefore given by the LSST footprint, weighted by

the number of LSST observations in a given area. Unlike other 4MOST surveys,

TIDES-SN is time-critical and so its LSM is a function of time. As long as host

galaxies are identified, they can be observed with 4MOST at any point after the

transient event to obtain spectroscopic redshifts. The LSM for host galaxies is

therefore the whole WFD survey. For AGN, the LSM is given by the area of LSST

DDFs.

Sky maps were created (Figs. 4.1, 4.2 and 4.3) showing the TiDES LSM based
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2022 2023

2024 2025

Figure 4.2: LSM for TiDES-Hosts: it does not matter when host galaxies are
observed, so LSM is accumulative over each year. The more observations in a field,
the more likely we will want to return to obtain spectroscopic redshifts.

2022 2023

2024 2025

Figure 4.3: LSM for TiDES-RM: AGN reverberation mapping requires observa-
tions in LSST’s DDFs, a few individual fields that have many visits.

58



4.3 Supernova rates

on the LSST mothra 2045 OpSim simulated survey strategy1. This is an example

of a rolling cadence strategy, in which LSST’s WFD is split into two strips that are

alternated each observing year. Rolling cadence enhances sampling frequency by

at least a factor of two (LSST Science Collaboration et al., 2017), highly beneficial

for obtaining multi-band observations of supernovae light curves. The number of

expected supernovae is linearly dependent on both area and observation time (see

next section), so covering half of the survey area while doubling field visits will

not necessarily result in fewer discoveries. mothra 2045 was chosen as it fulfils

these desired criteria. Note that these simulations are now out of date due to

delays with both 4MOST and LSST; at the time when these plots were made

4MOST’s simulated survey started at the beginning of 2021 and LSST’s started

towards the end of 2022. This means the first year and a half of 4MOST had

no overlap with LSST. The LSM plots still represent the overall survey area and

typical number of field visits and were created for each 4MOST survey year in

which there is overlap with LSST, four for each of TiDES’ science goals. LSST

continues to develop its survey strategy (LSST Science Collaboration et al. 2017

discusses general science-driven optimisation and the papers Lochner et al. 2018;

Scolnic et al. 2018a focus on optimisation for dark energy science) and these types

of LSM maps are being used to coordinate with 4MOST survey planning. This

work is now being continued by others (Frohmaier et al., in preparation).

4.3 Supernova rates

The number of supernovae that we observe in the night sky is limited by several

factors. There are observational constraints such as the angular area surveyed,

the length of observation time and limiting magnitude of the chosen telescope, but

also limitations such as the probability that a supernova explosion will actually

occur. These can be combined into an expression that predicts the numbers of

supernovae expected, and is typically an empirical formula based on previous

supernova surveys. Perrett et al. (2012) determines a volumetric supernova Type

Ia rate based on discoveries from the Supernova Legacy Survey (SNLS). The

1https://www.lsst.org/scientists/simulations/opsim
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4.3 Supernova rates

Figure 4.4: Top: Type Ia supernova per deg2 per year as a function of redshift.
Bottom: Type Ia supernova rate calculated based on data from the SNLS. These
begin to deviate around z ≈ 0.5 due to a decreasing detection efficiency. The areas
and times used to create this figure are given in Table 4.1. Error bars represent
Poisson uncertainty.
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Table 4.1: SNLS field areas and times

Field Area (deg2) Time (years)

D1 0.8822 1.2677
D2 0.9005 1.4456
D3 0.8946 1.8400
D4 0.8802 1.5058

rate is volumetric as it considers supernovae over an angular area Θ (in deg2)

and between different redshifts, i.e. the number of supernovae in a redshift bin

between z1 and z2. Assuming a flat ΛCDM model of the Universe, the volume is

calculated as

V =
4π

3

Θ

41253

[
c

H0

∫ z2

z1

dz′√
Ωm(1 + z′)3 + ΩΛ

]3

Mpc3, (4.1)

where c is the speed of light, H0 is the Hubble constant, Ωm and ΩΛ are the

density parameters of matter and a cosmological constant. For flat cosmology, ΩΛ

can be replaced by 1− Ωm. In this volume, the expected number of supernovae

within time t and at redshift z (taken as [z1 + z2]/2) is given by

N = tεV r0(1 + z)α−1, (4.2)

where r0 and α are power law parameters determined empirically in Perrett

et al. (2012) and ε is the detection efficiency. Using this rate calculation, we show

the expected number of Type Ia supernovae per deg2 per year as a function of

redshift in Fig. 4.4 (Top).

Going to higher redshifts, the volume in a given area increases and hence

includes more host galaxies (until eventually getting to the early Universe),

although the detection efficiency decreases as supernovae appear fainter. There is

therefore a peak in numbers of discovered supernovae around z ≈ 0.5 that then

drops with increasing redshift and begins to significantly deviate from the actual

number of supernovae (the number of observed supernovae is given in Guy et al.

2010). For each SNLS field season, the rate is calculated using the unmasked

areas quoted in Perrett et al. (2012) and time is approximated from the range
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of observations in Guy et al. (2010). This is summarised in Table 4.1 and the

SNLS Type Ia rate is illustrated in Fig. 4.4 (Bottom). We see that the rate

calculation and data are in good agreement, confirming the rate calculation, until

the reduction in detection efficiency with redshift becomes significant. While the

actual number of supernovae only increases with redshift, the proportion detected

becomes smaller and smaller after z ≈ 0.5. The numbers of objects that LSST,

and therefore TiDES, expects to find (as quoted in the next section) are calculated

in a similar way.

4.3.1 Follow-up strategy

Once 4MOST’s survey strategy is finalised, TiDES will need to decide how best

to distribute its allocated 250,000 fibre-hours of spectroscopy. TiDES will be

exploiting the fact that wherever 4MOST points in the extragalactic sky, there

will be LSST live transients to follow up. Hence, rather than driving the 4MOST

pointings, TiDES will be ‘piggy-backing’ on the other surveys as the target density

of transients is not high enough for efficient observations on its own. Once receiving

LSST transient alerts/detections, TiDES will aim for a rapid turnaround time

of 3–4 days in which to target the allocated fibres (approximately 2% of 4MOST

fibres) on to these objects and obtain their spectra.

We estimate that TiDES will be able to classify transient spectra to magnitudes

as faint as rAB ≈ 22.5 mag. We explain the origin and implications of this

magnitude limit in § 4.4. It will be the main factor influencing the training sample

of supernovae we expect to produce using 4MOST. LSST is expected to detect

transients fainter than this, making point-source detections down to a depth

of rAB ≈ 24 mag in a single field visit. Consequently, the performance of our

classification algorithms depends on how we deal with this magnitude limit.

TiDES will target all live transients (rAB < 22.5 mag) in each 4MOST pointing

during grey and dark time. Depending on the nature of the final LSST survey

strategy, we expect a density of 6–12 live transients per pointing. Over the 5-year

duration of TiDES this equates to an expected total of >30,000 transients, with

the remaining fibre-hours used to measure host-galaxy redshifts of LSST transients.

Final numbers are highly dependent on both LSST and 4MOST survey strategies
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that at the time of writing are not yet finalised. TiDES’ spectroscopic sample

can be used for training our machine-learning algorithms to subsequently classify

other LSST transients. The supernova light curves that we will photometrically

classify are those for which we have secured host-galaxy redshifts. Combining the

Type Ia supernovae in the spectroscopic and photometrically classified samples,

altogether, TiDES therefore expects to produce the largest cosmological sample

of Type Ia supernovae by over an order of magnitude.

Classifying live supernovae that are fainter than 4MOST’s limit would require

use of 8-m and larger telescope facilities, such as the Very Large Telescope1 (VLT)

and the upcoming, next generation Extremely Large Telescope2 (ELT), Thirty

Meter Telescope3 (TMT) and Giant Magellan Telescope4 (GMT). However, to

classify live supernovae, time on these telescopes is likely to be even more limited

than on 4MOST, so we do not expect more than a few hundred sources to be

observed. We return to this in § 5.2.1.

4.4 Simulating a 4MOST spectroscopic sample

We set out to simulate a TiDES spectroscopic training sample to use with our

chosen classification software snmachine using the SPCC dataset.

We assume that 4MOST will have 1 h field visits based on Tempel et al. (2020a).

For TiDES, a field visit exposure time of 1 h in combination with a spectral success

criterion (SSC) effectively imposes a magnitude limit to spectroscopically confirmed

supernovae. Here we discuss how to simulate our spectroscopic sample by using

the 4MOST capabilities as a guide.

4.4.1 TiDES simulations

To determine the limiting magnitude for 1 h exposures, we use a realistic mock

catalogue containing supernovae with population fractions following the literature.

1https://www.eso.org/public/teles-instr/paranal-observatory/vlt/
2https://www.eso.org/public/teles-instr/elt/
3https://www.tmt.org/
4https://www.gmto.org/
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Included supernova types are: Ia, split into normal Ia, 91T and 91bg using the

fractions of each type given in Li et al. (2011) and with a rate from Frohmaier

et al. (2019); Core-collapse, split into Ib, Ic, IIL and IIP using the fractions

given in Richardson et al. (2014), with a rate proportional to the star-formation

history in Li (2008), anchored at low-redshift by the volumetric core-collapse

rate from the Sloan Digital Sky Survey II Supernova Survey (Taylor et al., 2014).

The different supernova types and rates in the catalogue are necessary to reflect

variations in spectra, which affect the rate of success in obtaining spectra of

sufficient signal-to-noise ratio (SNR), defined later in this section. The LSST

cadence assumed follows the mothra 2045 OpSim survey strategy. The catalogue

itself is limited at a peak magnitude of rAB = 24 mag, where any supernova that

peaks brighter than this is simulated to be detected by LSST.

Each transient in the catalogue is assigned a spectrum from a set of templates

based on its type, phase and magnitude. Additionally, for Type Ia supernovae,

there is variation in their spectra based on the x0, x1 and c SALT2 light curve

parameters (Guy et al., 2007). The spectra, normalised to the r-band magnitude

at the time of observation, are run through the 4MOST exposure time calculator

(ETC), which can quickly calculate exposure time requirements for thousands

of targets for a given SSC. The ETC uses the 4MOST instrument response and

outputs of the simulator TOAD (Top-Of-Atmosphere-to-Detector; Winkler et al.

2014), providing extensive modelling of both system throughput and sensitivity.

The ETC is a parametrised version of TOAD, calculating the 1D signal and

noisy spectra for targets with different target-fibre alignments and observing

conditions such as sky brightness, transmission and seeing. By specifying a SNR

(and given the magnitude of the targeted supernova), the ETC can return the

target’s required exposure time (and vice versa). We later use this to calculate the

fraction of sources successfully observed within our assumed 1 h exposure time.

4.4.2 Spectral success criterion

Our results come from running the catalogue through the 4MOST ETC v0.02 (in

May 2019). However, since then, the ETC has been updated with newer versions.

For a fixed exposure time and scaling results to the same effective SNR criterion,
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4.4 Simulating a 4MOST spectroscopic sample

Table 4.2: The model for spectral success with 4MOST used to define the proba-
bility that an object observed with magnitude rAB will be selected for our simulated
training sample.

Magnitude Success rate

rAB < 21.75 1.0
21.75 ≤ rAB ≤ 22.75 {1 + exp[10 (rAB − 22.25)]}−1

rAB > 22.75 0.0

we find that the ETC v0.6 (in September 2020) agrees with the ETC v0.02 to

within 0.02 mag, and so the difference was ignored. For TiDES supernovae,

given a SSC, the success of observation depends upon both the spectral features

present and the amount of ‘contaminating’ light from the transient host galaxy

(Swann et al., 2019). As supernova spectra are dominated by broad features, the

TiDES SSC is defined using the average SNR over 15 Å bins (over the range

4,500-8,000 Å in the observed frame). The TiDES criterion is based on earlier

studies of high-redshift Type Ia supernovae (Balland et al., 2009), where robust

classification is achieved with a mean SNR = 5 per 15 Å and probable classification

of transients is demonstrated with a mean SNR as low as 3 per 15 Å. However,

in this study we adopt a more conservative criterion of SNR = 7 per 15 Å. We

assume that all spectra that meet this criterion are correctly classified in our

tests of optimising photometric classification using the TiDES sample (Chapter 5).

