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Highlights  

1) SARS-CoV-2 is causing the world’s current health crisis. 
2) Identification of differentially regulated host genes by respiratory viruses may 

guide novel detection methods and therapeutics. 
3) Amongst, SARS-CoV-1, influenza, respiratory syncytial virus and rhinovirus, 

SARS-CoV-2 induced host genes similar to RSV. 
4) Genes annotated on chromosome 19 are significantly regulated by all 

respiratory viruses including SARS-CoV-2. 
5) Meta-transcriptomic analyses identified GPBAR1 and SC5DL as 

downregulated host genes whereas MAP2K5 and NFKBIL1 genes are 
upregulated host genes by SARS-CoV-2. 
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Abstract 43 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging RNA 44 

virus causing COVID-19 disease, across the globe. SARS-CoV-2 infected patients 45 

may exhibit acute respiratory distress syndrome which can be compounded by 46 

endemic respiratory viruses and thus highlighting the need to understand the genetic 47 

bases of clinical outcome under multiple respiratory infections. In this study, 42 48 

individual datasets and a multi-parametric based selected list of over 12,000 genes 49 

against five medically important respiratory viruses (SARS-CoV-2, SARS-CoV-1, 50 

influenza A, respiratory syncytial virus (RSV) and rhinovirus were collected and 51 

analysed in an attempt to understand differentially regulated gene patterns and to cast 52 

genetic markers of individual and multiple co-infections. While a certain cohort of virus-53 

specific genes were regulated (negatively and positively), notably results revealed a 54 

greatest correlation among genes regulation by SARS-CoV-2 and RSV. Furthermore, 55 

out of analysed genes, the MAP2K5 and NFKBIL1 were specifically and highly 56 

upregulated in SARS-CoV-2 infection both in vivo or in vitro. The most conserved 57 

genetic signature was JAK2 gene as well as the constitutively downregulated ZNF219 58 

gene. In contrast, several genes including GPBAR1 and SC5DL were specifically 59 

downregulated in SARS-CoV-2 datasets. Finally, we catalogued a set of genes that 60 

were conserved or differentially regulated across studied respiratory viruses. These 61 

finding provide foundational and genome-wide data to gauge the markers of 62 

respiratory viral infections individually and under co-infection. This work compares the 63 

virogenomic signatures among human respiratory viruses and provides valid targets 64 

for potential antiviral therapy. 65 

Key Words: SARS-CoV-2, SARS-CoV-1, Influenza, RSV, Rhinovirus, COVID-19, 66 

Transcriptomics. 67 
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1. Background 72 

Since its first appearance in Wuhan, severe acute respiratory syndrome coronavirus 73 

2 (SARS-CoV-2) has rapidly spread across the world in a way unlike any other 74 

respiratory viruses. Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, 75 

is considered the third highly pathogenic coronavirus following SARS-CoV-1 and 76 

Middle East respiratory syndrome coronavirus (MERS-CoV) [1]. The most striking 77 

feature of the incidences and epidemiology of SARS-CoV-2 is its high ability for 78 

transmission among people [2]. The clinical outcome and incidence vary that most 79 

COVID-19 patients show mild and moderate symptoms, and the elderly show serious 80 

symptoms [3]. Additionally, severely affected patients had shown respiratory 81 

complications such as moderate to severe pneumonia, acute respiratory distress 82 

syndrome (ARDS), sepsis, acute lung injury (ALI), and multiple organ dysfunction 83 

(MOD) [4]. 84 

ARDS in COVID-19 patients is thought to be the main cause of death because of the 85 

cytokine storm caused by an over-activation of the human innate immune response 86 

[5]. However, there are multiple immune regulators and host genetic and epigenetic 87 

factors that are capable of significant contributions to the disease manifestation [5]. 88 

Host-pathogen interactions can act as a double-edged sword in different coronavirus 89 

infections as they might be useful not just for hosts, but also for viruses [6]. Similar 90 

tug-of-war host-viruses can also be present in COVID-19, which could lead to 91 

overcomplicated outcomes of the disease [7]. 92 

Although recent studies have shown the transcriptomic analysis of host responses to 93 

SARS-CoV-2 infection at different time points within multiple cell lines [8, 9], the 94 

transcriptional dynamics of host response to multiple virus infection remained largely 95 

unknown. In general, the host innate immune responses play an essential role in 96 

suppressing the replication of the virus once the virus enters the host, such as antiviral-97 

mediated interferons and cytokines, which could lead to the virus pathogenesis. 98 

