
eXplainable Artificial Intelligence
(XAI) for the Measurement of
Br(K+→ π+νν̄) with NA62

Experiment at CERN

Joseph Carmignani, BSc, MSc
Experimental Particle Physics Group

Lancaster University
A thesis submitted for the degree of

Doctor of Philosophy

May, 2022

I dedicate this thesis to Joey, Vali & Angie

i

Declaration
I declare that the contents of this thesis are, to the best of my knowledge and belief,
original and my sole scientific contribution. The material has not been submitted,
either in whole or in part, for a degree at this, or any other university. This thesis is
my own work and contains nothing which is the outcome of work done in collaboration
with others, except as specified in the Preface chapter at the beginning of this thesis.
This thesis does not exceed the maximum permitted word length: it contains fewer
than 80,000 words including appendices and footnotes, but excluding the bibliography.
A rough estimate of the word count is: 49431

Joseph Carmignani
May, 2022

ii

eXplainable Artificial Intelligence (XAI) for the Measurement of
Br(K+ → π+νν̄) with NA62 Experiment at CERN

Joseph Carmignani, BSc, MSc.
Experimental Particle Physics Group, Lancaster University

A thesis submitted for the degree of Doctor of Philosophy. May, 2022

Abstract
In this thesis a Neural Net (NN) code is first presented from scratch and
applied to the Kaon-Pion matching in the rare Kaon decay (K+ → π+νν̄)
analysis of NA62 at CERN. The NN code showed increased efficiency in
Kaon decay identification with respect to the standard algorithm based
on statistical analysis. It is designed and trained on K+ → π+π+π− decay
channel to optimize the statistical significance of K+ - π+ matching by
amplifying the association between parent Kaons and downstream Pions
over accidental beam particles (“Pileup”) and final state Pions. Essential
enhancement and evaluation processes using state-of-the-art techniques
of XAI (eXplainable Artificial Intelligence) are presented in the context
of choosing the optimal NN-discriminant that fits in the framework of
πνν analysis in NA62 based on necessary physics-related metrics. Another
XAI application of an innovative Calorimetric “Virtual Bubble Chamber”
technique, called NNODA (Neural Net Object Detection Approach), for
NA62’s LKr (Liquid Krypton Calorimeter) is constructed to analyze
images of clusters using DL (Deep Learning) Computer Vision (CV)
techniques. The idea is to use color tags on the cluster timing to veto
random activities and unwanted decay products (mainly π0 background)
allowing an unusual and flexible event selection time window of ±10 ns
around the arrival time of the charged single particle in the final state.
NNODA efficiently increased signal acceptance by controlling random cuts.
Additionally, practical data science skills in Robotics are presented, by
training algorithms that would help a drone to identify and locate end-
effectors in unusual environments. Then, An AI-based vision system is
proposed for an embedded device and presented in its full facets, and
specifically uses DL CV in image classification and object detection. These
XAI tools and others have been successfully transferred to NA62’s most
precise measurement of Br (K+ → π+νν̄) in a cross-disciplinary fashion.

iii

Publications
Only one publication, shown below, has been created directly from the thesis, this
(soon-to-be) published work is a solo contribution and presented within chapter 4:

[57]

The following publications have been generated while developing this thesis, these are
the general NA62 Collaboration analysis papers and to an extent has inspired the
thesis into what it has accomplished (Please check Preface for contributions):

[1][2][5][3][4][6][7][8]

iv

Acknowledgements
I’m ever more grateful for the people who pushed me forward and provided me with
all needed support. My life partner and best friend Joelle, and our two amazing
daughters Valentina and Angelina. Mum, dad and loving sister Joelle. My adviser
Prof Giuseppe Ruggiero and Prof Cristina Lazzeroni head of NA62. Dr. Allahyar
Montazeri for supervising my internship. Dr. Laura Kormos and Dr. Ian Bailey
for their timely advice, help and guidance. Prof Louis Lyons, Em P John Dainton
and Em P Italo Mannelli for their gigantic influence and inspiration. Prof Aneta
Stefanovska for her friendship to my family and the positive spirit that she is. Prof
Roger Jones (HoD) for backing me up and believing in me, and Lancaster University
being my second home for more than four consecutive years.

v

Contents

1 Kaon Physics of NA62 1
1.1 Current Status of Kaon Physics . 1
1.2 Experimental Status of K+ → π+νν̄ 8
1.3 The beam and detector . 10
1.4 Analysis method . 12
1.5 Event selection . 13
1.6 Single event sensitivity . 16
1.7 Background evaluation and validation 17

2 Introduction to AI 22
2.1 Artificial Intelligence: Aristotle to COVID-19 22
2.2 Supervised Neural Networks . 25

2.2.1 Convolutional Neural Nets CNN 34
2.2.1.1 Convolutional layers 36
2.2.1.2 ReLU Activation Layer 40
2.2.1.3 Pooling Layers . 41
2.2.1.4 Final Output . 43

2.3 Practical Computer Vision . 44
2.3.1 Feature Extractors . 45

2.3.1.1 Residual Networks (ResNets) 46
2.3.1.2 Inception Network 48
2.3.1.3 MobileNets . 51

2.3.2 Object Detectors OD . 52

3 NN and K-pi Matching 59
3.1 Inputs and Design . 59

3.1.1 Data Preparation . 59
3.1.2 Basic Development . 62
3.1.3 Architecture/model and Hyper-parameters Tuning 64

3.2 Results . 70

vi

3.3 XAI Analysis . 73
3.3.1 Redefinition of the training sample 76
3.3.2 Upgrade of the discriminant 78

4 NNODA for LKr Calorimeter 85
4.1 Physics Review . 85
4.2 Data Preparation . 89
4.3 Training . 92

4.3.1 YOLO model . 92
4.3.2 SSD models . 94
4.3.3 Faster-RCNN model . 94
4.3.4 Fine Tuning in Transfer Learning 95
4.3.5 Configurations . 98

4.3.5.1 Charged Tracks Clusters using Darknet API 98
4.3.5.2 Charged Tracks Clusters using Tensorflow Object

Detection API . 99
4.4 XAI in Performance Checks . 100

4.4.1 Metrics . 101
4.4.2 Technical Analysis & Model Competition 104

4.5 XAI in Calorimetric Implications . 111

5 Summary and Conclusions 121
5.1 K+ -π+ Track Matching . 121
5.2 NNODA: LKr Calorimetric Study . 124
5.3 Robotics . 125

Appendix A Standard Notations for DL 129
A.1 Deep Learning Representations . 129
A.2 Fundamental CNN Notations . 130

Appendix B Technical Configurations 132
B.1 Clusters in Darknet API Setups . 132
B.2 Clusters in Tensorflow API Setups . 133

Appendix C Robotics Applications 139
C.1 Introduction . 139

C.1.1 End-Effector Data Box Annotations 140
C.2 Mobile Activity project . 140
C.3 End-effector detection using Darknet API 147
C.4 DetectNet using Jetson-Inference API 152
C.5 Facebook’s Detectron2 API . 159

vii

Appendix D Robotics Setups 166
D.1 Mobile Activity . 166
D.2 End-effector in Darknet API Setups 168
D.3 End-effector in DIGITS’ DetectNet Setups 173

References 178

viii

List of Acronyms
NNODA Neural Net Object Detection Approach

MDA Mean Decrease of Accuracy

XAI eXplainable Artificial Intelligence

NN Neural Network

LKr Liquid Krypton

NN Neural Network

MIP Minimal Ionised Particle

CNN Convolutional Neural Network

YOLO You Only Look Once

FPN Feature Pyramid Network

DL Deep Learning

FCNC Flavor Changing Neutral Current

CKM Cabibbo-Kobayashi-Masakawa

CP Charge Parity

NP New Physics

SM Standard Model

BSM Beyond Standard Model

CMFV Constrained Minimal Flavor Violation

SES Single Event Sensitivity

CDA Closest Distance of Approach

GPU Graphical Processing Unit

CPU Central Processing Unit

LR Logistic Regression

ix

KNN K-Nearest Neighbours

BDT Boosted Decision Trees

RF Random Forest

NB Naive Bayes

SVM Support Vector Machine

SGD Stochastic Gradient Descent

ReLU Rectified Linear Unit

SeLU Scaled Exponential Linear Unit

FC Fully Connected

OD Object Detector

RoI Region of Interest

SSD Single Shot Detector

API Application Programming Interface

RV Random Veto

PV Photon Veto

SA Standard Algorithm

PNN πνν

IoU Intersection over Union

mAP mean Average Precision

FP False Positive

FN False Negative

TP True Positive

TN True Negative

x

List of Figures

1.1 A typical CKM unitarity triangle. 4
1.2 The penguin and box diagrams of K+ → π+νν̄ [52] 5
1.3 Relations between the unitarity triangle and the K → πνν decays [42]. 6
1.4 Plots of popular correlations in the Br(KL → π0νν̄) versus Br(K+ →

π+νν̄) plane. The expanding red region represents lack of correlation
for models with general LH and/or RH NP couplings with Z

′ . Green
region is the correlation zone of models conforming to CMFV. While
blue region illustrates the correlation induced by εk constraints in
models with exclusively LH or RH couplings [51]. 7

1.5 Expected theoretical distributions of the m2
miss variable relevant to

the K+ → π+νν̄ measurement. The m2
miss is computed under the

hypothesis that the charged particle in the final state is a π+. The
K+ → π+νν̄ signal (red line) is multiplied by 1010 for visibility. The
hashed areas include the signal regions. 9

1.6 Schematic top view of the NA62 beamline and detector. 10
1.7 Reconstructed m2

miss as a function of pπ+ for minimum-bias events
selected without applying π+ identification and photon rejection,
assuming the K+ and π+ mass for the parent and decay particle,
respectively. Signal regions 1 and 2 (hatched areas), as well as 3π,
π+π0, and µν background regions (solid thick contours) are shown.
The control regions are located between the signal and background
regions. 13

1.8 Evaluation of the π+π0 background. Left: Distribution, in the (p+
π ,

m2
miss) plane of events in the π+π0 region and in the adjacent control

regions after the complete signal selection, is applied to the S1 and S2
subsets. The intensity of the grey shaded area reflects the variation of
the SM signal acceptance in the plane. Right: Data/MC comparison
of the m2

miss distribution of minimum-bias K+ → π+π0 events selected
by tagging the π0 → γγ decay. This data sample is used to measure
the K+ → π+π0 kinematic factor fkin. 18

xi

1.9 Properties of upstream background events. Left: Extrapolation of π+

tracks of the upstream sample described in the text to the (XCOL, YCOL)
plane in the S2 subset. The small (large) red rectangles correspond
to the inner (outer) borders of the new collimator. The outline of
the last dipole of the beam achromat is shown with blue solid lines.
Right: CDA distribution of the events in the upstream sample shown
on the left plot (black markers with error bars), compared to the CDA
distribution extracted from data and its uncertainty (brown shaded
area) and to the same distribution of K+ decaying in the FV (grey
shaded area). 20

1.10 Background predictions. Left: Reconstructed m2
miss as a function of π+

momentum after applying the signal selection to the S1 and S2 subsets.
Events in the background regions are displayed as light grey dots. The
control regions, populated by the solid black markers, are adjacent to
the background regions. The numbers next to these regions are the
expected numbers of background events (in brackets) and the observed
numbers (without brackets). Right: Expected numbers of background
events summed over Regions 1 and 2 in the 2018 subsets. 21

2.1 The shuffling must be synchronised between the X and the Y matrices. 29
2.2 The last mini batch might be smaller than the mini-batch-size. 30
2.3 A mind-map of the general L-layered NN Dynamics [95]. As we notice

here for every forward function, there is a corresponding backward
function. That is why at every step of our forward module we must
store some values in a cache. Cached values are useful for computing
gradients. In the back-propagation module we can then use the cache
to calculate the gradients. 32

2.4 An instance of a classic architecture of CNN [95]. Here the hidden
layers of the convolution block called “filter” (within the red square
dotted line) are repeated two times (×2). 35

2.5 CONV layer Operation: (Left) input image in visual (bottom) and
pixel (top) forms, (Middle) CONV layer in visual (bottom) and pixel
(top) forms, (Right) output image image in visual (bottom) and pixel
(top) forms. 36

2.6 CONV operation output after applying Zero-padding 38
2.7 Convolution operation with a filter 3x3 and a stride of 1 (stride =

amount you move the window each time you slide) [95] 39
2.8 The 3D final output shape of the convolution step (please check

Appendix for the classic notation used in this image)[95] 40
2.9 After a ReLU activation pass . 41

xii

2.10 Pooling Layers . 42
2.11 Output after a 3× 3 Average-pooling with a stride=1 42
2.12 A ResNet block showing a “skip-connection” 46
2.13 (Up) in red “ID BLOCK” with skip connection over the main path: 3

convolutional layers, here “CONV2D”, 3 batch normalization passes,
2 ReLU activation layers in between, shortcut and input of main path
are added together and ReLU activation finally applied on the sum,
(Middle) in blue “CONV BLOCK” same but adding a CONV2D with
Batch Norm filter on the skip connection over the main path, (Bottom)
general structure of ResNet50 [95]. 47

2.14 “Networks in Networks” mechanism [95] 49
2.15 Inception module [95] . 50
2.16 Left: Standard convolutional layer with batch-norm and ReLU. Right:

Depth-wise Separable convolutions with Depth-wise and Point-wise
layers followed by batch-norm and ReLU [19]. 51

2.17 (Left) MobileNetv2 main blocks, (Right) MobileNetv2 body architec-
ture [25] . 52

2.18 An output vector ycar is showing and associated with the car’s bounding
box in this 3x3 grided image. The proper input values are stated
relative to the central grid (red square) [95]. 54

2.19 Each of the 19x19 grid cells colored according to which class has the
largest predicted probability in that cell [95]. 55

2.20 In a) Ground Truth (GT) boxes are showing, one for the dog in the
image and one for the cat. b) SSD default boxes at 8x8 where it is
more likely to find central cells, and in c) 4 × 4 feature maps include
both prediction vectors CONF and LOC with a much higher chance to
pick the box with the right shape. 57

2.21 The Faster R-CNN architecture [27]. 58
2.22 The FPN method with predictions made independently at all levels [28]. 58

3.1 The (9,530,200,1) model diagram. 65
3.2 The following graph is usually called the “happy face”! 66
3.3 The following graph shows the ROC curves and AUC scores of the

different models used in comparison tests. 68
3.4 The (18,530,230,128,200,1) model diagram. 69
3.5 The probability distribution of the NN Discriminant output. 70
3.6 By varying the threshold on NN Discriminant (plot in red) we got 5%

more Efficiency for current mistag and 40% less Mistag for current
efficiency with a Likelihood-based Discriminant (in black). 71

3.7 Best (red) VS Worst (blue) test Runs 72

xiii

3.8 Clear pattern recognition on variables such as the time difference and
CDA. 73

3.9 Performance plot without CDA. 74
3.10 Lambda of Fake VS Real Kaons predicted from test data. 75
3.11 time difference between RICH and GTK of Fake VS Real Kaons

predicted from test data. 75
3.12 time difference between KTAG and GTK of Fake VS Real Kaons

predicted from test data. 76
3.13 CDA of Fake vs. Real Kaons predicted from test data. 76
3.14 The final fraction of K+ → π+π0 and other similar events entering

signal regions. 77
3.15 Efficiency comparisons on one test run 8255 of 2017A data. Perfor-

mance plot of NN predictions (in red) before and (in blue) after data
redefinition. (In grey) The performance plot for classic Discriminant. 78

3.16 Tails versus the fractional K+ → π+νν̄ acceptance variation for
different sets of cuts applied on the Single NN discriminant for the
tight (left) and the wide (right) primary cuts. 81

3.17 Tails versus the fractional K+ → π+νν̄ acceptance variation for
different sets of cuts applied on the 2-D NN discriminant (black
dots). The performance of the Single NN discriminant cut (grey dots)
and of the standard likelihood cuts (blue square) are also shown for
comparison. Grey dots are the same as those of figure 3.16 (right).
Lines connecting dots and the blue straight lines are for visualization
only. 83

4.1 LKr’s Calorimetric Visual Data: (top) energy-based visualization,
(bottom) time-based visualization. Black hole showing in middle of
picture is for the beam pipe of the experiment. 87

4.2 This figure taken from [6] shows the range of PV inefficiency in LKr
that is prioritized for improvement. 88

4.3 This figure shows an instance where clusters are labelled and box-style
annotated using CVAT tool. Single clusters are in light-blue colored
boxes while Merged ones in brown-orange and negative clusters are left
without annotation. 91

4.4 Left: The original network architecture that outputs probabilities for
1000 different class labels. Middle: Removing the FC layers from
the network and the output of the final pooling layer will serve as
the extracted features. Right: Removing the original FC layers and
replacing them with a brand-new FC head. Now these can be fine-
tuned to a specific dataset [102]. 96

xiv

4.5 Left: At the start, all layers are frozen, and the gradient is only
allowed to back-propagate through the FC layers to achieve a “warm
up”. Right: Afterwards, one choice might be to unfreeze all the layers
and allow each of them to be fine-tuned as well [102]. 97

4.6 obj.data file . 98
4.7 Computing the Intersection over Union is simply dividing the area of

overlap between the bounding boxes by the area of union. 101
4.8 https://commons.wikimedia.org/wiki/File:Precisionrecall.svg 102
4.9 Precision/Recall curve for the example in hand. The black circles are

showing the wiggles in precision that are avoided by using interpolation
instead [111]. 103

4.10 Results of initial training showing the loss (blue) and mAP (red) plots. 104
4.11 An instance of initial training predictions. True identifications in

(green) boxes first. Then circled in (blue) is a FP (mid-bottom) while
2 FNs are highlighed in (red) (upper-right) 105

4.12 Results of second training showing the loss (blue) and mAP (red) plots 107
4.13 Circled in (red) is a benign case of FP (upper-middle) 108
4.14 YOLO’s second run showing the loss (blue) and mAP (red) plots. . . 109
4.15 Results showing the individual AP for classes and total mAP plots

(Best peak at 15k iteration) for SSD MobileNetV2. The vertical axis
is the AP while the horizontal one is for training epochs. 110

4.16 Results showing the individual AP for classes and total mAP plots
(Best peak at 16k iteration) for FasterRCNN InceptionResNet V2. The
vertical axis is the AP while the horizontal one is for training epochs. 111

4.17 Results showing the individual AP for classes and total mAP plots
(Best peak at 5k iteration) for SSD ResNet FPN. The vertical axis is
the AP while the horizontal one is for training epochs. 112

4.18 GT: Only two detections of Single clusters should exist 113
4.19 YOLO: Circled in (red) is a case of FP (upper-middle) 114
4.20 SSD ResNet FPN: Predicted correctly 115
4.21 GT: All these detections should exist 116
4.22 YOLO: Circled in (red) is a case of FN (upper-middle) 117
4.23 SSD ResNet FPN: Predicted correctly 118
4.24 (Circled in red) is the MIP, here µ+. (Cirled in brown) two insignificant

in-time clusters with E < 30 MeV. (In a red square) is the in-time time
window of ±10ns, setting the limit for all greenish gradients in the time
palette of the time visualization. 118

4.25 (Circled in red) is the MIP, here µ+. (In a red square) is the in-time
time window of ±10ns, setting the limit for all greenish gradients in
the time palette of the time visualization. 119

xv

4.26 (Circled in red) is the MIP, here π+. (In red ovals) two significant in-
time clusters. (In a red square) is the in-time time window of ±10ns,
setting the limit for all yellowish (exceptionally instead of greenish)
gradients in the time palette for a clearer time visualization. 119

4.27 (Circled in red) is the MIP, here π+. (Circled in pink ovals) two
insignificant out-of-time clusters at −60ns and −20ns out of the MIP
time. (In a red square) is the in-time time window of ±10ns, setting the
limit for all greenish gradients in the time palette of the time visualization.120

4.28 Zoomed in look at the −20ns out-of-time cluster. (In a red square) is
the in-time time window of ±10ns , setting the limit for all greenish
gradients in the time palette of the time visualization. (In a black
square) the bulk of energy is clearly out-of-time. (In pink ovals) peculiar
uni-cells or pixels appear on the cluster’s rim and are found to be in-
time with the π+. 120

A.1 A typical Neural Net graph with proper representations[95] 129

B.1 The label map for the two classes. 134

C.1 Boxed annotation of Brokk40 in CVAT 141
C.2 Classification of the Brokk40 at rest. 144
C.3 Classification of the Brokk40 whilst grabbing. 145
C.4 Correct classification of a different end-effector and its activity. . . . 146
C.5 Correct classification of the Brokk40 and the activity in poor lighting

conditions. 147
C.6 Classification showing transition in activity - (left) “Rest” and (right)

“Grab” . 148
C.7 Results of initial training showing the loss (blue) and mAP (red) plots 149
C.8 Correct classification of a strange kind of end-effector that is grasping

an object . 150
C.9 Correct (left) against incorrect (right) identifications 151
C.10 Boxed annotation of Brokk40 . 152
C.11 Coordinate feedback of the object detected shown within a terminal . 153
C.12 Network display board . 155
C.13 First training round for 30 epochs and 2000x1500 padding 156
C.14 Second training round for 200 epochs and 2500x2500 padding 157
C.15 Some successful detections from inference of the DetectNet model . . 158
C.16 Some failed detections from inference of the DetectNet model, a FP

(left) and a FN (right) . 159
C.17 Structure of the MS COCO endeffector dataset 160
C.18 Tensorboards showing components of training 161

xvi

C.19 The loss function plot for the test and real run 162
C.20 From left to right the corresponding plots for Accuracy, FN and FP . 163
C.21 Performance checks list for the Mask R-CNN model 164
C.22 Two successful detections (top) along with false positives (bottom) . . 165

D.1 The GPU would appear clearly in the terminal if it is running.
Underlined in red are the GPU’s name, unit number and computing
capability. 166

D.2 Loading the model and ground-truth labels of the dataset. 167
D.3 A part of MobileNetV2 graph. 168
D.4 Showing above are the customised head and the training’s starting

point. 169
D.5 Text file displaying annotation and labelling information 169
D.6 obj.data file . 170
D.7 A section of the train.txt file. 171
D.8 The obj.names file . 171
D.9 DIGITS New Object Detection Data-set board 174
D.10 Job Status window showing “Done” (in green) or “Error” (in red) . . 175
D.11 New Image Model parameters board 176

xvii

List of Tables

1.1 Inputs to the SES evaluation, SES values and numbers of expected
SM signal events in the S1 and S2 subsets. 16

2.1 Used Hybrid models’ components . 45

3.1 List of Feature Importance weights from the “permutation importance”
MDA sensitivity analysis. 82

4.1 Performance checks on AP for all models 109
4.2 Selection/Rejection Efficiencies . 113

xviii

Preface
The main goal of this thesis is to develop and apply Machine Learning techniques
based on Neural Networks (NN) in the analysis of NA62 experiment. The methods
followed were far from established in comparison with the mainstream NA62 K+ →
π+νν̄ decay analysis and been carried on as a solo effort under the supervision of
Giuseppe Ruggiero. NA62 analysis is founded on a cut-based traditional approach
which is expected to present important limitations for the future of the experiment
when the beam’s intensity will reach its highest levels. This would require some
innovative approaches to overcome the problem of high intensity. This goal has been
achieved from at least three different perspectives: (i) it proved the feasibility and
applicability of such machine learning tools in the general K+ → π+νν̄ analysis, and
to show how transferable such techniques are in a multi-disciplinary context, similar
applications in Robotics are also mentioned in parallel with results, (ii) presented the
possibility of innovative and efficient computer vision NN-based approaches to the
Liquid Krypton (LKr) Electromagnetic Calorimeter and NA62 photon veto, and, (iii)
paved the way for better future implementations of such techniques. So, to say that
in that sense my contribution appeared and earned a place in authorship of the main
published work of NA62 Collaboration during my PhD (Papers [1][2] [5] [3] [4] [6] [7]
[8]).

I have written a Neural Net (NN) code from scratch and applied it to the Kaon-
Pion matching in the pion neutrino-neutrino analysis of particle physics data of
NA62 at CERN. It is a difficult problem due to the wide diversity of parameters
and the correlation between them. My NN code showed increased efficiency in
Kaon decay identification with respect to the standard algorithm based on statistical
analysis. by picking up the right dependencies and putting more weight on the most
influential variables, the end results appeared very promising. It was the first Neural
Net code intended to work with NA62 framework and inspired other members in
the collaboration to follow on the path and convinced them of the power of such
algorithms.

My other project was an implementation of a new “Virtual Bubble Chamber”
technique for NA62’s LKr to analyze calorimetric images of clusters in energy deposit
using a NN object detector code we called NNODA (Neural Net Object Detection
Approach). It is innovative unique idea to use color tags on the cluster timing to filter
out and reduce random activities plaguing particle physics fixed target on-flight decay
experiments like NA62. This is also a first attempt to implement a NN object detector
using the fine granularity and cell time resolution of LKr, a technique rarely used in
HEP calorimetry. The exceptional structure of NA62’s Liquid Krypton Calorimeter

xix

made this project possible, and we took full advantage of its granular features. The
project has been presented to the Collaboration and soon to be published in an
independent CERN note then a scientific paper [57]. In more details, (NNODA)
is proposed to improve LKr’s Photon Veto while reducing the time window selection
from ±40ns to ±10ns for calorimetric activities around the main charged particle
(MIP).

As part of my Doctorate studies, a data science internship was a requirement also.
I followed through one in collaboration with the engineering department at Lancaster
University and NNL (National Nuclear Laboratory). The focus of my training was on
applying advanced Machine Learning algorithms in the field of robotics. I have gained
skills using Computer Vision techniques in overly complicated real-life scenarios, like
training an algorithm that would help a drone to identify and locate robotic end-
effectors in an unusual environment. I learned to create and generate synthetic data
to boost the performance of the algorithm and add volume and quality to datasets
used in training. These skills have been effectively transported to NA62 particle data
analysis in a multi-disciplinary fashion.

I have analyzed the data of NA62 for the Kion+ to Pion+ and two neutrinos (The
exceedingly rare Standard Model Kaon decay to a pion and two neutrinos) analysis.
My focus was on the association between Kaon+ and Pion+, and on clusters in
the LKr (Liquid Krypton) electromagnetic calorimeter for photon rejection. I have
gained skills in reducing, selecting, organizing, and arranging generalized and well
varied data in efficient datasets. As well as labeling and annotating them to be used
in training Machine Learning and Computer vision algorithms to serve the main
goal of the general analysis. Also developed a lot of experience in choosing the
right machine learning techniques that best suit the type of data in hand and the
main objective of the case studied. I have gained high-level skills in A.I. analysis
algorithms, CNN (Convolutional Neural Nets) (e.g., MobilNet, ResNet, Inception
Net etc...) applied to computer vision for image recognition and Object Detectors
in object detection problems. I developed expertise level of using API platforms like
Darknet and TensorFlow to make full use of these powerful algorithms (e.g., YOLO
(You Only Look Once), FPN (Feature Pyramid Network), mask/Faster-RCNN, SSD
etc...) on a wide spectrum of datasets.

My contributions lead to positive research results through effective organization,
prioritization, and follow-through of key physics data analysis projects. While
I was independently motivated, I appreciated collective efforts and collaborated
productively within group settings. I have delivered talks and made several
presentations at the NA62 meetings and at Lancaster University Data Science group

xx

events. I have interacted and cooperated with physics coordinators and senior
members of the Physics Department and NA62 in various occasions and on many
subjects. I also taught 2nd year labs in a PGTA (Postgraduate Teaching Assistant)
roles for three consecutive years and tutored physics for Further Education, Higher
Education and Under-Grad level Physics & Engineering Degrees. I have also helped
in the training and mentoring of inexperienced staff members and am knowledgeable
about hazard safety and lab procedure (e.g., I helped and taught Master students
Linux operation and machine learning in computer vision on many occasions).
Examples of experiments I mastered and taught are Michelson Interferometer, Bridges
in Electrical Circuits, Field Effect Transistor, Blackbody Radiation, Waves on a
Coaxial Line, Fourier Analysis Using a Filter, Spectroscopic Study of One Electron
Atoms, Optical Absorption, Brewster Angles, and the Polarization-Dependence of
Reflection Coefficients, Hall Effect, Solar Cells, and others similar. I did also my
required full share of shifts in monitoring the experiment and handling extremely
complicated control and data-taking software. These shifts have provided me with
an opportunity to get to know my colleagues at the collaboration since we worked
together for long hours. The diversity of NA62 and the Physics personnel enriched
my sense of cultural understanding and acceptance of differences as strengths in
cooperation. On the other hand, I have proven my ability to taking on responsibility
independently by developing Deep Learning algorithms that proved efficient which
qualified me as one of the few DL specialists in NA62 Collaboration.

For all this collected experience through my PhD years, I am very much grateful
and thankful. I could not have made it through the pandemic and all without the
people that helped me and guided me through it all.

xxi

Chapter 1

Kaon Physics of NA62

1.1 Current Status of Kaon Physics
Since their discovery, in 1947 [100], kaons played a crucial role in the understanding
of fundamental interactions. For example, the first CP symmetry violation evidence
came with the famous kaon decay experiment performed by Christenson etal. in 1964
[63].
At the LHC now direct and indirect searches for New Physics (NP) are running at
the highest intensities. The flavor physics sector is continuously investigated, with
processes involving strange and beauty quarks. Heavy flavors are explored with the
LHCb [85] and Belle II [33] experiments and the kaon physics programme complements
such studies involving the strange quark, however, on a lower mass scale.
The fundamental role of quark mixing in weak interactions became well known after
the insights proposed by Cabibbo [56]. He realized that the weak eigenstates of quarks
are not exactly the mass eigenstates but a linear combination, of them, rotated by an
angle θ named after him.
After Cabibbo, and using his model, Glashow, Iliopoulos and Maiani [70] discovered
the so-called GIM mechanism that explains the suppression of Flavor Changing
Neutral Current (FCNC) processes. One of which is the KL → µ+µ−decay, whose
branching ratio is recently observed to be smaller than 10−8 [98]. They postulated
the existence of a new up-like quark, the charm, following the experimental evidence
that shows heavy suppression of decay amplitudes with ∆S= 2 transitions such as
KL → µ+µ−. Their intuition was that decay modes with up-like quarks should cancel
out modes with up quarks leaving a near 0 residual amplitude.

The K+ → π+νν̄ decay, on the other hand, is strongly related to the Cabibbo-
Kobayashi-Masakawa (CKM) matrix of weak interactions, introduced for the first time
in 1973 [81]. Generalizing the Cabibbo theory, CKM matrix defines the probability of

1

Chapter 1. Kaon Physics of NA62 1.1. Current Status of Kaon Physics

transition between quark flavors by constructing weak interaction eigenstates in the
following flavor mix:

d′

s′

b′

weak

=

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

×

d

s

b

flavor

= VCKM ×

d

s

b

flavor

(1.1)

An arbitrary and non-unique choice is to exclusively mix the down-like quarks as is
commonly used in standard formalism. A natural consequence of the weak interaction
universality is the unitarity of the CKM matrix, providing a powerful experimental
test for the Standard Model. The unitarity requirement and gauge invariance reduce
the free parameters of CKM matrix to three mixing angles and a complex phase that
leads to CP symmetry violation.
Another useful way to represent the CKM matrix is by using the Wolfenstein
parametrization [115], defined as follows:

λ = |Vus|√
|Vud|2 + |Vus|2

(1.2)

A = |Vcb|
λ2

√
|Vud|2 + |Vus|2

(1.3)

ρ = Re(Vub)
Aλ3 (1.4)

η = Im(Vub)
Aλ3 (1.5)

and since,

V ∗ub = Aλ3(ρ+ iη) = Aλ3(ρ+ iη)
√

1− A2λ4
√

1− λ2[1− A2λ4(ρ+ iη)]
(1.6)

these relations led to a final phase convention independent relation:

ρ+ iη = −(VudV ∗ub)
(VcdV ∗cb)

(1.7)

that ensures the CKM matrix written in terms of λ, A, ρ, and η is unitary to all
orders in λ. Moreover, being experimentally proven to take a small value (λ ' |Vus| =
0.2243 ± 0.0005 [98]), λ allows a power series expansion of the matrix terms that

2

Chapter 1. Kaon Physics of NA62 1.1. Current Status of Kaon Physics

highlights the hierarchy of the CKM elements and is traditionally approximated to
third order in the following manner:

VCKM =

1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 +O(λ4) (1.8)

While ρ and η can also be approximated to leading orders in λ as:

ρ = ρ(1− λ2/2 + ...) (1.9)

and
η = η(1− λ2/2 + ...) (1.10)

The CKM matrix elements are amongst free and fundamental parameters of the SM.
To add experimental constraints on them is crucial to our understanding of SM and
searches for NP. The key to achieving that is unitarity which imposes the following
natural conditions: ∑

i

VijV
∗
ik = δjk,

∑
j

VijV
∗
kj = δik (1.11)

Six triangles in a complex plane are obtained from the vanishing combinations. Out
of which the ones obtained by taking the scalar products of neighboring rows or
columns are of particular interest and used to test CP violation of Jarlskog invariant
[80]. Hence, the one triangle most commonly used is derived from

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.12)

and have a well-defined geometric representation in the (ρ, η) plane when dividing by
the best measured elements (i.e., VcdV ∗cb) as figure 1.1 shows. The current measured
values and global fit results of the Wolfenstein parameters can be found in “Review
of Particle Physics” [98]. No experimental deviation from the unitarity condition has
emerged so far.

The kaon sector provides a test of the SM by measuring the branching ratios of
K+ → π+νν̄ and KL → π0νν̄ . These rare decay channels allow a measurement of
the unitarity triangle parameter β, which makes it sensitive to NP in an independent
domain of parameter space and complementary to B decay measurements [48].

The FCNC decay K+ → π+νν̄ involves the transition s→ dνν which, in the SM,
is only allowed via Z0 penguin and box diagrams (See figure 1.2). The amplitude of
each diagram is a sum of three contributions to the loops from all three up-like quarks.

3

Chapter 1. Kaon Physics of NA62 1.1. Current Status of Kaon Physics

Figure 1.1: A typical CKM unitarity triangle.

The amplitude of such contributions can be approximated, due to GIM mechanism,
as:

Aq '
m2
q

m2
W

V ∗qsVqd (1.13)

The amplitude will apparently become dominated by top quark contribution due
to large mass squared. The quadratic term of GIM mechanism multiplied by an
extremely small value of the CKM element Vtd makes the transition from a top into
a down quark, therefore, K+ → π+νν̄ decay, extremely rare.
Summing up over all three neutrino flavors, while considering small but non-negligible
contribution of charm quark, gives a final form for the K+ → π+νν̄ branching ratio
[53] [50]:

Br(K+ → π+νν) = k+(1 + ∆EM)[(Imλt
λ5 X(xt))2 + (Reλc

λ
Pc(X) + Reλt

λ5 X(xt))2]
(1.14)

k+ = (5.173± 0.025) · 10−11[λ

0.225]8,∆EM = −0.003 (1.15)

where:

• k+ (and its electromagnetic correction ∆EM) summarizes the hadronic con-
tributions, that can be extracted experimentally from semi-leptonic decays
K+ → π0l+ν (l = e, µ) using Isospin symmetry between π+ and π0 [91]. This
is one of the crucial aspects that strongly improves the theoretical uncertainty.

• X(xt) is the loop function of top quark contribution, with xt = m2
t/m

2
W . Its

most recent value, including two-loop electroweak corrections [44] and NLO
QCD corrections [49], is X(xt) = 1.481± 0.005± 0.008 [53].

4

Chapter 1. Kaon Physics of NA62 1.1. Current Status of Kaon Physics

Figure 1.2: The penguin and box diagrams of K+ → π+νν̄ [52]

• Pc(X) is the loop function of charm quark contribution. It is computed as sum
of short-distance (0.365 ± 0.012) and long-distance (0.04 ± 0.02) contributions
[53][43][76].

• λ =| Vus | and λq = V ∗qsVqd are factors from CKM matrix.

The final value for Br(K+ → π+νν̄) in the SM context is computed in [53] to be:

BrSM(K+ → π+νν) = (0.84± 0.10) · 10−10 (1.16)

To better understand the 10% global uncertainty, it is practical to factorize as
follows[53]:

BrSM(K+ → π+νν) = (0.839±0.030)·10−10·[| Vcb | /40.7·10−3]2.8·[γ/73.2◦]0.74 (1.17)

where γ is the angle from unitarity triangle illustrated in figure 1.1. Obviously, from
the factorized form of equation 1.17, the uncertainty is dominated by the knowledge
of the CKM parameters Vcb and γ. Similarly, the branching ratio of KL → π0νν̄ is
computed in [53] as:

BrSM(KL → π0νν) = (0.34± 0.06) · 10−10 (1.18)

5

Chapter 1. Kaon Physics of NA62 1.1. Current Status of Kaon Physics

Figure 1.3: Relations between the unitarity triangle and the K → πνν decays [42].

The combined BR measurements of both decay modes would allow a precise estimation
of two elements of the unitarity triangle as shown in figure 1.3. The measurement of
the neutral channel allows us to directly extract the height of the unitarity triangle:
it is a CP-violating process and only the imaginary part of the decay amplitude is
involved. The charged channel, instead, receives contributions by both the imaginary
and the real component of the decay amplitude. The imaginary part is the same as
for the neutral channel, while the real part is provided by the top, within the unitarity
triangle, and by the charm quark. The K+ → π+νν̄ decay provides, therefore, the
measurement of one side of the unitarity triangle, after the correction for the charm
contribution which is mainly dependant on the charged lepton mass included in the
box diagrams. Additionally, only electron and muon effects are counted while the τ
lepton contribution is negligible [42].

Beyond Standard Model (BSM) physics predicts a whole new breed of particle
contributions to K → πνν loopy “Penguinology” and, therefore, large deviations in
the branching fractions of both charged and neutral channels. The largest deviations
would be derived from new sources of flavor violation [34][35]. Also, the experimental
value of the CP violation parameter εk limits the expected Br(K+ → π+νν̄) range
within models with currents of defined chirality. An instance amongst models reviewed
in [51] is one with a new heavy gauge boson Z

′ that generates FCNC processes
at tree level. Such models can predict correlations between K+ → π+νν̄ and
KL → π0νν̄ decays for different masses of Z ′ and Left/Right-Handed (LH/RH)
chiral couplings ∆L,R. Other similar correlations are predicted by Constrained
Minimal Flavor Violation (CMFV) models[84] (See figure 1.4). Additionally, present
experimental constraints limit the range of variation of Br(K+ → π+νν̄) in
supersymmetric models as well [77][36][112]. The K+ → π+νν̄ decay is also
affected by lepton flavor non-universality models, which assume that NP particles
are only coupled to third generation quarks and leptons [39][54]. Br(K+ → π+νν̄)

6

Chapter 1. Kaon Physics of NA62 1.1. Current Status of Kaon Physics

measurement can also constrain models with leptoquarks [37][65]. Finally, it is
important to note that, under the assumptions of lepton flavor conservation and fixed
Isospin jumps between underlying interactions (∆I = 1/2), the Grossman-Nir [73]
bound is defined as:

Br(KL → π0νν) < 4.4 ·Br(K+ → π+νν) (1.19)

and respected by the SM and most scenarios beyond it. However, a most recent study
showed a possibility for its violation [74].

Figure 1.4: Plots of popular correlations in the Br(KL → π0νν̄) versus Br(K+ →
π+νν̄) plane. The expanding red region represents lack of correlation for models with
general LH and/or RH NP couplings with Z

′ . Green region is the correlation zone
of models conforming to CMFV. While blue region illustrates the correlation induced
by εk constraints in models with exclusively LH or RH couplings [51].

In summary, extreme SM suppression makes these decays particularly sensitive to
NP. In model independent terms the K → πνν decays probe NP at the highest
mass scales [67, 10, 79, 68, 64]. Existing experimental constraints on NP affect
the K → πνν weakly, especially those on minimal flavour violating models. Model
dependent scenarios predict deviation of the branching ratios from the SM as large
as 30-40% and correlations between the charged and neutral modes, depending on
the model [87, 88, 9, 78, 69, 90, 110, 89, 55, 106]. Therefore, measurements of the

7

Chapter 1. Kaon Physics of NA62 1.2. Experimental Status of K+ → π+νν̄

K → πνν̄ branching ratios with O(10%) precision at least are needed to pin down
NP effects.