Following these tests, we investigate contamination of the spectroscopic sample,

discussed in Chapter 6.

Current 4MOST simulations combine observations of the same sky coordinates

and instrument position angle into observing blocks (OBs, Tempel et al. 2020a).

The duration of the OBs are limited by a total exposure time of 1 h. Success is

determined by whether a targeted supernova spectrum’s necessary exposure time

falls below 1 h for our criterion of SNR = 7 per 15 Å. The rate of success for

obtaining supernova classification from their spectra as a function of magnitude is

shown in Fig. 4.5. The success rate does not take into account 4MOST’s fibre-

target allocation which will depend on all 4MOST surveys and their science goals

(Tempel et al., 2020b). Observation of each object in the catalogue was simulated

in dark and grey time (we assume none of our targets will be targeted during
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4.4 Simulating a 4MOST spectroscopic sample

Figure 4.5: The success rate represents the probability that we obtain a spectrum
of sufficient signal to noise, and therefore successful classification, of a targeted
supernova of magnitude rAB. The success rate is 50% at rAB = 22.25 mag. The rate
is calculated as the proportion of input supernovae for which a successful spectrum
was obtained in magnitude bins of size 0.25. The average between the rates for dark
and grey time is modelled as an exponential function (see Table 4.2) that is later
used to create our simulated training sample.
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4.4 Simulating a 4MOST spectroscopic sample

bright time). Dark and grey time are defined by the amount of moon illumination

(fraction of lunar illumination, FLI) where FLI < 0.4 and 0.4 ≤ FLI ≤ 0.7 for dark

and grey respectively1. The success rate is averaged over both curve distributions

at each magnitude as the dark/grey/bright is undecided for 4MOST. However,

current simulations for 4MOST’s tiling pattern favour dark time over grey (Tempel

et al., 2020a), so their average can be considered as a lower limit to our success rate.

The function describing the success rate is shown in Table 4.2. The exponential

function in the second row was chosen to represent the average between dark- and

grey-time success rates.

With 4MOST, it may be that we do not get the full 1 h observation for all

our supernovae. This exposure time is based on two 30 min exposures in a single

OB. Splitting into single exposures will affect the success rate of obtaining spectra

of live transients. For the extreme (and unlikely) case in which all OBs contain

only single 30 min exposures, the success rate curve keeps the same shape but

moves ∼0.5 mag towards brighter magnitudes, i.e. 50% success rate occurs at

rAB = 21.75 mag. This would be much less favourable for our training sample

prospects than for the success rate we simulate in Fig. 4.5.

4.4.3 Use of redshift

In general, 4MOST will not give us the opportunity to return to the same pointing

of previously observed live transients and obtain a pure host-galaxy redshift.

However, when we observe live transients, the light from the supernova and host

galaxy will be blended and we expect to be able to measure host redshifts from

these spectra, although not necessarily other host properties. This is what allows

us to use the Type Ia in our spectroscopic sample for cosmology.

As we will have spectroscopic redshift information for our training and test

samples, we used the spectroscopic redshifts of the SPCC simulated supernovae

as an ancillary feature. This is the same as the spectroscopic redshift mentioned

in Section 3.5 and is used throughout all following photometric classification

simulations unless otherwise stated.

1https://www.eso.org/sci/observing/phase2/ObsConditions.html
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4.4.4 Creating the training sample

Having determined the magnitude limit to a TiDES spectroscopic sample of

supernovae, we apply this to the SPCC dataset to create a simulated training

sample to be used in snmachine. SPCC supernovae are selected for inclusion in

the simulated training sample with a probability that follows the model described

in Table 4.2. However, to avoid using all supernovae brighter than the magnitude

limit in the training and therefore not leaving any bright objects in the test set, the

probabilities are scaled down by a factor of 2. This results in a magnitude-limited

training sample of approximately 500 supernovae. Given that we are expecting a

spectroscopic sample of size >30,000 from TiDES, we would require a much larger

dataset to fully simulate our prospective results. Nevertheless, by applying the

4MOST magnitude limit we are investigating its effect on algorithm-training and,

ultimately, how to maximise our classification potential based on this observing

constraint.

When selecting the training sample based on magnitude, the magnitudes used

for each supernova are the rAB magnitudes closest to peak (i.e. the brightest

r-band observation in the simulated light curve). By making the connection with

Fig. 4.5, which uses magnitude at the time of observation, we are assuming that we

will obtain supernova spectra close to peak, within a few days. This is acceptable

as, given 4MOST’s limiting magnitude, we can only hope to get most objects’

spectra close to peak.

Fig. 4.6 shows a stacked magnitude histogram of the training and test sets for

one such magnitude-limited example. These training samples are referred to as

MagLim to distinguish from others later on. We also show the distribution of

training objects with respect to the test set (remaining objects from the SPCC)

in redshift-magnitude space (Fig. 4.7). Comparing to the representative training

sample example in § 3.4 (Figs. 3.1 and 3.2), clearly, a magnitude-limited training

sample is not covering the full ranges of redshift and magnitude present in the test

set. We examine the effect this has on the feature space of the training supernovae

with respect to the test set in § 5.3. We run this same test for 10 different training

sets, sampled in the same way.
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Figure 4.6: Stacked magnitude histogram of a magnitude-limited training sample
(MagLim) and test set.
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Figure 4.7: 2D histogram of the relative distributions of redshift and magnitude
in magnitude-limited training (MagLim) and test set.
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Chapter 5

Optimising the TiDES Training

Sample

This chapter is dedicated to presentation of the main results from our classification

simulations, starting with the 4MOST magnitude-limited training sample. All

our results are summarised in Table 5.1 at the end of the chapter.

5.1 Results of magnitude-limited training

We repeat the classification process using the snmachine pipeline as discussed in

§ 3, now using the TiDES magnitude-limited training sample from § 4.4.4 instead

of a representative one.

Considering the ROC curves for this training sample (Fig. 5.1, left), we find

that the classifiers struggle to perform much better than random (shown by the

dashed line). A good classifier that achieves high TPR and low FPR would be

as far from the dashed line as possible, reaching the top-left corner. For KNN,

SVM, ANN and BDT, the average AUC scores are 0.547, 0.671, 0.702 and 0.628

respectively and the results are summarised in Table 5.1 in the MagLim row. The

magnitude limit has evidently had a negative impact on the classification.

We find that it is also difficult to reach high purities (Fig. 5.1, right). Often,

it is impossible to reach a purity of 95% and, even the few times it succeeded
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Figure 5.1: For a magnitude-limited training sample (MagLim), ROC curves are
close to resembling those of random classification. Despite the high purity reached
for KNN (just reaching the 95% target) and BDT, the returned completeness of
the classified sample is very low. Comparing to representative training, we are far
from the classification algorithms’ potential and need to improve upon this training
sample.

(generally requiring the maximum probability threshold), we return so few correct

Type Ia supernovae that manipulating the classification parameters to achieve this

would not significantly increase our cosmological sample. Also, not shown in the

figure, we find that the completeness for high purities is consistently zero much

beyond the faintest magnitudes of the training supernovae. For more practical

uses, we instead therefore require methods to address this bias towards bright,

low-redshift supernovae and produce a more representative training sample.

The bias towards bright objects if we use only 4MOST implies a non-

representative training sample. TiDES is currently planning to blanket target

every transient possible that is brighter than rAB = 22.5 mag. However, this is a

form of Malmquist bias, as the spectroscopic sample’s preference towards brighter

objects is a result of observational capabilities; it is much easier to obtain spectra

of bright supernovae as it takes much less time to reach the desired SNR (we saw

this previously in our discussion of supernova rates, as magnitude and redshift

are strongly correlated for Type Ia supernovae and therefore detection efficiency

decreases with redshift – Fig. 4.4).

It is interesting that the algorithms perform so poorly with wavelet features.

Wavelet transforms are approximately invariant under translation and stretch,
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suggesting that similar supernovae will have similar features, even with different

explosion times and redshifts (Lochner et al., 2016). It appears that, despite this,

the magnitude-limited sample does not have enough information from its objects’

features to be able to classify fainter supernovae. We analyse the feature space

coverage of different training samples in § 5.3.

5.1.1 Redshift in magnitude-limited training

It was previously discussed that spectroscopic redshift is required for cosmol-

ogy. However, this does not necessarily mean that we need to include it in the

classification step. While we find that including either a photometric or spec-

troscopic redshift will improve classification results when used on representative

training samples (§ 3.5), it may not be the case when our training sample is

non-representative.

The magnitude limit seems to also imply a redshift limit (very few, if any,

training supernovae are found beyond z = 0.5–0.6, shown in Fig. 4.7), although,

depending on the specific sampling, the cut-off may not be as obvious. Including

redshift in a magnitude-limited training sample does not give any extra information

about fainter supernovae, and may be introducing further bias to the sample

as it only adds extra information that is also non-representative of the test set.

On the other hand, redshift information may improve classification accuracy at

brighter magnitudes. We therefore investigate the effects of withholding redshift

information in our previously simulated magnitude-limited training samples.

Inclusion of spectroscopic redshift, as opposed to none, in magnitude-limited

training samples does not make a clear improvement to classification (comparing

MagLim and MagLimNo-z in Table 5.1), as it did for representative training.

Without redshift information, SVM and ANN perform worse and KNN and BDT

seem to improve based on their mean and median scores. All four algorithms

have a wide range of results, although they yield a higher maximum AUC when

redshift is included.
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5.2 Reaching fainter magnitudes: training be-

yond 4MOST’s limit

5.2.1 Making use of larger spectroscopic facilities

4MOST alone cannot provide us with a fully representative training sample. The

required exposure times for supernovae fainter than rAB ≈ 22.5 mag are generally

too large to consider spectroscopic follow-up with 4MOST. One option would be

to use other spectroscopic facilities such as the VLT and ELT.

We first explored the possibility that we may only need a few fainter objects to

combine with our 4MOST sample. As a machine-learning exercise, we investigated

the effect of adding one randomly selected supernovae of Type Ia, Ibc and II

in each 0.5 magnitude bin above the 22.5 mag limit (to the faintest magnitude

bin containing only one Type II supernova). This provides an additional 28

faint supernovae. Assuming using the VLT up to rAB = 24 mag and the ELT

beyond this, we estimate the total required exposure times of approximately 80 h

and 90 h respectively, for all 28 of these specific objects. For comparison, a

typical magnitude-limited training sample in the SPCC (∼500 objects) would

require a total exposure time of ∼2,200 h with 4MOST. Compared to the original

magnitude-limited training sample, over the 10 runs the average AUC increased

from 0.554 to 0.760 for KNN, 0.667 to 0.769 for SVM, 0.700 to 0.758 for ANN

and 0.623 to 0.769 for BDT, although the algorithms still struggle to reach 95%.

By adding just a few faint supernovae into the training, this method shows that a

relatively small increase in the number of supernovae can significantly improve

upon a magnitude-limited sample. However, this clearly needs to go further and

does not compare to our realistic faint sample. Hence, we went on to creating a

sophisticated, realistic faint sample of supernovae.

