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Abstract: Haze contamination is a very common issue in remote sensing images, which inevitably 12 

limits data usability and further applications. Several methods have been developed for haze 13 

removal, which is an ill-posed problem. However, most of these methods involve various strong 14 

assumptions coupled with manually-determined parameters, which limit their generalization to 15 

different scenarios. Moreover, temporal information amongst time-series images has rarely been 16 

considered in haze removal. In this paper, the temporal information is proposed to be incorporated 17 

for more reliable haze removal, and guided by this general idea, a temporal information injection 18 

network (TIIN) is developed. The proposed TIIN solution for haze removal extracts the useful 19 

information in the temporally neighboring images provided by the regular revisit of satellite 20 

sensors. The TIIN method is suitable for images with various haze levels. Moreover, TIIN is also 21 

applicable for temporal neighbors with inherent haze or land cover changes due to a long-time 22 

interval between images. The proposed method was validated through experiments on both 23 
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simulated and real haze images as well as comparison with five state-of-the-art benchmark 24 

methods. This research provides a new paradigm for enhancing haze removal by incorporating 25 

temporally neighboring images. 26 

 27 
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 32 

1. Introduction 33 

 34 

Haze arises mostly from atmospheric constituents of water droplets, dust, fog/smog and other 35 

particles that dim the clarity of the scene (Cai et al., 2016), and leads to inaccurate measurement of 36 

radiance and information loss in remote sensing images, which is similar to thin cloud 37 

contamination (i.e., part of (rather than all) the information is lost in thin cloud). Therefore, for 38 

images acquired with haze contamination, the visibility, contrast and intensity may be affected 39 

greatly (Jiang et al., 2018). The commonly used haze degradation model (Narasimhan and Nayar, 40 

2003) is as follows: 41 

                        (1) 

where x,  , and   indicate the location of a pixel in the image, the haze contaminated image, and 42 

clear image, respectively.   is the global atmospheric light, and      indicates the haze 43 

transmission map. Therefore, the haze removal process can be formulated as follows: 44 
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    (2) 

That is, each hazy image can be recovered with global atmospheric light   and haze transmission 45 

map     . For haze removal, only the acquired hazy image is known, and both the global 46 

atmospheric light and haze transmission map need to be estimated in advance, which is an obvious 47 

ill-posed problem. 48 

Over the last decade, several dehazing methods have been proposed. Tan (2008) addressed 49 

dehazing by using Markov random field to maximize the local contrast. Fattal (2008) calculated 50 

the albedo of the scene and medium transmission maps based on the assumption of uncorrelation 51 

between transmission and surface shading. A dark-channel prior was applied to reconstruct the 52 

haze contamination of outdoor images (He et al., 2011). Moreover, a color attenuation prior was 53 

employed as a constraint in predicting haze-free images (Zhu et al., 2015). Although the 54 

aforementioned methods produced acceptable results in some cases, they are based on various 55 

strong assumptions such that their general applicability is affected. Besides, haze removal can also 56 

be considered as an image enhancement goal (Cho et al., 2018). Specifically, the input hazy 57 

images can be decomposed to produce ambient maps and transmission maps for further refinement 58 

based on the Laplacian module, which does not require any prior information. Recently, an 59 

enhanced atmospheric scattering model was developed for haze removal (Ju et al., 2021). Most of 60 

these methods can be categorized as traditional model-based methods with various assumptions 61 

which inevitably limit the generalization ability of the methods for different scenarios.  62 

Deep neural networks have been utilized in many computer vision tasks owing to their strong 63 

non-linear modeling ability. For dehazing regular images, Cai et al. (2016) proposed an end-to-end 64 

DehazeNet to estimate transmission maps. A multi-scale convolutional neural network (CNN) was 65 

applied to explore transmission features in both coarse and fine domains (Ren et al., 2016, 2020). 66 
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Both methods use the model in Eq. (2) for haze removal, and the outputs are predicted 67 

transmission maps. Thus, post-processing steps are required to produce the haze-free images and 68 

the uncertainty in the interim deep neural network-based is propagated to the final dehazed results 69 

(Zhu et al., 2018). To reduce such uncertainty, Li et al. (2017) built a network to bridge hazy 70 

images and clear images directly which can produce haze-free images without any post-processing 71 

steps. A symmetric encoder-decoder structure was employed for dehazing (Ren et al., 2018). 72 

Generative adversarial networks (GANs) were applied to handle haze removal without any 73 

manually-set prior (Li et al., 2018b; Qu et al., 2019). Recently, Li et al. (2020a) combined Retinex 74 

Theory (Land, 1978) with neural networks to remove the haze of regular images. 75 

