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ABSTRACT

This paper presents a statistical analysis of structural changes in the Central England tempera-

ture series, one of the longest surface temperature records available. A changepoint analysis is

performed to detect abrupt changes, which can be regarded as a preliminary step before further

analysis is conducted to identify the causes of the changes (e.g., artificial, human-induced or natural

variability). Regression models with structural breaks, including mean and trend shifts, are fitted

to the series and compared via two commonly used multiple changepoint penalized likelihood cri-

teria that balance model fit quality (as measured by likelihood) against parsimony considerations.

Our changepoint model fits, with independent and short-memory errors, are also compared with

a different class of models termed long-memory models that have been previously used by other

authors to describe persistence features in temperature series. In the end, the optimal model is

judged to be one containing a changepoint in the late 1980s, with a transition to an intensified

warming regime. This timing and warming conclusion is consistent across changepoint models

compared in this analysis. The variability of the series is not found to be significantly changing,

and shift features are judged to be more plausible than either short- or long-memory autocorrela-

tions. The final proposed model is one including trend-shifts (both intercept and slope parameters)

with independent errors. The analysis serves as a walk-through tutorial of different changepoint

techniques, illustrating what can be statistically inferred.
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1. Introduction29

Climate time series often contain abrupt changes and other nonlinearities in their behavior.30

Changepoints are times of abrupt shifts in a series’ characteristics, including means, trends, vari-31

ances, and autocorrelations. For examples, a sudden change from a cooling period (i.e., decreasing32

trend) to a warming period can be characterised by a changepoint in the trend; a sudden increase due33

to the relocation of a station may be characterised as a changepoint in the mean. Abrupt changes34

may be caused by changes in climate forcings, related to climate variability in the ocean and35

atmosphere, or induced by artificial changes in measurement procedures such as station relocations36

or instrumentation changes.37

It is crucial to know changepoint times in climate series, especially when assessing long-term38

trends, as their presence may grossly alter trend estimates, which impedes our understanding of39

external forcings and climate variability over the instrumental record (Lund et al. 2007; Beaulieu40

et al. 2012; Cahill et al. 2015; Beaulieu and Killick 2018). Series with artificial changes merit41

adjustment via homogenization methods, as trends and extreme quantiles are more accurately42

estimated from homogenized data (Hewaarachchi et al. 2017; Trewin et al. 2020; Vincent et al.43

2020). On average, approximately six station relocations or instrumentation changes occur over44

a century in a randomly selected US climate station (Mitchell Jr. 1953; Menne and Williams Jr.45

2009). As such, a changepoint analysis of a climate series is often a worthy initial exploratory46

endeavor.47

Statistical methods to detect changepoints have rapidly evolved over the last few decades. These48

include methods to detect a single shift in the series’ mean (Chernoff and Zacks 1964), in its49

variance (Hsu 1977), or in a general linear regression model (Quandt 1958; Robbins et al. 2016).50

In the climate literature, changepoint detection has most often been used to detect mean shifts.51
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However, this may result in misinterpreting a long-term climate trend as a sequence of mean shifts52

that follows (approximates) the trend (Beaulieu and Killick 2018).53

Much of the changepoint literature assumes independent and identically distributed model errors54

(termedwhite noise here). However, climate time series are often autocorrelated, inducingmemory55

at time scales longer than the measurement frequency (Hasselmann 1976). This memory is often56

modeled as a first-order autoregressive (AR(1)) process in climate studies (Lund et al. 2007;Robbins57

et al. 2011; Hartmann et al. 2013). In an AR(1) model, autocorrelation geometrically decays to58

zero with increasing time, representing one type of short-term memory. In the climate setting, it59

is important to allow autocorrelation and mean shift model features in tandem as both can inject60

similar run patterns into a climate series. An alternative is to use pre-whitening techniques that61

mitigate the effects of autocorrelation (Robbins et al. 2011; Serinaldi and Kilsby 2016). Beaulieu62

and Killick (2018), Shi et al. (2022), and Gallagher et al. (2021) show that changepoint inferences63

can be drastically wrong if autocorrelation in a series is ignored. The memory in climate series has64

also been modeled as a long-memory process, where autocorrelation decays as a power law (Yuan65

et al. 2015). Long-memory processes and changepoint models can be confused as they both have66

similar spectrums. Unfortunately, this ambiguity may lead to mislead inferences. Beaulieu et al.67

(2020) discuss how to distinguish changepoints and long-memory in surface temperatures.68

Multiple changepoints may be present in climate series. Methods designed to detect a single69

changepoint have been applied iteratively to estimate multiple changepoint configurations through70

a process known as binary segmentation (Scott and Knott 1974; Rodionov 2004). Binary seg-71

mentation is now known to perform poorly in multiple changepoint problems (Shi et al. 2022)72

(see Fryzlewicz (2014) for an interesting attempt to fix binary segmentation). Penalized likelihood73

methods, the approach taken here, were developed in Davis et al. (2006); Lu et al. (2010); Killick74

et al. (2012); Li and Lund (2012) and tend to perform better (Shi et al. 2022). Here, a likelihood,75

4



which measures the goodness of the statistical model fit, is balanced against a penalty that pre-76

vents fitting too many changepoints. Penalized likelihood methods can allow for autocorrelation.77

Bayesian approaches to the multiple changepoint problem also exist. Most of these place some78

sort of prior distribution on the changepoint times, for instance a spike and slab prior (see Barry79

and Hartigan (1993); Chib (1998); Fearnhead (2006); and Cappello et al. (2021) and the references80

within). Li et al. (2019) construct an informative prior on the changepoint times from the sta-81

tion’s metadata record. The references above are by no means exhaustive; indeed, the changepoint82

literature is vastly expanding.83

As most methodological statistics papers are not written with user comprehension in mind, the84

technical changepoint literature can seem impenetrable to non-statisticians, making it challenging85

to select an appropriate approach for the climate scientist. Compounding difficulties, Lund and86