Using the same SNR criterion as for 4MOST, we simulate a more realistic

faint spectroscopic sample of supernovae to combine with our 4MOST sample

(MagLim+Faint). We simulate a total exposure time of 1,000 h on the VLT and

100 h on the ELT (assuming 100 h and 10 h per 6-month semester over 5 years

respectively). Individual supernova exposure times are determined using their
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brightest magnitudes and are based on calculations from the online ETCs. For

the VLT ETC1 we use the FORS2 instrument and fixed object (point source at

z = 0.6, with input flux distribution a power law with index 0; flux ∝ wavelength)

and sky parameters, varying the magnitude normalised in the r-band to estimate

our exposure times. Parameters used are a moon FLI = 0.2, airmass = 1.50,

seeing/image quality IQ = 0.80 arcsec with a slit width of 1.00 arcsec using the

GRIS 300V+10 (>450nm,GG435) grism. Similarly, for the ELT ETC2 we use

airmass = 1.50 and seeing = 0.8 arcsec with the Laser-Tomography Adaptive

Optics mode and radius of circular SNR ref. area = 200 mas.

We randomly sample supernovae from the SPCC between rAB = 22.5–24.35

for the VLT and calculate their exposure times (adding an assumed overhead

time of 5 min per object) until reaching the total. Supernovae with magnitudes of

rAB > 24.35 would require > 4 h exposure time with the VLT. Exposures longer

than 4 h are possible on the VLT, although it is not practical to do this for many

objects in a survey. In our simulation these sources would be observed by the

ELT. Hence, we similarly determine a ELT sample of supernovae with rAB > 24.35

and 9 min overheads3. This produces a sample of ∼600 VLT supernovae and

∼400 ELT supernovae, increasing the total size of our simulated spectroscopic

training sample by approximately 200% (∼500 to ∼1500). We acknowledge that

in reality our magnitude-limited TiDES sample would be much larger, and hence

our simulated TiDES sample is out of proportion to this realistic faint sample. A

full accurately simulated sample is not possible with this dataset because of the

relatively small number of bright objects.

With the addition of our faint sample we obtain the resulting magnitude and

redshift-magnitude distributions in Figs. 5.2 and 5.3. We see a clear improvement

on the overall performance of the machine-learning algorithms due to them making

more informed classifications; the ROC curves (Fig. 5.4, left) have moved far

away from the random classification associated with the diagonal dashed line and

1https://www.eso.org/observing/etc/bin/gen/form?INS.NAME=FORS+INS.MODE=

spectro
2https://www.eso.org/observing/etc/bin/gen/form?INS.NAME=ELT+INS.MODE=

swspectr
36 min for guide star aquisition plus 3 min for the adaptive optics to produce the required

image quality, described in the ELT Top Level Requirements at https://www.eso.org/sci/

facilities/eelt/docs/index.html
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Figure 5.2: Stacked magnitude histogram of a magnitude-limited training sample
with an additional faint sample (MagLim+Faint) and test set.
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Figure 5.3: 2D histogram of the relative distributions of redshift and magnitude
in a magnitude-limited plus faint training sample (MagLim+Faint) and test set.

Figure 5.4: ROC and purity curves for a magnitude-limited plus faint training
sample (MagLim+Faint). Whilst we still don’t have the same distributions of
magnitude and redshift as for a representative example, the introduction of a faint
sample intro the training has a positive impact on the classification results.

77



5.2 Reaching fainter magnitudes: training beyond 4MOST’s limit

towards the top-left corner. Going from the purely magnitude-limited training to

the addition of fainter supernovae, over the 10 runs the average AUC increased

from 0.547 to 0.961 for KNN, 0.671 to 0.960 for SVM, 0.702 to 0.946 for ANN

and 0.628 to 0.969 for BDT.

Furthermore, we see significant improvements in the purity of our classified

samples. Similar to the ROC curves reaching the top-left of the plot, good

classification is also indicated by purity-completeness curves reaching the top-

right, such as in the example in Fig. 5.4 (right). Notably, adding our faint sample

into the training results in all 10 runs reaching 95% purity for KNN and BDT

(up from 2 and 7 respectively).

5.2.2 Data augmentation

There is another avenue that can be taken to reach fainter magnitudes for our

training sample. A fully representative spectroscopic training sample may not be

necessary with the advent of data augmentation methods. Revsbech et al. (2018)

first demonstrated success in data augmentation of supernova light curves to

increase representivity of training samples using their STACCATO model. New

training data is generated by drawing from Gaussian processes that are modelled

to fit the original light curves.

A similar procedure was applied in the winning solution to PLAsTiCC; Boone

(2019) demonstrates with the software avocado that using expensive spectroscopic

resources is not required when there are well-sampled, intermediate-redshift objects

available for augmenting the training set.

In our case using the SPCC, the test set does not include any classes of objects

that are not present in the training sample. If there are previously unforeseen

objects in the test set that are not in the training sample, then augmentation

cannot help. In the PLAsTiCC competition this was observed with the unknown

class 99, which was featured in the challenge’s test set but did not exist in the

provided training sample (Kessler et al., 2019). Part of the challenge required

participants to return classification probabilities for this ‘Other’ class and successful

algorithms made an effort to classify them, although all classifiers struggled to

identify these unknown objects (Hložek et al., 2020).
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We adapted the source code, avocado, to augment our magnitude-limited

training sample by creating new artificial light curves that are resampled, shifted

in time, and are at different redshifts for a range of observing conditions and

uncertainties (our version is now included in the avocado GitHub)1. We use the

same augmentation procedure of implementing a 2D Gaussian process (dimensions

of time and wavelength), although we make certain changes to avocado, so that

our augmented light curves are specific to our dataset and reflect the kinds of light

curve that we want to classify. Firstly, we change the band central wavelengths

to those of DES to match the SPCC light curves that we are using in the tests.

These are used as wavelength coordinates in the Gaussian process. We also ensure

that our augmented light curves have a number of observations consistent with

SPCC. This is achieved by randomly sampling from a two-peaked distribution

used to model the number of light curve observations in the original dataset.

We use the same avocado constraints on augmented supernova redshifts to

avoid the Gaussian process having to extrapolate far from the available data,

where modelling uncertainties dominate its prediction (0.95zold < znew < 5zold and

1 + znew < 1.5(1 + zold), explained fully in Boone 2019). The next part we change

is the simulation of the light curve uncertainties. As with the original method in

avocado, all the SPCC’s error bars in each band are well-modelled as lognormal

distributions and so we use the lognormal parameters for our dataset’s band noises

to sample flux errors and set the depth of observations in our new light curves.

Finally, we implemented a method to check whether a new light curve would be

useful in the context of our dataset and simulations. The pass criterion is that the

new light curve contains simulated observations in the r-band, including a positive

maximum flux (used to give the supernova’s reference magnitude). Additionally,

we discard any augmented light curves that have redshifts and magnitudes that

fall outside the ranges in the SPCC. We do not have need of the original avocado

methods of preprocessing light curves (accounting for consistent background flux

levels) or augmenting galactic objects (objects in the PLAsTiCC dataset that

have z = 0). Fig. 5.5 shows an example of a supernova light curve with one of its

augmented counterparts.

1https://github.com/kboone/avocado
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z = 0.45

z = 0.69

Figure 5.5: Top: Original light curve (DES SN 013866), a Type Ia supernova at
z = 0.45. Bottom: An augmented version of the original light curve, simulated at
z = 0.69.
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5.2 Reaching fainter magnitudes: training beyond 4MOST’s limit

For augmenting our magnitude-limited training sample, we use the 2D Gaussian

process method in avocado to create up to 50 new versions of each original train-

ing supernova. We found that 50 is sufficient by augmenting our magnitude-limited

training sample in multiples of 10 from 10 to 100, and seeing that classification

(AUC) plateaus for around 40–50 new objects per original light curve. We do not

reuse the same augmented light curves, but instead create a new set of augmented

light curves for each run.

As augmentation simulates new objects at different redshifts, it therefore

requires initial cosmological assumptions1. Before using such a method in a real

cosmological analysis, it will be important to test (with simulations) the impact

of these assumptions on the final cosmological results.

The first augmented training samples we create are from our magnitude-limited

samples discussed in § 5.1. For these we augment the training to extend to fainter

magnitudes and higher redshifts as shown in Figs. 5.6 and 5.7 (MagLimAug).

Without using any of the original SPCC supernovae beyond rAB ≈ 22.5 mag,

augmentation of the training sample has introduced the algorithms to the fea-

tures associated with faint light curves. Comparing these results (Fig. 5.8) to

those of previous training samples, we again see a significant improvement over

the magnitude-limited training sample (Fig. 5.1). However, compared to the

magnitude-limited plus faint training sample (Fig. 5.4), despite being much larger

we do not reach the same classification performance. This is with the exception of

ANN, which, as expected, does well when presented with large training samples

(Goodfellow et al. 2016, Section 1.2.2), achieving higher AUC scores and more

runs that reach 95% purity.

Going one step further, we augment the combined magnitude-limited and faint

supernovae sample (from § 5.2.1), shown in Figs. 5.9 and 5.10 (MagLim+FaintAug).

This differs from the previous augmented training sample as we now start with

‘true’ supernova light curves from fainter magnitudes, enabling the augmentation

procedure to create more realistic faint light curves. The introduction of these

produces our most successfully classified samples (ROC and purity curves in

1This is done using astropy.cosmology.FlatLambdaCDM with Hubble parameter
H0 = 70 kms−1Mpc−1 and matter density parameter Ωm = 0.3
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Figure 5.6: Magnitude histogram for the original training, augmented training
(MagLimAug) and test samples. We augment the original magnitude-limited training
sample from Fig. 4.6, increasing its size by a factor of 50 and extending it to much
fainter magnitudes.
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Figure 5.7: 2D histogram of the relative distributions of redshift and magnitude
in the augmented training (MagLimAug; augmenting the sample from Fig. 4.7)
and test set. Relative training and test numbers in each bin are not proportional,
with more concentrated training supernovae at brighter magnitudes, although the
training sample now covers the range of the test set.
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Figure 5.8: ROC and purity curves for the augmented training sample (MagLi-
mAug). Augmenting the original magnitude-limited sample has a positive impact
on the classification results.

Figure 5.9: Stacked magnitude histogram of the original and full augmented
training (MagLim+FaintAug; augmenting the sample from Fig. 5.2), and test set.
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Figure 5.10: 2D histogram of redshifts and magnitudes for the full augmented
original magnitude-limited training plus faint sample (MagLim+FaintAug). With
full coverage of test set magnitudes and redshifts, there is also a higher concentration
of fainter, high-redshift training supernovae than the previous augmented sample
(Fig. 5.3).
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Figure 5.11: ROC and purity curves for the full augmented original magnitude-
limited plus faint sample (MagLim+FaintAug). Augmenting the additional faint
sample has improved further upon the augmented results from Fig. 5.8.

Fig. 5.11) and, compared to other training samples, is seen by the trend in the

AUC boxplots in Fig. 5.12 and is summarised in Table 5.1.

In Fig. 5.13 we show the average AUC-dependence on redshift, comparing

results for the original magnitude-limited training sample with the final augmented

training sample (MagLim and MagLim+FaintAug). The large increase in size

of training sample when augmenting has likely contributed to the effect of more

predictable behaviour in the algorithms, shown by the very small error bars. Not

only has augmented training improved the AUC scores at high-redshift, but also

generally in low-redshift regions already covered by the magnitude-limited training

sample. However, while consistently close to AUC = 1 at high redshift, further

improvement is required for z < 0.3. Interestingly, the 0.0–0.1 and 0.1–0.2 bins

for SVM actually performed worse for our most successful training sample.