Increased cytokine levels are also observed in patients hospitalised with COVID-19 in 99 

the same way as both SARS-CoV-1 and MERS-CoV, which induce high levels of 100 

cytokine [10, 11]. Accordingly, understanding the magnitude and dynamics of human 101 

transcriptome in response to medically important respiratory viruses will help in 102 
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understanding their pathogenesis, molecular genetic markers and in repurposing 103 

existing antivirals to combat respiratory viral infections. 104 

The current study aims to compare a large cohort of transcriptomic dataset map the 105 

gene regulation (up or down regulated) by SARS-CoV-2 infection and the 106 

compounding impact of other respiratory viruses such as influenza, SARS-CoV-1, 107 

respiratory syncytial virus (RSV) and rhinovirus. This parallel comparison showcases 108 

common and unique genetic signatures of respiratory viruses under individual and co-109 

infection scenarios to guide future investigational studies and designing therapies. 110 

2. Materials and Methods 111 

2.1 Data Collection, Inclusion and Exclusion Criteria 112 

Gene Expression Omnibus (GEO) and PubMed datasets were used to search for 113 

literature that contained data relating to upregulated and downregulated genes in 114 

response to infection with respiratory viruses (SARS-CoV-2, influenza, SARS-CoV-1, 115 

RSV and rhinovirus). The collection began with searching for datasets for the more 116 

recent COVID-19 pandemic. On GEO, the terms “("Severe acute respiratory syndrome 117 

coronavirus 2"[Organism] OR SARS-CoV-2[All Fields]) AND "Homo sapiens"” were 118 

used whereas when searching on PubMed, the terms “(SARS-CoV-2) AND 119 

(Transcriptome)” were used. Once datasets were identified, inclusion and exclusion 120 

criteria were carried out as outlined in Table 1 to ensure parallel comparison of gene 121 

signatures.  122 

2.2. Included Datasets and Data Synchronisation 123 

The collected datasets from various sources were compiled into one set of data using 124 

Microsoft Excel program. The studied viruses and their respective analysed datasets 125 

are provided in a spreadsheet (Table 2). An overview of each dataset is provided in 126 

the Supplementary dataset 1. Each dataset carried genes found in a specific study 127 

mentioned in the category, and the corresponding level of gene expression is 128 

displayed next units originally used by the datasets. To ensure that all the included 129 

datasets for each virus could be compared, these were converted to the same units. 130 

The raw data was often listed in three units; Fold Change, Log Fold Change and Log 131 

2-Fold Change, and all the data was converted into the Log 2-Fold Change format. 132 

Log 2-Fold Change was used as it allows easier visualisation of the data, as the range 133 
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of the values of the data becomes narrower, allowing for easier comparison of the up/ 134 

down regulated genes (Supplementary dataset 2). 135 

2.3. Ranking System 136 

Owing to large diversity among datasets in areas such as cell types and media in 137 

which the experiments were carried out, it could introduce biasness to compare genes 138 

specifically by their Log 2-Fold Change values, which is calculated to the baseline 139 

gene expression. To introduce a novel method of comparing each gene up or down 140 

regulated in a dataset compared to datasets from another virus or different cell types, 141 

a ranking system next to each Log 2-Fold Change column was proposed. This system 142 

ranked the genes based on which percentage group they were in, depending on 143 

whether they were up or down- regulated. Then, a mean score was taken across 144 

datasets within the same studied viruses and these means were used to compare 145 

between the viruses. For avoidance of confusion, this system synchronizes the dataset 146 

such that at the top 10% of upregulated genes for one virus while only at the top 80% 147 

of genes for another virus. 148 

Using the GraphPad Prism 9.0.0 software, a scatter bar graph was generated using 149 

the overall ranking score for each gene of each virus. Two versions were created; first 150 

had the uncut data taken directly from the ranking system, containing roughly 24,000 151 

genes, and secondly a cut down version of the data where non-significant genes were 152 

removed. Additionally, the non-coding gene loci and non-annotated genes were 153 

removed, as these often yielded zero values for up or down regulated genes reducing 154 

6200 genes. Furthermore, other genes were removed which contained more than 155 

three or more zero values for up or downregulation across the five viruses removing a 156 

further 200 genes. Finally, using influenza virus as a model virus, all genes were 157 

removed that lied within the ranking scores of +20 (bottom 20% upregulated) and -20 158 