Reeves (2002) and Beaulieu and Killick (2018) show that spurious changepoint inferences easily87

occur when prominent data features (e.g. autocorrelation, long-term trend) are ignored — the88

choice of model and method is critical in changepoint analyses. Indeed, changepoint techniques89

can produce different results when the models and assumptions are only slightly changed.90

The aim of this paper is to present, through an example, a comprehensive changepoint analysis91

of a climate series. To this end, we analyze the Central England temperature (CET) series92

by fitting different changepoint models capable of detecting shifts in trends. We also compare93

our changepoint fits with long-memory models. Our focus is on penalized likelihood multiple94

changepoint techniques, enabling us to compare several models while preventing overestimation of95

the number of changepoints. We also discuss mean shift models and how they fit data containing a96

long-term trend such as the CET series. Emphasis is placed on implementation and interpretation97

over the theoretical foundations of penalized likelihoods. Nonetheless, references to the formal98

statistical literature are provided.99
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The rest of this paper proceeds as follows. The CET series used here is introduced in the next100

section. Section 3 then provides some rudimentary background on changepoint models, describing101

the penalized likelihood methods used here. The next three sections present fits of various multiple102

changepoint models. Results for each type of model motivate the subsequent fits. Remarks about103

the optimal model are made in the final section along with concluding comments.104

2. The CET Series105

The CET time-series is perhaps the longest instrumental record of surface temperatures in the106

world, commencing in 1659 and spanning 362 years through 2020. The CET series is a benchmark107

for European climate studies, as it is sensitive to atmospheric variability in the North Atlantic108

(Parker et al. 1992). This record has been previously analyzed for long-term changes (Plaut et al.109

1995; Harvey and Mills 2003; Hillebrand and Proietti 2017); however, to our knowledge, no110

detailed changepoint analysis of it has been previously conducted. Changepoints are plausible111

in the CET record for several reasons. First, artificial shifts near the record’s onset may exist112

when data quality was lower (Parker et al. 1992). Furthermore, an increase in the pace of climate113

warming arising globally during the 1960s-1970s (Beaulieu and Killick 2018; Cahill et al. 2015)114

may be present. The length of the CET record affords us the opportunity to explore a variety of115

temperature features.116

The CET series, available at https://www.metoffice.gov.uk/hadobs/hadcet/, was pro-117

vided by the UK Met Office. Measurements commenced in 1659 and were mostly compiled by118

Manley (1953, 1974) until 1973, then continued and updated to 1991 in Parker et al. (1992). The119

series is now kept by the Hadley Centre, Met Office. The CET time series is an annual com-120

posite of 15 stations in the UK, located over a roughly triangular area bounded by Lancashire,121

London, and Bristol. The series is thus representative of the climate of the English Midlands.122
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The station locations used to form the composite series are depicted in the top graphic in Figure123

1. The CET temperatures, presented in the bottom graphic of Figure 1, have been previously124

adjusted for inhomogeneities due to changes in measurement practices through time (Manley 1953,125

1974; Parker et al. 1992), and for urban warming since 1960 (Parker and Horton 2005). However,126

until 1722, available instrumental records used in the CET time series did not overlap. As such,127

non-instrumental weather diaries and the Utrecht instrumental series were used to adjust the CET128

series and fill the gaps (Parker et al. 1992). Between 1722 and 1760, there are no gaps in the129

composite record of all stations, but observations were generally collected in unheated rooms as130

opposed to outdoors. A few outdoor temperature measurements were collected and used to estab-131

lish relationships between temperatures in unheated rooms and outdoors. These relationships were132

then used to adjust the CET time series (Parker et al. 1992). The daily CET time series starts in133

1772, and has been used to update the monthly series (Parker et al., 1992). As such, some authors134

use only the data post-1772 for their analyses (Hillebrand and Proietti 2017). In this paper, we135

conduct a changepoint analysis on both the full CET time series (1659-2020) and the truncated136

series (1772-2020) that excludes the poorer quality data at the beginning of the record.137

3. Structural Change Models138

To explore structural changes in the CET series, a hierarchical changepoint analysis, gradually139

building on past findings, will be conducted. Let -C denote the annual temperature observed at time140

C and suppose that data from the years 1, . . . , # are available. In general, a changepoint analysis141

partitions the series into < +1 distinct regimes, each regime having homogeneous characteristics.142

The number of changepoints< is unknown and needs to be estimated from the series. Let g8 denote143

the 8th changepoint time; boundary conditions take g0 = 0 and g<+1 = # .144
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All regression models in this paper have the time series regression form145

-C = 5 (C) + nC , C = 1,2, . . . , #, (1)

where 5 (C) = � [-C] is the mean of the series at time C. The structural form of 5 will vary, generally146

containing location and/or trend parameters and their shifts; each model form will be discussed147

as we proceed. The model errors {nC}#C=1 have zero mean and may be correlated in time. We148

work with AR(1) errors for simplicity, but more complex time series models are possible. While149

it is important to allow for autocorrelation in annual data, the form of the correlation structure is150

typically not as crucial as its presence.151

The AR(1) difference equation governing the errors {nC} is152

nC = qnC−1 + /C ,

where q ∈ (−1,1) and {/C} is zero mean white noise (WN) with unknown variance f2. Solutions153

to the AR(1) equation have exponentially decaying correlations: Corr(nC , nC+ℎ) = qℎ for ℎ ≥ 0.154

Because the data are annually averaged, Gaussian distributed errors {nC} are statistically realistic.155

An implication of this is that future model likelihood functions will be Gaussian based.156

Methods for handling multiple changepoint analyses without penalized likelihoods exist. One157

popular technique is termed binary segmentation (Scott and Knott 1974). Binary segmentation158

works with any single changepoint technique, termed an at most one change (AMOC) method.159

Many AMOC tests have been developed, including cumulative sums (CUSUM) (Page 1954),160

likelihood ratios (Jandhyala et al. 2013), Chow tests (Chow 1960), and sum of squared CUSUM161

tests (Shi et al. 2022). Binary segmentation first analyzes the entire series for a changepoint.162