5.3 Feature space

We show t-SNE plots comparing training samples (MagLim, MagLim+Faint,

MagLimAug, MagLim+FaintAug) in Fig. 5.14 to help visualise why greater

success is found with the addition of faint supernovae and augmentation. In each

panel, the test set is the same, but the feature space covered by the training

sample changes. The distribution and orientation of test set objects appear slightly
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Figure 5.12: Boxplots showing the AUC scores over 10 runs for each of the
four algorithms in four of our training sample simulations. The boxes represent
the interquartile ranges, with their values shown in Table 5.1, along with means
and medians. These results are for binary classification from Ia vs. non-Ia class
probabilities. They are defined as MagLim: magnitude-limited training sample;
MagLim+Faint: magnitude-limited sample with additional fainter supernovae;
MagLimAug: magnitude-limited sample augmented; MagLim+FaintAug: combined
magnitude-limited and faint samples both augmented.
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Figure 5.13: Average AUC scores as a function of redshift for all four algorithms,
calculated in bins of size 0.1. Error bars represent the standard error in the average
over the 10 runs. Left: MagLim. Right: MagLim+FaintAug

different due to the differing datasets considered (training and test together) and

also t-SNE treating each plot with a random state instance. For magnitude-limited

training, only a small region of the test set feature space is covered for both Type

Ia and non-Ia supernovae, demonstrating why classification performance is not

very successful. When we consider the proportions of different supernova types

in magnitude-limited training (see next section), we find that the bias towards

bright objects is also a bias towards Type Ia supernovae. Evidently, this is why

there are so few training non-Ia supernovae in the feature space occupied by

those in the test set. However, when the training sample is appended with faint

supernovae and augmented, the training sample itself is not only much larger,

but a significantly larger proportion of the feature space is now covered for the

respective supernovae types, similar to the case for a representative sample as

shown in Fig. 3.3. For MagLimAug, there are still some regions of feature space

that are not covered, showing why this training sample does not perform as well

as either MagLim+Faint or MagLim+FaintAug. This is likely due to avocado’s

redshift constraints, preventing extrapolation far from where there is available data.

It should be noted that the fractions of the supernova types in the augmented

training sample are the same as those present in the original magnitude-limited

sample, meaning that there remains a larger proportion of Type Ia supernovae
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Figure 5.14: t-SNE plots comparing the feature-space coverage of four of our
training samples. For clarity in these plots, one twentieth of the test set is shown
for all, while one twentieth of the training is also shown for the augmented cases.
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5.4 Class balance

in the training sample than in the test set. This has relevance as the balance

of classes in the training sample can potentially have effects on classification

performance.

5.4 Class balance

When testing different training samples the balance of classes is not necessarily

constant. If classes in the training sample are not balanced, then the algorithms

may learn a bias towards the majority class. If the same imbalance exists in

the test set, a class-preference may not be a negative side effect, but may help

reinforce classification based on relative abundance of classes. However, it could

also mean that the algorithm is simply better at identifying one class over another

when, in general, we want a classifier to have the same degree of success when

identifying any object type. Optimal class balance may appear arbitrary and

may not reflect either balance in the training sample, or match with the natural

distribution present in the test (Weiss & Provost, 2003). Some classifiers will

forcibly alter the balance of classes, e.g. Möller & de Boissière (2020) creates a

training sample with equal numbers of Ia and non-Ia supernovae.

Class balance is also important when it comes to assessing classification

performance. A highly imbalanced training sample, e.g. 1 to 100, may achieve

99% accuracy by completely ignoring the minority class. Redefining metrics can

point to where the problem lies and a change to sampling for the distribution of

training classes will be required. This will usually be solved empirically (Chawla

et al., 2004).

We ran several tests in order to analyse whether the balance of classes in training

the snmachine algorithms makes any noticeable difference to classification results.

These are hypothetical tests to investigate the effects of balance, as we can never

know the true balance of classes in a real test set. However, du Plessis & Sugiyama

(2014) finds that by comparing the probability distributions of training and test

data, an accurate estimate of the test set class balance can be determined.

Fig. 5.15 shows how the relative proportions of different supernovae types

in the training and test sets change depending on how the training sample is
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5.4 Class balance

Representative Magnitude-limited

Augmented Augmented changed balance

Figure 5.15: The split between different training and test sets, showing the
proportions of different supernova types, grouped by Type Ia, Ibc and II. The
vertical line in each plot separates the training (left) and test (right) sets. A
representative training sample (size 1103) has proportions of these different types
close to matching those in the test set. A magnitude-limited training sample (size
∼500) has a large bias towards Type Ia, as there is a higher proportion of Type Ia
supernovae at brighter magnitudes. Augmented training has the same proportions
of different types present in its original training sample, although is considerably
larger in size. We can adjust the amount of augmentation per supernova type to
match the balance of classes to the test set.
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5.5 Beyond binary classification

created. A representative training sample has similar proportions of classes as the

test set. We ran a separate test to determine whether the poor results obtained

when using a magnitude-limited training sample are simply because the training

sample does not contain the same balance of classes as the test sample (because,

for example, Type Ia supernovae are typically brighter than other classes). We

fixed the proportion of Type Ia supernovae in the magnitude-limited training

sample to match that of the test sample and find that there is no noticeable

change in classification performance (AUC). The magnitude limit is causing some

other features to be missing from the training sample, hence, to achieve accurate

classification, success cannot be found by simply changing the balance of classes

when the training sample is magnitude-limited.

To address the same bias towards Type Ia when magnitude-limited training is

augmented, we ran a hypothetical test of augmenting training supernovae to match

the balance of classes in the test set, whilst keeping the same total size (comparing

bottom left and right in Fig. 5.15, which, along with the magnitude-limited case,

have the exact same test set). Over 3 runs we saw a small increase in average

AUC of 0.008, 0.011, 0.005 and 0.009 for KNN, SVM, ANN and BDT respectively.

Applying the same technique to a training sample with faint supernovae included

produced negligible change. In reality it will not be possible to know the exact

proportions of different supernova classes in the test set. In practice, finding the

optimal balance of classes in a spectroscopic sample would likely be a non-trivial

task.

5.5 Beyond binary classification

We also ran tests in which the snmachine algorithms are trained to recognise

supernovae as being either Type Ia, Ibc or II, rather than the baseline Ia vs. non-Ia.

This was done for the original magnitude-limited samples and the augmented

magnitude-limited plus faint sample (comparing MagLim and MagLim+FaintAug

to MagLim3Class and MagLim+FaintAug3Class respectively in Table 5.1). Con-

sidering mean AUC scores for MagLim, there is a small increase for ANN and
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BDT although no significant difference is observed by making this change to

classification.

For the augmented case, AUC scores are mostly very similar, the biggest

change being a drop in average AUC of 0.05 for BDT. Also, quite notably for

BDT, having 3 classes causes fewer runs to reach 95% purity - decreasing from

10 to 4. Conversely, SVM sees an increase from 3 to 10 runs whilst keeping

AUC scores fairly consistent. In this 3-class scenario for our most successful type

of training sample, it appears that SVM would be a better choice than BDT,

although BDT would be more suited in all other cases that we tested. ANN also

performs better with 3 classes, although this change is negligible; the AUC scores

barely change at the third significant figure. No change at all is seen for KNN.

5.6 The optimised sample

Augmentation enables us to fill in some of the significant gaps in the test set

feature space that we may not fully cover with our spectroscopic sample. Even

though we have ‘true’ faint supernovae to help train the algorithms with improved

representativity, when combining with the augmented magnitude-limited sample

it is better to augment these as well, as shown in the results summary table

(Table 5.1). Fig. 5.12 shows that we need these ‘true’ faint supernovae in our spec-

troscopic sample to achieve the highest AUC scores. There is a clear improvement

in all algorithms going from purely magnitude-limited (MagLim) to adding faint

supernovae (MagLim+Faint). As previously stated, the same positive trend is seen

when these training samples are augmented (MagLimAug to MagLim+FaintAug).

We also compare these results to the hypothetical case of only having the faint

sample and then augmenting that, with its results summarised in Table 5.1 as

FaintAug. When we augment just the faint sample of supernovae, we get AUC

scores very similar to those for MagLim+Faint (and MagLimAug). This seems

to indicate that the original magnitude-limited sample may not be so crucial

for training, as similar success is found by augmenting just a faint spectroscopic

sample, however, we fundamentally do also need our magnitude-limited TiDES

sample to obtain the best classification results (MagLim+FaintAug). Furthermore,
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classification performance in the case of the augmented faint sample suffers due

to the similar coverage issue of the original magnitude-limited sample, but at the

other end of the brightness scale.

As an attempt to save on computing time and resources, we also consider

the MagLimAug+Faint training, i.e. augmenting just the magnitude-limited

sample and then adding the non-augmented faint sample of supernovae. However,

compared to MagLim+FaintAug(3Class), this is not as favourable for classification

in terms of AUC or purity.

With an original spectroscopic sample extending as faint as possible, these

results highlight the important role of augmentation to achieve successful pho-

tometric classification in future supernova surveys. For this particular purpose,

KNN, SVM, ANN and BDT all appear to be reliable machine-learning algorithms,

reaching high AUC scores with very small variations, and also being able to

achieve 95% purity over all test runs.

The work summarised in these last three chapters is published as a research

paper in MNRAS (Carrick et al., 2021).
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Table 5.1: AUC means, medians, interquartile ranges, maxima and minima for
different types of training sample over 10 runs, and the number of those runs that
reached 95% purity. The first four rows for each algorithm are the results shown in
Fig. 5.12. We compare our results with additional training samples, including just
the augmented faint sample (FaintAug). We investigate how snmachine performs
when returning 3 class probabilities (Ia, Ibc and II) for each supernova in the test
set for magnitude-limited and augmented magnitude-limited-plus-faint samples
(MagLim3Class and MagLimFaintAug3Class). Also, for the magnitude-limited case,
we include results when using no redshift (MagLimNo-z). Finally, we include results
from the runs investigating how adding the fainter supernovae (not augmented) on
to the augmented magnitude-limited sample affected results (MagLimAug+Faint).
We highlight in bold our most successful training sample for each algorithm, which
is either MagLim+FaintAug, or MagLim+FaintAug3Class.

Algorithm Training Mean Median IQR Max Min Purity 95%

KNN

MagLim 0.547 0.525 0.056 0.741 0.446 2
MagLim+Faint 0.961 0.962 0.001 0.964 0.953 10

MagLimAug 0.955 0.958 0.011 0.964 0.934 3
MagLim+FaintAug 0.985 0.985 0.001 0.987 0.983 10

FaintAug 0.973 0.974 0.004 0.980 0.958 10
MagLimNo-z 0.631 0.640 0.053 0.707 0.536 0

MagLim3Class 0.543 0.525 0.064 0.711 0.436 2
MagLim+FaintAug3Class 0.985 0.985 0.001 0.987 0.983 10

MagLimAug+Faint 0.976 0.976 0.001 0.978 0.972 10

SVM

MagLim 0.671 0.657 0.015 0.795 0.640 1
MagLim+Faint 0.960 0.963 0.018 0.972 0.942 4

MagLimAug 0.942 0.944 0.005 0.956 0.916 3
MagLim+FaintAug 0.980 0.980 0.002 0.984 0.976 3

FaintAug 0.953 0.960 0.009 0.965 0.914 6
MagLimNo-z 0.617 0.601 0.088 0.714 0.504 2

MagLim3Class 0.670 0.660 0.019 0.748 0.646 2
MagLim+FaintAug3Class 0.982 0.983 0.001 0.986 0.976 10

MagLimAug+Faint 0.968 0.969 0.004 0.972 0.958 1

ANN

MagLim 0.702 0.700 0.011 0.734 0.675 0
MagLim+Faint 0.946 0.948 0.005 0.952 0.939 6

MagLimAug 0.965 0.964 0.005 0.973 0.956 9
MagLim+FaintAug 0.985 0.985 0.005 0.986 0.984 10

FaintAug 0.957 0.962 0.027 0.978 0.926 9
MagLimNo-z 0.613 0.614 0.060 0.688 0.568 0

MagLim3Class 0.711 0.708 0.042 0.803 0.621 0
MagLim+FaintAug3Class 0.986 0.986 0.001 0.988 0.984 10

MagLimAug+Faint 0.978 0.977 0.002 0.982 0.976 9

BDT

MagLim 0.628 0.622 0.057 0.733 0.584 7
MagLim+Faint 0.969 0.969 0.002 0.974 0.964 10

MagLimAug 0.955 0.954 0.008 0.960 0.946 1
MagLim+FaintAug 0.984 0.984 0.001 0.985 0.983 10

FaintAug 0.956 0.959 0.007 0.974 0.922 10
MagLimNo-z 0.642 0.635 0.062 0.709 0.560 6

MagLim3Class 0.645 0.650 0.081 0.710 0.580 6
MagLim+FaintAug3Class 0.979 0.980 0.002 0.981 0.977 4

MagLimAug+Faint 0.976 0.976 0.001 0.978 0.974 4
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Chapter 6

Contamination of the

Spectroscopic Sample

Our work on optimising a training sample relied on the assumption that every

object within the initial spectroscopic sample was correctly classified. Previous

studies have investigated the implications of contamination in a photometric

sample of supernovae for cosmological analyses (Jones et al., 2017; Vincenzi

et al., 2021a), however, there has been little research done on the effects of a

contaminated training sample when using machine learning for classification. This

chapter discusses how accurate a realistic sample would be and the effects of

contamination on the resulting photometric classification.

