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1 Introduction

Comparing financial econometrics and asset pricing studies, Bollerslev (2022) argues

that the former remains uninformed about the inherently multivariate issues in finance,

such as covariation among multiple assets or systematic risk factors. This paper addresses

this gap. We motivate and introduce a model for stock volatility that incorporates a

market volatility factor. Our results show that stock volatility forecasting improves sig-

nificantly, both in statistical and economic terms. Thus, market volatility is a significant

factor in modeling and forecasting stock volatility.

Asset pricing studies dating back to the model of Sharpe (1964), Lintner (1965) and

Black et al. (1972) posit that the market factor is sufficient to explain the cross-section

of expected returns. Empirical support for this claim has been futile. Instead, additional

factors have been proposed1, such as value and size (Fama and French, 1993), momentum

(Jegadeesh and Titman, 1993), liquidity (Pástor and Stambaugh, 2003), and market

volatility (Ang et al., 2006b).2 An interrelationship between asset return and volatility

dates back to Fama and MacBeth (1973), Campbell and Hentschel (1992) and Glosten

et al. (1993). However, the inclusion of market volatility as “a priced factor” suggests

that, determining their investment set, investors value both contemporaneous return and

future return uncertainty (Campbell, 1996; Chen, 2002).

Unlike observed logarithmic returns, risk is latent. Noisy proxies for risk (e.g., squared

returns) have been superseded by conditional variance estimators and stochastic volatility

models. The advent of high-frequency data marked a paradigm shift in volatility mod-

eling and forecasting.3 An efficient estimator of return volatility, the realized variance

(RV), has been shown to dominate GARCH-type and stochastic volatility (SV) models

1Many factors have been proposed in what Cochrane (2011) refers to this as “a zoo of new factors”.
Harvey et al. (2016) and Chordia et al. (2020) advocate for multiple hypothesis testing frameworks to
minimize false discovery of new factors. Further warranting such rigorous testing procedures is the advent
of LASSO-type penalizing regression and machine learning techniques in the field, see Gu et al. (2020),
Freyberger et al. (2020) and Chinco et al. (2019).

2We purposely refer to the paper of Ang et al. (2006b), which introduces an aggregate volatility
factor to explain the cross-section of returns. We call this “market volatility” as it provides a smoother
transition with the motivation of our model in this paper; the authors refer to it as systematic volatility
and it is proxied by the VIX index.

3Arguably this is the origin of the financial econometrics research field (Bollerslev, 2022).
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(Andersen et al., 2003). Additionally, the simple and easy-to-estimate HAR model (Corsi,

2009) has dominated other approaches for modeling and forecasting realized measures.4

Owing to the vastness of tick-level data and limits in computational power, the financial

econometrics literature is largely univariate or small-scale multivariate.5 Put simply, in-

dividual stock volatility modeling and forecasting is agnostic about other stocks or indeed

any systematic risk factors.

Our motivation is twofold: On the one hand, we argue that individual stock volatility

modeling and forecasting should be informed by dynamics in other stocks or systematic

risk factors. The market factor is the most commonly appearing in the asset pricing liter-

ature. Hence, it is not unreasonable to assume that a market volatility factor would have

explanatory power for individual stock volatilities. Contrarily a case could be made when

the market volatility factor would be uninformative. This would require that market wide

uncertainties are timely and correctly incorporated within individual stock dynamics. We

feel this is unrealistic for two reasons: First, an assumption of market efficiency is re-

quired (i.e., all available information is correctly reflected in the stock price) but unlikely

to hold. Instead, it may take some time for financial analysts and/or traders to gauge

the impact of news on individual stocks, as well as precisely trace the exact effect of

a certain macroeconomic announcement (i.e., “soft” news, see Bollerslev (2022)). Sec-

ondly, it assumes investor rationality while ignoring investor biases, technical analysis

and algorithmic trading.

On the other hand, ever since the asset pricing literature has been using a timeseries

regression, returns are bound to be outperformed by volatilities on informational content

alone. In other words, a timeseries model at the daily horizon would explain a much

larger fraction of stock volatility than stock return.6 Therefore, a timeseries volatility

model in the spirit of asset pricing factor models has two key advantages: First, there is

4Alternatively, ARFIMA models may also be used in volatility modeling, see Izzeldin et al. (2019)
for a comparison to HAR models.

5A multivariate investigation withing the financial econometrics literature has around 10 stocks over
a 20-year period Bollerslev et al. (2018). By comparison in asset pricing literature the Gu et al. (2020)
investigation uses 30,000 stocks over a 60-year period.

6For example, Chinco et al. (2019) using LASSO techniques explain around 2.5% of the variation in
the stock return.
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more informational content to be captured owing to the high persistence feature of the

volatility process. Second, as the stock-specific autoregressive components of the HAR

model capture a sizeable fraction of the variation in stock volatility, they leave less room

for false factors essentially acting as a shield towards the “zoo” of factors criticism.

Our proposed model builds on the popular HAR framework for modeling stock volatil-

ity. To this we add market volatility and stock-market covariation information from re-

alized measures. We call it the market-HAR. Being a univariate specification, it retains

the key features of the HAR, namely its flexibility and estimation simplicity. Resembling

the asset pricing models intuition, the market-HAR allows market information reflected

in market-volatility to affect stock volatility. However, unlike asset pricing models that

assume a constant relation between stock and market returns, the market-HAR allows it

to vary across time.7 Put simply, market-volatility influence on stock volatility forecast-

ing can be higher in specific periods, for instance during financial crisis. To capture this

information market-HAR incorporates realized covariance information between stock and

market.

We generalize the market-HAR by: i) incorporating semi-variance and semi-covariance

measures; ii) allowing for different sampling frequencies between firm-specific and market-

specific realized measures; and iii) considering the impact of jumps. That disentangling

good from bad volatility improves HAR forecasting performance is well-documented (Pat-

ton and Sheppard, 2015). In our market-HAR extensions, we use stock-specific and

market-specific realized semi-variances (Barndorff-Nielsen et al., 2010) as well as their

respective realized semi-covariances (Bollerslev et al., 2020). This enhances the capacity

of market-HAR models to deal with asymmetries in volatilities and covariances, which

is relevant for downside risk management (Ang et al., 2006a; Grootveld and Hallerbach,

1999; Guerard et al., 2013; Huang, 2008). Where realized semi-variances are segregated

by their signed returns, realized semi-covariances are split in four components by their

concordant and discordant signed returns.

7While this is true in a simple OLS regression, rolling estimation is one way to assume that the
relationship can change. Even so, realized covariance in the market-HAR model allows the relation
between stock and market to change at the daily and even intraday intervals.
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We also consider a mixed sampling market-HAR variant that allows for different sam-

pling frequencies between the firm-specific and market-specific components. To explore

potential benefits over a wide range of frequencies, we mitigate the impact of market

microstructure noise (MMSN) by the use of noise-robust realized variances (Christensen

et al., 2014; Jacod et al., 2009), and noise-robust realized covariances (Christensen et al.,

2010). We develop noise-robust realized semi-variance and semi-covariance measures by

extending previous work in this area. Our modified noise-robust measures permit the use

of realized measures at frequencies higher than the popular 300-second. Previous studies

deliver improvements in forecasting when noise-robust measures are used in the presence

of MMSN relative to standard volatility measures (Bu et al., 2021; Ghysels and Sinko,

2011).

Jumps are important in forecasting, with mixed evidence to the nature of their contri-

bution (Andersen et al., 2007; Bu et al., 2021; Busch et al., 2011; Corsi et al., 2010; Giot

and Laurent, 2007; Nolte and Xu, 2015; Patton and Sheppard, 2015). To acknowledge

the impact of jumps in our market-HAR model we introduce individual jumps in the

firm-specific and market-specific components, while we also account for the existence of

co-jumps.

For the empirical analysis, intraday data for 20 NYSE stocks from 2000-2016 across

a representative sample of business sectors are used. The SPDR (SPY) S&P 500 ETF

acts as a proxy for the market factor over the same period. The main results are that the

market-HAR model delivers significant improvements for in-sample and out-of-sample

forecasting. As compared with the benchmark HAR model, the most parsimonious

market-HAR model enhances individual stock volatility forecasting by 9.80% points on

average for the 300-second, one-day ahead horizon. In accounting for asymmetric effects,

market-HAR models enhance forecasting performance by a further 8.40% points. Models

that incorporate realized semi(co)variance information deliver superior volatility forecast-

ing over their more parsimonious counterparts. These full-fledged market-HAR models

improve volatility forecasting by up to 30.70% points relative to the benchmark HAR

model. Forecasting performance is moderated at high sampling frequencies and/or long
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forecasting horizons. Yet the market-HAR models remain between 19.4–20.9% points su-

perior to the HAR without market information. A mixed sampling market-HAR model

also increases forecasting performance when low (high) sampling frequencies of the stock

(market) are combined. To underscore the practical relevance of the forecasting improve-

ments of the market-HAR model, we evaluate gains in hypothetical portfolio allocation

decisions. Relying on a utility-based framework (Bernales and Guidolin, 2014; Christof-

fersen et al., 2014; Fleming et al., 2001, 2003; Nolte and Xu, 2015) ignoring market

information in volatility forecasting can raise the annual cost to risk-averse investors by

up to 57 basis points.

Our study offers three contributions to the finance literature. First, we introduce a

univariate model that allows for market-specific information to complement stock volatil-

ity modeling and forecasting. Second, we develop and utilize noise-robust measures of

the realized semi-variances and semi-covariances to exploit the information content of re-

alized measures across a wider range of sampling frequencies. Third, we conduct the first

forecasting study using a mixture of sampling frequencies between the firm and market

components. While the consensus is that market microstructure noise increases at higher

sampling frequencies, our use of noise-robust measures allows us to better explore the

informational content across these assets.

The remainder of the paper is organized as follows. Section 2 describes the theoretical

background and the new noise-robust realized semi-variances and semi-covariances; Sec-

tion 3 outlines the forecasting models and evaluation criteria, and sets out the economic

value approach; Section 4 describes our data; Section 5 presents and discusses the empir-

ical results. Section 6 reports a robustness exercise that includes the use of jumps and

logarithmic transformation of the realized variances. Concluding remarks and directions

for future research are provided in Section 7.
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2 Theoretical background

We consider a factor-type log price process (Fan et al., 2016; Ng et al., 1992), defined

on some filtered probability space (Ω,F ,Ft≥0,P), evolving continuously over time:

Pt = βFt + Zt, (1)

where Pt is the log-price of an individual asset, Ft is K-dimensional factor process, Zt is

the idiosyncratic component, and β is an 1 × K vector of constant factor loadings. To

complete the specification, we make similar assumptions to those in Fan et al. (2016) on

the dynamics of factors and idiosyncratic components.

Assumption 1. Suppose the log asset prices, Pt, follows a factor model given by equa-

tion (1), in which Ft and Zt are continuous Itô semimartingales:

Ft,k =

∫ t

0

as,kds+

∫ t

0

ηs,kdWs,k, (2)

Zt =

∫ t

0

bsds+

∫ t

0

σsdBs, (3)

where ηs,k and σs are the respective systematic and idiosyncratic spot volatilities, which are

adapted and càdlàg, Ws,k and Bs are two Brownian motions. WhereasWs,k is independent

of Bs, we allow for correlation among factors, that is ⟨dWs,l, dWs,i⟩ = ρs,l,ids for i ̸= l,8

where ⟨·, ·⟩ denotes the quadratic covariation. In addition, as,k and bs are drift terms

which are progressively measurable.