If a changepoint is found, the series is split into subsegments about the identified changepoint163

time and the two subsegments are further scrutinized for additional changepoints. The procedure164

is repeated iteratively until no subsegments are deemed to have changepoints. While simple165
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and computationally convenient, binary segmentation is one of the poorer performing multiple166

changepoint techniques (Shi et al. 2022), often being fooled by changepoints that occur close167

to one another or multiple shifts that move the series in opposite directions. There have been168

attempts to fix binary segmentation — see the wild binary segmentation and related methods169

in Fryzlewicz (2014) and Eichinger and Kirch (2018). Unfortunately, these techniques typically170

assume independent model errors or are restricted to single parameter changes per regime (for171

example, mean shifts only). Perhaps worse, wild binary segmentation tends to overestimate172

changepoint numbers when they are in truth infrequent (Lund and Shi 2020).173

To estimate the changepoint structure and model parameters from the data, penalized likelihood174

methods will be used. Likelihood methods choose the model parameters that make seeing the175

observed data most likely; a penalty is imposed on the changepoint configuration to keep the fitted176

model parsimonious (from having too many changepoints). Our penalized likelihoods have the177

following form178

−2log(!∗(<;g1, . . . , g<)) +%(<;g1, . . . , g<). (2)

The notation here is as follows: !∗(<;g1, . . . , g<) is the optimal Gaussian likelihood that can be179

achieved from a model with < changepoints that occur at the times g1, . . . , g<. Here, the data180

sample -1, -2, . . . , -# is regarded as fixed. To determine !∗(<;g1, . . . , g<), one must estimate all181

parameters in the mean function 5 and the AR(1) model errors assuming that < changepoints182

occur at the times g1, . . . , g<. This procedure will be discussed further below. The quantity183

%(<;g1, . . . , g<) is the penalty for having a model with < changepoints at the times g1, . . . , g<. As184

more and more changepoints are added to the model, the overall fit gets better (−2log(!∗) gets185

smaller); the penalty, which is positive and increases with the number of changepoints, prevents186

an overfitted model (one with too many changepoints).187
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Many penalty structures have been proposed in the statistics and climate literature. These include188

the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the modified189

Bayesian information criterion (mBIC), and Minimum description lengths (MDL). We will use190

BIC and MDL here. These two penalties were judged as "winners" in a recent changepoint191

detection comparison in Shi et al. (2022). AIC penalties are not considered here because they often192

erroneously estimate an excessive number of changepoints (Shi et al. 2022). The BIC penalty for193

having < changepoints at the times g1, . . . , g< is < log(#) and is proportional to the number of194

changepoints; additional parameters are penalized at the rate of log(#) per model parameter. Our195

penalized likelihood objective functions for structural changes are summarized in Table 1. The196

individual models will be explained in subsequent sections. The boxed quantities are the model197

penalties. When< = 0, penalties for any changepoint quantities are taken as zero since changepoint198

features are absent from the model.199

When comparing models via BIC (or any other model selection criterion), one computes the BIC200

statistic for all fitted models and chooses the one with the smallest BIC score. Differences between201

BIC values can give a sense of uncertainty between different model fits. The “posterior model202

probabilities" of Burnham and Anderson (2004) can further highlight differences. Elaborating,203

we label the compared models as 68, (8 = 1, . . . , ') and let Δ���8 denote the difference between204

the BIC score of model 68 and the model having the smallest BIC score. The posterior model205

probabilities of Burnham and Anderson (2004) are206

?8 =
4G?(−Δ���8/2)∑'
A=1 4G?(−Δ���A/2)

. (3)

Then ?8 is the inferred probability that model 68 is the quasi-true model in the model set under a207

prior where all ' models are equally likely (prior probabilities are 1/' for each model). These208

BIC posterior model probabilities highlight uncertainties in our model comparisons.209
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In contrast to the BIC penalty, the MDL penalty is more complex in form, also accounting for210

the changepoint location times g1, . . . , g<. The MDL penalty depends on the form of 5 and is211

rooted in information theory, quantifying the computer memory needed to store the model (good212

fitting models use minimal space). MDL penalties have previously proven useful in changepoint213

detection (Davis et al. 2006; Li and Lund 2012)). Posterior model probabilities are not available214

for the MDL information criterion. Other penalties used in the climate literature for changepoint215

problems include those in Caussinus and Mestre (2004).216

A drawback of penalized likelihood methods involves computation time. There are
(#−1
<

)
distinct217

changepoint configurations having < changepoints. Summing this over all < shows that there are218

2#−1 distinct changepoint configurations that need to be searched in an exhaustive optimization219

of a penalized likelihood, a daunting task for long time series. As a solution, genetic algorithms220

(GA) will be used to optimize our penalized likelihoods. GAs are randomized search algorithms221

that mimic natural selection processes. In a genetic algorithm, an initial collection (generation) of222

changepoint configurations is randomly evolved towards ones with improved penalized likelihoods.223

Better fittingmodels are allowed priority in passing on their changepoints (genes) to childrenmodels224

of the next generation. Occasionally, mutations (very different changepoint configurations) occur;225

this keeps the GA from converging to local minimums of the penalized likelihood. Ultimately, the226

GA converges to a model with a very good penalized likelihood. The natural selection mechanism227

in GAs make it unlikely to visit suboptimal changepoint configurations. While Li and Lund (2012)228

illustrate how to devise a GA in climate changepoint applications, generally available GAs have229

now become savvy enough to capably handle our needs. The GA optimizations performed here230

use the R package GA (Scrucca 2013).231

In contrast to GAs, binary segmentation is a greedy algorithm that often becomes trapped at a232

local penalized likelihood minimum. Killick et al. (2012) and Maidstone et al. (2017b), two rapid233
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dynamic programming based multiple changepoint configuration optimizers, currently cannot234

handle our needs: Maidstone et al. (2017b) assumes independent model errors and Killick et al.235

(2012) assumes all parameters change at each changepoint time (including the AR(1) correlation236

parameter q and error variance f2). GAs are the only optimization method that reasonably handle237

all models considered in this paper.238

4. Models fitted239

a. Trend shift models240

We start our analysis with models having trends, as a long-term trend in the CET time series has241

been documented in previous studies (Kendon et al. 2021; Franzke 2012; Karoly and Stott 2006).242

This model posits 5 (·) to have the piece-wise linear form243

5 (C) =



`1 + V1C, 1 ≤ C ≤ g1,

`2 + V2C, g1 +1 ≤ C ≤ g2,

...