6.1 Choice of software

Since the start of the project there have been many new and innovative classifiers

created (see § 3.1 for some examples), as well as much larger supernova datasets

such as PLAsTiCC. In this part of the project we use a different classifier and a

much newer dataset.

We use the software SuperNNova (Möller & de Boissière, 2020), due to its

proven success and ability to deal with massive datasets using GPUs (Graphics

Processing Unit). In recent years, GPUs have been much more preferable than
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their CPU counterpart for running intense computations, particularly for running

in parallel (Owens et al., 2008). Currently, the limiting factor is access to the

GPU hardware, due to high price and high demand. We were able to gain access

to the National Energy Research Scientific Computing Center (NERSC)1 through

DESC.

We use SuperNNova’s deep recurrent neural network architecture for pho-

tometric classification of transients. Recurrent architectures are well suited for

time-sensitive data, most commonly used for audio data (Mehri et al., 2017;

Sutskever et al., 2014). This is because connections between hidden units allow a

time-delay, controlling the flow of information to develop the model in such a way

that it learns correlations across time. For this reason, supernova light curves are

highly compatible with this type of network. As stated in Lochner et al. (2016)

and Möller & de Boissière (2020), the choice of feature extraction method can

significantly impact classification results. Therefore, the deep learning approach of

SuperNNova is highly advantageous because feature extraction is not necessary,

as it is in snmachine. The downside of this is that SuperNNova requires a lot

of light curves to optimally train a model. Using simulations, there is no shortage

of data and the issue becomes what is computationally possible.

6.1.1 Dataset

The data we use consists of simulated LSST transient light curves created using the

SNANA package (Kessler et al., 2009). The dataset is similar to the DES simulations

in Vincenzi et al. (2021b), but made to resemble LSST observations, and was

created by others and provided by Maria Vincenzi (private communication). The

transient observations’ set of filters are u, g, r, i, z, y. The dataset objects are

identified by their SNTYPE, an arbitrary number assigned to each class. Included

types are ‘normal’ Type Ia supernovae (SNTYPE 1, SNIa-SALT2; Guy et al. 2007),

peculiar Type Ias including SNIax (SNTYPE 11, SN2002cx-like; Foley et al. 2013;

Li et al. 2003) and SNIa-91bg (SNTYPE 12, SN1991bg-like; Filippenko et al.

1992), SNIbc (SNTYPE 20), SNII (SNTYPE 20), SLSN (Superluminous Supernovae,

1https://www.nersc.gov/
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SNTYPE 70), TDE (Tidal Disruption Events, SNTYPE 80) and CART (Calcium-

Rich Transients, SNTYPE 50). Supernovae of Type Ibc and II were created using

the core-collapse templates from Vincenzi et al. (2019). The total dataset includes

a colossal ∼4.5 million objects, split by WFD and DDF observations, although we

use only a small WFD subset of this to simulate a TiDES spectroscopic sample

of approximately 30,000 objects. Exact values of the training, validation and

test sample sizes used in our tests are 28,215, 17,634 and 17,635 respectively.

This is a small training sample for SuperNNova and initial tests using default

hyperparameters produced unfavourable classification (e.g. AUC ≈ 0.65 and

accuracy ≈ 0.55). We therefore ran many tests in order to find an appropriate

set of hyperparameters (discussed in the next section) for this dataset in order to

achieve successful results on the order of success from Möller & de Boissière 2020.

We apply binary classification of normal Type Ia supernovae (SNIa-SALT2),

vs. non-Ia, plus peculiar Ias including types Iax and Ia91-bg. From now on we

implicitly include these when referring to non-Ia. One important aspect of the

classification pipeline to note is that SuperNNova enforces class balance, so

that the model is trained on an equal number of Ia and non-Ia objects. While it

will not be far off from the true split of classes (TiDES anticipates ∼17,000 Type

Ia supernovae from its ∼35,000 sample; Frohmaier et al., in preparation), this

process artificially changes the balance from the dataset. Furthermore, we refer

to plots tracing the training/validation stages and SuperNNova’s metrics that

assess classification on the final test set. These include AUC, purity and efficiency

(TPR) as defined previously, and also accuracy, a metric that is suitable for when

classes are balanced. Accuracy is defined as

Accuracy =
TP + TN

TP + TN + FP + FN
(6.1)

and is a measure of the proportion of correctly classified objects, i.e correct

identification of both the positive and negative classes, following the same Ia vs.

non-Ia classification introduced in § 3.1.1. Since we are dealing with labelled data,

the model is trained by supervised learning.
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6.2 Hyperparameters in SuperNNova

The model is trained in a given number of epochs (not to be confused with light

curve epochs), in which a training epoch consists of passing every training object

through the network and, at the end of the epoch, the model is tested on the

validation sample. Each individual epoch is split into batches, where we use the

default batch size of 128. The model’s weights are updated after every batch.

After all training epochs have been completed, the model is applied to a final test

sample, a set of objects separate to the training and validation samples that the

model has never seen before. The results of this final test produce the metrics

(accuracy etc.) to evaluate the success of photometric classification.

We use the SuperNNova implementation from GitHub1 and, based on initial

testing, use the following hyperparameters values. These parameters are listed in

the documentation.

By working on NERSC, we can utilise SuperNNova’s GPU compatibility

by adding the use cuda argument. cuda is a library that accelerates training of

neural networks using GPUs (Chetlur et al., 2014). It is necessary as a way of

configuring GPU parallelisation.

We set data fraction = 0.2. This value has no significance on its own, but

is used to produce a training sample of ∼30,000 objects from our subset of data.

In reality we may not have as many objects with spectroscopic classification for

validation, and our test sample is likely to be much larger as well (all LSST

transients that have a spectroscopic host-galaxy redshift).

We include spectroscopic redshift information for the reasons discussed in

§ 4.4.3. This is done by setting redshift as ‘‘zspe’’.

The learning rate is set as 10−4, one tenth of the default value. This was

chosen as it produced a model that smoothly converged to a training/validation

plateau without resetting. However, the learning rate is not such a simple

parameter to choose, since it affects the amount that the model’s weights are

updated after each training batch and requires fine-tuning to achieve a balance

between the model overfitting and not learning enough. Accuracy and loss during

training are illustrated in Fig. 6.1 to show this. Indeed, in this case, the validation

1https://github.com/supernnova/SuperNNova
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6.2 Hyperparameters in SuperNNova

Figure 6.1: Accuracy (top) and loss (bottom) calculated after each training epoch
(step) for the training and validation samples. With learning rate set to 10−4,
the model’s accuracy converges smoothly, shown by the curve flattening. However,
discrepancy between the training and validation implies overfitting as the model does
not generalise well to data other than the training sample. Significant overfitting is
seen in the validation loss that increases before the model is fully developed: given
these settings, training is optimised around epoch 250 (minimised loss), although
at this point accuracy has not plateaued and loss is still relatively high.
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loss increased significantly before the training loss had minimised over many

epochs. Furthermore, to produce this model we used 1,000 epochs. This amount

is much higher than should be necessary (Möller & de Boissière, 2020), and takes

∼3.5 hours. Hence, rather than simply choosing a learning rate, we use cyclic

learning.

SuperNNova has the ability to apply cyclic learning. This innovative method

varies the learning rate in cycles, reaching an optimised model much faster (Smith,

2017). Using cyclic learning, the model is trained in as few as 30 epochs, changing

phase at epochs 10 and 20, and taking <10 minutes. This is presented in Fig. 6.2.

At least the same levels of accuracy are achieved as our previous example in

Fig. 6.1. Overfitting is still present but to a much lesser extent.

Finally, we apply the cosmo normalisation to the data. As we use redshift

information, this normalisation is used to remove distance information of Type Ia

supernovae by normalising each light curve to 1, so that any bias in classification

for cosmology is removed.

6.3 Testing contamination

6.3.1 Changing object types

To test the effects of a contaminated training sample on final classification we run

tests on the same selection of objects, first with a perfect spectroscopic sample,

and then with a contaminated sample following the error rates of DASH (Deep

Automated Supernova and Host classifier)1 presented in Fig. 6 of Muthukrishna

et al. (2019b): 1% of Ias (normal) are misclassified as Ia-91bg and 16% of Ia-91bgs

are misclassified as Ia. For Ibc it is a bit more complicated as Ibcs are grouped

in our dataset. Two out of the six DASH subtypes (Ib-norm and Ic-broad) have

6% chance of being misclassified as Ia, so, assuming Ibc subtypes are equally

populated, 2% of all Ibc are misclassified as Ia. For misclassifications between

Ibc and II, nothing was changed as these types both use the same identifier value

1This assumes that we use DASH to classify TiDES spectra. DASH itself uses deep learning
by training on classified spectra from the literature, which may also contain errors. This effect
should be looked at in the future.
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Figure 6.2: The same as Fig. 6.1 but for cyclic learning. Using cyclic learning, we
can achieve more successful training with as few as 30 epochs.
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(SNTYPE 20 as discussed in § 6.1.1) in the simulated dataset. Furthermore, they

both also exist together in the non-Ia class, so this type of misclassification does

not affect the error rate of Type Ia supernovae.

We ensure that the test sample objects’ classifications are not changed by

checking against the list of SNID dataset objects that were not used in the original

test set. Any other objects’ classifications can be changed, and we do this by

changing a random selection’s SNTYPE with probabilities following the rate of

misclassifications mentioned above (e.g. for a type Ia supernova, there is a 1%

chance of changing it to a Ia-91bg and a 99% chance of it staying the same).

To use the altered copy of the dataset, an amendment was required in SuperN-

Nova to make sure that the same objects were chosen for training/validation/test.

Using the same seed value was not enough due to the dataset changes. Creating

an output directory containing a copy of the file of SNIDs used originally and

removing SuperNNova’s method to create this file produces the exact same

training/validation/test split.

6.3.2 Results

As we use exactly the same selection of training objects in each test, any variation

in our results comes from inherent randomness associated with neural network

training. In particular SuperNNova’s use of variational inference uses probability

distributions to model weight uncertainty (Blundell et al., 2015; Gal & Ghahramani,

2016).

