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Abstract—Cloud datacenters capable of provisioning high
performance Machine Learning-as-a-Service (MLaaS) at
reduced resource cost is achieved via auto-tuning: automated
tensor program optimization of Deep Learning models to
minimize inference latency within a hardware device. However
given the extensive heterogeneity of Deep Learning models,
libraries, and hardware devices, performing auto-tuning within
Cloud datacenters incurs a significant time, compute resource,
and energy cost of which state-of-the-art auto-tuning is not
designed to mitigate. In this paper we propose Trimmer, a high
performance and cost-efficient Deep Learning auto-tuning
framework for Cloud datacenters. Trimmer maximizes DL
model performance and tensor program cost-efficiency by
preempting tensor program implementations exhibiting poor
optimization improvement; and applying an ML-based filtering
method to replace expensive low performing tensor programs
to provide greater likelihood of selecting low latency tensor
programs. Through an empirical study exploring the cost of
DL model optimization techniques, our analysis indicates that
26–43% of total energy is expended on measuring tensor
program implementations that do not positively contribute
towards auto-tuning. Experiment results show that Trimmer
achieves high auto-tuning cost-efficiency across different DL
models, and reduces auto-tuning energy use by 21.8–40.9% for
Cloud clusters whilst achieving DL model latency equivalent to
state-of-the-art techniques.

Index Terms—Deep Learning, Cloud datacenter, MLaaS,
Machine Learning systems, Energy, Sustainable AI

I. INTRODUCTION

Deep Learning (DL) has become increasingly important
across industry and academia, with numerous DL models
created to perform sophisticated Computer Vision and
Natural Language Processing [1]. Creation of new DL model
architectures combined with growing user demand has
resulted in the formation of Cloud datacenters containing
specialized hardware devices (GPUs, FPGAs, etc.) dedicated
to provisioning Machine Learning-as-a-Service (MLaaS) [2].
There is a major impetus for providers to ensure that such
Cloud datacenters are capable of provisioning, as well as
creating, DL models with high accuracy and low latency
inference to achieve high system throughput and
cost-efficiency in terms of compute resource and energy
consumption. An effective means to attain this goal is to
optimize the individual computational components of DL
models - tensor programs - towards specific target-device
characteristics, spanning cache/memory access patterns,
thread processing, and hardware-intrinsic functions [3].

Performing tensor program optimization is a complex and
time-consuming task, which has in turn resulted in the creation
of auto-tuning: automated DL model optimization of tensor

program implementations towards a target-device. Facilitated
by DL compilers such as TVM [3] and Halide [4], auto-tuning
minimizes tensor program latency via an iterative exploration
of a large tensor program parameter space, and necessitates
tens of thousands of costly iterative measurements of candidate
implementations per target-device. Auto-tuning is frequently
deployed within DL-focused Cloud datacenters [5]–[7].

Whilst numerous auto-tuning techniques have been
proposed to accelerate the candidate search of tensor
programs [4], [8]–[11], the auto-tuning process requires
considerable time and compute resource cost to complete,
whereby even a small DL model must occupy an isolated
target-device for hours to yield reasonable performance
improvements [10]. This becomes a considerable issue in the
context of Cloud datacenters which must provision high
performance and cost-efficient MLaaS (including user
defined auto-tuning [5]) for a large user base each with
unique DL model configurations and hardware device
constraints. This translates into monetary loss for Cloud
providers stemming from longer auto-tuning duration and
waiting times, lower MLaaS throughput and availability due
to auto-tuners requiring exclusive access to a target-device
for extended time periods, and incurs higher energy
consumption, representing a barrier towards creating
environmentally sustainable AI systems [12].

In this paper we present Trimmer: A high performance
and cost-efficient DL auto-tuning framework that reduces the
total time and energy cost required to perform tensor
program optimization for MLaaS deployed within Cloud
datacenters. Driven by an empirical study of DL optimization
performance and energy cost, Trimmer proposes a ML-based
candidate filtering to reduce the number of hardware
measurements of candidates identified as likely to fail, and
re-sample the candidate search space to replace expensive
long-running cold candidates with faster, hot candidates
increasing the likelihood of finding faster tensor programs.
Trimmer is capable of performing hardware measurements of
tensor program implementations as batches in parallel that
are periodically compiled to measure improvements to model
inference latency, rather than probing the search space
serially. Such an approach allows Trimmer to prioritize or
discard tensor program optimizations across a cluster of
machines based on relative performance speed-up across
multiple DL models whilst achieving equivalent inference
latency compared to state of the art.



The core contributions of our work are as follows:
• We analyse the heterogeneous energy and performance

characteristics of DL model optimization frequently used
for MLaaS, and show that cold candidates generate 26–
43% of energy waste within the auto-tuning process;

• We demonstrate that by extracting the intermediate
layer of the neural network, we can query similar tensor
program candidates by using cosine similarity measure
to filter poor performing candidates;

• We show via experimentation that Trimmer provides
cost-efficient auto-tuning, and within cloud DL clusters
reduces the system energy cost of auto-tuning by up to
21.8% and 40.9%, respectively.

Section II presents the background; Section III analyzes
DL optimization performance and energy cost; Section IV
details the Trimmer auto-tuner design; Section V presents
the evaluation results of Trimmer; Section VI discusses
related work; and Section VII our research conclusions.