`<+1 + V<+1C, g< +1 ≤ C ≤ #,

. (4)

More compactly, one can write � [-C] = 5 (C) = `A (C) + VA (C)C, where A (C) ∈ {1,2, . . . ,< +1} denotes244

the regime being used at time C; for example, A (C) = 1 for 1 ≤ C ≤ g1.245

The changepoint literature has focused primarily on detecting mean shifts; fewer studies have246

been dedicated to detecting trend shifts. However, Maidstone et al. (2017a) present a dynamic247

programming approach that estimates trend shift configurations using a penalty based on absolute248

distances that is neither the MDL nor BIC. Their {nC} must be white noise (uncorrelated) with a249

zero mean and constant variance. See Bai and Perron (1998), Bai and Perron (2003), and their250

related R package strucchange by Zeileis et al. (2015) for more details.251
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The least squares estimators for the 8th regime’s parameters are computed from data in this regime252

only:253

V̂8 =

∑g8
C=g8−1+1(-C − -̄8) (C − C̄8)∑g8

C=g8−1+1(C − C̄8)
2 , ˆ̀8 = -̄8 − V̂8 C̄8, 8 = 1,2, . . . ,< +1, (5)

where -̄8 = (
∑g8
C=g8−1+1 -C)/(g8 − g8−1) and C̄8 = (g8 + g8−1 + 1)/2. While these are not the exact254

maximum likelihood estimators in correlated settings, they are typically very close to them (Lee255

and Lund 2012). A detailed discussion of least squares versus maximum likelihood estimator256

differences for time series is contained in Lee and Lund (2012).257

One next computes the detrended series via258

�C = -C − 5̂ (C) = -C − ( ˆ̀A (C) + V̂A (C)C). (6)

The AR(1) parameter is then estimated via259

q̂ =

∑#−1
C=1 �C�C+1∑#

C=1�
2
C

. (7)

One-step-ahead predictions of the time series are now computed by260

�̂C = q̂�̂C−1, C ≥ 2, (8)

with the start-up condition �̂1 = 0. The white noise variance in the AR(1) model is estimated as261

f̂2 =
1
#

#∑
C=1

�̂2
C . (9)

Plugging ˆ̀: , q̂, and f̂2 into the Gaussian likelihood (see Li and Lund (2012) for details) gives a262

negative Gaussian log-likelihood of263

−2log(!∗(<;g1, . . . , g<)) = # log(f̂2) +# +# log(2c).︸            ︷︷            ︸
Constant

(10)

The underbraced constant term above does not change over distinct changepoint configurations and264

can be neglected in the changepoint configuration comparisons. The above equations show how265
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to estimate model parameters and evaluate model likelihoods given the changepoint configuration;266

the optimal changepoint configuration is found by a GA search. The penalized likelihoods obtained267

with two different penalties, MDL and BIC, are presented in Table 1 for the various models used268

here. Since regression lines are described by two parameters, all regimes are required to be at least269

three years long (so that fits in any single regime are not perfect).270

On the full CET series, GA optimizations of the BIC and MDL penalized likelihoods estimate271

identical trend shift configurations, both flagging three breaks at the times 1700,1739, and 1988272

(Table 2). This methodological agreement is convenient, but is not typical in changepoint analyses.273

Figure 2 graphically depicts our model fit. Cooling occurs during the first 39 years, followed by274

an increasing-trend second regime, with subsequent shifts to two warming trend regimes. The last275

regime, which starts in 1989, is warming with a trend of 1.1◦C per century. When fitting trend276

shift models to CET series on post 1772 data only, we find a single changepoint in 1987 (Table 3),277

which is consistent with our analysis on the full series.278

In both cases, the AR(1) correlation estimate is very small (q̂ = 0.058 for the full CET and279

q̂ = 0.073 for the truncated), and is not significantly different from zero with standard time series280

tests (Brockwell and Davis 1991). When q = 0, an AR(1) model reduces to white noise. This281

point is worth emphasizing: our model fits prefer the trend shift structure over structures involving282

autocorrelated errors. This is an important point since positive autocorrelation and shifts can induce283

similar run patterns in series— likelihoodmethods can decidewhich feature (or both) is statistically284

preferable. Should autocorrelation be neglected, one risks flagging spurious changepoints. And285

while independent model errors is reasonable here, it may not hold in other applications, especially286

if monthly or daily data are used.287

Other assumptions made on the model errors include normality and a constant variance in -C .288

To assess normality, we apply a Shapiro-Wilk test to the model residuals. This test does not reject289
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normality (Tables 2- 3) at any common levels of statistical significance. To investigate the constant290

variance assumption, we apply Leneve’s test to the residuals. This test does not find evidence291

of a changing variance in the residuals of the trend shifts models fitted to the CET series at any292

appreciable levels of statistical significance. Normality and constant variance assumptions in all293

future fitted models (Tables 2 and 3 list these) is investigated — these features are not rejected in294

any of the models compared here.295

b. A fixed slope mean shift model296

In some cases, it may be appropriate to constrain trends to be identical over all regimes (Wang297

2003). This could be the case if artificial changes are expected. For example, a change of instrument298

may introduce an artificial shift in a time series, but will not necessarily alter the long-term trend299

in different regimes. A model with a common trend slope in all regimes (Lu and Lund 2007) is300

5 (C) =



`1 + VC, 1 ≤ C ≤ g1,

`2 + VC, g1 +1 ≤ C ≤ g2,

...