To facilitate the exposition, we consider the case of two main factors, the market

factor, Fm, and a latent and relevant factor, Fk, which takes the following form:

Pt = βmFt,m + γkFt,k + Zt. (4)

8Our framework allows for correlation among factors that is motivated by empirical evidence. Using
the Fama and French (2015) five-factor model plus the momentum factor obtained from Kenneth French’s
website https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html we find
that the market factor has a 14% correlation with the size factor SMB (“small-minus-big”) factor and
a −36% correlation with the profitability factor RMW (“robust-minus-weak”). Similarly, the book-to-
market factor HML (“high minus low”) displays a 43% and −45% correlation with the investment factor
CMA (“conservative-minus-aggressive”) and momentum factors, respectively.
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Under assumption 1, we have that the integrated variance of Pt is defined as:

⟨Pt, Pt⟩ = γ2k

∫ t

0

η2s,kds+

∫ t

0

σ2
sds︸ ︷︷ ︸

IV s
t

+ β2
m

∫ t

0

η2s,mds︸ ︷︷ ︸
IVm

t

+ βmγk

∫ t

0

ρsηs,mηs,kds︸ ︷︷ ︸
ICOVt

. (5)

The above result suggests that the total integrated variance of an individual asset is

related to three components:9 the idiosyncratic variance, the systematic variances, and

the covariance component. One would expect that each of these components possesses

value in a forecasting setting. In this spirit, we propose to model and forecast the asset

variance by incorporating proxies for these elements separately in our market-HAR model

specifications outlined in Section 3. However, the accurate estimation of idiosyncratic

variance has been proven rather difficult in practice, where the literature has identified

more than 300 factors that explain the cross-section of stock returns (Harvey et al., 2016),

and yet the idiosyncratic variance comprises most of the total variance (Ang et al., 2009).

Moreover, it is custom in the literature to use past total variance in HAR specifications.

Given that from a regression point of view a model with past idiosyncratic and systematic

variances is observationally equivalent (only regression parameter values would differ) to

a model with total and systematic variances, we refrain from obtaining idiosyncratic

variance and use common total variance instead, alongside the systematic variance and

a covariation term.

The integrated variance and covariance outlined in equation (5) can be consistently

estimated using the realized variance and covariance (Andersen et al., 2001a, 2003;

Barndorff-Nielsen and Shephard, 2004). However, these measures are not consistent

estimates of the integrated variance and covariance when the observed price contains

measurement error. Since, in practice, the observed price process is contaminated with

microstructure noise (see Bandi and Russell (2006); Hansen and Lunde (2006) among oth-

ers), in the next section we introduce realized measures that are robust to the presence

of such contamination.

9This result is equivalent to that of Fan et al. (2016), with the main distinction that we have restricted
our process to be a univariate process and to have only two factors.
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2.1 Realized measures and market microstructure noise

In the presence of market microstructure noise, the price is observed with a measure-

ment error, which distorts the standard realized measures.10 In particular, the observed

price is the sum of an unobservable efficient price and a noise component due to imper-

fections of the trading process:

P ∗
t = Pt + Ut, (6)

where P ∗
t is the contaminated price, Pt is the efficient price and Ut is the observation error,

which is independent and identically distributed with E[Ut] = 0 and E[U2
t ] = ω2, and

Pt ⊥ Ut. The contaminated returns are estimated as r∗t,j = P ∗
t+j∆ − P ∗

t+(j−1)∆, where j =

1, ...,M represent the number of intraday increments per day and ∆ = 1/M . As shown

by Bandi and Russell (2006); Hansen and Lunde (2006); Zhang et al. (2005), realized

measures estimated from contaminated returns result in noisy measures of volatility since

E[RV ] = IV + 2Mω2.11 To mitigate the impact of the MMSN, we use pre-averaging

returns and realized measures (Jacod et al., 2009). The pre-averaging returns for day t

are defined as:

r̂t,i =
L−1∑
j=1

g

(
j

L

)
r∗t,i+j, (7)

where g = (x ∧ 1− x).

Using the pre-averaged returns, the pre-averaging realized variance (PRV) of Jacod

et al. (2009) and Christensen et al. (2014) is defined as:

PRVt =
M

M − L+ 2

1

LψL2

M−L+1∑
i=0

|r̂t,i|2 −
ψL1 ω̂

2
t

θ2ψL2
, (8)

10In the exposition that follows we use returns and realized measures in the presence of microstructure
noise; for an exposition of these measures in a noise-free scheme see Andersen et al. (2001a,b, 2003);
Barndorff-Nielsen and Shephard (2002b); Meddahi (2002) for realized measures, Barndorff-Nielsen et al.
(2010); Patton and Sheppard (2015) for realized semi-variances, and Barndorff-Nielsen and Shephard
(2004); Bollerslev et al. (2020) for realized covariance and semi-covariances.

11RV and IV denote respectively the realized and integrated variance, see Barndorff-Nielsen and
Shephard (2002a); Meddahi (2002) among others.
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where L = θ
√
M + o(M−1/4), M/(M − L + 2) is a small sample correction;

ψL
1 ω̂

2
t

θ2ψL
2

is a bias-correction to remove a leftover effect of noise that is not eliminated by the

pre-averaging estimator; following Oomen (2006) ω2
t is estimated as: ω̂2

t ≡ ω̂2
AC =

− 1
M−1

∑M
i=2 r

∗
t,jr

∗
t,j−1.

12

The constants associated with g are defined as:

ψL1 = L
L∑
j=1

[
g

(
j

L

)
− g

(
j − 1

L

)]2
, ψL2 =

1

L

L−1∑
j=1

g2
(
j

L

)
. (9)

The pre-averaged realized semi-variances are defined as:

PRV +
t =

M

M − L+ 2

1

LψL2

M−L+1∑
i=0

|r̂t,i|21{r̂t,i>0} −
1

2

ψL1 ω̂
2
t

θ2ψL2
, (10)

PRV −
t =

M

M − L+ 2

1

LψL2

M−L+1∑
i=0

|r̂t,i|21{r̂t,i<0} −
1

2

ψL1 ω̂
2
t

θ2ψL2
, (11)

where 1{.} is the indicator function used to obtain the required sign of the pre-averaged

returns. The first term on the right of the equation is a bias-correction factor, scaled to

equally affect the positive and negative pre-averaged returns.

The modulated realized covariance (MRC) of Christensen et al. (2010) is a noise-

robust estimator of the realized covariance (Barndorff-Nielsen and Shephard, 2004), and

is defined as:

MRCt,δ =
M

M −Kn + 2

1

ψ2Kn

M−Kn+1∑
i=0

(
r̂mt,i
)′
r̂st,i. (12)

Using Kn

M1/2+δ = θ + o(M−1/4+δ/2) ensures that the MRC is consistent without a bias-

correction, while setting δ = 0.1 ensures a M−1/5 rate of convergence (Christensen et al.,

2010).13

12Oomen (2006) shows that this estimator equals (RV −RVAC1)/(2M) being very closely related to
ω2 = RV/(2M) proposed by Bandi and Russell (2006) and Zhang et al. (2005).

13To avoid notational clutter we drop the δ onwards, and assume it is equal to 0.1 unless otherwise
stated.
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We construct noise-robust semi-covariances by decomposing MRC into:

MRCt =MRC+
t +MRC−

t +MRC+−
t +MRC−+

t . (13)

Each element of Equation (13) is estimated as follows:

MRC+
t =

M

M −Kn + 2

1

ψ2Kn

M−Kn+1∑
i=0

(
r̂mt,i1{r̂mt,i>0}

)′ (
r̂st,i1{r̂st,i>0}

)
,

MRC−
t =

M

M −Kn + 2

1

ψ2Kn

M−Kn+1∑
i=0

(
r̂mt,i1{r̂mt,i<0}

)′ (
r̂st,i1{r̂st,i<0}

)
,

MRC+−
t =

M

M −Kn + 2

1

ψ2Kn

M−Kn+1∑
i=0

(
r̂mt,i1{r̂mt,i>0}

)′ (
r̂st,i1{r̂st,i<0}

)
,

MRC−+
t =

M

M −Kn + 2

1

ψ2Kn

M−Kn+1∑
i=0

(
r̂mt,i1{r̂mt,i<0}

)′ (
r̂st,i1{r̂st,i>0}

)
,

(14)

where r̂st,i and r̂mt,i represent respectively the pre-averaged returns of the stocks and the

market.

3 Forecasting models and evaluation

3.1 Forecasting models

With the use of pre-averaged realized variances, the HAR model proposed by Corsi

(2009) is defined as:

PRV s
t+h−1|t = β0 + βdPRV

s
t−1 + βwPRV

s
t−1|t−5 + βmPRV

s
t−1|t−22 + ϵt, (15)

where PRV s
t−j|t−h = 1

h+1−j
∑h

i=j PRV
s
t−i with j ≤ h. The main advantages of the HAR

model are its simplicity in estimation and its ability to capture long-memory properties

observed in realized measures. Our new market-HAR class of models utilize information

from both the stock and the market as well as their cross-dependencies; thus aiming

to enhance stock volatility modeling and forecasting by harnessing unexplored market
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information.14

The market-HAR class features the following models:

HAR-V

PRV s
t+h−1|t = β0+β

s
dPRV

s
t−1 + βswPRV

s
t−1|t−5 + βsmPRV

s
t−1|t−22+

βmd PRV
m
t−1 + βmw PRV

m
t−1|t−5 + βmmPRV

m
t−1|t−22 + ϵt,

(16)

HAR-Co-V

PRV s
t+h−1|t = β0+β

s
dPRV

s
t−1 + βswPRV

s
t−1|t−5 + βsmPRV

s
t−1|t−22+

βmd PRV
m
t−1 + βmw PRV

m
t−1|t−5 + βmmPRV

m
t−1|t−22+

βMRC
d MRCt−1 + βMRC

w MRCt−1|t−5 + βMRC
m MRCt−1|t−22 + ϵt.

(17)

Both models are motivated by the non-linear dependence observed in asset returns. As

evidenced by spill-over and financial contagion studies (Bekaert et al., 2014; Diebold and

Yilmaz, 2009; Forbes and Rigobon, 2002), financial market interconnectedness increases

significantly during periods of turmoil. Our dataset reflects this. Average correlation

across all stocks is 0.45 pre-crisis, and 0.80 during the crisis. Evidence shows that volatility

predictability varies across market conditions (Li and Zakamulin, 2020). By incorporating

realized covariance within its specification, HAR-Co-V models signal the “calm and crisis”

dichotomy by the varying cross-dependencies, between the stock and the market.

Asymmetric (i.e., “leverage”) effects are well-established in financial time series. An

early approach has been the GJR-GARCH (Glosten et al., 1993) that allows conditional

variance to respond differently to signed returns. Incorporating asymmetric effects in

realized measures can improve volatility forecasting and portfolio variance estimation;

see Patton and Sheppard (2015) and Bollerslev et al. (2020) who respectively advocate

14These models come directly from a vector HAR structure. However, here the interest is only in

forecasting the stock volatility rather than the stock and the market volatility. For instance, yt =

(
yst
ymt

)
.

yt+h−1|t = Φ0+Φdyt−1+Φwyt−5|t−1+Φdyt−22|t−1+ϵt ≡
(
yst
ymt

)
=

(
ϕs
0

ϕm
0

)
+

(
ϕs1
d ϕm1

d

ϕm2

d ϕs2
d

)(
yst−1

ymt−1

)
+(

ϕs1
w ϕm1

w

ϕm2
w ϕs2

w

)(
yst−5|t−1

ymt−5|t−1

)
+

(
ϕs1
m ϕm1

m

ϕm2
m ϕs2

m

)(
yst−22|t−1

ymt−22|t−1

)
+

(
ϵst
ϵmt

)
where the first equation gives rise to the

HAR-V model.
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the use of semi-variances and semi-covariances. We allow for asymmetric dependencies in

our market-HAR models by decomposing the PRVt and the MRCt. Our approach uses

a flexible “continuous leverage effect” (akin to the SHAR model of Patton and Sheppard

(2015)) based on the semi-variances for the HAR-V model and both the semi-variances

and the semi-covariances for the HAR-Co-V model, allowing for more refined responses

to positive and negative return shocks.