1.2 Experimental Status of K+ → π+νν̄

NA62 is a fixed target experiment running at CERN SPS designed to study K+

physics. The primary goal of NA62 is to measure precisely the K+ → π+νν̄ branching
ratio.
The experiments E787 and E949 at Brookhaven National Laboratory [61] studied
the K+ → π+νν̄ decay using a kaon decay-at-rest technique in the early 2000 and
measured BR = (17.3+11.5

−10.5)× 10−11.

The NA62 experiment makes use of a novel kaon decay-in-flight technique and
took data in 2016, 2017 and 2018. The analysis of the 2016 data demonstrated the
validity of the new technique in terms of background rejection power and provided the
observation of 1 candidate event, anyway compatible with the expected background.

With the 2017 data analysis NA62 surpassed the sensitivity of the K+ → π+νν̄ SM
and observed two candidates’ events. This observation was compatible either with the
signal plus background or with the background only hypothesis, leading to the upper
limit on the branching ratio BR < 1.78× 10−10 at 90% C.L.

The 2018 data analysis provided 17 candidates observed. The combination of
this analysis together with 2016 and 2017 analysis led to a 3.5σ evidence of the
K+ → π+νν̄ decay and to the most precise up-to-date measurement of the branching
ratio

BR = (10.6+4.0
−3.4|stat ± 0.9syst)× 10−11. (1.20)

After the long shutdown 2 of CERN, the experiment has resumed data taking in 2021
and is scheduled to take data until 2024. The aim is to increase the beam intensity of
30-40% with respect to the previous running conditions, to achieve enough statistics
to measure the K+ → π+νν̄ branching ratio with 10% precision.

The signature of the K+ → π+νν̄ decay is a single π+ and missing energy. The
squared missing mass, m2

miss = (PK − Pπ+)2, where PK and Pπ+ indicate the 4-
momenta of the K+ and π+, describes the kinematics of the one-track final state. In
particular, the presence of two neutrinos makes the signal broadly distributed over the
m2
miss range, as illustrated in Figure 1.5. The dominant K+ decay modes K+ → µ+ν ,

K+ → π+π0 and K+ → π+π+(0)π−(0) have different m2
miss distributions; it is therefore

8

Chapter 1. Kaon Physics of NA62 1.2. Experimental Status of K+ → π+νν̄

possible to define regions, either side of the K+ → π+π0 peak, qualitatively indicated
in Figure 1.5, where the search for the signal is performed, also known as signal regions
[1].

Figure 1.5: Expected theoretical distributions of the m2
miss variable relevant to the

K+ → π+νν̄ measurement. The m2
miss is computed under the hypothesis that the

charged particle in the final state is a π+. The K+ → π+νν̄ signal (red line) is
multiplied by 1010 for visibility. The hashed areas include the signal regions.

The K+ → µ+ν , K+ → π+π0 and K+ → π+π+(0)π−(0) decays enter the signal
regions through radiative and/or resolution tails of the reconstructed m2

miss. The
signal selection, based on kinematics only, relies on the accurate measurement of
the m2

miss quantity, i.e. of the K+ and π+ momenta and directions. In contrast,
K+ → π0l+ν or rarer decays, like K+ → π+π−l+ν , span over the signal regions
because of the presence of undetected neutrinos; however, these background decays
modes include a lepton in the final state and exhibit extra activity in the form of
photons or charged particles. A particle identification system must therefore separate
π+ from µ+ and e+. A track matching of the highest form should be performed
between the K+ and π+ in the final state to insure a suppression of background by at
least three orders of magnitude. Moreover, photons and additional charged particles
in final state must be vetoed as efficiently as possible. One of the critical points of
the analysis of the old data was the intensity dependence, that lead to a decrease of

9

Chapter 1. Kaon Physics of NA62 1.3. The beam and detector

signal efficiency with intensity. The work done for this thesis aims to tackle this issue
through the application of advanced neural network techniques to specific aspects of
the K+ → π+νν̄ data analysis, namely the K+ − π+ matching and the veto of the
photons using the electromagnetic calorimeter.

0

-1

-2

1

2

100 150 200 2500
Z [m]

1 2 3

GTK

X
 [

m
]

x

x

x

HASC

MUV0

CHANTI

LAV

KTAGTarget

MUV1,2
STRAW

IRC
LKr

Vacuum

MUV3
Iron

RICH

RICH

Dump

CHOD

SAC

COL

Figure 1.6: Schematic top view of the NA62 beamline and detector.

1.3 The beam and detector
The layout of the NA62 beamline and detector [14] is shown schematically in
Figure 1.6. A secondary hadron beam of positive charge with a nominal momentum
of 75 GeV/c, extracted from the CERN SPS, reaches a beryllium Target in extraction-
pulses (spills) each lasting about 5s (3s effectively). The beam is made of π+ (70%),
protons (23%) and K+ (6%). A differential Cherenkov counter (KTAG) using a
nitrogen radiator tags the K+ beam with 70 ps rms time resolution. Three silicon
pixel stations (GTK) measure momentum, direction, and time of beam particles with
resolutions of about 0.15 GeV/c, 16 µrad and 100 ps, respectively.

A collimator between the second and third GTK stations (final collimator) defines
the beginning of a 120 m long vacuum decay region. Six stations of plastic scintillation
bars (CHANTI) detect the extra activity produced in inelastic interactions of beam
particles with the last GTK station. At the entrance of the vacuum decay region, the
particle rate was about 500 MHz during the 2018 data taking period. The first 80 m

10

Chapter 1. Kaon Physics of NA62 1.3. The beam and detector

of the decay region defines a fiducial volume (FV) where about 13% of the K+ decays.

A magnetic spectrometer (STRAW) made of four straw chambers located in the
vacuum region downstream of the FV traces charged K+ decay products, measuring
their momenta thanks to a dipole magnet placed between the second and the third
chamber, providing a horizontal momentum kick of about 270 MeV/c.

A ring-imaging Cherenkov detector (RICH) for charged particle identification
measures the time of particles above threshold to better than 100 ps resolution.

A matrix of scintillation tiles readout by two SiPMs each (CHOD) and two planes
of horizontal and vertical scintillation slabs built for the NA48 experiment [17] (NA48-
CHOD) provide a 99% efficient trigger and a 200 ps resolution time measurement for
charged particles.

A quasi-homogeneous electromagnetic calorimeter at liquid Krypton (LKr) detects
photons emitted forward in K+ decays with angles between 1 and 10 mrad and
complements RICH for particle identification.

A two-module hadronic iron/scintillator-strip sampling calorimeter (MUV1,2)
supplements RICH and LKr for π+ identification. Behind an 80 cm thick iron wall, a
matrix of 148 scintillation tiles (MUV3), each of them read-out by two PMs, detects
µ+ with 400 ps time resolution.

Twelve stations of annular electromagnetic calorimeters made of lead glass crystals
(LAV) surround the FV and the downstream regions to achieve hermetic acceptance
for photons emitted in K+ decays in the FV at polar angles up to 50 mrad. A
lead/scintillator sampling calorimeter (IRC) located in front of the LKr, covers an
annular region between 65 and 135 mm from the beam axis. The IRC and a similar
detector (SAC) placed on the beam axis at the downstream end of the set-up ensures
the detection of photons down to 0 angle. A dipole magnet between MUV3 and SAC
bends the beam of charged particles out of the SAC acceptance.

Two off-acceptance detectors placed laterally close to the CHOD (MUV0) and
to the beam pipe before the SAC (HASC) ensure additional detection of charged
particles emitted in decays like K+ → π+π+π− and directed at large and small angles,
respectively.

NA62 collected the data for theK+ → π+νν̄ analysis through a dedicated two-level
trigger algorithm (PNN). The uppermost level (L0) required a signal in RICH to tag a

11

Chapter 1. Kaon Physics of NA62 1.4. Analysis method

charged particle in coincidence within ±10 ns with at least one hit tile in CHOD and
no signals in diagonally opposed CHOD quadrants to reduce K+ → π+π+π− decays;
no particle detected in MUV3 against K+ → µ+ν ; less than 30 GeV in LKr and no
more than 1 isolated in-time cluster (L0Calo) to suppress K+ → π+π0 decays. The
higher trigger level (L1) required: a kaon identified in KTAG and no energy deposited
in more than two crystals of any LAV station, within ±10ns of the L0 trigger RICH
time; at least one STRAW track corresponding to a particle with momentum below
50 GeV/c and forming a vertex with the nominal beam direction upstream of the
first STRAW chamber. Additional data stream has been collected using a minimum-
bias trigger based on the presence of CHOD signals and a trigger specific for 3-track
topology.

The work presented in this thesis made use of the data from 2017 both from PNN,
minimum-bias and 3-track trigger streams.

1.4 Analysis method
The experimental signature of the K+ → π+νν̄ decay consists of a K+ with 4-
momentum PK in the initial state and a π+ with 4-momentum Pπ and missing energy
in the final state. The kinematic variable used to discriminate between the signal and
background from K+ decays is the squared missing mass m2

miss = (PK − Pπ)2. This
variable defines two regions where to search for the signal (Region 1 and Region 2, as
shown in Figure 2), and to separate it from the other K+ decay backgrounds.

The measurement of BR(K+ → π+νν̄) relies on the calculation of the single event
sensitivity (SES) and the background evaluation. The SES is defined as 1/(NK+ ·
επνν̄), where NK+ is the effective number of K+ decays occurring in a pre-defined
decay region and επνν̄ is the signal efficiency. The K+ → π+π0 decays are used
as normalization to compute NK+ . Signal and normalization decays share the same
selection defined by the presence of a single π+ forming a vertex with a parent K+

inside the decay region. The rejection of extra activity from photons or charged
particles is applied only to the signal selection. Control regions (Figure 1.7) are used
to validate the background estimates. Control and signal regions are masked until
the completion of the analysis to avoid bias during the optimization of the selection
conditions. The K+ → π+νν̄ branching ratio is obtained from a binned log-likelihood
fit using the signal acceptance and background expectation.

The analysis is optimized separately in six π+ momentum bin, 5 GeV/c wide,
spanning from 15 to 45 GeV/c.

12

Chapter 1. Kaon Physics of NA62 1.5. Event selection

0 10 20 30 40 50 60 70
 momentum [GeV/c]+π

0.04−

0.02−

0

0.02

0.04

0.06

0.08

0.1

]4
/c2

 [
G

eV
m

is
s

2
m

10

210

310

410

π3

νµ

0π+π
Region 1

Region 2

Control regions

Control regions

Control
region

Figure 1.7: Reconstructed m2
miss as a function of pπ+ for minimum-bias events selected

without applying π+ identification and photon rejection, assuming the K+ and π+

mass for the parent and decay particle, respectively. Signal regions 1 and 2 (hatched
areas), as well as 3π, π+π0, and µν background regions (solid thick contours) are
shown. The control regions are located between the signal and background regions.

1.5 Event selection
The signal and normalization channels both require the presence of a track identified
as a π+ in the detector downstream (“Downstream charged particle”) and of a parent
K+ track in the detectors upstream that form a vertex in the main decay volume
together with the π+ track. Additional specific selection requirements distinguish
normalization from signal events.

Downstream charged particle: One or two isolated STRAW tracks are allowed
in an event. If two STRAW tracks are present, the one closest to the trigger time
is selected. Events with a negatively charged STRAW track are rejected to remove
K+ → π+π+π− and K+ → π+π−e+ν decays. The selected track must be within
the detector-sensitive regions and spatially associated to signals in the RICH, CHOD,
NA48-CHOD, and LKr. The track angle measured after the spectrometer magnet
must be geometrically compatible with the center of the reconstructed RICH ring.
Time constraints are imposed on the associated signals in the RICH, CHOD and LKr
using the NA48-CHOD time as a reference.

Parent K+: The parent K+ of a selected downstream charged particle is defined

13

Chapter 1. Kaon Physics of NA62 1.5. Event selection

by the signal in KTAG with time TKTAG closest in time and within 2 ns of the
downstream particle, and a beam track in GTK with time TGTK within 600 ps of the
KTAG signal and associated in space with the downstream track in the STRAW. The
association between the GTK, KTAG and STRAW signals relies on a discriminant
built from the time difference ∆T = TGTK – TKTAG and the closest distance of
approach (CDA) of the downstream charged particle to the GTK track. The templates
for the ∆T and CDA distributions of K+ decays are obtained from a dedicated
sample of K+ → π+π+π− decays, where the K+ is fully reconstructed using the
pion momenta and directions measured by the STRAW. The GTK track with the
largest value of the discriminant is then identified as the parent K+. The selected K+

must be consistent with the nominal beam momentum and direction and the CDA,
which has a resolution of about 1 mm, must be less than 4 mm. No more than five
reconstructed GTK tracks are allowed.

Kaon decay: The mid-point of the segment at the CDA of the downstream
charged particle to the parent K+ defines the kaon decay vertex. The Z position of
the kaon decay vertex (Zvertex) must be inside the region 110–165 m referred to as the
fiducial volume (FV) in the following. In addition, the FV of the first pπ+ bin (15–
20 GeV/c) is limited to 110–155 m to reduce the background fromK+ → π+π0 decays.
In the last two momentum bins (35–45 GeV/c) the FV is limited to 110–160 m to
suppress K+ → π+π−e+ν decays and upstream background, which dominate at high
momentum. Further Zvertex-dependent constraints are imposed on the angle of the
downstream charged particle. The analysis of the 2016, 2017 and part of the data
employ a cut on the charged particle backward-extrapolated position at the exit of
the final collimator (COL) that must be outside a rectangular box with transverse
dimensions 100×500 mm2. This requirement was needed to avoid background of pions
coming from the beam line and passing through cracks of the final collimator. A more
hermetic final collimator was installed in 2018. For the sample collected thereafter,
a Boosted Decision Tree (BDT) algorithm is trained on an out-of-time data sample
enriched in upstream K+ decays. A cut on the resulting BDT output value is chosen
to provide the same background rejection as a cut-based selection using the same
variables, while increasing the signal acceptance by 8%.

Pion identification: The π+ identification uses information from the calorime-
ters and the RICH and requires that no signal is reconstructed in MUV3 within 7 ns of
the π+ time. A BDT algorithm combines 13 variables describing the energy associated
with the π+ in the calorimeters, the shape of the clusters and the energy sharing
between LKr, MUV1 and MUV2. Samples of π+, µ+ and e+ selected from 2017 data
not included in the present analysis are used for training. The π+ identification by
the RICH uses two different approaches to reconstruct a Cherenkov ring. In the first

14

Chapter 1. Kaon Physics of NA62 1.5. Event selection

approach, the track direction is used to predict the position of the ring center, and the
expected ring radius is calculated using the track momentum. In the second approach,
the ring center and radius are determined by a χ2 fit to the hit positions, and the
charged particle mass is derived using the track momentum. A cut on the measured
mass is then applied to distinguish Pions from muons. Particle identification criteria
with the calorimeters and RICH are optimized separately to achieve the best signal
sensitivity.

Normalization selection: The selection of the normalizationK+ → π+π0 events
is applied to minimum-bias data and requires 0.010 < m2

miss < 0.026 GeV2/c4 and
15 < pπ+ < 45 GeV/c. The width of the normalization region is defined to be ±8σ,
where σ is the m2

miss peak resolution.

Signal selection: The selection of the signal events is applied only to PNN data
and requires that no in-time photons or additional charged particles are present. An
in-time photon in the LKr is defined as an energy cluster located at least 100 mm
away from the π+ impact point and coincident in time with the π+. The size of the
time coincidence window varies with the amount of deposited energy and ranges from
±5 ns below 1 GeV to ±50 ns above 15 GeV. In-time photons are identified if a signal
is found within 3 ns of the π+ time.

Multi-charged particle rejection prevents interactions of photons or charged
particles in the RICH mirrors, and K+ → π+π+π− or K+ → π+π−e+ν decays
with partially reconstructed STRAW tracks.

The two K+ → π+νν̄ signal regions are defined in the (pπ+ , m2
miss) plane as:

Region 1: 0 < m2
miss < 0.010 GeV2/c4 and 15 GeV/c < pπ+ < 35 GeV/c;

Region 2: 0.026 < m2
miss < 0.068 GeV2/c4 and 15 GeV/c < pπ+ < 45 GeV/c.

Additional constraints are also imposed on the m2
miss value to reduce the kinematic

tails due to multiple scattering in the STRAW or wrong K/π association.

The minimum momentum value is fixed at 15 GeV/c by the RICH threshold for
efficient pion detection. The maximum value is fixed at 35 GeV/c in Region 1, because
the K+ → µ+ν decay distribution approaches the signal region at high momenta,
and at 45 GeV/c in Region 2 to remove K+ → π+π−e+ν and upstream backgrounds
(see Figure 1.7).

15

Chapter 1. Kaon Physics of NA62 1.6. Single event sensitivity

Subset S1 Subset S2

Nππ × 10−7 3.14 11.6
Aππ × 102 7.62± 0.77 11.77± 1.18
Aπνν̄ × 102 3.95± 0.40 6.37± 0.64
εPNN
trig 0.89± 0.05 0.89± 0.05
εRV 0.66± 0.01 0.66± 0.01
SES × 1010 0.54± 0.04 0.14± 0.01
N exp
πνν̄ 1.56± 0.10± 0.19ext 6.02± 0.39± 0.72ext

Table 1.1: Inputs to the SES evaluation, SES values and numbers of expected SM
signal events in the S1 and S2 subsets.

1.6 Single event sensitivity
The following expression is used to compute the SES value:

SES = BR(K+ → π+π0) · Aππ
D ·Nππ · Aπνν̄ · εRV · εPNN

trig
. (1.21)

Here Nππ is the number of selected K+ → π+π0 normalization events. BR(K+ →
π+π0) is the K+ → π+π0 branching ratio [62]; D = 400 is the down-scaling factor of
the minimum-bias trigger: Aπνν̄ and Aππ are the signal and normalization acceptances,
respectively, evaluated with simulations. 1− εRV is the inefficiency resulting from the
random veto induced by the photon and multi-charged particle rejection due to the
presence of accidental activity in the detectors. εPNN

trig is the efficiency of the PNN
trigger stream. The inputs to the SES computation, the resulting SES values, and
the corresponding numbers of expected SM K+ → π+νν̄ events for the S1 and S2 data
subsets, integrated over pπ+ , are summarized in Table 1.1. The K+ → π+νν̄ decays
are simulated using form factors derived from the K+ → e+π0ν decay. The
accuracy of the description of particles identification and K/π association dominates
the uncertainties of Aπνν̄ and Aππ in Table 1.1, but these effects cancel to first order
in the ratio Aππ/Aπνν̄ . The relative contribution of π0 Dalitz decays, π0 → e+e−γ, to
the SES result is estimated to be 0.7% and is assigned as a systematic uncertainty to
Aππ. A systematic uncertainty of 3.5% is propagated to the SES value to consider the
quality of the description of π+ interactions with the material upstream of the LKr,
as well as of the m2

miss distribution. The 2% uncertainty of PNN trigger efficiency is
propagated to the SES measurement. The observed discrepancy of up to 5%, takes
into consideration the minor correlation between L0 and L1 trigger efficiencies, and
being stable across the whole 2018 period, it is propagated to the SES measurement.

16

Chapter 1. Kaon Physics of NA62 1.7. Background evaluation and validation

The random-veto parameter εRV is measured using a sample of K+ → µ+ν decays
from minimum-bias data, selected similarly to K+ → π+νν̄ decays but with inverted
particle identification criteria (µ+ instead of π+) and in the µν m2

miss region. The
fraction of events left after applying the photon and multi-charged particle rejection
is measured to be εRV = 0.66 ± 0.01, including a correction of +0.02 to account for
activity in LAV and CHOD induced by the δ-rays produced by muons in the RICH
mirrors, as calculated from simulation. The value of εRV depends on the instantaneous
beam intensity, and its uncertainty is evaluated by extrapolating εRV to zero intensity
and comparing with a MC simulation of K+ → µ+ν decays.

1.7 Background evaluation and validation
Background contributions to the K+ → π+νν̄ final state can be identified from two
processes: K+ decays inside the FV to a final state different from the signal; upstream
events where a π+ originates either from a K+ early decay (before FV) or from an
interaction between a beam K+ and the material upstream of the FV.

The four main K+ decay backgrounds are K+ → π+π0 , K+ → µ+ν , K+ →
π+π+π− and K+ → π+π−e+ν. The first three enter the signal regions if m2

miss is mis-
reconstructed. The estimation of these backgrounds rely on the assumption that π0

rejection for K+ → π+π0 , particle identification for K+ → µ+ν , and multi-charged
particle rejection for K+ → π+π+π− are independent of the m2

miss variable defining
the signal regions. After the K+ → π+νν̄ selection is applied, the expected number
of events in the signal or control regions is computed for each category as:

N exp
decay = Nbkg · fkin(region). (1.22)

Here Nbkg is the number of PNN-triggered events in the π+π0, µν or 3π background
region and fkin(region) is the fraction of events reconstructed in the signal or control
region for each decay mode. The values of the kinematic factor fkin(region) are
obtained: for K+ → π+π0 and K+ → µ+ν by using minimum-bias data samples
with dedicated selections; forK+ → π+π+π− by using simulated events. Backgrounds
from K+ → π+π−e+ν, K+ → π+γγ and semileptonic decays K+ → π0l+ν (l = e, µ)
are evaluated only with simulations.

K+ → π+π0 : After the K+ → π+νν̄ selection, 471 events are observed
in the π+π0 region (Figure 1.8, left). The kinematic factor is measured using a
minimum-bias data sample with a PNN-like selection applied. The m2

miss distribution
is shown in Figure 1.8, right. The disagreement with the assumption that the π0

tagging is independent of the kinematics is of 3% and assigned as a systematic

17

Chapter 1. Kaon Physics of NA62 1.7. Background evaluation and validation

10 15 20 25 30 35 40 45 50
 momentum [GeV/c]+π

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

]4
/c2

 [
G

eV
m

is
s

2
m

Data
νν+π→+SM K

Control region

Control region

Figure 1.8: Evaluation of the π+π0 background. Left: Distribution, in the (p+
π ,

m2
miss) plane of events in the π+π0 region and in the adjacent control regions after the

complete signal selection, is applied to the S1 and S2 subsets. The intensity of the grey
shaded area reflects the variation of the SM signal acceptance in the plane. Right:
Data/MC comparison of the m2

miss distribution of minimum-bias K+ → π+π0 events
selected by tagging the π0 → γγ decay. This data sample is used to measure the
K+ → π+π0 kinematic factor fkin.

uncertainty. The background estimates in the signal and control regions are obtained
using equation 1.22 and are validated by comparing expected and observed numbers
of events within the control regions. The presence of radiative K+ → π+π0γ decays
from inner bremsstrahlung increases the fraction of K+ → π+π0 background.
The value of the correction applied to account for this effect represents 8% of the
K+ → π+π0 background [6] and a 100% systematic uncertainty is assigned for the
precision of the simulated estimation.

K+ → µ+ν : After the K+ → π+νν̄ selection, 14112 events are observed in the
µν region. To consider the correlations between the RICH particle identification and
the kinematic selection criteria, fkin(region) is measured using a minimum-bias data
sample. The K+ → µ+ν decays are selected applying signal-like conditions, requiring
the charged particle to satisfy the µ+ identification criteria in the calorimeters and
the π+ identification criteria in the RICH. A simulation-driven correction of +3%
(relative) is applied to the K+ → µ+ν background estimation in Region 1, to account
for muons decaying in flight as µ+ → e+νeν̄µ.

18

Chapter 1. Kaon Physics of NA62 1.7. Background evaluation and validation

K+ → π+π+π− : The m2
miss distribution of the three-body decay spans over a

wide kinematic region. A selection requiring only a match between a π+ in the final
state and the parent K+ is applied to a sample of simulated K+ → π+π+π− decays.
To account for the resolution of the m2

miss variable, the factor fkin(region) is computed
in bins of m2

miss. The K+ → π+π+π− background is obtained after integrating the
background estimates in each m2

miss bin.

K+ → π+π−e+ν: This decay is characterized by large values of m2
miss and

contributes only to Region 2. The contribution is suppressed by the O(10−5) branch-
ing ratio, multi-charged particle rejection, particle identification and kinematics. A
sample of 2×109 MC simulated K+ → π+π−e+ν decays is used to estimate the
background.

Other backgrounds from K+ decays: The contributions from K+ →
π0l+ν (l = µ, e) and K+ → π+γγ decays are found to be negligible given the
particle identification and photon rejection criteria applied to the simulated samples.
Upper limits of O(10−3) and O(10−2) events are obtained for the K+ → π0l+ν and
K+ → π+γγ contributions, respectively.

Upstream background: The background from upstream events receives contri-
butions from two types of processes: a π+ from K+ decays occurring between GTK
stations 2 and 3, matched to an accidental beam particle; a π+ from interactions of
a K+ with the material in the beam line, produced either promptly or as a decay
product of a neutral kaon and matched to the in-time K+. Studies on data and MC
simulations validate the above classification of upstream events. The evaluation of
the background from upstream events follows a data-driven approach. A sample of
PNN data is selected with all K+ → π+νν̄ criteria applied, but requiring: CDA >
4 mm; no K/π association: m2

miss value inside Regions 1 or 2. The events selected
define the upstream sample: the distribution of the π+ tracks at the (XCOL, YCOL)
plane (Section 1.5) is shown in Figure 1.9, left. Contamination from K+ decays in
the FV is at the per cent level and therefore negligible. The upstream background
is computed as the product of the number of events in the upstream sample, Nups,
and the probability, Pmistag, that an upstream event has CDA < 4 mm and satisfies
the K/π association criteria. The probability Pmistag depends on the shapes of the
distributions of CDA (Figure 1.9, right) and of ∆T. The probability Pmistag is evaluated
as a function of ∆T by generating upstream-like events in the (CDA, ∆T) plane
and applying the K/π association with the CDA < 4 mm condition. The expected

19

Chapter 1. Kaon Physics of NA62 1.7. Background evaluation and validation

500− 0 500
 [mm]COLX

500−

0

500

 [
m

m
]

C
O

L
Y

0 10 20 30 40 50 60 70 80 90 100
CDA [mm]

0

0.05

0.1

0.15

0.2

0.25

0.3

N
or

m
al

iz
ed

 e
nt

ri
es

/(
4

m
m

)

True K (data)
Entries 165133

Mean 1.198

Std Dev 1.339

 decays in fiducial region+K

Upstream sample (data)

 bandσBackground model 1

Figure 1.9: Properties of upstream background events. Left: Extrapolation of π+

tracks of the upstream sample described in the text to the (XCOL, YCOL) plane in
the S2 subset. The small (large) red rectangles correspond to the inner (outer)
borders of the new collimator. The outline of the last dipole of the beam achromat is
shown with blue solid lines. Right: CDA distribution of the events in the upstream
sample shown on the left plot (black markers with error bars), compared to the CDA
distribution extracted from data and its uncertainty (brown shaded area) and to the
same distribution of K+ decaying in the FV (grey shaded area).

background is computed as

N exp
upstream =

12∑
i=1

Nups(|∆Ti|) · Pmistag(|∆Ti|) · fscale. (1.23)

The sum runs over the twelve 100 ps wide bins covering the (−600,+600) ps region
used to reconstruct the tracks in the GTK; Nups(|∆Ti|) is the number of events in
the upstream sample in the ∆T bin i; Pmistag(|∆Ti|) is the mis tagging probability.
fscale = 1.15 is a scaling factor that accounts for upstream events with CDA < 4 mm
not included in Nups. In total, Nups = 9 events are selected in S1 and Nups = 38
in S2, leading to an upstream background of N exp

upstream = 3.3+0.98
−0.73 combining the S1

and S2 subsets. The uncertainty is dominated by statistical uncertainty of Nups. A
systematic uncertainty of 20% is added, related to the modelling of the CDA shape
below 4 mm. A 15% systematic uncertainty is assigned to the value of fscale.

Background summary: The background prediction for the sum of all contribu-
tions described above is validated in the six control regions located between the signal

20

Chapter 1. Kaon Physics of NA62 1.7. Background evaluation and validation

Background Subset S1 Subset S2

π+π0 0.23± 0.02 0.52± 0.05
µ+ν 0.19± 0.06 0.45± 0.06
π+π−e+ν 0.10± 0.03 0.41± 0.10
π+π+π− 0.05± 0.02 0.17± 0.08
π+γγ < 0.01 < 0.01
π0l+ν < 0.001 < 0.001
Upstream 0.54+0.39

−0.21 2.76+0.90
−0.70

Total 1.11+0.40
−0.22 4.31+0.91

−0.72

Figure 1.10: Background predictions. Left: Reconstructed m2
miss as a function of π+

momentum after applying the signal selection to the S1 and S2 subsets. Events in the
background regions are displayed as light grey dots. The control regions, populated by
the solid black markers, are adjacent to the background regions. The numbers next
to these regions are the expected numbers of background events (in brackets) and
the observed numbers (without brackets). Right: Expected numbers of background
events summed over Regions 1 and 2 in the 2018 subsets.

and the π+π0, µν and 3π regions. After unmasking the control regions, the observed
and expected numbers of events are found to be statistically compatible across all
control regions (Figure 1.10, left). A summary of the background estimates summed
over Region 1 and Region 2 is presented in Figure 1.10, right for the two subsets S1
and S2 of the 2018 data.

Finally, despite the highest precision performed for K+ → π+νν̄ measurement,
limitations were present due to kaon-pion association and Photon Veto contributions
to lower acceptance. In addition, more drastic signal losses are expected in the future
with High Intensity Runs. Especially that inefficiency, due to those requirements,
is intensity dependent. In this thesis, an attempt is presented, while exploiting
innovative Artificial Intelligence technology, to explore ways for overcoming these
issues.

21

Chapter 2

Introduction to AI

2.1 Artificial Intelligence: Aristotle to COVID-19
In 1950, Alan Turing saw the need to define the intelligence level of any artificial agent
based on human mental performance. He proposed a test (Turing Test), to provide
a satisfactory operational definition. The agent (e.g., a computer) passes the test if
a human investigator interacting remotely with it, through written messages, cannot
tell the difference whether the responses come from a person or not. This approach
provoked and still inciting scientific and philosophical debates regarding the possibility
of achieving and realizing such a comparison in an objective way. One main reason
for such skepticism is our large gap in understanding of human rationality itself, let
aside comparing all its functionalities with artificially intelligent agents. Since it is
outside the scope of my thesis to discuss the main dogmatic definitions of Artificial
Intelligence (AI), I will stick with S. Russell’s [105] pragmatic approach to this topic
that, in my opinion, led to the blooming of learning machines and later ushered a new
era of technological advancement through one of toughest pages in human history,
during COVID-19 world pandemic.

S. Russell’s alternative practical approach to AI presented in his book, can be
regarded as similar to Richard Feynman’s to Quantum Mechanics. In other words,
instead of losing focus while delving into ontological controversies, he is satisfied
with a productive frame of first principles that works and clearly gives results. N.
David Mermin, a semi-retired professor of physics at Cornell University, was behind
the famous motto to this approach (i.e., “Shut up and calculate!”). So then, when
judging intelligence in the processes of thinking and acting, it would be because of
rationality and logic.

The first to attempt to demystify rationality and undeniable reason is the Greek

22

Chapter 2. Introduction to AI 2.1. Artificial Intelligence: Aristotle to COVID-19

philosopher Aristotle. From his first principles of logic, any rational agent can be
considered “thinking” if it can follow logical laws in structures and patterns to
present correct conclusions when given correct information. The other attributes
that the rational agent should possess are ones that allow it to “act” accordingly.
The main engine that would guide these attributes, among other secondary ones, is
the principle of inference. The correct inferences would lead the rational agent to
reason logically to (e.g., operate computations based on) the conclusion that a given
action will achieve one’s goals and then to act on that conclusion. In addition to
logic and computing inference, the great contribution of mathematics to AI came
with the theory of probability and Bayesian analysis. When classical inference fails,
computed conclusions become ambiguous, hence the need of probability. Thomas
Bayes (1702-1761) introduced a statistical rule for updating probabilities in the light of
new evidence, to become the basis of most modern approaches to uncertain reasoning
in AI systems.

From the two basic philosophical pillars founded by the Greek expert in logic
and Bayesian analysis in probability theory, most rational agents are empirically
constructed and described in concrete instances, from early Neural Nets to state-of-
the-art Deep Learning-based intelligent systems. In the mid-19th century, computers
blueprints started laying foundations for efficient computing machines. Charles
Babbage (1792-1871) designed the “Analytical Engine” which included addressable
memory, stored programs, and conditional jumps. It did not materialize until modern
computers started emerging in the modern era. AI also owes a debt to the software
side of computer science, which has supplied operating systems, high-level languages
and platforms, libraries, and tools to make modern programming widely accessible.
Finally, Norbert Wiener (1894-1964) laid the foundations to control theory, especially
the branch known as stochastic optimal control which has as its goal the design
of systems that maximize an objective function over time. The tools of control
theory (i.e., calculus and matrix algebra) inspired a remarkably similar concept in
optimizing intelligent systems in what is called stochastic gradient descent, which
has as its goal to minimize a loss function over time. That concept came to its
best use when in the mid-1980s, four distinct groups reinvented the back-propagation
learning algorithm first found by [47]. That came at the same time when parallel
distributed processing [104] started gaining momentum and caused great excitement.
Until recently, multi-threading on Graphical Processing Units GPU started making
the long-revered Moore’s law1 itself irrelevant. The reason for that is that computing
efficiency is not merely measured by transistors size or number anymore.

The above-mentioned overview is a swift review of the developments of theoretical
1Moore’s Law says that the number of transistors per square inch doubles every 1 to 1.5 years.

23

Chapter 2. Introduction to AI 2.1. Artificial Intelligence: Aristotle to COVID-19

rational agents into actual intelligent systems that paved the way to the optimal
blooming of recent AI reemergence in every aspect of sciences and more of every-day’s
life (e.g., page 27 of [105]). Finally, and most recently, an unusual world pandemic
started its deadly exponential spread in 2019. COVID-19 incited governments and
private sectors to provide AI with plenty more freedom and resources to evolve even
faster, out of the urgency and necessity to save lives. Also, public trust and confidence
are regained, due to the results AI presented in the fields of medical diagnosis and
epidemiology that helped wage the war against COVID-19. In at least 7 ways [114],
AI gave humanity the upper hand over the pandemic:

1. Early detection and diagnosis of the infection: AI can quickly analyze irregular
symptom and other ‘red flags’ and thus alarm the patients and the healthcare
authorities.

2. Monitoring the treatment: AI can build an intelligent platform for automatic
monitoring and prediction of the spread of this virus.

3. Contact tracing of the individuals: AI can help analyze the level of infection by
this virus identifying the clusters and ‘hot spots’ and can successfully do the
contact tracing of the individuals and to monitor them.

4. Projection of cases and mortality: This technology can track and forecast the
nature of the virus from the available data, social media, and media platforms,
about the risks of the infection and its spread.

5. Development of drugs and vaccines: AI is used for drug research by analyzing
the available data on COVID-19. This technology is used in speeding up drug
testing in real-time.

6. Reducing the workload of healthcare workers: It helps in early diagnosis and
providing treatment at an early stage using digital approaches and decision
science, offers the best training to students and doctors regarding this new
disease.

7. Prevention of the disease: With the help of real-time data analysis, AI can
provide updated information which is helpful in the prevention of this disease.

Next the detailed functionalities of Neural Nets in what is known as Supervised
learning will be presented, then Deep Learning DL in Computer Vision, to end up
this introductory chapter with basic concepts of AI-related applications in image
recognition and more-so in object detection.

24

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

2.2 Supervised Neural Networks
An algorithm is learning if it improves its performance on future tasks after making
interactions with data. Learning is a broad philosophical and scientific topic with
many categories and levels. Hence, we will concentrate on one class of learning
problem: from a collection of input-output pairs, learn a function that predicts the
output for new inputs.

Any component of an agent can be improved by learning from data. The
improvements, and the techniques used to make them, depend on three major factors:

1. What prior knowledge the agent already has.
2. What representation is used for the data and the component.
3. What feedback is available to learn from.

The type of feedback available for learning is usually the most principal factor in
determining the nature of the learning problem that the algorithm faces [105]. There
are three types of feedback that the field of machine learning usually distinguishes as
three cases of learning:

In unsupervised learning the algorithm learns patterns in the input even though
no explicit feedback is supplied. The most common unsupervised learning task is
clustering: detecting potentially useful clusters of input examples.

In reinforcement learning the algorithm learns from a series of reinforcements-
rewards or punishments. It is up to the algorithm to decide which of the actions prior
to the reinforcement was most responsible for it.

In supervised learning the algorithm observes some example input-output pairs
and learns a function that maps from input to output. In this case, the output value
is available directly from the algorithm’s perceptions (after the fact); the environment
(example and function) is a teacher.

We will focus on the last case and try to develop a supervised learning algorithm.
The vertebra of such an algorithm is the learning or mapping objective function. Let
us for now call this function h for hypothesis in hypothesis space H and h will be
called a consistent hypothesis if it agrees with the input-output data. The problem
that appears here is: how do we choose from among multiple consistent hypotheses?
One answer is Ockham’s 2 razor : prefer the simplest hypothesis consistent with the

2Named after the 14th century English philosopher, William of Ockham.

25

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

data [105]. Intuitively, this makes sense, because hypotheses that are not simpler
than the data themselves are failing to extract any pattern from the data. However,
we should always keep in mind that there is a trade-off between the expressiveness of
a hypothesis and the complexity of finding a simple, consistent one. Therefore, the
general successful strategy of a machine learning project is to start with the simplest
h. A learning algorithm takes as input an object or situation described by a set
of attributes and returns a “decision”-the predicted output value for the input. The
input values for the attributes can be continuous or discrete. The output value can also
be continuous or discrete; learning a discrete-valued function is called classification
learning; learning a continuous function is called regression. We will concentrate on
Boolean classification currently, wherein each example is classified as true(positive) or
false(negative).

Finally, we define a theoretical frame for performance and training. A learning
algorithm is good if it produces hypotheses that do a decent job of predicting the
classifications of unseen examples. We will look at a methodology for assessing
prediction quality after the fact.

Obviously, a prediction is good if it turns out to be true, so we can assess the
quality of a hypothesis by checking its predictions against the correct classification
once we know it. We do this on a set of unseen examples known as the test set. If we
train on all our available examples, then we will have to go out and get some more to
test on, so often it is more convenient to adopt the following methodology:

1. Collect a large Control Sample of data.
2. Divide it into two disjoint sets: the training set (90%) and the test set (10%);

a strategy known as cross-validation.
3. Apply the learning algorithm to the training set, generating a hypothesis h.
4. Measure the accuracy or percentage of examples in the test set that are correctly

classified by h, as a single-number evaluation metric [96].
5. Repeat step 2 to 4 for varied sizes of training sets and different randomly selected

training sets of each size3.

Unfortunately, this is far from the whole story. It is quite possible, and in fact even
when vital information is missing, the learning algorithm will find a hypothesis that
is consistent with all the examples. This is because the algorithm can use irrelevant
attributes to make insignificant distinctions among examples. This problem is called

3An easier approach to this step, assuming we have a large enough control sample of data, is to
use mini-batches and random shuffling, in addition to hyper-parameters tuning that will be explained
in the “Optimization” section

26

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

over-fitting. It is out of the scope for now to delve into probability theory and explain
the mathematical tools used to deal with such a problem. We will be satisfied by the
practical strategy mentioned in [96] which is:

1. Make sure that our data control sample is as general and random as it can be
(the larger the better).

2. We can measure the deviation by comparing the actual number miss-classified
positive and negative examples.

3. Notice any illogical increase in performance in the test set over the training set
predictions.

In the case of supervised learning, the quality of a binary classifier is typically
described by a measure that quantifies how well the machine learning algorithm
separates signal from background4. On a sample of data, where we know the true class
labels, there are 2× 2 categories formed by the true and the estimated labels both for
signal and background classes. The matrix of entries is known as the input matrix
and a sample of data in these categories can be used to quantify the performance
of the machine learning algorithm. Typical performance measures are the accuracy
of the mean as the % of true predictions [86], or more specifically the percentage of
true positive and true negative labels [40]. These numbers can be used as evaluation
metrics either during or after the training of a neural network, while the training itself
uses differentiate function to allow for updating through cycles of iterations. The
function is called “loss function” because it keeps a record of the errors from one cycle
to another. The cross-entropy is the mathematical function chosen for classification
algorithms in general (see for example [93]). The most common function used in
general for binary classifications is the vanilla logistic loss function or cross entropy
that will also be described next. Obviously, a prediction is good if it turns out to be
true, so we can assess the quality of a hypothesis by checking its predictions against
the correct classification once we know it. We do this on a set of unseen examples
known as the test set. It is important to note that a dimensional consistency check
must be carried out throughout the construction process. Variables with consistent
dimensions should be stacked together to form the main input matrices.