Haze removal of remote sensing images is more difficult compared with that for regular 76 

images due to the sophisticated atmosphere, complex spatial textures, and abundant spectral 77 

information of remote sensing images. Zhang et al. (2002) employed a haze optimized 78 

transformation algorithm for hazy Landsat images. Wavelet analysis was also applied to remove 79 

the haze of fine spatial resolution remote sensing images (Du et al., 2002). Makarau et al. (2014) 80 

calculated a haze thickness map via dark-object subtraction to dehaze both calibrated and 81 

uncalibrated multispectral images. The correlation between the visible (or infrared) band and the 82 

cirrus band was also utilized for haze removal in Xu et al. (2014). Moreover, a cloud removal 83 

noise-adjusted principal components transform (CR-NAPCT) method (Xu et al., 2019) was 84 

employed for Landsat-8 images with additional cloud detection operators, such as Fmask 85 

developed in Zhu and Woodcock (2012), which may cause intermedium uncertainty for post-cloud 86 

removal. Based on the dark image prior of regular image dehazing (He et al., 2011), a deformed 87 

haze imaging model was introduced to dehaze remote sensing images (Pan et al., 2015). However, 88 

this method can handle only the RGB bands of remote sensing images. Furthermore, the sphere 89 
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model (Li et al., 2018a) and elliptical boundary prior (Guo et al., 2019) can also be employed for 90 

haze removal. Similarly, an empirical method was developed for visible bands 1-to-4 of Landsat-8 91 

(Lv et al. 2016). Guo et al. (2020a) utilized the haze degradation model in Eq. (2) to remove haze 92 

bands with different wavelengths, which takes both haze particle size and concentration into 93 

account during haze removal. However, these model-based methods make various assumptions 94 

between the ideal clear and hazy images. Moreover, they need fine-tuned model parameters for 95 

different haze condition scenarios. 96 

In recent years, various learning-based (e.g., CNN-based) dehaze methods have been 97 

developed with state-of-the-art performance for remote sensing images. Jiang and Lu (2018) 98 

applied a multi-scale residual CNN to estimate the transmission maps before dehazing based on 99 

the model in Eq. (2). Compared with Ren et al. (2016), Jiang and Lu (2018) employed dilation 100 

convolution for feature extraction at different scales. In contrast, several convolutional layers were 101 

employed to predict haze-free remote sensing images directly and considered the haze variation of 102 

different wavelengths (Qin et al., 2018). However, this method requires a large number of haze 103 

levels when constructing the training data, which inevitably increases the computational burden. 104 

In Guo et al. (2020b), the haze variation between different bands was considered in global residual 105 

learning with channel attention for dehazing Landsat-8 OLI images. GANs can also be employed 106 

for haze removal (Li et al., 2020b). 107 

The commonly used satellite sensors, such as the Landsat series and the Terra/Aqua MODerate 108 

resolution Imaging Spectroradiometer (MODIS), can provide a large number of remote sensing 109 

images of the same region at different times, due to their regular revisit capabilities (Wang et al., 110 

2020). Theoretically, the temporally neighboring images can provide complementary information 111 

to tackle the haze removal issue as formulated in Eq. (2). Specifically, the temporally neighboring 112 
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images can provide a spatial distribution prior for the target hazy images because of the temporal 113 

correlation between observations (i.e., images acquired on two proximate days tend to resemble 114 

each other, especially when the time interval is small). Therefore, the uncertainty of this ill-posed 115 

issue can be reduced potentially. Although temporal information has been considered in other 116 

image restoration issues, such as thick cloud removal (Chen et al., 2020; Ji et al., 2021) and 117 

Landsat ETM+ SLC-off gap filling (Wang et al., 2021), it has been neglected in existing haze 118 

removal studies. The use of temporal information in haze removal is quite different from that for 119 

thick cloud removal. Haze contamination is highly correlated to spectral wavelength. Generally, 120 

longer wavelength bands are more robust to haze. Moreover, hazy pixels are usually a mixture of 121 

haze and the original signal of land covers, such that part of the original signal is retained. This is 122 

different from the case of completely dead pixel through all bands caused by thick cloud 123 

contamination or a SLC-off gap. Thus, the scheme of using temporally neighboring images in 124 

thick cloud removal (Shen et al., 2015) (i.e., completely neglecting the information under thick 125 

cloud as it contains no information) or gap filling (Wang et al., 2021) is not appropriate for haze 126 

removal, as it would waste the potentially valuable information in the hazy pixels, especially for 127 

longer wavelength bands. 128 

In this research, temporal information is considered for haze removal and a novel solution 129 

incorporating temporally neighboring images is proposed. It should be stressed that two issues 130 

arise when temporally neighboring images are used. First, driven by natural evolution and human 131 

activities, the land cover type of the Earth surface usually changes in the temporal domain. 132 

Therefore, the spatial distribution prior in temporally neighboring images can be different to the 133 

target hazy image. Second, the temporally neighboring images may also be contaminated by haze. 134 