The asymmetric market-HAR models are outlined as follows:

HAR-V+

PRV s
t+h−1|t = β0+β

s+

d PRV s+

t−1 + βs
+

w PRV s+

t−1|t−5 + βs
+

m PRV s+

t−1|t−22+

βm
+

d PRV m+

t−1 + βm
+

w PRV m+

t−1|t−5 + βm
+

m PRV m+

t−1|t−22 + ϵt,

(18)

HAR-V−

PRV s
t+h−1|t = β0+β

s−

d PRV s−

t−1 + βs
−

w PRV s−

t−1|t−5 + βs
−

m PRV s−

t−1|t−22+

βm
−

d PRV m−

t−1 + βm
−

w PRV m−

t−1|t−5 + βm
−

m PRV m−

t−1|t−22 + ϵt,

(19)

HAR-Co+-V

PRV s
t+h−1|t = β0+β

s
dPRV

s
t−1 + βswPRV

s
t−1|t−5 + βsmPRV

s
t−1|t−22+

βmd PRV
m
t−1 + βmw PRV

m
t−1|t−5 + βmmPRV

m
t−1|t−22+

βMRC+

d MRC+
t−1 + βMRC+

w MRC+
t−1|t−5 + βMRC+

m MRC+
t−1|t−22 + ϵt,

(20)

HAR-Co−-V

PRV s
t+h−1|t = β0+β

s
dPRV

s
t−1 + βswPRV

s
t−1|t−5 + βsmPRV

s
t−1|t−22+

βmd PRV
m
t−1 + βmw PRV

m
t−1|t−5 + βmmPRV

m
t−1|t−22+

βMRC−

d MRC−
t−1 + βMRC−

w MRC−
t−1|t−5 + βMRC−

m MRC−
t−1|t−22 + ϵt,

(21)
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HAR-Co+-V+

PRV s
t+h−1|t = β0+β

s+

d PRV s+

t−1 + βs
+

w PRV s+

t−1|t−5 + βs
+

m PRV s+

t−1|t−22+

βm
+

d PRV m+

t−1 + βm
+

w PRV m+

t−1|t−5 + βm
+

m PRV m+

t−1|t−22+

βMRC+

d MRC+
t−1 + βMRC+

w MRC+
t−1|t−5 + βMRC+

m MRC+
t−1|t−22 + ϵt,

(22)

HAR-Co−-V−

PRV s
t+h−1|t = β0+β

s−

d PRV s−

t−1 + βs
−

w PRV s−

t−1|t−5 + βs
−

m PRV s−

t−1|t−22+

βm
−

d PRV m−

t−1 + βm
−

w PRV m−

t−1|t−5 + βm
−

m PRV m−

t−1|t−22+

βMRC−

d MRC−
t−1 + βMRC−

w MRC−
t−1|t−5 + βMRC−

m MRC−
t−1|t−22 + ϵt.

(23)

3.2 Forecasting evaluation

Primary interest lies in the out-of-sample forecasting performance of the models. We

consider three horizons h = 1 (one day), h = 5 (one week), and h = 22 (one month).

An increasing window updates the coefficients, with an initial window of 1,000 days

(IW=1,000). The out-of-sample performance is evaluated using the heteroskedastic mean

square error (HMSE) and the quasi-likelihood (QLIKE) loss functions:

HMSE = N−1

N∑
n=1

(
1− P̂RV s

n

PRV s
n

)2

, (24)

QLIKE = N−1

N∑
n=1

(
PRV s

n

P̂RV s
n

− log
PRV s

n

P̂RV s
n

− 1

)
, (25)

where P̂RV s
n and PRV s

n are respectively the forecasted and estimated PRV s
t+h−1|t for the

pseudo out-of-sample period, and N = T−IW refers to the total number of out-of-sample

observations. We consider the QLIKE, which is robust in the sense of Patton (2011), and

the heteroskedasticity-adjusted MSE (HMSE) proposed by Bollerslev and Ghysels (1996).

Given that volatility is heteroskedastic the HMSE has become a popular loss function,
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see Poon and Granger (2003) and Diebold and Lopez (1996) among others.15

We evaluate the statistical significance of the forecast gains via the Conditional Pre-

dictive Accuracy (CPA) test of Giacomini and White (2006) relative to the benchmark

HAR (i.e., HAR-PRV) model. The CPA test is robust to nested models and its null

hypothesis is of equal predictive accuracy conditional on some information set Ft:

H0 ≡ E[∆dn,i,j|Ft] = 0, (26)

where ∆dn,i,j = L(P̂RV
s(i)

n , PRV s
n ) − L(P̂RV

s(j)

n , PRV s
n ) is the difference between two

loss functions and i ̸= j. The test statistic is then defined as:

T h
n = N

(
N−1

N∑
n=1

∆dn,i,j

)′

V −1
h

(
N−1

N∑
n=1

∆dn,i,j

)
∼ χ2

1, (27)

where V −1
h is a heteroskedasticity and autocorrelation consistent (HAC) estimator of the

asymptotic variance.

We evaluate whether there is a subset of models that significantly outperforms the

rest. To do so, we use the Model Confidence Set (MCS) of Hansen et al. (2011) and denote

by M the set of all models (the benchmark HAR-PRV and the market-HAR class). The

MCS procedure offers an efficient comparison that avoids multiple pairwise tests of loss

functions, which can be both cumbersome and misleading unless appropriately corrected.

The test statistic is defined as:

ti,j =
d̄i,j√

V̂ar(d̄i,j)
∀i, j ∈ M, (28)

where d̄i,j is the average loss difference. The MCS test is then given by TM = maxi,j∈M |ti,j|

and has a null hypothesis that all models have the same expected loss. Under the alter-

15The MSE loss criterion may be a natural choice in evaluating competing estimates for the mean,
but this is less obvious in a heteroskedastic environment (Bollerslev et al., 1994; Bollerslev and Ghysels,
1996). The MSE is a symmetric loss function, and therefore fails to properly account for the asymmetry
observed in variances. Within risk management practices underestimation of variance forecasts is more
dangerous than overestimation as it might provide false signals of recovery, which can lead to substantial
risk overexposure. However, we confirm that our results are qualitatively similar to the use of MSE.
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native, there is some model i that has an expected loss that exceeds the expected loss of

all other models j ∈ M \ i. The surviving models are retained with a confidence level

α = 0.1. We implement the MCS via a block bootstrap using a block length of 10 days

and 5,000 bootstrap replications.

3.3 Economic value

We assess the value investors derive from using market-HAR models, by constructing

volatility timing-based portfolio allocation strategies. Risk-averse investors are assumed

to divide their funds between one risk-free asset and one risky asset with their focus on the

daily investment horizon. The intuition is that, when volatility is high (low), investors

allocate more (less) funds into the risk-free asset. It follows that accurate volatility

forecasts would directly affect the investors’ asset allocations.16

Using a mean-variance utility, the investor maximizes the economic utility by opti-

mizing:

max
wt+h

U [Et (rp,t+h) ,Vart (rp,t+h)] , (29)

U [Et (rp,t+h) ,Vart (rp,t+h)] = Et (rp,t+h)−
γ

2
Vart (rp,t+h) , (30)

where h indicates the periods ahead, γ is the risk-aversion parameter, Et(rp,t+h) is the

conditional expected portfolio return and Vart(rp,t+h) = w2
t+hR̂V t+h is the conditional

variance of the portfolio return. The portfolio return is Et(rp,t+h) = (1 − wt+h)rf,t+h +

wt+hEt(rm,t+h), where wt+h is the portfolio weight of the risky asset, Et(rm,t+h) is the

conditional expected return of the risky asset and rf,t+h is the risk free rate, which we

know ex-ante. The risk-free rate is proxied by the 3-month US Treasury bill. Et (rm,t+h)

is estimated using a rolling window of 1,000 days.

16We aim for an intuitive comparison at the stock level to illustrate the benefits of the market-HAR
model, similar to Fleming et al. (2001, 2003); Marquering and Verbeek (2004). We leave portfolio designs
with re-balancing schemes between the risky assets open to future research.
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Substituting and taking FOC w.r.t wt+h we obtain the optimal portfolio weight as:

wt+h =
Et (rm,t+h)− rf,t+h
γVart (rm,t+h)

. (31)

Two strategies are used depending on the volatility forecasts obtained either from the

benchmark HAR-PRV or from the market-HAR models. We constrain our portfolio, so

short-selling and leverage are not allowed. We consider different risk aversion levels γ =

{2, 6, 10} in line with Fleming et al. (2003); Marquering and Verbeek (2004); Nolte and

Xu (2015). The sample averaged realized utility for a given strategy may be interpreted

as the certain return that provides the same utility to the investor as the risky investment

strategy, and is given as:

Ū(Rp) =
1

T

T−1∑
t=0

[
rp,t+h −

γ

2
Vart(rp,t+h)

]
. (32)

As each investment strategy corresponds to an averaged realized utility for a unique

sample, we can compare the performance fee that investors are willing to pay to switch

strategies. The performance fee is denoted in basis points against the benchmark HAR-

PRV strategy. The performance fee, denoted as ∆γ, is obtained by equating the sample

averaged realized utility of the candidate strategy a to the benchmark b and solving for

the performance fee, namely:

T−1

T−1∑
t=0

[
(ra,t+h −∆γ)−

γ

2
w∗
a,t+hR̂V a,t+h

]
= T−1

T−1∑
t=0

[
rb,t+h −

γ

2
w∗
b,t+hR̂V b,t+h

]
. (33)

To ensure that the performance of our volatility-timing portfolio strategies is robust

to realistic transaction costs, we follow DeMiguel et al. (2014) and define the transaction

cost adjusted portfolio return as:

r̄p,t+1 = rp,t+1 − π

∣∣∣∣wt+1 − wt
1 + rp,t+1

1 + wtrp,t+1

∣∣∣∣︸ ︷︷ ︸
Turnover

, (34)
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where r̄p,t+1 is the transaction cost adjusted portfolio return, and π is the transaction

cost parameter. Following Nolte and Xu (2015) we set π to 0.0025, corresponding to a

2.5 cent half spread on a 10 dollar stock.

4 Data

Our sample consists of 20 individual stocks selected by trading volume over the period

January 3, 2000 to December 31, 2016, a total of 4,277 days, together with the SPDR

(SPY) S&P 500 ETF over the same time period which we use as a proxy for the market

factor.17 We consider sampling frequencies ranging from 30 to 300 seconds.

Table 1 provides descriptive statistics for all the stocks and the SPY. The SPY is the

least volatile asset in our study with an averaged annualized volatility close to 15%. By

contrast, stock volatility is up to 3 times higher. Amazon displays the highest annualized

return and volatility, whilst Arconic (ARNC) has the minimum annualized return and

Procter & Gamble (PG) is the least volatile stock.

Table 2 reports average correlations across the stocks for all the realized measures

under analysis. Above (below) the main diagonal the correlations are obtained using

realized measures estimated from 30 (300)-second return. The superscripts “s” and “m”

represent the realized measures of the stock and the market, respectively. Realized mea-

sures estimated at the 30-second frequency display stronger correlations compared with

their counterpart estimated at the 300-second frequency. The level of correlation among

all stock and market realized measures offers prima facie evidence that valuable infor-

mation may be extracted from semi-variances and semi-covariances, and could lead to

superior volatility forecasts.

Figure 1 depicts the PRV and MRC with their respective signed components, averaged

across all the stocks. The left-panel shows that negative semi-variances are more volatile

than positive semi-variances, which is consistent with the view that negative returns have

a pronounced impact on volatility (Corsi and Renò, 2012; Glosten et al., 1993; Patton and

17In a volatility forecasting application, Liu et al. (2018) show that the SPDR (SPY) S&P 500 ETF
and the S&P 500 are similar, and we opt for the former as it is a tradable asset.
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Sheppard, 2015). The right-panel plots the semi-covariances. Here, the concordant ele-

ments (MRC+,MRC−) are positive by construction; the discordant (MRC+−,MRC−+)

are negative. During crisis periods the concordant elements increases more than the dis-

cordant decline; thus confirming that during turbulent periods the correlation between

stocks and market increases. Besides we note that the level of covariation is mainly de-

termined by the concordant elements, suggesting that the discordant ones are of lesser

importance.