All preparation steps described so far applies to all supervised learning methods
not exclusively including: Logistic Regression (LR)[75], K-Nearest Neighbours
(KNN)[60], Decision and Boosted Decision Trees (BDT)[32][101], Random Forest
(RF)[41], Naive Bayes (NB)[99], Support Vector Machine (SVM) with or without
Kernel functions modification (e.g., Radial Basis Function (RBF))[113][30], Boosting

4Signal and background here are mentioned in a simplistic binary meaning, merely to differentiate
two labels nothing more.

27

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

Classifiers (i.e., Gradient Boosting machines, Ada Boost, etc...)[94] and Neural
Networks (NN)[107] which will be the main method adopted in this thesis for reasons
will be stated in Chapter 3.

For now, the next step is to describe the development of a Supervised model using
NN (Neural Network) Algorithm with the following ingredients:

• The mathematical definition of the Sigmoid and ReLU activation functions.
(Check the Appendix for more details)

• The initialisation of the parameters with “He” method5. The initialisation
consists of zero initial values for the biases b[l] and random values for the weights
w[l]. Random weights initialisation is used to break the symmetry and make sure
different hidden units can learn different things. The initial values of the weights
should be multiplied by a scaling factor of

√
2

dimension−of−the−previous−layer to keep
them reduced.

• A function that selects the mini batches randomly according to the size selected,
then does the shuffling and the associated dimensional partition. In Stochastic
Gradient Descent, we use only 1 training example before updating the gradients.
When the training set is large, SGD can be faster, but the parameters will
“oscillate” toward the minimum rather than converge smoothly. Note also that
implementing SGD requires 3 for-loops in total:

1. Over the number of iterations
2. Over the m training examples
3. Over the layers (to update all parameters, from (W [1], b[1]) to (W [L], b[L]))

In practice, we’ll often get faster results if we do not use either the whole
training set, or only one example, to perform each update. Mini-batch gradient
descent uses an intermediate number of examples for each step. With mini-
batch gradient descent, we loop over the mini-batches instead of looping over
individual training examples. The difference between gradient descent, mini-
batch gradient descent and stochastic gradient descent is the number of examples
we use to perform one update step. A crucial point though is that we always
must tune a learning rate (i.e., as a hyper-parameter) α. To build mini batches
from the training set(X,Y), there are two steps:

1. Create a shuffled version of the training set (X, Y) as shown in Figure 2.1.
Each column of X and Y represents a training example. Note that the

5Named after the first author of (He et al., 2015).

28

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

random shuffling is done synchronously between X and Y. Such that after
the shuffling the ith column of X is the example corresponding to the ith
label in Y. The shuffling step ensures that examples will be split randomly
into different mini batches.

Figure 2.1: The shuffling must be synchronised between the X and the Y matrices.

2. Partition the shuffled (X, Y) into mini batches of size
mini-batch-size (here 256 in Figure 2.2). Note that the number of training
examples is not always divisible by mini-batch-size so the last mini batch
might be smaller. Let bsc represents s rounded down to the nearest integer
(this is math.floor(s) in Python). If the total number of examples is not
a multiple of mini-batch-size=256 then there will be b m

mini batch size
c mini-

batches with a full 256 examples, and the number of examples in the final
mini-batch will be (m−mini batch size× b m

mini batch size
c).

• The Forward Propagation computes the outcome in the forward direction
(shown in purple in Figure 2.3). It completes the LINEAR part of a layer’s
forward propagation step (it calculates the output of the following function:
Z [l] = W [l]A[l−1] + b[l] where A0 = X) 6, combines the previous two steps into a
new [LINEAR→ACTIVATION] forward function (as in: A[l] = g(Z [l]) where
the activation “g” can be sigmoid or ReLU), stacks the [LINEAR→RELU]
forward function (L − 2) time (through layers 1 to L − 2) and finally adds
a [LINEAR→SIGMOID] activation at (the L − 1th layer). This gives a new

6We will use capital letters now to give indications that we are dealing with matrices and matrix
operations.

29

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

Figure 2.2: The last mini batch might be smaller than the mini-batch-size.

L-model-forward function with a single node final output layer for binary
classifications (where L is the total number of layers and l is the current layer
index that runs from 0 to L− 1).

• The definition and computation of the cross-entropy cost of the vanilla logistic
loss. The goal of logistic regression is to minimize the error between its
predictions and training data. Given an input represented by a feature vector
X, the algorithm will evaluate the probability of a class. Z is a linear function
“Matrix”, but since we are looking for a probability constraint between [0,1], the
sigmoid function is used at the final hidden layer. We can think of the NN as
a 2-dimensional graph formed of many layers and every layer has many nodes.
Each node is learning the weights of this linear function and mapping it to all
the other nodes in the next layer. When the training is done the functions on
the L − 1 layer should converge to give an output probability-classification7.
However, to train the parameters “Matrices” W and b, we need to define a
Cost Function. The loss function first, measures the discrepancy between the
prediction(ŷ(i)) and the desired output (y(i)). One most used is cross entropy
loss function which computes the error for a single training example in the
following manner:

j(ŷ(i), y(i)) = −[(y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i))] (2.1)
7Check the DL mathematical notations in the index at the end-page.

30

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

where,

– If y(i) = 1 : j(ŷ(i), y(i)) = −log(ŷ(i)) where log(ŷ(i)) and ŷ(i) should be close
to one

– If y(i) = 0 : j(ŷ(i), y(i)) = −log(1− ŷ(i)) where log(1− ŷ(i)) and ŷ(i) should
be close to zero

The cost function is the average loss function of the entire training set. The
goal is to find the parameters w and b that minimize the overall cross entropy
cost function, defined in the following:

J(w, b) = 1
m

m∑
i=1

j(ŷ(i), y(i)) = − 1
m

m∑
i=1

[(y(i)log(ŷ(i))+(1−y(i))log(1− ŷ(i))] (2.2)

• The Backward Propagation that computes the gradients in the backward
direction (denoted in red in Figure 2.3). Complete the LINEAR part of a layer’s
backward propagation step (resulting in

dW [l] = ∂J
∂W [l] = 1

m
dZ [l]A[l−1]T ,

db[l] = ∂J
∂b[l] = 1

m

∑m
i=1 dZ

[l](i)

and dA[l−1] = ∂J
∂A[l−1] = W [l]TdZ [l]).

Define the gradient of the ACTIVATION function (relu-backward/sigmoid-
backward). Combine the previous two steps into a new [LINEAR→ACTIVATION]
backward function (resulting in

dZ [l] = dA[l] ∗ g′(Z [l])

where g’=0 (for Z < 0) or dA[l](for Z > 0) if g is relu()

and g’=σ(1− σ) if g is sigmoid()).

Stack [LINEAR→RELU] backward L-1 times and add [LINEAR→SIGMOID]
backward in a new L-model-backward function (resulting in

dAL = ∂J
∂AL = −(Y

AL − 1−Y
1−AL) where AL = σ(ZL)).

31

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

Figure 2.3: A mind-map of the general L-layered NN Dynamics [95]. As we notice
here for every forward function, there is a corresponding backward function. That
is why at every step of our forward module we must store some values in a cache.
Cached values are useful for computing gradients. In the back-propagation module
we can then use the cache to calculate the gradients.

• A function that updates the main parameters following the Adam optimization
main formulation. Adam is one of the most effective optimization algorithms
for training neural networks. Adam works in the following way:

1. It calculates an exponentially weighted average of past gradients and stores
it in variables v (before bias correction) and vcorrected (with bias correction).

2. It calculates an exponentially weighted average of the squares of the past
gradients and stores it in variables s (before bias correction) and scorrected

(with bias correction).
3. It updates parameters in a direction based on combining information from

“1” and “2”.

32

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

The update rule is, (l = 1, ..., L)

For the weights:

vW [l] = β1vW [l] + (1− β1) ∂J
∂W [l]

vcorrected
W [l] = v

W [l]
1−(β1)t

sW [l] = β2sW [l] + (1− β2)(∂J
∂W [l])2

scorrected
W [l] = s

W [l]
1−(β2)t

W [l] = W [l] − α
vcorrected

W [l]√
scorrected

W [l] +ε

and for the biases:

vb[l] = β1vb[l] + (1− β1) ∂J
∂b[l]

vcorrected
b[l] = v

b[l]
1−(β1)t

sb[l] = β2sb[l] + (1− β2)(∂J
∂b[l])2

scorrected
b[l] = s

b[l]
1−(β2)t

b[l] = b[l] − α
vcorrected

b[l]√
scorrected

b[l] +ε

where:

– t counts the number of steps taken of Adam
– L is the number of layers
– β1 and β2 are hyper-parameters that control the two exponentially weighted

averages.
– α is the learning rate
– ε is a ridiculously small number to avoid dividing by zero

33

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

We store all the parameters in the parameters dictionary. The variables v, s are
python dictionaries that need to be initialized with arrays of zeros [13].

• The prediction function that takes the output of the soft-max and transforms it
into a probability of (0 if ≤ 0.5 and 1 otherwise). By counting the mean of the
true predictions, we determine the accuracy that evaluates our model.

The decisive step is the model function that compiles and calls all the “helper
functions”. In summary, the model:

• Takes as input the data and a handful of manually selected hyper-parameters
(The X(data) and Y(labels) matrices, the layers dimensions array, the learning
rate α, the mini batch size, the momenta of Adam optimization β1 and β2, a
small number ε to avoid division by zero and the number of epochs which are
the iterations over the mini batches).

• Initializes the main and Adam parameters.

• Starts iterating over the epochs, for every mini-batch and over all the layers it:

– Calls the Forward Propagation.
– Computes the cost.
– Calls the Backward Propagation.
– Update the main parameters with Adam optimization.
– Returns a dictionary with the updated main parameters.

The same mechanism of forward and back-propagation for updating the weights
also applies to a more general and wider range of NNs called Convolutional Neural
Nets (CNN). Next, CNNs background and functionalities will be introduced.

2.2.1 Convolutional Neural Nets CNN
CNNs are accurate and efficient and had led to a revolutionary breakthrough in the

field of machine learning. They are formed of deep layers and numerous connections
between them, that made them computationally expensive. Although CNNs have
been around since the 1980s, only recently computers have become powerful enough
to handle them. A greater advantage of CNNs was due to the development of GPUs
and multi-threading with GPUs and CPU clusters [66].

34

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

All NNs have a subtle nature of nodal connectivity that is represented by a
mapping of the weights. However, CNNs count on multi-layered architectures and
these so-called hidden layers are of various kinds. Each kind serves a specific purpose,
also they can be repetitive and overall cyclic. For instance, a convolutional layer or
CONV is a peculiar type of hidden layer with the purpose of exploiting image features.
The general pipeline would include the input layer, the hidden layers in between and
the output layer. The hidden layers are made up of:

• Convolutional layers (CONV)

• Activation layers, and these always come right after CONV in the order
mentioned. The most common is the Rectified Linear Unit (ReLU) layers which
will be focused on later. Other activation layers that exist are tanh, Scaled
Exponential Linear Unit (SeLU) and many more.

• Pooling layers (POOL)

• A fully connected layer (FC)

• An output layer or prediction layer for the final activation’s output which would
in that case be either sigmoid or Soft-max

A CNN’s architecture as shown in Figure 2.4 would include a combination of the
above-mentioned layers.

Figure 2.4: An instance of a classic architecture of CNN [95]. Here the hidden layers
of the convolution block called “filter” (within the red square dotted line) are repeated
two times (×2).

35

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

2.2.1.1 Convolutional layers

A convolution layer transforms a certain input into an output volume of different
size.

A convolutional layer CONV, as mentioned before, is one of many hidden layers
and is the basis of CNN. Many types of CONV exist and at the start of pipeline
they can be quite basic, but they increase in complexity or degree of non-linearity
throughout the network. The first convolutional layer works to identify simple features
within the image. This can include edge detection. Depending on the filter applied,
certain edges will be detected such as vertical lines or horizontal lines.

These convolutional layers consist of two stages:

• Zero Padding

• Convolve window

Figure 2.5 shows the application of a vertical edge CONV. On the left, an input
image is represented by several pixels. For lighter regions, the pixel number is higher
and the opposite for darker regions. Input images, CONV layers and output images
can be thought of as matrices containing pixel values. The input shows the pixel
composition of an image with a light area in the left half and a dark area on the right.
This is split by a line in the middle which can be noted by the change in pixel values.

Figure 2.5: CONV layer Operation: (Left) input image in visual (bottom) and pixel
(top) forms, (Middle) CONV layer in visual (bottom) and pixel (top) forms, (Right)
output image image in visual (bottom) and pixel (top) forms.

Figure 2.5 (middle) is a vertical edge CONV in pixel form. To apply this filter to
the image and calculate the first element of the resulting image, the 3 by 3 section

36

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

highlighted in blue as a matrix A in Figure 2.5 (right) is elementwise (“Frobenius”
inner product) multiplied by the convolution matrix and the sum of elements taken.

Computation of this operation yields a value of 0 as the first element in the output
image (Highlighted in blue in figure 2.5 (right)). To calculate the value of the second
element, the vertical edge filter is shifted once to the right on the pixels of the input
image and the same matrix multiplication occurs. This is known as a stride of 18 and
we will consider this case in the current example discussed. However, in some cases,
there can be a greater stride which results in a greater shift in pixels since it is a free
parameter of the architecture’s layer. It is a choice of tuning for computation/accuracy
expense. Larger strides are less computationally expensive, for instance, Stride 2 will
reduce the output resolution by half. This vertical edge filter is applied now to the rest
of the input image and the process of the filter sliding across the image is known as
convolving. Once complete, the output image is created which is shown in figure 2.5
(bottom right). As previously mentioned, the larger numbers indicate lighter regions.
There appears a bright line passing down the middle and has therefore, detected the
vertical edge from the input image.

This shows that a 6×6 matrix convolved by a 3×3 matrix yields a 4×4 matrix. The
input image size can be denoted with n and the filter size an f . Equation 2.3 shows the
formula used to calculate the size of the output image. The input size now has been
reduced and the edge feature has been emphasized. This is the advantage of applying
these CONV layers. As the image goes through the network, more complicated filters
can be applied to extract features more advanced than edges. The output image of
a CONV becomes feature map. Now it has a reduced size compared to the original
image and the computational expense is decreased. The convolution does result in
some loss of detail whilst extracting the key features for the next part of the network.

n− f + 1 = output image size (2.3)
This can be an issue as mentioned before, especially with very deep neural networks

of 100 or more layers. If the input image has reduced dimensionality with each layer,
very soon it will become too small to be significant. With the 6 × 6 input image
shown in Figure 2.5, after it has passed through two layers, the output is significantly
smaller therefore causing an issue. Zero padding would help by increasing the initial
size of the image. Additionally, when applying a CONV, there is a loss of some
information from the contour of input image. This is because side and corner pixels
are being cropped out in bits, resulting in them being used to compute the output
image multiple times less than central pixels are. Zero padding would help saving

8stride 1 means moving in steps of ones in the input images pixel by pixel left to right and top
to bottom row by row. It is set according to the type of problem studied.

37

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

the features from the relevant pixels of the image by adding zeros around the frame.
A result of the convolution layer multiplying zeros instead of the input image edge
pixels. Since a CONV window of fixed size is moving in steps from one corner to
another, padding with zeros will help avoid turning this reduction into information
loss and keeps the dimensions balanced. While the significant pixels are kept away
from the frame and towards the center, their dimensions would only get compressed.
Figure 2.6 is a continuation of our first example, showing the output of an operation
with same 3×3 CONV (figure 2.5) after a p = 1 zero padding is applied to the original
output.

Figure 2.6: CONV operation output after applying Zero-padding

The equation, for the size of output image when padding is applied, becomes
equation 2.4 below.

n+ 2p− f + 1 = output image size (2.4)
The application of padding that results in the output image to be of the same

size as the in-padded input image is known as same convolutions. To ensure a same
convolution, the formula to determine the size of the padding is shown below in
equation 2.5.

p = f − 1
2 (2.5)

f is often chosen of an odd size to keep padding symmetrical.

38

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

So, to summarize, the zero padding adds zeroes to the image input9 borders and
its main two contributions are the following:

• Allowing the use of convolutional layers without necessarily shrinking the height
and width of the volumes. This is important for building deeper networks,
since otherwise the height/width would shrink as we go to deeper layers. An
important special case is the “same” convolution, in which the height/width is
exactly preserved after one layer.

• Helping keep more of the information at the border of an image. Without
padding, very few values from one layer to another would be affected by pixels
at the edges of an image while the convolution window is swiping through.

On the other hand the convolution step, as shown in Figure 2.7, would:

• Take an input volume

• Applies a filter at every position of the input

• Outputs another volume (usually of distinct size)

Figure 2.7: Convolution operation with a filter 3x3 and a stride of 1 (stride = amount
you move the window each time you slide) [95]

This operation would proceed with a simple “element-wise” matrix multiplication
between a filter and slices of pixel values of the input image with the same size as
the filter applied. Then summing up all the values multiplied in one slice to form the

9represented by a pixelized matrix encoded form

39

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

weights at one place in the output matrix. As explained previously, a random bias
should be added to the weights as well. The output matrix should have a reduced
size in the 2D plane. Then as shown in Figure 2.8 stacking up all the output matrices
for the different CONVs used we get the final output volume which is a 3D cuboid
shape.

Figure 2.8: The 3D final output shape of the convolution step (please check Appendix
for the classic notation used in this image)[95]

2.2.1.2 ReLU Activation Layer

The ReLU layer is a type of activation function within a CNN that is applied to the
feature map output of the convolution layers. An activation layer is used to increase
the non-linearity of the CONV transformed pixel values. An activation function will
take an input and apply a transformation that yields an output that is limited by two
fixed values either 0 and 1, or -1 and 1. ReLU however differs from this, being a max
function between 0 and any real number z, if it receives an input that is negative it
will output a 0. However, if the input is positive, the output will be the value of the
input itself.

ReLU(z) = max(0, z) (2.6)
ReLU is a popular linear-like activation function as this approach trains the

network at a high speed without a major loss of accuracy ([108]).

To use stochastic gradient descent with back-propagation of errors to train deep
neural networks, an activation function is needed that looks and acts like a linear one,
but is, in fact, a nonlinear function allowing complex relationships in the data to be
learned. A practical example showing the power of such functions can be explored in

40

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

Figure 2.9: After a ReLU activation pass

[92]10. The function should also provide more sensitivity to the activation sum input
and avoid easy saturation11. The only function, that was discovered to do all that,
was the ReLU function [71].

Figure 2.9 is a continuation of the first example, showing the output after
activating with a ReLU function. There it can be seen clearly how the negative
values were simply turned into zeros.

2.2.1.3 Pooling Layers

After the convoluted output gets activated by the rectifier linear unit (figure 2.9), a
further reduction of dimensionality happens due to the pooling layers in the height
and width of the transformed matrix. This would further increase the speed of the
model and improve the robustness of the network. An extra advantage of the pooling
stage is that it helps reduce over-fitting which is highly likely to happen in the case of
over training the model. It does that by making any feature detector more invariant to
the location of the Region of Interest in input images: Pooling works by applying an
additional transformation to the inputs in sparse matrix form after being convoluted
(CONV) and activated (ReLU), but now the only pixels left in the pooled images are
the ones fully saturated with most essential features.

The two types of pooling layers are:

• Max-pooling layer slides an f × f window over the input and stores the max
value of the window in the output.

• Average-pooling layer slides an f × f window over the input and stores the
average value of the window in the output [95].

10In Chapter 3 p.100, the authors present an instance of nonlinear coordinate transform which
can go a long way into making the function act linearly and easily separate features in transformed
parameter space.

11Saturation is where the unnecessary values and their operations are occupying memory or
computational power fully without real benefit.

41

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

Figure 2.10: Pooling Layers

Figure 2.11: Output after a 3× 3 Average-pooling with a stride=1

The formula binding the output size of the pooling to the input size is:

n− f
stride

+ 1 = output size (2.7)

For example, a maximum pooling layer that is 2 by 2 with a stride of 2 works by
the following:

• First, the pooling selection window is applied to the first square and a 2 by 2
section is chosen from the input matrix

• Of this section, the max pixel value is taken and transferred to the output layer

• For a stride of 2, the pooling window is stepped forward by two intervals and
the previous step is repeated

• This continues until the whole image has been pooled and a “max pooled”
feature map has been generated

The effect of this is that the dimension of the pooled image is reduced by a factor
of 2 that has preserved the most “activated” pixels. Figure 2.10 shows this. Average

42

Chapter 2. Introduction to AI 2.2. Supervised Neural Networks

pooling works similarly however, instead of taking the maximum value, the average
value is carried instead. Figure 2.11 is a continuation of the first example showing
the output matrix after a 3 × 3 average pooling is applied with a stride of 1. Both
approaches result in a pooled feature map with a reduced number of pixels which
decreases computational expense.

2.2.1.4 Final Output

The maximally reduced feature map produced by the pooling layer enters the final
stage of the pipeline. Just before prediction, inputs are fed into a Fully Connected
Neural Net (FCNN) or what earlier we simply called NN and thoroughly described
in Supervised NN section 2.2. Finally, a sigmoid logistic regression is used for binary
classifications.

It is the case when the vision system is shown an image and needs to make decision
regarding whether an object “x” is within the image or not. The binary outputs are
0 and 1. 0 in the case that object “x” is not within the image and 1 for when it does
appear. The sigmoid function, however, is not useful in the case when several objects
can be detected within an image and a probability of each object’s certainty is desired.
In this case, a Soft-Max layer can be added. A Soft-Max layer can determine multi-
class probabilities and is often the final layer in a network. The Soft-Max is a form of
logistic regression that normalizes an input value into a vector of values that follows
a probability distribution whose total sums up to 1 [38]. The Soft-Max can be seen
as a generalization of the sigmoid function which was used to represent a probability
distribution over a binary variable [72]. While preparing the data for a multi-class
model, a specific encoding should take place to make The Soft-Max layer feasible. An
integer variable would be allocated for each class label from 0 to N-1, where N is the
number of classes. Nevertheless, these variables, instead of being single integers, are
transformed into one-hot format encoded vectors. It is a probabilistic representation
of the class label to fit with the soft-max output and keep the dimensions aligned in
matrix operations. A vector of zeros for each class is created with dimension N, where
only position of the suitable label is highlighted by 1. For instance, three class labels
will be integer encoded as 0, 1, and 2. Then transformed into vectors in the following
manner:

• Class 0:[1,0,0]

• Class 1:[0,1,0]

• Class 2:[0,0,1]

43

Chapter 2. Introduction to AI 2.3. Practical Computer Vision

This is called “one-hot” encoding.

The soft-max function with equation showing below:

σ(z)i = ezi∑N
j=1 e

zj
for i = 1, ..., N and z = (z1, ..., zN) ∈ RN (2.8)

where zi are the input elements.

The Soft-Max will output a probability of class membership for each class label,
for every given input. So, if the expected target vector for one example would be:

• Ideal output: [0,1,0]

It will approximate the ideal case by putting most of the weight on class 1 and
less on the other classes. In our instance, it would be something like:

• Expected output: [0.09003057 0.66524096 0.24472847]

The error between ground-truth values and predicted multinomial12 probability
distribution is often calculated using categorical “cross-entropy”13 loss function, and
this error is then used to back-propagate and update the model [45].

2.3 Practical Computer Vision
The use of computer vision gained momentous success and popularity in HEP and
Data Science in general from the potential it offered to improve and speed up visual
data analysis. The purpose of this is to classify, detect and identify coordinates
of objects in images from basic RGB data. This section will describe most used
CNN architectures, how they evolved to become feature extractors or “Backbones”
in computer vision algorithms. Afterwards, a detailed description of the workings
of Object Detection will be presented along with some basic vision algorithms and
how they function harmoniously with the backbones as hybrid models. In each section
detailed explanation and examples of both feature extractors (i.e MobileNetv2, ResNet
and Inception) and basic vision algorithms (i.e YOLO, SSD, FPN and Faster-RCNN),
will be offered. Afterwards, the four state-of-the-art hybrid computer vision models
to be used after training will be introduced. These are: YOLO, SSD-MobileNetv2,
SSD-ResNet50-FPN and Faster-RCNN-Inception-ResNet. Table 2.1 shows in what

12Multinomial because there are multi-values for every class that result in a probability
distribution.

13which is like the “cross-entropy” loss function, only this one is categorical instead of binary.

44

Chapter 2. Introduction to AI 2.3. Practical Computer Vision

Part

Model Head (Neck) Backbone

YOLO YOLOv3 CSPDarknet53
SSD MobileNetv2 SSD MobileNetv2
SSD ResNet FPN SSD(FPN) ResNet50
FasterRCNN InceptionResNet V2 FasterRCNN Inception+ResNet

Table 2.1: Used Hybrid models’ components

order these models are combined. In general Hybrid models are formed with two
parts: First, the Backbone, extract the features from the input space, more commonly
known as CNN but in this study will be referred to as Feature Extractors. Second,
the Head, which is the object detector algorithm that sometimes contain an extension
called Neck14. Darknet API was used for YOLO & Tensorflow2 OD API for all others.
All these models and their components will be briefly introduced in what is next.

2.3.1 Feature Extractors
As was mentioned before, CNNs main goal is to understand objects in images

through feature extraction with sets of repetitive blocks down the pipeline. We then
keep cycling in epochs to improve our weight until we get the right output predictions.
The training, validation and evaluation follow the same processes described earlier.
ML classification algorithm tries to learn about the nature of an object and predict
it by learning from its features. These would have been already prepared by human
intervention. However, what comes at a striking difference are Deep Learning (DL)
Convolutional Neural Nets (CNN) that learn the features while training simply on
images of an object. CNNs are inspired by the human brain where the patterns
of connectivity between the nodes can learn features without the need for further
intervention. Additionally, CNNs can not only predict the object but as well extract
its features for even further use. Performance checks can be done following some
specific metrics15 depending on the case.

14This study will present such extensions in one OD-extension algorithm used called FPN.
15Standard measurements known in the community of computer vision that will be explained later.

45

Chapter 2. Introduction to AI 2.3. Practical Computer Vision

2.3.1.1 Residual Networks (ResNets)

In theory, very deep networks with multitude of layers should perform better since
they can represent overly complex mapping functions; but in practice, they proved
to be worse. Residual Networks, introduced by He et al. [24], had as main goal to
tame and train much deeper networks than what were previously feasible. The main
benefit and importance of a very deep multi-layered network lies in its ability to learn
features at many distinct levels of abstraction, from edges (at the lower layers) to
extraordinarily complex features (at the deeper ones). However, a huge barrier to
training them is vanishing gradients: very deep networks often have a gradient signal
that goes to zero quickly, thus making training unbearably slow. Moreover, during
gradient descent cycles, the gradient might decrease exponentially quickly to zero (or,
in rare cases, grow exponentially quickly and “explode” to take exceptionally large
values). A Residual Network can solve this problem by introducing “shortcuts” or
“skip connections” that allow the gradient to be directly propagated to later layers
and vice versa in back-propagation.

Figure 2.12: A ResNet block showing a “skip-connection”

Figure 2.12 left shows main path through a classical NN. Right, a shortcut is
added to it which is now called a ResNet block16. By stacking these blocks together,
a solution is presented to make possible the use of a very deep network. The first
reason behind that is the ease for any of these blocks to learn an identity function.
A number of these ResNet blocks can be stacked with negligible risk of harming
performance. While as mentioned before with very deep nets the weights tend to
vanish, the shortcuts would allow earlier outputs to be propagated to later layers even
if the weights in between vanished. So, since all the activation functions are ReLU, any
activated positive value in early layer would remain the same with skip-connections
and gets propagated forward. The shortcut would be adding the old, activated value
to the weights and biases, then activating the sum with another ReLU as seen in the

16A block is a package of layers of different kind in a sequence.

46

Chapter 2. Introduction to AI 2.3. Practical Computer Vision

equation 2.9 below:

a[l+2] = ReLU(w[l+2]a[l+1] + b[l+2] +a[l]) = a[l] if w[l+2] = 0 and b[l+2] = 0 (2.9)

Where a is the activation, w is the weight, b is the bias and the superscript l is
the layer’s index17. This is what meant by identity function learning.

Identity Block corresponds to the case where the input activation (a[l]) has the
same dimension as the output activation (a[l+2]). Figure 2.13 (Top) shows a schematic
of an identity block, the upper trajectory is the “shortcut path” while the lower one
is the “main path”. The sum is kept propagating an identity function in case the
weights vanished in between the layers.

Figure 2.13: (Up) in red “ID BLOCK” with skip connection over the main path:
3 convolutional layers, here “CONV2D”, 3 batch normalization passes, 2 ReLU
activation layers in between, shortcut and input of main path are added together
and ReLU activation finally applied on the sum, (Middle) in blue “CONV BLOCK”
same but adding a CONV2D with Batch Norm filter on the skip connection over the
main path, (Bottom) general structure of ResNet50 [95].

17Check please appendix, where these notations are thoroughly explained

47

Chapter 2. Introduction to AI 2.3. Practical Computer Vision

Convolutional Block is the other type of block used when the input and output
dimensions do not match up. The only difference from the identity block is that it
has a CONV2D layer with a Batch Norm18 in the shortcut path. Figure 2.13 (Middle)
shows its structure.

The CONV2D layer in the shortcut path is used to resize the input x, so that the
dimensions match up in the final shortcut addition needed with the main path.

These are the two necessary blocks to understand the structure of a very deep
CNN “ResNet” which is formed of 50 (Figure 2.13 (Bottom)) or more layers.

2.3.1.2 Inception Network

Inception Network is the most state-of-the-art of all ConvNets (Convolution Net-
works). Main motivation behind its design is to build deeper multi-layered networks
[21]. Inception is a heuristic approach to go wider in parallel and not only in length
just like the movie “Inception”, onion-like layers inside layers but also built in chains.

To understand Inception module19, we first need to introduce few concepts more
or less like the block-components in ResNets. However, in Inception, blocks go in
parallel within modules.

The Inception module makes use of the so-called “Networks in Networks and/or
Bottlenecks mechanisms” [26].

Networks in Networks: a convolution of 1x1 does not seem particularly
useful. As we have seen before in the convolution section it would then be a simple
multiplication by some number. For instance, that is the case of 6x6x1 channel images.
So that if we take the 6x6 image and convolve it with a 1x1 filter, we will end up just
taking the image pixel values and multiplying them by a number. However, if we take
now a 6x6x32 image (with 32 channels depth-wise), then a convolution by a 1x1x32
filter can do something that makes much more sense. In figure 2.14 we can see the
difference clearly, where in the case of interest a 1x1 convolution will look at each of 36
positions in the image, and it will take the element wise product between 32 numbers
on the left and 32 in the filter. Then we will apply a ReLU non-linearity to the
sum after that in each 6x6 positions in the output. More generally, we usually have
multiple similar filters. So, the same operation is repeated for every filter creating
an extra layer or channel depth-wise. The final output dimensions would become
6x6x“number of filters”.

18Batch normalization is applied on the input layer by a simple “Keras” function (https://keras.io/)
For re-centering and re-scaling purposes.

19Module is defined as a set of fundamental structure that is repeated, it is bigger than blocks and
might contain many of them.

48

Chapter 2. Introduction to AI 2.3. Practical Computer Vision

Figure 2.14: “Networks in Networks” mechanism [95]

So, by limiting the quantity of 1x1 convolutional filters used, we can reduce the
dimensionality of input volume by having an output with less depth wise channels.
We will be doing so while increasing the non-linearity to learn more complicated
features as was explained before. The result of that, we would be making full use of
a representation that learns advanced features while keeping the computational cost
much lower. We will be discussing that in the next part.

Bottlenecks: are filters formed of 1x1 convolutions and other related CONV
layers as well. These became quite common for their significant effectiveness in
lowering computational costs. The way they do that is by having an intermediary
stage that applies a 1x1 convolution to reduce the number of depth-wise channels
before increasing them again to realign dimensions in the pipeline. This bottleneck
filter is particularly useful as an intermediate step when we need to do large
convolutions. An extra 1x1 CONV in the filter can reduce the computational cost
to one tenth [95]. Bottlenecks, only inverted, are the core foundation and essential
blocks of MobileNets pipeline which we will be discussing next and are effective for
reducing computational expenses.

Inception net is a series of repetitive modules with the same structure. One of
which, as shown in figure 2.15, consists of:

• Bottleneck block: 1x1 followed by a 5x5 convolution

• Bottleneck block: 1x1 followed by a 3x3 convolution

49

Chapter 2. Introduction to AI 2.3. Practical Computer Vision

Figure 2.15: Inception module [95]

• Network in Network block: 1x1 convolution

• Pooling block: 3x3 MAX-POOL with stride of 1 and “same” zero padding to
align with the previous activation’s height and width. Then, followed by a
Network in Network to shrink the number of channels.

The computations for these 4 blocks paths go in parallel within each module.
Then the outputs are concatenated (or stacked) together again into one 3D shape of
nH × nW × nC . The notations20 (nH ,nW ,nC) refer to height, width, and number of
channels, respectively. As appearing in [21], Inception Network is a collection of many
similar modules put together. One of the blocks would contain the same components
as described above, and it is the same for any other block. Only with some extra max
pooling added to a few nodes between modules to change the size or dimensions.

Finally, as is the case in all Nets, the last few layers are a fully connected (FC)
one followed by a SOFT-MAX to make a prediction. A couple of these predictive
layers are attached to other nodes as well just to check predictions on earlier stages
and keep it from over-fitting. Inspection Network are an active field of research [95].
While hybrid nets combining blocks of ResNets and Inception Nets are also common
and will be discussed and used later.

20See Appendix

50

Chapter 2. Introduction to AI 2.3. Practical Computer Vision

2.3.1.3 MobileNets

The problem with nets like ResNets and Inception is that they can be exceptionally
large in the order of 200-500MB or even much more depending on the architecture.
Network architectures such as these are unsuitable for resource constrained devices
due to their sheer size and resulting number of computations [103]. MobileNets, first
proposed by Howard et al. in 2017 [19], can be used instead since they are designed
for such purposes. MobileNets differ from traditional CNNs through the usage of
inverted depth-wise bottlenecks described previously (Figure 2.16).

Figure 2.16: Left: Standard convolutional layer with batch-norm and ReLU. Right:
Depth-wise Separable convolutions with Depth-wise and Point-wise layers followed by
batch-norm and ReLU [19].

Classical convolutions (Conv) have the dimensions nH × nW × nF × nC where the
additional nF here represents the number of filters used. While depth-wise separable
convolutions (Conv dw) are the same concept described earlier as Bottlenecks with
nH×nW ×nC dimensions. So that the architecture of MobileNets would be consisting
of alternating (Conv) and (Conv dw) blocks finishing by the usual predictive part (FC
+ SOFT-MAX). Where the (Conv dw) block consist of an inverted Bottleneck as in
Figure 2.16 (Right):

• 3 × 3 convolution, batch normalization and ReLU (named by the authors:
“Depth-wise Convolution” block)

• 1 × 1 convolution, batch normalization and ReLU (named by the authors:
“Point-wise Convolution” block)

However, MobileNet (version 2) or MobileNetv2 [25] will be the one adopted
instead in our later work. It adds an extra Conv dw block with a skip connection

51

Chapter 2. Introduction to AI 2.3. Practical Computer Vision

which is like the ones described for ResNets. Plus, it drops the non-linearity factor in
all the blocks’ output nodes, while keeping a simple conv 1× 1 with linear pass.

Figure 2.17: (Left) MobileNetv2 main blocks, (Right) MobileNetv2 body architecture
[25]

The 2 different blocks used in this version as shown in Figure 2.17 (Left) are:
• A stride=2 linear bottleneck block for downsizing

• A stride=1 residual and linear bottleneck block to avoid losing information along
the MobileNetv2 deep architecture

Finally, the overall architecture of MobileNetv2 is showing in Figure 2.17 (Right).
Where following the original paper’s annotations, each line describes a sequence of 1
or more identical blocks, repeated n times. All blocks in the same sequence have the
same number of output channels c. The first block of each sequence has a stride s and
all others use a stride of 1. The first classical conv2d is a 3× 3 one and others in the
final part of the pipeline are 1× 1. All modules in bottleneck sequences are either of
the first type if stride = 2 (Linear Bottleneck) or of the second if stride = 1 (Residual
Linear Bottleneck). Moreover, the expansion factor t is a simple multiplicative applied
on the input channels number (output channels = t× input channels).

2.3.2 Object Detectors OD
There is much more to object detection than to simple image classification. In the
latter, given an input image, passing it through a CNN (i.e., any trained feature

52

Chapter 2. Introduction to AI 2.3. Practical Computer Vision

extractor), leads to a single prediction output with a certain class probability. This
is meant to evaluate the whole image or the main part of its visible contents. So,
it is a one-to-one correspondence between input and output. On the other hand,
object detection complements image classification and adds more features. It can
detect exactly where or in what bounded region of the image each required object is
located. This detection should ideally be made independently of the size of the object
or scale of the image. So, to say, it is a one-to-many correspondence between input
and output. When an input image is presented to an object detector it is expected
to get in return:

1. A list of bounding boxes, i.e., their (x,y) coordinates (top left and bottom right
corners) for each object in the image

2. A Class label associated with each of the bounding boxes

3. A probability (i.e., confidence score) associated with each bounding box and its
class label.

The above-mentioned output details are encoded in a prediction vector correspond-
ing to each individual detection of every image from the input space. In principle,
these prediction vectors consist of 5 basic inputs which are the “existence” flag pc
which signals the existence of an object within a region of the image21, the (x, y)
coordinates of the center point of the bounding box bx and by within and relative to
the RoI or grid cell dimensions, its height bh and its width bw within and relative to
the RoI or grid cell dimensions as well. While bx and by can only be between 0 and 1,
bh and bw can be larger than 1, simply because an object with its bounding box could
cover more than one RoI or grid cell (Figure 2.18). Other inputs would be added to
these depending on the classes’ number included in the dataset. So, if it contains three
classes, three inputs would be added as c1, c2 and c3, each corresponding to a different
class label. These are binary indicators that will only flag 1, the corresponding class
of the object, while the others would stay 0.

These binary indicators are made so after being induced by a Softmax function
as a multinomial probability score distribution. As a direct consequence of this
probabilistic score competition, the highest scorer class would win the flag “1” and
the losers would stay “0”. As a direct application, figure 2.18 is clearly showing the
prediction vector of the car appearing in the image with its bounding box. The car’s
center (Black Dot) is in a specific grid out the 9, which makes it the central grid (Red
Square). All measurements now made for the vector’s inputs are made relative to

21this region could be one part “cell” of the input image selected out of an equally divided grid or
voted through a more complicated mechanism and hereby called Region of Interest “RoI”.

53

Chapter 2. Introduction to AI 2.3. Practical Computer Vision

Figure 2.18: An output vector ycar is showing and associated with the car’s bounding
box in this 3x3 grided image. The proper input values are stated relative to the
central grid (red square) [95].

that specific grid. The upper left corner being (0, 0) and the lower right (1, 1). Now
in ycar we have:

• pc = 1 because we found an object in that specific grid which center is within
the grid’s boundary

• bx ≈ 0.4 because the car’s center is at 40 % of the central grid’s horizontal
origin.

• by ≈ 0.2 because the car’s center is at 20 % of the central grid’s vertical origin.

• bh ≈ 0.9 because the car’s bounding box height is 90 % of the central grid’s
height.

• bw ≈ 2.7 because the car’s bounding box width is 2.7 times the central grid’s
width.

• c1 = 1 because the winning class label is “Car” and c1 corresponds to it.