(bottom 20% downregulated genes), unless a gene had a ranking score of above +50 159 

or below -50 in any other of the viruses. This removed a further 5005 genes leaving a 160 

total of just over 12,000 genes in the cut down version, which removed the large 161 

proportion of genes containing zero values for clearer view for the spread of gene 162 

ranking scores. 163 

 164 
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2.4. Log2 Fold Change 165 

The collected dataset was converted into Log2 Fold Change for the gene expression. 166 

The datasets that were unconvertable into Log2 were removed for Log2 Fold Change 167 

analysis. In addition, only datasets that compared infected and non-infected patients 168 

were used while high vs low viral load datasets were removed. Finally, Log2 Fold 169 

Change values for each gene and for each dataset were inputted into the software 170 

and the graphing tool was used to generate scatter bar charts for each virus-specific 171 

dataset. These include the top five upregulated and/or downregulated genes for each 172 

dataset taken from the original data. 173 

2.5. iDEP.91 Software 174 

Once all the data had been converted into the ranking score format, it was exported 175 

into a separate Excel File to be compiled into one concise table (Supplementary 176 

dataset 3), then saved as a text document and uploaded to the iDEP web application 177 

for expression and pathway analysis as described earlier [12]. 178 

3. Results 179 

3.1. Overview of the differences in the Log-2 Fold Change values and Ranking 180 

Scores Across Multiple Respiratory Viruses 181 

The scatter bar graphs for each of the individual datasets within each of the five viruses 182 

were drawn to provide an overview of the differences in the Log-2 Fold Change values 183 

obtained from each dataset (Fig. 1). The scatter bar graph for the datasets collected 184 

for the SARS-CoV-2 uses the original Fold change values given by each study where 185 

each bar represents a separate dataset that showed the up and down regulated genes 186 

in response to viral infection (Fig. 1A). A vast majority of top five upregulated genes 187 

were summarized (Table 3) while the top five down regulated genes involved in the 188 

innate immune response to SARS-CoV-2, SARS-CoV-1, influenza, RSV and 189 

rhinovirus infection were concluded (Table 4). Interestingly, each dataset shown was 190 

distinctive showing a varying pattern where host genes are mildly up or down regulated 191 

and only a few that are highly differentially up or down regulated. This highlights 192 

selective genes of the innate immune response are affected in response to a specific 193 

virus infection. Collectively, dataset GSE155286 has the widest spread of data while 194 

dataset GSE147507 has the lowest (Table 2). In addition, all the datasets arried both 195 
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downregulated and upregulated genes except GSE153790, which has only 196 

upregulated genes. Amongst the top five up-regulated genes, five genes including 197 

IFI27 and C-X-C motif chemokine ligand (CXCL) group of cytokine-producing genes, 198 

specifically CXCL10 showed a virus-specific trend. 199 

Using the same approach, we used the data collected for innate immune genes in 200 

response to influenza virus infection that contains nine datasets. The data was 201 

presented for better visualising to gauge the innate immune genes play critical roles 202 

in the virus infection. Consistently, amongst all datasets, the up regulated genes for 203 

the influenza virus were interferon alpha-inducible protein 27 (IFI27) and interferon 204 

induced protein 44 producing gene IFI44/IFI44L, which involves in type-1 interferon 205 

signalling process leading to apoptosis and the formation of tubular structures, 206 

respectively.  207 

The scatter bar graphs for SARS-CoV-1, RSV and rhinovirus indicate a unique set of 208 

genes up or down regulated during infection (Fig. 1C, 1D and 1E), respectively. While 209 

limited datasets were available against some viruses, minimum eight datasets 210 

provided approximately 12,000 different genes. Datasets that have gaps around the 211 

zero value for Log-2 fold change are the datasets that only include genes that were 212 

significantly up or down regulated. All datasets shown in Fig. 1C, 1D and 1E show a 213 

clear abundance of genes that are mildly differentially regulated with significantly less 214 

genes at the high fold change values, highlighted by the shape of the GSE53543 215 

dataset. Interestingly, there was marked variation between the highest and lowest 216 

values obtained for log-2-fold change for different datasets within SARS-CoV-1. In 217 

addition, most of innate immune genes fall within +10 or -10 log-2 fold change for these 218 