Figure 2 plots the autocorrelation function, averaged across all stocks for the PRV and

MRC with their respective signed components. A cursory inspection shows a lower level

of persistence when compared to standard volatility measures, which is expected since

MMSN induces first-order autocorrelation (Hansen and Lunde, 2006). The negative semi-

variance shows higher persistence than its positive counterpart; thus being aligned with

the findings of Patton and Sheppard (2015). Besides, the market is less persistent than

the stocks. This may be in part explained by the memoryless large (finite) jumps typically

observed in individual stocks (Andersen et al., 2007; Bu et al., 2021; Duffie et al., 2000;

Duong and Swanson, 2015), which however once aggregated at the market level become

informative (Bu et al., 2021; Duong and Swanson, 2015); thus reducing the persistence

of PRV m compared to PRV s. The MRC shows similar patterns as only the concordant

elements are affected by co-jump activity (Bollerslev et al., 2020; Hizmeri et al., 2020).

5 Modeling and forecasting with the market-HAR

5.1 In-sample performance

Table 3 presents the estimated coefficients and goodness-of-fit statistics for the HAR-

PRV, HAR-V and HAR-Co-V models across three forecasting horizons: one-day (h = 1),

one-week (h = 5), and one-month (h = 22) ahead. The null hypothesis of the F-test is

that of equal fit between the benchmark HAR-PRV and each of the market-HAR models;

with the rejection indicating the latter outperforms the former. The number of stocks

where the market-HAR models supersede the benchmark HAR-PRV is reported.
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A first inspection of the results shows that adding market information in the HAR-V

model leads to an improvement in the model fit relative to the benchmark model. This

improvement ranges from 0.9% to 1.9% points in terms of the adjusted R-squares, and

with the exception of two stocks at h = 5, the F-test rejects the null of equal fit for

all the stocks across all forecasting horizons. Moreover, the HAR-Co-V model (which

incorporates the variance and covariance market information) substantially improves the

model fit: relative to the HAR-PRV models R-squares are raised from 1.4% to 3.4%

points. The F-test corroborates this result. Market information renders stock specific

variables insignificant, which suggests that idiosyncratic volatility dynamics are of lesser

importance. Monthly market volatility in the HAR-V model and the covariance esti-

mates in the HAR-Co-V models are generally negative across all forecasting horizons.

For the HAR-V model, negative market variance reduces weights assigned to monthly

information; instead it places more emphasis on daily and weekly information.

Tables 4 and 5 present the parameter estimates and goodness-of-fit statistics for the

asymmetric market-HAR variants. We discuss these tables in turn. Focusing first on the

results in Table 4, we observe that the specification based on the negative semi-variance

has better fit than the one with the positive. Besides, the HAR-V− outperforms the

benchmark HAR-PRV in the majority of stocks. The increase in model fit is readily

observed in terms of R-squares, where the HAR-V− model improves between 3.4–4.3%

points relative to the HAR-PRV model, and between 1.5–3.3% points relative to the

unsigned HAR-V variant, across all forecasting horizons. Our findings here are in line with

Patton and Sheppard (2015) who argue that negative semi-variances are more important

to predict future volatility.

In Table 5 the asymmetric HAR-Co-V models are presented in two panels. Panel

A gives parameter estimates for the HAR-Co-V models based on semi-covariances, but

using unsigned volatilities. Across all forecasting horizons F-test values show both mod-

els to improve fit relative to the benchmark HAR-PRV model. The general similarity

of goodness of fit across these models suggests similar explanatory power for the semi-

covariances. Panel B reports the parameter estimates for the asymmetric HAR-Co-V
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using semi-covariances and semi-variances in the fully positive (HAR-Co+-V+) and nega-

tive (HAR-Co−-V−) variant. The HAR-Co−-V− outperforms its fully positive counterpart

by 6.5–9.0% points in terms of the adjusted R-squared, across all forecasting horizons.

Compared to the benchmark HAR-PRV, the HAR-Co−-V− model offers superior fit in

most stocks.

Figure 3 presents the distribution of model coefficients across the stocks using box-

plots. The coefficient estimates appear well-behaved with the weekly and monthly com-

ponents of the HAR-PRV model reflecting the stocks’ heterogeneity to a greater extent

than the daily component. This may be plausibly related to the mix of investor prefer-

ences observed at different stocks and/or business sectors. Across the models that contain

both firm-specific and market-specific information, the marginal contribution of the latter

varies substantially at the stock level, as evidenced by the higher heterogeneity of the

market-specific coefficients vis-à-vis their firm-specific counterparts. A similar finding is

observed for the models further allowing for realized covariances.18

Our general findings are that, by incorporating market information, the market-

HAR models deliver superior explanatory power over the benchmark HAR-PRV model.

Whether the superior in-sample performance translates into out-of-sample forecasting

gains is examined next.

5.2 Out-of-sample forecasting

Table 6 reports out-of-sample relative losses across forecasting horizons and sampling

frequencies. Using each loss function, relative loss is computed as the ratio of the market-

HAR models to the benchmark HAR-PRV model. For values below unity, market-HAR

models outperform the benchmark. The superscript indicates stocks with significantly

higher (α = 0.05 level) relative forecasting performance for market-HAR models, under

the CPA test of Giacomini and White (2006). In line with the literature, we first discuss

results based on the 300-second sampling frequency, one-day ahead forecasting using the

18The factors driving the heterogeneity of market-specific information is an interesting question, which
we leave open for a future large sample evaluation.
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HMSE loss function.19 We then discuss in turn the impact of sampling frequency and

longer forecasting horizon.

A first inspection of the results shows the most parsimonious of the market-HAR mod-

els (i.e., the HAR-V) to outperform the benchmark HAR-PRV model by approximately

9.80% points, and 15 stocks display significant forecasting gains. Asymmetric market-

HAR models provide even better out-of-sample forecasting performance: when the neg-

ative semi-variance is used, the HAR-V− model is relatively superior by 18.20% points,

and 17 stocks display significant forecasting gains. Market-HAR models that incorpo-

rate realized covariance information outperform by up to 30.70% points the benchmark

HAR-PRV model, with significant results for most stocks.

The forecasting gains of market-HAR models are moderated at high sampling frequen-

cies and longer forecasting horizons.20 Nevertheless, these remain highly significant even

at the 30-second sampling frequency and/or the one-month ahead case. In particular, the

HAR-Co+-V model outperforms the benchmark by 20.9% points with significant results

in 19 stocks when the sampling frequency is set at the 30-second, and by 19.40% points

when the forecasting horizon is set to one-month ahead.

5.3 Model classification and performance

This section presents the results of the Model Confidence Set (MCS) approach, which

identifies the subset of models from the many market-HAR specifications with a superior

predictive ability across specific forecasting horizons and sampling frequencies. The small

variation in the ranking of models, as attributed to noise-robust realized measures, gives

confirmation that, after accounting for MMSN, the sampling frequency choice becomes

insignificant.

Table 7 reports MCS ranking information for individual stocks across forecasting hori-

zons when the 300-second sampling frequency is used for the realized measures. Retained

models are identified by a ranking number; models excluded from the MCS are identified

by a dash. Models ranked higher outperform those ranked lower. The MCS results re-

19The results using QLIKE are qualitatively similar.
20Li and Zakamulin (2020) also verify that volatility forecast accuracy diminishes in longer horizons.
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ported are based on the QLIKE loss function.21 Focusing on the one-day ahead results,

we observe that for most stocks (i.e., 18/20) there are at least two competing models in

the MCS, while only 3/20 stocks include the HAR-PRV model – the main benchmark in

the previous part of the analysis. The last two columns show respectively the percentage

of times a model has been included in the MCS and its average rank. The HAR-V−

and HAR-Co+-V models are predominantly selected by the MCS featuring in 70% of the

stocks; while the former has an average ranking of 2.86, the latter ranks at 1.86. There-

fore the MCS finds the HAR-Co+-V the best model, on average. The one-month forecasts

show that the HAR-Co+-V model expands to 90% of the stocks, with its average ranking

dropping to 1.44; thus further dominating the other models.

Table 8 gives MCS rankings for individual stocks across sampling frequencies at the

one-day ahead forecasting horizon. The MCS results obtained with the 150-second sam-

pling frequency, show that HAR-Co+-V is the best model for 70% of the stocks with

an average ranking of 1.64; thus being comparable to the results reported in Table 7.

However, as the sampling frequency increases the HAR-V− emerges as the best specifica-

tion in 80–90.0% of the stocks. It appears that the negative semi-variance dominates at

higher frequencies, while the positive one carries no predictive power. In broad strokes

these asymmetric models show superior forecasting performance, which is in line with

the findings of Bollerslev et al. (2016); Patton and Sheppard (2015) among others. The

new information that our paper uncovers relates to which signed components contribute

to the most significant gains in the presence of both stock-specific and market-specific

signed realized measures as well as their signed realized covariances. It further reveals

that despite negative semi-variances being regarded as more informative, there is merit

in the information content afforded by the positive semi-covariance.

5.4 Mixed sampling frequency market-HAR

In this section, we gauge the forecasting performance of the market-HAR models when

we individually vary the sampling frequency on the stock and the market. Our earlier

21The results based on the HMSE provide similar conclusions and are omitted for brevity, but are
available upon request.
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results have shown that the market-HAR models generally outperform the benchmark

HAR-PRV and that the forecasting gains are of comparable magnitude across sampling

frequencies. However, the results on Table 2 reveal different correlation levels across

sampling frequencies. Besides, the use noise-robust realized measures enable us to use a

wide span of sampling frequencies.

We setup the mixed sampling approach on the HAR-V model for two reasons. First,

the HAR-V model is the most parsimonious of the market-HAR class of models, hence

our results here would be useful to establish a minimum expected gain. Second, the HAR-

Co-V model incorporates the realized covariation that has to be estimated at the same

sampling frequency between the stock and the market.22 The mixed-sampling HAR-V

model is constructed by holding constant the stock frequency, while varying the market

frequency and vice versa. We use a total of six sampling frequencies ranging from 30-

to 300-seconds. The results are compared against the benchmark HAR-PRV and the

HAR-V models that are based on the same sampling frequency for the stock and the

market.

The results of this exercise are presented in Table 9. The forecast evaluation criteria,

averaged across all stocks, are presented in Panel A, while the relative losses with respect

to the same frequency case (main diagonal) are reported in Panel B. Figure 4 plots

the relative losses in a 3D plane. The x- and y-axis display respectively the sampling

frequency of the market and the stock, while the z-axis displays the loss ratio for the

QLIKE (left-panel) and HMSE (right-panel). The darker part of the figure highlights the

best performance, while by contrast the lighter part indicates the worst performance.

Interesting observations can be drawn from these results. First, all the sampling fre-

quency combinations outperform the benchmark HAR-PRV model, thus corroborating

our previous findings on the benefits of incorporating market information upon volatility

forecasting. Second, the relative losses reported in the lower (upper) triangular part of

each panel are below (above) unity suggesting that using a mixed sampling frequency

market-HAR affects the forecasting performance. We observe that the best forecasting

22As the aim of this exercise is not to produce a horse-race we exclude the signed models, and leave
this question open to future research.
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performance is achieved when the market sampling frequency is higher than the stock’s.

In particular and using the QLIKE (HMSE), the mixed sampling market-HAR shows

1.90% (6.90%) points superior forecasting performance when the 300-second stock sam-

pling frequency is combined with the 30-second market sampling frequency. Forecasting

improves proportionally to the differential in sampling frequencies between the stock and

the market, while for those cases where stock sampling frequency is lower than the mar-

ket, forecasting deteriorates. This observation suggests that the use of a mixed-sampling

approach better captures variations in the information set of the stock and the market.