• If c2 and c3, for instance, correspond respectively to “Person” and “Motorcycle”.
For the bounding box we are dealing with here, these two would be the losing
class labels and consequently c2 and c3 would stay 0.

54

Chapter 2. Introduction to AI 2.3. Practical Computer Vision

In what’s next, YOLO, SSD, Faster-RCNN and FPN OD algorithms are briefly
presented.

“You Only Look Once” or YOLO [23] [22] would take a batch of images as an
input, and outputs a list of prediction vectors. A single pass would consist of the
following path: IMAGE→ DEEP CNN→ ENCODING.

If the midpoint of an object falls into a grid cell, that grid cell becomes “central”
and is responsible for detecting that object. For each output vector of each cell a
probability is computed to determine how likely it is in this cell to find a certain class.
Furthermore, an intermediate visualization step in YOLO is practiced. It consists of
assigning a color to every grid cell that might contain an object of interest. That
color is associated with the class that this specific grid cell is most likely detecting
(see figure 2.19). Now for each colored cell there would be many bounding boxes
associated with the same or different objects. A filtering process would then take
place and the main objectives of such filtering are:

• Getting rid of boxes with a low fidelity score.

• Selecting only the best box when several ones are associated with the same
object and overlapping.

Figure 2.19: Each of the 19x19 grid cells colored according to which class has the
largest predicted probability in that cell [95].

SSD or “Single Shot Detector” [29] is another fast OD that generates bounding
box coordinate proposals (i.e., prediction vectors). SSD algorithm extracts features at

55

Chapter 2. Introduction to AI 2.3. Practical Computer Vision

multiple scales while decreasing the input size progressively through the final stages
of the pipeline. Bounding box regression technique called “MultiBox” used in SSD is
inspired by Szegedy et al. paper [20]. It is a fast method to generate bounding box
coordinate proposals in prediction vectors similarly to what YOLO does but through
a different process. However, instead of a single vector it outputs 2 (LOC and CONF).
While reducing input scale the detection of such vectors becomes more accurate and
selective (Figure 2.20).

The two prediction vectors LOC and CONF consist of the following:

• CONF: this encodes how confident the network is that an object exists within the
boundaries of a computed bounding box. The vector is related to the prediction
confidence for each class, and it would consist of as many coordinates as the
number of classes in the dataset. So, for a dataset of p number of classes one
gets:

CONF = (c1, c2, ..., cp) (2.10)

• LOC: this output indicates how far away the network’s predicted bounding boxes
are from the ground-truth ones in the training set, because it would predict the
coordinates and dimensions of the bounding box around the object of interest:

LOC = ∆(cx, cy, w, h) (2.11)

Where the 4 coordinates are the difference in the dimensions between the
generated and ground-truth bounding box, cx and cy represent the upper left
and lower right corners’ location while w and h refer to the width and the height.

Faster R-CNN OD works by learning to localize with a deep neural net “Region
Proposal Network” (RPN) [27]. RPN infuses Regions of Interest (RoI) proposal into
the architecture directly, allowing the Backbone CNN to produce prediction mono-
vectors remarkably like the ones used by YOLO, whereas the difference here is that
RPN replaces the grid cells technique by selecting and passing the RoIs into the
architecture itself. Figure 2.21 shows how Faster R-CNN works on two stages using
two different NNs, one to generate RoIs and the other to encode prediction vectors.

FPN [28] is an OD-extension or Neck, if built on top of any OD, it would extract
prediction vectors out of every independent level of the feature pyramid (i.e., hierarchy
from simplest to most complicated features) taking into consideration every scaling of
the input space from the largest to the smallest. Figure 2.22 shows a feature pyramid

56

Chapter 2. Introduction to AI 2.3. Practical Computer Vision

Figure 2.20: In a) Ground Truth (GT) boxes are showing, one for the dog in the
image and one for the cat. b) SSD default boxes at 8x8 where it is more likely to find
central cells, and in c) 4× 4 feature maps include both prediction vectors CONF and
LOC with a much higher chance to pick the box with the right shape.

where prediction vectors in object detection are independently made on each scale
level of the pyramid.

57

Chapter 2. Introduction to AI 2.3. Practical Computer Vision

Figure 2.21: The Faster R-CNN architecture [27].

Figure 2.22: The FPN method with predictions made independently at all levels [28].

58

Chapter 3

NN and K-pi Matching

3.1 Inputs and Design
In this chapter, the focus is on developing a supervised learning algorithm. The
vertebra of such an algorithm is the learning function which is the “cost function”
itself. The most common one used in general for binary classifications is the cross
entropy cost function. The interest is in a Boolean classification, wherein each example
is classified as true(1) or false(0). Obviously, a prediction is good if it turns out to be
true, so we can assess the quality of a hypothesis by checking its predictions against
the correct classification once we know it. We do this on a set of unseen examples
known as the test set (See Chapter 2 for more details).

3.1.1 Data Preparation
The data preparation process has been done on stages. Events K+ → π+π+π− were
selected from the data collected by NA62 during the run of 2017 to form the training
sample. The selection proceeded in 2 main steps: firstly, events with at least 3
reconstructed tracks were filtered at processing level; secondly, an analysis algorithm
selected events with at least a track triplet consistent with the K+ → π+π+π−.

To this extent each track had to be in the geometrical acceptance of the sub-
detectors downstream to the last STRAW chamber. In addition, each track must
match signals in CHOD detectors, a cluster in the LKr calorimeter, and should not
have signals associated in MUV3. The last requirement rejects accidental muons,
and pions decaying to muons. The decay of pions occurring upstream to the STRAW
spectrometer spoils the kinematics of the pions, affecting the quality of the K+ tagging
used to flag the training events. Internal consistency between the time of the tracks
of a candidate triplet measured with the CHOD signals is required against accidental

59

Chapter 3. NN and K-pi Matching 3.1. Inputs and Design

triplets. A simple pion identification is applied to the tracks based on the ratio
between the energy E of the LKr cluster associated to the track and the magnitude
of the track 3-momentum p measured by the STRAW spectrometer that must be
consistent with the pion hypothesis defined by E/p < 0.8.

Once the 3-pions candidates are selected, quality requirements are applied to
the whole event to identify K+ → π+π+π− decays. A time matching between the
candidate 3-pions and a signal in KTAG allows the identification of a K+ in the initial
state. This association exploits the average 3-track time measured with CHOD that
must be within ±2 ns of the closest in time KTAG signal. The decay vertex is defined
as the mid-point of the 3-tracks at the closest distance of approach. The position of
the vertex along the beam axis must be within the decay region defined from 110 to
170 meters downstream to the target. In addition, the 3 tracks must be closer than
10 mm one from the other at the vertex position. Events with signals in LAV within
±3 ns of the average 3-pions time are rejected to further reduce possible accidental
backgrounds.

A final set of additional requirements are applied as kinematics constraints to the
selected events. The total 3-pions momentum must be consistent with the nominal
75 GeV/c beam momentum within ±2.5 GeV/c. The invariant mass of the 3-pions
must be within ±2 MeV/c2 of the nominal K+ mass. The expected K+ position at
the decay vertex and slopes must be consistent with the expected beam envelope
defined by the optics of the beam line.

The track of the parent K+ track in the Gigatracker detector (GTK-track) was
defined based on a χ2-like variable. The inputs to this variable were the difference
of the GTK-track slopes and position with respect to the K+ slopes and position
expected from the 3-pions tracks reconstructed downstream. A broad upper cut at 40
on the χ2 was applied to reject events without K+ reconstructed. This cut was chosen
broad enough to minimize the bias to the training sample induced by the selection
criteria, which has been verified with a posterior to be negligible and decoupled from
kinematics in K+ → π+π+π− with all charged pions in final state1. In the same
spirit no time constraints were used to label the K+ as the time matching, between
GTK-track and downstream tracks, is a key input of the NN algorithm. A total
of 16 million events were selected, to make the sample as general as possible and
accurately covering all features of the K+ → π+π+π− decay channel for π+ tracks.
Then ROOT Trees were built from already labelled Tracks (either from a K+ parent
or from pileup), following the selection process described extensively in 1.5. These

1Please review figure 1.7 which shows the clean top region of highest squared missing mass with
the 3π peak showing around the expected nominal momentum of the kaon beam

60

Chapter 3. NN and K-pi Matching 3.1. Inputs and Design

Trees contained the following variables:

• The average number of hits in the GTK stations (nHits).

• The three times in sub-detectors (dtKTAG, dtRICH, dtCHOD2) respectively.
Considering the GTK time as a reference for the problem in hand a cut of ±1
ns was applied on the time differences.

• The individual time of hits in CHOD (ftCHOD).

• The individual time of hits in KTAG (ftKTAG).

• The individual time of hits in RICH (ftRICH).

• The average individual time of hits in all three GTKs (ftGTK).

• The estimated X and Y track slopes in GTK (fSlopeX and fSlopeY).

• The estimated X and Y track slopes in STRAW (fSXBM and fSYBM).

• The X and Y average hit positions in GTK (fPositionX and fPositionY).

• The X and Y average hit positions in STRAW (fPBMX and fPBMY).

• The Closest Distance of Approach of GTK track with one Pion in the final state
(CDA).

• The χ2 of the track (Chi2).

• The χ2 of the associated π+ track (Chi2Pion).

• The instantaneous intensity in the offset time of the K+ tracks (fLambda).

• The time of individual hits in GTK1 (fTrackTimeS0).

• The time of individual hits in GTK2 (fTrackTimeS1).

• The time of individual hits in GTK3 (fTrackTimeS2).

K+ → π+π0π0 is a super clear signal sample with a distinguished squared missing
mass distribution that serves very well to do all kinds of tests on the kaon-pion
matching algorithm.
For the sample we picked, 23 variables are arranged and labelled, the ones coming
from a K+ parent track with “1” and the ones from accidental detector activity with
“0”. A loose cut based on an educated guess was also applied fixing a range of ±1 ns

2dt refers to the time difference of the hits with respect to GTK reference time.

61

Chapter 3. NN and K-pi Matching 3.1. Inputs and Design

on time differences and a CDA ≤15mm. Then the sample is divided into a Training
set (95%) and a Validation set (5%) following the strategy of “cross-validation” [96]
to prevent and monitor Over-fitting. Finally, a synchronized initial Shuffle on the
input matrices is performed to avoid biased learning. It is important to note that
dimensional consistency check has been performed on the variables’ construction
process. The ones with consistent dimensions should be stacked together to form
finally the main input matrices.

3.1.2 Basic Development
The second step was the development of a Supervised NN Algorithm that uses all the
parts detailed in introduction, which is built on many Python-based helper functions.
An easier way is to directly use any API to call the functions needed for the model.
However, in this case, implementing all the functions (inspired by [95] online course)
was primarily educational and deeply insightful in expanding the understanding of
the basics of NNs programming functionalities and general practice for the following
parts of this thesis.

To start, the mathematical definition of the sigmoid and ReLU as activations are
prepared in functions3. Then, initialization of the parameters with “He” method
coded (as explained in Chapter 2). After that, a function that selects the mini
batches randomly according to the size selected (1024 in our case), then does the
shuffling and the associated dimensional partition. Also, the Forward Propagation
that computes the outcome in the forward direction. The definition and computation
of the cross-entropy cost which is the average of the loss function of the entire training
set. The Backward Propagation that computes the gradients in the backward direction
as well. Then, another function that updates the main parameters following Adam
optimization main formulation. Then, prediction function that takes the output of
the final layer and transforms it into a probability of 0 if ≤ 0.5 and 1 otherwise. By
counting the Mean of the true predictions we determine the accuracy that evaluates
the model. Also, this probability threshold could be varied to get the best efficiency
vs accuracy, a method to calibrate will also be presented later in the chapter.

The decisive step is the model function that compiles and calls all the “helper
functions”. The model works in the following way:

• Takes as input the data and a handful of manually selected hyper-parameters
(The X(data) and Y(labels) matrices, the layers dimensions array, the learning

3This step could be avoided since these activations are so popular now and they can be called
from any commonly used platform (i.e., Keras-Tensorflow, Pytorch etc..)

62

Chapter 3. NN and K-pi Matching 3.1. Inputs and Design

rate α, the mini batch size, the two momenta of Adam optimization β1 and β2,
a small number ε to avoid division by zero and the number of epochs which are
the iterations over the mini batches).

• Initializes the main and Adam parameters.

• Starts iterating over the epochs, for every mini-batch and over all the layers it:

– Calls Forward Propagation.
– Computes the cost.
– Calls Backward Propagation.
– Update the main parameters with Adam optimization.
– Returns a dictionary with the updated main parameters.

As a first test model, the input preparations were performed in the following steps:

• Choose a control data sample (A whole run of 2017 data with a total of 812443
events)

• Build a ROOT Tree from already labelled Tracks (πνν -like environment
reconstructed from pure kinematics in channel K+ → π+π+π− or K+ → π+π0).

• Arrange 9 test variables and label the ones coming from a K+ with 1, and the
ones from accidental detector activity with 0. These basic 9 variables were:

– The three time differences between sub-detectors (KTAG, RICH, CHOD)
and (GTK) respectively. Considering the GTK time as a reference for the
problem in hand.

– The CDA which is the closest distance of approach between two tracks.
– The χ2 of the K+ .
– The χ2 of the π+ .
– The instantaneous intensity Lambda (in the offset time of the K+ tracks).
– The two transverse projections (VTRx and VTRy) of the normal vector

VTR common to the two tracks. The magnitude of such a vector is what
we call CDA or closest distance of Approach.

• Apply a loose cut on the events and selecting a range of ±1 ns on time differences
and a CDA ≤15mm.

• Stack the data variables together to finally form the X matrix (where the
dimensions are [9, 731083] as in 9 variables and 731083 input events for Xtraining

and [9, 81360] as in 9 variables and 81360 events for Xtest).

63

Chapter 3. NN and K-pi Matching 3.1. Inputs and Design

• Stack the labels together to form the Y matrix (where the dimensions are [1,
731083] as in 1 label and 731083 input events for Ytraining and [1, 81360] as in 1
label and 81360 events for Ytest).

• Do a Cross-validation by dividing the sample into a Training set (90%) and a
Test set (10%).

• Apply a synchronized initial Shuffle on the input matrices to avoid biased
learning.

• Run training rounds.

This test model adopted is shown in Figure 3.1 and has the following components:

• A 3 layered NN with 530 nodes on the first layer, 200 nodes on the second and
1 prediction node as output.

• A learning rate α of 10−7.

• A mini batch size of 256.

• Adam momenta β1=0.9 and β2=0.99 .

• Number of training epochs 7700.

• ε = 10−8.

It is important to note here that the selection and tuning of the hyper-parameters
is an exhaustive process and completely empirical (Details and techniques will be
presented next section). The most important signal that was followed so far to
estimate the progress of the training, is the quick decrease of the cost value and
usually during the first 100 epochs. When the cost function value is dropping, it
is a clear sign that the model is learning. We usually notice graphs like the one in
Figure 3.2.

3.1.3 Architecture/model and Hyper-parameters Tuning
The main functions to train a NN algorithm were prepared and a first working
test-model was done from scratch as shown in previous section, but the challenge
remained in finding the proper architecture for the NN and tuning all the parameters
required or needed in such machine learning models to acquire the best performance.
Also, a proper adaptation of the model’s inference with the general NA62 analysis
was necessary. Additionally, we had to check and compare performance with other
common machine learning models for the same case-study. After the educational

64

Chapter 3. NN and K-pi Matching 3.1. Inputs and Design

Figure 3.1: The (9,530,200,1) model diagram.

practice done on from-scratch NN code, a more practical implementation took place
to save and use trained models in a general context (i.e., for prediction or inference).
A second version of the code was reshaped to use some functionalities of renowned
ML libraries. The NN algorithm encompasses all the above-mentioned details was
based on Keras (https://keras.io). Keras is a Deep Learning framework for Python
that provides a convenient way to define and train almost any Deep Learning model.
However, it does not handle low-level operations such as tensor manipulation and
differentiation. Instead, Keras relies on a specialized, well optimized tensor library to
do so, serving as the backend engine [58]. Tensorflow was used which is developed by
Google as this Backend (www.tensorflow.org).

Hundreds of different versions of the NN model have been tried and the hyper-
parameters have been tuned many times in the training process. Grid search methods
were used to select the right pack of hyper-parameters that goes with the best
performing NN model. These tools consist in general of running rounds of training
(with a smaller sample of the original data) on different NN architectures with

65

Chapter 3. NN and K-pi Matching 3.1. Inputs and Design

Figure 3.2: The following graph is usually called the “happy face”!

different choice of hyper-parameters from cycle to cycle. For the NN hyper-parameters
search Talos library was used (https://autonomio.github.io/docstalos/). The outcome
consisted of a list of best to worst performing architectures and hyper-parameters of
the NN. This process can be done by hand, but it is highly impractical. However, if
done with experience and professionalism using grid searches can save time and help
boost results.

A grid search allows us to exhaustively test all possible hyper-parameter config-
urations that we are interested in tuning. Hyper-parameters are scanned with every
combination tested on a data sample one at a time. The choice of parameters to
grid scan should be educated and selective since a randomly substantial number of
parameters may make the processing time grow exponentially which would prevent it
to give back results within a reasonable period. A grid search will test all combinations
of these hyper-parameters, trains a model for each set and then reports the best hyper-
parameters (i.e., the set used in the model/architecture that demonstrated highest
accuracy). The NN model hyper-parameters initial values chosen to run our grid
search upon are the following:

• Learning rate values: [0.0001, 0.001, 0.01]

• First hidden layer number of nodes: [7, 64, 128, 200, 230, 530]

• Second hidden layer number of nodes: [7, 64, 128, 200, 230, 530]

• Third hidden layer number of nodes: [7, 64, 128, 200, 230, 530]

66

Chapter 3. NN and K-pi Matching 3.1. Inputs and Design

• Fourth hidden layer number of nodes: [7, 64, 128, 200, 230, 530]

• Batch size values: [64, 512, 1024]

• Activation between hidden layers: [Tanh, ReLU]

• Optimizer: [Adam, Nadam4]

From Talos, the “Scan” function trains the models using all the different combination
of the parameters input. Then the “Reporting” class lists the hierarchy of the best
to worst performing model on the metric specified from the available ones. The best
metric to evaluate on is the validation set accuracy (e.g., in “table” function the metric
is “val acc”).

Also, for the comparison with different machine learning models and doing
hyper-parameters5 tuning, SKLearn packages (e.g., GridSearchCV function from
“model selection” class) were used 6. Five ML models other than the NN were
tuned and tested (Logistic Regression, Random Forest, Gradient Boosting, Ada Boost
Classifier and RBF SVM). All these models (in their default mode) can be called
directly from SKLearn, either “linear model”, “ensemble” or “svm” classes. Only
the Radial Basis Function (RBF) kernel (SVM) Support Vector Machine model (i.e.,
“SVC” in SKLearn7) needed parameter tuning. The hyper-parameters initial values
chosen to run grid search upon are the following:

• The trade-off parameter C values: [0.001, 0.01, 0.1, 1, 10]

• The inverse of the radius of influence parameter Gamma values: [0.001, 0.01,
0.1, 1]

Using the available limited computing power at hand, the grid search method and
extensive hand picking (e.g., with different number of hidden layers). A lot of trials
and error involved to reach a somehow satisfying first step performance so that the
NN model with a specific set of hyper-parameters showed a relative out-performance
over other trained models using different machine learning algorithms. ROC curves8

were used as a basis of comparison between different models. Figure 3.3 shows that
4Check “Nesterov Adam” optimizer at https://keras.io/optimizers/
5Only the NN model needed a special treatment with Talos packages since the tuning process is

much more complicated due to the considerable number of parameters incorporated.
6https://scikit-learn.org/stable/documentation.html
7https://scikit-learn.org/stable/auto examples/svm/plot rbf parameters.html
8ROC curves in general measures Sensitivity (or True Positive Rate) VS 1-Specificity (or False

Positive Rate) or in Physics terms Efficiency VS Mistag. An AUC (Area Under Curve) 100% score
means perfectly efficient predictive model while a 20% is random.

67

Chapter 3. NN and K-pi Matching 3.1. Inputs and Design

the NN AUC score is the highest amongst the models (Boosted decision trees “Ada
Boost”, SVM “Support Vector Machine”, Random forests and the others). However,
that was not the only reason that led to the decision to go forward with the NN
choice as final model. A lot of factors played a role, a few of which are the flexibility
and adaptability of the NN with the data in hand, and the considerable possibilities
to implement the model as a C++ class in the NA62 Framework which proved very
useful in the final physics checks that will be presented later.

Figure 3.3: The following graph shows the ROC curves and AUC scores of the different
models used in comparison tests.

The adopted final model consisted of the following selections:

• A 5 layered NN with 530 nodes on the first layer, 230 128 200 nodes on the
activation layers and 1 predictive node on the output.(See Figure 3.4)

• A learning rate of 10−4.

• A mini batch size of 1024.

• Optimizer “Nadam”, which is Adam with an additional parameter called the
Nesterov Momentum.

68

Chapter 3. NN and K-pi Matching 3.1. Inputs and Design

Figure 3.4: The (18,530,230,128,200,1) model diagram.

• EarlyStopping and ReduceLROnPlateau were used from Keras callbacks. This
is to automatically reduce the Learning Rate or stop the training when you
measure that the validation loss is no longer improving from one epoch to
another [58].

From the above-mentioned NN, a classifier or a Discriminant algorithm was built
in Python that discriminates on binary-basis between Kaon and Pileup events. Kaon
tracks matched with π+ in the final state were counted as Signal events while Pileup
tracks matched with the π+ were considered Background. It is essential to mention
that these noise events are not the final K+ → π+νν̄ Upstream Background that will
be addressed later in the main analysis. It is just a test model to prove that NN-based
Discriminant can understand the physical topology of the K+ → π+νν̄ analysis in
parameter space.

69

Chapter 3. NN and K-pi Matching 3.2. Results

Figure 3.5 shows the probability distribution of the prediction outputs. There we
can clearly see that the NN classifier successfully predicted Signal and Background to
more than 98% accuracy on never-before-seen data of the test set. A green dashed
line represents the probability threshold above which the discriminant will predict
as Kaon Signal. Any cut on this distribution can be made and line can be moved
along the horizontal axis where at each cut an efficiency and a mistag probability
can be measured to finally decide which is the best point to place our threshold. On
the right-hand side of it we can see clearly in red the true positives which are the
rightly identified Kaons along with the false positives in blue which are the residual
mistagged events where pileups are wrongly identified as kaons.

Figure 3.5: The probability distribution of the NN Discriminant output.

3.2 Results
To make the right comparison between the NN Discriminant and the old Likelihood
based one we had to implement the model in NA62 Framework. A C++ class was
written for the NN Discriminant, and the right statistical analysis was done in ROOT.
Figure 3.6 shows the Performance9 plots of both the classical and new NN based
classifier. The graphs shown in red and black are the outputs of threshold cuts
between 0 and 1 of the NN and classical discriminant respectively on predictions of
the same never-before-seen data sample. A significant improvement started showing
where we got 5% more efficiency and 40% less mistag on the current working point

9Performance: Maximise the probability to associate the parent K+ to π+ (“Efficiency”) and
Minimise the probability to associate an accidental or pileup track to the π+ (“Mistag”).

70

Chapter 3. NN and K-pi Matching 3.2. Results

of the Likelihood based classifier (which is 75% efficiency and 4% mistag).

Figure 3.6: By varying the threshold on NN Discriminant (plot in red) we got 5%
more Efficiency for current mistag and 40% less Mistag for current efficiency with a
Likelihood-based Discriminant (in black).

By repeating the same Efficiency VS Mistag plots for every test run (2017A
runs that were not used for the training), we could draw a stability margin on the
predictions which are apparent in Figure 3.7. There we notice the small margin band
between the worst (in blue) and the best run (in red). These two plots show the
NN discriminant stability in performance through the runs which both exceeded in
performance metric that of the classical Likelihood-based one even on the worst run.

The above-mentioned result we finally got required a lot of empirical experimen-
tation to tune all the parameters of NN but most importantly Feature Engineering.
What is meant by that is a lot of physics intuition was spent in the data preparation
and model design (i.e., in picking the right variables for pattern recognition). An
example of that is in Figure 3.8, we can see clearly how the time and CDA show
shape difference between Kaon and Accidental beam. Other variables have subtle
differences that needed to be explored as well to push the NN performance to the level
we currently reached. A sizable number of trials with similar features plots guided our
engineering process in addition to an extensive experience with K+ → π+νν̄ physics

71

Chapter 3. NN and K-pi Matching 3.2. Results

Figure 3.7: Best (red) VS Worst (blue) test Runs

parameter space and how it affects the analysis.

The CDA as an independent feature that proved its supremacy again in the NN
as was known before in the Collaboration. In figure 3.9 NN performance dropped by
removing the CDA even though we expected it to remain stable. Against intuition
the NN could not construct the CDA from primitive raw variables of the individual
tracks in initial and final states. It had to be added by hand as an extra raw variable
to reach the level of performance we had.

Finally, it should be noted that the NN did learn the topology of our data in
parameter space. That is obvious from a simple analysis we did on the features of
outputs either being True or False Positive. To ameliorate the predictions and reduce
the rate of False positive we started by plotting the instantaneous intensity (Fig. 3.10),
then the time differences with GTK in both RICH and KTAG(Figs. 3.11 & 3.12),
and the CDA(Fig. 3.13) in both output cases. For the first three variables mentioned
we could not see any significant difference other than a bit wider variance and thicker
tails in case of false Kaons. However, the CDA showed a crucial difference and a
much wider distribution for the False Positives. That re-established once again the
importance of CDA as a crucial parameter that will help the discriminant to improve

72

Chapter 3. NN and K-pi Matching 3.3. XAI Analysis

Figure 3.8: Clear pattern recognition on variables such as the time difference and
CDA.

its predictions no matter what other variables are chosen or which NN architecture is
adopted.

3.3 XAI Analysis
After the success of the improved test model on the K+ → π+π+π− environment,
enough motivation was gathered to produce a better one. The main idea was to use
state-of-the-art Deep Learning tools to reach the goal of getting higher sensitivity in
the background estimation of πνν analysis. The practice here falls in the context of
the currently popular approach of XAI in HEP. XAI main target is to step out of the
Black Box analysis using ML and especially NNs into what is also called the White
Box Analysis. The idea is to make any AI model implemented as clear as possible
by adding Physics optimization and educated metrics to gauge the performance of
concrete particle physics evidence. A way to do that is by either invent new variables
or explore/exploit additional features related to the main analysis.

For the Track-Matching task two main challenges were faced. First, the data was
limited to one specific kind where for instance no images existed in the tracking system
only coordinates and raw variables and measurements. This prevented us from using
Deep Convolution Neural Nets used for image recognition as done in ATLAS tracking
and Pileup mitigation [59] [82]. Second, the variables were few and did not give
much space for feature engineering. We did succeed in defining a certain hierarchy

73

Chapter 3. NN and K-pi Matching 3.3. XAI Analysis

Figure 3.9: Performance plot without CDA.

on features though which will be mentioned later in detail. Having these tools in
hand, the attention shifted to improving the model while the target was set to get
higher efficiency on predictions in the current test environment first and the final
πνν last. So far, a discriminant was created and implemented in the main analysis
framework that can discriminate and classify a Kaon event from a fake or Pileup
one. To be able to improve the model, an investigation to look where it was failing
was done and the parameter space explored. Since the analysis could tolerate some
Kaons to be cut down as False Positives. A way to compensate was necessary because
the misidentification of Pileups as Kaons was clearly alarming and dangerous. The
strategy we wanted to follow is to cut as narrowly as possible on the timing and
CDA of tracks in our training samples to allow the NN to learn the features of the
trickiest pileup tracks that reside in the same parameter space as real kaon parent
tracks. Against what was initially planned, the wider we cut on the timing and
CDA in training samples the better discriminating efficiency we obtained in general.
The reason for that is that pileup tracks within a certain cut window would mix up
completely in features with real kaon tracks and the NN would loose track of them
and its ability to learn and discriminate.

To improve the algorithm, we followed two directions: redefinition of the training
sample, and upgrade of the discriminant variables.

In addition, to score the performance of the upgraded discriminant we moved

74

Chapter 3. NN and K-pi Matching 3.3. XAI Analysis

Figure 3.10: Lambda of Fake VS Real Kaons predicted from test data.

Figure 3.11: time difference between RICH and GTK of Fake VS Real Kaons predicted
from test data.

from the K+ → π+π+π− to the πνν analysis. As a figure of merit, we used the
K+ → π+π0 background leftover after the full πνν analysis versus the number of
normalization events. Two track matching metrics were adopted in what follows, the
Tails and the Fractional Acceptance Variation (FAV). The K+ → π+π0 background
depends on the probability of K−π wrong association through the fraction of the tails
of the reconstructed m2

miss entering signal regions as shown in Figure 3.14. Therefore
its measurement gives quantitative indication of the level of K − π misidentification
probability.

The number of normalization events are a direct measurement of the effect of K−π
association on the signal acceptance because the same K − π matching algorithm is
used to select signal and normalization events. FAV is the relative difference between
the number of such normalization events selected in the standard analysis and the
ones selected using the NN matching algorithm.

75

Chapter 3. NN and K-pi Matching 3.3. XAI Analysis

Figure 3.12: time difference between KTAG and GTK of Fake VS Real Kaons
predicted from test data.

Figure 3.13: CDA of Fake vs. Real Kaons predicted from test data.

3.3.1 Redefinition of the training sample
An understanding of the nature of sampled data clarified that selected events in the
time window of NA62 are not singular tracks. This is confusing to the discriminant
which deals with tracks one at a time. Since in this case augmenting the training data
in mere volume was not enough so work was done to enrich it in quality as well. What
is meant here is that a new kind of background was prepared and added, in a hope
that a new more complicated training might widen the perspective of the classifier.

The Kaon track is carefully selected on Chi2 fit criteria as a pre-filter called
“Chi2Condition” from the bunch of Pileups that infiltrate instantaneously (as per
our time window of 15 nsec). Removing this filter allowed us to store a sample of
tracks that are Pileup mixed with the kaon beam tracks which was added to the
training as a new kind of background different than the one we used before with pure
Pileup tracks. The aim was a better understanding of the Pileup topology in general

76

Chapter 3. NN and K-pi Matching 3.3. XAI Analysis

Figure 3.14: The final fraction of K+ → π+π0 and other similar events entering signal
regions.

by dumping all unwanted kaon tracks in the background sample as well. This startegy
is followed in training sample selection based on the hypothesis that all kaon beam
tracks that didn’t meet the Chi2Condition would be considered as background similar
to Pileup.

After training on this new data sample, unfortunately, some efficiency on Pileup
predictions decreased. Our model was biasing the predictions towards this new
background which lowered efficiency in general. In Figure 3.15 we notice the
comparison in prediction performance plots. In increasing order, in gray first we
show the one belonging to the classical Likelihood based discriminant followed in blue
by the pileup only background predictions with the NN trained from the redefined
data which was a bit lower than the one (in red) trained with the usual data before
redefinition. This result led to the conclusion that contrary to what was thought at
first, this additional background was confusing the NN instead of helping it grasp
more corners in parameter space. That was due to biasing the model on an artificial
background that is different to the one existing in the physical analysis.

After making sure it is the only trick in our pocket for the data sampling process,
we were later satisfied with our first choice of pure Pileup background and worked on

77

Chapter 3. NN and K-pi Matching 3.3. XAI Analysis

a volume-wise improved data sample production of the classical kind to be adopted
for the final training of the model. Hence, a lot of tuning and adjustments still needed
to take place in upgrading the model to ameliorate the prediction accuracy of the NN
discriminant.

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Efficiency vs Mistag on test Events run 8255 2017

Pileup new NN

Pileup old NN

Pileup Old Likelihood

Efficiency vs Mistag on test Events run 8255 2017

Figure 3.15: Efficiency comparisons on one test run 8255 of 2017A data. Performance
plot of NN predictions (in red) before and (in blue) after data redefinition. (In grey)
The performance plot for classic Discriminant.

3.3.2 Upgrade of the discriminant
It is well known that working with NNs is a black box mechanism, where the noise
it does not necessarily give us hints on its working processes. Being that the case,
a lot of intuitive trials were proposed from the start of this project since there is no
obvious way to be conclusive and affirmative on how the NN will adapt with the data
in hand and what outcome will result from it. So, to upgrade the Discriminant, we
worked on three distinct aspects: the architecture, the primary cuts on the training
data and feature engineering.

Architecture-wise when the work started with redefined data and before
completing the checks on the performances, an investigation was carried out to check

78

Chapter 3. NN and K-pi Matching 3.3. XAI Analysis

if events with different number of additional tracks might be of different topological
nature. However, the limitation in the choice of features motivated the invention
of new ones (this latter is in feature engineering part) but the general sense was
that by adjusting the design of the classification algorithm, it might become able
to understand these subtle differences if they ever exist. Five separate and different
discriminant classes10 are added to the model. One for events that are in time with
a single additional track in GTK, another for events with two, and yet others with
three, four and five, respectively. Five different samples of data that correspond to
the 5 mentioned types were prepared and their related NN Discriminants trained.
In addition to that, the framework was adjusted to distribute events according to
them nature to be evaluated and classified by the five different NN Discriminants
while the first one used before still is present to identify events with singular tracks
or 0 additional tracks in the GTK. The first problem from the redefined data also
reappeared here to leave its imprints on the much lesser and exclusive data samples.
It was clearly noticed also that prediction performance was exceptionally low on
exclusive kind of events with additional tracks due to low statistics. Proper data
mining needed much more attention and time to filter enough data of these kinds to
prevent under-fitting with exclusive events. Being that the case, this attempt was
paused especially that at the time we were working on it, another issue was present
in the redefined data (the “over-fitting” towards the new background mentioned
previously in 3.3.1). Prioritizing the most essential issues, this adjustment to the
model had to be paused to resume if enough time and computing power become
available to excavate all the data samples needed all over again without the additional
background that over-fitted the training. Then, the project moved forward with
egalitarian democracy and treated all events on equal footing by using again the data
with Chi2 filter in GTK tracks associated selection. At that point, the attention
was given to the inputs’ features engineering with the hope to gain better than with
adjusting the fundamentals of the model. However, before delving into the details
of features engineering it is good to mention how the primary cuts worked on the
training data against expectations as well.

Primary cuts are wide cuts applied firsthand on the data domain where it is
confirmed there are no correlations in the features’ physics. These are done to avoid
training the NN on irrelevant or obvious events and consuming unnecessary computing
power. These cuts are imposed on the four key features which are the three-time
differences between the reference detector (GTK time) and the other three, and the
CDA. An average first cut of ±1ns and 15mm was used on the training set. It was
expected at first that a tightened cut around confusion region might produce better

10The events come most frequently as “single-track” but some exceptional events are distributed
between “double-tracks” mostly and up to “five-tracks” quite rarely.

79

Chapter 3. NN and K-pi Matching 3.3. XAI Analysis

training. The intuition was that around confusion area where the NN predictions
are failing, the features are remarkably similar between Kaons and pileup. Hence, if
we select more events from that region in the training, the NN might become able
to better generalize and give more accurate results. However, once again against
expectations, the wider cuts were much better and the NN discriminant resulting
from them performed better classifications.

To gauge the performance, a root routine was written that can statistically evaluate
the fraction of K+ → π+π0 events entering signal regions after πνν selection. This
fraction is shortly called “Tails” in the following. The tails were measured as a
function of the relative difference between the number of normalization events selected
in the standard analysis and the same events selected using the new K − π matching
algorithm, denoted with “Fractional πνν acceptance variation”. A scan was then
performed varying the threshold on the discriminant and the performance compared
to the standard analysis.

Figure 3.16, left, shows the results using a discriminant variable built with tight
primary cuts corresponding to ±0.6ns and 4mm. As a reference, the standard analysis
corresponds to a value of 0 of the fractional πνν acceptance variation, and the tails
in that analysis were measured about 0.00135 for the 2017 dataset used in this study.
The figure shows that the NN discriminant trained with tight cuts provided a marginal
improvement with respect to the maximum likelihood discriminant.

However, Figure 3.16 right shows the results using a discriminant variable built
with wide primary cuts, corresponding to ±2ns and 30mm. In this case the
improvement of performance starts to be significant, with about 10% lower tails than
the standard ones for the same signal acceptance as in the standard analysis. This
reflects in a 10% lower K+ → π+π0 background for the same signal acceptance,
because the K+ → π+π0 background depends linearly on the tail fraction.

This demonstrates that the predictions of the NN trained with the wider cut
data proved more accurate than the other. This behavior was traced back to the
training preferences of the NN itself. It also made sense that with more pileup events,
existing in the training sample (for wider cuts), the generalization process became
easier and especially on the pileup events. To push the performance even further
feature engineering was exploited and described next.

Features Engineering is a part of Machine Learning Data Science that deals
with understanding and developing the physical features of the training data. It is
a very wide topic that starts with the simplest task of classifying and understanding
the discriminating importance of physical features to the much more complicated
design and invention of new ones. The classification is done through understanding
a certain hierarchy of the features which the path was followed through some specific

80

Chapter 3. NN and K-pi Matching 3.3. XAI Analysis

Figure 3.16: Tails versus the fractional K+ → π+νν̄ acceptance variation for different
sets of cuts applied on the Single NN discriminant for the tight (left) and the wide
(right) primary cuts.

packages available on GitHub11. While in the features development a reliance on
physical knowledge helped to select and produce features/variables that boosted
results. To be able to understand the hierarchy of the current features, an Open-
source library was used that works with Sklearn12, with a specific class from ELI5
called “PermutationImportance”. This class undergoes a classic sensitivity analysis
using permutation and weighting of features importance [109], [83]. The basic idea is
to permute the inputs of one of the features, pass it through the model and see if the
model’s predictive power would change. In case all stayed the same, then the variable
under test might not be of much importance. Feature importance can be gauged in
the form of weights which are computed using a metric called “Mean Decrease of
the Accuracy score (MDA)”13 while the tested variable/feature gets permuted in the
input set (i.e. becomes noise). Table 3.1 shows the hierarchy in the features where the
CDA, dtKTAG and Chi2 came as top three out of 23. An insightful reasoning should
be presented to try to make some physics sense out of the position of most essential
variables. Starting with the most obvious and well known, an expected result for
CDA and dtKTAG to take the first two positions because these are the two variables
of the highest discriminating power in the Standard Analysis as shown in figure 3.8.
The Chi2 of the Kaon in the initial state came third due to it being an indicator of
the quality of reconstructed track which is quite significant since the Pileup presence
does not only depend on accidental activity but also from fake combinatorics of tracks

11https://eli5.readthedocs.io/en/latest/autodocs/sklearn.html
12The code needed to be adapted with Sklearn as well since it runs in Keras with Tensorflow

backend, using the keras wrappers package https://keras.io/scikit-learn-api/
13For general equations check an instance in [97]

81

Chapter 3. NN and K-pi Matching 3.3. XAI Analysis

MDA Weights Features
55% CDA
18% dtKTAG
13% Chi2
8.4% fTrackTimeS1
5.7% dtRICH
4% fTrackTimeS2

3.1% ftKTAG
1.8% dtCHOD
0.9% fTrackTimeS0
0.7% fLambda
0.6% ftRICH
0.6% ftGTK
0.25% ftCHOD
0.1% nHits
0.09% fPositionX
0.06% fPBMY
0.06% fPBMX
0.03% fPositionY

Table 3.1: List of Feature Importance weights from the “permutation importance”
MDA sensitivity analysis.

associating hits of GTK. Moreover, the timing of the GTK second station came fourth
most probably due to its geometric layout. GTK2 is aligned with GTK1 and GTK3
only on the horizontal plane, while demoted about 6cm below GTK1 and GTK3 in
the vertical plane to measure the Kaon’s momentum. This peculiar position would
allow GTK2 to be exposed to a different kind of accidentals and its timing variable
to become twice as sensitive to pileup. Also, the difference in timing in the RICH is
quite important because it is related to particles downstream and in the final state
but less sensitive to accidentals and pileup. Moreover, time of KTAG is related to
reconstructed Kaons in the initial state and CHOD’s timing would clearly be more
sensitive to the charged Pions in the final state. However, the instantaneous Intensity
variable fLambda was counted with the variables of lowest values and it is due to it
being fully correlated with the timing and hits of GTK. On the other hand, 5 of them
(Chi2Pion, fSXBM, fSYBM, fSlopeX and fSlopeY which are not mentioned in table
3.1) appeared to be useless which led to them being removed from the final model,
leaving a final input of the other 18 left.

