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Abstract 15 

Dialect variation spans different linguistic levels of analysis. Two examples include the typical 16 

phonetic realisations produced and the typical range of intonational choices made by individuals 17 

belonging to a given dialect group. Taking the modelling principles of a specific automatic accent 18 

recognition system, the work here characterises and observes the variation that exists within these 19 

two levels of analysis among eight Arabic dialects. Using a method that has previously shown 20 

promising performance on English accent varieties, we first model the segmental level of analysis 21 

from recordings of Arabic speakers to capture the variation in the phonetic realisations of the vowels 22 

and consonants. In doing so, we show how powerful this model can be in distinguishing between 23 

Arabic dialects. This paper then shows how this modelling approach can be adapted to instead 24 

characterise prosodic variation among these same dialects from the same speech recordings. This 25 

allows us to inspect the relative power of the segmental and prosodic levels of analysis in separating 26 

the Arabic dialects. This work opens up the possibility of using these modelling frameworks to study 27 

the extent and nature of phonetic and prosodic variation across speech corpora. 28 

1 Introduction 29 

Many recent approaches to automatic accent recognition have depended heavily on machine learning 30 

techniques, falling in line with trends across the breadth of speech technology (Najafian, et. al., 2018; 31 

Shon et. al., 2018). Usually though, these approaches do not yield accent recognition rates that are 32 
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comparable with the low error rates we see in related areas like automatic speaker recognition 33 

(Snyder et. al., 2017). Additionally, these approaches demand enormous, and therefore often 34 

unattainable, datasets to develop working systems. One way of overcoming the need for very large 35 

datasets in automatic accent recognition is to be selective in its development and inform the system 36 

of the specific features it should use to model speakers’ accents. The York ACCDIST-based 37 

automatic accent recognition system (Brown, 2015; Brown and Wormald, 2017) is an example of a 38 

system that takes this more targeted approach. Based on the ACCDIST metric (Huckvale, 2004, 39 

2007), Y-ACCDIST models encapsulate only a subset of features that are expected to represent a 40 

speaker’s production of the phoneme inventory. In doing so, Y-ACCDIST has a lowered reliance on 41 

machine learning techniques that would otherwise involve the extraction of many features from right 42 

across the speech sample, which would then be used to derive a subset that is estimated to comprise 43 

the most useful features for the task at hand. As implemented to date, Y-ACCDIST targets the 44 

phonetic realisations of the individual vowels and consonant segments in the language and compares 45 

one speaker’s set of realisations with the corresponding sets of other speakers. This comparison 46 

gauges which group of speakers (grouped by accent) the speaker is most similar to. The first 47 

experiments in this paper demonstrate the performance of this “segmental” version of the Y-48 

ACCDIST system on speech recordings taken from speakers of eight Arabic dialects. These 49 

experiments simultaneously show its use as an automatic dialect classification system and as a way 50 

of observing variation among accents and dialects. 51 

 52 

While attempting to isolate the segmental level has its advantages (as it is the level of analysis that is 53 

expected to be most valuable to dialect classification), we are aware that there are other potentially 54 

useful features within the speech signal that this approach overlooks. There is growing evidence of 55 

accent- or dialect-specific intonation patterns in a number of languages. For example, computational 56 

analysis of data from the Intonational Variation in English (IViE) project in seven different British 57 

English varieties, showed differences in the shape and distribution of f0 contours across dialects 58 

(Grabe, Kochanski, & Coleman, 2007). A key contribution of this paper is to ascertain whether the 59 

modelling procedure in the standard segmental form of the Y-ACCDIST system can also be applied 60 

to the prosodic level of analysis. This will then enable us to compare the contribution of segmental 61 

and prosodic cues to a specific dialect classification task, while removing other potentially distracting 62 

information embedded within the speech signal. 63 

 64 
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The dataset that has been used in the experiments presented in this work is the Intonational Variation 65 

in Arabic (IVAr) corpus (Hellmuth and Almbark, 2019). There are other, larger, speech corpora 66 

available that would allow for research to be conducted on different Arabic dialects. The Multi-Genre 67 

Broadcast (MGB-5) challenge dataset (Ali et. al., 2019) is one such example which consists of 68 

hundreds of hours of data from 17 countries, a subset of which has been labelled for dialect group by 69 

human annotators. Despite MGB-5’s appealing size, there are a number of reasons why the IVAr 70 

corpus is better suited to the present study. Firstly, Ali et. al., (2019) concede that there will be 71 

labelling errors as a result of their dataset construction method. Much of the metadata is often led by 72 

the country of the YouTube channels, for example, from which the speech data have been identified. 73 

Dialect labels may therefore be estimations at times, bringing in noise to any dialect research. The 74 

IVAr corpus metadata, on the other hand, are extremely controlled and reliable, allowing us to draw 75 

more robust findings. Secondly, the speech samples in the MGB-5 dataset are generally too short. 76 

MGB-5 speech samples are categorised according to their durations: short (<5s), medium (5-20s) and 77 

long (>20s). This distribution of sample durations is insufficient for the methods implemented in the 78 

present study, where, ideally, we would be using at least one minute of speech per speaker. Thirdly, 79 

the IVAr corpus was collected in such a way that elicited speech for the purpose of prosodic research 80 

(i.e. a carefully selected and informed set of sentences and speech tasks that prompt intonation 81 

patterns of interest). The present study would not be possible without such control in the data 82 

construction. Lastly, the IVAr corpus has already had a substantial amount of prosodic analysis 83 

conducted on it (Hellmuth, 2018; Hellmuth, to appear). This enables us to interpret the performance 84 

of the modelling procedure in the context of prosodic analysis that has been conducted using more 85 

traditional analytical methods. These kinds of analytical procedures have typically involved manual 86 

qualitative labelling of samples of data using a system of prosodic annotation such as the Tones and 87 

Break Indices (ToBI) system (Beckman & Elam, 1997; Beckman, Hirschberg, & Shattuck-Hufnagel, 88 

2005) or more recent systems proposed for use across languages (Hualde & Prieto, 2016), as well as 89 

quantitative approaches such as visualisation and statistical analysis of f0 contour shapes (Hellmuth, 90 

2018).  91 

 92 

Recently, a more innovative way of capturing prosodic variation has been proposed. Elvira-García et. 93 

al. (2018) introduced the ProDis dialectometric tool for measuring prosodic distances between 94 

linguistic varieties based on acoustic measurements. ProDis involves logging the correlations 95 

between the pitch contours of specified sentences produced by speakers, and then comparing these 96 

correlations among a speaker set representing a range of languages. This provides a dialectometric 97 
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method that aims to reveal prosodic similarities and differences between linguistic varieties. The 98 

authors motivate their work by pointing out that efforts have been made to measure dialect and 99 

language differences by making phonological or lexical comparisons, but that we lack an equivalent 100 

that makes use of prosodic information. Their demonstration of using ProDis shows its application to 101 

a subset of AMPER (Atlas Multimédia Prosodique de l’Espace Roman) (Contini and Romano, 2002), 102 

which is an international effort to capture data that represents a full range of Romance linguistic 103 

varieties. Within their work, they applied the ProDis tool to 7 dialects from across 5 Romance 104 

languages. Using ProDis, Elvira-García et. al. were able to perform cluster analyses and associated 105 

data visualisations on these data, followed by some qualitative evaluation. For example, they 106 

produced a dendrogram of their ProDis data representations. One of their clusters was neatly made 107 

up of varieties that are largely spoken in Sardinia, and they were able to provide an accompanying 108 

example of the characteristic intonation contour shape of yes/no-questions produced by speakers of 109 

those varieties. 110 

 111 

Similarly, one version of the Y-ACCDIST system has been presented as another way to quantify 112 

differences among accent varieties, by measuring and modelling phonetic realisational differences of 113 

segments, demonstrated in Brown and Wormald (2017). Like Elvira-García et. al.’s study above, 114 