5.5 Economic value analysis

Table 10 reports the economic gains of switching from the benchmark HAR-PRV strat-

egy to the market-HAR class of models for the one-day ahead case.23 The performance

fee represents the amount that an investor is willing to pay to using our new class of

forecasting models, and the performance fee is expressed in annual basis points. Statisti-

cally significant differentials are evaluated against the null hypothesis of zero performance

fee using a one-sided t-test with a robust variance-covariance estimator following Bandi

et al. (2008); Engle and Colacito (2006); Nolte and Xu (2015), namely: H0 : ∆γ = 0

and H1 : ∆γ > 0. Bold numbers highlight the market-HAR models that outperform the

benchmark strategy, and starred values indicate significant gains at the 5% significance

level.

A cursory inspection of the results finds that market-HAR models generate positive

performance fees across all stocks. The best performance is achieved by the HAR-V−,

the HAR-Co+-V and the HAR-Co−-V− strategies. When γ = 2, these significantly

outperform the benchmark strategy in at least 50% of our stocks. In contrast, the HAR-

V+ and HAR-Co+-V+ models, that are based on the uninformative positive semi-variance,

deliver weak out-of-sample performance. Performance fees at higher levels of risk aversion

(γ = 6, 10) are positive and comparable to the γ = 2 case.

To be allowed to switch from the benchmark strategy to the HAR-Co+-V strategy, a

23Results for longer horizons are qualitatively similar to those of the one-day ahead case, and are
available upon request.
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hypothetical investor would be willing to pay between 57 (γ = 2) and 11 (γ = 10) basis

points. Regardless of the performance of HAR-V+ or HAR-Co+-V+, if HAR-V strategies

were positioned at γ = 2, a fee of 5.627 basis points would be warranted. Alternatively,

HAR-Co-V strategies would, on average, warrant a performance fee of 9.357 basis points.

These illustrative values highlight the benefits of incorporating market information in

stock volatility forecasting; and that utilizing covariance and/or signed realized measures

would further enhance the performance.

Table 11 presents the performance fee, averaged across all stocks for 1-day ahead

forecasts when transaction costs are considered. These values are slightly smaller than

earlier results, so indicating that transaction costs have only marginal impact upon strate-

gies. The superior performance of the market-HAR models is not challenged by realistic

transaction costs.

6 Robustness

In this section we examine the robustness of market-HAR forecasting gains to the

presence of jumps and the choice of functional form.

6.1 Jumps

Accounting for jumps in volatility forecasting has been well-documented, yet no con-

sensus exists as to whether jumps increase forecasting performance (Andersen et al., 2007;

Bu et al., 2021; Busch et al., 2011; Corsi et al., 2010; Giot and Laurent, 2007; Nolte and

Xu, 2015; Patton and Sheppard, 2015). In our context, we allow for the presence of jumps

in either of the firm-specific and market-specific components, as well as jumps occurring

in both components simultaneously (i.e., co-jumps). To separate the jump variation from

the total realized variance, we need a measure that is robust to the presence of jumps.

Since our framework relies on noise-robust measures, we use the pre-averaged bipower
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variation (PBV) proposed by Christensen et al. (2014):

PBVt =
M

M − 2L+ 2

1

LψL2 µ
2
1

M−2L+1∑
i=0

|r̂t,i||r̂i+L| −
ψL1 ω̂t
θ2ψL2

, (35)

where µ1 = E[|U |], and U ∼ N (0, 1). The jump variable are defined as follows:

JV s
t = max (PRV s

t − PBV s
t , 0) ,

JV m
t = max (PRV m

t − PBV m
t , 0) .

Finally, we can create a co-jump measure as follows:

CJt =


1 if I (JV s

t > 0) ∩ I (JV m
t > 0) ,

0 otherwise.

(36)

Our focus is to ensure that the forecasting gains commanded by the market-HAR

are robust to the inclusion of daily jumps, rather than an investigation of whether

jumps increase forecasting performance. Table 12 presents out-of-sample relative losses

of market-HAR models with jump components against the benchmark HAR-PRV model.

The CPA test of Giacomini and White (2006) at the 5% significance level reports the

number of stocks that show significantly higher forecasting gains relative to the bench-

mark HAR-PRV model. For brevity we present results based on the 300-second sam-

pling frequency, and one-day, one-week, one-month ahead forecasting horizons using the

HMSE and QLIKE loss functions.24 Market-HAR models with jumps in the stock-specific

and market-specific components are denoted as HAR-V-Js and HAR-V-Jm respectively;

HAR-V-JJ denotes the inclusion of both jump components, while the HAR-V-CJ further

imposes that jumps in the firm-specific and market-specific components occur simultane-

ously. The lower part of the table repeats the HAR-V (without jumps) for comparison

purposes.

Our results suggest that the forecast improvements pertaining to the inclusion of

24Results for other sampling frequencies are qualitatively similar and available from the authors upon
request.
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a market component revealed in the main paper are not challenged, on average, by the

existance of jumps in either or both of stock-specific and market-specific components. On

average and for short horizons, inclusion of jumps appears to offer minor improvements

in forecasting performance.

6.2 Functional form

It is sometimes practice that volatility modeling and forecasting is conducted on the

logarithmic transformation of the realized measure. To ensure that the forecasting ben-

efits documented by the market-HAR models in the main part of the paper are not

reflective of nonlinear dependencies, we proceed to estimate a market-HAR model with

the logarithmic transformation, which we denote as Log-HAR-V. To facilitate compar-

isons, the forecasts of the Log-HAR-V are compared against those of a Log-HAR model.

Namely, these models are defined as:

Log-HAR

log(PRV s
t+h−1|t) = β0 + βdlog(PRV

s
t−1) + βwlog(PRV

s
t−1|t−5) + βmlog(PRV

s
t−1|t−22) + ϵt,

(37)

Log-HAR-V

log(PRV s
t+h−1|t) = β0+β

s
dlog(PRV

s
t−1) + βswlog(PRV

s
t−1|t−5) + βsmlog(PRV

s
t−1|t−22)+

βmd log(PRV
m
t−1) + βmw log(PRV

m
t−1|t−5) + βmm log(PRV

m
t−1|t−22) + ϵt.

(38)

Table 13 presents out-of-sample relative losses of Log-HAR-V model against the Log-

HAR. The CPA test of Giacomini and White (2006) at the 5% significance level reports

the number of stocks that show significantly higher forecasting gains relative to the Log-

HAR. For brevity we present results based on the 300-second sampling frequency, and

one-day, one-week, one-month ahead forecasting horizons using the HMSE and QLIKE

loss functions.25 The lower part of the table repeats the HAR-V (without logarithmic

25Results for other sampling frequencies are qualitatively similar and available from the authors upon
request.
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transformation) for comparison purposes.

Our results suggest that the qualitative nature of our findings in the main paper are

not challenged by the logarithmic transformation. Put simply, inclusion of the market

factor improves individual stock volatility forecasting irrespective of the functional form

adopted on the forecasting model.

7 Concluding remarks

The increased availability of high-frequency data have shaped the financial economet-

rics literature. Yet the inherently multivariate issues in finance, such as the covariation

among multiple assets or systematic risk factors, remain largely unaddressed. Our con-

tribution here fills this gap. We show that incorporating the market volatility factor

significantly improves stock volatility forecasting in statistical and economic terms. The

importance of the market volatility factor suggests of developments that are not fully

reflected in individual stock dynamics. For example, it may take some time for financial

analysts and/or traders to gauge the impact of news on individual stocks, as well as

precisely trace the exact effect of a certain announcement; what Bollerslev (2022) refers

to as “soft” news.

Our market-HAR model incorporates market information in a simple-to-estimate and

digestible way. It does so by including realized variances and covariances of the market

factor within the univariate heterogeneous autoregressive (HAR) model of Corsi (2009).

Using a sample of 20 representative stocks from the S&P 500 and the SPDR (SPY)

S&P 500 ETF market proxy, in-sample and out-of-sample forecasting improvements are

obtained, which are priced at 57 annual basis points. The forecasting gains reported in

this paper are robust to a variety of robustness tests.

Our work has implications for future research. The cross-sectional heterogeneity we

observe in the market-specific and covariance coefficients (see Figure 3) leads to ongoing

work investigating their financial/economic drivers by potentially making use of the high

frequency versions of the Fama-French size and value factors (Aı̈t-Sahalia et al., 2020;
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Bollerslev and Zhang, 2003). Besides, using our mixed frequency market-HAR design,

the largest forecasting gains are attained when using a low (high) sampling frequency

for the stock (market). This finding reflects the different informational content present

in stocks/market across sampling frequencies. Future work in this direction could be

positioned alongside Adrian et al. (2019); Carriero et al. (2020); Giglio et al. (2016)

in seeking to relate the “products” of financial econometrics research to financial and

economic outcomes. Finally, our market-HAR model can also be appropriate for mod-

eling multivariate realized volatility, see for example the vech-HAR (Bollerslev et al.,

2018; Chiriac and Voev, 2011), the HAR-DRD (Oh and Patton, 2016) and the HEAVY

(Noureldin et al., 2012). This would allow us to relax the assumption that all assets share

the same covariation dynamics Bollerslev et al. (2018); Chiriac and Voev (2011). In such

context, multivariate models may benefit from the use of the market factor as shown in

this paper to avoid looming curse of dimensionality issues.
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Corsi, F., Pirino, D., and Renò, R. (2010). Threshold bipower variation and the impact

of jumps on volatility forecasting. Journal of Econometrics, 159(2):276–288.
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A Tables and Figures

Table 1: Summary statistics

Annualized Annualized Min Mean Median Max
Stock/Index Ticker T Returns (%) Volatility (%) PRV PRV PRV PRV

Amazon.com, Inc. AMZN 4277 21.708 41.356 0.073 6.787 2.465 268.493
Arconic Inc. ARNC 4277 -35.512 32.069 0.117 4.081 2.220 133.436
Boeing Co. BA 4277 6.458 23.621 0.031 2.214 1.147 61.611
Bank of America Corporation BAC 4277 -22.745 32.518 0.011 4.196 1.255 442.475
Caterpillar Inc CAT 4277 -0.022 26.106 0.046 2.704 1.466 77.442
China Mobile Ltd. CHL 4277 -0.485 19.626 0.034 1.529 0.664 69.936
Costco Wholesale Corporation COST 4277 16.141 24.721 0.040 2.425 1.008 206.367
Cisco Systems, Inc. CSCO 4277 -5.333 29.355 0.038 3.420 1.386 210.661
The Walt Disney Company DIS 4277 13.642 23.794 0.048 2.247 0.996 198.043
DowDuPont Inc. DOW 4277 -2.152 28.021 0.038 3.116 1.533 179.970
Exelon Corporation EXC 4277 2.232 22.909 0.049 2.083 1.017 194.428
Freeport-McMoRan Inc. FCX 4277 -24.247 39.345 0.137 6.143 3.313 181.682
Halliburton Company HAL 4277 -16.572 35.905 0.142 5.116 2.667 612.552
Honeywell International Inc. HON 4277 -4.752 25.453 0.017 2.571 1.202 130.178
International Business Machines Corporation IBM 4277 15.874 20.014 0.032 1.590 0.711 56.868
The Coca-Cola Co. KO 4277 12.537 17.227 0.015 1.178 0.565 52.832
The Procter & Gamble Company PG 4277 14.640 16.486 0.019 1.078 0.514 94.868
Southern Co. SO 4277 4.054 17.326 0.034 1.191 0.587 67.818
Wells Fargo & Company WFC 4277 -0.646 28.594 0.025 3.244 0.937 254.379
Xerox Corporation XRX 4277 7.218 33.763 0.076 4.524 1.903 439.853

SPDR S&P 500 ETF SPY 4277 -0.056 14.863 0.010 0.877 0.410 61.442

Note: The table reports the descriptive statistics for all the stocks and the SPY. The realized measures presented are estimated at the 300
second frequency. The annualized volatility is estimated as σT

√
252, where σT is the average daily pre-averaged realized volatility, and the

annualized return is µ×252, where µ is the average daily return. PRV is the pre-averaged realized volatility defined as in Equation (8). The
bold numbers represent the highest and lower annualized volatility, while the blue and red font highlight the highest and lowest annualized
return.
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Table 2: Average correlations across sampling frequency and realized measures