`<+1 + VC, g< +1 ≤ C ≤ #,

. (11)

where V is the trend slope, which is the same in all regimes.301

In compact form, the model can be expressed as302

-C = `A (C) + VC + nC , (12)

where `A (C) is as in (5), and {nC} is an AR(1) process.303

The ordinary least square estimators of V and `1, . . . , `<+1 have the explicit form304

V̂ =

∑<+1
8=1

∑g8
g8−1+1(-C − -̄8) (C − C̄8)∑<+1

8=1
∑g8
C=g8−1+1(C − C̄8)

2
, ˆ̀8 = -̄8 − V̂C̄8, 8 = 1,2, . . . ,< +1, (13)
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where -̄8 and C̄8 are as before. These are again very close to the maximum likelihood estimators305

(Lee and Lund 2012). The BIC and MDL penalties are listed in Table 1.306

A GA was used to estimate this configuration, which is plotted against the data in Figure 3. For307

the full CET series, both BIC and MDL flag a single mean shift in 1988, while the single detected308

shift moves to 1990 in the truncated series (post 1772). Fewer changepoints are detected in this309

model than with the trend shift models of the previous section, but the time of the single change310

detected here is consistent with the last changepoint found in the trend shifts models. Since the BIC311

and MDL penalized likelihoods in Tables 2 and 3 are larger for the constant slope model than for312

the regime-varying trend slope model, the inference is that regime-varying slopes are preferable.313

c. Joinpin models314

There is debate over whether trend models should impose continuity in � [-C] at the changepoint315

times in temperature series (Rahmstorf et al. 2017). These so-called joinpin models require316

� [-C] = 5 (C) to be continuous in time C. Here, we compare a joinpin model to the trend shifts and317

fixed slope mean shift models fitted in the previous sections. Unfortunately, it is not clear what an318

appropriate MDL penalty is for this case, nor does this seem to be an easy matter to rectify; hence,319

we proceed with BIC penalties only.320

To fit a joinpin model, the package in Maidstone et al. (2017a) was used. We fit the same model321

as (4), but with additional constraints to force continuity at the changepoint time(s). A simple way322

to enforce this continuity is to view the slopes as determined from � [-C] at the start and end of323

each regime. This enforces continuity within a simple form foregoing additional constraints. This324

formulation fits the model325

-C = Wg8 +
Wg8+1 −Wg8
g8+1− g8

(C − g8) + nC , (14)
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where W8 is the value of the mean at time 8. This formulation is equivalent to (4) with an additional326

continuity constraint at the changepoint locations. Based on Maidstone et al. (2017a), the BIC for327

the joinpin model is328

BIC = # log(f̂2) +# +# log(2c) + (2< +1) log(#), (15)

where329

f̂2 =
1
#

<+1∑
8=1

g8+1∑
C=g8

[
-C −

Wg8+1 −Wg8
g8+1− g8

(C − g8)
]2
.

In the formulation of Maidstone et al. (2017a), the white noise variance is fixed and needs to330

be estimated. While median absolute deviations could be used for this purpose, we instead use331

the estimated error variance of 0.29 (Table 2), taken from the discontinuous model fits and BIC332

penalties of the last section, This fit assumes IID errors, which seems plausible given the results of333

the previous sections. The fitted model flags a single changepoint in 1973 in the full CET series334

and none in the truncated series; see Tables 2-3 and Figure 4. These fits are stable against changes335

from 0.29 in the white noise variance. Compared to our previous model fits, the joinpin model has336

a much higher BIC than the trend shift and fixed slope mean shifts models (Tables 2-3). As such,337

joinpin models do not appear to be competitive.338

While a changepoint seems plausible towards the end of the record due to an increased warming339

rate, the joinpin fit to the earliest data is poor, similar to the fixed slope mean shifts model. This340

is graphically evident in the Figure 4 fits, but is also reflected by the higher BIC scores in Tables341

2-3. A joinpin model should be used when a discontinuous mean function is unlikely or physically342

implausible. With the CET series, it is not evident whether the estimated mean function should343

be continuous or discontinuous. Elaborating, for series containing “only a single station", mean344

discontinuities are physically expected. However, whenmore andmore station records are averaged345

into a composite record, mean function discontinuities are reduced, becoming less pronouncedwith346
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an increasing number of stations. Should a discontinuous mean function be deemed possible, a347

trend shift model provides greater flexibility since it can simultaneously approximate a joinpin348

continuous structure as well as discontinuous shifts (Beaulieu and Killick 2018).349

d. Long-memory models350

A body of climate literature argues that climate time series exhibit long-memory, where the351

series’ autocorrelation decays slowly in lag, often via a power law (Yuan et al. 2015; Blender and352

Fraedrich 2003; Franzke 2012). Long-memory correlation and changepoint features can inject353

similar run properties into a climate series, which is appreciated in the statistical and econometric354

literatures (Diebold and Inoue 2001; Granger and Hyung 2004; Mills 2007; Yau and Davis 2012).355

The daily CET series may exhibit long-memory (Syroka and Toumi 2001; Franzke 2012).356

To compare our changepoint models to a long-memory model, we fit an autoregressive frac-357

tionally integrated moving-average (ARFIMA) model to the CET series. In particular, ARFIMA358

models with no moving-average component, an integration parameter 3 with 0 < 3 < 0.5, and an359

autoregressive component of orders zero and one, are considered. The AR(1) long-memory model360

is characterized as361

-C = (1−�)3 (1−q�)−1nC , (16)

where � is the backshift operator applied to -C .362

To fit ARFIMAmodels, the R package fracdiff (Maechler 2020) was used. A BIC penalty was363

calculated and is listed in Table 1. An MDL penalty is not informative since this model does not364

have any changepoints. Long-memory model fits to the full and truncated CET series are described365

in Tables 2-3). The long-memory models have the largest BIC score among all models compared366

on the full CET time series. On the truncated series, they are also amongst the least plausible,367