Brown and Wormald were able to draw observations from a dendrogram of Y-ACCDIST 115 

representations of different speakers in a speech dataset. In their work, they looked at the accent 116 

differences between Punjabi-English and Anglo-English speakers in Bradford and Leicester in 117 

England. One of the pertinent patterns to emerge was that there were some clusters that grouped the 118 

speakers according to the community centre they attended, which perhaps went beyond the types of 119 

grouping that the authors originally expected. As well as the cluster analyses, Brown and Wormald 120 

were also able to perform some feature selection analyses (using the Y-ACCDIST models as a 121 

framework of features) which indicated the vowels and consonants that were estimated to separate 122 

the accent varieties in the dataset. This analysis pointed towards the GOAT vowel and /ɹ/ as features 123 

that discriminated these accent varieties, which corresponded with some of the more traditional 124 

acoustic analysis conducted in Wormald (2016). 125 

 126 

Another ACCDIST-based system was demonstrated to observe accent variation among a larger 127 

number of accents from across the British Isles in Ferragne and Pellegrino (2010), which also took 128 

advantage of the variation in phonetic realisations. In their study, Ferragne and Pellegrino took 129 

controlled wordlist data and created an ACCDIST-based model of the vowel systems of 261 speakers 130 
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who represented 13 accents from the Accents of the British Isles (ABI) corpus (D’Arcy et. al., 2004). 131 

They also found that these models yielded linguistically explicable patterns in visualisations of the 132 

data. For example, they found a very neat split in a cluster analysis between the Scottish, Irish and 133 

English accent varieties in the corpus. 134 

 135 

By implementing a Y-ACCDIST-based framework to model speakers’ intonational inventories, in 136 

this work we apply a similar modelling procedure to that presented in Elvira-García et. al. (2018). 137 

However, by implementing a framework that has also been used to capture segmental phonetic 138 

realisational differences between different accent varieties, we can draw comparisons between how 139 

prosodic information and segmental information distinguish linguistic varieties under investigation. 140 

Additionally, by modelling numerous speakers per dialect group, we have an opportunity to train a 141 

dialect classification system on the prosodic information alone to be able to observe how much this 142 

single level of analysis could contribute to an accent or dialect classification task. Although the 143 

dataset used to demonstrate ProDis in Elvira-García et. al. was very large, the number of speakers per 144 

variety was very small (less than 5), and so did not provide the opportunity for an experiment of the 145 

kind presented here. 146 

 147 

Until the current work, Y-ACCDIST had only been tested on datasets of speech in English. We first 148 

demonstrate its performance in distinguishing between dialects of Arabic in its original segmental 149 

configuration (i.e. targeting the phonetic realisations of different segments), and we show results on 150 

both controlled read speech and spontaneous speech. We then move on to explore the Y-ACCDIST-151 

based framework for modelling the prosodic variation among accents, allowing us to compare the 152 

different value that segmental and prosodic levels of speech analysis bring to the dialect recognition 153 

task. We also delve into the inner workings of the machine learning within the system to determine 154 

whether we can identify particularly useful features within the segmental and prosodic models that 155 

can discriminate the Arabic dialects. All the analysis tasks conducted for this study are interpreted in 156 

the context of the existing prosodic analysis conducted on these same data. 157 

In summary, this paper addresses the following broad objectives: 158 

• to observe the Y-ACCDIST system’s recognition performance on Arabic dialect varieties and 159 

interpret the results in the context of existing linguistic analyses of the data.  160 

• to compare the performance of the Y-ACCDIST system on read speech and spontaneous 161 

speech on the same dialect classification task. 162 
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• to transfer Y-ACCDIST’s modelling technique from the segmental level of analysis to the 163 

prosodic level and compare dialect classification performance between these two levels of 164 

analysis. 165 

 166 

2 Arabic Dialects 167 

2.1 Overview of Arabic dialects 168 

Arabic is one of the world’s largest languages, spoken as a native language by at least 300 million 169 

speakers (Owens, 2013), yet consisting of a diverse array of spoken vernaculars which vary from 170 

each other at all levels of linguistic analysis – from phonetics and phonology to morphosyntax and 171 

lexis (Retsö, 2013). There is a clear divide between western ‘maghreb’ dialects spoken in North 172 

Africa and eastern ‘mashreq’ dialects spoken elsewhere (Behnstedt & Woidich, 2013), such that 173 

human listeners can distinguish these two broad groups based solely on prosodic information (Barkat, 174 

Ohala, & Pellegrino, 1999). A commonly used geographical approach to grouping Arabic dialects, 175 

based on shared linguistic features within groups, results in the following five-way grouping, from 176 

west to east (Versteegh, 2014): i) dialects of North Africa (including Morocco, Algeria, Libya and 177 

Tunisia); Egyptian dialects (including Egypt and Sudan); Levantine dialects (including Jordan, 178 

Lebanon, Syria and Palestine); Mesopotamian dialects (including Iraq); and dialects of the 179 

Gulf/Arabian Peninsula (including Saudi Arabia, Kuwait, Bahrain, Qatar, Oman and Yemen). This 180 

five-way split has been widely implemented in computational approaches to the Arabic dialect 181 

classification task (e.g. Biadsy et. al., 2009). Nevertheless, the degree of dialectal variation within 182 

each of these five groups is considerable, with additional important dialectal discontinuities due to 183 

historical contact and migration, social categories and lifestyle (with a common broad divide between 184 

dialects which are sedentary/urban versus nomadic/rural in origin) as well as religious or sectarian 185 

affiliation (Behnstedt & Woidich, 2013). As a result of these cross-cutting factors contributing to 186 

dialectal variation, Arabic is frequently described as a ‘mosaic’ of dialects. ‘Successful’ dialect 187 

classification for Arabic would ideally be able to tackle different degrees of granularity, both between 188 

and within the broad regional groupings that are usually taken as targets.   189 

2.2 Automatic classification of Arabic dialects 190 

As indicated in the Introduction, many approaches to automatic dialect identification have depended 191 

heavily on machine learning approaches, usually inspired by the techniques tested for Language 192 

Identification (LID). These approaches have demanded vast quantities of data for training. Biadsy et. 193 
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al. (2009) applied a Phone Recognition followed by Language Modelling (PRLM) approach to 194 

Arabic dialect classification, which was first introduced by Zissman (1996) for the purpose of LID. 195 

As the name suggests, PRLM starts by feeding a speech sample through a phone recognition system 196 

to establish an estimated sequence of phones in the sample. This estimated sequence is then 197 

compared against the phone sequences and distributions computed for the different linguistic 198 

varieties in the reference system (i.e. the training data). PRLM therefore depends on the different 199 

varieties we are distinguishing between to have phone sequences and distributions that are separable. 200 

For LID, this seems to achieve reasonable performance, but as the varieties we are distinguishing 201 

between become more and more similar (i.e. dialects and then accents), this approach is expected to 202 

become less effective. In their work, Biadsy et. al. reported that the PRLM approach achieved 81.6% 203 

accuracy for an identification task involving speakers of five Arabic dialect groups (using the 204 

commonly used grouping described in Section 2.1 above). 205 

 206 

The PRLM approach is the more traditional one for this sort of task. Researchers have since applied 207 

classifiers based on neural networks to the problem of Arabic dialect recognition (Najafian, et. al., 208 

2018; Shon, et. al., 2018). These works follow in the footsteps of developments in speaker 209 

recognition research, where a new method of modelling the variation among different speakers in the 210 

form of “embeddings” was proposed, in an effort to improve on the performance of i-vector-based 211 

systems (Snyder et. al., 2017). Such methods demand vast amounts of training data (ideally, 212 

hundreds of speech samples per dialect group). Both of the studies mentioned above which apply the 213 

neural network based approach to Arabic dialect identification used the Multi-Genre Broadcast 3 214 

(MGB-3) dataset, which offers 63.6 hours of training data across the five main Arabic dialect groups. 215 