PRVs PRVm MRC MRC+ MRC− PRVs+ PRVs− PRVm+
PRVm−

PRVs – 0.688 0.769 0.730 0.736 0.931 0.919 0.647 0.650
PRVm 0.611 – 0.924 0.878 0.822 0.689 0.586 0.959 0.918
MRC 0.721 0.897 – 0.933 0.874 0.766 0.659 0.886 0.848
MRC+ 0.665 0.820 0.897 – 0.659 0.805 0.539 0.924 0.691
MRC− 0.632 0.733 0.789 0.456 – 0.620 0.755 0.674 0.914

PRVs+ 0.854 0.586 0.702 0.788 0.404 – 0.714 0.694 0.586

PRVs− 0.832 0.460 0.530 0.333 0.701 0.439 – 0.500 0.625

PRVm+
0.553 0.926 0.836 0.897 0.492 0.615 0.322 – 0.767

PRVm−
0.528 0.833 0.741 0.481 0.887 0.383 0.537 0.563 –

Note: The table reports the correlation among all the realized measures under analysis. The
entries report the average correlation for the 20 stocks. Entries above the main diagonal are
estimated using 30-second returns, while below the main diagonal the entries are estimated using
300-second returns.
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Table 3: Market-HAR prediction regression results

HAR-PRV HAR-V HAR-Co-V HAR-PRV HAR-V HAR-Co-V HAR-PRV HAR-V HAR-Co-V
h = 1 h = 5 h = 22

β0 0.368∗∗∗ 0.355∗∗∗ 0.286∗∗∗ 0.502∗∗∗ 0.488∗∗∗ 0.412∗∗∗ 0.785∗∗∗ 0.752∗∗∗ 0.674∗∗∗

βsd 0.191∗∗∗ 0.158∗∗∗ 0.162∗∗∗ 0.117∗∗∗ 0.085∗∗ 0.103 0.065 0.046 0.057
βsw 0.335∗∗∗ 0.237∗ 0.259 0.291∗∗∗ 0.212∗∗∗ 0.196 0.200∗∗ 0.137 0.199
βsm 0.349∗∗∗ 0.406∗∗∗ 0.439∗∗∗ 0.421∗∗∗ 0.461∗∗∗ 0.524∗∗∗ 0.464∗∗∗ 0.501∗∗∗ 0.490∗∗∗

βmd 0.139 0.151 0.146∗ 0.242∗ 0.090 0.145
βmw 0.406∗∗ 0.395∗ 0.342∗ 0.045 0.180∗ 0.404
βmm −0.311 0.396 −0.257 0.773∗ −0.081 0.648∗

βMRC
d −0.030 −0.128∗ −0.077
βMRC
w −0.067∗ 0.259 −0.353
βMRC
m −0.729 −1.105 −0.718∗

R2
adj 0.389 0.398 0.403 0.551 0.566 0.575 0.564 0.583 0.598

F-test – 20 20 – 18 20 – 20 20

Note: The table reports the coefficients for the average across all the stocks at the 300 seconds. ∗, ∗∗, and ∗∗∗ represent the
significant of the coefficients at the 10%, 5%, and 1% level using the Newey-West HAC correction allowing for serial correlation up
to order 5 (h = 1), 10 (h = 5), and 44 (h = 22). Bold numbers highlight the market-HAR models that outperform the benchmark
HAR-PRV. The bottom panel reports average values across all the stocks for the R2

adj , and the number of rejections of the F-test.
The F-test has a null hypothesis of equal fit, and hence its rejection indicates that market-HAR models are a better model fit than
HAR-PRV models.
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Table 4: Asymmetric HAR-V prediction regression results

HAR-V+ HAR-V− HAR-V+ HAR-V− HAR-V+ HAR-V−

h = 1 h = 5 h = 22

β0 0.551∗∗∗ 0.326∗∗∗ 0.650∗∗∗ 0.480∗∗∗ 0.886∗∗∗ 0.757∗∗∗

βs
+

d 0.149 0.083 0.041

βs
+

w 0.408 0.328 0.200

βs
+

m 0.888∗∗∗ 0.963∗∗∗ 1.004∗∗∗

βm
+

d −0.035 0.052 0.041

βm
+

w 0.780 0.663 0.414

βm
+

m −0.276 −0.232 −0.026

βs
−

d 0.209∗∗∗ 0.112∗ 0.061

βs
−
w 0.429∗ 0.371∗ 0.263∗

βs
−
m 0.884∗∗∗ 0.963∗∗∗ 0.980∗∗∗

βm
−

d 0.995∗∗ 0.627∗∗ 0.357∗

βm
−

w 0.857∗ 0.887∗ 0.407

βm
−

m −0.897∗ −0.652 −0.072

R2
adj 0.335 0.431 0.497 0.594 0.526 0.598

F-test 0 19 1 20 1 20

HAR-PRV

R2
adj 0.389 0.551 0.564

Note: See notes to Table 3. The bottom panel of the Table reports the 1-day
(h = 1), 5-day (h = 5), and 22-day (h = 22) ahead HAR-PRV’s adjusted R-
squares for the average across all the stocks.
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Table 5: Asymmetric HAR-Co-V prediction regression results

Panel A: The table reports the prediction regression results for HAR-Co-V
based on unsigned volatilities and semi-covariances.

HAR-Co+-V HAR-Co−-V HAR-Co+-V HAR-Co−-V HAR-Co+-V HAR-Co−-V
h = 1 h = 5 h = 22

β0 0.160 0.311∗∗∗ 0.332∗∗ 0.445∗∗∗ 0.614∗∗∗ 0.745∗∗∗

βsd 0.216∗∗ 0.102 0.120∗∗∗ 0.051 0.063∗∗∗ 0.027
βsw 0.326∗∗ 0.121 0.281∗∗ 0.114 0.194∗∗∗ 0.109
βsm 0.417∗∗∗ 0.481∗∗∗ 0.489∗∗∗ 0.540∗∗∗ 0.551∗∗∗ 0.502∗∗∗

βmd 0.537∗∗ −0.149 0.377∗∗ −0.041 0.197∗ −0.007
βmw 0.859∗ −0.278 0.692 −0.267 0.472 −0.059
βmm 0.149 −0.081 0.295 0.145 0.643 −0.005

βRC
+

d −0.727∗∗ −0.447∗∗ −0.232∗

βRC
+

w −1.159∗ −0.882∗ −0.751

βRC
+

m −0.908 −1.103 −1.436∗

βRC
−

d 0.896∗∗ 0.532∗∗ 0.309∗

βRC
−

w 1.789∗ 1.617∗ 0.585

βRC
−

m −0.719 −1.099 −0.237

R2
adj 0.426 0.427 0.593 0.591 0.607 0.594

F-test 20 20 20 20 20 20

Panel B: The table reports the prediction regression results for HAR-Co-V
using semi(co)variances.

HAR-Co+-V+ HAR-Co−-V−

h = 1 h = 5 h = 22 h = 1 h = 5 h = 22

β0 0.472∗∗∗ 0.583∗∗∗ 0.832∗∗∗ β0 0.265∗∗ 0.400∗∗∗ 0.698∗∗∗

βs
+

d 0.238 0.155 0.085 βs
−
d 0.192∗∗∗ 0.123∗∗∗ 0.071

βs
+

w 0.570 0.435 0.316 βs
−
w 0.393∗∗∗ 0.293 0.394

βs
+

m 0.874∗∗ 0.995∗∗ 1.027∗∗ βs
−
m 1.067∗∗∗ 1.237∗∗∗ 1.056∗∗∗

βm
+

d 0.273 0.337 0.202 βm
−

d 0.816 0.587∗ 0.367∗

βm
+

w 1.478 1.007 0.831 βm
−

w −0.005 −0.238 0.827

βm
+

m 0.684 0.938 1.085 βm
−

m 0.749∗ 1.755∗ 1.200

βMRC+

d −0.424 −0.377 −0.219 βMRC−
d 0.122 0.004 −0.023

βMRC+

w −0.968 −0.541 −0.618 βMRC−
w 0.772 1.026 −0.645

βMRC+

m −0.920 −1.200 −1.144 βMRC−
m −1.711∗ −2.616∗ −1.412∗

R2
adj 0.346 0.513 0.544 R

2
adj 0.436 0.603 0.609

F-test 0 3 4 F-test 19 20 20

HAR-PRV

R2
adj 0.389 0.551 0.564

Note: See notes to Table 3 for details. The bottom panel of the Table reports the 1-day (h = 1),
5-day (h = 5), and 22-day (h = 22) ahead HAR-PRV’s adjusted R-squares for the average across
all the stocks.
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Table 6: Out-of-sample ranking performance

QLIKE Rank QLIKE Rank QLIKE Rank Avg. HMSE Rank HMSE Rank HMSE Rank Avg.
h = 1 h = 5 h = 22 h = 1 h = 5 h = 22

30-second return 30-second return

HAR-PRV 1.000 6 1.000 7 1.000 7 1.000 1.000 7 1.000 7 1.000 7 1.000
HAR-V 0.98011 4 0.9639 6 0.9763 6 0.973 0.95813 6 0.9559 6 0.9856 6 0.966
HAR-V+ 1.1700 9 1.1540 9 1.0860 9 1.137 1.3630 9 1.2810 9 1.1601 9 1.268
HAR-V− 0.93914 1 0.89517 1 0.9376 3 0.924 0.84119 3 0.86817 3 0.9409 5 0.883
HAR-Co-V 0.98211 5 0.9589 5 0.9568 5 0.965 0.92215 5 0.90213 5 0.91212 3 0.912
HAR-Co+-V+ 1.1491 8 1.1322 8 1.0594 8 1.113 1.2793 8 1.2065 8 1.0966 8 1.194
HAR-Co−-V− 0.97010 3 0.90013 2 0.9239 2 0.931 0.83519 2 0.83118 2 0.88512 2 0.850
HAR-Co+-V 0.96510 2 0.90517 3 0.90911 1 0.926 0.79119 1 0.80219 1 0.84815 1 0.813
HAR-Co−-V 1.0018 7 0.9289 4 0.9516 4 0.960 0.88715 4 0.89611 4 0.9369 4 0.906

60-second return 60-second return

HAR-PRV 1.000 6 1.000 7 1.000 7 1.000 1.000 7 1.000 7 1.000 7 1.000
HAR-V 0.97613 4 0.95710 6 0.9726 6 0.968 0.94215 6 0.93913 6 0.9778 6 0.953
HAR-V+ 1.1760 9 1.1680 9 1.0980 9 1.147 1.3770 9 1.3021 9 1.1790 9 1.286
HAR-V− 0.94514 1 0.89516 1 0.9356 3 0.925 0.84017 3 0.86617 3 0.9429 5 0.883
HAR-Co-V 0.97315 3 0.94910 5 0.9529 5 0.958 0.89916 5 0.88115 5 0.90212 3 0.894
HAR-Co+-V+ 1.1471 8 1.1334 8 1.0613 8 1.114 1.2633 8 1.2014 8 1.0953 8 1.186
HAR-Co−-V− 0.96413 2 0.90113 3 0.9217 2 0.929 0.82019 2 0.82219 2 0.88112 2 0.841
HAR-Co+-V 0.9849 5 0.89717 2 0.90212 1 0.927 0.76320 1 0.77920 1 0.83315 1 0.792
HAR-Co−-V 1.0247 7 0.92410 4 0.9448 4 0.964 0.86915 4 0.87613 4 0.92110 4 0.889