Following all training and validation stages, we show results of classification

on a previously unseen set of test data in Fig. 6.3. Applying the contamination

following DASH’s error rates, we expected to see a decline in performance, but

we do not see any significant decrease. Showing very similar levels of success, it

appears that the network has chosen to mostly ignore the presence of false objects

in the training, and instead focuses on the majority of what is included. We also

tested a hypothetical scenario in which the training sample from our dataset has

a 5% level of contamination, i.e. 5% (compared to 0.5% following DASH) of

labelled Ias in the training sample are non-Ias and a similar number of Ias are

labelled as either type Ia-91bg or Ibc. This test was carried out in order to see
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6.3 Testing contamination

Figure 6.3: Boxplots summarising the results of 10 runs for the cases of a perfectly
classified spectroscopic training sample, a contaminated training sample following
the error rates from DASH and another sample in which the contamination is
increased to 5%. Dashed line: Mean. Solid line: Median. Contamination appears
to have little effect on classification performance.
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whether a higher contamination would produce the expected drop in classification

performance. However, even if we increase contamination to 5% we still see very

little change from our test metrics: purity drops by less than 1% (from average

93.65%) and accuracy drops by 0.1% (from average 94.08%). AUC is the most

constant score, only varying at the fourth significant figure: AUC = 0.9845 for

both uncontaminated and 5% contaminated training, and AUC = 0.9843 using

DASH levels of contamination.

Efficiency seems to be the odd one out of these metrics, as it experiences a

slight increase (<1%, from average 94.73%) when using contaminated training.

Furthermore, the spread of results reduces in all metrics apart from efficiency.

These results indicate that the network is more likely to classify more objects

of both Type Ia and non-Ia as Type Ia when the training is contaminated; it

returns more correct Type Ia objects (increasing efficiency), while also incorrectly

classifying non-Ia objects (reducing purity). This makes sense, as training the

model with a contaminated sample makes it less sure about the true class of

objects. Conversely, it is perhaps surprising that it seems to choose Type Ia as the

preferential class as it contains less variation (only normal Type Ia supernovae, plus

contamination), compared to non-Ia objects that have a much wider distribution

of features.

The study Vincenzi et al. (2021a) found that the level of non-Ia contamination

in a photometric sample ranges between 0.8–3.5%, depending on simulation models

used. They demonstrate that cosmological bias due to a contaminated photometric

sample is therefore small (bias on w of <0.008, and <0.009 and <0.108 for w0

and wa respectively) and can be mitigated further combining supernova data

with CMB measurements. We find that a contaminated training sample makes

little difference to the classification performance. An analysis through to the final

cosmology has not been done yet, although, given these results, the outlook is

very promising for upcoming supernova surveys.
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Chapter 7

Unsupervised Classification in

the ESO Archive

This chapter is dedicated to a separate data science project undertaken as part of

my PhD studies. ESO is involved with ESCAPE1 (the European Science Cluster

of Astronomy and Particle physics) to improve data workflow and data-driven

research. Using data from the ESO archive, we apply unsupervised deep learning

in a separate classification study. With numerous type of astronomical sources

from many different instruments, it is a big challenge to search for specific objects

and ambiguity can arise from mistakes in object metadata, inconsistencies between

different sky surveys and even a lack of thorough physical understanding of such

objects.

To address this, ESO is developing deep learning approaches to classify data in

its vast archive. The work predominantly takes place on Rostam, a computing clus-

ter including four GPUs. Using the mantra ‘letting the data speak for themselves’,

we use an autoencoder network to determine important features that characterise

spectra. By compressing spectra and decompressing in a reconstruction task, the

network is forced to create a low-dimensional representation of the data. Rather

than relying on human efforts to judge how data in the archive should be classified,

a deep learning approach allows the machine itself to determine what meaningful

1https://projectescape.eu/
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features are hidden in the data. This differs from the machine-learning pipeline

snmachine introduced in § 3.1 as distinct wavelet features were extracted from

the data to be used as input for the classification algorithms. In this project,

the input is the data itself. Archive users will eventually be able to make more

meaningful searches based on these features, i.e. what the machine defines as

‘similar’. The ‘classification’ the network determines is learned without supervision

from the low-dimensional representation of the data. This interpretation has some

ambiguity, but also contains learned concepts of real astrophysics.

7.1 Convolutional autoencoder

An autoencoder architecture consists of an encoder, in which data is compressed

into a low-dimensional representation (or ‘code’) and a decoder, which decom-

presses the data back to the original dimensionality. The decoder typically has the

opposite structure to the encoder and both constituents can be constructed as one

of many different types of neural network model, such as convolutional or recurrent.

In this work we use a deep convolutional autoencoder. In convolutional layers the

neuron weights are shared, depending on the size of the kernels. This process is

significantly faster than treating each pixel individually and is typically associated

with image recognition tasks (Simonyan & Zisserman, 2015). Convolution can be

applied to spectra as, in general, adjacent pixels will be closely related due to the

spectral continuum and spectral features may be found across multiple pixels.

We present a detailed diagram of the network in Fig. 7.1. The input data, 1D

vectors of flux measurements (spectra from the ESO archive), are transformed

down to their low-dimensional representation through 15 convolutional layers and

one final fully-connected layer. Through another fully-connected layer and 15

up-convolutional layers, the code is transformed back to the original spectrum

dimensionality. The network determines what information in the data is important

by being trained to reconstruct the original input spectra. This reconstruction pro-

duces the output comparison to the input spectra, which is required to determine

a loss for training the model.
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Figure 7.1: Detailed architecture of the deterministic autoencoder. Due to lack of
space, not all the layers have been visualised. The ‘k’ values given are the kernel
sizes.
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Figure 7.2: The variational autoencoder architecture. This is identical to the
deterministic autoencoder in Fig. 7.1, with the exception that the code is not
directly connected to the encoder, but is drawn from learnable parameters of a
normal distribution.

Two autoencoder types were tested: a deterministic autoencoder, following the

description above, and a non-deterministic variational autoencoder, in which the

code is not directly connected to the encoder, but consists of values drawn from

a normal distribution defined by a mean and standard deviation for each latent

variable learned by the network (Kingma & Welling, 2014). A simple schematic

of the variational counterpart is shown in Fig. 7.2.

After combining the weights at each network connection, the strength of the

neuron output is determined by a learnable parameter constrained by an activation

function. Neurons that provide the required flow of information for reconstruction

are set as active through training. In this network, neuron outputs are calculated

using a Leaky ReLu activation function, which has a non-zero gradient over its

entire domain (Leaky Rectified Linear Unit, Maas et al. 2013); it allows a small

leak in signal even when the neuron is not active.

The model automatically learns features of the data by passing it through the

information bottleneck (Tishby et al., 1999). Each node in the latent space is

assigned a feature that contains information necessary for reconstruction. This is

an example of representation learning (Bengio et al., 2013). Training the network

model to reconstruct spectra is done by optimising a pixel-level accuracy through
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minimisation of the L1 loss function, which is empirically calculated as

L =

∑
i∈M |xi − x̂i|

n
, (7.1)

where i is the pixel index, x and x̂ are the original and reconstructed spectral

flux respectively, and n is the total number of pixels. M is a mask which only

considers pixels that we are interested in, i.e. it ignores the ‘zero-regions’ defined

during the data preparation (see § 7.2). Loss is monitored via testing with a

validation sample every epoch and the training progress can be saved at any epoch

to continue developing the model later. Training and validation subsamples are

split after sorting by each spectrum’s ADP ID, a unique identifier that has no

physical bearing on the spectrum. Once the loss has stabilised, the network model

has converged and cannot be improved upon further without changing its training

sample or architecture, which would generally require developing a new model

from scratch.

7.2 Preparing the data

The archive data we used were observations consisting of 272,376 stellar spectra

obtained using the HARPS (High-Accuracy Radial velocity Planet Searcher)

instrument, a high-resolution spectrograph dedicated to the discovery of exoplanets

(Pepe et al., 2002).

Before training, it is essential to have data that is homogenous, so that the

network does not learn to interpret inconsistencies such as instrumental effects.

Three ‘zero-regions’ are included at the start, middle and end of each HARPS

spectrum. These zero-regions were defined based on the wavelength limits of

non-zero flux regions when considering all spectra in the dataset. This ensures

that all spectra have the exact same start and end wavelengths, and also have the

same gap in the middle, an instrumental characteristic present to some extent in

all dataset objects. Therefore, a constant mask covers all the spectra at the cost

of losing a small fraction of pixels, and instrumental artefacts are removed whilst

the astrophysical interpretation of the spectra remains.
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It is also necessary that the spectra have exactly the same dimensionality.

The total spectrum size was chosen to be 327,680 (218 + 216) for computational

purposes, as each time the data is compressed via network layers its size is reduced

by a factor of 2, and also because this number of pixels covers the whole spectral

range whilst adding little unnecessary padding either side of the non-zero regions.

Each pixel of the spectra represents a specific wavelength. Using pixel indices

to represent wavelengths means the input is only a 1D vector of flux values, a

much simpler dataset to deal with than combined wavelength and flux data. The

wavelength range of the spectra is 3,785Å to 6,910Å.

Additionally, we remove ‘unstable’ spectra, defined as those that contain

undefined (NaN) or unrealistic (e.g. > 108 adu) flux values, reflecting instrumental

errors.

Preparing the data is arguably the most essential step prior to training a

network model, as lack of homogeneity could result in chaotic interpretations

with learned features that are not helpful in understanding any of the underlying

astrophysical phenomena.

7.2.1 Unique objects

In order to investigate the network’s interpretation of different objects, we want

to study the learned latent representation with respect to a sample of ‘unique’

HARPS objects, i.e. a sample in which each HARPS object appears only once.

This presented its own challenge, as the HARPS dataset includes many different

surveys that do not necessarily use the same name identifiers for the same objects.

Furthermore, there are several instances of objects being assigned incorrect meta-

data, such as name typos. There are also observations of solar system objects

such as the Sun, Moon, Jupiter and its Galilean moons, and asteroids. As these

are not stellar spectra characteristic of HARPS’ main objective, they contaminate

the sample. However, they were left in to keep the degree of supervision close to

zero.

Several approaches were tested to make an algorithm that produced a set

of true unique objects. We tried several different clustering algorithms such as

nearest neighbour searches including sklearn.neighbors’ KDTree and BallTree
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algorithms, and also sklearn.cluster.DBSCAN, a density-based clustering. The

aim was to identify unique objects based on their cluster of sky coordinates, as

observations of the same object should appear at the same points in the sky.

However, a flaw of this method is due to solar system objects such as those

previously mentioned, especially the Sun and Moon, whose positions in the sky

constantly change. These objects would always be assigned to multiple different

clusters. The main difficulty lies in fine-tuning the clustering method, especially as

the number of observations of different objects is very inconsistent: some objects

may have one or two observations while, e.g. αCen-B has ∼20,000.

DBSCAN’s ε parameter is defined as a limit on distance for two samples to be

considered in their mutual neighbourhood, but is not necessarily a limit on distance

between points in a single cluster. The ‘elbow method’ was used to determine the

optimal ε parameter. Using Bokeh1, an interactive tool to visualise results of

clustering, we show an example of why this method is insufficient in Fig. 7.3 to

determine unique objects. By cross-checking with additional metadata, we notice

that that increasing ε from a low value may, in some areas, combine observation

clusters of multiple objects into one before it correctly identifies single low-density

clusters. Hence, a perfect solution could not be found and it became a case of

balancing between over- and under-clustering. Initial tests made it apparent that

it was impossible to obtain a set of unique objects without considering their object

names at all.

In the end, we defined our set of unique objects based on their ‘fixed’ names:

the objects’ names were made upper-case and any dashes, underscores or points

were removed. This results in a sample of 7,653 unique objects. We accept the

contamination and potential name errors in this analysis as it can only affect

the results negatively, producing a lower-bound to success rather than being

overly-optimistic.