Shon et. al. (2018) achieved 73% accuracy using a neural network based system, outperforming the i-216 

vector systems they compared on the same task.  217 

 218 

In this paper, our experiments will be conducted on a corpus of speech recordings taken from 96 219 

speakers spanning 8 Arabic dialect categories. We therefore present ourselves with a dialect 220 

classification problem which has a fraction of the data to train a system on. In addition, we assume 221 

that this is a more difficult problem in that we have increased the level of similarity between dialects 222 

by having 8 dialect categories, rather than 5 broader ones. The Y-ACCDIST-based method we are 223 

employing is much better suited to a dataset of this size and nature (as demonstrated in Brown 224 

(2016)). 225 

 226 
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2.3 The IVAr Corpus 227 

The core Intonational Variation in Arabic (IVAr) corpus contains recordings from 12 speakers each 228 

in 8 spoken dialects of Arabic (96 speakers in total), collected on location in North Africa and the 229 

Middle East (Hellmuth & Almbark, 2019)1. IVAr provides at least one dataset from each regional 230 

dialect group, with more than one dataset for the more linguistically diverse regional groups 231 

(Levantine/Gulf/North Africa). The corpus thus provides for an eight-way dialect classification task, 232 

across the geographically defined dialects listed in Table 1.  233 

 234 

Table 1. Dialects represented in the Intonational Variation in Arabic Corpus 235 

 236 

Code Dialect Recording location Regional group 

moca Moroccan Arabic (Casablanca) Casablanca, Morocco North Africa 

tuns Tunisian Arabic (Tunis) Tunis, Tunisia 

egca Egyptian Arabic (Cairo) Cairo, Egypt Egyptian 

joka Jordanian Arabic (Karak) Karak, Jordan Levantine 

syda Syrian Arabic (Damascus) Amman, Jordan 

irba Iraqi Arabic (Muslim Baghdadi) Amman, Jordan Mesopotamian 

kwur Kuwaiti Arabic (Urban) Kuwait City, Kuwait Gulf/Arabian Peninsula 

ombu Gulf Arabic (Buraimi) Buraimi, Oman 

 237 

 238 

Use of IVAr allows us to demonstrate the dialect identification task at a more granular level than is 239 

typical in the field, since most other work on dialect identification for Arabic attempts at most a five-240 

way regional classification (due, in turn, to the fact that most large Arabic corpora provide datasets 241 

defined at a regional level only). 242 

 243 

The corpus contains speech elicited in a range of speech styles, from scripted read speech to 244 

unscripted semi-spontaneous speech. The scripted materials were presented to participants printed in 245 

Arabic script, using the informal spelling conventions of each local dialect (rather than following the 246 

norms of standard Arabic); in this paper we use data elicited by means of a scripted dialogue (sd) 247 

performed as a role play between pairs of speakers and a monologue narrative folk tale (sto). The 248 

spontaneous speech data used in this paper comprise a monologue folk tale retold from memory (ret), 249 

an information-gap map task performed in dialogue between pairs of speakers (map), and free 250 

 

1 The full corpus comprises 10 datasets across 8 dialects; that is, for one of the 8 dialects, Moroccan Arabic, there are two 

additional datasets: one with bilingual speakers of Moroccan Arabic and Tashlhiyt Berber aged 18-35 (mobi), and one 

with Moroccan Arabic speakers aged 40-60 (moco). These two additional datasets are not investigated in the present 

study. 
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conversation between pairs of speakers (fco). Further information about the instruments used to elicit 251 

the data is available at ivar.york.ac.uk/. 252 

 253 

The participants in each location were recruited through a local fieldwork representative, typically 254 

through an educational institute such as a university or private language school. Participants ages 255 

ranged from 18-35 years.  All recordings took place in the city in which participants were resident, 256 

and recruitment was carefully monitored to ensure participants were speakers of the target dialect and 257 

had been raised in the target city. The only exception was speakers of Syrian and Iraqi Arabic, who 258 

were recruited in Amman, Jordan due to the prevailing security situation in Syria and Iraq at the time 259 

of recording. Detailed participant metadata is provided with the published corpus. All participants 260 

received an information sheet in Arabic and provided informed written consent prior to recording.  261 

 262 

Participants were recorded in pairs using head-mounted Shure SM10A dynamic microphones directly 263 

to .wav format on a Marantz PMD660/620 digital recorder at 44.1kHz 16 bit, with each speaker 264 

recorded to a separate stereo channel which can be split to analyse speakers separately. Recording 265 

sessions were run by a local fieldworker who was a native speaker of the same dialect. All of the 266 

tasks, scripted and unscripted, were performed in a single recording session, with the same 267 

interlocutor and under the same recording conditions.  268 

 269 

The spontaneous speech data were orthographically transcribed by native speaker research assistants 270 

using a romanised phonetically transparent transliteration system adapted for each dialect; these 271 

transcriptions are available as part of the published corpus. For the read speech, the script used during 272 

data collection was transcribed into the same transliteration system, and are also made available with 273 

the corpus. For the present project we created a merged dictionary of all of the dialect-specific forms 274 

used in transcripts for read and spontaneous speech across all dialects; a native speaker of Arabic 275 

proficient in Modern Standard Arabic (MSA) created a transcription of each dialect-specific form 276 

using a common MSA phone set to create the merged dictionary. This was based on the accepted 277 

cognate sound in MSA of dialect-specific variants. For example, the name of the main character in 278 

the folk tale retold from memory is variously produced in the dialects as [ʒuħa], [dʒuħa] or [ɡuħa] 279 

 and appears in the merged dictionary as pronounced in MSA i.e. as [ʒuħa]. We intend on 280 <جحا>

publication of the present paper to make this merged dictionary available as an appendix to the main 281 

published IVAr corpus. 282 

 283 
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As already discussed in the Introduction, larger speech datasets of Arabic dialects exist, such as 284 

MGB-3 and MGB-5. However, such datasets have not been collected in a way that allows us to 285 

explore the specific research questions in this paper that involve analysing prosodic variation as well 286 

as segmental variation.  287 

 288 

 289 

3 The Y-ACCDIST System 290 

Y-ACCDIST is a text-dependent system, which requires a transcription to be processed alongside the 291 

audio sample we are classifying. However, a text-dependent system here is defined as one that 292 

requires a transcription, but the speech can be spontaneous (as discussed in Brown (2018)). In some 293 

works, text-dependent systems only refer to those where the spoken content of the test samples and 294 

the training samples match. This is one of the key features that separates Y-ACCDIST from other 295 

ACCDIST-based recognisers found in Huckvale (2004, 2007) and Hanani et. al., (2013). The initial 296 

experiments will allow us to compare the performance of this approach on the IVAr dataset on both 297 

read speech (where the spoken content is matched across training and test data), and spontaneous 298 

speech (where the spoken content does not match across speech samples).  299 

 300 

3.1 System Description 301 

 302 

For each speaker in the IVAr dataset, we take a speech sample and a transcription and pass them 303 

through a forced aligner (developed in-house using the Hidden Markov Model Toolkit (HTK) 304 

(Young et al, 2009)) to estimate where each phone in the sequence is produced in the sample. Given 305 

a speech recording and a phonemic transcription of that recording, the aligner extracts acoustic 306 

features from across the speech sample and estimates where each phone is in the signal, i.e. 307 

producing an estimated time alignment of the phone sequence. Some forced aligners, particularly 308 

those that are widely available, have ready-trained acoustic models for a given language that may 309 

provide multiple options for a phonemic transcription of a given word. The specific phone labels 310 

attributed to a speech sample will therefore be partly determined by the acoustics of the segments in 311 

the speech sample, and how they compare against the pre-trained acoustic models of the forced 312 

aligner. For the present study, however, we created a bespoke lexicon containing all lexical items in 313 

the analysed data subset (described in section 4.1), based on the phoneme inventory of Modern 314 