Finally, a feature called 2-D NN discriminant ∆(Dbest − Di) was built. 2-D NN
discriminant computes the difference in Single NN discriminant outputs between the
highest score (“best”) and second highest score (“i”) for tracks associated with the

82

Chapter 3. NN and K-pi Matching 3.3. XAI Analysis

0.2− 0.15− 0.1− 0.05− 0 0.05 0.1 0.15 0.2
 acceptance variationννπFractional

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

0.0011

0.0012

0.0013

0.0014

0.0015

T
ai

ls

Likelihood discriminant cut
2-D NN discriminant cut
Single NN discriminant cut

Figure 3.17: Tails versus the fractional K+ → π+νν̄ acceptance variation for different
sets of cuts applied on the 2-D NN discriminant (black dots). The performance of
the Single NN discriminant cut (grey dots) and of the standard likelihood cuts (blue
square) are also shown for comparison. Grey dots are the same as those of figure 3.16
(right). Lines connecting dots and the blue straight lines are for visualization only.

same Pion in the final state. This variable lowered the exploitation of the additional
tracks present at the same events. The fact is that when 2-D NN discriminant is
sufficiently low then the two tracks of near equally high probability might be confusing
the matching algorithm. The rule followed in such case is imposing a cut on events
with lower than a certain value for 2-D NN discriminant, which ensures the matching
is done as purely as possible on events with single Kaon parent track in initial state
only. Figure 3.17 shows the clear improvement in the performance of the algorithm
obtained using 2-D NN discriminant with both Dbest and ∆(Dbest −Di) (black dots)
with respect to Single NN discriminant using only Dbest (grey dots). The black dots
are obtained fixing a cut ∆(Dbest−Di) > 0.25, and varying Dbest over the entire range.
The grey dots correspond to Figure 3.16. The standard likelihood-based discriminant
performance is shown in the same plot for comparison. This result obtained is giving
hints that pileup can pose as fake kaon parent tracks, confuse the matching and
increase the tail values. The cut strategy with 2D-NN discriminant helps mitigate
significantly the effect of accidentals on tails overlapping signal regions and would
serve big time in future higher intensity runs when pileup effects are expected to

83

Chapter 3. NN and K-pi Matching 3.3. XAI Analysis

exponentially increase.

The working point was chosen at FAV=0, which is a fair point to compare track
matching performance with tails v/s FAV because the two kinds of discriminant would
be selecting the same number of normalisation events. For a cut applied on 2-D NN
discriminant at ∆(Dbest − Di) > 0.25 a result of 35% lower π+π0 background was
obtained for the same signal efficiency, or, equivalently, a 7% larger signal efficiency
for the same level of π+π0 background which is an exceptional performance of XAI
methods to be clearly noted.

84

Chapter 4

NNODA for LKr Calorimeter

4.1 Physics Review
Photon Veto is a relevant source of signal inefficiency affecting the 2016-17-18
K+ → π+νν̄ analysis. This is due to signal events being rejected by vetoing on
random activity instead of photons or, more generally, of additional particles from
K+ decays (please check 1.2). Through this chapter such a loss of signal events is
referred to as “Random Veto” (RV). The fraction of signal loss due to RV also strongly
depends on beam intensity, as shown in the K+ → π+νν̄ analysis [1]. Therefore, the
RV seriously limits the performance of the analysis at increasing intensity. One of the
most relevant contribution to RV comes from the definition of “in-time” photon used
in the Liquid Krypton calorimeter (LKr).

The general classical cutting conditions are a time window of |tcluster− trich| < 50σ
applied to Ecluster > 15 GeV/c and distance > 100mm from the charged particle’s
impact point. Here trich is time of the downstream charged particle, tcluster is time
of the cluster and σ is LKr cluster time resolution which is . 0.7 ns and slightly
dependent on energy. The standard analysis has shown that any attempts to shrink
the time window of the cut to ±30σ increased π+π0 background events by a factor
of 2. Two main reasons for this issue, one is physics related and the other is software
technicality. Starting with the latter, a bug in the time sharing of the LKr cluster
algorithm was found and fixed. As for the physics part, spatial merging of clusters
within and outside the time window spoils the time measurement of the clusters
themselves. Here rises the need for an indicator of time since only spatial reference
is not enough to identify clusters. The work described here makes use of data from
πνν analysis reconstructed with the standard LKr reconstruction.

According to LKr Standard Algorithm (SA) for cluster reconstruction, cluster time

85

Chapter 4. NNODA for LKr Calorimeter 4.1. Physics Review

is the time of seed cell, which is the most energetic cell among those forming the cluster
while the time of other cells is almost irrelevant. Improved corrections for time sharing
between adjacent clusters are being implemented to distinguish in time clusters with
barycenter distant down to 10 cm. The width of the LKr signal of each cell is 60 ns
FWHM and the pulse is sampled with FADC working at 40 MHz. Therefore, pulses
closer than 30 ns apart cannot be distinguished. So far, the SA has no present double-
pulse separation. Attempts to resolve double pulses within 60 ns are under study with
the goal to improve the identification of spatially merging clusters whose seeds share
the same cell. The impact on RV of these improvements is currently under study,
and first results look promising. Nevertheless, the hardware limitation to 30 ns will
remain. The method of in-time photon identification described next intends to be
independent from the LKr reconstruction and to overcome the hardware limitation.
The idea is to rely on the timing of the non-overlapping cells to separate clusters of
different time, even below the hardware limitation of 30 ns. This is achieved through
a visual analysis of the time distribution of the energy measured across the cells event
by event.

The starting point is the study of LKr calorimetric data of peculiar π+π0 decays
rejected by the πνν analysis because a SA cluster with energy greater than 15 GeV,
not associated to the π+ is found either between (-50, -30)σ or (+30, +50)σ off the
π+ time. In addition, these events have no signal associated with LAV, IRC and
SAC, according to the photon rejection criteria of the πνν analysis. The first step
is to understand why no cluster closer than 30σ is reconstructed in the LKr despite
these events being π+π0 decays. To this extent, two ways are presented to visualize
calorimetric data in the LKr graphically for each of these events, one in terms of
amount of energy and another in terms of the time of energy deposition measured in
each cell. Figure 4.1 (top middle) shows an event on an energy scale where the color on
the palette represents energy deposits in cells. The energy associated to the π+ in this
event (inside of the red circle) is consistent with a MIP. Nevertheless, energy releases
consistent with hadronic showers can also be associated with the π+. Through this
chapter we will refer to a SA cluster matching the track of the reconstructed charged
particle as “track cluster”. Any attempt to use a |tcluster − trich| < 30σ time window
would not be sufficient to reject the event of the figure. This can be understood by
looking at figure 4.1 (bottom middle) which shows the same event on a time-based
representation. The right-hand side of the figure displays a zoom-in on clusters not
associated with the track, both in energy-based and time-based colors, respectively.
A comparison between the two cluster images can be easily presented. There, the
shape of the clusters remained the same in both cases but the colors are different.
On the (top) energy-based visualization the reddish color in the middle of clusters
shows the deposit of energy being the highest in the central cells. On the (bottom)

86

Chapter 4. NNODA for LKr Calorimeter 4.1. Physics Review

time-based visualization some distributions of colors are noticed, according to the
time scale adopted all greenish cells are of the same timing as the track cluster.

Figure 4.1: LKr’s Calorimetric Visual Data: (top) energy-based visualization,
(bottom) time-based visualization. Black hole showing in middle of picture is for
the beam pipe of the experiment.

The algorithm described in what follows exploits the time visualization, relying
on a cell time-to-color transformation to perform the clustering. Physics clusters
are defined as color islands, and an in-time cluster is an island of the same color
as that of the SA (Track cluster) cluster associated to the reconstructed π+ track.
The core of the algorithm is to use a Deep Learning Object Detection trained model
at the heart of the Neural Network Object Detection Approach (NNODA) to detect
in-time clusters that are not spatially associated with the MIP and ultimately help
improve NA62’s Photon Veto by lowering inefficiency and improving RV especially
by constraining the high energy photons in-time Clusters coming from π0 decay (i,e.,
Eγ > 15 GeV see Figure 4.2). Object Detection algorithms (OD) are built on top

87

Chapter 4. NNODA for LKr Calorimeter 4.1. Physics Review

of Convolutional Neural Networks (CNN). While CNNs extract geometrical features
by running convolution kernels over the input space (i.e., images in pixel-tensors
form), ODs go the extra mile of localizing the objects of interest, select and classify
them individually. CNNs have been successfully applied over the past decade to
classification tasks commonly encountered in particle physics [31] [15] [16] and recently
in NA62’s particle ID [46] and the renown work of P.T. Komiske etal., 2018 [82] for
Pileup mitigation from Jet images. A first visual application of an OD approach in
NA62 experiment is presented to solve the problem of random activities in NA62’s
LKr RV. NNODA’s prime objective is to work as an independent virtual AI inspired
bubble chamber technique in parallel with any cluster reconstruction.

Figure 4.2: This figure taken from [6] shows the range of PV inefficiency in LKr that
is prioritized for improvement.

The main goal of this innovative visual technique is to overcome the time window
challenge faced with SA. A balance is sought by making the PV time window soft
enough to prevent Random Activity from posing as fake background and avoid spatial
merging of in-time and out-of-time clusters by efficiently differentiating/filtering
their source events. On the other hand, NNODA allows the time window to be
simultaneously tight enough to control RV and avoid cutting too many events of
interest which allows recovery from signal acceptance loss.

88

Chapter 4. NNODA for LKr Calorimeter 4.2. Data Preparation

4.2 Data Preparation
To train any machine learning model, a dataset should be prepared accordingly with
the required annotations and model-related format. Possible methods of acquiring
non-research-specific datasets include finding a preexisting annotated database online
of the desired objects. However, research-specific data would be harder to get. It
would be produced using a simulated model of the desired objects (e.g., CAD model)
and prepare an annotated dataset in a related virtual environment. Yet another
method would be to select and/or collect data manually and use an online labelling
and annotating tool, the one used for most of this project is Intel’s Computer Vision
and Annotation Tool (CVAT). The ideal one among them is to find and use an open
source dataset due to time effectiveness but these are generally available for common
real-world scenarios. The calorimetric particle physics project for LKr Calorimeter
requires a very specific dataset subject-related and had to be carefully prepared and
annotated. Manual annotation and labelling of a collected/created dataset are time
consuming tasks and more so when the desired dataset is large. A lot of attention
is spent in keeping the dataset balanced in negative examples and in multi-class
distributions. A non-equivalent dataset can have a massive impact on the training
model from making it unable to learn features to extremely biasing its predictions.
That might result in a low mAP1 and might lead to over-training as well. Additionally,
a well-balanced dataset is directly linked, empirically speaking, to lowering the number
of unidentified/unselected objects of interest in images which in the case of ODs are
the most dangerous errors.

CVAT tool is used for online video and image annotation for computer vision
purposes. Instructions on how to install CVAT can be found on their official GitHub
page2.Within this tool, annotations can be done in several ways depending on the
purpose. For instance, in Object Detectors (e.g., YOLO etc...), boxed annotations are
needed. Boundary boxes annotation would be the method followed in both projects
for object detection and computer vision.

The clusters dataset is a collection of calorimetric images of energy deposited, each
of them representing a specific data event. A data event is a superposition of physical
events staggered in time. These would serve as a basic dataset (NA62 LKrCV)
to train computer vision systems to detect objects belonging to the same physics
event once displayed. Additionally, as the general practice is and according to cross-
validation rule, 10% of the dataset would be set aside for validation. Since the images
represent clusters of different particles interacting in the calorimeter, it is only logical

1See later section 4.4.1 for details on the mAP metric
2https://github.com/openvinotoolkit/cvat/blob/develop/cvat/apps/documentation/installation.md

89

Chapter 4. NNODA for LKr Calorimeter 4.2. Data Preparation

for objects of interest to be clusters in nature. Two classes the model should learn to
differentiate and detect, Single and Merged clusters. The image features that would
help discriminate the two types of clusters are quite straight forward. Because the
pixel color refers to a very crucial physics criteria (“relative time of the hits”), it
served as the main reference in the annotation process.

Now to define the image of a physics cluster, the following selection criteria were
compiled in the following:

• Fix the color of the time of the clusters associated to the Pion track time to
green which corresponds to 100 ns absolute.

• In-time cells are all cells within ±10ns of the Pion time. Since within the time
window the gradients of the colors are kept, and all the greenish shades can be
noticed in this case.

• Out-of-time cells are all cells outside the ±10ns time window from Pion reference
time. However, the time of these is pushed to the extremities of exactly ±50ns
with respect to the Pion’s timing. Apparently, we don’t notice color gradients
any longer in this other case. What we do notice is the following:

– Either all blue clusters (−50ns off the MIP) or all yellow (+50ns off the
MIP).

– All out-of-time cells on the same side of the MIP time should otherwise
have the same color

• A Physics “cluster” is defined by at least 3 adjacent same-color cells/pixels.

Using CVAT online annotation tool3, the images were annotated where a box was
added around clusters of interest and the right class label was added, either Single- or
Merged-Cluster (See figure 4.3). First of all, for a patch of pixels to qualify as a cluster
of interest it should be formed of 3 or more connected greenish4 pixels in a patch.
The Green color is a general indication to the existence of an in-time cluster. Now
from the qualified clusters, anyone that mostly contained greenish pixels (not more
than 2 attached non-greenish pixels) is labelled as Single cluster. While any cluster,
made mostly of non-greenish pixels and contained 3 or more attached greenish ones,
is labelled as a Merged cluster. A merged cluster represents the spatial overlap of
clusters coming from particles produced by uncorrelated physics events. On the other
hand, all the other clusters which are mainly made of non-greenish colors were left

3https://github.com/openvinotoolkit/cvat/
4As the time scale fluctuates the greenish pixels would not all be of the same shade of green

90

Chapter 4. NNODA for LKr Calorimeter 4.2. Data Preparation

un-annotated to serve as negative examples5 (Figure 4.3).

Figure 4.3: This figure shows an instance where clusters are labelled and box-style
annotated using CVAT tool. Single clusters are in light-blue colored boxes while
Merged ones in brown-orange and negative clusters are left without annotation.

To train the model reliably all the clusters of interest must be within the boxes
in all images. The clusters dataset yielded a total of 1230 histograms for training
and 155 to validate. These were taken from a sample of 2017 data 10 runs. This is
sufficient for basic training purposes, nevertheless the time required to extract and
annotate manually such histograms limited the ability to expand further the dataset.
Since image variety and range are most essential factors for an ideal dataset, an extra
effort has been spent selecting best runs that held a wide variety of highest quality
events. Additional attention was given to picking an unbiased sample that includes
a vast variety of clusters of various kinds. Moreover, the relative training sample
quantity drawback was mitigated by applying data augmentation while training in
all different models. This technical option would artificially add an extra variety to
the dataset by changing the pose and texture of input images. Each state-of-the-art
vision algorithm has its own related properties that will be discussed later. It should
be mentioned here that the advantage CVAT presents is that, once the annotation of
a dataset is completed; it can be exported in a multitude of formats. Each format
would work with one or more different algorithms.

“NA62 LKrCV” dataset is sub-sampled into three parts for three different purposes
5Negative examples are left without annotation in the dataset to make it more robust and less

prone to False Positive detections

91

Chapter 4. NNODA for LKr Calorimeter 4.3. Training

which are training, validation and also testing. Even though these parts contain
practically similar data object-wise, however they are quite different from the physics
point-of-view and they serve a variety of purposes. The first two are used during
training but they are completely separated, one to train the algorithm and another
to test its ability to generalize while training. For these, sample data was picked from
2017A and subdivided (90% for training and 10% for validation). All images selected
for these represented PNN events in π+π0 region rejected by the PNN analysis only
because of the presence of clusters not associated to the π+ reconstructed at (-50, -30)σ
or (+30, +50)σ off the π+ time. In addition to that, no photons are associated with
them in LAV, IRC nor SAC. On the other hand, for testing a more physics specific
events were selected from 2017B data and called “pathological events” to refer to their
physics significance. The reason for this name comes from the careful selection made
at these events to find any improvements on selection that separates NNODA from
SA. A collection of 1438 events of the above-mentioned ones were picked to test π+π0

rejection of NNODA. As to test µ+ events rejection of NNODA (or RV), Kµ2 sample
of events were picked, these are rejected by SA because of the presence of clusters not
associated to the µ+ reconstructed at (-50, -30)σ or (+30, +50)σ of the µ+ time. A
collection of 3050 of these events are tested in an attempt to see how many of them
can be saved by NNODA in comparison with SA.

4.3 Training
The training was performed on a hand-picked dataset, that is general enough to
include most extreme cases and some extremely rare calorimetric activity. Now the
main objective of training the four hybrid OD algorithms mentioned in Chapter 2 is
that they learn a mapping function that would not only map the input space into a
single classification prediction (i.e., the default case of CNNs) but to a tensor with
multi-dimensional prediction components. The four of them share the same objective,
nevertheless, the mapping mechanism is slightly different on the mathematical level
which will be presented next. The input space structure would remain the same,
every image is RGB pixel-encoded in a multi-dimensional input tensor (i.e, in our
case 640 × 640 × 3 for the resolution multiplied by the number of channels RGB).
Each OD has its own mapping style.

4.3.1 YOLO model
For the output space, since the number of classes are two (i.e, Single or Merged
clusters) the number of components for one predicted bounding box, in each “central”
cell, are: 4 coordinates, 2 to flag the class labels and an additional 1 to indicate the

92

Chapter 4. NNODA for LKr Calorimeter 4.3. Training

existence of the favorable class if two objects happened to be in the same central
cell. That would leave every output vector pi with (B × 7) components, because
every central cell has the ability to be associated with B bounding boxes, B being the
maximum number of boxes to be assigned around each central cell. For instance, if
two different objects needs to be detected then two boxes with proper shapes would
be assigned if they happen to have same central cell (i.e., B = 2). Finally, the output
becomes a tensor P when we take into consideration the whole grid resolution. If the
number of grid cells is S2 then the tensors dimensions become S×S×B×7 (e.g., the
most common case adopted for “Pascal” format [23] is S = 7). Then YOLO learns
a map from the ground-truth annotated tensors (Pij = (pio, ..., piS2)) to the output
predicted probability tensors (P̂ij = (p̂io, ..., p̂iS2), where i is the index of the input
image in the training set and j is the index of the grid cell) using the following loss
function:

J(p, p̂) = 5λobj × L(p, p̂) + λobj × F (p, p̂) + 0.5λnoobj × F (p, p̂) (4.1)

Equation 4.1 would calibrate the training process. To avoid over-fitting6 the data,
L(p, p̂) sum-squared error penalty is weighted 5 times thus increasing the loss and only
considered if the object is found within the grid cell (i.e., λobj = 1 and λnoobj = 0). On
the other hand, to avoid under-fitting7 a penalty is added to F (p, p̂) weighted by a 0.5
and only considered when the object is not found within the grid cell (i.e., λobj = 0
and λnoobj = 1). Both localization part L(p, p̂) and fidelity part F (p, p̂) of the loss
function use the “sum-squared error” in the following manner:

L(p, p̂) =
7∑

k=0

S2∑
j=0

[(xkj − x̂kj)2] (4.2)

Where xkj is any location related coordinate kth-component of vector p at the jth cell
and there are 8 of them (4 for each bounding box) and

F (p, p̂) =
5∑
l=0

S2∑
j=0

[(clj − ĉlj)2] (4.3)

Where clj is any classification flag lth-component of vector p at the jth cell and there
are 6 of them (3 for each bounding box).

The loss function J(p, p̂) has to be numerically minimized by an iterative process
which is some sort of gradient descent.

6the specialization of the model to the training set.
7the disconnection of the model from the training set.

93

Chapter 4. NNODA for LKr Calorimeter 4.3. Training

4.3.2 SSD models
All SSD models as mentioned before (Chapter 2), have two kinds of prediction vectors
in the output space CONF and LOC. SSD generator would be producing bounding
boxes around found objects on a range of different scales, and only the ones, similar
to the ground-truths for a specific class label, are selected. N is the total number
of boxes in this selection. So, since the number of classes are two, the number of
components for one pair of prediction vectors, related to one such predicted and
filtered bounding box, are: 4 components for LOC to indicate the 4 basic coordinates
of bounding boxes, and 2 class flags for CONF to indicate the class labels. SSD
learns to map from the ground-truth location vector LOCi to the output predicted
location vector L̂OCj, where j is the index of the matched bounding box to the ith
ground-truth, and the algorithm also produces predictions on the classes in CONF .
The overall objective loss function is a weighted sum of the localization loss (Lloc) and
the confidence loss (Lconf):

J(CONF,LOC, L̂OC) = 1
N

(Lconf (CONF) + αLloc(LOC, L̂OC)) (4.4)

Where α is a weight factor to increase penalty from localization is needed, and if
N = 0 the loss is set to 0. While Lconf (CONF) is simply a Soft-Max function, Lloc
is a smoothL1 [29] that would take the following form:

Lloc(LOC, L̂OC)) =
N∑
i 6=0

3∑
m=0

smoothL1(LOCim − L̂OCjm) (4.5)

Where LOCim is any one out of 4 location-wise mth-component of ground-truth vector
LOC for the ith matched bounding box. While L̂OCjm is any one out of 4 location-
wise mth-component of prediction vector L̂OC for the jth selected bounding box.

The loss function J(CONF,LOC, L̂OC) has to be numerically minimized by an
iterative process which is some sort of gradient descent. Equation 4.4 shows how to
avoid over-fitting the data, Lloc(LOC, L̂OC) smoothL1 error penalty is weighted α
times more than that for Lconf (CONF) and increases the loss if the bounding boxes
are matching weakly. While on the other hand to avoid under-fitting a penalty is only
added from Lconf (CONF) when the bounding boxes are unmatched [29].

4.3.3 Faster-RCNN model
There’s no need to repeat the mapping procedure here, since SSD is inspired by Faster-
RCNN and adopted nearly the same objective loss functions. Only two differences
with Faster-RCNN:

94

Chapter 4. NNODA for LKr Calorimeter 4.3. Training

1. The produced, selected and matched bounding boxes are the ones generated
directly from RPN (see Chapter 2). These are expected to match the
ground-truth boxes of input images to reward and reduce the loss function
J(CONF,LOC, L̂OC).

2. The Lconf (CONF) uses a log loss over two classes (object vs. not object) instead
of a Soft-Max on all classes [27].

However, these mappings are not of our concern while using the APIs, as long as
we pick the right parameters in the configuration files of the models, what would be
presented later. The parameters choice is extremely empirical though, and requires
experience and thorough understanding of the problem at hand.

4.3.4 Fine Tuning in Transfer Learning
Fine tuning requires both updating the CNN architecture and re-training it to
recognize new object classes. It’s good to note here that it is fine tuning that would be
adopted for the application work considered in this thesis and adopted by all models
trained using the APIs.

The final predictive layers of the network are removed first and replaced with
freshly initialized ones. Then, the earlier convolutional layers in the network should
be frozen8 to ensure that any previously learned robust features are not banished.
Afterwards, two options are valid for training:

• Train only the FC layer heads.

• Unfreeze some or all of the convolutional layers and train on top with a second
round.

The first option is used when the extra dataset is terribly similar in features to the one
we trained before. Additionally, it is much faster to retrain only the predictive layers.
On the other hand, we might need to use the second option (like in our case) when
we have new object classes to be learned by CNN. Even in that case, and it is the
most commonly used one, it would be much more practical than to train weights from
scratch all over again. Even though it sounds trivial, the only fact is that fine tuning,
however, is an advanced technique that requires care and experience. For instance,
a very common pitfall is the fast tendency to over-fit a network while fine tuning.
One way to overcome this is by training the network using a very small learning rate.
This allows the new set of FC (Fully Connected) layers to learn patterns from the

8Freezing a layer means preserving the weights fixed at each node of the layer.

95

Chapter 4. NNODA for LKr Calorimeter 4.3. Training

previously learned convolutional layers earlier in the network. This process is called
allowing the FC layers to “warm up”. It is a delicate process and requires a “network
surgery” following the steps mentioned above. Figure 4.4 shows in graphical details
how the surgery actually works.

Figure 4.4: Left: The original network architecture that outputs probabilities for
1000 different class labels. Middle: Removing the FC layers from the network and
the output of the final pooling layer will serve as the extracted features. Right:
Removing the original FC layers and replacing them with a brand-new FC head.
Now these can be fine-tuned to a specific dataset [102].

On the left all layers of the network used before are displayed. The final set
of layers (i.e. the “head”) are the FC layers along with the Soft-Max classifier.
When performing fine tuning, the head of the network is actually severed (Figure
4.4, middle). However, a new FC head is built and stitched on top of the kept old
layers (Figure 4.4, right). The new FC layer head is randomly initialized (just like any
other layer in a new network) and now “neurally” connected to the body. However,
the convolutional layers have already learned rich, discriminating features while the

96

Chapter 4. NNODA for LKr Calorimeter 4.3. Training

head is new and its weights are totally random with no knowledge whatsoever. If
the gradient can backpropagate from these random values all the way through the
network, a risk of destroying its powerful features is alarmingly present. A way to
circumvent that is by letting the FC head “warm up” by freezing all layers in the
body of network as depicted in Figure 4.5 (left).

Figure 4.5: Left: At the start, all layers are frozen, and the gradient is only allowed
to back-propagate through the FC layers to achieve a “warm up”. Right: Afterwards,
one choice might be to unfreeze all the layers and allow each of them to be fine-tuned
as well [102].

Training data is forward propagated the usual way; however, the backpropagation
is stopped after the FC layers. That would allow these layers to start learning
patterns from the highly discriminating convolutional layers. In some cases, there’s
no need to unfreeze the other layers as the new FC head may reach the required
prediction accuracy. However, as mentioned earlier for some datasets (like our case)

97

Chapter 4. NNODA for LKr Calorimeter 4.3. Training

it is sometimes advantageous to allow the original body of layers to be retrained
and adapted during the fine-tuning as well (Figure 4.5, right). So, after the FC
head started to learn patterns, training is paused, the body unfrozen, and then it
will resume normally. To avoid altering the convolutional filters dramatically, a very
small learning rate is used. Training will once again be allowed until the targeted
accuracy is obtained. Luckily enough, the API processes take care of these intricate
mechanisms as long as the configurations are properly called.

4.3.5 Configurations
4.3.5.1 Charged Tracks Clusters using Darknet API

The dataset exported here from CVAT is YOLO specific. The files produced contain
all the essential material needed to launch a training using YOLOv4 in Darknet
setup. This includes the input images which are stored in data directory under
“obj train data” folder. Also, the images are added with their corresponding .txt files
that encode the information from annotation and labelling. Additionally, the files
“obj.data”, “obj.names” and “train.txt” are produced (“test.txt” from the validation
dataset as well). An extra line is added to “obj.data” to include validation data. The
final content of “obj.data” file is shown in figure 4.6.

Figure 4.6: obj.data file

Two classes are used each for one kind of cluster. The classes’ names are
showing as “Single Cluster” and “Merged Cluster” in “obj.names”.The YOLO version
used in this application is YOLOv4[18] according to the latest instructions on
“AlexeyAB/darknet” GitHub page. Again, before the training started, changes were
implemented to the configuration file in order for the data to be passed smoothly
and the algorithm gets properly optimized. The configuration file used is “yolov4-
custom.cfg” in darknet/cfg folder. This file is spared for custom object detection on
a customized dataset. Explanation is provided in relation to parameters that are

98

Chapter 4. NNODA for LKr Calorimeter 4.3. Training

adjusted for this case (Please check Appendix B for setups details).

Afterwards, the changes should be saved, and the configuration file renamed as
“yolo-obj.cfg” as this is the default name used in the training command. A final step
before starting the run is to make sure that the “yolov4.conv.137” initial weights are
downloaded and placed in the main directory. Similarly, as training progresses, the
best weights are identified and automatically saved in “backup” folder. The improved
weights can always be reused if another run is needed for training.

4.3.5.2 Charged Tracks Clusters using Tensorflow Object Detection API

One of the most effective tools for custom object detection is Tensorflow Object
Detection API9. It provides an intuitive platform (“eager execution”10) for transfer
learning. Using any of the state-of-the-art pre-trained models provided the last layer
is replaced for the data in hand so that the model can be fine-tuned to learn it. The
version used for this study is the latest Tensorflow 2.3.

The hybrid models selected from the model zoo are computationally heavy so
the Physics Department’s EPP cluster11 was used for training instead of a laptop
with single GPU. The installation instructions on the Tensorflow 2 Object Detection
API Tutorial page12 for a Linux machine was carefully followed in the right order.
A python 3.8 Anaconda virtual environment was created and activated, Tensorflow
2.3 was installed and verified in a separate directory named “Tensorflow” and CUDA
GPU support was skipped since the cluster doesn’t contain GPUs. Tensorflow Model
Garden was downloaded from the main Git page13 and added in a folder named
“models”. Protobufs were compiled and installed, these are used to configure the
model and training parameters. COCO API was installed but never used since another
metric proved more engaging and used to gauge the dataset’s box predictions. Then,
the Object Detection API was installed and tested.

Following the tutorial (Please check Appendix B for further details) all steps
leading to training were prepared in the right order:

1. Organize the workspace and training files
9https://github.com/tensorflow/models/tree/master/research/object detection

10https://www.tensorflow.org/guide/eager
11http://py-box.lancs.ac.uk/computing-guide/
12https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/install.html#tensorflow-

installation
13https://github.com/tensorflow/models

99

Chapter 4. NNODA for LKr Calorimeter 4.4. XAI in Performance Checks

2. Arrange the images and their annotations in the right folders

3. Configure the training pipelines

4. Train the models.

5. Monitor progress and test performances with Tensorboard

6. Export the trained model and use it as an object detector.

By default, the training process logs some basic measures of training performance.
Now an additional, necessary step that goes in parallel with training is the evaluation
process. To do that, standard metrics are used as mentioned before while the ones
used here are “oid V2 detection metrics” which uses Average Precision (AP)14 for both
individual classes and the total mAP. Also, as detailed in Appendix B the dataset
was partitioned into two parts, where one was to be used for training and the other
for evaluation. The metrics were selected along with the validation images, to get
a sense of the performance achieved by our model as it is being trained. While the
training runs, it will occasionally create checkpoint files which correspond to snapshots
of the model at given steps. When a set of such new checkpoint files is generated,
the evaluation process uses these files and evaluates how well the model performs in
detecting objects in the validation part of the dataset. The evolution of this evaluation
is summarized in the form of some metrics over time (or iterations).

4.4 XAI in Performance Checks
The performance checks in this section would be first limited to the training and
validation processes from a pure data science point of view. That would help in the
final choice of algorithm, which would logically be the most performing one according
to the standard metrics, described later in a separate part with examples, and most
commonly used on Hybrid models of similar criteria. All the physics analysis done on
testing samples will be described later in section 4.5.

YOLO algorithm and the three Tensorflow based models, mentioned in previous
section, were objects of the checks. When YOLO algorithm is referred to in this
study, what was actually used is YOLOv4 which has YOLOv3 as Head or OD and
CSPDarknet53 for Backbone. Additionally, for training YOLO, Darknet API was
used instead of Tensorflow2 OD API which was used for the other three models.

14These basic metrics would be explained in the next section.

100

Chapter 4. NNODA for LKr Calorimeter 4.4. XAI in Performance Checks

4.4.1 Metrics
All state-of-the-art object detector algorithms need certain basic evaluation metrics.
These are used to help validate, check training performance, and get rid of unwanted
low fidelity results. Each metric will have its own properties and uses. Therefore, we
will focus here merely on Intersection over Union “IoU” and mean Average Precision
“mAP”.

IoU: IoU is an evaluation metric used to measure the accuracy of an object
detector on a particular dataset. Any algorithm that provides predicted bounding
boxes as output can be evaluated using IoU. So, in order to apply IoU two kinds
of bounding boxes are needed. The ground-truth ones and the predicted ones from
the model. The first are generally obtained through hand labelling via rectangular
boxes using specific software (e.g., CVAT). Computing IoU can be determined via the
equation showing in a self-explanatory representation in Figure 4.7 below. As seen

Figure 4.7: Computing the Intersection over Union is simply dividing the area of
overlap between the bounding boxes by the area of union.

in the equation there, the IoU is simply a ratio. In the numerator area of overlap is
computed between the predicted and ground-truth bounding box. The denominator
is an area of union that covers both combined together. Now, dividing the area of
overlap by the area of union would give the final required metric score (i.e., IoU). In
practice, an IoU score with fidelity level of 0.5 or more is considered as good enough
prediction, in most cases. We need IoU fidelity score in object detectors because,
unlike simple binary classifiers, they produce outputs that are very rarely exact clones
of ground-truth labels (i.e., classes and bounding boxes). It is extremely unlikely to

101

Chapter 4. NNODA for LKr Calorimeter 4.4. XAI in Performance Checks

have the dimensions, (x, y) coordinates and the height and width, of our predicted
bounding boxes with the same values as the ones for the ground-truth bounding boxes.
Therefore, due to varying and multitude of parameters involved, expecting a complete
and total match between predicted and ground-truth is simply unrealistic. So, what
IoU score does is reward predicted bounding boxes for heavily overlapping with the
ground-truth. This reward is presented as a higher fidelity score. However, to ensure
that the matching is as close as possible, a threshold on IoU score should help deciding
on which predictions to keep and which to be disposed of (e.g., > 0.5).

Figure 4.8: https://commons.wikimedia.org/wiki/File:Precisionrecall.svg

mAP: To understand mAP, precision and recall should be first introduced since
all mAP calculations are based on these two sub-metrics. Basically, Precision for
a given class is the number of positive predicted rate (i.e., The number of selected
Clusters that were accurately classified):

Precision = TP

TP + FP
(4.6)

where TP is the true positive and FP is the false positive.

102

Chapter 4. NNODA for LKr Calorimeter 4.4. XAI in Performance Checks

On the other hand, Recall of a given class is simply the true positive rate (TPR)
or sensitivity (i.e., The number of Clusters of interest that were selected and not left
out) :

Recall = TP

TP + FN
(4.7)

where FN is the false negative, making the recall represented as the ratio of TP and
total of ground-truth positives.

Now the IoU metric will be used again in defining the precision and recall of the
bounding boxes. A TP bounding box is considered so if it has an IoU > 0.5 compared
with the ground-truth, while a FP is any duplicated bounding box or any with an
IoU < 0.5.

Now FN selection process can be a bit different. In two possible ways, an object
detector can miss the target and therefore produce false negatives. One case is when
it produces no detection at all. Another is when the predicted bounding box has an
IoU > 0.5 compared with the ground-truth, however, holds a wrong classification.
After statistically defining all TPs, FPs and FNs, the bounding box confidence level

Figure 4.9: Precision/Recall curve for the example in hand. The black circles are
showing the wiggles in precision that are avoided by using interpolation instead [111].

(Usually given by the soft-max layer) would be used to rank the output. But before
explaining how the Precision/Recall curves are used to produce the single number
metric called mAP, the interpolated precision pint should be additionally introduced.
The pint is calculated by taking the maximum precision measured at every recall level,
between r or one rank higher, using the formula:

pint(r) = max(pi(ri) : ri ≥ r) (4.8)
where pi(ri) is the measured precision at recall rank ri which is the same or one rank
higher than r. Interpolations are basically keeping the highest value of precision for

103

Chapter 4. NNODA for LKr Calorimeter 4.4. XAI in Performance Checks

every other recall by projecting along the vertical axis (figure 4.9).

The Average Precision (AP) is calculated using the area under curve, when the
interpolated precision is the one taken into consideration. Then, a known practice
in the industry is to divide this area into 11 sectors or segments of recalls which are
located at Recall = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1).

The formula used for calculating AP is the following:

AP = 1
11

∑
r∈(0,0.1,...,1)

pint(r) (4.9)

Finally, the mAP of an object detector is the average of AP calculated for all the
classes that exist in the dataset used for evaluation and testing.

Figure 4.10: Results of initial training showing the loss (blue) and mAP (red) plots.

4.4.2 Technical Analysis & Model Competition
Figure 4.10 shows the results of initial training on the dataset with yolov4 custom
starting weights, where iterations appear on the x-axis while the loss value on the

104

Chapter 4. NNODA for LKr Calorimeter 4.4. XAI in Performance Checks

Figure 4.11: An instance of initial training predictions. True identifications in (green)
boxes first. Then circled in (blue) is a FP (mid-bottom) while 2 FNs are highlighed
in (red) (upper-right)

y-axis. After 2000 iterations the loss function (in blue) dropped significantly and
mAP (in red) reached a value greater than 85%. This is a clear indication that the
model was able to generalize well and predict with a high accuracy. The final result
for the first run has an average mAP of 86%. Two peculiarities appeared in this run
that required discussion and attention. Starting with the least alarming, two spikes
appeared between 4000 and 5000 iterations as seen in figure 4.10. As well explained
in [95], spikes are an unavoidable consequence of Mini-Batch Gradient Descent in
Adam (Batch size=64 in this case). Some mini batches have “unlucky” random data
for optimization, producing those spikes in cost function using Adam. If stochastic
gradient descent (GD) was used instead (same as using batch size=1) there will be
even more spikes in the cost function. The same does not happen in (Full) Batch GD
because it uses all training data (i.e., the batch size is equal to the training set) each
optimization epoch. However, the training would become too slow and not practical
which is the reason Adam optimization was used in the first place. So, to say that the
existence of such spikes is a natural consequence of Adam even though some spikes
might appear pointier than the others like the two being discussed here. Then, it is
noticed as well in figure 4.10 that after the two large spikes appeared, not necessarily
related events, the loss function continued dropping while the mAP kept decreasing
slowly with it. It is a first impression and intuitive to assume that mAP and the
loss function value are correlated and inversely related where if one would increases
the other should decrease. This cannot be further from the facts especially in box
detection cases. That might apply to accuracy as a single metric but definitely not to
mAP. As it was detailed in subsection (4.4.1), mAP calculation is quite complicated

105

Chapter 4. NNODA for LKr Calorimeter 4.4. XAI in Performance Checks

and dependent on 3 parameters TP, FP and FN while averaged at 11 Recall levels.
A quick reminder here is that Recall loss is directly related to Clusters of interest
being left out. In this Recall-related property the danger of FN becomes concrete and
clearly understood. Having more FN might lead to higher accuracy on lower Recall
levels which would take away from the final mAP value. Additionally, if a common
threshold of 0.5 is for instance chosen in the TP, FP and FN selection conditions,
successful predictions with classification score <0.5 would still slightly decrease the
loss function and the mAP value at the same time. From CV empirical experience,
this issue can be somehow related to the small-scale Clusters which are excluded for
being unrecognized or recognized with extremely low classification score. That is why
any change in the initial configuration conditions must take these small-scale Clusters
into account.

As expected, plenty of FN (False Negative) instances were found mainly on small
Single clusters where the model couldn’t identify them at all. Some FP existed as well
where electronic noise was falsely identified as Single Cluster. An example of these
drawbacks can be noticed in figure 4.11. The figure shows a true detection of two
Merged clusters, which was a general trend for all other detections. The model after
first run still clearly struggles to identify correctly the small Single Clusters. That is
showing from the FP (circled in blue) and the two FNs (circled in red). In the case of
FP, some noise pixels were identified as Single clusters. While for the FNs, two Single
clusters were completely ignored as noise. Since this issue was a serious drawback for
the model, a solution for this problem took urgent priority.

To overcome this small-scale obstacle, another training took place for 6000
iterations starting from the best weights of the first training. Only this time the
resolution was optimized from 416 × 416 to 576 × 576. It was the highest resolution
the GPU15 in hand could handle to launch the training. An improvement was obtained
on the model, specifically on small scale detections, by simply increasing the resolution
of input images. This tuning should have worked very well with the other parameters
adjusted in the configuration file for that same purpose (Appendix B), in this second
run only. This improvement was interesting considering the few percent increase in
the total mAP which became 89.9% by the end of the training (see figure 4.12) but the
best weights would be finally selected which might carry mAP with a top score of 96%.