viruses. However, SARS-CoV-1 appears to have a unique set of top five up regulated 219 

genes compared to the other viruses whereas both RSV and rhinovirus datasets 220 

showed IFI44 gene and the CXCL family. OASL remained a consistently upregulated 221 

gene in RSV datasets. 222 

The log-2 fold change values of each gene for each dataset was changed into a 223 

ranking score due to the high variation of experimental method used to collect data for 224 

each dataset, which meant that log-2 fold change values were rarely consistent 225 

between datasets for differential gene regulation of patients/cells infected with the 226 

same respiratory virus. Thus, the ranking score removed this issue by assigning each 227 
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gene a value based on its position among other differentially regulated genes within 228 

the same dataset (i.e., a gene placing as the 5th highest upregulated gene in a list of 229 

100 genes would receive a score of 95). These synchronized values were averaged 230 

across all datasets within each virus that enabled the data collected from different 231 

experimental approaches to be compared more effectively between datasets within 232 

the same virus and a combination of datasets to be compared between different 233 

viruses (Table 5 and 6).  234 

3.2. iDEP.91 statistical analysis 235 

The application of ranking scores facilitated the generation of a dataset consisting of 236 

12,000 genes across all viruses by removing many non-significant low expressed 237 

genes (Fig. 2A). This newly and reduced set of genes and the data provided a higher 238 

resolution of genes distribution across multiple respiratory viruses (Fig. 2B). 239 

Thereafter, all analyses were conducted using dataset generated through ranking 240 

system. The iDEP (an integrated web application for differential expression and 241 

pathway analysis), helped to remove low expressed genes, convert gene IDs, fold 242 

change calculation and gene clustering.  243 

The scatter plots generated based on 12,000 genes highlighted the distribution 244 

patterns of genes for SARS-CoV-2 and other respiratory viruses (Fig. 2C to 2F).  The 245 

relationship between SARS-CoV-2 and influenza virus gene regulation revealed a 246 

uniform scatter data (Fig. 2C), while the relationship between SARS-CoV-2 and 247 

SARS-CoV-1 gene regulation contains more spread of data points except towards the 248 

centre of the graph due to the removal of less important data towards zero values (Fig. 249 

2D). A slightly different patterns was observed where a linear relationship between 250 

SARS-CoV-2 and RSV (Fig. 2E) was noticed. An overall less uniform spread of data 251 

points with a skew to the right towards the top of the graph, and additional upregulated 252 

genes were observed in SARS-CoV-2 and rhinovirus comparison (Fig. 2F). 253 

3.3. Heatmap Analyses and Gene Differences between Respiratory Viruses 254 

The heatmap were generated to provide an insight into pathways that are differently 255 

regulated by each of the five studied respiratory viruses (Fig. 3). SARS-CoV-2 256 

appeared unique in eliciting a separate viral response compared to the other 257 

respiratory viruses. Notably, there was a region at the bottom of the heatmap between 258 
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genes DDX21 and GBP3 where other viruses have no effect or a slight upregulation 259 

of the genes, however, SARS-CoV-2 causes a downregulation (Fig. 3). Perhaps the 260 

most unique out of all the respiratory viruses is SARS-CoV-1 which showed large 261 

areas of each heatmap where it is causing a downregulation of genes where all other 262 

respiratory viruses were eliciting upregulation. 263 

The heatmap results highlighted the differences between each of the respiratory 264 

viruses, even though they are in the same group based on their target within the host; 265 

the genes that being affected are substantially different. Each virus shown in the 266 

heatmap carried different and distinct green and red areas, with very few coloured 267 

areas shared between more than two viruses. The most substantial difference was 268 

noticed between SARS-CoV-2 and SARS-CoV-1, whereas almost no colours in 269 

common. However, SARS-CoV-1 appeared to be the only virus that has both up and 270 

down regulated genes in two specific groups.  271 

3.4. Standard deviation calculation and T-SNE plot Analyses 272 

The SD graph highlights the extremely high standard deviation across all the regulated 273 

genes in response to different viruses (Fig. 4A). A standard deviation above 1 was 274 

considered high unless the standard deviation in this case was between 25 and 75 275 

indicating that there are high differences in the differentially regulated genes in 276 

response to each virus. On the other hand, a correlation matrix that shows the 277 

correlation between each of the viruses revealed that the most similar virus to SARS-278 