Standard Arabic (MSA). To achieve this, we generated a cross-dialectal lexicon from the dialect-315 

specific transcripts made available with the IVAr corpus, which was manually edited by an Arabic 316 

speaker to replace dialect-specific phoneme labels with MSA phoneme labels; for example, a dialect-317 
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specific entry for the word ‘heart’ such as [galb] or [2alb] appears in the bespoke lexicon as [qalb]. 318 

We then used the IVAr dataset itself to train speaker-specific acoustic models for the MSA phoneme 319 

categories in the bespoke lexicon, which the aligner used to estimate where each phoneme is in the 320 

sample. We initialised the models by “flat-starting”; that is, we imposed evenly spaced notional 321 

phoneme boundaries on the speech samples as a starting point. We then repeatedly applied an 322 

Expectation-Maximization algorithm which iteratively adjusted the placement of these boundaries to 323 

more accurately segment the sample according to phone segments. More reliable boundaries should 324 

be reflected in the production of increasingly stable acoustic models during this process. Performing 325 

forced alignment in this way was possible because we had enough speech per speaker to do so. This 326 

allows us to impose just one set of MSA symbols on the range of different productions that different 327 

speakers may produce. This lays the foundations for our method of dialect classification. 328 

 329 

Using these estimated time boundaries between phones in the sequence, a vector of Mel Frequency 330 

Cepstral Coefficients (MFCCs) (Davis & Mermelstein, 1980) was extracted at the midpoint to 331 

acoustically represent each phone. The MFCCs used in this work consist of 12 coefficients. Larger 332 

MFCC vectors have been trialled in past work (Brown, 2014), but 12 coefficients were shown to 333 

provide sufficient information. An average MFCC was calculated for each phoneme category in 334 

MSA from these midpoint acoustic features. The result of this is that we have the phoneme inventory 335 

represented by average acoustic features (one per phoneme) for the speaker. By using midpoint 336 

features, this approach overlooks temporal differences that might exist between dialects. This is a 337 

factor to keep in mind when interpreting the results.  338 

 339 

Using this set of averaged acoustic features, we calculated the Euclidean distance between all 340 

phoneme-pair combinations that are possible within the phoneme inventory. This was achieved by 341 

computing the Euclidean distances between all the possible pairs of average MFCC vectors that 342 

represent each phoneme. We can organise this in a matrix (for clarity, this is illustrated below in 343 

Figure 1). 344 

 345 
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 346 

 347 

Figure 1. A demonstration of how a speaker-specific matrix is calculated with the whole segmental 348 

inventory from [q] to phoneme n. The ‘0’/‘x’ symbols represent the Euclidean Distance for that pair. 349 

 350 

The resulting set of Euclidean distances is expected to encapsulate the range of phonetic realisations 351 

that are associated with a speaker’s pronunciation system (or accent). This matrix of distances is our 352 

model of a speaker’s accent. Using British English accents as an example, typical speakers in 353 

Northern England will produce similarly realised vowels for FOOT and STRUT (both realised as 354 

[ʊ]), whereas typical speakers in the South of England will produce different vowel realisations 355 

(FOOT would be produced as [ʊ], while STRUT would be more likely to be produced as [ʌ]). A 356 

parallel example for Arabic would arise for consonants; an Arabic speaker from Egypt will typically 357 

realise the target sound < ق > [q] in the same way as target <  whereas an Arabic speaker from 358 ,[ʔ] < ء  

Morocco will more frequently produce these two target sounds ([q]~[ ʔ]) as two separate categories. 359 

One of the Euclidean distances in the matrix is expected to reflect this accent-specific feature of the 360 

speaker. An entire matrix is therefore expected to contain numerous accent-specific features of this 361 

kind. Simultaneously, by computing intra-speaker distances in this way, we should eliminate other 362 

information embedded within the speech signal that does not necessarily assist in the accent 363 

classification task. For example, the distance between the FOOT and STRUT vowels for a typical 364 

Northern male speaker and a typical Northern female speaker should be equally small; similarly, the 365 

distance between targets [q]~[ ʔ] will all be equally small for a typical Egyptian female speaker and a 366 

typical Egyptian male speaker. 367 
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We performed the above procedure on the speech samples and transcriptions of all our training 368 

speakers. The resulting speaker-specific matrices are then fed as features into a Support Vector 369 

Machine (SVM) classifier (Vapnik, 1998).  It is also possible to make use of Deep Neural Networks 370 

(DNNs) as classification mechanisms in these sorts of experiments. However, DNNs are much more 371 

suited to extremely large datasets of thousands of data samples. SVMs also tend to require larger 372 

datasets, but they are not as “data-hungry” as DNNs. 373 

 374 

Within the SVM, which acts as multi-dimensional space, a one-against-the-rest rotation is 375 

implemented for classification. In turn, each accent group of training speakers becomes the ‘one’, 376 

while the speakers for all other accent categories are collapsed into a single group that form ‘the rest’. 377 

An optimal hyperplane (i.e. a separating boundary within multidimensional space) is computed on 378 

each rotation to achieve the best separation between these two groups of speakers2. To classify an 379 

unseen speaker, we form a matrix model for that speaker as described above, and this model is 380 

presented to the SVM on each rotation. The accent category of the unseen speaker is determined by 381 

the clearest margin it forms with the hyperplane in each of these rotations. 382 

 4. Experiments 383 

A sequence of experiments was conducted in the commonly implemented leave-one-out cross-384 

validation setup, where each speaker became the test speaker, in turn, while the remaining speakers 385 

in the dataset were used to train the Y-ACCDIST system. This was in an effort to maximise the 386 

number of training speakers. 387 

 388 

4.1  Segmental Modelling 389 

 390 

The above process was conducted for read speech recordings from the speakers (where speakers were 391 

asked to read the same scripted dialogue and story) and also spontaneous speech as a comparison of 392 

performance on the two modes of speech. As we pointed out above, a transcription must accompany 393 

the recordings. Most, but not all, speakers’ spontaneous speech samples have been orthographically 394 

transcribed. For these experiments, we have therefore used data for both read speech and spontaneous 395 

speech experiments from a subset of the speakers (reduced from 96 speakers to 86 speakers). This 396 

 

2 While SVMs can be very useful in classification problems, they are susceptible to ‘overfitting’, particularly on 

moderate-sized datasets. In these experiments, while overfitting is a risk, we have used a linear kernel, and have also set 

the regularization parameter to tolerate some errors during training. The controlled nature of the dataset also mitigates 

against overfitting as it provides less “noise” and therefore fewer overfitting opportunities. 



 
14 

results in an imbalance in the number of speakers for different dialect groups, though an even gender 397 

balance was retained within each group. Table 2 shows the number of speakers per dialect group in 398 

our analysed subset, along with the volume of data in minutes used in the experiment (with silences 399 

removed), by dialect, gender and speech style.  400 

 401 

Table 2. Number of speakers per accent category in the data subset, with total duration (rounded up 402 

to the nearest whole minute) of speech data used in training and/or testing (silences removed). 403 

  Speakers Scripted data (mins) Unscripted data (mins) 

Dialect Group Code Female Male Female Male Total Female Male Total 

Egyptian (Cairo) egca 4 4 15 12 26 15 7 20 

Iraqi (Muslim Baghdadi) irba 6 6 15 13 28 21 15 36 

Jordanian (Karak) joka 6 6 15 15 30 21 17 37 

Kuwaiti (Urban) kwur 6 6 14 14 28 18 23 41 

Moroccan (Casablanca) moca 6 6 14 14 29 21 44 65 

Gulf (Buraimi, Oman) ombu 6 6 16 15 31 18 12 30 

Syrian (Damascus) syda 3 3 17 15 32 12 17 29 

Tunisian (Tunis) tuns 6 6 14 13 27 23 21 44 

 404 

 405 

Table 3 provides the means and standard deviations of the amount of speech (in seconds) per speaker 406 

used in model training and/or testing in this study.  407 

 408 

Table 3. Mean/standard deviation of speech in seconds per speaker in the data subset by speech task. 409 