II. BACKGROUND

A. Cloud Datacenters for Deep Learning

Deep Learning (DL) models: DL Models provide
cognitive-like capabilities in areas such as image recognition
or language learning [13], [14]. DL models composed of
multi-layered Deep Neural Networks (DNNs) are represented
as Directed Acyclic Graphs (DAG), where nodes represent
DL operators (Convolution, Batch Normalization) and edges
the operator data dependencies. DL operators are expressed
as tensor programs comprising both CPU code (e.g. data
fetching, submission) and accelerator code (e.g. GPU
kernels) that perform tensor manipulation instantiated and
executed within a target-device as an implementation. DL
models with greater number of large operators exhibit
improved accuracy by performing a higher number of
Floating Point Operations (FLOP) [15].

DL Cloud datacenters: Creation of new DL models, data
volume growth, and user demand has resulted in the
formation of Cloud datacenters dedicated to provisioning
MLaaS as shown in Figure 1. These datacenters are formed
by clusters of machines equipped with accelerator devices
such as Graphical Processing Units (GPUs) to perform DL
model inference (encompassing tensor program execution)
substantially faster than conventional CPUs. With production
systems such as Facebook performing trillions of DL
inferences daily [2], it is paramount that DL-focused Cloud
datacenters achieve high performance model inference to
satisfy Service Level Agreement (SLA) and maintain Quality
of Service (QoS) in a cost-efficient manner. Such cost
comprises compute resource (CPU, GPU, network) and time
that together drive system energy consumption: a critical
issue due to high monetary and environmental cost of
datacenter operation [16].

B. DL Model Optimization

Attaining high performance and cost-efficient DL model
inference for Cloud datacenters is achieved via DL model
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Fig. 1: MLaaS Cloud Infrastructure

optimization to reduce tensor program latency in a
target-device [8]. Such optimization is attained by leveraging
framework specific tensor program implementations [17],
[18] or DL compilers such a TVM [3]. DL compilers enable
compilation of high-level DL models definitions onto
device-specific binaries providing greater control over
implementation behavior. These optimizations consist of both
high-level: target-device independent transformations of DL
model structure (e.g. operator fusion, algebraic simplification,
data buffer reuse), and low-level: target-device dependent
tensor program transformations (alignment to device cache
size, tensorization, mapping tensor compute regions [3]).
Manually performing tensor program optimization is a
time-consuming task that must be performed for hundreds of
tensor programs per target-device, and produces sub-optimal
tensor program latency improvement [9].

C. Auto-Tuning

Auto-tuning is a method for automatic DL model
optimization of tensor program implementations towards a
target-device. Auto-tuning automates low-level optimization
by: (1) searching through a space of possible implementation
parameters (i.e. loop tiling extents, unroll factors) known as
template-based auto-tuning (e.g. AutoTVM, Chameleon [8],
[10]); or (2) autoscheduling: automatic generation of
operator implementations given a set of rules, producing
different versions of low-level Intermediate Representation
(IR) [4], [9]. Both approaches propose candidates - operator
implementations in IR compiled towards target-device
languages (C, CUDA, x86, PTX), assembled into binaries
and executed in isolation to measure their latency. Latency
measurements are used to re-train auto-tuner cost models [8],
[19] that propose new candidates which are leveraged by
search algorithms [3], [10] to navigate the implementation
space, avoiding candidates that exhibit high latency.

D. Auto-tuning Cost in Cloud Datacenters

Auto-tuning is a time and energy intensive process, where
even small DL models [20] require ≳ 10 hours to achieve
sizable latency improvements for a single target-device [3],
[10]. During auto-tuning, the platform CPU experiences
heavy load spikes resulting from candidate space search,
code lowering, and compilation of tensor programs.
Furthermore, due to the tensor program implementation
space is particularly large and non-linear for DL models with



TABLE I: Hardware setup
Abbrev. Hardware Specification

A 2x (16-core) Intel Xeon 5218 [2.3GHz],
196GB DDR4, Nvidia V100 (Volta) 32GB

B (6-core) Intel i7-8700K [3.7GHz],
16GB DDR4, Nvidia GTX2080 (Turing): 8GB

C (12-core) AMD Ryzen 1920X [3.5GHz],
128GB DDR4, Nvidia GTX2080 (Turing): 8GB

D (6-core) Intel i7-6850K [3.8GHz],
32GB DDR4, Nvidia GTX1080 (Pascal) 8GB

TABLE II: Software and workload setup.
Type Software Specification DL Auto-Tuner

Support Ubuntu 20.04, Docker 20.10.7 RD: Random
Compute CUDA 11.3.1 [21] AT: AutoTVM [8]

Driver Nvidia Driver 465.31 GA: Genetic [8]
Library Pytorch [18],Apache MXNet [17] GR: Grid [8]

Compiler TVM 0.8 & LLVM 11 [3], [22]

Type Workload Specification
DL Model MobileNet-V1/V2 [23], ResNet-18 [20], DenseNet-121

[24], VGG-13/16/19 [13], {batch 1,3x224x224}

many complex operators, auto-tuning entails repeatedly
executing thousands of candidate tensor programs in an
isolated target-device to ensure accurate latency
measurement. With the growing number of larger DL
models, auto-tuning engages the host platform and
target-device for extended periods of time. This is
exacerbated by the need to repeat auto-tuning for any
architectural changes to the DL model and target-devices.

These aforementioned issues are amplified when
considering the scale of Cloud datacenters, whereby DL
providers will manually or automatically (via auto-tuning)
optimize the many DL models underpinning MLaaS, as well
as allow users to directly perform auto-tuning (Amazon
SageMaker Neo [5], Alibaba MNN [6], Glow [7]). Thus
whilst DL model optimization is effective at reducing the
model inference latency for MLaaS, auto-tuning requires a
considerable time, compute resources, incurring subsequent
energy costs to complete. These optimization costs result in
reduced availability and system throughput for DL-focused
Cloud datacenters, and incur higher energy consumption - a
barrier towards designing sustainable AI infrastructure.