300-second return 300-second return

HAR-PRV 1.000 7 1.000 7 1.000 7 1.000 1.000 7 1.000 7 1.000 7 1.000
HAR-V 0.96616 3 0.94316 6 0.9638 6 0.957 0.90215 6 0.90914 6 0.96110 6 0.924
HAR-V+ 1.1740 9 1.1982 9 1.1381 9 1.170 1.4080 9 1.3842 9 1.2601 9 1.350
HAR-V− 0.96314 2 0.90115 2 0.93010 3 0.931 0.81817 3 0.85515 4 0.93912 5 0.871
HAR-Co-V 0.95916 1 0.92316 4 0.9368 4 0.940 0.82315 4 0.81717 3 0.85714 3 0.833
HAR-Co+-V+ 1.1352 8 1.1424 8 1.0854 8 1.121 1.2494 8 1.2204 8 1.1383 8 1.202
HAR-Co−-V− 0.98312 4 0.91114 3 0.90912 2 0.934 0.76517 2 0.78118 2 0.84215 2 0.796
HAR-Co+-V 0.98512 5 0.88119 1 0.88514 1 0.917 0.69319 1 0.72920 1 0.80616 1 0.743
HAR-Co−-V 0.9958 6 0.93112 5 0.9448 5 0.957 0.86815 5 0.88014 5 0.93112 4 0.893

Note: The table reports the average relative loss for QLIKE and HMSE across all the stocks. The relative losses are estimated as the ratio of the losses of the market-HAR
models to the losses of the benchmark HAR-PRV. Entries in bold indicate that our proposed models outperform the HAR-PRV. Avg. column reports for each model the
average relative loss across all forecasting horizons. The number in the superscript represents the number of stocks for which the losses of the market-HAR models are
significantly lower than the losses of the benchmark model. We use the CPA test of Giacomini and White (2006) at the 5% significance level.
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Table 7: Model confidence set ranking across forecasting horizons

AMZN ARCN BA BAC CAT CHL COST CSCO DIS DOW EXC FCX HAL HON IBM KO PG SO WFC XRX N% Rank
h = 1

HAR-PRV – 4 – – 7 – – – – – 2 – – – – – – – – – 15 4.33
HAR-V – 2 – – 6 – – – – – 1 – 4 – – 2 4 1 5 – 40 3.13
HAR-V+ – – – – – – – – – – – – – – – – – – – – 0 –
HAR-V− 1 6 – – 4 3 1 2 – 2 – – 3 3 3 5 3 3 1 – 70 2.86
HAR-Co-V 3 3 2 3 3 4 – – 2 – – 1 2 – – 1 1 2 – 2 65 2.23
HAR-Co+-V+ – – – – – – – – – – – – – – – – – – – – 0 –
HAR-Co−-V− – – – 4 2 1 – 1 4 3 – – 5 4 1 3 2 – 2 – 60 2.67
HAR-Co+-V 2 5 1 1 1 2 – – 1 1 – – 1 1 2 – – 4 3 1 70 1.86
HAR-Co−-V – 1 3 2 5 – – – 3 – – – – 2 – 4 – – 4 – 40 3.00

h = 5

HAR-PRV – – – – – – – – – – 3 – – – – – – – – – 5 3.00
HAR-V – – – – – – – – – – 1 4 – – – 6 – – – – 15 3.67
HAR-V+ – – – – – – – – – – – – – – – – – – – – 0 –
HAR-V− – 3 – 2 3 – 1 1 – 3 2 6 – 3 3 3 4 3 2 – 70 2.79
HAR-Co-V – 4 2 – – – – – 2 – 4 1 2 – – 2 2 2 4 2 55 2.45
HAR-Co+-V+ – – – – – – – – – – – – – – – – – – – – 0 –
HAR-Co−-V− – – 4 3 1 2 2 2 – 1 – 5 – 4 1 1 1 – 3 – 65 2.31
HAR-Co+-V 1 1 1 1 2 1 – – 1 2 – 3 1 1 2 4 3 1 1 1 85 1.59
HAR-Co−-V – 2 3 4 – – – – – – – 2 – 2 – 5 – – – 3 35 3.00

h = 22

HAR-PRV 2 3 – 6 4 – – – – – – 7 – – 2 – – – – – 30 4.00
HAR-V – 4 – 3 – – – – – – – 5 – – – – – – – – 15 4.00
HAR-V+ – – – – – – – – – – – – – – – – – – – – 0 –
HAR-V− – 2 – 4 3 2 1 1 – 3 2 6 – 2 – 4 – – 2 5 65 2.85
HAR-Co-V 3 6 – 5 5 – – – 2 4 – 4 1 – – 5 2 – – 4 55 3.45
HAR-Co+-V+ – – – – – – – – 4 – – – – – – – – – – – 5 4.00
HAR-Co−-V− – 5 – 2 1 3 2 – 3 1 3 3 – – 1 1 1 – – 3 65 2.23
HAR-Co+-V 1 1 1 1 2 1 – – 1 2 1 1 2 1 3 2 3 1 1 1 90 1.44
HAR-Co−-V – 7 – 7 6 – 3 – – – – 2 3 – 4 3 – – – 2 40 3.75

Note: The table reports the ranking based on the Model Confidence Set (MCS) proposed by Hansen et al. (2011). The entries are the ranking of the models across each stock
and forecasting horizon based on noise-robust measures estimated using 300-second return frequency. We use the QLIKE as loss function, and the MCS is estimated using a
block bootstrap with a window equal to 10 days, 5,000 replications, and a significance level of 10%. The dash-line indicates that the model has been excluded from the MCS.
The N% and Rank columns show the percentage of times a model has been included in the MCS and its average rank respectively.
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Table 8: Model confidence set across sampling frequencies

AMZN ARCN BA BAC CAT CHL COST CSCO DIS DOW EXC FCX HAL HON IBM KO PG SO WFC XRX N% Rank
30-second return

HAR-PRV – 1 – – 4 – – – – – – – – – – – – – – – 10 2.50
HAR-V – 2 – – 5 – – – – – – 2 – – – 2 – – – 3 25 2.80
HAR-V+ – – – – – – – – – – – – – – – – – – – – 0 –
HAR-V− 1 3 – 1 1 2 1 1 3 1 – 1 5 1 2 1 2 2 1 2 90 1.72
HAR-Co-V 2 4 3 – 3 – – – – – 1 3 3 – – 3 4 – – 6 50 3.20
HAR-Co+-V+ – – – – – – – – – – – – – – – – – – – – 0 –
HAR-Co−-V− – 7 – 4 – 3 2 2 2 4 – 4 4 2 – – 3 – – 4 60 3.42
HAR-Co+-V 3 6 1 3 2 1 3 – 1 2 – – 1 – 1 4 1 1 – 5 75 2.33
HAR-Co−-V – 5 2 2 – – – – – 3 – – 2 3 – – – – – 1 35 2.57

60-second return

HAR-PRV – 2 4 – 5 – – – – – – – – – – – – – – – 15 3.67
HAR-V – 1 – – – 5 – – – – – 3 – – – 3 – 4 – 3 30 3.17
HAR-V+ – – – – – – – – – – – – – – – – – – – – 0 –
HAR-V− 1 5 – 3 2 1 1 1 – 1 – 2 5 3 2 1 1 3 1 – 80 2.06
HAR-Co-V 3 3 2 – 3 4 – – – – 1 1 3 – – 2 4 2 – 2 60 2.50
HAR-Co+-V+ – – – – – – – – – – – – – – – – – – – – 0 –
HAR-Co−-V− – – – 4 4 3 2 2 – 4 – 5 4 2 3 4 2 – – – 60 3.25
HAR-Co+-V 2 – 1 1 1 2 3 – 1 2 – 4 1 4 1 – 3 1 – – 70 1.93
HAR-Co−-V – 4 3 2 – – – – – 3 – – 2 1 – – – – – 1 35 2.29

150-second return

HAR-PRV – 4 4 – – – – – – – 3 – – – – – – – – – 15 3.67
HAR-V – 2 – – – – – – – – 1 – – – – 2 4 2 – – 25 2.20
HAR-V+ – – – – – – – – – – – – – – – – – – – – 0 –
HAR-V− 1 6 – – 4 2 1 1 – 2 – – – – – 4 3 4 1 – 55 2.64
HAR-Co-V 2 5 2 – 3 3 – – – – 2 1 2 – – 1 2 3 – 2 60 2.33
HAR-Co+-V+ – – – – – – – – – – – – – – – – – – – – 0 –
HAR-Co−-V− – – – 3 2 1 – 2 – 3 – – 4 3 1 3 1 – 3 – 55 2.36
HAR-Co+-V – 3 1 1 1 4 2 – 1 1 – – 1 2 2 – – 1 2 1 70 1.64
HAR-Co+-V – 1 3 2 – – – – – 4 – – 3 1 – 5 5 – – – 40 3.00

Note: The table reports the ranking based on the Model Confidence Set (MCS) proposed by Hansen et al. (2011). The entries are the ranking of the models across sampling
frequencies based on 1-day ahead pseudo out-of-sample forecasts. We use the QLIKE as loss function, and the MCS is estimated using a block bootstrap with a window equal
to 10 days, 5000 replications, and a significance level of 10%. The dash-line indicates that the model has been excluded from the MCS. The N% and Rank columns show the
percentage of times a model has been included in the MCS and its average rank respectively.
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Table 9: Mixed sampling market-HAR

Panel A: Forecast evaluation criteria
Index frequency

Stock frequency 30-sec 60-sec 90-sec 120-sec 150-sec 300-sec 30-sec 60-sec 90-sec 120-sec 150-sec 300-sec
QLIKE HMSE

30-sec 0.9801 0.9799 0.9792 0.9801 0.9806 0.9805 0.9577 0.9562 0.9549 0.9566 0.9569 0.9584
60-sec 0.9760 0.9764 0.9763 0.9771 0.9778 0.9782 0.9423 0.9421 0.9420 0.9434 0.9445 0.9469
90-sec 0.9719 0.9726 0.9729 0.9737 0.9745 0.9754 0.9303 0.9311 0.9319 0.9334 0.9347 0.9375
120-sec 0.9696 0.9705 0.9710 0.9717 0.9726 0.9740 0.9232 0.9243 0.9253 0.9267 0.9283 0.9319
150-sec 0.9666 0.9676 0.9681 0.9689 0.9697 0.9712 0.9123 0.9137 0.9151 0.9166 0.9182 0.9221
300-sec 0.9613 0.9622 0.9627 0.9634 0.9642 0.9659 0.8913 0.8933 0.8950 0.8968 0.8983 0.9021

Panel B: Relative losses
Index frequency

Stock frequency 30-sec 60-sec 90-sec 120-sec 150-sec 300-sec 30-sec 60-sec 90-sec 120-sec 150-sec 300-sec
QLIKE HMSE

30-sec 1.000 1.004 1.006 1.009 1.011 1.015 1.000 1.015 1.025 1.032 1.042 1.062
60-sec 0.996 1.000 1.003 1.006 1.008 1.013 0.984 1.000 1.011 1.018 1.029 1.050
90-sec 0.992 0.996 1.000 1.002 1.005 1.010 0.971 0.988 1.000 1.007 1.018 1.039
120-sec 0.989 0.994 0.998 1.000 1.003 1.008 0.964 0.981 0.993 1.000 1.011 1.033
150-sec 0.986 0.991 0.995 0.997 1.000 1.005 0.953 0.970 0.982 0.989 1.000 1.022
300-sec 0.981 0.985 0.990 0.991 0.994 1.000 0.931 0.948 0.960 0.968 0.978 1.000

Note: The table reports the mixed sampling market-HAR results. Panel A reports the forecasting evaluation criteria; Panel B reports the relative loss
that is computed as the ratio of mixed sampling market-HAR models relative to the same frequency one (main diagonal). In panel A, values below
unity indicate that the mixed sampling market-HAR outperform the benchmark HAR-PRV. In panel B, values below unity indicate that the mixed
frequency market-HAR models outperform the same frequency ones.
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Table 10: Volatility-timing portfolio performance fee