CoV-2 was RSV with a Pearson’s correlation coefficient of 0.48 (Fig. 4B) while the 279 

least similar one was SARS-CoV-1 with a Pearson’s correlation coefficient of 0.15 280 

(Fig. 4B). A correlation value of 1 implies that there is a perfectly linear distribution of 281 

data between the two variables and a value of 0.48 generated for RSV compared to 282 

SARS-CoV-2 is relatively high that highlight how close the two viruses are in 283 

comparison to other viruses. 284 

Differentially regulated genes were classified into 20 clusters based on their K means 285 

(Fig. 4C) where we used them to break down for better understanding whereabouts 286 

the differences between these emerged viruses. Each cluster contains genes involved 287 

in specific pathways that allows for the comparison of gene regulation in a variety of 288 

pathways depending on the virus (Supplementary dataset 4). After K-means 289 

clustering, cluster O appeared to contain the most pathways involved in the innate 290 
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immune response, such as the JAK-STAT signalling pathway, TNF signalling pathway 291 

and IL-17 signalling pathway indicating that cluster O could be used as a sign of a 292 

virus’s regulation for the overall innate immune response signalling. Both influenza 293 

and SARS-CoV-2 showed both up and down regulated genes within the cluster with 294 

specific areas either being highly up- or down-regulated, suggesting that these viruses 295 

target specific areas within this cluster. While SARS-CoV-1 and RSV upregulated and 296 

down regulated this region, respectively. 297 

The T-SNE plot analyses for all the data was coloured based on their belonging 298 

cluster. The T-SNE allowed multi-dimensional data to visualise in a low dimension 299 

space such as the 2D graph (Fig. 4D). The distance between each of the points 300 

reflected the similarity of each data point. Whilst T-SNE should not always be used for 301 

gene expression data analysis, due to its high intrinsic dimensionality. Therefore, it 302 

has been used to highlight that even though there are a high number of clusters 303 

present, they are still very much distinguishable, despite there being some clusters 304 

that exhibit more separation of data points compared to others. In addition, there was 305 

a slight problem with crowding towards the centre of the dataset; however, this was 306 

observed in most SNE forms.  307 

3.5. Comparison between differentially regulated genes among multiple 308 

respiratory viruses 309 

Generally, the number of upregulated genes is relatively even with the number of 310 

downregulated genes, however, there are more downregulated genes than 311 

upregulated genes for each of the five tested viruses. The standouts are substantially 312 

downregulated than upregulated genes in case of rhinovirus infection in (Fig. 5A). 313 

Moreover, rhinovirus showed less differentially regulated genes in total compared to 314 

the other respiratory viruses. 315 

The Venn diagrams showed a comparison between each of the viruses by how many 316 

differentially regulated genes they have in common, regardless of whether they are up 317 

or down regulated. This highlighted genes that are differently regulated within only one 318 

virus compared to others within the same diagram (Fig. 5B). Vast majority of genes 319 

are found to be differentially expressed across all viruses; however, there were some 320 

exceptions mainly found within RSV that has the highest number of genes unique to 321 

itself while rhinovirus rarely had any uniquely expressed genes. 322 
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3.6. Impact of SARS-CoV-2 on cellular DNA replication 323 

A visual representation for the impact of SARS-CoV-2 on the DNA replication within 324 

infected cells was outlined (Fig. 6). The upregulated genes (2/32) were shown in red 325 

while the downregulated (27/32) were shown in green (Fig. 6). Genes responsible to 326 

produce DNA ligase and helicase were notably down regulated, which are important 327 

in the DNA replication and being used by the virus as a means of slowing down the 328 

cell cycle to enhance viral replication. 329 

3.7. Regulation of JAK-STAT immune signalling pathway in response to SARS 330 

CoV-2 infection 331 

There are more upregulated genes in JAK-STAT immune signalling (Fig. 7A) and the 332 

cytokine-cytokine receptor interaction pathways (Fig. 7B) than downregulation, 333 

highlighted by the prominence of the red colouring over the green colouring. While 334 

there were several upregulated genes as GFAP and Ras, which are involved in cell 335 

differentiation and MAPK signalling pathway, respectively. 336 

The genes that are up or down regulated in realtion to the immune signalling pathways 337 

and are affected in response to SARS-CoV-2 infection were analysed using KEGG 338 

pathway database (Fig. 7A, 7B and Supplematary Figure 1). These results  revealed 339 