 410 
 Speech task Mean amount of speech per 

speaker (seconds) 

Standard deviation per 

speaker (seconds) 

Read Speech 

(scripted) 

Story 72.09 10.74 

Read sentences 73.36 9.64 

Total (read) 145.45 16.54 

Spontaneous Speech 

(unscripted) 

Free conversation 77.28 46.72 

Map task 70.01 59.64 

Retold folk tale 65.11 17.26 

Total (spontaneous) 212.41 102.48 

 411 

 412 

We present the overall results and their corresponding confusion matrices in the subsections below. 413 

 414 

4.1.1  Read Speech 415 

The read speech data used for these experiments come from a scripted role-play dialogue which was 416 

designed to elicit a number of different sentence types, including declarative statements (dec), 417 
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yes/no-questions (ynq), wh-questions (whq) and coordinated questions (coo, also known as 418 

alternative questions, of the form “is it X or Y?”). The sentences were designed to control the 419 

segmental content and prosodic structure of the last lexical item in each utterance, so that it contained 420 

mostly sonorant sounds (to facilitate pitch tracking) and the position of the stressed syllable was 421 

systematically varied over the last three syllables of the word. A set of sample yes/no-questions 422 

elicited in one dialect (here, Jordanian Arabic) are provided in Table 4.  423 

 424 

Table 4. Sample set of yes/no questions (in joka) elicited using the scripted dialogue. 425 

 426 
Code Target sentence  

ynq1 ruħt l-nnaːdi l-‘jamani Did you go to the Club Yemeni? 

Ynq2 l-zawaːʒ l-madani raħ jku:n fi-l-mabna l-‘baladi  Will the civil wedding be in the municipal office? 

Ynq3 gaːbalu baʕidˁ ʕan tˁariːg 'zeːna  Did they meet each other through Zena? 

ynq4 jaʕni raħ tzuːr ʕuxutha la'jaːli  Do you mean she will visit her sister Layali? 

ynq5 yaʕni tʕarrafit ʕaleː fi-l-matˁʕam illi fi-l-'moːl Do you mean they met in the restaurant in the mall? 

ynq6 waːlid nabiːl raħ jku:n maw'ʒuːd  Will Nabil’s parents be present? 

 427 

 428 

For the story task participants read a monologue narrative folk-tale ‘Guha and the banana seller’, 429 

adapted from a story in Abdel-Massih (2011) and adjusted to contain appropriate lexical and 430 

grammatical forms for each target dialects. The story is typically realised by speakers in 40-45 431 

prosodic phrases or breath groups. As noted above all scripted material was presented in Arabic 432 

script using local spelling conventions. 433 

 434 

Although considerable effort went into making the reading material as comparable as possible across 435 

dialects, the scripts read by speakers across dialects did not necessarily match word-for-word. This is 436 

because certain words are simply not shared across dialects so there is some lexical and grammatical 437 

variation across speech samples. We acknowledge that this may have weighted the result to some 438 

extent in that a small number of the phones were produced in specific phonological environments and 439 

this varies according to dialect. However, we do not expect this to be the leading factor in 440 

determining accent as we are cutting out individual phonemes and taking acoustic values from the 441 

midpoints of these segments.  442 

 443 

Using the read speech data, the Y-ACCDIST system achieved 95.3% correct. The accompanying 444 

confusion matrix is presented in Table 5.  445 

 446 
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Table 5. Confusion matrix for Arabic dialect classification task using the segmental models on the 447 

full read speech dataset (scripted dialogue/story). 448 

 449 
 Predicted Labels  

egca  irba  joka  kwur  moca  ombu  syda  Tuns  TOTAL  

T
r
u

e
 L

a
b

e
ls

 

egca  
12  

(100%) 
0  0  0  0  0  0  0  12  

irba  0  
11  

(91.7%) 

1  

(8.3%)  
0  0  0  0  0  12  

joka  0  0  
8  

(100%) 
0  0  0  0  0  8  

kwur  0  0  0  
12  

(100%) 
0  0  0  0  12  

moca  0  0  0  0  
12  

(100%) 
0  0  0  12  

ombu  0  0  0  0  0  
12  

(100%) 
0  0  12  

syda  0  0  
3  

(50%) 
0  0  0  

3  

(50%) 
0  6  

tuns  0  0  0  0  0  0  0  
12  

(100%) 
12  

 450 

The least successful result in this experiment was for the Syrian group of 6 speakers, 3 of whom were 451 

identified as Jordanian. We note that all of the Syrian speakers were resident in Jordan at time of 452 

recording. 453 

 454 

4.1.2  Spontaneous Speech 455 

 456 

Using the spontaneous speech data for modelling, the Y-ACCDIST system achieves 77.9% correct 457 

(67/86). The accompanying confusion matrix is presented in Table 6. 458 

 459 

Table 6. Confusion matrix for Arabic dialect classification task using the segmental models on 460 

spontaneous speech. 461 

 Predicted Labels  

Egca irba joka kwur moca ombu syda tuns TOTAL 

T
r
u

e
 L

a
b

e
ls

 

egca 6  

(75%) 

0 0 0 1 

(12.5%) 

0 1 

(12.5%) 

0 8 

irba 1 8  

(66.7%) 

1  

(8.3%) 

2 

(16.7%) 

0 0 0 0 12 

joka 0 1 

(8.3%) 

8 

(66.7%) 

1 

(8.3%) 

0 1 

(8.3%) 

1 

(8.3%) 

0 12 

kwur 0 1  

(8.3%) 

0 9 

(75%) 

0 2 

(16.7%) 

0 0 12 

moca 0 0 0 0 12 

(100%) 

0 0 0 12 

ombu 0 0 1 (8.3%) 3 

(25%) 

0 8 

(66.7%) 

0 0 12 
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syda 1  

(16.7%) 

0 1 

(16.7%) 

0 0 0 4 

(66.7%) 

0 6 

tuns 0 0 0 0 0 0 0 12 

(100%) 

12 

 462 

We should also note that for the spontaneous speech condition, speakers did not necessarily produce 463 

the same quantity of speech (durations of speech per speaker generally ranged from 4 to 8 minutes), 464 

and so there is variability across the dataset in this respect. 465 

 466 

From the above two results, we can get an indication of the detriment to performance that content-467 

mismatched data has. This is because the different phone tokens are produced in different 468 

environments which is likely to introduce an additional element of variability that is not present in 469 

the read speech condition. We should also bear in mind that there is a smaller number of speakers 470 

available for training the system for some dialect categories which is also likely to impact on the 471 

result.  472 

 473 

4.2. Prosodic Modelling 474 

 475 

As discussed above, the Y-ACCDIST-based approach has allowed us to isolate the segmental level 476 

of analysis and ignore other information embedded within the acoustic signal that might distract 477 

away from cues useful to the accent recognition task. In this part of the study, we aim to transfer the 478 

principles of the Y-ACCDIST modelling procedure to the prosodic level of analysis to see whether 479 

we can confirm previous prosodic analysis of these same data, which indicated that there are prosodic 480 

patterns that are typical of speakers of one or more Arabic dialects but different from patterns 481 

observed in a parallel context in one or more other dialects (Hellmuth 2018).  482 

 483 

4.2.1 Organisation of Prosodic Data 484 

 485 

The read speech data from the IVAr scripted dialogue include the sentence types presented in Table 486 

7, elicited because these may be characterised by different prosodic patterns between sentence types 487 

within one dialect, and/or by different prosodic patterns between dialects within one sentence type.  488 

 489 

Table 7. Sentence types elicited using the IVAr corpus role-play scripted dialogue. 490 

 491 
Code Sentence type  

 dec declarative response to an open question (e.g. ‘what’s new?’) 

whq wh-question question using wh-word such as who or what 

ynq yes/no-question polar question inviting a yes or no answer 
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coo coordinated question (or alternative question) question between two alternatives (e.g. ‘is it X or Y?’) 