7.2.2 Latent space

The latent space is the lowest-dimensional representation of spectra in the data,

sandwiched by fully-connected layers joining the encoder to the decoder parts

1https://bokeh.org/
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ε = 0.004 ε = 0.005

ε = 0.006

Figure 7.3: A snapshot in R.A. and dec. of some of the HARPS data for different
values of ε. Blue points are individual observations and red points represent a
single observation within a cluster determined by the DBSCAN algorithm. For
ε = 0.004 the object “E95” is split into two clusters. Increasing to ε = 0.005, this
is still the case and the two observation clusters of objects “IC4651NO9122” and
“IC4651NO9025” have incorrectly been identified as one cluster. At ε = 0.006 “E95”
has been correctly identified as one cluster, although at the expense of incorrect
clustering elsewhere.
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of the network. Reconstruction quality is highly dependent on the number of

dimensions in the latent space. In the VAE, disentanglement is used to ensure

that each node of the latent space has as close as possible to its own unique

significance in representation of the data. A fine balance of disentanglement is

required as: too little and the interpretation of the data is spread across too many

dimensions to understand individually, and multiple latent nodes may be assigned

the same features; too much and the reconstruction suffers as the finer details are

completely overlooked and the network cannot preserve details any longer as it

is too simplistic to reconstruct spectra and learn informative information. We

want each latent node to be ‘orthogonal’, where the features are independent of

each other (Burgess et al., 2018). In the variational autoencoder, the amount of

disentanglement can be controlled by λ, a training parameter and weighting that is

used to enforce orthogonality between features (Tschannen et al., 2018). We find

that λ = 0.3 is an optimal value for this task, where no two significant dimensions

show significant correlation, implying a sufficient level of disentanglement.

The number of latent dimensions also has a significant impact on the recon-

struction quality of spectra. Dimensions between 2 and 128 in powers of 2 are

tested. We present results for the baseline 2, and also 8 and 128 which exhibit sim-

ilar behaviours in their latent information (the other networks do not contribute

other findings unique to our analysis). Examples of reconstruction of a spectrum

are shown in Fig. 7.4 using these latent spaces for both the autoencoder and

variational autoencoder. As mentioned above, disentanglement comes at the cost

of reconstruction quality, and a higher number of latent dimensions is required to

compensate and produce adequate reconstruction.

7.3 Physics learned by the network

To determine what the network has learned, we compare its low-dimensional

representation of the data to physical tags for every possible dataset object, cross-

matching ADP IDs. We utilise a set of available astrophysical and observation-time

features including effective temperature, surface gravity, radial velocity, airmass
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2D

8D

128D

Figure 7.4: Reconstruction of an example spectrum for both the deterministic
(left) and disentangled variational (right) autoencoders for different latent space
dimensions, labelled 2D, 8D and 128D. The blue spectrum is the input and the
orange spectrum is the output reconstruction. Reconstruction quality is reduced
for the sake of disentanglement, and improved when latent dimensions is increased.
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and signal-to-noise ratio from SIMBAD (Wenger, M. et al., 2000) and the TESS

Input Catalogue (Stassun et al., 2019).

Interestingly, with λ = 0.3, latent dimensionalities of both 8 and 128 yield

six informative dimensions. The measure of informativeness of nodes is given by

the median absolute deviation (MAD) of statistical dispersion. The logic behind

this is that dispersion represents underlying variability across multiple objects.

When using a latent space of 128 dimensions, we find that the autoencoder has

assigned specific nodes to radial velocity and effective temperature. The node

assigned to effective temperature also correlates with surface gravity, due to the

close relation between these two physical parameters; a linear correlation between

log(g) and log(Teff is found following both parameters being determined through

photometry (e.g. uvby β, Napiwotzki et al. 1993). The remaining 4 informative

dimensions do not correlate with physical parameters, but leave room for future

study into what exactly makes them ‘informative’.

Fig. 7.5 shows the relationships between node 85 of the latent space, and the

effective temperature Teff and surface gravity log(g). Colour-coding the datapoints

by spectral type of the stars helps to illustrate the astrophysical variability with

respect to these parameters and how they are picked up by the network. The

correlation between this node and effective temperature appears much tighter,

although the fact that there is correlation with two astrophysical parameters is

due to the shared information between effective temperature and surface gravity of

stars, and the network does not need to dedicate separate nodes for these different

physical characteristics.

Fig. 7.6 shows the relationship between node 124 and radial velocity. The

network has clearly learned the concept of zero-velocity and formed a symmetric

function around this point. However, including spectral type information reveals

that the correlation is stronger for cold stars, while for hot stars the correlation

vanishes. This is possibly due to increasing sparseness of absorption features with

increasing temperature.

Through reconstruction training, the network has determined what it considers

important information encoded within the stellar spectra. This is effectively the

autoencoder’s own classification of the data, and includes notions of real astro-

physics along two of its informative latent dimensions. The network’s perception
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Figure 7.5: Correlations between node 85 values and Teff (top row), and log(g)
(middle row). In the right panels, the data points are colour-coded by the spectral
type of the star, as given by SIMBAD. On the bottom we show the relationship
between these astrophysical parameters.
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Figure 7.6: Correlation between node 124 values and radial velocity. The top-left
panel shows all the data points that have radial velocity labels to compare node
values to. Data points that have a spectral type are colour-coded in the top-right
as in Fig. 7.5. The bottom row shows how different temperatures appear to have
been treated differently (left: O-type; right: K-type).
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of astrophysics is not obvious, shown by obscure relationships between known

radial velocity and effective temperature values and the code. However, there are

clear correlations, particularly noticeable when colouring the data based on the

different objects’ spectral types, indicating that the network has managed to infer

real physics completely unsupervised.

While the other informative dimensions do not correlate with known physical

values, this does not mean that they do not include physical information. The fact

that the network has found information in the data that distinguishes between

different spectra, yet appears ambiguous to us, suggests that there are underlying

physical relations. This may include currently unknown astrophysics that may be

worth pursuing in the future.

7.4 Telluric rejection

While training our models, we noticed interesting behaviour in the reconstruction

of spectra that contain prominent telluric lines. The network treats these lines

completely differently to stellar lines, omitting them from reconstruction, such

as in the example shown in Fig. 7.7. Autoencoders are trained to reconstruct

data via compression at the latent space bottleneck. This means that it needs to

preserve what it deems useful information, hence, telluric lines do not appear to be

‘useful’. The data that is run through the network is in barycentric coordinates, in

which spectra are transformed into a space as though they are observed from the

centre of mass between the Earth and Sun (to account for the Earth’s motion with

respect to the Sun)1. In this coordinate system, the position of stellar absorption

lines depends only on the individual star’s relative velocity. However, from this

perspective, there is no clear relation between the spectral continuum and position

of telluric lines, and the network is likely rejecting them as noise as they can’t

be used as information to improve reconstruction. Trained on many spectra,

random-distributed noise is already rejected from the reconstructions, as shown

previously in Fig. 7.4.

1The alternative is topocentric, an Earth-centric system which is how the spectra were
originally observed. Telluric lines appear at consistent wavelengths in this system.
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Figure 7.7: Blue is the input spectrum and orange is the reconstructed version. The
autoencoder can decompose physically-meaningful components (telluric lines) out
of the input. The region annotated by the red circle indicates a high density of such
reconstruction rejections. Noise in the reconstructed spectrum is reduced compared
to the input, while stellar absorption features are preserved. The reconstruction
in the zero-regions is somewhat chaotic as the loss function is only computed for
non-zero-regions.
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Further work is needed to quantify the quality of telluric rejection, as this

aspect of the network’s output could be a useful tool. This would require an

appropriate metric that incorporates a pseudo-truth, such as Molecfit2, a tool

that corrects for atmospheric absorption independent from the autoencoder.

2http://www.eso.org/sci/software/pipelines/skytools/molecfit
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Chapter 8

Conclusions

In this thesis we have presented research using AI methods in two different

astronomical contexts. In the main project we find that despite limitations due

to survey constraints such as spectroscopic resources, machine learning and data

science techniques can be successfully used to increase the size of a classified

sample of Type Ia supernovae. This in turn is expected to enable constraining of

cosmological parameters to an unprecedented degree of precision. In a separate

project, we find that machines can infer real astrophysical parameters from a

network’s own interpretation of data using deep learning. These are two specific

examples of applying AI, taking very different approaches to different tasks.

8.1 Optimising a magnitude-limited training

sample of supernovae

4MOST-TiDES expects to obtain the largest spectroscopically confirmed sample

of supernovae to date (>30,000), including Type Ia supernovae which will be

used for precision cosmology. However, the transients that are not followed up

spectroscopically may still be useful for cosmology. Herein lies the necessity

for photometric classification. Using the capabilities and survey constraints of

4MOST, we forecast a spectroscopic sample of supernovae that is magnitude-
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limited, reaching rAB ≈ 22.5 mag. Using machine-learning algorithms, we find the

greatest success in the results of photometric classification when we combine this

sample with fainter supernovae obtained from larger spectroscopic facilities and

then augment the whole sample, to be used as a training set. Whilst on its own,

4MOST cannot give us a fully representative training sample, the accumulated

dataset will provide an important basis for a training sample to photometrically

classify other LSST transients for which we have host-galaxy redshifts. Including

our photometrically classified sample, we expect to produce the largest ever

cosmological sample of Type Ia supernovae by more than an order of magnitude.

We started by demonstrating that a representative training sample (of size

1,103) will yield good classification results with snmachine through supervised

learning. Algorithms achieve AUC > 0.9 and consistently high purities reaching

95% (with the exception of ANN, although it is important to note that ANN

will outperform the other algorithms with much larger training samples). This

success is attributed to the fact that the algorithms are trained on features

associated with the full range of magnitudes and redshifts in the test set. However,

we find that a representative training sample of this nature will not be easily

attainable with present spectroscopic facilities. These tests using representative

training were also carried out to investigate the role of redshift as an additional

feature for classification. We find a consistent improvement in AUC scores

when including redshift, demonstrated by a noticeable increase in mean and

median over 20 runs. Our results are similar to those in Lochner et al. (2016),

although we consider inclusion of redshift important due to its significant impact

on classification performance, in contrast to their conclusion that redshift is

a relatively unimportant feature. Going from no redshift to photometric and

spectroscopic redshifts respectively, we find an increase in average AUC over 20

runs from 0.959 to 0.962 and 0.964 for KNN, 0.947 to 0.963 (both redshifts) for

SVM, 0.914 to 0.934 (both redshifts) for ANN and 0.953 to 0.965 and 0.966 for

BDT. There appears to be no clear winner between photometric or spectroscopic

redshift for this particular simulated dataset, both achieving very similar results.

This is surprising, given the fact that photometric redshifts are usually less

accurate and less precise than spectroscopic redshifts. We attribute the result to

the minimal scatter between spectroscopic and photometric redshifts in the SPCC
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simulations; the root mean squared error in photometric redshifts is very small

(0.028). However, we find that when the training sample is magnitude-limited, it

is less clear whether having redshift helps in the training process or not.

Unfortunately, the SPCC dataset is not large enough that we can fully simulate

a 4MOST spectroscopic sample. We are only simulating approximately 1.6% of

the full TiDES sample. We find that when considering a spectroscopic sample

that is magnitude-limited based on our success criteria and considering 4MOST’s

capabilities, there are so few objects in the SPCC (approximately 500 after scaling

down by a factor of 2, out of 21,319 in total, as discussed in Section 4.4.4) that

our results are sensitive to specific choices of which supernovae we include in our

training. Despite the variation and spread of results, it is clear that a magnitude

limit implies a non-representative training sample that has poor coverage of the

test-set feature-space, and, therefore, very negatively affects our results. This

does mean, however, that any significant improvement to the performance of the

snmachine algorithms when dealing with magnitude-limited training samples

is promising. The full TiDES sample size may improve the performance of the

magnitude-limited training somewhat, but it will still suffer from the lack of

coverage at faint magnitudes and high redshifts. Following this investigation we

simulated a full TiDES sample (∼30,000 objects) in our contamination study

using a LSST-specific dataset with the software SuperNNova (see § 8.2).