After training on higher resolution, predictions were tested on the validation set
of unseen images. Both FP and FN became much less likely to appear. Another
method used to reduce the likelihood of incorrect classifications was changing the
threshold of detection prediction probability score (or fidelity). By default, it is set

15Nvidia Quadro RTX 4000 Max-Q

106

Chapter 4. NNODA for LKr Calorimeter 4.4. XAI in Performance Checks

Figure 4.12: Results of second training showing the loss (blue) and mAP (red) plots

in the algorithm to 25% and an additional argument to the main testing command
can be used to adjust this value as needed. This parameter is usually increased when
small-scale detection is insignificant. However, in this case the opposite was needed,
and the threshold was lowered to 15%. That would allow the model to have a full
prediction scope even in instances that occupy very small areas. In most cases, the
model started predicting both classes with 80-90% certainty. Only on the small size
Single clusters identification fidelity appeared lower. Figure 4.13 shows a general trend
of high-fidelity detection for both Merged and Single clusters, plus one “benign” FP
(circled in red).

To make a proper sense out of those FP we call “benign”, their physics source was
investigated. NA62’s Calorimetric experts’ interpretation is that cases happen when
electronic noise overlaps with physics clusters. Electronic noise would occupy single
cells with some energy deposit. These would look like rare fake MIP with energy
levels of 10MeV/cell with fluctuations up to (50-60)MeV/cell and tend to be aligned
along the y-axis since they almost exclusively appear in vertical cells. So, to say that
misidentifying them as Merged Clusters is not as serious and can easily be recognized
from their energy bulk levels.

On the other hand, very accurate detection results are noticed even for small scale

107

Chapter 4. NNODA for LKr Calorimeter 4.4. XAI in Performance Checks

Figure 4.13: Circled in (red) is a benign case of FP (upper-middle)

Single clusters with a wide range of confidence levels. Even in the case of low scores,
detection is both successful and accurate to an acceptable level. The command used
for testing is the same one used previously only with “test” script and few other
arguments.
“-ext output” that would extract all the outputs of predictions done on images in
the testing set, referred to by “test.txt”, and save them in a file named “results.txt”.
While the threshold “-thresh” is for the detection confidence and was set to 0.15.
However, a bigger scope performance comparison with other algorithms is a must and
will be presented later on other testing samples.

To summarize, as shown in figure 4.14, the training was performed over 6000
iterations and on two stages. Where the best weights from first run served as starting
point for the second run. A final total mAP of 89.9% was registered by the end of
training session. In the figure we notice the evolution of the loss function’s value
(blue) and mAP (red) over time/iterations.

As for Tensorflow models, using Tensorboard dashboard, a clear display of AP
evolution over time can be extracted (all 20k iterations). For all three models AP at
an IoU threshold of 50% for each of the two individual classes plus a total mAP plots
are produced. These plots were made possible by choosing “oid V2 detection metrics”
in the configuration files.

To use inference on the trained model with its best performing weights (i.e.,
Checkpoint) the model should be exported. In other words, the newly trained
inference graph needs to be extracted, which will be later used to perform the object

108

Chapter 4. NNODA for LKr Calorimeter 4.4. XAI in Performance Checks

Figure 4.14: YOLO’s second run showing the loss (blue) and mAP (red) plots.

Model AP (Single) AP (Merged) total mAP
YOLO - - 89.9%

SSD MobileNetV2 71% 91.8% 81.44%
SSD ResNet FPN 74% 93.67% 83.8%

FasterRCNN InceptionResNet V2 60% 88.5% 74.25%

Table 4.1: Performance checks on AP for all models

detection. For that purpose, another script “exporter main v2.py” should be utilized
and the saved model would be used to run inference and perform object detection on
test images.

Figures 4.15, 4.16 & 4.17 show the results for SSD MobileNetV2, Faster-
RCNN InceptionResNet V2 & SSD ResNet FPN respectively. There it is clearly
noticed that the peak performances happened at 15k, 16k & 5K iteration for
SSD MobileNetV2, FasterRCNN InceptionResNet V2 & SSD ResNet FPN respec-
tively. It is noticeable from the figures some fluctuations for the AP values by the
end of the training but it doesn’t really matter since Tensorflow API would pick the
best weights during the training session at the highest most accurate values and save
them automatically. So, these fluctuations would simply indicate that the training
was better at earlier iterations using the AP metrics.

109

Chapter 4. NNODA for LKr Calorimeter 4.4. XAI in Performance Checks

Figure 4.15: Results showing the individual AP for classes and total mAP plots (Best
peak at 15k iteration) for SSD MobileNetV2. The vertical axis is the AP while the
horizontal one is for training epochs.

A slower learning of around 2k iterations is noticed in SSD ResNet FPN, which is
most probably due to the additional OD Neck (i.e., FPN). It is only normal to have
a slower training pace by just recalling that FPN recycle the features at every level
in the Feature Pyramid and scan over every scale of the input image. This specific
architecture showed a higher efficacy than the other two, since one of our classes (i.e,
Single clusters) is formed of only a few pixels and FPN worked so well in extracting
its features.

So, to conclude, both YOLO and SSD ResNet FPN championed the competition
(As shown in table 4.1) and were the first two best performing algorithms. However,
since Darknet API is quite different than Tensorflow’s, a reasonable doubt was
assumed that they do not share the same mAP evaluation and specifically not the
same IoU threshold. Additionally, no display of AP for individual classes could be
extracted for YOLO to compare fairly. The only solution, to test properly which is
the best performing one, was to fix the thresholds and check the prediction results
for the validation data and compare with the annotated ground-truths to be able to
make the decision over which would become the final adopted algorithm.

A pattern of few FP and FN only appearing in YOLO predictions led to
the conclusion that this specific dataset and the rounds of training performed16

SSD ResNet FPN should be the final model for NNODA.
16For clarification, it was the most convenient choice for this case study with respect to its specific

set-ups and available tools at hand, and has nothing to do with models Benchmarking which is not
our concern here.

110

Chapter 4. NNODA for LKr Calorimeter 4.5. XAI in Calorimetric Implications

Figure 4.16: Results showing the individual AP for classes and total mAP plots (Best
peak at 16k iteration) for FasterRCNN InceptionResNet V2. The vertical axis is the
AP while the horizontal one is for training epochs.

Practically, figures 4.18, 4.19 & 4.20 show an instance of a FP with YOLO and not
with SSD ResNet FPN which appeared in comparison with the GT (Ground Truth).
While figures 4.21, 4.22 & 4.23 show an instance of FN17 with YOLO and not with
SSD ResNet FPN which appeared in comparison with the GT (Ground Truth).

4.5 XAI in Calorimetric Implications
The physics performance of the dataset can be displayed in the following stages:

• Selection & Classification: In the selection mode, the goal of the vision system
would be to understand the K+ → π+π0 background and be able to select
different kinds of clusters (i.e., Single & Merged) with hits in time with the π+.

• Rejection: The system’s understanding of the background would allow it to
reject events at smaller time windows (i.e., |tcluster − trich| < 30σ) when tested
on K+ → π+π0 samples.

• Goal: Gain improvement on the signal acceptance in general and the LKr
Photon Veto in specific.

For both selection and rejection tests, only the in-time vs out-of-time feature of
NNODA is explored. So first, for the selection process we expect the π+π0 events

17Far more dangerous than FP also because these indicate a lack of competence in selection not
only detection

111

Chapter 4. NNODA for LKr Calorimeter 4.5. XAI in Calorimetric Implications

Figure 4.17: Results showing the individual AP for classes and total mAP plots (Best
peak at 5k iteration) for SSD ResNet FPN. The vertical axis is the AP while the
horizontal one is for training epochs.

to mostly have in-time clusters which would qualify them as π+π0 background events.
So, selecting these accurately would contribute to reducing this kind of background in
the final analysis. To compete with the SA selection, we should improve the general
efficiency of selecting inside this smaller time window (i.e., ±10ns). As shown in table
4.2, SA would reject all the events used for testing but in a much larger time window
of |tcluster − trich| = 50σ, and reducing the time window only to ±30σ would reduce
the efficiency in half leading to an increase of the background with a factor of 2. Using
NNODA, we could manage to keep the selection efficiency of π+π0 background events
(ε(π+π0)) at 97.3% with our best performing algorithm (i.e., SSD ResNet FPN) while
reducing the time window to a quarter its original size (from about ±40ns to ±10ns).
On the other hand, for the rejection of muon events, we expect these to mostly
have out-of-time clusters which would qualify them as Kµ2 events or coming from
ionization of muons. The reason is that muon tracks should not be associated with
any calorimetric activity (i.e., clusters). Muon events imitate πνν Single clusters from
a calorimetric point of view and a sample of them proved very useful for training. As
for physics-related testing, K+ → π+π0 events were sampled and used for evaluating
the algorithm’s rejection while another sample of Kµ2 events was spared for RV checks.
The only reason SA would reject all the events we used for training is that due to the
considerable time window of the cut, random activity arises creating fake associated
in-time clusters. By choosing the ±10ns time window for NNODA, we were able
to reduce this random activity to a factor of 10, therefore managed to save around
88.3% of Kµ2 events. In table 4.2, we notice the rejection efficiency (ε(µ+ν)) of
these events is drastically reduced by a factor of 10 to around 11.7% with our most
performing algorithm. The pathological testing of selection/rejection of these muon
events would help in the normalization process of random activity for πνν signal

112

Chapter 4. NNODA for LKr Calorimeter 4.5. XAI in Calorimetric Implications

Figure 4.18: GT: Only two detections of Single clusters should exist

Model ε(π+π0) ε(µ+ν)
Standard Algorithm 100% 100%
SSD MobileNetV2 96.1% 10.9%
SSD ResNet FPN 97.3% 11.7%

FasterRCNN InceptionResNet V2 97% 20.3%

Table 4.2: Selection/Rejection Efficiencies

selection. Additionally, a new feature would be introduced to the analysis, when
NNODA would learn to reject any such signal-like (i.e., single charged particle in the
final state) events in case they contained in-time Clusters. A degree of freedom that
could never be provided by the cut-based approach.

In the following, examples will be presented for some testing events and how SA
dealt with them in comparison with NNODA while discussing their peculiarities as
well. Each of these events was quite rare and pathological in its own way and lead
to some interesting insights on how NNODA can be very handy in understanding
and/or clarifying the random clusters’ behavior otherwise improving RV in general
by reducing random activity’s influence on a much smaller time window.

First, as shown in figure 4.24, a µ+ν event rejected by the standard algorithm, but
not by NNODA. There the real cell color gradient from digital filter is displayed for
both energy and timing visualizations. Circled in red, the MIP is a µ+ with all in-time

113

Chapter 4. NNODA for LKr Calorimeter 4.5. XAI in Calorimetric Implications

Figure 4.19: YOLO: Circled in (red) is a case of FP (upper-middle)

and out-of-time clusters around it within the same event. On the energy scale, it is
noticed that clusters around MIP are showing a certain distribution of energy. Some
of them, are perfect clusters in a sense that the high energy peak is showing clearly
in the center cells. While others are spread at medium to low energy, like the ones
circled in brown which are at an energy level less than 30 MeV. On the time scale,
we notice clearly that most of the clusters are out-of-time (i.e., not greenish). Let
alone the couple of in-time uni-cell clusters, which were not taken into account for
not being neither large enough (i.e., less than 3 adjacent cells/pixels) nor energetic
enough (i.e., E < 30 MeV) to fit the selection criteria of a physical cluster defined
earlier. This event was rejected by the SA, on the basis of a single feature which is
the large classical time window. On the other hand, it was saved by NA62’s NNODA
because all the significant physical clusters were out-of-time of the µ+.

Another example, as shown in figure 4.25, a µ+ν event rejected by the standard
algorithm, and by NNODA. There the real cell color gradient from digital filter is
displayed for both energy and timing visualizations. Circled in red, the MIP is
a µ+ with all in-time and out-of-time clusters around it within the same event.
On the energy scale, it is noticed that clusters around MIP are showing a certain
distribution of energy. However, here only one significant cluster has the high energy
peak in the center cells. While others are spread at medium to low energy. On
the time scale, we notice clearly that most of the cells/pixels scattered around are
too small to be considered significant and to fit the selection criteria of a physical
cluster defined earlier. This event was rejected by the SA, on the basis of a single
feature which is the large classical time window. On the other hand, it was also
rejected by NA62’s NNODA because the only significant physical cluster associated

114

Chapter 4. NNODA for LKr Calorimeter 4.5. XAI in Calorimetric Implications

Figure 4.20: SSD ResNet FPN: Predicted correctly

with the µ+ is greenish in color and considered in-time with the MIP. It is a µ+ν event
rejected most probably due to an in-time soft photon cluster within ±10ns window
(i.e., in radiative K+ → µ+ν(γ)). This is another kind of insight that NNODA can
additionally provide.

Now, as shown in figure 4.26, a π+π0 event rejected by the standard algorithm,
and by NNODA. There the real cell color gradient is displayed for both energy and
timing visualizations as measured by the digital filter. The only difference here is that
the in-time time window is made yellowish instead of greenish, on the time palette,
for better visualization. Circled in red, the MIP is a π+ with all in-time and out-
of-time clusters around it within the same event. On the energy scale, it is noticed
that clusters around MIP are showing a certain distribution of energy. However, here
there are many significant clusters that have a high energy peak in their center cells
which are perfect electromagnetic clusters. While others are spread at medium to low
energy. On the time scale, we notice clearly that most of the significant clusters are
out-of-time, while only two of them are in-time (showing in red ovals). This event
was rejected by the SA, on the basis of a single feature which is the large classical
time window. On the other hand, it was also rejected by NA62’s NNODA because
two of the significant physical clusters associated with the π+ are considered in-time
with the MIP (in this case only, greenish gradient is replaced by yellowish).

Finally, as shown in figure 4.27, a π+π0 event rejected by the standard algorithm,
but not by NNODA. There the real cell color gradient is displayed for both energy
and timing visualizations as measured by the digital filter. Circled in red, the MIP is
a π+ with all in-time and out-of-time clusters around it within the same event. On

115

Chapter 4. NNODA for LKr Calorimeter 4.5. XAI in Calorimetric Implications

Figure 4.21: GT: All these detections should exist

the energy scale, it is noticed that clusters around MIP are showing some distribution
of energy as well. A couple of them, are perfect clusters in a sense that the high
energy peak is showing clearly in the center cells. While others are spread at medium
to low energy. On the time scale, we notice clearly that most of the clusters are out-
of-time (i.e., not greenish). A couple of out-of-time clusters showing in pink ovals,
they fit the selection criteria of a physical cluster defined earlier, and they are found
one at −60ns out of the MIP time and the other at −20ns out of the MIP time. This
event was rejected by the SA, on the basis of single feature which is the large classical
time window. On the other hand, it was not selected as a π+π0 background event
by NA62’s NNODA because all the significant physical clusters were out-of-time of
the π+. However, this event shows some peculiarities that raise some questions that
are still under investigation. Figure 4.28 displays a zoomed in version of the second
cluster, which is found at −20ns out of the MIP time, both on energy and time scales.
There we noticed that it is an ideal cluster where the bulk of energy is concentrated in
the center cells which clearly are out-of-time of the π+. However, on the rim we could
still see some random cells/pixels, pointed at with pink ovals, that are clearly in-time.
This is quite strange and can be the result of many subtle scenarios. It could be either
a very rare event where both γs are lost with some γ-like pileup (random activity) or
a problem in the LKr cell time reconstruction18. Studies are now under way, using
the new reconstruction v2.x, to check if these effects are consistent and find the right
interpretation for the existence of such rare clusters that are rejected because they
fall outside the time window allowed by NNODA but still at a far marginal from the
classical one for SA at nearly half the time (i.e., 20ns instead of 80ns or ±50σ).

18No way to tell “by eye” and must rely on an algorithm

116

Chapter 4. NNODA for LKr Calorimeter 4.5. XAI in Calorimetric Implications

Figure 4.22: YOLO: Circled in (red) is a case of FN (upper-middle)

117

Chapter 4. NNODA for LKr Calorimeter 4.5. XAI in Calorimetric Implications

Figure 4.23: SSD ResNet FPN: Predicted correctly

Figure 4.24: (Circled in red) is the MIP, here µ+. (Cirled in brown) two insignificant
in-time clusters with E < 30 MeV. (In a red square) is the in-time time window of
±10ns, setting the limit for all greenish gradients in the time palette of the time
visualization.

118

Chapter 4. NNODA for LKr Calorimeter 4.5. XAI in Calorimetric Implications

Figure 4.25: (Circled in red) is the MIP, here µ+. (In a red square) is the in-time
time window of ±10ns, setting the limit for all greenish gradients in the time palette
of the time visualization.

Figure 4.26: (Circled in red) is the MIP, here π+. (In red ovals) two significant in-time
clusters. (In a red square) is the in-time time window of ±10ns, setting the limit for
all yellowish (exceptionally instead of greenish) gradients in the time palette for a
clearer time visualization.

119

Chapter 4. NNODA for LKr Calorimeter 4.5. XAI in Calorimetric Implications

Figure 4.27: (Circled in red) is the MIP, here π+. (Circled in pink ovals) two
insignificant out-of-time clusters at −60ns and −20ns out of the MIP time. (In a
red square) is the in-time time window of ±10ns, setting the limit for all greenish
gradients in the time palette of the time visualization.

Figure 4.28: Zoomed in look at the −20ns out-of-time cluster. (In a red square) is
the in-time time window of ±10ns , setting the limit for all greenish gradients in the
time palette of the time visualization. (In a black square) the bulk of energy is clearly
out-of-time. (In pink ovals) peculiar uni-cells or pixels appear on the cluster’s rim
and are found to be in-time with the π+.

120

Chapter 5

Summary and Conclusions

In this thesis a Neural Net (NN) code was presented from scratch and applied to
the Kaon-Pion matching in the pion neutrino-neutrino analysis of particle physics
data of NA62 at CERN. The NN code showed increased efficiency in Kaon decay
identification with respect to the standard algorithm based on statistical analysis.
Then, another project was an implementation of a new “Virtual Bubble Chamber”
technique for NA62’s LKr to analyze calorimetric images of clusters in energy deposit
using a NN object detector code we called NNODA (Neural Net Object Detection
Approach). It is innovative unique idea to use color tags on the cluster timing to filter
out and reduce random activities plaguing particle physics fixed target on-flight decay
experiments like NA62. Finally, practical data science skills in Robotics are presented
using Computer Vision techniques in non-trivial real-life scenarios, like training an
algorithm that would help a drone to identify and locate robotic end-effectors in
unusual environments. These skills have been effectively transported to NA62 particle
data analysis in a multi-disciplinary fashion.

5.1 K+ -π+ Track Matching
The first part of this thesis proved that data analysis in HEP can be efficiently
mapped into a Multivariate/ML/NN classification problem to distinguish background
processes and potential signal from events. An educated selection of the physical
variables, based on the physics of πνν analysis, allowed to exploit differences
between signal and background. The search was designed to maximize the statistical
significance of the signal sample over background data. These tools were applied
successfully in the K+ -π+ Track Matching of the on-flight K+ → π+νν̄ analysis of
NA62 experiment.

The difficulty of the analysis is that it requires a background rejection of 11

121

Chapter 5. Summary and Conclusions 5.1. K+ -π+ Track Matching

orders of magnitude. The background enters signal regions as resolution tails which
depend on irreducible multiple scattering in the material and the quality of association
between kaons and Pions. The signal is ambiguously determined by searching for a
single lonely π+ event in the final state. Since a higher track matching quality is
expected to solve the resolution tails problem, a NN-based matching was designed
and tested.

The goal first was to choose variables accessible in K+ → π+νν̄ events and to
develop the best algorithm that maximizes the probability to associate the parent
K+ to the π+ (“Efficiency”) and minimizes the probability to associate a beam
pileup track to the π+ (“Mistag”). That way we can gain improvement on the signal
acceptance in general guided by these two metrics. In fact, this is achieved when a
positively charged track in STRAW with signals associated both in space and time
in all the sub-detectors produces a timestamp for the π+ with a 100 ps resolution.
Ideally, an identification of a K+ in KTAG in time with the selected π+ in the final
state is exclusively selected. The Tracks reconstruction is a complicated process where
the rate in GTK is >50 times the rate in STRAWs because the physical beam contains
only 6% kaons, and the track matching should only be done for the Pions coming from
Kaon Decay.

A first from-scratch 3-layered NN attempt was successfully trained with 9 primitive
variables and tested on a first sample of data. This dataset consisted of a whole run
of 2017 data and allowed us to build a ROOT Tree with a binary1 labelled tracks
reconstructed from pure kinematics.

After the first attempt, grid search methods were utilized to select the best
performing model with the best set of hyper-parameters. Then, another more
advanced 5-layered NN model based on common ML libraries was selected and trained
with an input of the final 18 variables 3.1.1. While the training sample consisted
of multiple runs and around 16 million events. In the data, a clearer definition of
Signal/Background was instated as:

• Signal: π+ from K+ → π+π+π− decays with a K+ track in GTK reconstructed
using hits in a ±1 ns time window around the average 3π time (from CHOD)
and associated to the real K+ using the kinematics of the real K+ inferred from
the 3π kinematics.

• Background: π+ from K+ → π+π+π− decays with an accidental track in GTK
reconstructed using hits in a ±1 ns time window 15 ns off the 3π time. The

1Either K+ or accidental beam activity “Pileup”.

122

Chapter 5. Summary and Conclusions 5.1. K+ -π+ Track Matching

GTK track is then shifted to be in-time with the 3π (If more than 1 accidental
track appeared, the one with the highest chi2-based Discriminant is picked).

A first NN Discriminant class was built on this trained model, to be able
to compare performance between the NN and the Logarithmic Likelihood based
“classical” Discriminant. By varying the prediction threshold on the NN Discriminant,
a better performance over the “classical” was translated in 5% more Efficiency and
40% less Mistag.

This first implementation of a NN-based NA62 analysis proved that such models
work well enough and can learn physics features and give higher performance even
from raw data or low-level variables. The predictions of the NN not only outperformed
the “classical” Discriminant but showed stability over the runs as well. Also, this work
showed that NNs are flexible and can be adjusted architecture-wise and variables-wise
to adapt with the data at hand and give better performance.

Given that, various trials were made to boost the performance of such NN
Discriminant by upgrading the model from different angles. First, the data
was redefined by removing the “Chi2Condition” pre-filter which restrict the final
π+ association to one best scoring GTK track. Then we adjusted the architecture
of the NN Discriminant accordingly and produced 5 classes of it instead of one to
adapt with reconstructed events that associate different number of multiple GTK
tracks. This attempt was not remarkably successful due to a data mining problem.
A robust enough data was lacking to train all 5 models of the NN Discriminant.
Afterwards, work has been done on primary cuts, especially on the most influential
variables (e.g., timing and CDA). A wider cut of ±2ns on the GTK time and 30mm
on CDA, proved to improve the performance of the NN Discriminant and resulted in
a lower value in background tails compared with a tighter cut (See Figure 3.16).

On the other hand, feature engineering took its toll and boosted the performance
of NN Discriminant from two perspectives. A feature hierarchy technique allowed the
objective evaluation of input variables and their level of importance in the training.
That helped in the selection process of the most important variables and the disposal
of useless ones. Additionally, a new feature was added called DeltaDiscriminant
that solved the problem of additional GTK tracks by comparing their discriminant
probabilities. A null value of this feature would completely reject the event because
there would be two or more tracks confusing the NN predictions since their evaluation
presented same discriminant scores. Due to DeltaDiscriminant, we obtained as first
test without optimization 8% higher efficiency on signal acceptance and 20% less tails.

123

Chapter 5. Summary and Conclusions 5.2. NNODA: LKr Calorimetric Study

Finally, it is worth mentioning that the dominance of basic features (i.e., CDA
and Timing) in K+ -π+ matching gave little space of improvement for this NN
Discriminant based on low level raw data. Any further optimization should include
either the design of higher-level variables or some other kind of NN that might adapt
better and curate the intricate dependencies on the very few variables.

5.2 NNODA: LKr Calorimetric Study
The Neural Network Object Detection Approach (NNODA) is developed to identify
in-time clusters in LKr. A technique rarely used in HEP calorimetry is made possible
in NA62 due to the fine granularity and cell time resolution of LKr Calorimeter. The
visualization process is based on cell time extracted from the digital filter which is
independent from cluster reconstruction and can be used with any version (i.e., v.1
or any v.2.x).

Training is done on pathological π+π0 events infested with pileup random activity.
The sample picked is a selection of π+π0 events rejected by SA of πνν analysis because
the energy deposit is > 15GeV and clusters are found between 30σ and 50σ from the
π+ reference timing. The ultimate target is to recognize in-time LKr clusters, even
with random activity.

The data-set annotations are based on presence of at least 3-adjacent in-time cells
“far” from the π+ cluster and with the “same color” on the histogram’s time palette.
For that purpose, a custom-made definition of “in-time” is adopted at ±10ns from
π+ or MIP. Moreover, an educated visualization of “out-of-time” to help NNODA is
fixed but could easily be removed/mitigated in future studies to broaden the scope
of time scans. Also, additional features of Merged/Single clusters will be considered
and studied.

Several hybrid Machine Learning Computer Vision algorithms are used, com-
peted and the most convenient one picked for our final implementation, which
is SSD ResNet FPN. The model is very well trained on the dataset and showed
the upper-hand in performing accurate predictions of coordinates/locations and
classifications in comparison with the ground-truths. Only the localization of in-
time clusters feature is explored in this study while the classification part can also be
incorporated in future work.

Testing is done on pathological π+π0 events affected by pileup and µ+ν events
rejected by πνν analysis (2017). A statistically independent sample from that of the
training is chosen for testing. Inference is later used to produce a visual event-by-event

124

Chapter 5. Summary and Conclusions 5.3. Robotics

analysis with a virtual “Bubble-Chamber” technique to discriminate calorimetric
activity based on an OD Deep Learning approach (NNODA). An inference-based al-
gorithm was developed to process predictions and cluster-classifications for thousands
of events in just over few minutes time, but can be much better optimized in the near
future.

Preliminary results showed that NNODA with the highest performing trained
model (SSD-ResNet-FPN) showed on selection:

• >96% of pathological π+π0 events rejected ∼ same rejection power as 50σ(∼
±40ns) time window compared with SA.

• ×10 less rejection of µ+ν events otherwise rejected by SA of πνν analysis which
makes NNODA clearly much better resilient to increase intensity effects.

• π+π0 events left and not rejected are highly pathological. A physical under-
standing of their nature would qualify their nature and explain their selection
by NNODA. Algorithms must decide to be either recovery from random activity,
or (exceedingly rare) timing problems in LKr.

• µ+ν events rejected are due to residual random activity in ±10ns.

• About 3-4% absolute improvement in Random Veto, based only on π+π0 event
not rejected.

Future studies are now prepared to concretely translate results in RV improvement
vs. 2018 PNN analysis. A target is set to first apply NNODA to events with
E<15 GeV activity in LKr to explore any peculiar behavior at low energy limit.
Then, an improvement of the definition of “cluster” (box size annotation) can further
optimize the algorithm. Also, an optimization based on physics understanding can be
done. One way is to ameliorate the definition of “in-time” (shrink/release of the time
window). Another way is to modify the educated visualization of the out-of-time
to profit of time/color gradient of the out-of-time cells. General optimization can
also be done by: (i) using the cluster classification features to improve performance,
(ii) training and testing the model(s) on the improved LKr digital filter from the
most recent reconstruction versions and (iii) testing NNODA versus higher intensity
dependencies.

5.3 Robotics
The Robotics part consisted of first trials to implement a multi purposed vision
system to an Unmanned Air Vehicle (UAV) that would allow it to survey and detect

125

Chapter 5. Summary and Conclusions 5.3. Robotics

the dynamic motion of a fetching ground nuclear robot with twin manipulators;
arms and end-effectors. It is an artificial intelligence-based vision system, and
specifically uses computer vision techniques of deep learning in image classification
and object detection. First, a basic code, “mobile activity”, is presented that uses
MobileNetV2 Convolutional Neural Net architecture for image classification. A fine-
tuning technique from transfer learning produced an image classifier that succeeded
with 90% accuracy to differentiate different activities of the manipulator from mere
images. Then, multiple state-of-the art computer vision object detector algorithms
were implemented through different platforms or APIs. Only a limited dataset was
prepared (due to COVID19), annotated in boxes and labelled using Intel’s Computer
Vision Annotation Tool (CVAT). YOLO first was implemented through Darknet API
and proved to have the highest (mAP) mean Average Precision of 96%. Then, Mask R-
CNN through Facebook’s Detectron2 API followed with a mAP of 83%. Finally, SSD
with MobileNetV2 as backbone was tested on Nvidia’s DIGITS tool using DetectNet
and Jetson-Inference API. This last one is the most practical to implement directly
into the embedded system of the UAV, Nvidia Jetson Nano. However, the training
was taking too much time and had to be stopped at an accuracy of 72% on mAP.

So, four vision systems were introduced to the project: mobile activity, YOLO,
SSD MobileNetV2 (DetectNet) and Mask R-CNN. All four of them were used on a
Linux system and were trained to identify an end-effector and then tested on blinded
video footage that was available of an end-effector in motion. The results from the
tests were analyzed and any limitations and/or advantages were highlighted. The
results showed that classification and detection of an end-effector was carried on
properly within a reliable accuracy at most times.

However, mobile activity does not provide coordinate information as the other
object detectors do. YOLO is quick, accurate and with a slight increase in the data-set
size demonstrated promising results. It yielded a mAP of 96%. DetectNet proved to
be very practical, efficient and allows one to implement models directly on embedded
devices like Jetson Nano. Another advantage it shows is the ROS node that can be
linked to a DetectNet model. On the other hand, it proved to be a bit slow in training
through Nvidia’s DIGITS tool and had to be stopped at a lower than final mAP of
72%. While finally Mask R-CNN even though its mAP was around 83% but showed
superiority in detecting tricky instances like a fading motion frame and a closed grip
end-effector.

If the dataset is expanded and made more robust, the accuracy of these object
detectors would be boosted further showing the full potential of these models.
Additionally, and due to their lack of computational expense, it is likely that they all

126

Chapter 5. Summary and Conclusions 5.3. Robotics

can be implemented onto the main processor of the UAV without any issues arising
and then successfully classify and detect with coordinates the end-effectors of the
ground robots if a live feed is used.

The effect of Covid-19 was significant on the perception and impacted both the
training and final testing of the vision systems developed. In addition to this,
the rate at which work could be completed regarding annotation was slowed down.
Implementation onto the Nvidia Jetson was also affected. The quality and quantity
of the dataset created was also negatively affected due to the pandemic. Many images
are required for an ideal dataset. Image variety and range are also beneficial. This
includes displaying the end-effector from several different angles, lighting, distances,
positions and while completing different actions. A few thousand frames are ideal as a
minimum to train a vision system with confidence based on this specific application.
However, for the project we had access to approximately 4500 frames and as they
were from video footage, they were highly repetitive and there was not much variety
shown. This was mitigated in two ways. The first was by applying data augmentation
to artificially add variety to the dataset. This allowed for greater use to be made of the
dataset available. To further mitigate the dataset limitation, a video was found online
of the Brokk40 that provided an additional 1003 frames to the dataset once annotated.
The benefit of this was a larger dataset for training and greater variation within the
dataset as the video found online showed the Brokk40 in divergent backgrounds, whist
in motion and while grasping objects.

Additional work that could not be completed due to Covid-19 was the inability
to implement the vision systems onto the quadrotor’s Nvidia Jetson and to then do
a live video test with the use of the RealSense D415 camera. To mitigate this, when
working on the vision systems, care was taken to ensure compatibility between them
and the Nvidia Jetson. In the case where there were issues with compatibility such
as mobile activity and ROS, modifications were made to the code as explained to
overcome this. Therefore, implementation on to the Jetson is not expected to cause
any errors. As the methods of perception could not be tested on a live video feed of
an end effector, unseen end-effector footage was shown to the model instead.

Finally, a reflection regarding the project is the amount of time taken to create
nodes in a Linux system and be able to link it with ROS. ROS required an
understanding of its basics which consumed an extensive amount of time. Other
techniques were followed as a shortcut for lack of time and all the other difficulties
described previously. However, for future implementations ROS integration would
be the ideal practice in the field of Robotics and especially related to sensor fusion
requirements. In sensor fusion, a robot should be equipped with a communication

127

Chapter 5. Summary and Conclusions 5.3. Robotics

and decision-making unified system that coordinates the flow of data received by its
sensors and takes actions accordingly.

128

Appendix A

Standard Notations for DL

A.1 Deep Learning Representations
In general, standard deep learning graphs (see figure A.1) are structured as:

• Nodes represent inputs, activations or outputs.

• Edges represent weights and biases.

Figure A.1: A typical Neural Net graph with proper representations[95]

129

Appendix A. Standard Notations for DL A.2. Fundamental CNN Notations

A.2 Fundamental CNN Notations
The General Notation is presented as the following:

• Superscript [l] denotes an object of the lth layer.

– Example: a[4] is the 4th layer activation. W [5] and b[5] are the 5th layer
parameters.

• Superscript (i) denotes an object from the ith example.

– Example: x(i) is the ith training example input.

• Lowerscript i denotes the ith entry of a vector.

– Example: a[l]
i denotes the ith entry of the activations in layer l, assuming

this is a fully connected (FC) layer.

• nH , nW and nC denote respectively the height, width and number of channels
of a given layer. If referencing a specific layer, these can also be written as n[l]

H ,
n

[l]
W and n

[l]
C .

• nHprev , nWprev and nCprev denote respectively the height, width and number of
channels of the previous layer. If referencing a specific layer, these can also be
written as n[l−1]

H , n[l−1]
W and n

[l−1]
C .

Sizes are represented as:

• m: number of examples in the dataset.

• nx: input size.

• ny: output size (or number of classes).

• n
[l]
h : number of hidden unit of the lth layer.

– In a for loop, it is possible to replace nx with n[0]
h and ny with n[L+1]

h where
L is the total number of layers in the network.

Objects are represented as:

• X ∈ Rnx×m is the input matrix.

• x(i) ∈ Rnx is the ith example represented as a column vector.

• Y ∈ Rny×m is the label matrix.

130

Appendix A. Standard Notations for DL A.2. Fundamental CNN Notations

• y(i) ∈ Rny is the output label for the ith example.

• W [l] ∈ Rnumber of units in next layer×number of units in previous layer is the weight matrix
and superscript [l] indicates the layer.

• b[l] ∈ Rnumber of units in next layer is the bias vector in the lth layer.

• ŷ ∈ Rny is the predicted output vector. It can also be denoted as a[L].

Common forward propagation equation examples:

• General Activation Formula: a[l]
j = g[l](∑

k w
[l]
jka

[l−1]
k + b

[l]
j) = g[l](z[l]

j) where g[l]

denotes the lth layer activation function.

• J(x,W, b, y) or J(ŷ, y) denote the cost function.

131

Appendix B

Technical Configurations

B.1 Clusters in Darknet API Setups
The value used for batch and subdivision is 64 for both. While the starting resolution
for input images was 416 × 416. The maximum number of batches for the whole
training is set to 2000 × number of classes but not less than 6000 so it was chosen
accordingly. The number of channels was kept 3 as for RGB. The dataset was
artificially expanded by setting to 1 the data augmentation parameter “mosaic=1”.
Another change required is adjusting the values of classes and filter numbers. The
class number is 2 in this case and following equation (B.1) the filter number would
become 21.

Filters Number = (Number of Classes+ 5)× 3 (B.1)
These adjustments should take place in the convolution layers right before YOLO

and there are three of them. The anchor coordinates were not changed, though the
training would be running in 2 classes. The main reason for that is the similarity in
shape for existing classes. Both cluster’s kinds can fit into rectangular to squarish
boxes of random dimensions. Other parameter adjustments in the configuration file
are specifically done for this project only. These served the purpose of a higher
resolution detection on small scale instances. Some Single Pion clusters in the data
were significantly small (i.e., occupying barely 2 to 3 pixels in input images), and
needed an exceptional attention. To do those two steps were followed:

• To improve small scale detection in general:

– In line 895 under [upsample] “stride” is changed to 4
– In line 898 under [route] “layers” is changed to 23
– In line 993 under [convolution] “stride” is changed to 4

132

Appendix B. Technical Configurations B.2. Clusters in Tensorflow API Setups

• To improve small scale accuracy on detection boxes, 3 parameters are added to
all three [yolo] layers:

– ignore thresh = .9
– iou normalizer = .5
– iou loss = giou

The following command was used to launch the run:

./darknet detector train data/obj.data cfg/yolo-obj.cfg yolov4.conv.137 -
map

The “map” argument that is added at the end is optional and allows to take
advantage of the validation dataset. The mAP indicator would signal that whilst it
is increasing, the training should keep going. When it starts flattening up, this is the
point where training should be stopped and evaluated. The rest of the command is
used to direct the model to the paths of the data-set’s main file “obj.data”, the custom
objects configuration file “yolo-obj.cfg” and the initial weights “yolov4.conv.137”,
respectively.

B.2 Clusters in Tensorflow API Setups
Under the main “Tensorflow” folder, a new “workspace” is created. In this last one
should be stored all the training set-ups. Now under “workspace”, a “train” folder is
added to keep files consecrated for training. In it should be added several folders:

• “annotations”: this is where the label map is stored.

• “exported-models”: Here should be stored the exported versions of our trained
models.

• “images”: This folder contains all images in the dataset,

– “images/train”: for which will be used for training.
– “images/test”: for which will be used for testing.

• “tf record”: This folder will be used to store all Tensorflow .tfrecord files which
contain the list of annotations for both training and test images.

133

Appendix B. Technical Configurations B.2. Clusters in Tensorflow API Setups

• “tf2 models”: Here all the sub-folders of training jobs would be added. Each
one of these would contain the .config training pipeline configuration file, as well
as all files generated during the training and evaluation of the model.

• “tf2 pre-trained-models”: This folder would contain the downloaded initial
weights or checkpoint of the pre-trained models.

The annotations are encoded in .tfrecord binary files and should be stored in
“tf record” folder as train.tfrecord and val.tfrecord. The label map was then created
and stored in an “annotations” folder; it has the extension .pbtxt. It is a text file
that maps each of the labels used to integer values. This would be used both in the
training and detection processes. Below in figure B.1 is showing the label map used
for the particle physics dataset. Any name for the labels could be added if they are
fixed for training and detection phases.

Figure B.1: The label map for the two classes.

As mentioned earlier Transfer Learning and Fine-Tuning would be used on top of
pre-trained models from TF2 object detection model zoo1. For the goals and purposes
of this case study three state-of-the-art hybrid models were picked, trained, and used:

1. “SSD MobileNet v2”: MobileNetV2 for Backbone and SSD as object detector.

2. “SSD ResNet50 V1 FPN”: ResNet50 for Backbone and a combined object
detector of SSD (Head) and FPN (Neck2)

3. “Faster R-CNN Inception ResNet V2”: Inception and ResNet as double
Backbone with Faster R-CNN object detector on top.

1https://github.com/tensorflow/models/blob/master/research/object detection/g3doc/tf2 detection zoo.md
2OD extensions are called Necks

134

Appendix B. Technical Configurations B.2. Clusters in Tensorflow API Setups

Each of the three models checkpoints and configuration files were downloaded and
added in “tf2 pre-trained-models” folder in three separate sub-folders. Each of these is
named after the model of interest. For instance, the tree showing only “SSD ResNet50
V1 FPN” model sub-folders would be like:

train/
|—...
|—tf2 pre-trained-models/

|—ssd resnet50 fpn/
|–checkpoint/
|–saved model/
|–pipeline.config

|—...

And the others would be arranged similarly.