18



although joinpin models have higher BIC scores. These results suggest that changepoints, rather368

than long-memory, are more plausible in the CET series. For additional evidence that changepoints369

are preferred over long-memory features, we applied the time varying wavelet spectrummethods in370

Norwood and Killick (2018) to the CET series. These methods were used on surface temperatures371

in Beaulieu et al. (2020) and shown to discriminate changepoint and long-memory models well in372

long series. The results confirm that a changepoint model is more appropriate than a long-memory373

model. The fitted model of autoregressive order zero was also preferred to the fitted model of order374

one, reinforcing that correlation aspects in the CET series are minimal.375

e. Model selection uncertainty376

Among the six models compared, the trend shift model with white noise is judged the most377

plausible, as suggested by both BIC and MDL scores. The BIC posterior probabilities for all378

models fitted above are presented in Table 4. For the full series, the model probability for the379

trend shift model with white noise is 0.64, followed by the joinpin model with probability 0.12 and380

the trend shift model with AR(1) errors with probability 0.11. The three other models all have a381

posterior probability of 0.05 or less. This highlights the uncertainty in the model selected, although382

the trend shifts models with AR(1) and white noise errors are very similar (the autocorrelation383

estimated in the AR(1) model is small and both configurations identify the same shifts). As for the384

joinpin model, the fit at the start of the record seems poor.385

Moving to the truncated series, the trend shift model with white noise has a posterior probability386

of 0.68. The next most plausible models are the fixed slope mean shift model with AR(1) errors and387

the trend shift model with AR(1) errors, having posterior probabilities of 0.1 and 0.09, respectively388

(Table 4). These models are similar in that estimated changepoint times are very close, giving389

further evidence for a shift in the late 1980s. However, this suggests that a fixed slope model should390
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not be entirely discarded. Unlike results for the full CET series, the joinpin model ranks very low391

(0.02) on the truncated CET series. This is not surprising given that no changepoint is detected392

under the joinpin model in the truncated series (Figure 4).393

5. Trends vs Mean Shifts394

The simplest changepoint analysis is arguably that of mean shifts. This is the most common395

model in the changepoint literature and has been widely used to analyze climate series. While this396

structure is inappropriate for series having trends (such as the CET analyzed here), we include this397

model here for comparative purposes. The mean shifts model posits 5 (·) to have form398

5 (C) =



`1, 1 ≤ C ≤ g1,

`2, g1 +1 ≤ C ≤ g2,

...

`<+1, g< +1 ≤ C ≤ #.

(17)

Themodel’smean structure is compactly written as 5 (C) = � [-C] = `A (C) , where A (C) ∈ {1,2, . . . ,<+399

1} denotes the regime being used at time C; for example, A (C) = 1 for 1 ≤ C ≤ g1.400

Given < and the changepoint times g1, . . . , g<, mean parameters are first estimated via segment401

averages:402

ˆ̀8 =
1

g8 − g8−1

g8∑
C=g8−1+1

-C , 8 = 1,2, . . . ,< +1. (18)

While sample means are not the exact maximum likelihood estimators of the mean parameters403

for correlated series, they are typically very close and are easy to compute (unlike maximum404

likelihood estimators). Next, the regime-wise mean estimated in (18) is subtracted from the series405

by computing �C = -C − 5̂ (C) = -C − ˆ̀A (C) . The variance f̂2 is then estimated as in (9). We do not fit406

this model with AR(1) errors based on the results from the previous sections. The BIC and MDL407
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penalized likelihoods for this model are408

BIC = # log(f̂2) +# +# log(2c) + (3< +3) log(#); (19)
409

MDL = # log(f̂2) +# +# log(2c) + log(#) +2log(<) +2
<+1∑
8=1

log(g8 − g8−1) +2
<+1∑
8=2

log(g8). (20)

We discuss only results on the full series here, but conclusions are consistent (i.e., the same410

changepoints are detected post 1772) if we repeat the analysis on the truncated series only. Fitting411

this model, seven changepoints are flagged with both MDL and BIC (Figure 5).412

Both penalties pinpoint 1989 as a changepoint time, which is consistent with results of the413

previous section. Here, MDL and BIC both deem the “cold year" in 1740 an outlier, bracketing414

this time by two changepoints. Because MDL methods are based on information theory (Rissanen415

1978) and not large sample statistical asymptotics, they often flag outliers. Shifts are more frequent416

at the beginning of the record, perhaps suggesting that the data during these times is less reliable.417

Evident in the fits is that the last three regimes act to move the series higher in a "staircase", which418

is expected for a series experiencing a long-term warming trend (Figure 5).419

The BIC and MDL scores obtained on the full CET series are 648.17 and 656.09, respectively.420

Should this model be included in our main comparison, one would still prefer the trend shift model421

should the MDL penalty be used to make conclusions. However, the BIC mean shift score is422

smaller than the BIC trend shift score in the previous section, indicating preference for the mean423

shift model. A model containing only mean shifts will flag a sequence of shifts in an attempt to424

follow a long-term trend should the data have a trend and it not be included in the model. If the425

trend is not steep, as is the case here, it is especially challenging to distinguish between trends426

and mean shifts. To illustrate this, we conducted a simulation study where 500 synthetic series427

with the same trend magnitude and variability (as estimated in the truncated CET time series over428

1772-2020) were generated. The mean shifts plus white noise and trend shifts plus white noise429

21



models were fitted to each series. In only 18% of the synthetic series, the correct model with430

a long-term trend was selected by BIC. Figure 6 presents a histogram of the difference between431

the two fitted models’ BIC scores, further demonstrating the bias BIC has for the erroneous mean432

shifts model. Should there be any suspicion about a trend or “staircase feature" in the record, we433

recommend using techniques that incorporate trends, as done here.434

6. Comments, Conclusions, and Discussion435

This study compared and contrasted several common changepoint model fits for data containing436

trends, as well as a long-memory autocovariance model, to the CET time series. To our knowledge,437

this is the first time a detailed changepoint analysis has been conducted on this long record.438