that SARS-CoV-2 does not affect every pathway in a simple manner by either 340 

upregulating or downregulating all genes involved in that pathway, but instead having 341 

multiple effects.  342 

Using the ranking scores, C8orf4 was the second most highly upregulated gene in 343 

cells/patients infected with SARS-CoV-2. The C8orf4 (also known as TCIM) is 344 

responsible for producing the c8orf4 protein (also known as TC1) which is involved in 345 

the enhancement of NF-kappaB activity and leading to up-regulating several cytokines 346 

involved in the process of inflammation [13]. This is the main factor attributed to the 347 

cytokine storm exhibited in patients following SARS-CoV-2 infection. In addition, our 348 

analyses show that each virus has a different effect on the regulation of C8orf4 and its 349 

regulation could therefore be used as a biomarker to differentiate between aetiology 350 

of infection, with extremely high levels of TC1 protein pointing towards a SARS-CoV-351 

2 infection (Fig. 7C). Of course, many other genes could be used as markers for 352 

SARS-CoV-2 infection but also genes that are conserved between all viruses. 353 
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Previous study, based on transcriptome overlapping analysis induced on bronchial 354 

epithelium cells infected with SARS-CoV-2, SARS-CoV, MERS-CoV, and H1N1, has 355 

revealed that c8orf4 gene was commonly regulated in NHBE and HAE under the 356 

infection of the four different viruses [14]. In addition, c8orf4 gene enhances the 357 

proliferation of follicular dendritic cells [15]. 358 

After individual identification of the upregulated or downregulated genes and their 359 

respective pathways, we aim to visualise where those genes are located within the 360 

human chromosome (Fig. 7D). Human genome map analyses show each 361 

chromosome with its own line with genes where the upregulated genes appear above 362 

the line in red colour while genes that are downregulated appear below the line in blue 363 

colour (Fig. 7D). This genomic map shows the regulation in response to SARS-CoV-364 

2 infection and revealed that every chromosome in the human genome has been 365 

affected whereas the mostly affected chromosome was chromosome 19. However, 366 

the least affected chromosomes were X and Y sex chromosomes. In addition, 367 

chromosome 17 also shows a notable pattern.  There are many areas across many 368 

chromosomes that showed notable gaps where SARS-CoV-2 appears to have no 369 

effect on gene regulation (Fig. 7D). 370 

There is a large amount of consistency between all the genome maps within the most 371 

affected chromosome, in all cases, being chromosome 19. In case of rhinovirus, there 372 

is a lack of altered genes regulation on the X and Y chromosomes. Furthermore, a 373 

much blander overall picture on fewer data points (Supplementary figure 2D) 374 

because there were less genes recorded to have been up or downregulated in the 375 

rhinovirus dataset. 376 

4. Discussion 377 

Despite majority of the human respiratory viruses show similar pathology by infecting 378 

the same respiratory system, they all showed clear and substantial differences, which 379 

have highlighted unique markers related to differential gene regulation. The scatter 380 

plots showed the correlation between the effects of each virus on human gene 381 

expression, and a specific removal of genes was evident in this analysis which are 382 

less dramatically differentially regulated and therefore of less importance to this study.  383 

These results indicated that SARS-CoV-2 is like RSV compared to other respiratory 384 

viruses because of the high correlation between the data points within the scatter 385 
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graphs showing a rising diagonal line suggesting a positive correlation between the 386 

upregulated and downregulated genes. These results are supported by the correlation 387 

matrix, where the Pearson’s correlation coefficient between SARS-CoV-2 and RSV 388 

was 0.48, much higher than the 0.22, 0.2 and 0.15 for influenza, rhinovirus, and SARS-389 

CoV-1, respectively. The SARS-CoV-2 and RSV showed high similarity in differentially 390 

regulated genes. This aligns with the fact that affected patients exhibit similar 391 

symptoms when infected with any of SARS-CoV-2 or RSV, mainly upper respiratory 392 

tract symptoms and often lower respiratory tract symptoms such as a dry cough [16]. 393 

Interestingly, both viruses appear to cause damage to the respiratory tract that result 394 

in persistent problems long after infection such as persistent airway obstruction as well 395 

as hyper-responsiveness can be seen in patients 30 years after infection with RSV 396 

[17]. These symptoms are like the long-term lung dysfunction reported after SARS-397 