III. DL OPTIMIZATION PERFORMANCE & COST STUDY

A. Analysis Setup

We have conducted an experimental study pertaining to
the performance improvement and energy cost of various DL
models when applying different optimization techniques.

Deployment: Several prominent, well established CNN
DL models [25] were examined using a variety of DL
frameworks, target-devices and platforms as shown in Tables
I & II. We applied both graph-level optimization and
auto-tuning, comparing with both baseline implementations
and pre-optimized configurations. In all cases, we configured
auto-tuners and graph optimizers as reported in related
publications and code bases from [26].

Measurement: We measure DL model latency and energy
consumption after applying optimization techniques and
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Fig. 4: DL Model run-time & compilation energy with varied graph

optimization levels. [framework: MxNet / platform: A]

quantify their cost implications. We observe GPU and CPU
power dissipation using a custom profiler based on Nvidia’s
Managegement Library (NVML) [27] and RAPL/MSR
interface for Intel/AMD CPUs. Albeit not explicitly stated in
prior studies, all experiments were conducted using
graph-level optimization level 3 (TVM), with exception to
studying graph optimization levels.

B. Library, Platform, and Graph Optimization

Library: As shown in Figure 2a & 2b, the majority of DL
models converted from PyTorch to TVM IR perform on
average 1.05× faster than MXNet, however incur a 1.11×
mean energy increase during compilation, with a strong
positive correlation (Pearson: 0.9987) between model latency
and energy. Differences amongst DL frameworks stem from
varied DL model IR and compiler parsing approaches; i.e.
the compiler maps equivalent operator definitions due to lack
of direct matches within the operator library.

Platform: As shown in Figures 3a & 3b, DL model
latency and energy profiles vary across platforms and
target-devices. Observably, compiling DenseNet-121 on
platforms A and C consumed up to 4.16× more energy
compared to B, despite slower CPUs with higher number of
cores and lower Thermal Design Power. Unique CPU and
target device combinations during compilation and model
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TABLE III: Graph-level optimization primitives
Lvl. Primitives

0 Simplify/Partition Graph, Simplify Expressions, Infer Types

1 Fuse Operators, To BBNF, To ANF, To GNF,
Eliminate Dead Code, Partially Evaluate, Inline Ops

2 Fold Constants, Split Arguments, Lazy Gradients, DynToStat

3 Canonicalize Operators, Forward/Backward Scale Axis,
Eliminate Common Sub-expressions

4 Combine Parallel: Conv2D, Dense, Matmul; Math Approx.

execution exhibit different cost and performance patterns
dependant on the platform composition, the choice of DL
framework, model architecture, operator computational
complexity, as well as the suitability of tensor program
implementations towards given target-device.

Graph: As shown in Figure 4a, applying further graph
optimization levels (see. Table III) decreases model latency
and energy consumption by 25-50%, yet also increases
compilation energy by 29-60% for levels 0 to 4 as shown in
Figure 4b. This stems from strong correlation between model
latency, energy cost, and computation required to apply
consecutive graph optimizations. We observe that latency
improvements at the same optimization level vary across
models; i.e. applying level 4 to VGG-19 improved latency by
22.5% while for DenseNet-121 a 50.1% improvement,
however required 60.6% more energy during compilation.

C. Auto-tuning

Performance: Our experiments indicate that the choice of
auto-tuner alters latency improvement and energy profiles of
DL models, as shown in Figures 5a & 5b. Compared to a
baseline model (model compiled with default operator
implementations), sophisticated auto-tuners (AutoTVM,
Genetic Search) result in latency decrease of 9.22 - 10.35×

TABLE IV: Cold candidate impact across platforms, average of all
tuned operators when tuned with Auto-TVM

Model Platform Num. Cold Time Cold % Energy Cold

ResNet-18

A 133±21 26.74±4.3 52.1±10.4kJ
B 134±18 26.86±2.8 36.7±7.9kJ
C 130±11 26.13±2.2 37.1±4.2kJ
D 139±14 27.92±2.9 29.0±4.6kJ

VGG-16

A 202±29 40.51±5.9 76.7±2.0kJ
B 201±28 40.24±5.6 49.3±2.4kJ
C 200±29 40.16±5.9 49.1±4.2kJ
D 216±25 43.33±5.0 41.2±3.1kJ

and energy cost reduction of 1.91 - 9.98× (Figure 5b). In
contrast, brute-force auto-tuners (Random, Grid Search) can
result in moderately faster or sometimes slower latency
compared to baseline as per Figure 5a. Sophisticated
auto-tuners explore implementation spaces more efficiently,
using cost models to guide search towards faster candidates.

Energy: Similar to DL model latency, there exists a
strong positive correlation between auto-tuning time and
energy cost (0.9880 Pearson coefficient), albeit different
auto-tuners incur varied time and energy costs across DL
models as shown in Figures 5c & 5d. When applied to
ResNet-18, AutoTVM produced the lowest latency of
0.89ms, however incurred an additional 7200–8300s and
240–1800kJ compared to Grid Search and Genetic Search,
which stems from querying and updating AutoTVM’s cost
model and performing Simulated Annealing. Surprisingly,
Random Search was significantly costlier (23,250s &
6,020kJ) compared to other approaches due to the random
implementation space traversal, inadvertently compiling and
executing both slow and erroneous candidates significantly
increasing cost. The observed differences in cost amongst
auto-tuners stem from operator heterogeneity, implementation
space size, and auto-tuners varying effectiveness at space
traversal and sampling promising candidates.