Starting with a trend shift model, several different changepoint structures were fitted, illustrating439

the techniques and salient points of changepoint analyses.440

Tables 2-3 present the log-likelihood, BIC, and MDL scores of all model fits. Depending on the441

model configuration, we detect either three changepoints (trend shifts models) or one changepoint442

(fixed slope mean shifts and joinpin models) in the full series. This changepoint count discrepancy443

traces to the large variations in the series during roughly the first century of the record.444

Most models agree on a change to a rapidly warming regime circa 1988, except for the joinpin445

model (this is also true for the truncated series). Among all fitted models, the optimal one has trend446

shifts in 1700, 1739, and 1988 (full series), and one in 1988 (truncated series). Table 5 provides447

estimates of the best fitting model’s intercept and slope parameters by regime. While the best fitting448

model is the trend shifts model, other models are also plausible (Table 4). Models with higher449

posterior probabilities tend to be consistent in their flagged changepoint times, but highlight that a450

fixed slope model (as opposed to the varying slopes in the trend shifts models) may be plausible.451

Long-memory models yield the highest BIC scores, and are less plausible than all other models452
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compared. The results of the full and truncated CET series are consistent, showing that our post453

1772 changepoint inferences are not overly sensitive to inclusion of the first century of the series.454

Having both BIC and MDL penalties agree on the model type and changepoint configuration455

adds robustness to our conclusions, suggesting that the fitted segmentations are stable. According456

to Lavielle (2005), changepoint segmentations that are stable over a range of penalty values should457

be preferred. Overall, models with shifts were deemed preferable to models having autocorrelated458

errors.459

While our aim is not necessarily directed to the causes of the detected shifts, we provide some460

interpretations here. Shifts flagged during the first century of the record are likely due to inferior461

data quality over this early period (Hillebrand and Proietti 2017). Due to lack of overlapping462

instrumentation coverage before 1722, non-instrumental weather diaries were used to adjust the463

series (Parker et al. 1992). Observations were generally collected in unheated rooms until 1760,464

and adjusted by calibrating indoor and outdoor observations later (Parker et al. 1992). Even with465

the most careful adjustments, one cannot guarantee that all biases were removed from the data.466

Some authors omit the first century of data altogether due to this issue (Hillebrand and Proietti467

2017).468

The trend shifts model on the earlier part of the data detects two changepoints in 1700 and 1739,469

characterizing a steep cooling trend followed by a warming trend. The mean shifts model fitted470

on the earlier part of the data flags multiple changes (1691, 1699, 1727, 1740, 1741), calling for a471

closer examination of the earlier part of the record. In data with inhomogeneities, BIC penalties472

favor mean shift models over trend shift models, even if the trend shifts model is truth. A mean473

shift model characterizes a warming trend as a staircase of increasing steps. This issue can be474

troublesome if the trend in the data is weak, as demonstrated in our simulation study (see Figure475

6).476
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The changepoint flagged in 1988 (from multiple models and in both the full and truncated CET477

series) is not surprising given the warming seen on the global level in the 1960/70s in a range478

of surface temperature records, as discussed in studies using both trend shift and joinpin models479

(Cahill et al. 2015; Beaulieu and Killick 2018; Rahmstorf et al. 2017; Ruggieri 2013). While480

the more recent part of the CET series is considered more reliable and has been adjusted for481

inhomogeneities, we cannot entirely discard issues in this era either. Overall, it is possible that a482

combination of natural and artificial causes contribute to shifts in the CET series.483

To further rule out artificial changes, one could subtract all
(15

2
)
= 105 pairs of series from one484

another and examine these differences for changepoints. Then, one can distinguish artificially485

caused changepoints from those due to natural climate change and variability. See Menne and486

Williams Jr. (2009) for more details on this procedure. Artificial changes can then be corrected487

before long-term trends are analyzed. Changes that are not considered artificial can be further488

investigated through an attribution study (Hartmann et al. 2013).489

Residual analyses were conducted to ensure that the underlying assumptions of the model were490

met. With the CET series, residuals of the trend shift model fit were judged to be uncorrelated491

(white noise). However, climate time series often exhibit autocorrelation that should be taken into492

account. We stress the importance of verifying the underlying assumptions in any changepoint493

model. Indeed, neglecting positive autocorrelation raises the risk of detecting spurious shifts.494

Also, the series’ autocorrelation may be more complex than an AR(1) process and may itself495

contain shifts (Beaulieu et al. 2012; Beaulieu and Killick 2018). Some climate series may also496

contain long-memory autocorrelations (Vyushin et al. 2012). An additional challenge lies with497

the ambiguity between long-memory and changepoint models: both features can produce series498

with similar run structures. Because of this, a long-memory model was included as part of our499

comparison. We found that the CET time series is best represented by a multiple trend shift500
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changepoint structure and not a long-memory model. Such a comparison is not possible for all501

climate series since lengthy records are required to analyze long-memory series (Beaulieu et al.502

2020). The CET time series, which is the longest publicly available surface temperature series,503

enables this comparison. Other assumptions that weremade include constant variance temperatures504

and normally distributed observations. Both assumptions cannot be rejected in any models fitted505

(Tables 2-3).506

Model selection based on a criteria does not guarantee that the selected model is "truth". All507

models are an approximation of reality and multiple models can plausibly represent the data. To508

quantify this, one can calculate posterior model probabilities with BIC that each fitted model is509

the "quasi-truth". This assumes that all models included in the comparison have the same prior510

weight, which may not be reasonable. One must also note that this measure is relative to the511

models included in the comparison, and does not reflect the uncertainty that the "true" model may512

not be part of the model set. Similarly, uncertainty in the total number of changepoints and their513

individual occurrence times is a difficult statistics problem. Bayesian methods, which were not514

considered here, can in principle place uncertainty margins on the number of changepoints and515

their locations. When several distinct models have similar penalized likelihood scores, inferences516

about the number of changepoints are likely to be less reliable. Recent statistics work is now517

studying this issue (Li et al. 2019; Cappello et al. 2021).518

Ultimately the choice of "best model" should be arrived at from a judgment made by the519

researcher(s) based on objective statistical metrics, such as presented in this work, combined with520

understanding of the data recording practices and physics of the natural system.521
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Table 1: Penalized likelihoods. The boxed terms are the penalties, with the unboxed terms
constituting −2log(!∗). Here, # denotes the length of series, < the number of changepoints, g8 is
the time of the 8th changepoint, and f̂2 is the estimated white noise variance.