With our 4MOST magnitude-limited training sample as a basis, we next inves-

tigated how our results change when combining with additional faint supernovae.

A realistic scenario for following up LSST alongside 4MOST would be obtaining

spectra of fainter supernovae using facilities such as the VLT and ELT. We simu-

late such a scenario with the dataset, extending the training to high redshift and

increasing the sample size by ∼1,000 supernovae. Over 10 runs we see an increase

in the average AUC from 0.547 to 0.961 for KNN, 0.671 to 0.960 for SVM, 0.702

to 0.946 for ANN and 0.628 to 0.969 for BDT. In particular, both KNN and BDT

achieved a classified sample of 95% purity in all 10 runs. This is a substantial

boost to our results from our orginal training sample, although, on its own, it is

not the most successful that we tested. Our results show that complementary

faint objects can significantly improve upon a 4MOST magnitude-limited training

sample.
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We next consider data augmentation to investigate further improvement. By

creating artificial light curves, the size is limited only computationally, although

we find that results plateau around an augmentation factor of 40–50 new objects

per original supernova. Applying avocado to the SPCC, we increase training

sample size by a factor of 50. For the augmented magnitude-limited sample we

reach average AUC scores of 0.955 for KNN, 0.942 for SVM, 0.965 for ANN and

0.955 for BDT – a large increase, but, with the exception of ANN, not as successful

as our combined magnitude-limited and faint training sample. When we augment

the combined magnitude-limited and faint sample, we achieve our best AUC scores.

However, there is a slight dependence on whether we train our machine learning

algorithms to recognise supernovae as either Type Ia or non-Ia, or Type Ia, Ibc

or II. The highest average AUCs are 0.985 for KNN, 0.982 for SVM, 0.986 for

ANN and 0.984 for BDT and all algorithms are able to reach 95% purity in all 10

runs for this training sample. Considering three classes appears most beneficial

for SVM, as this is the only type of training we tested that resulted in all 10 runs

reaching 95% purity for this algorithm. For BDT, two classes is more favourable,

and for KNN and ANN there is little to no difference. We attribute the success in

classification (consistently high AUC and purity) to the fact that including fainter

supernovae adds some real constraints to the wavebands at faint magnitudes,

i.e. avocado does not need to extrapolate from a set of bright, low-redshift

supernovae, as it did when augmenting a purely magnitude-limited sample.

TiDES plans to target every possible transient that is brighter than rAB = 22.5

mag. In this work we assume that we have the full 4MOST-TiDES spectroscopic

sample as a training data basis. Hence, our focus on optimisation is how to

improve classification using this sample. However, there may be room for further

optimisation in survey strategy in how we decide which transients to target

that are just below this magnitude limit. Initially, we consider classification

when using a hypothetical representative sample, although this may not reflect a

fully optimised training sample. A fully optimised sample may require relatively

overpopulated bins at high and low redshifts when compared to a ‘representative’

sample. Achieving this in a spectroscopic follow-up survey would likely need to

make use of active learning, such that we observe objects that give the most
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improvement to the classification algorithm, following such methods as those

presented in Ishida et al. (2019).

Starting with a magnitude-limited training sample constrained by the capabil-

ities of 4MOST, we find that it is optimised when combined with complementary

faint supernovae and then augmented to have more coverage of the corresponding

test set feature-space. Augmentation is a necessary step to create the most suc-

cessful realistic training samples, although in future work it will be necessary to

test how cosmological assumptions for augmentation could be creating potential

bias. Furthermore, in our simulations we assume that the classifications in our

spectroscopic sample are 100% correct. Hence, we next tested whether misclassifi-

cation of 4MOST spectra could have a big impact on photometric classification

that could in turn propagate through to the resultant cosmology. Hence, we

would want to investigate whether mis-classification of a 4MOST spectrum could

propagate through the machine-learning pipeline and affect results, and ultimately

the resultant cosmology we determine using our classified sample. These tests

would ideally be done with a much larger dataset of supernovae to better reflect

what we can do in reality.

8.2 Effects of contaminated training

Following our tests on optimising training, we studied the effects of spectroscopic

misclassification in a training sample using a much larger simulated dataset. In a

divergence from feature engineering and machine learning we classify transients

using a deep recurrent neural network from the software SuperNNova.

From a very large simulated dataset of LSST transients, we take a subset to

focus on a TiDES sample of ∼30,000 spectroscopically classified objects. This is

randomly sampled from the dataset and is therefore representative of corresponding

test data. We take this approach as SuperNNova does not have infrastructure

to choose a specific selection of objects, e.g. based on magnitude. Due to time

constraints and disruption caused by the COVID-19 pandemic, we did not create

a method to customise a training sample as we did for snmachine, but rather
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chose a seed to test on a consistent selection of objects for training in order to

study effects of contamination.

We first conducted many tests studying how different hyperparameters affect

photometric classification in this dataset. Training is incredibly efficient when

using cyclic learning, in which the network’s learning rate is varied. Running

on a GPU, the model converges in less than 10 minutes, overfitting much less

than for the case without cyclic learning. We train the model over 30 epochs,

include spectroscopic redshift information and apply a cosmology normalisation

(normalising each light curve to the maximum flux in any filter) in order to remove

any bias learnt by the network matching flux information of Type Ia supernovae

with redshift. Further optimisation of hyperparameters may be possible, although

we find high success with this combination and keep them consistent throughout

our contamination study.

Using these hyperparameters and a perfect, uncontaminated training sample,

we run SuperNNova’s classification pipeline on a fixed seed to keep the same

selection of objects. We observe variation due to probabilistic computations in

training the model. Contrary to our primary investigation, we can also consider

accuracy as a useful metric as SuperNNova enforces class balance between

objects of Type Ia and non-Ia. Over 10 runs we achieve an average: AUC of

0.9845 (on par with our best performing training sample in snmachine); purity

of 93.65%; accuracy of 94.08%; efficiency of 94.73%.

We apply contamination by changing the class labels of training and validation

objects following predicted error rates presented in Muthukrishna et al. (2019b),

ensuring that the corresponding test sample is kept consistent. This assumes

that we use DASH to classify TiDES transient spectra. Despite expecting to

see a significant drop in classification performance, the spread of results is very

similar to those for an uncontaminated training sample. Even if we increase

contamination to 5% we find that there is little impact on the photometrically

classified sample, in which purity and accuracy only drop by only 1% and 0.1%

respectively. AUC stays the most consistent, only varying at the fourth significant

figure. We observe a slight increase in efficiency, however this does not mean

that classification performance improves. Combined with purity, this implies that
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more objects of both Type Ia and non-Ia are classified as Ia, due to increased

uncertainty in how to classify test objects.

To take this study further, we would require taking our analysis through

to constraining cosmology with our photometric sample. This would help us

understand how contamination propagates through to measurements of parameters

such as the dark energy equation of state. As Vincenzi et al. (2021a) found that

errors in photometric classification do not introduce significant bias in such

measurements, these results suggest that the effects of contamination in both

spectroscopic training and photometrically classified samples will not greatly

impact cosmology.

8.3 Deep learning of stellar spectra

In a departure from supernova classification, we present the work undertaken

during a data science internship studying stellar spectra with deep learning. The

ESO archive consists of a huge range of astronomical objects. This includes

observations from the HARPS instrument, which is dedicated to the discovery

of exoplanets. Using the ∼270,000 spectra from the HARPS dataset we apply

a data-driven approach to classification with unsupervised learning. Through a

reconstruction task in an autoencoder neural network, we create a low-dimensional

representation of the data at the information bottleneck.

We determine a sample of 7,653 unique HARPS objects based on the names

from the dataset metadata. We make an effort to identify unique objects by

correcting for string format, however some contamination is unavoidable without

applying substantial human input, which we want to avoid. Clustering methods

are insufficient in determining unique objects as the metadata coordinates and

number of observations per object vary too much to produce a robust sample

of unique objects. Identifying unique objects by name instead of clustering also

removes added contamination of solar system objects that may appear in very

different parts of the sky. We use the unique sample so that we can study what the

network has learned with respect to each object from the latent representation.
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Different dimensions of latent space are tested and we consider both a deter-

ministic autoencoder, and a probabilistic variational autoencoder. The network

model is developed by reconstruction training through minimisation of the loss

function. Good reconstruction implies that the network has been able to cipher

important information in the data. Reconstruction of spectra is better in the

deterministic network, although our main focus is on what the network learns

in the latent represenation, rather than achieving perfect reconstruction. In the

variational autoencoder we can apply disentanglement to enforce orthogonality

between latent dimensions. This creates a network that assigns different nodes

to different information that is encoded in the spectra. More latent dimensions

implies better reconstruction, although interestingly we find that both 8 and

128 dimensions yield six informative dimensions, defined by the median absolute

deviation of statistical dispersion.

Two of these informative dimensions show clear correlations with known

physical labels. By compressing the data into a low-dimensional representation,

the network has learned notions of effective temperature and radial velocity. The

relationships are reinforced when identifying spectral types of objects. These

dimensions describe some of the network’s own classification of the HARPS spectra,

an interpretation that shows unsupervised learning of real astrophysics. The other

dimensions’ interpretation appears ambiguous although leaves significant room for

further study. To take this work further we would also like to generalise a model

to the whole of the ESO archive, to analyse spectra from an even wider range of

astronomical objects.

8.4 Summary

We applied supervised learning using supernova class labels in preparation for the

next generation of cosmological measurements. TiDES will conduct a spectroscopic

follow-up campaign of LSST transients, although is magnitude-limited due to

the capabilities of 4MOST. To utilise machine-learning algorithms effectively, we

require multiple spectroscopic surveys from different facilities, in combination with

data augmentation. Following these procedures we can construct a training sample
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that is much more representative and achieve a very high level of purity in our

photometrically classified sample. Following these approaches will considerably

increase the Type Ia supernova sample from LSST and hence greatly improve

constraints on cosmological parameters. Measurements of the density of matter Ωm

and the dark energy equation of state w will progress our physical understanding

of the Universe, including its content, history and fate.

Using a deep recurrent neural network, we classify supernovae with a simulated

representative training sample. Contamination of the training sample following

expected error rates from the literature appears to have minimal effect on classifi-

cation performance. Combined with the little impact on cosmology from errors

in photometric classification, this offers a promising outlook for cosmological

measurements in upcoming surveys.

Finally, we delve into the vast ESO archive in an unsupervised, data-driven

approach to classification of stellar spectra. By training an autoencoder network

to reconstruct spectra, it learns a low-dimensional representation of the data.

Through disentanglement, the network produces six informative dimensions that

describe the data. We find that two of these contain notions of real astrophysics,

illustrated by correlation between latent node values with effective temperature and

radial velocity labels. Interpretation of the other dimensions appears ambiguous,

but, with further study, may reveal new patterns characterising other physics

hidden in the data.

We have demonstrated original research using multiple artificial intelligence

and data science techniques in an astronomical context. In conclusion, AI is

vital to make the most of available data in present and future research. The

power of machine-learning and deep-learning algorithms has been demonstrated:

in a deviation from traditional classification methods using pure spectroscopy,

supernova light curves can successfully be classified with an optimised realistic

training sample to aid progress in our understanding of the Universe; with minimal

human input and ‘letting the data speak for itself’, machines can determine their

own interpretation of different stars and infer real astrophysical parameters from

stellar spectra.
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