Failed Candidates: We discovered that all auto-tuners
experienced a sizeable number of compilation and run-time
errors when generating candidates as shown in Figure 6.
Instantiation (compilation) errors were the most common
failures observed, caused by stochasticity of auto-tuners,
particularly in Genetic (15%), AutoTVM (7.2%), and
Random (36%). Run-time errors and timeouts represented
further 1.9% and 2.6% of failures. Existing auto-tuners
determine when to stop optimizing based on the total number
of performed measurements (inclusive of failures) requested
by the user. Whilst erroneous candidates only consumed



Fig. 7: Performance trends of different tuning frameworks with 500 HW measurements, depicting: best-case performance trend, LOESS
regression of candidate performance, hot candidates and cold candidates
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Fig. 8: Percentage of energy consumed by cold candidates across
eight Conv2D operators of ResNet-18.

additional 11-18% energy, they reduced the opportunity for
desirable candidate exploration and incurred additional costs;
thus reducing auto-tuning effectiveness and cost-efficiency.

Cold Candidates: A sizeable portion of candidates exhibit
high latency, yet do not meaningfully contribute to
optimization progress. We categorize these so called cold
candidates by applying LOESS regression [28]. With higher
latency, cold candidates incur more auto-tuning cost, as
shown in Figure 7 and Table IV. We observe that AutoTVM
produced the most cold candidates early on due to cost
model initialization, where Grid and Random Search
strategies exhibit larger diffusion. Particularly problematic
given their time and energy costs, cold candidates
contributed on average to 50.5% of total auto-tuning cost, as
shown in Table IV, varying across operators and platforms,
as shown for ResNet-18 in Figure 8. Cold candidates
produced by AutoTVM were responsible for 17-38% of total
auto-tuning energy cost, and 80% in worst case for Random
Search. As per Table IV, the choice of platform had impact
proportional to its compute capabilities.

Convergence: The choice of an auto-tuner determines
optimization convergence patterns, indicated by the next
minimum candidate trend line shown in Figure 7. More
sophisticated frameworks (AutoTVM, Genetic Search)

converge early compared to Grid Search or Random Search.
Crucially, whilst most frameworks progressively propose
faster candidates, we observed that hot candidates (low
latency candidates that contribute positively to auto-tuning
progress) could be found relatively early during auto-tuning.
For example, as shown in Figure 7, auto-tuning Operator 7
with AutoTVM discovered candidates merely 100ns (3-5%)
slower than globally fastest candidate within the first 87 out
of 500 total measured candidates.

D. Design Directions

From our study, we identify multiple important design
descisions required for cost effective DL auto-tuning.

(1) Understand energy diversity: We observe that the
interplay between DL models, frameworks, auto-tuners,
target-devices and platforms uniquely impacts the cost and
performance of auto-tuners, while existing works focus
primarily on reducing cost w.r.t. target-devices [3], [10]. We
also observe that no single optimization approach exhibits a
guaranteed latency improvement at reduced cost. Leveraging
these insights is useful to determine models and optimizers
that work well for specific target-devices and host platforms.

(2) Avoid erroneous and cold candidates: Observably,
all examined auto-tuners generate erroneous candidates,
which do not contribute towards performance convergence
nor explore favourable candidates. We also observe that cold
candidates exhibit high operator latency without contributing
towards successful candidate selection, incurring high time
and energy cost. Avoiding both erroneous and cold
candidates is useful to reduce optimization costs whilst
maintaining reasonable latency improvements.

(3) Leverage hot candidates: Our analysis suggests that
candidates with acceptably low latencies can be found early
during the candidate search. Whilst increased number of
measurements results in operator latency improvement, it is
possible to ascertain hot candidates (exhibit low latency and
positively contribute to convergence) soon after auto-tuning
commences. Leveraging hot candidates could help to rapidly
determine the efficacy of an optimization technique.



IV. TRIMMER FRAMEWORK

A. Overview

Trimmer is designed to improve the cost-efficiency of
auto-tuning and operates as a component for optimizing
trained DL models that are ready to be deployed within a
Cloud datacenter, as shown in Figure 9. Such models
originate from both the provider (as part of their MLaaS
offering) and users (submitting models for training or
deployment). Trimmer achieves fast and low-cost auto-tuning
via enhancements at both operator and DL model levels.

At operator-level, Trimmer performs neural network based
cold candidate filtering that predictively excludes candidate
implementations that exhibit poor performance (cold
candidates) and re-sampling for more favourable candidates
(hot candidates) to accelerate auto-tuning convergence onto
sufficiently optimal implementations quicker. At DL
model-level, Trimmer performs Survey-tuning whereby each
operator is partially optimized using a small number of
hardware measurements and periodic latency measurement of
the complete DL model, thus allowing early completion
based on measured latency improvements. Combining these
approaches, Trimmer can optimize models simultaneously
across a Cloud cluster with multiple hardware platforms,
ranking their progress and suspending optimization based on
comparative latency improvements. We implement this
functionality using Docker and leverage custom RPC-based
routines to execute model auto-tuning remotely.