Criteria Objective Function

BIC # log(f̂2) +# +# log(2c) + (3< +4) log(#)

MDL # log(f̂2) +# +# log(2c) + 2log(#) +2log(<) +2
<+1∑
8=1

log(g8 − g8−1) +2
<+1∑
8=2

log(g8)

(a) Penalized likelihoods for the trend shift model with AR(1) errors

Criteria Objective Function

BIC # log(f̂2) +# +# log(2c) + (3< +3) log(#)

MDL # log(f̂2) +# +# log(2c) + log(#) +2log(<) +2
<+1∑
8=1

log(g8 − g8−1) +2
<+1∑
8=2

log(g8)

(b) Penalized likelihoods for the trend shift model with white noise errors

Criteria Objective function

BIC # log(f̂2) +# +# log(2c) + (2< +4) log(#)

MDL # log(f̂2) +# +# log(2c) + 3log(#) +2log(<) +
<+1∑
8=1

log(g8 − g8−1) +2
<+1∑
8=2

log(g8)

(c) Penalized likelihoods for the fixed slope mean shift with AR(1) errors

Criteria Objective function

BIC # log(f̂2) +# +# log(2c) + (2< +1) log(#)

(d) Penalized likelihoods for the Joinpin model with white noise errors

Criteria Objective function

BIC # log(f̂2) +# +# log(2c) + 4log(#)

(e) Penalized likelihoods for the long memory model with AR(1) errors. Minus log(#) for white noise errors.
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Table 2: Model fitting results. Here, f̂2 denotes the estimated variance of the white noise (*
is assumed rather than estimated). Bolded values are the smallest penalized score. All model
residuals have been checked for normality (Shapiro-Wilk’s & Kolmogorov-Smirnov test) and
constant variance (Levene’s test).

Model Penalty Flagged Changepoints f̂2 Log-likelihood Penalized Score

Trend shifts+AR(1)
BIC 1700,1739,1988 0.290 -288.80 654.19

MDL 1700,1739,1988 0.290 -288.80 656.52

Trend shifts+WN
BIC 1700,1739, 1988 0.291 -290.02 650.74

MDL 1700,1739, 1988 0.291 -290.02 653.07

Fixed slope mean shift+AR(1)
BIC 1988 0.325 -310.11 655.79

MDL 1988 0.325 -310.11 658.93

Joinpin BIC 1973 0.291* -321.19 654.17

Long-memory+AR(1) BIC - 0.579 -316.59 656.75

Long-memory BIC - 0.584 -319.31 655.93
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Table 3: Model fitting results based on truncated CET series. Here, f̂2 denotes the estimated
variance of the white noise (* is assumed rather than estimated). Bolded values are the small-
est penalized score. All model residuals have been checked for normality (Shapiro-Wilk’s &
Kolmogorov-Smirnov test) and constant variance (Levene’s test).

Model Penalty Flagged Changepoints f̂2 Log-likelihood Penalized Score

Trend shifts+AR(1)
BIC 1987 0.305 -205.44 449.51

MDL 1987 0.305 -205.44 450.70

Trend shifts+WN
BIC 1987 0.308 -206.13 445.36

MDL 1987 0.308 -206.13 446.55

Fixed slope mean shift+AR(1)
BIC 1990 0.306 -208.06 449.23

MDL 1990 0.306 -208.06 452.51

Joinpin BIC - 0.308* -220.72 452.47

Long-memory+AR(1) BIC - 0.333 -217.01 450.57

Long-memory BIC - 0.340 -219.41 449.85
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Table 4: BIC posterior probabilities for models fitted to the full and truncated CET series

Model Full Truncated

Trend shifts + AR(1) 0.11 0.08

Trend shifts + WN 0.64 0.68

Fixed slope +mean shifts+AR(1) 0.05 0.10

Joinpin 0.12 0.02

Long-memory+AR(1) 0.03 0.05

Long-memory 0.05 0.07
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Table 5: Parameter estimates of the best fitting model: trend shifts with white noise errors

Segment Slope (◦C/yr)

1659-1699 -0.027

1700-1738 0.026

1739-1987 0.002

1988-2020 0.011

(a) Full CET

Segment Slope (◦C/yr)

1772-1986 0.002

1987-2020 0.016

(b) Truncated CET
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Fig. 1: Station locations and annual average temperatures of Central England.

(a) Locations of weather stations.
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(b) Annual average temperature of Central England.
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Fig. 2: Estimated CET trend shift structure. BIC and MDL flag the same changepoints in both the
CET series (1700,1739,1988, red solid line) and truncated CET (1987, blue dashed line) series
when assuming either AR(1) or white noise errors.
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Fig. 3: The estimated CET trend shift structure for the full (red solid line) and truncated CET (blue
dashed line) series when a constant regime trend slope is imposed. Both BIC and MDL flag a
single changepoint in 1988 for the full series and 1990 for the truncated series.
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Fig. 4: Estimated CET joinpin shift structure for full (red solid line) and truncated (blue dashed
line) series. BIC flags one shift in 1973 in the full series and and none for the truncated series.
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Fig. 5: The estimated CET mean shift structure for full (red solid line) and truncated (blue dashed
line) series. BIC and MDL detect the same changepoints for both the CET and truncated CET
series assuming white noise errors.
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Fig. 6: Histogram of differences in BIC scores between the trend and mean-shift models. The
correct model is the trend-shift model; however, BIC selects the mean-shift model the majority of
the time.
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