inf information focus statement produced in response to a wh-question 

con contrastive focus statement produced in response to a yes/no-question 

idf identification focus statement produced in response to a coordinated question 

 492 

For this reason, it is only these sentences extracted from the scripted dialogue (sd) that are being used 493 

in these experiments that compare the prosodic Y-ACCDIST system with the segmental Y-494 

ACCDIST system, with the read story (sto) data removed from the dataset. A set of results for each 495 

of these system configurations are therefore presented within this section, where each has been 496 

trained and tested on only the sentences extracted from the scripted dialogue. 497 

 498 

4.2.2 Integration of Prosodic Data into the Y-ACCDIST System 499 

 500 

To provide the system with prosodic information, we calculated Euclidean distances between the f0 501 

contours of all the possible pairs of read sentences available for each speaker. It is this collection of 502 

Euclidean distances between f0 contours that is expected to characterise the intonational patterns of a 503 

speaker. While it may not be immediately obvious what sorts of Euclidean distances are likely to 504 

occur between these f0 contours, it is expected that logging the similarities and differences between 505 

f0 contours in this way will express any systematic similarities and differences in intonational 506 

patterns within and between dialects. For example, for Syrian speakers, who more frequently use a 507 

rising contour in declarative sentences than is observed in other Arabic dialects (Hellmuth, 2020), the 508 

f0 contour between a particular declarative sentence X and a particular polar interrogative sentence Y 509 

might be reasonably expected to be more similar to one another than for a speaker of another dialect. 510 

 511 

We used the read portion of the corpus in which all speakers produced more or less the same 512 

sentences. F0 contours were extracted by marking out 50 equally distributed points throughout an 513 

utterance and extracting the f0 at those points in the signal. Of course, at the points in the signal 514 

where there is no voicing, extracting f0 was not possible. This therefore reduced these vectors down 515 

to a size which was slightly smaller than 50, and the same reduction was performed on the f0 vector 516 

that it was being compared against. The result of this was a Y-ACCDIST matrix that reflected the 517 

intonation realisations of the “prosodic contour inventory” that the dataset allowed. Like the default 518 

segmental configuration explained in Section 3.1, this modelling method has the advantage of 519 

normalising against factors such as gender. By making intra-speaker calculations in this way, the 520 

model only characterises the shapes of a speaker’s f0 contours, and so, regardless of whether the 521 

speaker has a relatively high or low f0 range on average, any dialect-specific contour shapes should 522 
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be expressed in the matrix. Figure 2 provides an illustration of the prosodic modelling procedure that 523 

can be compared with the segmental modelling procedure. 524 

 525 

 526 

Figure 2. A diagram to demonstrate how a matrix is formed using f0 contours, rather than acoustic 527 

feature vectors, with the set of sentence types in the IVAr dataset, from yes/no-question 1 to sentence 528 

n. The ‘0’/‘x’ symbols represent the Euclidean Distance for that pair. 529 

 530 

One key difference between these prosodic models and the segmental models is that there is no 531 

averaging of vectors in the construction of the matrices. While it is expected that intonation is 532 

affected by sentence type in Arabic, it is also affected by a range of other discourse factors, such as 533 

information structure (topic, givenness and focus) (Krifka 2008) as well as the interactional context 534 

(Walker 2014). The read speech sentences in the corpus were elicited at different points throughout a 535 

scripted dialogue, and thus appear in subtly different discourse contexts with varying information 536 

structure. This meant that it would be artificial to try to model an average f0 contour for each whole 537 

sentence type. We have therefore treated each individual sentence that was produced as a single 538 

category in the construction of the speaker-specific matrices. Each individual sentence was elicited in 539 

the same discourse context (i.e. position in the scripted dialogue) from each speaker in each dialect. 540 

Overall, this means that we are restricted to performing these experiments on a dataset where 541 

speakers produce the same spoken content. We return to this point further below in the Discussion. 542 

 543 
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Using these prosodic matrices to represent each speaker, we followed the same experimental 544 

procedure as for the segmental experiments described above to achieve a recognition rate and 545 

confusion matrix. The recognition rate we achieved in this configuration was 52.1% correct. The 546 

confusion matrix for this task is shown in Table 8.  547 

 548 

Table 8. Confusion matrix of Y-ACCDIST’s performance on the IVAr dataset using the prosodic 549 

models on the read speech data subset (scripted dialogue only). 550 

 Predicted Labels 

egca irba joka kwur moca ombu syda tuns 

T
r
u

e
 L

a
b

e
ls

 

egca 8  

(66.7%) 

2 

(16.7%) 

0 0 0 0 1 

(8.3%) 

1 

(8.3%) 

irba 1 

(8.3%) 

6 

(50%) 

3 

(25%) 

0 0 1 

(8.3%) 

1 

(8.3%) 

0 

joka 1 

(8.3%) 

1 

(8.3%) 

2 

(16.7%) 

3 

(25%) 

0 2 

(16.7%) 

2 

(16.7%) 

1 

(8.3%) 

kwur 0 0 1 

(8.3%) 

9 

(75%) 

1 

(8.3%) 

0 0 1 

(8.3%) 

moca 0 0 1 

(8.3%) 

1 

(8.3%) 

7 

(58.3%) 

2 

(16.7%) 

1 

(8.3%) 

0 

ombu 0 0 1 

(8.3%) 

0 3 

(25%) 

5 

(41.7%) 

2 

(16.7%) 

1 

(8.3%) 

syda 1 

(8.3%) 

1 

(8.3%) 

2 

(16.7%) 

0 2 

(16.7%) 

3 

(25%) 

2 

(16.7%) 

1 

(8.3%) 

tuns 0 0 0 0 0 0 1 

(8.3%) 

11 

(91.7%) 

 551 

We can compare these results with the segmental system’s results that were produced using the same 552 

subset of read data, which was 93.75% correct, and the confusion matrix for this is shown in Table 9. 553 

 554 

Table 9. Confusion matrix of Y-ACCDIST’s performance on the IVAr dataset using the segmental 555 

models on the read speech data subset (scripted dialogue only; this is the same dataset that was used 556 

to build and train the prosodic system). 557 

 558 
  Predicted Labels  

egca  irba  joka  kwur  moca  ombu  syda  tuns  TOTAL  

T
r
u

e
 L

a
b

e
ls

 

egca  
12  

(100%) 
0  0  0  0  0  0  0  12  

irba  0  
11 

(91.7%) 
0  0  0  0  

1 

(8.3%) 
0  12  

joka  0  0  
11 

(91.7%) 

1  

(8.3%) 
0  0  0  0  12  

kwur  0  0  0  
11 

(91.7%) 
0  0  

1 

(8.3%) 
0  12  

moca  0  0  0  0  
12 

(100%) 
0  0  0  12  

ombu  0  0  0  0  0  12 0  0  12  
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(100%) 

syda  0  0  
3 

(25%) 
0  0  0  

9 

(75%) 
0  12  

tuns  0  0  0  0  0  0  0  
12 

(100%)  
12  

 559 

For the results from the prosodic system, although accuracy in the classification task varies 560 

considerably, all dialects are recognised by prosodic contour alone at above chance levels (if chance 561 

is 12.5% correct). The four ‘best’ recognised dialects are tuns (91%), kwur (75%), egca (67%) and 562 

moca (58%). The four ‘worst’ dialects are irba (50%) and ombu (42%), followed by syda and joka 563 

(both at 16%). These best and worst groupings resemble those observed in the segmental 564 

classification task on spontaneous speech data (Table 6): tuns and moca (100%), kwur and egca 565 

(75%), then irba, ombu, syda and joka (all on 67%).  566 

 567 

 568 

5  Feature contributions to Arabic dialect classification 569 

 570 

One obvious area of interest is identifying the specific linguistic units (i.e. phonemes or sentences) 571 

that are contributing most to distinguishing between the dialect varieties. This section presents an 572 

attempt to access this information within the inner workings of the systems. It builds on a similar 573 

attempt to achieve this in Brown and Wormald (2017), which simply applied ANOVA to Y-574 