Formally, Trimmer’s goal is to minimize DL model
inference latency ft by auto-tuning each operator
{oi ∈ O|i = 1 · · ·K}, where K is the number of operators
in the model. The amount of time spent on optimizing each
oi depends on its rate of its latency improvement relative to
other oj in the model and overall improvement to model
latency. Overall, Trimmer’s objective is to optimize the DL
model f t

∗, given a (user-specified) latency goal g, where
g ≤ latency of the unoptimized model.

min

K∑
i=1

oi s.t. fo
∗ ≤ g (1)

B. Cold Candidate Filtering

Inspired by learned index structure approaches [29], we
created a DL model and leveraged outputs of its intermediate
layer to query candidates based on their similarity, and filter
out top-n cold candidates ahead of hardware measurement.

Overview & Training: We designed a three-layer fully
connected (FC) network with ReLU activation function [30]
as outlined in Table V. We implemented and trained our
model using PyTorch [18]. During training of our FC
network, we minimize the Mean Squared Error (MSE)
against individual operator latency, using 20,000 data points
collected during our study (Section III-C) as the dataset. We
prepare our dataset by splitting it into <train:validation:test>
sets with a 7:1:2 ratio and leverage the validation set for
hyperparameter tuning following prior work in predicting
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Fig. 9: Trimmer system architecture

TABLE V: FC Network Architecture. Tuple (x,y) is layer dimension,
x and y are the number of input and output neurons, respectively.

Layer Type Layer Dimensions
Embedding ei (Rspace, 10)

Input (
E∑

i=1
ei, 32)

Middle (32, 32)
Output (32, 1)

operator latency [31]. Our model was trained for 10 epochs
utilizing the Adam Optimizer [32], with batch size 1024,
learning rate of 1e−3 (min 1e−9) and Plateau Patience of 1.
The model learns relationships between operator latency and
the operator, candidate and target-device characteristics.

Model Inputs: To capture non-linearity of the mentioned
characteristics, the input to our FC network is a vector that
includes: (1) implementation candidate configuration, where
each entry is an integer describing low-level optimization
parameters of the configuration; (2) features of the
target-device and its host platform; (3) the theoretically
achievable operator FLOPs; (4) a unique operator identifier;
and (5) a unique representation of operator arguments (for
convolution - kernel size, padding, stride...). During filtering
we extract the number of outputs Rspace for each operator
configuration by accessing its total configuration space and
construct an embedding, where each integer entry is a vector
of parameters of size k, and k is a hyperparameter that we
set to 10 based on empirical findings. Categorical features
such as target-device or operator characteristics are
transformed into integers and have their own embeddings.
We then feed the concatenated features into our FC network.

Exploration: As described in Section III-C, it is beneficial
to reduce costs associated with measuring cold candidates,
however, the auto-tuner should explore a wide range of
points in the implementation space to identify hot
candidates. To achieve this, Trimmer uses an inverse
ϵ-greedy strategy to incentivize exploitation of filtered
candidates early on during auto-tuning and progressively
reduces the probability of candidate filtering after each cost
model update, such that space exploration is favoured as
soon as auto-tuner search strategy and cost model are stable.



Algorithm 1 Cold Candidate Filtering
Input: (Samples, ϵ, k, model)
1: // batch inference the task configuration samples
2: embeddings← MODEL.PREDICT(Samples)
3: // for each candidate task’s embedding
4: for e in embeddings do
5: rand← RAND
6: // ϵ is a decreasing parameter
7: if rand < ϵ then
8: // return the number of cold candidates within k similar samples
9: o← SIMILARINDATABASE(k, e)

10: if o == k then
11: // remove sample from the Set S
12: REMOVE(s)

Querying configuration: Trimmer heuristically prunes the
proposed candidates if the top-n similar candidates are cold
candidates, as described in Section III-C. We leverage the
middle layer output of our FC network to predict candidate
latency by querying top-n similar configurations within an
operator tuning database using Cosine Similarity (commonly
used to identify similar samples in a vector space [33]). We
replace the pruned high-latency candidates with new unseen
samples to ensure effective exploration. These probabilistic
and heuristic strategies are then combined in a single
procedure, as shown in Algorithm 1.

C. Survey Tuning

Existing auto-tuners optimize operators sequentially,
performing N hardware measurements before optimizing the
next operator. Auto-tuning is considered complete once all
operators have been optimized fully (up to specified number
of hardware measurements N ), as shown in Figure 10. With
this assumption, latency of a DL model can be ascertained
only after all operators are optimized, with the user having
no knowledge of achieved DL model latency whilst
auto-tuning is underway. Existing auto-tuners enable early
stopping of optimization by an arbitrarily set threshold,
however, it is performed on a per-operator basis, with no
means to compare improvements relative to other operators.
Our study in Section III-C suggests that well-performing
(hot) candidates can be found relatively early during the
auto-tuning process. We leverage this in Trimmer and reduce
optimization cost by providing Survey-tuning, as depicted in
Figure 10, both at operator and model level.