CoV-2 infection [18]. However, the main difference between these two viruses is the 398 

age of the patients that are more susceptible for infection, with RSV commonly causing 399 

respiratory tract infection in young infants and children [16], whereas SARS-CoV-2 is 400 

known for more severe cases being present in the elderly albeit infection potential 401 

among all ages. Further research in this area could be useful to compare influenza, 402 

RSV, SARS-CoV-1 and rhinovirus against SARS-CoV-2 but specifically for each 403 

pathway/area such as the innate immune response or the cytokine activation pathway. 404 

Insights into the human chromosomes in response to SARS-CoV-2 infection revealed 405 

that the mostly affected chromosome was chromosome 19 suggesting a high number 406 

of genes involved in the immune response to viral infection could be present within 407 

chromosome 19 and severe cases of infection could be attributed to the genetic 408 

mutations within this chromosome. Another interesting point is the presence of 409 

differential gene expression on the X chromosome for patients suffering from COVID-410 

19. Altered genes on the X-chromosome could lead to a difference in the clinical 411 

outcome between men and women infected with SARS-CoV-2. Previous studies 412 

reported that the immune regulatory genes encoded by the X chromosome in women 413 

could cause lower viral load levels resulting in a reduction in the inflammatory 414 

response compared to men [19]. 415 

The top and bottom five consistently up and down- regulated genes across all five 416 

viruses could potentially be used as markers for specific respiratory viral infection. 417 

JAK2 is one of the genes, which is consistently, and highly upregulated among all the 418 
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studied viruses and it encodes for the Janus Kinase 2 protein (JAK2). JAK2 plays a 419 

crucial role in the cytokine signalling where it associates with type II cytokine receptors, 420 

hormone-like cytokine receptors and being activated by IFN-gamma [20]. Additional 421 

four-upregulated genes were DDX60L, IFI44, FOXN2 and DDX60, which may be a 422 

target for drugs.  423 

The upregulated genes in response to SARS-CoV-2 infection have been identified 424 

while those were downregulated in the other respiratory viruses.  These genes could 425 

be used as markers for a SARS-CoV-2 infection and to distinguish SARS-CoV-2 from 426 

other respiratory viruses. The most important gene was the NFKBIL1 gene that 427 

encodes for the NF-kappa-B inhibitor-like protein 1 and it is involved in the NF-kappa-428 

B signalling, which plays a major role in the inflammatory response by increasing the 429 

cytokine expression [21]. On the other hand, the downregulated genes in response to 430 

SARS-CoV-2 could possibly be used as a marker to distinguish SARS-CoV-2 infection 431 

in case of suspicion with a respiratory virus infection associated with respiratory 432 

symptoms. One of these genes is GPBAR1, which encodes for the G-protein acid 433 

receptor 1. Previously, it has been reported that GPBAR1 was able to regulate and 434 

increase the expression of IL-10 [22] suggesting that levels of IL-10 in patients 435 

suffering with COVID-19 would be lower, however, recent studies contradict that as 436 

IL-10 levels are found to be unexpectedly increased in severe cases [23]. 437 

5. Conclusions and limitations 438 

The aim of this study was to determine the influence of SARS-COV-2 on the immune 439 

regulation and gene induction in comparison to other respiratory viruses. It appeared 440 

that SARS-CoV-2 was unique in its impact on gene regulation and matches none of 441 

the other respiratory viruses except RSV. Genes such as MAP2K5 and NFKBIL1 have 442 

been found to be greatly upregulated in SARS-CoV-2 whilst being downregulated in 443 

the compared viruses. MAP2K5 is a dual specificity protein kinase that belongs to the 444 

MAP kinase family that specifically interacts with and activates MAPK7/ERK5. The 445 

signal cascade mediated by this kinase is involved in growth factor stimulated cell 446 

proliferation and muscle cell differentiation. The expression of these kinases inhibited 447 

the virus at post-entry stages. Specifically, it can inhibit the viral RNA replication. 448 

NFKBIL1 gene lies within the major histocompatibility complex (MHC) class I region 449 

on chromosome 6 that involved in the regulation of innate immune response by acting 450 



16 
 

as negative regulator of Toll-like receptor and interferon-regulatory factor (IRF) 451 

signalling pathways. 452 

Whereas genes such as GPBAR1 and SC5DL were contrastingly found to be 453 

significantly downregulated in SARS-CoV-2 but upregulated in influenza, SARS-CoV-454 