ACCDIST models of different British English speakers to reveal which phoneme-pairs were 575 

estimated to distinguish between four accent varieties. The work here makes use of the machine 576 

learning mechanisms implemented in this study to help identify any linguistic units or categories 577 

which might be key features in separating the varieties. 578 

 579 

For both the segmental and prosodic systems, SVMs were used as the classification mechanism. 580 

SVMs assign different weights to the features of the models or representations they are learning. 581 

These weights help with the separation of the groups in the SVM which, in turn, should help to 582 

achieve better classification results. The weights can also be used for a feature selection process 583 

called Recursive Feature Elimination where they are used to rank the features by their weights, and 584 

then the weakest features are removed (either iteratively or as a specified amount, n). By removing 585 

features expected to be less useful to the task, it is thought that the classification performance of a 586 

system could be improved. One option is to run experiments that iteratively remove the weaker 587 

features, and observe what the effect is on classification performance. However, a more efficient, and 588 
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perhaps more direct, way of accessing information about the estimated value of the different features 589 

in a feature set is to look at the full set of weights that the SVM has assigned. 590 

 591 

In the present case, the Euclidean distances that make up the Y-ACCDIST matrices are assigned 592 

different weights, according to those that are estimated to discriminate the different dialect groups 593 

among the training data. Because we have applied a linear kernel in the SVM in these experiments, it 594 

is possible to look more closely at the weights that the different Y-ACCDIST features are assigned 595 

by the SVM, and then use them to make estimations around which features are most useful to the 596 

task of discriminating Arabic dialects. This was carried out for both the segmental system and the 597 

prosodic system to assess whether this method allows us to pick out any particular phonemes or 598 

sentence types that are particularly useful in distinguishing between the dialects. We were keen to use 599 

as much data as possible in order to observe the most reliable indications of sociophonetic variation 600 

within this dataset, so we chose to include the read speech from both the scripted dialogue and story 601 

tasks in this analysis using the segmental system. 602 

 603 

Using the Y-ACCDIST modelling method, however, this process of drawing on SVM weights to 604 

observe individual feature contribution is not wholly straightforward. The speaker representations 605 

that we feed into the SVM are values that are computed between pairs of phonemes or pairs of 606 

sentence types (i.e. the values represented by “x” in Figures 1 and 2), rather than a single value 607 

mapping directly on to an individual phoneme or sentence type. While the modelling method has 608 

been shown to be very strong, these pairs are very difficult to disentangle to be able to observe the 609 

contribution of individual phonemes and sentence types. Clear and obvious patterns may therefore 610 

not emerge. Nevertheless, it is still of interest to see whether this method yields any insight into 611 

feature contributions and so we observe the values that we can in this section. To estimate feature 612 

contribution, we have accumulated all of the absolute weight values assigned to all the pairs of 613 

features that a single feature belongs to, and we reflect these values in boxplots. 614 

 615 

5.1 Segmental feature contributions 616 

 617 

Figure 3 shows this tentative measure of which phonemes appear to contribute the most weight to the 618 

task of distinguishing the eight dialect groups.  619 

 620 
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 621 

 622 

Figure 3. Boxplots to represent the distributions of feature weights associated with each phoneme 623 

segment3.  624 

 625 

The segments have been ordered according to the median, where we find those segments that are 626 

estimated to have the greatest contribution overall to the left, and the segments that are estimated to 627 

make the least contribution are positioned to the right. To reiterate, because of the pairwise nature of 628 

the modelling method, the visual evidence of an individual segment’s contribution to a classification 629 

task is somewhat diluted. We should also keep in mind that segments are represented by midpoints 630 

and so segments that differ in terms of temporal characteristics (rather than quality characteristics) 631 

are less likely to emerge in this analysis. 632 

 633 

The highest ranked phoneme in the feature weights boxplot is (q) /q/, matching systematic variation 634 

in the realisation of this sound across Arabic dialects (Al-Essa 2019). Similarly, the relatively high 635 

ranking of (j) /dʒ/ matches the status of that sound as a known locus of variation between dialects. 636 

For both these sounds, variation between dialects in their realisation is well-documented in the 637 

 

3 A key for the symbols used can be found here: https://reshare.ukdataservice.ac.uk/852878/15/transliteration.pdf 
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research literature, and they frequently appear as a variable in variationist sociolinguistic studies of 638 

individual dialects.  639 

 640 

In contrast, most of the other highly ranked sounds in Figure 3, by feature weight value, are classes 641 

of sound which have received little attention in the research literature on Arabic sociolinguistic or 642 

dialectal variation. These include both fricatives, notably (sh) /ʃ/, (s) /s/ and (H) /ħ/, and vowels /a/ 643 

and /u/ (with /i/ not far behind). Variation across Arabic dialects in the gradient phonetic realisation 644 

of fricatives and vowels is under-researched and as a result not yet fully documented, but those few 645 

studies that exist are nevertheless consistent with the patterns seen here. For vowels, Alghamdi 646 

(1998) reports a complex pattern of differences in values of the first formant (reflecting vowel height) 647 

in data from Saudi, Egyptian and Sudanese speakers, for [a, a:, i, i:, u, u:]. Al-Tamimi & Ferragne 648 

(2005) similarly report a difference in the size of the i~a~u vowel space between Moroccan and 649 

Jordanian Arabic (with comparison also to French); furthermore, they show that Principal 650 

Component Analysis on a simple measure of vowel space size (using between-vowel-vectors for the 651 

first and second formants) yielded 88% correct classification of the three languages. For fricatives, 652 

Alsabhi et al (2020) report a main effect of dialect in models of standard acoustic measures of overall 653 

spectral shape (centre of gravity and peak Hz) for /s/ and /sˁ/, in experimental data elicited alongside 654 

the IVAr corpus from the same speakers and dialect groups examined in the present study.  655 

 656 

In addition, we note that dialectal variation in realisation of (q) and (j) in Arabic can be characterised 657 

as sociolinguistically salient: the variation is above the level of awareness among speakers and may 658 

serve as a stereotype of particular dialects (Ateek & Rasinger, 2018). To our knowledge no studies 659 

have systematically investigated the relative sociolinguistic salience of different linguistic features in 660 

Arabic dialects. However, these feature weights suggest that there may be gradient sociophonetic 661 

features related to fine-grained phonetic realisation of fricatives and/or vowels, which may be below 662 

the level of phonological awareness among speakers and thus not perceived as dialect stereotypes, 663 

but which nevertheless contribute to automatic dialect classification. 664 

 665 

We have already indicated that what draw can be drawn from the feature weights for this particular 666 

modelling method is rather limited. Having said this, there are patterns emerging that align with some 667 

expectations based on previous research, as well as patterns that have perhaps previously gone 668 

virtually unnoticed. The method has therefore focussed attention on potential features of interest and 669 

motivated future research objectives in relation to Arabic dialects.  670 
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 671 

5.2 Prosodic feature contributions 672 

 673 

We also produced the equivalent boxplot visualisations for the prosodic system models to determine 674 

whether any sentence types were particularly influential in distinguishing between the dialects. Our 675 

conclusion here is that there seems to be very little to report, as we found very flat and invariable 676 

distributions among the different features. This will in part be due to the particular modelling method 677 

(as we have already said, a pairwise modelling approach is not the best foundation for reporting the 678 

value of individual segments). This will also be due to the fact that these features are not particularly 679 

powerful dialect discriminators, as the classification results have already demonstrated.  680 

The combination of the lower classification result and the invariable boxplots indicates that we can 681 

expect to find a lot of variability among the intonation contours within the dialect groups. As noted 682 

earlier, however (section 4.2.2) this is exactly what we would expect, since prosodic contour 683 

realisation varies not only according to semantic categories such as question versus statement, but 684 

also due to the information structure and the wider discourse and interactional context. The lack of 685 

feature weight information thus supports the methodological choice to have Y-ACCDIST use 686 

individual sentences (realised at the same position in the dialogue sequence) as the unit of analysis. 687 