AMZN ARNC BA BAC CAT CHL COST CSCO DIS DOW EXC FCX HAL HON IBM KO PG SO WFC XRX ∆̄γ

γ = 2

HAR-V 2.428⋆ – −0.190 3.822⋆ −0.123 0.053 4.152⋆ 0.192 −1.909 1.069 1.530 0.138 0.246 −0.360 1.366 0.025 4.878⋆ 0.200 0.045 45.464⋆ 3.151
HAR-V+ −22.394 – −1.356 −4.885 −1.226 −1.211 −10.435 −2.541 −5.006 −3.453 0.703 0.051 −0.028 −2.990 −37.601 −5.667 −1.377 −0.569 −1.018 8.553⋆ −4.622
HAR-V− 23.481⋆ – −0.116 12.288⋆ 0.330 1.358 20.431⋆ 5.117⋆ −2.118 3.329⋆ 3.418⋆ −0.020 0.413 0.688 29.539⋆ 4.330⋆ 7.985⋆ 1.017 0.893 49.685⋆ 8.102
HAR-Co-V 10.060⋆ – 0.132 10.004⋆ 0.112 0.333 4.343⋆ 1.413 6.891⋆ 3.034⋆ 2.565⋆ 0.234 0.386 −0.477 14.087⋆ 2.384⋆ 19.123⋆ 1.213 0.648 50.339⋆ 6.341
HAR-Co+-V+ −8.855 – −0.666 −1.433 −1.024 −0.973 −11.203 −2.404 4.982⋆ −2.110 2.044⋆ 0.128 0.203 −1.716 −28.601 −3.457 8.035⋆ 0.718 −0.761 13.699⋆ −1.670
HAR-Co−-V− 27.332⋆ – 0.044 16.833⋆ 1.099 1.750 30.348⋆ 5.467⋆ 3.548⋆ 6.911⋆ 3.482⋆ 0.010 0.299 0.704 40.720⋆ 10.123⋆ 16.826⋆ 1.292 0.904 49.144⋆ 10.842
HAR-Co+-V 46.439⋆ – 0.846 12.778⋆ 0.412 3.157⋆ 8.474⋆ 9.682⋆ 12.136⋆ 4.258⋆ 4.125⋆ 0.221 0.622 2.614⋆ 31.659⋆ 7.670⋆ 30.873⋆ 2.092⋆ 3.546⋆ 57.437⋆ 11.952
HAR-Co−-V 46.039⋆ – 0.320 10.732⋆ −0.001 −0.369 35.017⋆ 3.799⋆ 0.525 1.527 1.886 0.196 0.242 2.277⋆ 14.745⋆ 0.794 2.783⋆ 0.444 0.192 44.705⋆ 8.293

γ = 6

HAR-V 0.809 – −0.063 1.274 −0.041 0.018 1.384 0.064 −0.636 0.356 0.510 0.046 0.082 −0.120 0.455 0.008 1.626 0.067 0.015 15.155⋆ 1.050
HAR-V+ −7.465 – −0.452 −1.628 −0.409 −0.404 −3.478 −0.847 −1.669 −1.151 0.234 0.017 −0.009 −0.997 −12.534 −1.889 −0.459 −0.190 −0.339 2.851⋆ −1.541
HAR-V− 7.827⋆ – −0.039 4.096⋆ 0.110 0.453 6.810⋆ 1.706 −0.706 1.110 1.139 −0.007 0.138 0.229 9.846⋆ 1.443 2.662⋆ 0.339 0.298 16.562⋆ 2.701
HAR-Co-V 3.353⋆ – 0.044 3.335⋆ 0.037 0.111 1.448 0.471 2.297⋆ 1.011 0.855 0.078 0.129 −0.159 4.696⋆ 0.795 6.374⋆ 0.404 0.216 16.780⋆ 2.114
HAR-Co+-V+ −2.952 – −0.222 −0.478 −0.341 −0.324 −3.734 −0.801 1.661 −0.703 0.681 0.043 0.068 −0.572 −9.534 −1.152 2.678⋆ 0.239 −0.254 4.566⋆ −0.557
HAR-Co−-V− 9.111⋆ – 0.015 5.611⋆ 0.366 0.583 10.234⋆ 1.822 1.183 2.304⋆ 1.161 0.003 0.100 0.235 13.573⋆ 3.374⋆ 5.609⋆ 0.431 0.301 16.381⋆ 3.620
HAR-Co+-V 15.587⋆ – 0.282 4.259⋆ 0.137 1.052 2.825⋆ 3.233⋆ 4.045⋆ 1.419 1.375 0.074 0.207 0.871 10.553⋆ 2.557⋆ 10.515⋆ 0.697 1.185 19.146⋆ 4.001
HAR-Co−-V 15.914⋆ – 0.107 3.577⋆ −0.000 −0.123 11.672⋆ 1.266 0.175 0.509 0.629 0.065 0.081 0.759 4.915⋆ 0.265 0.928 0.148 0.064 14.902⋆ 2.793

γ = 10

HAR-V 0.486 – −0.038 0.764 −0.025 0.011 0.830 0.038 −0.382 0.214 0.306 0.028 0.049 −0.072 0.273 0.005 0.976 0.040 0.009 9.093⋆ 0.630
HAR-V+ −4.479 – −0.271 −0.977 −0.245 −0.242 −2.087 −0.508 −1.001 −0.691 0.141 0.010 −0.006 −0.598 −7.520 −1.133 −0.275 −0.114 −0.204 1.711 −0.924
HAR-V− 4.696⋆ – −0.023 2.458⋆ 0.066 0.272 4.086⋆ 1.023 −0.424 0.666 0.684 −0.004 0.083 0.138 5.908⋆ 0.866 1.597 0.203 0.179 9.937⋆ 1.620
HAR-Co-V 2.012⋆ – 0.026 2.001 0.022 0.067 0.869 0.283 1.378 0.607 0.513 0.047 0.077 −0.095 2.817⋆ 0.477 3.825⋆ 0.243 0.130 10.068⋆ 1.268
HAR-Co+-V+ −1.771 – −0.133 −0.287 −0.205 −0.195 −2.241 −0.481 0.996 −0.422 0.409 0.026 0.041 −0.343 −5.720 −0.691 1.607 0.144 −0.152 2.740⋆ −0.334
HAR-Co−-V− 5.466⋆ – 0.009 3.367⋆ 0.220 0.350 6.141⋆ 1.093 0.710 1.382 0.696 0.002 0.060 0.141 8.144⋆ 2.025⋆ 3.365⋆ 0.258 0.181 9.829⋆ 2.172
HAR-Co+-V 9.352⋆ – 0.169 2.556⋆ 0.082 0.631 1.695 1.940⋆ 2.427⋆ 0.852 0.825 0.044 0.124 0.523 6.332⋆ 1.534 6.342⋆ 0.418 0.711 11.487⋆ 2.402
HAR-Co−-V 9.549⋆ – 0.064 2.146⋆ −0.000 −0.074 7.003⋆ 0.760 0.105 0.305 0.377 0.039 0.048 0.455 2.949⋆ 0.159 0.557 0.089 0.038 8.941⋆ 1.676

Note: The table shows results for the volatility-timing portfolio strategy using 1-day ahead forecasts. We report the economic gains of switching from the HAR-PRV model to the market-HAR models in annual basis points ∆ab. The last column,
∆̄γ, reports the average performance fee for each model across all the stocks under analysis. Bold numbers highlight the market-HAR strategies that outperform the benchmark HAR-PRV strategy, and the starred values indicate that our strategy
is significantly better than the benchmark in terms of performance fee evaluated at the 5% significance level. The empty columns for ARNC are because its expected return is always negative. Since short selling is not allowed and negative returns
produce negative weights, an investor in this scenario can only select the risk-free rate.
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Table 11: Volatility-timing portfolio performance fee with transaction costs

∆̄2 TO ∆̄6 TO ∆̄10 TO

HAR-PRV 0.0041 0.0014 0.0008
HAR-V 3.135 0.0047 1.045 0.0016 0.627 0.0009
HAR-V+ −4.595 0.0031 −1.532 0.0010 −0.919 0.0006
HAR-V− 7.985 0.0083 2.663 0.0028 1.598 0.0017
HAR-Co-V 6.300 0.0056 2.101 0.0019 1.260 0.0011
HAR-Co+-V+ −1.661 0.0038 −0.554 0.0013 −0.332 0.0008
HAR-Co−-V− 10.691 0.0095 3.571 0.0032 2.143 0.0019
HAR-Co+-V 11.805 0.0095 3.953 0.0032 2.373 0.0019
HAR-Co−-V 8.178 0.0083 2.755 0.0028 1.653 0.0017

Note: The table reports average performance fee across all the stocks using 1-
day ahead forecasts based on 300-second frequency. ∆̄γ represents the average
performance, while TO is the turnover estimated as in Equation (11). Bold face
numbers indicate that the average performance fee is positive and that the turnover
of the strategy is greater than the benchmark’s turnover.
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Table 12: HAR-V with Jump Regressors

QLIKE HMSE QLIKE HMSE QLIKE HMSE
h = 1 h = 5 h = 22

HAR-V-JJ 0.965 0.897 0.955 0.930 0.982 0.983
CPA 15 14 12 11 7 10
HAR-V-Js 0.963 0.893 0.952 0.926 0.978 0.983
CPA 14 15 13 14 7 10
HAR-V-Jm 0.966 0.904 0.953 0.925 0.986 0.987
CPA 16 15 11 12 6 9
HAR-V-CJ 0.964 0.889 0.952 0.921 0.980 0.983
CPA 15 16 13 12 5 9

Memo:

HAR-V 0.966 0.902 0.943 0.909 0.963 0.961
CPA 16 16 8 15 14 10

Note: The table reports the average out-of-sample results for the HAR-V model,
equation (16), that is further augmented by jumps from both the stock and the
market index. The 300-second sampling frequency is used. The HAR-V-JJ refers
to a HAR-V model plus jumps in the stock and the market index; the HAR-V-Js

refers to the HAR-V model plus jumps in the stock; HAR-V-Jm refers to the
HAR-V model plus jumps in the market index; HAR-V-CJ refers to the HAR-V
model plus simultaneous jumps in both the stock and the market index. The
reported losses are the average relative losses for QLIKE and HMSE across all
the stocks. The CPA test of Giacomini and White (2006) at the 5% significance
level reports the number of stocks that show significantly higher forecasting gains
relative to the benchmark-HAR. The lower part of the table repeats the same
information for the market-HAR (without jumps) for comparison purposes.
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Table 13: Out-of-Sample Results Log HAR-V model

QLIKE HMSE QLIKE HMSE QLIKE HMSE
h = 1 h = 5 h = 22

log-HAR-V 0.984 0.945 0.966 0.949 0.975 0.979
CPA 13 16 8 7 1 4

Memo:

HAR-V 0.966 0.902 0.943 0.909 0.963 0.961
CPA 16 16 8 15 14 10

Note: The table reports the average out-of-sample results for the logarithmic
version of the model outlined in equation (16). To facilitate comparisons, the
forecasts of the Log-HAR-V model are compared to the forecasts of Log-HAR
model. The reported losses are the average relative losses for QLIKE and HMSE
across all the stocks. The CPA test of Giacomini and White (2006) at the 5%
significance level reports the number of stocks that show significantly higher fore-
casting gains relative to the Log-HAR model. The lower part of the table repeats
the same information for the market-HAR (without log transformations)for com-
parison purposes.
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Figure 1: Realized variance/covariance and their elements
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Note: The graph plots the variance and covariance decomposition based on the average of the 20 stocks. The realized measures are estimated
at the 300 seconds.
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Figure 2: Autocorrelation function
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Note: The figure graphs the autocorrelation function for the different realized variances and covariances elements. The results presented are
for the average across the stocks.
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Figure 3: Box Plots for 1-day ahead parameter estimates

Note: The figure depicts the box plot for each coefficient estimated across the 9 different models. Each subplot
shows the daily weekly and monthly coefficient pertaining to a specific model.
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Figure 4: Mixed sampling HAR-V model

Note: The figure depicts the out-of-sample average relative loss for a mixed sampling HAR-V model. The
model is estimated by varying the sampling frequency used to estimate the stock and index volatility.
The left-panel plots the QLIKE loss ratio surface, and the right-panel plots the HMSE loss ratio surface.
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