1, RSV and rhinovirus. The GPBAR1 gene encodes a member of the G protein-455 

coupled receptor (GPCR) superfamily. This enzyme functions as a cell surface 456 

receptor for bile acids, which is implicated in the suppression of macrophage functions 457 

and regulation of energy homeostasis by bile acids. SC5DL gene encodes an enzyme 458 

of cholesterol biosynthesis pathway and it catalyses the conversion of lathosterol into 459 

7-dehydrocholesterol. Despite all the reported differences, the most conserved genetic 460 

signature was JAK2 gene as well as the constitutively downregulated ZNF219 gene. 461 

While the resolution of analysis provides foundational finding, further research is 462 

warranted to validate the impact of these molecular signature against individual or 463 

multiple infections. This study might open the way for further investigations aimed at 464 

elucidating the molecular mechanisms that underlay these observations. This study 465 

also suggests that it may be possible to identify a signature, which could be useful to 466 

identify early patients at risk of adverse outcome.  Our analysis identified several key 467 

aspects of the host response among human respiratory viruses’ infection where 468 

essential immunity genes and biological pathways could be used for understanding 469 

the pathogenesis of SARS-CoV-2 infection.  470 

We observed a limitation of the study that the gene regulation may be affected by the 471 

experimental characteristics such as time length post infection, the culturing 472 

conditions, phenotypes of the cells, and the nature of the virus stimulation (in vivo or 473 

in vitro studies). Finally, different cell types (A549, BALF or PBMC cells) were used for 474 

virus infection, which may respond differently to different viral infections. Nevertheless, 475 

the provided analysis provides a foundation for the impact of respiratory viruses on the 476 

gene regulation. 477 

In addition, like other transcriptomic studies, this work has several limitations. The 478 

number of patients included in the different groups was limited, a factor that may have 479 

restricted the number of DEG reported. Samples were taken from different organs, 480 

whole blood or saliva do not necessarily reflect the gene expression patterns in 481 

clinically affected organs and/or individual cells and depict sample heterogenicity. The 482 
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sequencing depth may have restricted differential detection of less abundantly 483 

expressed genes. Finally, the samples were issued from a single cohort of patients, 484 

and thus validation from other cohorts would be useful. 485 
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 583 

Figure captions 584 

Fig. 1. Scatter bar graphs of the Log-2-Fold Change of each gene for each dataset for 585 
A) SARS-CoV-2, B) Influenza, C) SARS-CoV-1, D) RSV and E) Rhinovirus. A 586 
horizontal line is also shown on each bar, which marks the average Log-2 fold change 587 
(Log-2FC) of the selected genes. 588 

Fig. 2. Uncut (A) and Cut (B) ranking scores for each gene combining all datasets for 589 
each respiratory virus. Also, in this figure are scatter plots of ranking scores of all 590 
genes collected for each respiratory virus, using SARS-CoV-2 as the comparison. (C) 591 
shows a comparison of Influenza and SARS-CoV-2, (D) between SARS-CoV-1 and 592 
SARS-CoV-2, (E) between RSV and SARS-CoV-2 and (F) between Rhinovirus and 593 
SARS-CoV-2. 594 

Fig. 3. Heatmap of DEGs for all respiratory viruses studied in this analysis. 595 

Figure 4. (A) Standard deviation of all genes across all viruses. (B) Correlation matrix 596 
using data taken from the top 75% of genes. (C) KEGG pathway analysis by cluster. 597 
(D) T-SNE plot of all 12,000 genes 598 

Fig. 5. Nature of differentially regulated genes. (A) Total number of upregulated and 599 
down regulated genes for each virus. (B) Venn diagrams representing the differentially 600 
regulated genes that are in common between each of the respiratory viruses. 601 

Fig. 6. Heatmaps specific to different pathways compiled by GAGE pathway analysis. 602 
(A) for Defence response to virus, (B) for cytokine response, (C) for regulation of 603 
cytokine production and (D) for positive regulation of innate immune response. 604 

Fig. 7. Regulation of different pathways by studied respiratory viruses. (A) Regulation 605 
of genes associated with the JAK-STAT signalling pathway. (B) Regulation of genes 606 
associated with cytokine-cytokine receptor interaction. (C) Ranking scores of the 607 
C8orf4 gene for each respiratory virus. (D) Genome map showing SARS-CoV-2 608 
upregulated genes in red and downregulated genes in blue. 609 
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