 688 

 689 

6 Comparison of visualisations of segmental and prosodic models 690 

 691 

It is also possible to compare visualisations of the two modelling methods for the IVAr speakers in 692 

the read speech scripted dialogue data subset. Having modelled the speakers in this data subset, we 693 

performed multi-dimensional scaling (MDS) on the data, once under the segmental configuration and 694 

once under the prosodic configuration. This allows us to observe any interesting clusters of speakers 695 

for each of the levels of analysis in isolation. These are presented in Figure 4 and Figure 5 696 

respectively. 697 

 698 

 699 
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  700 

Figure 4. Multidimensional Scaling of the IVAr dataset based on segmental Y-ACCDIST modelling 701 

of speakers 702 

 703 

 704 
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 705 

Figure 5. Multidimensional Scaling of the IVAr dataset based on prosodic Y-ACCDIST modelling of 706 

speakers. 707 

 708 

Figure 4 shows clear groupings for most of the individual dialect groups, showing that the segmental 709 

level of analysis is a good unifier of speakers of the same dialect. This is consistent with the very 710 

high classification result that this version of the system achieved. The clustering reflects both the 711 

geographical spread of dialects and their position in the Arabic dialect continuum. The clusters of 712 

speakers from Egypt, Iraq and the Levant (Jordan and Syria) overlap somewhat, towards the left of 713 

the plot, but corresponding to their more central geography and position in the middle of the dialect 714 

continuum. The Gulf dialects (Kuwait/Oman) are distinct from each other, matching their positions at 715 

extreme north and southern ends of the Gulf Arabic dialect group, but both equally separate and 716 

distinct from the central dialects. Similarly, the North African dialects (Tunisia/Morocco) are clearly 717 

separated from each other, again matching their geographical and dialectal separation within the 718 

Maghreb group, but are both equally separate and distinct from the central dialects, and placed at a 719 

greater distance from the central group than the Gulf dialects, reflecting the clear east/west divide 720 

noted in section 2.1. 721 
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Figure 5 for the prosodic model shows a less clear clustering of individual dialect groups. The 722 

relatively tight cluster of Tunisian speakers just right of centre of Figure 5 perhaps aligns with the 723 

very high classification rate achieved for Tunisian speakers in the prosodic experiments, and 724 

interestingly, the Egyptian speakers seem to form a somewhat more consistent cluster compared to 725 

the other dialect groups. Such a clustering for these two dialects would be consistent with some of the 726 

more distinctive prosodic patterning in these dialects found in previous work by the second author, 727 

namely a distinctive rise-plateau contour in yes/no-questions in Tunisian Arabic (Hellmuth, 2018) 728 

and overall higher frequency in the distribution of prosodic peaks in Egyptian Arabic compared to 729 

other dialects (Hellmuth 2007, 2020).   730 

7 Discussion 731 

This paper has demonstrated approaches to analysing dialect variation that take into account whole 732 

collections of features, rather than just focussing on a single feature and seeing how it varies across 733 

different dialects. These approaches are reliant on there being an “inventory” of categories for the 734 

models to work with. In the case of the segmental system, this is the phoneme inventory, and in the 735 

case of the prosodic system, this is a range of different sentences produced at different points in a 736 

scripted dialogue. These aggregate approaches therefore currently only offer a broad-brush account 737 

of the variation in a dialect dataset on either one of these levels of analysis, rather than a detailed 738 

account of exactly which feature is discriminating the different varieties. 739 

 740 

In the case of the prosodic version of the system, we have presented the modelling approach only on 741 

a subset of read speech data in which we could guarantee balance and control in the different 742 

sentence types that we used. The corpus was originally designed for prosodic research to be 743 

conducted on it and so other analysis on the prosodic variation in this dataset had already been done 744 

which opened up the opportunity to corroborate results or to even uncover surprising findings. 745 

Having tested the approach on these very controlled data and having discovered that it appears to 746 

have some value in capturing the variation and distinguishing between the dialects, it is natural to 747 

now consider how it could be transferred to spontaneous speech data. Given a dataset of spontaneous 748 

speech recordings that have been tagged for key features such as sentence type and information 749 

structure, we could evaluate the prospect of using this approach on spontaneous recordings. In 750 

addition, it could be that a larger dataset than the one used in this work would be required to achieve 751 

a more stable representation of the specific variation that exists in Arabic prosody. 752 

 753 
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There has been some other work that has actively sought to integrate prosody’s potential role in the 754 

automatic classification of Arabic dialects. Biadsy and Hirschberg (2009) modelled spontaneous 755 

speech utterances using a combination of features relevant for intonation and rhythm. They captured 756 

a selection of pitch and rhythm values to represent whole utterances (e.g. capturing the variation in 757 

pitch and vocalic proportion of an utterance). These were termed more “global” measurements. They 758 

then went on to characterising utterances with “sequential prosodic features”, which logged various 759 

characteristics of the pitch and intensity contours of utterances. On a broad four-way Arabic dialect 760 

classification task, the “global” features alone achieved 60% accuracy, whereas when more 761 

sophisticated sequential features were combined with them, they achieved 72% accuracy. Between 762 

Biadsy and Hirschberg’s study and the present one, there are many differences to do with the size and 763 

the dimensions of the datasets used, but it may be of interest in future to compare these two methods 764 

like-for-like. One key difference is that Biadsy and Hirschberg applied their prosodic modelling 765 

method to spontaneous speech, a natural next step for the Y-ACCDIST modelling method 766 

implemented in the present study. 767 

 768 

Although the Y-ACCDIST modelling approaches themselves are very adaptable and can feasibly be 769 

used on large datasets of speech recordings, there is some manual preprocessing of the data (i.e. 770 

either broad transcription or tagging) that is required before modelling, classification and 771 

visualisation can take place. It could be possible to overcome this preprocessing by either 772 

automatically transcribing or tagging a corpus, but this will inevitably introduce errors. Work on this 773 

less labour-intensive version is currently ongoing.  774 

 775 

 776 

8 Conclusion 777 

 778 

In this paper we have focussed on automatically classifying speakers of Arabic into different dialect 779 

groups and considered the systems’ outputs in the context of an interest in the variation among 780 

Arabic dialects. We have demonstrated how these kinds of system can both reinforce what we know 781 

about a set of linguistic varieties, but also how it could possibly illuminate new questions to pursue 782 

around certain features. Previous work has shown that we can do this on one level of analysis, but 783 

part of this work has demonstrated that sometimes performance might be too high for us to learn 784 

about a set of dialects from the errors that a system makes. However, this paper has demonstrated that 785 

it is possible to transfer similar modelling principles that have been used for one level of analysis 786 

across to another.  By isolating the segmental level of analysis and then the prosodic level in a similar 787 
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modelling framework, we can observe the contribution of each level of analysis to distinguishing 788 

between the classification of a particular set of varieties. It is probably no surprise that the segmental 789 

level outperforms the prosodic level in a simple dialect classification task, but the prosodic version of 790 

the system showed a performance that sat well above the level we would expect if the system were 791 

working by chance. This difference in performance between the two levels of analysis is likely to be 792 

down to the fact that one forms models based on a full and well-established phoneme inventory and 793 

the other makes use of a (partly arbitrary) list of target sentences. The former is both more fine-794 

grained and more controlled than the latter.  795 

 796 

In the context of Arabic dialects, we were able to corroborate some of the findings surrounding the 797 

prosodic system’s outputs with past prosodic analyses conducted on the same data. The work here 798 

was also able to indicate that Arabic has a wealth of sociophonetic variation to discover at the 799 

segmental level, which is arguably under-explored in Arabic dialects. The detail of this segmental 800 

variation cannot be accurately uncovered by the macro-level computational method implemented in 801 

this work, but would require other more detailed methods to gain a richer understanding. 802 
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