Few essential changes were made to the configuration files “pipeline.config” for all
three models:

• Line 3: “num classes” should be adjusted o the number of label classes used

• Line 131: under train config , “batch size” should be increased/decreased
depending on the available memory (higher values require more memory and
vice-versa)

• Line 161: “fine tune checkpoint” should be filled with the path to checkpoint of
pre-trained model

• Line 167: “fine tune checkpoint type” should be set to “detection” since the
goal is to be training the full detection model

• Line 172 & 182: “label map path” should be filled with the path to label map
file

• Line 174: “input path” should be filled with the path to training TFRecord file

• Line 178: “metrics set” should be set to the type of metrics needed for validation
and performance checks. For the dataset in hand, the most suitable choice was
“oid V2 detection metrics” which uses AP for both individual classes and the
total mAP3

3https://github.com/tensorflow/models/blob/master/research/object detection/g3doc/evaluation protocols.md

135

Appendix B. Technical Configurations B.2. Clusters in Tensorflow API Setups

• Line 186: “input path” should be filled with the path to testing TFRecord file

In addition to the above-mentioned, a few optional changes were made as well:

• Line 147: under “optimizer {}” adam optimizer was added with a customized
scheduling dynamics for the learning rate in the following fashion:

optimizer {

adam optimizer: {

learning rate: {

manual step learning rate {

initial learning rate: .0002

schedule {

step: 4500

learning rate: .0001

}

schedule {

step: 7000

learning rate: .00008

}

schedule {

136

Appendix B. Technical Configurations B.2. Clusters in Tensorflow API Setups

step: 10000

learning rate: .00004

}

}

}

}

use moving average: false

}

After the configuration setups are done accordingly, the main script to launch the
training “model main tf2.py” should be copied and launched from the main training
directory (in our case train/). The command used to launch training is the following:

• python model main tf2.py –model dir=models/my model
–pipeline config path=models/my model/pipeline.config

And the arguments are:

• model dir: should point to the path of model’s created directory

• pipeline config path: should point to the path of the model’s configuration file

The command used to run the evaluation process is:

• python model main tf2.py –model dir models/my model –pipeline config path
models/my model/pipeline.config –checkpoint dir models/my model

The only extra argument here is:

137

Appendix B. Technical Configurations B.2. Clusters in Tensorflow API Setups

• checkpoint dir: which should point to the location of saved checkpoints

The results are stored in the form of tf event files (events.out.tfevents.*) inside
models/my model/eval 0. These files can then be used to monitor the computed
metrics, using Tensorboard4.

The command used to launch Tensorboard is:

• tensorboard –logdir=models/my model

The above command will start a new TensorBoard server, which (by default) listens
to port 6006. Now typing http://localhost:6006/ in the browser’s address bar should
be enough to visualize a detailed dashboard with all training/validation-related charts
and plots.

4https://www.tensorflow.org/tensorboard

138

Appendix C

Robotics Applications

C.1 Introduction
In this chapter, the work presented is a collection of independent NN applications in
the field of Robotics. Presented next is a set of trials on models trained to classify and
identify objects related to a grasping robot. The work has been done in collaboration
with Lancaster University Engineering Department and National Nuclear Lab (NNL).
The desired object’s nature (i.e., end-effector/manipulator’s grip) not having any
specific datasets online, one had to be prepared manually from scratch. Manual
annotation and labelling of a collected/created dataset are time consuming tasks. A
lot of attention is spent on keeping the dataset balanced in negative examples and
in multi-class distributions. A non-equivalent dataset can have a significant impact
on the training from making it hard to train to extremely biasing the predictions.
The training might result in a low mAP and might lead to over-training as well.
Additionally, a well-balanced dataset is linked, empirically speaking, to lowering the
number of False Negatives (i.e., the most dangerous false predictions) like what was
done in the particle physics applications.

CVAT tool is used again for online video and image annotation for computer vision
purposes. Within this tool, annotations can be done in several ways depending on the
purpose. For instance, in Object Detectors (e.g., YOLO etc...), boxed annotations
were needed. Boundary box style annotation has been the method followed in both
projects for object detection and computer vision. Only in these Robotics applications,
another method was also an option which is to create a simulated dataset out of the
model of the desired objects (e.g., CAD model).

139

Appendix C. Robotics Applications C.2. Mobile Activity project

C.1.1 End-Effector Data Box Annotations
The end-effector dataset is a collection of video frames, taken from portable cameras.
Two feeds were taken on scene in the Engineering lab. Camera positions and rotations
were carefully chosen to cover most angles over, around and under the end-effector of
Brokk40 manipulator robot. To make the dataset even more robust some frames were
taken from online videos of the Brokk40 manipulator1. Using CVAT, the frames in the
dataset were marked where a box was added around end-effectors and the right class
label was also added. To train the model reliably end-effectors part of the images must
fall within the box in all frames. The video that was available for the project yielded a
total of 4556 frames which is barely sufficient for basic training purposes. The quality
and quantity of the dataset created was negatively affected by the pandemic because a
larger number of images is required for an ideal dataset. Image variety and range are
also beneficial. This includes displaying the end-effector from several different angles,
lighting conditions, distances, positions and while completing different actions. A
few thousand frames per class are ideal as a minimum to train a vision system with
confidence based on this specific application. However, the frames in the video footage
are highly repetitive but as it was the only data available, an attempt was made to
make full use of it.

The problem was mitigated in two ways. The first was applying data augmentation
while training to artificially add a variety to the dataset. This allowed for greater
use to be made of the data-set available. To further mitigate this limitation, an
additional Brokk40’s live-in-action video was found online and provided an additional
1003 frames. The benefit of this was a larger and more robust dataset because the
video showed clear views of Brokk40 functioning in diverse backgrounds, whilst in
motion and grasping objects.

Each frame contains an annotation and a label, as shown in figure C.1. The
advantage that CVAT presents is that, once the annotation is complete, it can export
a dataset in a multitude of formats compatible with different vision algorithms.

C.2 Mobile Activity project
Mobile Activity is a Keras Tensorflow code arranged and publicly available on the
GitHub2 page. The project consists of a standalone Python code using OpenCV and
MobileNetV2 pre-trained weights on COCO dataset3. The computer vision method

1https://drive.google.com/file/d/1eRT7HUrOsSfhqsm-WhPfig8nnq6rF-Lf/view
2https://github.com/Carmigna/mobile activity
3www.cocodataset.org

140

Appendix C. Robotics Applications C.2. Mobile Activity project

Figure C.1: Boxed annotation of Brokk40 in CVAT

applied here is Fine-Tuning in Transfer Learning described in detail in earlier chapter.
A model is trained to recognize main activities of a robotic end-effector (e.g., Grab,
Rest, Release etc...) from mere images or video frames. It requires a few set-up steps
before launching the training. One of which is the installation of Keras library with
Tensorflow back-end and preferably adaptable with GPU for tensors’ computations.
Following the steps in “mobile activity” Git page, instructions for data preparation,
training and testing on videos and real-time live-feed cameras are stated clearly.
Instructions to install Tensorflow4 with an Nvidia GPU are given as well with all
the steps to download and install all the necessary packages.

The first practical step is to prepare a suitable dataset that contains the activities
that we wish the model to learn from images and classify. For the end-effector, among
the many potential activities that one could teach the model to recognize are “rest”
and “grab”. Therefore, a folder must be created for data and within this, another folder
in which all the images can be placed. Each activity shown in a single image should

4https://github.com/Carmigna/tensorflow

141

Appendix C. Robotics Applications C.2. Mobile Activity project

also be annotated. Once the data has been prepared the database can be created
for training and testing purposes. They provide scripts that would add the paths to
data, automatically create two datasets (one for training and another for validation
and testing) and load the model to launch training from the main directory of the
code. (Please check Appendix D for additional preparatory and functional details).

After training is done, the testing phase begins. The code includes a couple of
scripts to do the testing as well. Depending on if the test is carried over via a sample
video or a live streaming camera, the call for test scripts would be a bit different.

Each case requires a command (A or B) since the two scripts have different
arguments as well.

If the test is on video, the following command is used:

A: python predict video –model “activity.model” –label-bin “lb.pickle” –input
“example clip” –output “output video 128avg” –size 128

Of which the arguments would be:

• model: for adding path to the saved fine-tuned model CNN (i.e., graph, weights,
and classifier). The code automatically saves a copy in model directory named
“activity.model”

• label-bin: for adding path to a .pickle file which is a serialized label binarizer. It
is a binary file that contains the class labels, and automatically saved in model
directory as “lb.pickle”

• input: for adding path to a sample video clip for testing, an instance is
“activity.mp4”

• output: for adding path to the filename of an output video, that once played,
would be showing the predicted activity with its fidelity score

• size: for adding the number of frames that the fidelity scores of predictions
would be averaged upon.

In case the test is done on live-stream camera, the following command is used:

B: python predict cam –model “activity.model” –label-bin “lb.pickle” –size 128

Here the arguments used are already explained in command A. Only this one
would not save a video output. Hence, it would display the activity’s name and label

142

Appendix C. Robotics Applications C.2. Mobile Activity project

on top of the live streaming feed (the fidelity score can easily be added as well). In
both cases, the test is average on the predictions of 128 frames and displaying the
activity’s class for every other 128 frames. This parameter is chosen in a Goldilocks
zone that made sense for the dataset in hand. It is not necessarily the same for other
classifications. So, the point is that it can easily be tuned from the –size argument
to get the best score for the average classification over number of frames.

The end-effector dataset is a collection of video frames, taken from a portable
HD camera. Two videos were taken on scene in the Engineering lab at Lancaster
University (Engineering Dept.). The camera positions and rotations were carefully
chosen to cover most angles over, around and under the end-effector of Brokk40
manipulator robot existing in the lab. To make the dataset even more robust some
frames were taken from online videos of the Brokk40 manipulator. In this code we
only used the images from the dataset while different annotation formats are added
later for the other parts related to object detection.

After the model was thoroughly trained, it was tested on an online video. This
consists of an open-source advertisement available on YouTube for the Brokk40
manipulator and others as well. The goal was to test the accuracy of identification of
the activities of these end-effectors. The target was not trivial since the model would
not only have to be able to recognize the end-effector within the frames but also it
should be able to classify its activities. The video was challenging enough because
it included a range of other end-effectors in addition to the Brokk40. Moreover, it
showed these end-effectors in different environments and completing several actions
and tasks making it a versatile test video.

Figure C.2 below shows the correct identification of the end-effectors activity to
be at rest while in good lighting and from two different angles which is a promising
sign for the “mobile activity” code.

Figure C.3 below demonstrates that an end-effector had been identified and its
activity classified correctly and successfully. The model can understand now that
an end-effector is within the borders of a certain collection of consecutive frames.
Additionally, it is detecting the activity that is being completed by the manipulator
which would provide a further understanding if applied on a drone.

A strength of the mobile activity system is shown in figure C.4 and C.5 . These
figures show the correct identification of both the end-effector and the activity it is
completing. However, these images are different to the frames used while training
and contain unique objects with the same general features though. That makes the

143

Appendix C. Robotics Applications C.2. Mobile Activity project

Figure C.2: Classification of the Brokk40 at rest.

results quite surprising and yet promising. Figure C.4 shows an end-effector other
than the Brokk40, but the model can correctly classify its existence and activity.
Here another Background class where there is no end-effector can be easily added
and make the predictions even more robust. Figure C.5 is also showing a correct
classification despite the low lighting in these frames.

An example of the model showing understanding between two activities is proven
as well in figure C.6 below. The two frames show the Brokk40 transitioning from one
activity to the other and when doing so, the classification changes to the correct one.

The above-mentioned sample results show that the fine-tuned MobileNetV2
network can be a potential method for object classification used on a drone. However,
there were limitations and some cases showed confused predictions. During systematic
testing, the end-effector’s activity was sometimes incorrectly classified. Additionally,
in some instances the model would also mistakenly classify the frame to have the
“grab” activity while an end-effector was missing. As mentioned before, that might
be improved by adding more negative samples as background (or “not end-effector”)
in the training. A richer and more robust dataset is always a working method to
reduce the number of false positives. While refined training would on the other hand
help reduce the false negatives (i.e., in our case “no detection” where there should be
one). However, due to time constriction in preparing the dataset and to the outburst
of the pandemic, reevaluating and improving the dataset could not be done within a
realistic timeframe.

An original code from Robot Ignite Academy named “Domain Randomization” was

144

Appendix C. Robotics Applications C.2. Mobile Activity project

Figure C.3: Classification of the Brokk40 whilst grabbing.

an inspiration for the starting point of this section [11]. In the “mobile activity” code,
the steps to prepare the data and call of the MobileNetV2 architecture for transfer
learning were taken from “Domain Randomization” but big differences exist though.
First, the classification objective of the code is different than what was initially
intended originally as a simple in plane pose estimation. That led to a fine-tuning in
“mobile activity” instead of a features’ extraction in “Domain Randomization”. Then,
the data’s functionalities, binarization and labelling followed a completely original
pattern. In addition to all that, the GPU activation and involvement in Tensorflow
calls and computations are extremely specific and run the training at a much faster
rate.

Moreover, an issue was encountered whilst using the initial code, it is its
compatibility with (Robot Operation System) ROS5. It is a tool that aids in building
and using robot applications. However, ROS works mostly and much more efficiently
with Python 2. While OpenCV and other vision systems on the other hand require
Python 3 to work. As these are prerequisites to using Tensorflow with this specific
computer vision application, any stage of the work using ROS in Python 2 was met
with errors and caused difficulties.

Initially, to overcome this problem, an attempt was made to use Python 2 on the
system whilst setting up a virtual environment of Python3 so that ROS would be

5Please refer to http://wiki.ros.org/ for a summary of ROS functionalities, domains, and
environments.

145

Appendix C. Robotics Applications C.2. Mobile Activity project

Figure C.4: Correct classification of a different end-effector and its activity.

able to run the code. Instructions followed to do that are available online at [12]. All
the steps were followed properly, however the guide was not complete and lacking a
lot of details to prepare an effective usable and working environment for OpenCV in
ROS. Another tool to test could have been by using simulated data from a simulation
environment. A practical tool is (NDDS “Nvidia Data Synthesizer”) for simulating
data for training and can be easily expanded for 6D pose estimation algorithms.

Nevertheless, “mobile activity” code was prepared to work solely with a Python3
environment without the need to operate within ROS. It still allows for the training
and using the weights for testing inference within a UAV processor (e.g., Nvidia
Jetson). A terminal and a ssh connection must be used to execute these tasks such
as running the “mobile activity” detection with a live-stream mode (or command B)
using the best trained weights of the model.

Another objective that was sought through the project is to make the vision system
not only recognize the end-effector but locate its coordinates as well. Since the first
attempt lacked any object detection coordinates or bounding boxes, the vision system
had to be upgraded by using Object Detection Algorithms. Although knowledge of
the classification and activity are useful to a drone, without information regarding the
coordinates of the end-effector, the vision system would be limited in its practicality.
Since the best approach of a vision system would be a coherent inseparable code that
works end-to-end and achieving the objectives, the project took path of best available

146

Appendix C. Robotics ApplicationsC.3. End-effector detection using Darknet API

Figure C.5: Correct classification of the Brokk40 and the activity in poor lighting
conditions.

Deep Learning state-of-the-art object detection algorithms. YOLO, RCNNs and SSD
were used in this project on different platforms (API) and the results were compared.

C.3 End-effector detection using Darknet API
The dataset exported here from CVAT is YOLO specific, a dataset within which
is added first a folder that contains all the essential material to fine-tune YOLO
algorithm and train it on custom objects data. It includes all the input frames (if
from video) or images in a JPG or PNG format. (Please check Appendix D for setups
and technical details). The command that should be used to start the training is
showing below with its default arguments:

./darknet detector train data/obj.data cfg/yolo-obj.cfg yolov4.conv.137 -
map

The “map” argument that is added at the end is optional and allows to take
advantage of the validation dataset. This results in a mAP plot being drawn as shown
in figure C.7. The mAP indicator would signal that while it is increasing, the training
should keep going. When it starts flattening up, this is the point where training should
be stopped and evaluated. The rest of the command is used to direct the model to
the paths of the data-set’s main file “obj.data”, the custom objects configuration file

147

Appendix C. Robotics ApplicationsC.3. End-effector detection using Darknet API

Figure C.6: Classification showing transition in activity - (left) “Rest” and (right)
“Grab”

“yolo-obj.cfg” and the initial weights “yolov4.conv.137”, respectively.

Figure C.7 shows the results of training on the initial dataset with yolov4 custom
starting weights. It shows that with approximately 1500 iterations, the loss function
has dropped a considerable amount and mAP has reached a value of 98%. This value
was higher than anticipated and implies that training went a bit off balance which
is an indication of over-training. However, the model was able to generalize well and
predict with acceptable but not ideal accuracy. Figure C.8 demonstrates the strength
point of the trained model as the object detection was tested on an unseen video. It
contained an end-effector that differed slightly from the Brokk40. This test showed
that the model was able to recognize this new end-effector thereby demonstrating
some effectiveness of the trained model. Moreover, this end-effector was identified
with a high-fidelity score. This is notable as it is grasping an object, an instance that
was not included in the dataset, and despite this the model is still identifying and
classifying the object correctly.

Although training on the initial dataset yielded a 98% mAP value, there were
some clear indications of over-training when testing. In some cases, items other than
the end-effector were wrongly identified as False Positives (FP). Both cases are shown
in figure C.9. It should be noted though that the fidelity percentage or certainty score
when identifying a FP was low relative to when detecting a real end-effector.

It is likely that an FP is due to the limited dataset that was available. The video
footage of the end-effector that was annotated and labelled contained mostly close
shots of the object and did not display the arm in motion. Due to this, the model was

148

Appendix C. Robotics ApplicationsC.3. End-effector detection using Darknet API

Figure C.7: Results of initial training showing the loss (blue) and mAP (red) plots

detected less accurately when the end-effector is displayed from a distance or while
in motion. Moreover, the FP in figure C.9 (right) displays relative similarities in the
components of certain frames within the dataset. This is apparent for instance in
figure C.10 below. It is showing the end-effector to have similar colors to the FP in
figure C.9 and they both contain bolts that could be the cause of confusion. Therefore,
making the dataset more robust was necessary to improve the model’s accuracy.

To overcome this problem the expended dataset was used. This one included an
online video of the Brokk40 on a Hydrolek arm. It contained clear shots of the end-
effector from a distance and displaying motion of the arm. Therefore, the new footage
was annotated and labelled as described earlier and yielded an additional 1003 images.
These were mixed with the original ones, then exported as two final datasets, one for
training and another for validation. The object detection model was retrained on the
expended dataset whilst utilizing the best weights from the initial training with a goal
to further boost accuracy of the second training. Retraining picked up from were the
first session stopped iteration-wise. The final model was then trained on a combined
dataset containing approximately 6500 images and its validation yielded a final mAP

149

Appendix C. Robotics ApplicationsC.3. End-effector detection using Darknet API

Figure C.8: Correct classification of a strange kind of end-effector that is grasping an
object

of 96.5%. Although this is slightly lower than the initial mAP, the training had a
much wider range of images to scope and so was less likely to have FP. Fortunately, it
was possible to reduce the effect of over-training by adding this variety to the dataset.

Another method used to reduce the likelihood of incorrect classifications was
altering the detection threshold within YOLO. By default, it is set in the algorithm
to 25% however a command can be used to change this value accordingly by the user.
Effectively, increasing the detection threshold on fidelity score would help reduce the
error on detection by getting rid of the uncertain ones. In other sense, an object now
will only be classified as an end-effector if the model is more confident that an end-
effector is present. As the test showed, in most cases an end-effector was recognized
with 80 90% certainty. Therefore, increasing the detection threshold in this case will
not adversely affect the identification of an end-effector, instead it will only reduce
the chances of false detection thereby improving the model’s reliability. Therefore,
the threshold on detection was set to 77% by adding the “-thresh 0.77” argument to
the test command as shown below. Here are few commands used for testing:

To test on images: ./darknet detector test data/obj.data cfg/yolo-obj.cfg
backup/yolo-obj best.weights images.jpg -thresh x

To test on videos:./darknet detector demo data/obj.data cfg/yolo-obj.cfg
backup/yolo-obj best.weights video.mp4 -thresh x

150

Appendix C. Robotics ApplicationsC.3. End-effector detection using Darknet API

Figure C.9: Correct (left) against incorrect (right) identifications

To test on cam: ./darknet detector demo data/obj.data cfg/yolo-obj.cfg
backup/yolo-obj best.weights -c 0 -thresh x

The arguments added to the above commands are explained below:

• “cfg/yolo-obj.cfg” -Path to the configuration file adjusted for our custom object

• “backup/yolo-obj best.weights” -Path to the best weights from the training
within “backup” folder

• “-thresh x” -The value of detection threshold will be set to “x”

• “images.jpg” -Path to test images

• “video.mp4” -Path to test video

• “-c 0” to test on cam

To save the output on a separate image or video file filename.extension we add:

• “-out filename filname.ext”

Additional especially useful feedback, that can be received as an output of the
model, is coordinate display of detection boxes from every frame. This could provide
localization data for an object in a 2D plane at a certain distance from the camera.
Plus, a percentage of accuracy can be displayed clearly in the terminal. Figure C.11
shows an instance of coordinates feedback for objects detected within a terminal. To

151

Appendix C. Robotics Applications C.4. DetectNet using Jetson-Inference API

Figure C.10: Boxed annotation of Brokk40

receive such digital feedback, in a separate terminal, the below commands are entered:

On video: ./darknet detector demo data/obj.data cfg/yolo-obj.cfg backup/yolo-
obj best.weights -ext output test video.mp4 -thresh x

On Cam: ./darknet detector demo data/obj.data cfg/yolo-obj.cfg backup/yolo-
obj best.weights -ext output –c 0 -thresh x

The coordinate feedback received separately in the terminal is beneficial as it shows
that this information can be extracted from the vision system with ease. This data
can then be sent to the receiving communication system. This final feature is a major
step that can be exploited further in future research independently.

C.4 DetectNet using Jetson-Inference API
Nvidia DIGITS tool is a user-friendly Graphical User Interface (GUI) to pre-
pare datasets and train a custom object detector from a pre-trained model (e.g.,
SSD MobileNetV2). The easiest way to use DIGITS is by installing Nvidia’s Docker

152

Appendix C. Robotics Applications C.4. DetectNet using Jetson-Inference API

Figure C.11: Coordinate feedback of the object detected shown within a terminal

image (“nvidia docker2”) then pull and run “digits” after registering to NGC online6.
Running DIGITS has some requirements: Ubuntu operating system, Nvidia graphic
card drivers, CUDA drivers and a CUDA capable Nvidia graphic card. The DIGITS
instance running in this project was a docker image linked to a laptop with Nvidia
GTX 1050 Ti graphic card.

The power of Nvidia DIGITS is that it allows the use of other practical Nvidia
tools like “Jetson-Inference” which will be introduced later. The importance of jetson-
inference is that it allows the user to use and customize an object detector like
YOLO (only in functionalities and objectives) called “Detectnet”. It is an object
detection network implemented using Nvidia’s branch of the popular Caffe deep

6All the detailed instructions can be found here: https://github.com/dusty-nv/jetson-
inference/blob/master/docs/digits-setup.md

153

Appendix C. Robotics Applications C.4. DetectNet using Jetson-Inference API

learning framework also called “nvcaffe”. Jetson-Inference API through DetectNet
could broadcast a node in ROS as well to make robotic use of the trained object
detection model. This distinctive feature makes the use of this tool a very essential
part of this project.

Preparing datasets is the first thing to start with. As was mentioned earlier the
end-effector dataset was prepared with CVAT however it can be exported in many
different common formats. One of which is MS COCO format which is one of the
most common formats available. It is related to COCO dataset which is mentioned
before. On the other hand, Nvidia’s DetectNet would be the object detection model
adopted and used in DIGITS. The DetectNet configuration follows a specific format,
that is terribly like MS COCO, it is called KITTI. Since CVAT does not export data
in this specific format, a script available on the jetson-inference API was found to do
that pretty easily7. As was mentioned many times earlier, labeling images for object
detection is a process where files are created that contain descriptions about regions
of interest on images. Besides class names and bounding boxes, KITTY format can
accept some other parameters like truncated, occluded, etc. These extra ones can
always be omitted or set to zeros8.

Next, as figure C.12 is showing, under networks tab “Custom Network” was
selected and “Caffe” tab chosen underneath. Under “Pretrained model(s)” the path
to pretrained weights was added. It is especially important to use these, otherwise
training will take ages to be completed. GoogLeNet backbone weights were used and
are available online9.

Then, modification should be made to the “prototxt” file. Prototxt is a Caffe
file describing the structure of a neural net. DetectNet file is available online10 so
it was downloaded, copied, and pasted in the “Custom Network” Caffe model text
window (figure C.12). This is meant for one object custom detection, but it can easily
be adjusted to 2 or more classes. Additionally, Nvidia provides another one for 2
custom objects and it would be a good start for multi-class object detection11. Since
in this project only a single class is used, the default file worked well without many
modifications. The only adjustment made was replacing the correct input image size.
A resolution of 640x640 pixels was used, but the default prototxt uses 1248x352. That

7https://github.com/dusty-nv/jetson-inference/tools/coco2kitti.py
8More on KITTY: https://github.com/NVIDIA/DIGITS/tree/master/digits/extensions/data/objectDetection
9Can be downloaded from here: https://github.com/BVLC/caffe/blob/rc3/models/bvlc googlenet/readme.md

10https://raw.githubusercontent.com/NVIDIA/caffe/caffe-0.15/examples/kitti/detectnet network.prototxt
11https://github.com/NVIDIA/caffe/blob/caffe-0.15/examples/kitti/detectnet network-

2classes.prototxt

154

Appendix C. Robotics Applications C.4. DetectNet using Jetson-Inference API

Figure C.12: Network display board

was fixed by finding and replacing occurrences of those numbers in the entire file. A
Group and Model names were chosen accordingly and “Create” button to start the
training. With all the parameters set up correctly, the model started training first
30 epochs to test then for 200. The first round took around 3 hours to finish with
the capacities of GPU in hand. The results were promising but not ideal (figure C.13).

The test run performed at the highest peak 83% precision, 67% recall and 65%
mAP. This is a clear indication that the model started identifying the object and
localizing properly the bounding boxes around it. The padding used for this run was
quite tight and barely covered the corners of images used in the dataset which as
mentioned before were of varied sizes and inconsistent resolutions. Another run was

155

Appendix C. Robotics Applications C.4. DetectNet using Jetson-Inference API

Figure C.13: First training round for 30 epochs and 2000x1500 padding

prepared by increasing the padding from 2000x1500 to 2500x2500. By that the goal
was to keep the features of images centered so nothing would be lost on the edges while
convoluting. This time 200 epochs were set, and better results were obtained after 24
hours of continuous training. The accuracy metrics gave at the peak 90% precision,
74% recall and 72% mAP (figure C.14). While the loss function was still dropping,
slowly though, the training had to be stopped since it was taking such an extended
period. However, a trend is clearly noticeable in the plot that accuracy was still
increasing. That indicates a plateau was still not happening, and an extra training
time could have further improved the overall performance and therefore the final mAP.

After training the model, inference should be used to practically experience how
the model is detecting the object of interest. Nvidia’s official GitHub page dedicated
for DetectNet inference in “jetson-inference” API12 has a clear guide that was followed
carefully to test inference of the custom model and implement it to the Jetson Nano13.

12https://github.com/dusty-nv/jetson-inference/tree/d2bb14ba4b60bbd8fb26bc952857daa20624fa97#locating-
object-coordinates-using-detectnet

13Nvidia’s main robotic embedded system: https://www.nvidia.com/en-gb/autonomous-

156

Appendix C. Robotics Applications C.4. DetectNet using Jetson-Inference API

Figure C.14: Second training round for 200 epochs and 2500x2500 padding

From the same DIGITS instance running, single or multiple images inference tests
could be performed. Few of the detection results are showing in figure C.15 below.

However, as seen in figure C.16, errors like what was obtained in YOLO appeared
again due to data-set’s limitations. The figure below is showing two instances, a FN
on the right and a FP on the left. In the case of FN an end-effector was apparent while
the model could not detect it. As for the FP a joint of the manipulator’s arm was
falsely detected as an end-effector. It is noticed also some double counting or double-
box detections even on the successful ones (figure C.15 upper right and lower left).
That is most probably due to the model being confused on two occurrences, while the
end-effector grip is closed and on the fading frame of a manipulator in action. These
two problems can be overcome in future work by making the dataset contain more
images of the moving arm and grip closing on objects.

Jetson-Inference web page contains also instructions on how to implement the
model directly into the embedded system and run it on images, videos, and live camera

machines/embedded-systems/jetson-nano/

157

Appendix C. Robotics Applications C.4. DetectNet using Jetson-Inference API

Figure C.15: Some successful detections from inference of the DetectNet model

as well. A series of YouTube video-tutorials are prepared for these purposes as well by
Dusty NV 14. A super advantage for jetson-inference is that a link with ROS15 can be
done. A node can be created for listening to the object detection model and display its
outputs. Unfortunately, no realistic ground environment tests could be done directly
on the drone (i.e., it is embedded system and camera) due to the pandemic and
lockdown. Access to the engineering lab was not allowed and the final application of
the project could not be achieved. However, it was proven that DetectNet through
jetson-inference API is a powerful tool to be used for future research and can give
valuable results through direct applications on the robotic embedded device (e.g.,
Nvidia Jetson Nano) and operating system (e.g., ROS). It could provide coordinate
information and create bounding boxes on an object with Inference. This proved
extremely useful for the application of this project on an end-effector. In addition to
this, the confidence of classification is also output. “Detectnet” allows for extracting
the bounding box coordinates within the terminal. Therefore, this information can
be sent to a receiving communication system. Unfortunately, at the time this work
was done the ROS link could only be called on images and not on live camera feed.

14https://github.com/dusty-nv/jetson-inference
15https://github.com/dusty-nv/ros deep learning

158

Appendix C. Robotics Applications C.5. Facebook’s Detectron2 API

Figure C.16: Some failed detections from inference of the DetectNet model, a FP
(left) and a FN (right)

An extra reason that prevented me from working directly on ROS and no time or
resources were available to start developing one from scratch. That could be another
proposal for future research work on the same topic.

C.5 Facebook’s Detectron2 API
In this section Detectron2 API will be introduced and presented in a simple (single
custom class “end-effector”) demo to show its power and speed in object detection.
Detectron2 API was developed by facebookresearch16. By combining Detectron17

and maskrcnn-benchmark18 it became the easiest and most practical platform to
include and use Faster R-CNN (introduced and explained thoroughly in earlier
chapters). A tutorial demo in Colab, is publicly available and can be executed
immediately. Instructions to install detectron2 API with all its dependencies can
be found here19. Following the steps in Colab tutorial, a Mask R-CNN model was
trained for a single custom object detection (in this case the “end-effector” of a robotic
manipulator). Then the different testing methods will be presented with performance
checks. Detectron2 API makes it possible to test inference on single images, a whole
testing dataset, videos, and live web cam20.

16https://github.com/facebookresearch
17https://github.com/facebookresearch/Detectron/
18https://github.com/facebookresearch/maskrcnn-benchmark/
19https://www.linkedin.com/pulse/fast-way-go-faster-r-cnn-facebooks-detectron2-api-joe-

carmignani/
20https://github.com/facebookresearch/detectron2/blob/master/GETTING STARTED.md

159

Appendix C. Robotics Applications C.5. Facebook’s Detectron2 API

All that is needed for this demo was an exportation of the dataset from CVAT
in MS COCO format. The MS COCO endeffector dataset was exported and divided
into two subsets one for training and other for validation in the structure showing in
figure C.17.

Figure C.17: Structure of the MS COCO endeffector dataset

Now that the datasets are prepared in a suitable format, a simple script is
rearranged as to launch training directly as instructed on GitHub page21. After
adding the datasets to main directory, mask rcnn R 50 FPN 3x train.py script is the
one to run and start training. In this code following the Colab tutorial code a coco-
pretrained R50-FPN Mask RCNN model was trained on the end-effector dataset. It
took 80 minutes to train 15000 iterations on a single Nvidia GeForce 1080 FX GPU.
Another way to do the training is by using the API commands directly as will be
presented in what follows.

Training using Detectron2 API: To train a model with “train net.py” script,
first a setup is needed for the corresponding datasets following datasets/README.md22.
Now from Facebookresearch detectron2 GitHub page the main directory was cloned,
and the following commands are used:

cd tools/
21https://github.com/Carmigna/detectron2.git
22https://github.com/facebookresearch/detectron2/blob/master/datasets/README.md

160

Appendix C. Robotics Applications C.5. Facebook’s Detectron2 API

./train net.py \
–config-file ../configs/COCO-InstanceSegmentation/mask rcnn R 50 FPN 1x.yaml

\
–num-gpus 1 SOLVER.IMS PER BATCH 2 SOLVER.BASE LR 0.0025

The arguments here refer to the number of GPUs used “num-gpus”, then the batch
number and the initial learning rate. For more options, ./train net.py -h would list
all the other arguments available for the online API.

Training using my Github directory: In all that follows the results will be
presented exclusively for the training done from the following GitHub directory23.
Nevertheless, the main API will be used later for general testing.

To check and monitor the training progress on Tensorboard, from an Ipython
terminal these commands are used:

%load ext tensorboard
%tensorboard –logdir output

Now the graphical display for Tensorboard can be opened on a browser using
http://localhost:6006. There is a lengthy list of attributes, and their graphs are
displayed actively with progressing iterations as seen in figure C.18.

Figure C.18: Tensorboards showing components of training
23https://github.com/Carmigna/detectron2.git

161

Appendix C. Robotics Applications C.5. Facebook’s Detectron2 API

Most importantly in the loss function plot (figure C.19) the steep drop in the total
loss is noticed clearly. This indicated that the model was learning the features of
input images. The first slope that goes down to the blue dot refers to a test run for
about 1500 iterations. After adjusting the learning rate another real run started for
15k iterations. The difference in the slope of the loss function is obvious between the
two runs. That indicated that a minor change in adjusting the main parameters, one
of which is the learning rate (from 1e−5 to 1e−3), can have a drastic effect on the
training in general.

Figure C.19: The loss function plot for the test and real run

Another informative attribute is the “mask rcnn” one, under which we find
three charts that give us the progress rate of the Accuracy, False negative FN and
False positive FP respectively (see figure C.20).

The measures presented in figure C.20 are the most important metrics in any
Machine Learning model because they give us a direct reference measure on how
accurate our model’s predictions are on blinded data. Here in the charts, it is apparent
that the predictions were true almost 98% of the time. As for the missing 2% they were
mostly false positives which are much less dangerous than the false negatives FNs.
FPs are so because they are much less confusing and can be included within statistical
error. As for FNs, they have a much more dangerous effect in any classification
problem, and a substantial percentage of them gives a hint of a biased sample of
training data and/or Over-training. However, other more specific metrics should be

162

Appendix C. Robotics Applications C.5. Facebook’s Detectron2 API

Figure C.20: From left to right the corresponding plots for Accuracy, FN and FP

studied when it is related to box detection since these include localization as well.
The most important one of them is mAP (explained in detail in previous chapter).
For performance checks and testing on the whole validation dataset, from my GitHub
detectron2 directory another script “test val rcnnR50.py” is used. It would display
all the detected images in the order that they appear in the validation dataset. After
testing the trained model on all the images, performance checks would appear in the
terminal and are showing in figure C.21.

Having a mAP (or mean Average Precision) of 83% on large areas in such a small
dataset is acceptable. However, the result should be taken as usual from the live
feed camera as the selected sample might be biased or off total balance. It is noticed
as well that the average precision for small to medium areas is null, but that was
expected since our dataset only contained the class in large form. The model did not
have pictures showing the end-effector in small to medium areas, to train upon. This
could be a future project with mask-rcnn detector.

In figure C.22, three detections are worth noticing and discussing. The top
part of image shows two successful detections where the end-effector is closing grip
(top right) and another accurately predicted instance where it was grabbing and
moving in a faded frame. It is worth mentioning here that these are the instances
where SSD MobileNetV2 based DetectNet algorithm failed. So, this feature shows
a promising superiority in the case of this project for Mask R-CNN in these kinds
of detections. No need to mention that such high-level accuracy for detections is
specially needed in dangerous environments survoying. As for the FP showing in
the bottom is an instance of those failing ones. Even though the end-effector was
properly detected but the arm and joint were mistakenly identified as end-effectors as

163

Appendix C. Robotics Applications C.5. Facebook’s Detectron2 API

Figure C.21: Performance checks list for the Mask R-CNN model

well. Here is another example to make it more relevant to stress on the importance
of having a much more robust dataset and including much more negative example to
immune the model against such FPs and increase its noise discriminating power.

Inference using Detetctron2 API: Another testing method would be carried
on directly from the API. Like what was done in the training, from facebookresearch
detectron2 repository a simple command with many arguments is used. So then, to
test on single images the following command is used:

cd demo/
python demo.py –config-file ../configs/COCO-InstanceSegmentation/

164

Appendix C. Robotics Applications C.5. Facebook’s Detectron2 API

Figure C.22: Two successful detections (top) along with false positives (bottom)

mask rcnn R 50 FPN 3x.yaml \
–input input1.jpg input2.jpg \
–opts MODEL.WEIGHTS model final.pth

It is essential to use here the trained model’s final weights to be added to the –opts
weights argument. Tensorboard automatically saves the customized model weights in
output/ directory within a file named “model final.pth”.

Finally, to implement this model on the Jetson Nano, as was done with the other
cases, the best way was to use the API directly. Here are few other useful arguments24:

• To run on webcam, –input files is replaced with –webcam

• To run on a video, –input files is replaced with –video-input video.mp4

• To save outputs in a directory (for images) or a file (for webcam or video),
–output is used additionally

24For details of the command line arguments, see demo.py -h

165

Appendix D

Robotics Setups

D.1 Mobile Activity
From the terminal, we can see clear proof if our installation with GPU adaptation
has been successful, right after we launch the main script. Figure D.1 shows that
the name of an existing Nvidia GPU would appear (underlined in red) along with its
compute capability.

Figure D.1: The GPU would appear clearly in the terminal if it is running. Underlined
in red are the GPU’s name, unit number and computing capability.

After showing the GPU specifications, the model would be loaded. It is a CNN
based on MobileNetV2 architecture. However, since this code would be fine-tuning
the model on a custom dataset with different classes, the script would only load a
headless MobileNetV2. In other words, as explained in transfer learning section in
Chapter 4, the old, trained output layer (i.e., FC + SOFTMAX) would be removed
and replaced with a new one with randomly initialized weights. This code makes use

166

Appendix D. Robotics Setups D.1. Mobile Activity

of the pre-trained layers but trains the whole network on the new custom classes as
well, not only the output layer. Figure shows that the model is loaded signaling that
it is training from scratch. It is not re-training the whole network from ground zero,
that only applies to the FC and Softmax layers. The figure D.2 shows ground-truth
class labels, of the training set’s images, in one-hot vector format explained in Chapter
2.

Figure D.2: Loading the model and ground-truth labels of the dataset.

After that, the MobileNetV2 graph would be displayed, a part of it is showing
in figure D.3 then the training would start (figure D.4). The type of layer, shape
of the image and number of parameters trained in every layer of the model are also
stated in the graph. Showing with a red circle in figure D.4 is the customized head
added through in Mobile Activity code to the MobileNetV2 architecture. A dense
(FC) layer, that flattens the input features of the Bottleneck or 1x1 CONV layer, is
introduced by hand. While the SoftMax activation function would output the final
categorical probability scores class-wise. After all that, the training would begin with
“Epoch 1”, while at every epoch level the loss function’s value and accuracy, for the
training and validation, would be displayed. During the training process, average loss
would start decreasing after a short while, if not there would be something wrong
that is worth stopping the training and checking. If all went well, a sharp drop in loss
value should be noticed because the code uses Adam optimization. It is recommended
that training should be stopped when this loss value no longer decreases for several
iterations.

167

Appendix D. Robotics Setups D.2. End-effector in Darknet API Setups

Figure D.3: A part of MobileNetV2 graph.

D.2 End-effector in Darknet API Setups
As done with Clusters, the information extracted from the annotation and labelling
would be added in .txt files, one for each image. In every .txt file a new line is added
for every object annotated with a box within each image. The lines indicate inputs
of the following order:

< object class >< x >< y >< width >< height > (D.1)

Where object class refers to the label given for each class, starting with 0. the x
and y refer to the x and y coordinates of the upper left corner of the bounding box
indicating its location with respect to the image origin, which is its upper left corner
as well. Finally, width and height refer to the width and height of the bounding box
as a % in comparison with the width and height of the image. Figure D.5 shows an
instance of the .txt files, where only 1 class, 1 object and one box is found within the
frame.