Operator Level. Trimmer places all tunable operators into
a queue and performs auto-tuning in batches of n hardware
measurements. After a complete tuning epoch (i.e. each
operator has completed a batch of measurements), we
compile and evaluate the DL model using best candidate
operator configurations found so far. This enables Trimmer
to suspend or early-stop auto-tuning based on the trade-off
between projected model latency improvement and
optimization cost so far. The early-stop or suspension
mechanism uses achieved model latency as ≤ goal g. If goal
g is not reached, or not reached within a desired cost budget
(time, energy, monetary...), Trimmer compares the rate of
latency reduction compared to last batch, as:
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Fig. 10: Sequential and Survey tuning, [OP = Operator].

stop = ω1
xt + xt−1

xt−1
≤ ϕ (2)

xt = ω2
δft
δOt

(3)

Where xt is the ratio of difference in model latency f
between t and t − 1 over the auto-tuning time Ot for the
epoch. To account for the cases (1) where both xt and xt−1

are positive (slower), and (2) where xt is faster but xt−1 was
slower, ω1 is set to −1 and 1 otherwise; ω2 is set to −1 if
both δft and δOt are negative, 1 otherwise. These cases
occur due to high non-linearity of the operator candidate
space that may cause the auto-tuning to diverge in
discovered latency abruptly. The intuition is that Trimmer
can maximize optimization efficiency by checking whether
the model latency is decreasing every epoch at a sufficient
rate given its time and energy cost, where ϕ is a
hyperparameter that specifies whether the change in the ratio
should be greater than ϕ% to avoid excess tuning, where the
incremental performance change between models per batch
is not significant. This hyperparameter allows practitioners to
prioritize either achieved performance or cost accordingly. In
our case, we have set ϕ to -0.25 providing an appropriate
balance between performance improvement and cost in
optimization, motivated by empirical study.

Model Level: The suspension approach described above
can also be applied at model level (measuring model latency
at each batch). This transition from per-operator to per-model
allows for meta-tuning, where the relative speed-up of
models is compared to concurrent auto-tuning processes of
other models within a cluster of machines. Inspired by [34],
we implement multi-model auto-tuning by ranking models
by their most recently achieved latency improvement in an
auto-tuning batch, and suspend models that perform the
worst. The intuition behind this population-based approach is
to focus optimization effort onto the most promising models
when tuning multiple models within the cluster; and
depending on user set criterion of latency threshold or cost
objective. The suspension interval can include a number of
configurable plateau iterations (i.e. poor performance
improvement in consecutive batch intervals). We synchronize
multi-model auto-tuning processes across a cluster of
machines at intervals of completed batches of individual
models - permitting each model to be optimized for several
batches before being compared.



TABLE VI: Single Platform evaluation results (latency, auto-tuning
time and total energy consumed during auto-tuning

Model TR AT RL CH Base.

Latency
(ms)

Alexnet 0.79±0.02 0.85±0.05 0.84±0.09 0.82±0.08 4.42
VGG-16 4.68±0.49 4.78±0.28 5.85±0.45 5.83±0.38 9.66
Mobilenet 0.65±0.03 0.67±0.02 0.76±0.06 0.74±0.05 1.24
ResNet-18 1.39±0.29 0.86±0.08 1.11±0.06 1.03±0.08 8.48

Tuning
Time
(m)

Alexnet 119±0.29 116±0.25 121±0.42 127±0.40
VGG-16 194±0.49 207±0.22 296±0.98 298±0.30
Mobilenet 213±0.48 286±0.52 216±0.58 214±0.42
ResNet-18 228±0.24 401±0.59 353±0.74 279±0.44

Tuning
Energy
(MJ)

Alexnet 1.6±0.22 1.9±0.22 2.3±0.46 2.4±0.50
VGG-16 3.4±0.59 3.4±0.21 5.5±1.19 5.6±0.32
Mobilenet 3.6±0.81 4.5±0.48 3.6±0.58 3.6±0.41
ResNet-18 21.2±1.6 26.6±2.4 29.5±3.4 31.8±3.1

V. EVALUATION

A. Setup

Environment: We utilized four unique DL models and
performed our experiments on hardware platforms described
in Table I. Where appropriate, models selected for
optimization share identical model configurations and
hyperparameters with prior work [8], [10], and were
converted from Pytorch using TVM. Throughout our
evaluation, we selected graph optimization level 3 in line
with code bases online to avoid value approximation
optimizations at higher levels (see Table III) that may affect
model accuracy. In this work, we also assumed access to an
offline database of historical optimization data. In the case
where there is no historical data, auto-tuning can be executed
to collect n iterations of data for our FC network training.

Auto-tuners: We compared Trimmer (TR) against three
state-of-the-art auto-tuners: AutoTVM (AT): utilizes XGBoost
to avoid excessive hardware measurements and Simulated
Annealing (SA) optimizer to search through the candidate
space given feedback from the cost model [3]; Reinforcement
Learning (RL): uses the XGBoost cost model and Proximal
Policy Optimization [10] and Q-Learning [11] as the
optimizer to propose candidates; and Chameleon (CH):
extending the RL approach, and uses K-means clustering to
reduce similar candidates in the search space to accelerate
auto-tuning [10]. The auto-tuners were configured to perform
500 hardware measurements (candidate batch size = 64), as
per default configurations of the respective auto-tuners.

Metrics: We measured effectiveness of Trimmer using DL
model latency (before and after applying auto-tuning), as
well as total optimization time and energy consumption that
constitute the auto-tuning cost per model. We also monitored
the platforms under test for CPU and GPU metrics such as
utilization or memory usage and measured any resource
overheads incurred from Trimmer’s mechanisms.

Experiment scenarios: We have conducted experiments
that evaluate Trimmer w.r.t. reduction in, and cost-efficiency
of, auto-tuning time and energy cost. We evaluated Trimmer
on Single-platform DL model auto-tuning, performing
isolated experiments on individual target-devices, as well as
Cloud cluster where we coordinate four auto-tuning
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Fig. 12: Ratio of average total energy spent (MJ) during auto-tuning
to achieve 1ms of model latency improvement

instances across four platform A machines to compare
Survey tuning against sequential auto-tuning in parallel.

B. Experiment Results: Single Platform, Sequential Tuning

Performance: Trimmer achieved a greater model latency
reduction compared to other auto-tuning approaches for the
majority of scenarios. As shown in Table VI, Trimmer
achieved the fastest inference time at 0.79ms, 4.68ms and
0.65ms for AlexNet, VGG-16, MobileNet, respectively. In
the case of ResNet-18, Trimmer achieved comparable results
to RL and Chameleon approaches. The reason for these
results is due to Trimmer’s cold candidate filtering, allowing
for quicker identification of hot candidates relatively early
within the auto-tuning process. Such phenomena is
observable when inspecting the shape of operator candidates
measurement patterns as shown in Figure 13.

Cost-efficiency: As shown in Table VI, Trimmer
completed auto-tuning with a lower time cost than other
auto-tuners for VGG-16, ResNet-18, and performed within
margin of error of the fastest framework for remaining
models. Moreover, Trimmer’s system energy consumption is
lower during auto-tuning for AlexNet and ResNet-18 and
scored on par with the least energy-hungry framework
(AutoTVM) in remaining models cases. Crucially, such
auto-tuning costs should be considered in the context of their
cost-efficiency (i.e. when an auto-tuner produces low model
latency, yet consumes significantly more energy). Across all
models, Trimmer achieves the highest cost-efficiency for the
amount of energy required to achieve 1ms latency reduction
as depicted in Figure 12 with an average improvement over
other auto-tuners of 14-33% (AlexNet), 2-54% (VGG-16),
16-24% (MobileNet) and 14-29% (ResNet-18). This stems
from cold candidate filtering and early suspension upon
detection of insufficient latency reduction, and is linked to
the design of our neural sampler, which was trained on a
range of model and target-device samples as per Table I.

Candidates: Our results suggest that the auto-tuner cost
model guided by Trimmer proposes fewer globally poor and
failed candidates compared to RL and Chameleon, and on
average explores more candidates than AutoTVM within the
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same time (see Figure 14). This stems from the design of the
Trimmer re-sampling mechanism, which filters out cold
candidates from the currently measured batch, whilst
greedily reintroducing a portion of new candidates proposed
by the cost model to diversify the batch. This produces more
cost-efficient exploration (as more overall candidates are
explored) and inadvertently explores more cold candidates
compared to filter-less AutoTVM approach. The additional
processing of candidate filtering resulted in 3% CPU
utilization increase compared to AutoTVM, which given the
latency improvement and cost-efficiency attained by
Trimmer, we deem an acceptable resource cost overhead.

C. Experiment Results: Cloud Clusters

Performance & Energy: Trimmer was able to achieve a
21.8% and 40.9% reduction to total auto-tuning energy cost
from Survey tuning in comparison to parallel auto-tuning for
AlexNet(1.8MJ) and MobileNet(5.97MJ), respectively as
shown in Figure 14. The reason for this energy reduction is
due to Survey tuning capturing improvements to model
inference latency across all operators as well as other models
at regular batch interval (and if insufficient performance
gains were detected, optimization is suspended). A key
advantage of Trimmer Survey tuning is that it allows for
strongly performing auto-tuning frameworks to conduct
additional batches over less effective algorithms, improving
it’s cost-efficiency. This is particularly the case for
MobileNet where Trimmer achieved an inference time 0.3ms
(8%) faster than AutoTVM running to full completion per
Table VII.

As shown in Figure 15, when using the Survey tuning to
periodically evaluate the model at each batch interval, we
observed that each framework exhibited different
convergence patterns across both models. For the case of
Mobilenet, we observed that whilst all frameworks produced

TABLE VII: Cloud cluster Survey tuning vs. parallel auto-tuning
Model Survey Parallel Improve

Tuning Energy (MJ) MobileNet 10.76 18.21 40.9%
AlexNet 6.80 8.70 21.8%

Model Run-time (ms) MobileNet 0.629 0.684 8%
AlexNet 0.797 0.805 1%
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Fig. 15: Survey tuning at different batches (64 candidates per batch)

a 10.1–30.2% inference latency improvement between
Batch-0 and Batch-1, both RL and Chameleon were
suspended at a relatively early batch interval due to reduced
performance improvements detected at Batch-3 – both in
terms of its own convergence gradient and in comparison to
other frameworks. AutoTVM was suspended at Batch-5 for
achieving relatively little improvement over two consecutive
intervals, as well as in relation to Trimmer, which was able
to produce best inference time at Batch-5 (0.62ms).

These results affirm that Trimmer: (1) enables the
auto-tuner search strategy to explore further into the
candidate space given the same amount of time and energy,
providing more cost-efficient auto-tuning; and (2) via the
Survey tuning meta-strategy, Trimmer achieves overall faster
optimization times compared to Sequential tuning at
operator-level, and Parallel optimization of multiple models
simultaneously due to its ability to suspend tuning given less
favourable performance improvement across a Cloud cluster.
Additionally, given Survey tuning is a meta-tuning
mechanism that works in conjunction with the auto-tuner and
does not modify its operation and can integrate with any
auto-tuner that reports latency measurements in real-time
including ones that do not rely on templates for
implementation scheduling [9], [11].

VI. RELATED WORK

Cost-efficient DL for Cloud datacenters. Creating
cost-efficient DL systems has been gaining traction within
the ML community, most notably for system energy
consumption [12], [35]. Frameworks designed to improve
DL-focused Cloud datacenter cost-efficiency have recently
been proposed to accelerate DL model hyperparameter
tuning, efficient architecture search and training [36].
Amazon SageMaker [37] focuses on training,
hyperparameter tuning and optimization (Neo). Lorien [38]
supports tuning of DL models across clusters of machines
and collects best performing schedules to achieve faster
training of predicting model accuracy.