168

Appendix D. Robotics Setups D.2. End-effector in Darknet API Setups

Figure D.4: Showing above are the customised head and the training’s starting point.

Figure D.5: Text file displaying annotation and labelling information

Additionally, when exporting the data from CVAT, the files “obj.data”, “obj.names”
and “train.txt” (in addition to “valid.txt” for validation) are created. The “obj.data”
file was slightly altered to include validation data1, and this is shown in figure D.6.

The first row of the file contains the number of classes within the dataset. As
there is only one class in this case, the end-effector, it is set to one. The following
three lines define the path to such files as “train.txt”, “valid.txt” and “obj.names”.
These paths are added as “train”, “valid” and “names” variables, respectively. The
train.txt and valid.txt files contain the paths to all the input data frames be it for
testing or validation. The reference to all defined paths should be the main “Darknet”

1In fact, two datasets are created using CVAT, one for training and the other for validation
following the rule of cross-validation (see NNs section).

169

Appendix D. Robotics Setups D.2. End-effector in Darknet API Setups

Figure D.6: obj.data file

directory2. Figure D.7 below shows a section of these paths.

As for “obj.names” it is a straightforward text file that contains the names of the
classes (i.e., end-effector in this case) (Figure D.8). The final line creates a path to a
backup folder where the best weights from the training as well as the ones from every
other 1000 iterations are all saved to be used later for testing.

The YOLO version used in this application is YOLOv4. Relative to other
detectors, it is extremely fast and depending on the requirement of the task, speed
can be sacrificed for accuracy without the need for retraining thereby making the
system flexible. YOLOv4 can be installed either on a Windows or Linux device, and
instructions on how to install can be found at YOLOv4 main GitHub page3.

Before the model can be trained on the dataset, changes must be implemented
to the configuration files and the dataset must be prepared to ensure that training
goes smoothly and gets properly optimized. The data-set folder must contain all the
images that need to be trained on and their corresponding .txt files. Additionally, as
was mentioned before, images for validation are also required in a separate dataset,
so that the training can be verified whilst taking place. The validation images are
frames that contain the end-effector, but the model has not been seen before while
training. If the model identifies the validation image to contain an end-effector in
most instances, then the training has been validated successfully.

To compare the datasets, almost 90% of the overall images were added for training
2https://github.com/pjreddie/darknet
3https://github.com/AlexeyAB/darknet

170

Appendix D. Robotics Setups D.2. End-effector in Darknet API Setups

Figure D.7: A section of the train.txt file.

Figure D.8: The obj.names file

while the remaining 10% were left for validation. In case the two datasets were not
created separately from the beginning with CVAT, the training and validation files
require splitting into separate folders. Therefore, a python script can split them into
the necessary folders to save time. One such script can be found online article4. The
configuration file used is “yolov4-custom.cfg”. This is the configuration file that is used
for custom objects which is the case in this project. It contains several important
parameters such as the batch/subdivision number, resolution, number of channels
and data augmentation which require adjusting depending on the case. A batch is
the number of images that are loaded per iteration. A subdivision is the amount a
batch is split into. Each one from the batch is processed and trained upon. The

4https://medium.com/@anirudh.s.chakravarthy/training-yolov3-on-your-custom-dataset-
19a1abbdaf09

171

Appendix D. Robotics Setups D.2. End-effector in Darknet API Setups

two parameters are dependent on the computing power available for training. Due to
this, the value used for batch and subdivision for training in this case was 64 and 64.
Resolution should be adjusted according to processing power available as well. If the
resolution on input images is set too high, errors may start to appear in the training.
Therefore, a Goldilocks value was used at 256x256. In practice, one starts with the
lowest resolution which is 96x96. If the system can handle it without a problem, it
would be increased fast by doubling or slow by adding 32s on dimensions. The number
of channels describes the colors of the dataset. A channel value of 1 would result in
training to be completed in Greyscale. This is not ideal and so the value was instead
set to 3 thereby keeping the RGB scale which is for training with colors.

Data augmentation is important when training with a limited dataset. Although
approximately 4000 images to train on is sufficient, it is not an ideal number in case the
frames are repetitive. This is likely to be the case in video footage. In most instances,
a greater dataset will increase the reliability of the system. Therefore, to improve
this, the dataset can be artificially expanded by applying changes to the images such
as flip, rotation, shearing and change in hue. The names of these parameters in the
configuration file are mosaic, mix-up, and blur. The effect of this is that the model
can learn from a greater, more robust dataset, and so this should improve validation
results at the next stage. The augmentations applied to the dataset are mosaic=1,
mixup=1 and blur=1 and so full advantage can be taken of the limited data-set
available.

Another change required to the configuration file is the filters number. This value
is evaluated using the following equation:

Filters Number = (Number of Classes+ 5)× 3 (D.2)

As there is only one class within the dataset the filters number used is 18. It
should be noted that the classes number is only changed in the YOLO layers and the
filters number, according to the above-mentioned formula, is only adjusted in the one
convolutional layer that appear before each YOLO layer in the main configuration file.
These adjustments should take place three times as there are three YOLO layers. The
anchor coordinates can be changed as well according to the shape of objects as was
mentioned in previous sections. However, since the training is running on one class
only and no crowding existing in our frames, it is very unlikely that any confusion
would be caused or solved by the shape of the anchor boxes.

Once the changes described above are made to the “yolov4-custom.cfg” file, it is
renamed and saved as “yolo-obj.cfg” as this is the default name of the configuration
file called within the training command. A final requirement is the initial weights

172

Appendix D. Robotics Setups D.3. End-effector in DIGITS’ DetectNet Setups

to be used. For this case, the ones that must be downloaded are for custom objects
recognition. These weights are available online as the “yolov4.conv.137” file. As
training occurs, the best weights are identified by YOLO and are automatically saved.
The improved weights can be used for retraining if needed.

D.3 End-effector in DIGITS’ DetectNet Setups
In DIGITS, images must be resized to satisfy the DetectNet input dimensions. The
configuration can be altered to accept custom image sizes, and by default it is set
to 1392x512. Since these dimensions are ideal only for the KITTY original dataset,
another tweak should be done to images dimension if another custom dataset is to be
used instead. The good thing about DIGITS is that it allows images to be padded to
take one final set of dimensions that are compatible to both images of assorted sizes
in the custom dataset, and DetectNet input dimensions. For the set of images used in
this project a perfect dimensional Goldilocks used was a total padding of 2500x2500.
The reason for that huge padding was the extreme difference in sizes of the images
used in our limited dataset, even the extended one. Another power point of DIGITS is
that it requires users to introduce a class called “dontcare”. Within this class objects
contained in bounding boxes are allowed to be ignored during the training. This
would prevent more FP from appearing as detection during the training.

The last stage in data preparation is importing all the images and labels we created,
in KITTY format, from their proper folders into Nvidia DIGITS. Once an instance
of DIGITS is opened, the Data-sets tab is selected and, on the right side, Object
Detection from New Dataset is clicked from the list in scroll down.

Figure D.9 is showing all the parameters that should be added and entered
correctly. These are the following:

• Training image folder: path of the folder where images for training exist (e.g.,
/path/to/train/images)

• Training label folder: path of the folder where labels for training exist (e.g.,
/path/to/train/labels)

• Validation image folder: path of the folder where images for validation exist
(e.g., /path/to/val/images)

• Validation label folder: path of the folder where labels for validation exist (e.g.,
/path/to/val/labels)

173

Appendix D. Robotics Setups D.3. End-effector in DIGITS’ DetectNet Setups

Figure D.9: DIGITS New Object Detection Data-set board

• Custom classes: class names should be added here separated with a comma.
It is important that the “dontcare” class be added first to the list if predefined
weights are to be used in the training as is the case in this project. If “dontcare”
is not included first in the list, the first class will be ignored, and it will not be
trained at all.

• Data-set name: a name for the dataset is added here.

After completing the form, create button at the bottom is clicked and the dataset
will be produced. If all went well “Job Status Done” would appear in green. If an
error occurred during the process, a “Job Status Error” would be displayed in red
instead (see figure D.10). A verbose debugging display would point to the source of

174

Appendix D. Robotics Setups D.3. End-effector in DIGITS’ DetectNet Setups

error. Failures mostly happen due to missing or mis-spelled label names. Mis-typing
a folder path can cause an error as well or even any unbalance in the input image
dimensions. Now once the dataset is ready, DetectNet object detection model can
start training in DIGITS.

Figure D.10: Job Status window showing “Done” (in green) or “Error” (in red)

First, an Object Detection Task should be created. To do that on the DIGITS
home page, Models tab is selected then New Model→ Images→ Object Detection
chosen. A form will be opened to enter some parameters that will be discussed in
what follows (See figure D.11).

To get high accuracy, enough time should be allowed for training, 200-600
“Training epochs” are required. Depending on the data-set size and number of classes
that parameter might vary. In the “Select Dataset” window the name of the dataset
should be selected. The dataset prepared for this project is “Manipulator08”. “Batch
size” and “Accumulation”, or how many pictures can be processed at once, should
be changed according to the graphics card computing capacity. In this project’s
case, the numbers 2 and 5 worked properly. These parameters should be acquired
by trial and error by escalating with small increments until the processing power is
exhausted. Another parameter that should be tuned is the image size. It is related
to processing power available as well. Adjusting the image size in the dataset might
require repeating the production of it. So, image size, batch and accumulation should
be tuned in a balanced way, to get the best out of all. Image size would affect learning,
the larger it gets the faster a model grasps its features, and more memory is consumed.
One had to repeat this process many times to find the right dimensions suitable. That
is the reason for this project 8 datasets had to be reproduced. The Goldilocks zone
was for image size of 640x640 in the data-set parameters. “Blob format” was chosen
to be NVCaffe which is the default Caffe platform used by Nvidia in DIGITS, however

175

Appendix D. Robotics Setups D.3. End-effector in DIGITS’ DetectNet Setups

Figure D.11: New Image Model parameters board

others can be used as well in the compatible option. As for the solver type it was
chosen to be ADAM. It is an algorithm that optimizes the training, and makes the
learning or updating of the weights process run much faster and smoother5. For “Base
Learning Rate” 1e−05 has proven to be a perfect starting point since a lower learning
rate means slower learning with more accuracy. This feature is needed at the start
of training. Under “Policy” exponential decay was selected which is a function that
varies the learning rate in an exponential manner with time. Multiple starting learning
rates can be selected at once, separated by a comma, however that would consume
much more memory as well. If that option is chosen, training “loss” plots with distinct
colors would be displayed for each selected “Base Learning Rate”. Finally, in “Data

5Please refer to chapter 2 for more details or check https://machinelearningmastery.com/adam-
optimization-algorithm-for-deep-learning/

176

Appendix D. Robotics Setups D.3. End-effector in DIGITS’ DetectNet Setups

Transformations” subtract mean is set to none.

177

References

[1] E. Cortina Gil et al (NA62 Collaboration). “An investigation of the very rare
K+ → π+νν̄ decay”. In: JHEP11(2020)042 (2020).

[2] E. Cortina Gil et al (NA62 Collaboration). “Measurement of the very rare K+
to pi+ nu nubar decay”. In: JHEP06(2021)093 (2021).

[3] E. Cortina Gil et al (NA62 Collaboration). “Search for a feebly interacting
particle X in the K+ to pi+ X decay”. In: JHEP03(2021)058 (2021).

[4] E. Cortina Gil et al (NA62 Collaboration). “Search for heavy neutral lepton
production in the K+ decays to positrons”. In: Phys. Lett. B 807 (2020) 135599
(2020).

[5] E. Cortina Gil et al (NA62 Collaboration). “Search for K+ decays to a muon
and invisible particles”. In: Phys. Lett. B 816 (2021) 136259 (2021).

[6] E. Cortina Gil et al (NA62 Collaboration). “Search for pi0 decays to invisible
particles”. In: JHEP02(2021)201 (2021).

[7] E. Cortina Gil et al (NA62 Collaboration). “Search for production of an
invisible dark photon in pi0 decays”. In: JHEP05(2019)182 (2019).

[8] E. Cortina Gil et al (NA62 Collaboration). “Searches for lepton number
violating K+ decays”. In: Phys. Lett. B 797 (2019) 134794 (2019).

[9] D. Buttazzo A.J. Buras and R. Knegjens. In: JHEP11(2015)166 (2015).
[10] U. Haisch A.J. Buras M. Gorbahn and U. Nierste. In: Phys. Rev. Lett B

95(2005)261805 (2005).
[11] Robot Ignite Academy. Deep Learning with Domain Randomization [online].

https://www.robotigniteacademy.com/en/path/machine-learning-for-robots/, 2020.
[12] Robot Ignite Academy. Live Clas n81: How to use Python3 with ROS [online].

Robot Ignite Academy course, 2020.
[13] Diederik P. Kingma et al. “ADAM: a method for stochastic optimization”. In:

arXiv 1412.6980v9 (2017).
[14] E. Cortina Gil et al. In: J. Instrum. 12 (2017), p. 05025.

178

References References

[15] J. Cogan et al. “Jet-images: computer vision inspired techniques for jet
tagging”. In: J. High Energy Phys. 2015 (2015), p. 118.

[16] P. Baldi et al. “Jet substructure classification in high-energy physics with deep
neural networks”. In: Phys. Rev. D 93 (2016), p. 094034.

[17] V. Fanti et al. In: Nucl. Instrum. Methods, A574 (2007), p. 433.
[18] Alexey Bochkovskiy et al. “YOLOv4: Optimal Speed and Accuracy of Object

Detection”. In: arXiv:2004.10934 (2020).
[19] Andrew Howard et al. “Network In MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Applications”. In: arXiv:1704.04861v1 (2017).
[20] C. Szegedy et al. “Scalable, High-Quality Object Detection”. In: arXiv:1412.1441

(2014).
[21] Christian Szegedy et al. “Going deeper with convolutions”. In: arXiv:1409.4842v1

(2014).
[22] J. Redmon et al. “YOLO9000: Better, Faster, Stronger”. In: arXiv:1612.08242

(2016).
[23] J. Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection”.

In: arXiv:1506.02640 (2015).
[24] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In:

arXiv:1512.03385v1 (2015).
[25] M. Sandler et al. “MobileNetV2: Inverted Residuals and Linear Bottlenecks”.

In: arXiv:1801.04381v4 (2019).
[26] Min Lin et al. “Network In Network”. In: arXiv:1312.4400v3 (2014).
[27] S. Ren et al. “Faster R-CNN: Towards Real-Time ObjectDetection with Region

Proposal Networks”. In: arXiv:1506.01497v3 (2016).
[28] Tsung-Yi Lin et al. “Feature Pyramid Networks for Object Detection”. In:

arXiv:1612.03144v2 (2017).
[29] W. Liu et al. “SSD: Single Shot MultiBox Detector”. In: arXiv:1512.02325

(2015).
[30] Shun-ichi Amari and Si Wu. “Improving support vector machine classifiers by

modifying kernel functions”. In: Neural Networks 12.6 (1999), pp. 783–789.
[31] P. Baldi, P. Sadowski, and D. Whiteson. “Searching for exotic particles in

high-energy physics with deep learning”. In: Nat. Commun. 5 (2014), p. 4308.
[32] Robert E Banfield et al. “A comparison of decision tree ensemble creation tech-

niques”. In: IEEE transactions on pattern analysis and machine intelligence
29.1 (2006), pp. 173–180.

179

References References

[33] “Belle II Technical Design Report”. In: (2010). arXiv: 1011.0352 [physics.ins-det].
[34] Monika Blanke, Andrzej J. Buras, and Stefan Recksiegel. “Quark flavour

observables in the Littlest Higgs model with T-parity after LHC Run 1”.
In: The European Physical Journal C 76.4 (Apr. 2016). issn: 1434-6052. doi:
10.1140/epjc/s10052-016-4019-7. url: http://dx.doi.org/10.1140/
epjc/s10052-016-4019-7.

[35] Monika Blanke et al. “RareKandBDecays in a warped extra dimension with
custodial protection”. In: Journal of High Energy Physics 2009.03 (Mar. 2009),
pp. 108–108. doi: 10.1088/1126-6708/2009/03/108. url: https://doi.
org/10.1088/1126-6708/2009/03/108.

[36] Tomáš Blažek and Peter Maták. “Left–left squark mixing, and minimal
supersymmetry with large tan β”. In: International Journal of Modern Physics
A 29.27 (2014), p. 1450162.

[37] Christoph Bobeth and Andrzej J. Buras. “Leptoquarks meet ε′/ε and rare
Kaon processes”. In: Journal of High Energy Physics 2018.2 (Feb. 2018). issn:
1029-8479. doi: 10.1007/jhep02(2018)101. url: http://dx.doi.org/10.
1007/JHEP02(2018)101.

[38] A. Bonner. “he Complete Beginner’s Guide to Deep Learning: Artificial Neural
Networks”. In: [towardsdatascience Online article] (2019).

[39] Marzia Bordone et al. “Probing lepton-flavour universality with K → πνν̄
decays”. In: The European Physical Journal C 77.9 (Sept. 2017). issn: 1434-
6052. doi: 10.1140/epjc/s10052-017-5202-1. url: http://dx.doi.org/
10.1140/epjc/s10052-017-5202-1.

[40] A. P. Bradley. “The use of the area under the ROC curve in the evaluation of
machine learning algorithms”. In: Pattern Recognition 30 7 (1997), pp. 1145–
1159.

[41] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.
[42] Francesco Brizioli. “Measurement of Br(K+ → π+νν̄) with the NA62

experiment at CERN”. Presented 26 Apr 2021. 2020. url: http : / / cds .
cern.ch/record/2765463.

[43] Joachim Brod and Martin Gorbahn. “Electroweak corrections to the charm
quark contribution to K+ → π+νν”. In: Phys. Rev. D 78 (3 Aug. 2008),
p. 034006. doi: 10.1103/PhysRevD.78.034006. url: https://link.aps.
org/doi/10.1103/PhysRevD.78.034006.

180

https://arxiv.org/abs/1011.0352
https://doi.org/10.1140/epjc/s10052-016-4019-7
http://dx.doi.org/10.1140/epjc/s10052-016-4019-7
http://dx.doi.org/10.1140/epjc/s10052-016-4019-7
https://doi.org/10.1088/1126-6708/2009/03/108
https://doi.org/10.1088/1126-6708/2009/03/108
https://doi.org/10.1088/1126-6708/2009/03/108
https://doi.org/10.1007/jhep02(2018)101
http://dx.doi.org/10.1007/JHEP02(2018)101
http://dx.doi.org/10.1007/JHEP02(2018)101
https://doi.org/10.1140/epjc/s10052-017-5202-1
http://dx.doi.org/10.1140/epjc/s10052-017-5202-1
http://dx.doi.org/10.1140/epjc/s10052-017-5202-1
http://cds.cern.ch/record/2765463
http://cds.cern.ch/record/2765463
https://doi.org/10.1103/PhysRevD.78.034006
https://link.aps.org/doi/10.1103/PhysRevD.78.034006
https://link.aps.org/doi/10.1103/PhysRevD.78.034006

References References

[44] Joachim Brod, Martin Gorbahn, and Emmanuel Stamou. “Two-loop elec-
troweak corrections for the K → πνν decays”. In: Phys. Rev. D 83 (3 Feb.
2011), p. 034030. doi: 10.1103/PhysRevD.83.034030. url: https://link.
aps.org/doi/10.1103/PhysRevD.83.034030.

[45] Jason Brownlee. “Softmax Activation Function with Python”. In: [Machine
Learning Mastery Online article] (2020).

[46] D. Bryman et al. “Particle identification in NA62 using a Light Gradient
Boosting Machine and Convolutional Neural Networks”. In: CERN Note NA62-
21-02 (2021).

[47] A. E. Bryson and Y.-C. Ho. Applied Optimal Control. Blaisdell, New York,
1969.

[48] Gerhard Buchalla and Andrzej J. Buras. “sin2β from K+ → π+νν̄ ”. In:
Physics Letters B 333.1 (1994), pp. 221–227. issn: 0370-2693. doi: https:
/ / doi . org / 10 . 1016 / 0370 - 2693(94) 91034 - 0. url: https : / / www .
sciencedirect.com/science/article/pii/0370269394910340.

[49] Gerhard Buchalla and Andrzej J. Buras. “The rare decays K+ → π+νν̄ , B →
Xνν and B → l+l-: an update”. In: Nuclear Physics B 548.1 (1999), pp. 309–
327. issn: 0550-3213. doi: https://doi.org/10.1016/S0550- 3213(99)
00149-2. url: https://www.sciencedirect.com/science/article/pii/
S0550321399001492.

[50] Andrzej J Buras. “Weak Hamiltonian, CP violation and rare decays”. In: arXiv
preprint hep-ph/9806471 (1998).

[51] Andrzej J. Buras, Dario Buttazzo, and Robert Knegjens. “K → πνν and ε′/ε
in simplified new physics models”. In: Journal of High Energy Physics 2015.11
(Nov. 2015). issn: 1029-8479. doi: 10.1007/jhep11(2015)166. url: http:
//dx.doi.org/10.1007/JHEP11(2015)166.

[52] Andrzej J. Buras, Selma Uhlig, and Felix Schwab. “Waiting for precise
measurements of K+ → π+νν and KL → π0νν”. In: Rev. Mod. Phys. 80 (3
Aug. 2008), pp. 965–1007. doi: 10.1103/RevModPhys.80.965. url: https:
//link.aps.org/doi/10.1103/RevModPhys.80.965.

[53] Andrzej J. Buras et al. “K+ → π+νν and KL → π0νν in the Standard Model:
status and perspectives”. In: Journal of High Energy Physics 2015.11 (Nov.
2015). issn: 1029-8479. doi: 10.1007/jhep11(2015)033. url: http://dx.
doi.org/10.1007/JHEP11(2015)033.

181

https://doi.org/10.1103/PhysRevD.83.034030
https://link.aps.org/doi/10.1103/PhysRevD.83.034030
https://link.aps.org/doi/10.1103/PhysRevD.83.034030
https://doi.org/https://doi.org/10.1016/0370-2693(94)91034-0
https://doi.org/https://doi.org/10.1016/0370-2693(94)91034-0
https://www.sciencedirect.com/science/article/pii/0370269394910340
https://www.sciencedirect.com/science/article/pii/0370269394910340
https://doi.org/https://doi.org/10.1016/S0550-3213(99)00149-2
https://doi.org/https://doi.org/10.1016/S0550-3213(99)00149-2
https://www.sciencedirect.com/science/article/pii/S0550321399001492
https://www.sciencedirect.com/science/article/pii/S0550321399001492
https://doi.org/10.1007/jhep11(2015)166
http://dx.doi.org/10.1007/JHEP11(2015)166
http://dx.doi.org/10.1007/JHEP11(2015)166
https://doi.org/10.1103/RevModPhys.80.965
https://link.aps.org/doi/10.1103/RevModPhys.80.965
https://link.aps.org/doi/10.1103/RevModPhys.80.965
https://doi.org/10.1007/jhep11(2015)033
http://dx.doi.org/10.1007/JHEP11(2015)033
http://dx.doi.org/10.1007/JHEP11(2015)033

References References

[54] Dario Buttazzo et al. “B-physics anomalies: a guide to combined explanations”.
In: Journal of High Energy Physics 2017.11 (Nov. 2017). issn: 1029-8479.
doi: 10.1007/jhep11(2017)044. url: http://dx.doi.org/10.1007/
JHEP11(2017)044.

[55] C. Bobeth and A.J. Buras. In: JHEP02(2018)101 (2018).
[56] Nicola Cabibbo. “Unitary Symmetry and Leptonic Decays”. In: Phys. Rev.

Lett. 10 (12 June 1963), pp. 531–533. doi: 10.1103/PhysRevLett.10.531.
url: https://link.aps.org/doi/10.1103/PhysRevLett.10.531.

[57] J. Carmignani and G. Ruggiero. “Neural Network Object Detection Approach
(NNODA) for Photon Veto in Liquid Krypton (LKr) Calorimeter of NA62
Experiment”. In: In preparation (2021).

[58] F. Chollet. Deep Learning with Python. Manning Publications Co., 2018.
[59] “Convolutional Neural Networks with Event Images for Pileup Mitigation with

the ATLAS Detector”. In: (2019).
[60] Padraig Cunningham and Sarah Jane Delany. “k-Nearest neighbour classifiers:

(with Python examples)”. In: arXiv preprint arXiv:2004.04523 (2020).
[61] A.V. Artamonov et al. In: Phys. Rev. D 79(2009)092004 (2009).
[62] P.A. Zyla et al. “Particle Data Group”. In: Prog. Theor. Exp. Phys. (2020)

083C01 (2020).
[63] J. H. Christenson etal. “Evidence for the 2π Decay of the K0

2 Meson”. In: Phys.
Rev. Lett. 13 (1964), pp. 138–140. doi: 10.1103/PhysRevLett.13.138.

[64] F. Mescia and C. Smith. In: Phys. Rev. D 76(2007)034017 (2007).
[65] S. Fajfer, N. Košnik, and L. Vale Silva. Footprints of leptoquarks: from RK(∗)

to K → πνν̄. 2018. arXiv: 1802.00786 [hep-ph].
[66] FreeCodeCamp. “Demystifying Gradient Descent and Backpropagation via

Logistic Regression based Image”. In: https://www.freecodecamp.org/news/
demystifying-gradient-descent-and-backpropagation-via-logistic-regression-based-
image-classification-9b5526c2ed46/ (2020).

[67] G. Buchalla and A.J. Buras. In: Nucl. Phys. B 548(1999)309 (1999).
[68] F. Mescia G. Isidori and C. Smith. In: Nucl. Phys. B 718(2005)319 (2005).
[69] P. Paradisi G. Isidori F. Mescia, C. Smith, and S. Trine. In: JHEP08(2006)064

(2006).
[70] S. L. Glashow, J. Iliopoulos, and L. Maiani. “Weak Interactions with Lepton-

Hadron Symmetry”. In: Phys. Rev. D 2 (7 Oct. 1970), pp. 1285–1292. doi:
10.1103/PhysRevD.2.1285. url: https://link.aps.org/doi/10.1103/
PhysRevD.2.1285.

182

https://doi.org/10.1007/jhep11(2017)044
http://dx.doi.org/10.1007/JHEP11(2017)044
http://dx.doi.org/10.1007/JHEP11(2017)044
https://doi.org/10.1103/PhysRevLett.10.531
https://link.aps.org/doi/10.1103/PhysRevLett.10.531
https://doi.org/10.1103/PhysRevLett.13.138
https://arxiv.org/abs/1802.00786
https://doi.org/10.1103/PhysRevD.2.1285
https://link.aps.org/doi/10.1103/PhysRevD.2.1285
https://link.aps.org/doi/10.1103/PhysRevD.2.1285

References References

[71] Xavier Glorot. “Deep Sparse Rectifier Neural Networks”. In: Proceedings of
Machine Learning Research (2011).

[72] Ian Goodfellow. Deep Learning. The MIT Press, 2016.
[73] Yuval Grossman and Yosef Nir. “beyond the standard model”. In: Physics

Letters B 398.1-2 (Apr. 1997), pp. 163–168. issn: 0370-2693. doi: 10.1016/
s0370- 2693(97)00210- 4. url: http://dx.doi.org/10.1016/S0370-
2693(97)00210-4.

[74] Xiao-Gang He et al. “Breaking the Grossman-Nir bound in kaon decays”. In:
Journal of High Energy Physics 2020.4 (Apr. 2020). issn: 1029-8479. doi: 10.
1007/jhep04(2020)057. url: http://dx.doi.org/10.1007/JHEP04(2020)
057.

[75] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. Applied
logistic regression. Vol. 398. John Wiley & Sons, 2013.

[76] Gino Isidori, Federico Mescia, and Christopher Smith. “Light-quark loops
in K+ → π+νν̄ ”. In: Nuclear Physics B 718.1 (2005), pp. 319–338. issn:
0550-3213. doi: https : / / doi . org / 10 . 1016 / j . nuclphysb . 2005 . 04 .
008. url: https : / / www . sciencedirect . com / science / article / pii /
S0550321305002932.

[77] Gino Isidori et al. “Exploring the flavour structure of the MSSM with
rareKdecays”. In: Journal of High Energy Physics 2006.08 (Aug. 2006),
pp. 064–064. issn: 1029-8479. doi: 10.1088/1126-6708/2006/08/064. url:
http://dx.doi.org/10.1088/1126-6708/2006/08/064.

[78] A.J. Buras J. Aebischer and J. Kumar. In: JHEP12(2020)097 (2020).
[79] M. Gorbahn J. Brod and E. Stamou. In: Phys. Rev. D 83(2011)034030 (2011).
[80] C. Jarlskog. “Commutator of the Quark Mass Matrices in the Standard

Electroweak Model and a Measure of Maximal CP Nonconservation”. In: Phys.
Rev. Lett. 55 (10 Sept. 1985), pp. 1039–1042. doi: 10.1103/PhysRevLett.55.
1039. url: https://link.aps.org/doi/10.1103/PhysRevLett.55.1039.

[81] Makoto Kobayashi and Toshihide Maskawa. “CP-Violation in the Renormal-
izable Theory of Weak Interaction”. In: Progress of Theoretical Physics 49.2
(Feb. 1973), pp. 652–657. issn: 0033-068X. doi: 10.1143/PTP.49.652. eprint:
https://academic.oup.com/ptp/article-pdf/49/2/652/5257692/49-2-
652.pdf. url: https://doi.org/10.1143/PTP.49.652.

[82] Patrick Komiske et al. “Learning to Remove Pileup at the LHC with
Jet Images”. In: Journal of Physics: Conference Series 1085 (Sept. 2018),
p. 042010. doi: 10.1088/1742-6596/1085/4/042010.

183

https://doi.org/10.1016/s0370-2693(97)00210-4
https://doi.org/10.1016/s0370-2693(97)00210-4
http://dx.doi.org/10.1016/S0370-2693(97)00210-4
http://dx.doi.org/10.1016/S0370-2693(97)00210-4
https://doi.org/10.1007/jhep04(2020)057
https://doi.org/10.1007/jhep04(2020)057
http://dx.doi.org/10.1007/JHEP04(2020)057
http://dx.doi.org/10.1007/JHEP04(2020)057
https://doi.org/https://doi.org/10.1016/j.nuclphysb.2005.04.008
https://doi.org/https://doi.org/10.1016/j.nuclphysb.2005.04.008
https://www.sciencedirect.com/science/article/pii/S0550321305002932
https://www.sciencedirect.com/science/article/pii/S0550321305002932
https://doi.org/10.1088/1126-6708/2006/08/064
http://dx.doi.org/10.1088/1126-6708/2006/08/064
https://doi.org/10.1103/PhysRevLett.55.1039
https://doi.org/10.1103/PhysRevLett.55.1039
https://link.aps.org/doi/10.1103/PhysRevLett.55.1039
https://doi.org/10.1143/PTP.49.652
https://academic.oup.com/ptp/article-pdf/49/2/652/5257692/49-2-652.pdf
https://academic.oup.com/ptp/article-pdf/49/2/652/5257692/49-2-652.pdf
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1088/1742-6596/1085/4/042010

References References

[83] Josua Krause, Adam Perer, and Kenney Ng. Interacting with predictions:
Visual inspection of black-box machine learning models. New York, NY, USA:
Association for Computing Machinery, 2016.

[84] Paul Langacker. “The physics of heavy Z ′ gauge bosons”. In: Rev. Mod. Phys.
81 (3 Aug. 2009), pp. 1199–1228. doi: 10.1103/RevModPhys.81.1199. url:
https://link.aps.org/doi/10.1103/RevModPhys.81.1199.

[85] LHCb : Technical Proposal. Geneva: CERN, 1998. url: https://cds.cern.
ch/record/622031.

[86] Louis Lyons. Statistics for nuclear and particle physicists. Cambridge Univer-
sity Press, 1986.

[87] A.J. Buras M. Blanke and S. Recksiegel. In: Eur. Phys. J. C 76(2016)182
(2016).

[88] B. Duling M. Blanke A.J. Buras, K. Gemmler, and S. Gori. In: JHEP03(2009)108
(2009).

[89] G. Isidori M. Bordone D. Buttazzo and J. Monnard. In: Eur. Phys. J. C
77(2017)618 (2017).

[90] M. Tanimoto and K. Yamamoto. In: Prog. Theor. Exp. Phys. 2016(2016)123B02
(2016).

[91] Federico Mescia and Christopher Smith. “Improved estimates of rare K decay
matrix elements from K`3 decays”. In: Phys. Rev. D 76 (3 Aug. 2007),
p. 034017. doi: 10.1103/PhysRevD.76.034017. url: https://link.aps.
org/doi/10.1103/PhysRevD.76.034017.

[92] Yaser S. Abu Mostafa. Learning From Data. AML, 2012.
[93] K. P. Murphy. Machine learning a probabilistic perspective. MIT Press, 2012.
[94] Alexey Natekin and Alois Knoll. “Gradient boosting machines, a tutorial”. In:

Frontiers in Neurorobotics 7 (2013), p. 21. issn: 1662-5218. doi: 10.3389/
fnbot.2013.00021. url: https://www.frontiersin.org/article/10.
3389/fnbot.2013.00021.

[95] Andrew NG. Deep learning specialization. deeplearning.ai by Coursera, 2018.
[96] Andrew NG. Machine learning yearning. Stanford e-book, 2018.
[97] Vivian Ng and Leo Breiman. “Bivariate variable selection for classication prob-

lem”. In: Technical report, Department of Statistics, University of California-
Berkeley (Jan. 2005).

184

https://doi.org/10.1103/RevModPhys.81.1199
https://link.aps.org/doi/10.1103/RevModPhys.81.1199
https://cds.cern.ch/record/622031
https://cds.cern.ch/record/622031
https://doi.org/10.1103/PhysRevD.76.034017
https://link.aps.org/doi/10.1103/PhysRevD.76.034017
https://link.aps.org/doi/10.1103/PhysRevD.76.034017
https://doi.org/10.3389/fnbot.2013.00021
https://doi.org/10.3389/fnbot.2013.00021
https://www.frontiersin.org/article/10.3389/fnbot.2013.00021
https://www.frontiersin.org/article/10.3389/fnbot.2013.00021

References References

[98] “Review of Particle Physics”. In: Progress of Theoretical and Experimental
Physics 2020.8 (Aug. 2020). 083C01. issn: 2050-3911. doi: 10.1093/ptep/
ptaa104. eprint: https://academic.oup.com/ptep/article-pdf/2020/8/
083C01/34673722/ptaa104.pdf. url: https://doi.org/10.1093/ptep/
ptaa104.

[99] Irina Rish et al. “An empirical study of the naive Bayes classifier”. In: IJCAI
2001 workshop on empirical methods in artificial intelligence. Vol. 3. 22. 2001,
pp. 41–46.

[100] G.D. Rochester and C.C. Butler. “Evidence for the Existence of New Unstable
Elementary Particles”. In: Nature 160 (1947), pp. 855–857. doi: 10.1038/
160855a0(cit.onp.1).

[101] Byron P Roe et al. “Boosted decision trees as an alternative to artificial neural
networks for particle identification”. In: Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 543.2-3 (2005), pp. 577–584.

[102] Adrian Rosebrock. “Fine-tuning with Keras and Deep Learning”. In: [pyim-
agesearch Online article] (2019).

[103] Adrian Rosebrock. “Object detection with deep learning and OpenCV”. In:
[pyimagesearch Online article] (2017).

[104] D. E. Rumelhart and J. L. McClelland. Parallel Distributed Processing. MIT
Press, Cambridge, Massachusetts, 1986.

[105] S. Russell. Artificial intelligence a modern approach. Pearson Education, 2002.
[106] N. Kosnik S. Fajfer and L. Vale Silva. In: Eur. Phys. J. C 78(2018)275 (2018).
[107] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In:

Neural networks 61 (2015), pp. 85–117.
[108] S. Sharma. “Activation Functions in Neural Networks”. In: [towardsdatascience

Online article] (2020).
[109] Erik Strumbelj and Igor Kononenko. “An efficient explanation of individual

classifications using game theory”. In: Journal of Machine Learning Research
(2010).

[110] T. Blazek and P. Matak. In: Int. J. Mod. Phys. A 29(2014)1450162 (2014).
[111] Ren Jie Tan. “Breaking Down Mean Average Precision (mAP)”. In: [towards-

datascience Online article] (2019).

185

https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673722/ptaa104.pdf
https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673722/ptaa104.pdf
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1038/160855a0 (cit. on p. 1)
https://doi.org/10.1038/160855a0 (cit. on p. 1)

References References

[112] Morimitsu Tanimoto and Kei Yamamoto. “Probing SUSY with 10 TeV stop
mass in rare decays and CP violation of kaon”. In: Progress of Theoretical
and Experimental Physics 2016.12 (Dec. 2016). 123B02. issn: 2050-3911. doi:
10.1093/ptep/ptw160. eprint: https://academic.oup.com/ptep/article-
pdf/2016/12/123B02/10436266/ptw160.pdf. url: https://doi.org/10.
1093/ptep/ptw160.

[113] Simon Tong and Daphne Koller. “Support vector machine active learning with
applications to text classification”. In: Journal of machine learning research
2.Nov (2001), pp. 45–66.

[114] Raju Vaishya et al. “Artificial Intelligence (AI) applications for COVID-19
pandemic”. In: Diabetes & Metabolic Syndrome: Clinical Research & Reviews
14.4 (2020), pp. 337–339.

[115] Lincoln Wolfenstein. “Parametrization of the Kobayashi-Maskawa Matrix”.
In: Phys. Rev. Lett. 51 (21 Nov. 1983), pp. 1945–1947. doi: 10 . 1103 /
PhysRevLett . 51 . 1945. url: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevLett.51.1945.

186

https://doi.org/10.1093/ptep/ptw160
https://academic.oup.com/ptep/article-pdf/2016/12/123B02/10436266/ptw160.pdf
https://academic.oup.com/ptep/article-pdf/2016/12/123B02/10436266/ptw160.pdf
https://doi.org/10.1093/ptep/ptw160
https://doi.org/10.1093/ptep/ptw160
https://doi.org/10.1103/PhysRevLett.51.1945
https://doi.org/10.1103/PhysRevLett.51.1945
https://link.aps.org/doi/10.1103/PhysRevLett.51.1945
https://link.aps.org/doi/10.1103/PhysRevLett.51.1945

	Kaon Physics of NA62
	Current Status of Kaon Physics
	Experimental Status of K++
	The beam and detector
	Analysis method
	Event selection
	Single event sensitivity
	Background evaluation and validation

	Introduction to AI
	Artificial Intelligence: Aristotle to COVID-19
	Supervised Neural Networks
	Convolutional Neural Nets CNN
	Convolutional layers
	ReLU Activation Layer
	Pooling Layers
	Final Output

	Practical Computer Vision
	Feature Extractors
	Residual Networks (ResNets)
	Inception Network
	MobileNets

	Object Detectors OD

	NN and K-pi Matching
	Inputs and Design
	Data Preparation
	Basic Development
	Architecture/model and Hyper-parameters Tuning

	Results
	XAI Analysis
	Redefinition of the training sample
	Upgrade of the discriminant

	NNODA for LKr Calorimeter
	Physics Review
	Data Preparation
	Training
	YOLO model
	SSD models
	Faster-RCNN model
	Fine Tuning in Transfer Learning
	Configurations
	Charged Tracks Clusters using Darknet API
	Charged Tracks Clusters using Tensorflow Object Detection API

	XAI in Performance Checks
	Metrics
	Technical Analysis & Model Competition

	XAI in Calorimetric Implications

	Summary and Conclusions
	K+ -+ Track Matching
	NNODA: LKr Calorimetric Study
	Robotics

	Appendix Standard Notations for DL
	Deep Learning Representations
	Fundamental CNN Notations

	Appendix Technical Configurations
	Clusters in Darknet API Setups
	Clusters in Tensorflow API Setups

	Appendix Robotics Applications
	Introduction
	End-Effector Data Box Annotations

	Mobile Activity project
	End-effector detection using Darknet API
	DetectNet using Jetson-Inference API
	Facebook's Detectron2 API

	Appendix Robotics Setups
	Mobile Activity
	End-effector in Darknet API Setups
	End-effector in DIGITS' DetectNet Setups

	References