DL Tensor Program Optimization. Leveraging search
algorithms and ML to automatically optimize programs is an



active research area. Search-based approaches have been
shown to optimize complex FFT or BLAS routines [39] and
perform I/O parameter search [40]. DL compilers
increasingly adopt auto-tuning; AutoTVM [8] uses Simulated
Annealing and Gradient-boosting to parameterize templates
for tensor program implementations. Deep Reinforcement
Learning (DRL) is used for implementation search and
filtering by both Chameleon [10] and AdaTune [19], whilst
Autophase [41] leverages DRL to generate a compilation
optimization order. Autoschedulers such as Ansor [9]
generate implementations hierarchically and fine-tune their
parameters via evolutionary search, whilst FlexTensor [11]
explores program space using DRL and heuristics to
generate candidates. One-shot-tuner [42] modifies AutoTVM
with a Transformer cost model to predict operator
performance. Trimmer proposes a sampling mechanism
based on an FC neural network to encourage measurements
of fast candidates whilst filtering out candidates that are
likely to be slow or erroneous. Trimmer also introduces an
ϵ-greedy meta-tuning strategy – Survey tuning at both
operator and model level that reduces auto-tuning cost by
enabling early finish, periodically measuring DL-model-level
performance. Survey tuning further enables auto-tuning
across a Cloud cluster and multiple models simultaneously.

VII. CONCLUSIONS

In this paper we propose Trimmer: a DL model
auto-tuning framework that performs high-performance and
cost-efficient tensor program optimization for Cloud
datacenters. We have empirically analyzed the diverse energy
and performance characteristics of different DL model
auto-tuning and optimization techniques across various
hardware devices. Through conducting experimentation we
have demonstrated that Trimmer is capable of improving DL
model performance whilst reducing auto-tuning energy cost
considerably. We hope that our framework provides new
insights to aid the study – and creation of – cost-efficient
Cloud datacenters designed to provision MLaaS.
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[25] M. Coşkun et al., “An overview of popular deep learning methods,”
European Journal of Technique (EJT), vol. 7, no. 2, pp. 165–176, 2017.

[26] “github - apache/tvm: open deep learning compiler stack for
cpu, gpu and specialized accelerators,” 2022. [Online]. Available:
https://github.com/apache/tvm/

[27] NVIDIA. (2020) Nvidia management library. [Online]. Available:
https://developer.nvidia.com/nvidia-management-library-nvml

[28] W. S. Cleveland and S. J. Devlin, “Locally weighted regression: an
approach to regression analysis by local fitting,” Journal of the American
statistical association, vol. 83, no. 403, pp. 596–610, 1988.

[29] T. Kraska et al., “The case for learned index structures,” in International
conference on management of data, 2018, pp. 489–504.

[30] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in ICML, 2010.

[31] L. Zhang et al., “Nn-meter: Towards accurate latency prediction of deep-
learning model inference on diverse edge devices,” in MobiSys, 2021.

[32] K. Xu et al., “Show, attend and tell: Neural image caption generation
with visual attention,” in ICML, 2015.

[33] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-
end factor analysis for speaker verification,” IEEE/ACM TASLP, 2011.

[34] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue,
A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan, C. Fernando,
and K. Kavukcuoglu, “Population based training of neural networks,”
arXiv preprint arXiv:1711.09846, 2017.

[35] T.-J. Yang et al., “Netadapt: Platform-aware neural network adaptation
for mobile applications,” in ECCV, 2018.

[36] D. Golovin, B. Solnik, S. Moitra et al., “Google vizier: A service for
black-box optimization,” in ACM SIGKDD, 2017.

[37] E. Liberty, Z. Karnin, B. Xiang, L. Rouesnel et al., “Elastic machine
learning algorithms in amazon sagemaker,” in SIGMOD, 2020.

[38] C. H. Yu et al., “Lorien: Efficient deep learning workloads delivery,” in
Proceedings of the ACM Symposium on Cloud Computing, 2021.

[39] M. Frigo and S. G. Johnson, “The design and implementation of fftw3,”
Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005.

[40] J. Ansel, S. Kamil, K. Veeramachaneni et al., “Opentuner: An extensible
framework for program autotuning,” in PACT, 2014.

[41] Q. Huang et al., “Autophase: Compiler phase-ordering for hls with deep
reinforcement learning,” in FCCM, 2019.

[42] J. Ryu, E. Park, and H. Sung, “One-shot tuner for deep learning
compilers,” in ACM SIGPLAN CC, 2022.

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://mxnet.apache.org
https://mxnet.apache.org
https://pytorch.org/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://github.com/apache/tvm/
https://developer.nvidia.com/nvidia-management-library-nvml

	Introduction
	Background
	Cloud Datacenters for Deep Learning
	DL Model Optimization
	Auto-Tuning
	Auto-tuning Cost in Cloud Datacenters

	DL Optimization Performance & Cost Study
	Analysis Setup
	Library, Platform, and Graph Optimization
	Auto-tuning
	Design Directions

	Trimmer Framework
	Overview
	Cold Candidate Filtering
	Survey Tuning

	Evaluation
	Setup
	Experiment Results: Single Platform, Sequential Tuning
	Experiment Results: Cloud Clusters

	Related Work
	Conclusions
	References