That is, although the observed temporally neighboring images may be abundant, the effective 135 
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spatial distribution prior in the temporal domain is reduced due to land cover changes and haze 136 

contamination. These two challenges also hamper the development of using temporal information 137 

in haze removal, especially for model-based methods. Generally, model-based methods involve 138 

various assumptions and the solutions for incorporating temporal information may not be 139 

straightforward especially for solutions that are universal for different scenarios. Specifically, 140 

model-based methods cannot select automatically the usable spatial distribution prior in the 141 

temporal images. Since deep learning is fully data-driven and can automatically transform the 142 

feature representation into a higher and more abstract level (LeCun et al., 2015; Li et al., 2020c; 143 

Shao et al., 2019; Wu et al., 2021). Thus, by deep learning, various input images can be 144 

automatically distilled into abstract levels without any specific assumptions. Therefore, this paper 145 

investigates this type of method for incorporating temporally neighboring images that can be 146 

affected by haze and land cover changes. Accordingly, to distill the effective spatial distribution 147 

prior of temporal information for dehazing, a temporal information injection network (TIIN) is 148 

proposed. The TIIN method convolves both hazy images and temporally neighboring images in a 149 

parallel manner with stacking layers for feature extension, and emphasizes the useful temporal 150 

features for dehazing by using different attention modules. 151 

The remainder of this paper is organized as follows. In Section 2, the mechanism of the 152 

proposed TIIN architecture is presented. The experimental results of both simulated and real hazy 153 

data are provided in Section 3. Section 4 discusses the findings and the problems to be investigated 154 

further. Section 5 summarizes the conclusion of this study. 155 

 156 

 157 

2. Methods 158 
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 159 

2.1. Overview of the TIIN architecture 160 

 161 

The proposed TIIN method is a parallel CNN-based architecture, as shown in Fig. 1. The 162 

architecture contains two branches (i.e., hazy branch and temporal branch) and several blocks. At 163 

the beginning, both hazy images and temporally neighboring images are input to the 164 

corresponding branches simultaneously. In each branch, two convolutional layers are applied for 165 

shallow feature extraction with 32 filters. Subsequently, the group convolution block, as shown in 166 

Fig. 2(a), is employed to extract land cover information. Next, three temporal information 167 

injection (TII) blocks are applied to transfer information from the temporal images. Then, a 168 

concatenation and fusion block is applied to integrate the extracted features of the branches, 169 

followed by a modified spatial attention (MSA) block to focus on hazy regions. At the tail of the 170 

architecture, based on the Retinex Theory (Land, 1978; Li et al., 2020a), a global multiply residual 171 

is used to alleviate the burden of network training. Finally, a 3×3 convolutional layer with seven 172 

filters is applied to transform the haze-free features to haze-free Landsat-8 OLI images. Note that 173 

all convolutional layers in TIIN, except for the final convolution layer, include 32 channels for 174 

convolution and the rectified linear unit (ReLU) is used for function activation. 175 

 176 

2.2. The group convolution block 177 

 178 

The group convolution block consisting of three layers is used for feature extension by 179 

extracting multiscale semantic and contextual information. Diverse filter sizes of the convolutional 180 

layers can make the model more suitable for reconstruction of scenarios with different sizes of land 181 
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cover objects. Specifically, in this research, the filter sizes of the three layers are 1×1 pixel, 3×3 182 

pixels and 5×5 pixels. Moreover, according to Guo et al   2020b ’s study, the channel number of 183 

each group convolutional layer is set to 32, which can provide sufficient useful features. 184 

Subsequently, using a concatenation strategy, the extracted multiscale features of both the hazy 185 

and temporal branches are concatenated into unified features in the channel dimension. Finally, in 186 

each branch, the integrated features are fed into a fusion block for further feature integration. 187 

 188 

2.3. The TII block 189 

 190 

The TII block is used to bridge the gap between hazy and temporal branches. As shown in Fig. 191 

2, the output features of each basic block of the temporal branch are injected into a channel 192 

attention (CA) module, which are then concatenated with the output of corresponding basic block 193 

of the hazy branch. The CA block can utilize fully the correlation of different bands between hazy 194 

images and temporally neighboring images. Moreover, the CA block bridges the gap between the 195 

hazy images and temporally neighboring images. That is, the spatial distribution prior in the 196 

temporal branch is transferred into the hazy branch via the CA block. Specifically, the CA module 197 

includes squeeze, excitation and recalibration (Hu et al., 2020). First, a global average pooling 198 

(GAP) layer is used to provide a global spatial information squeeze. Then, for excitation, a 1 1 199 

filter is used for channel-wise feature reduction with filter number 
 

 
 (  is the number of feature 200 

channels and   denotes the reduction ratio). In this research, the reduction ratio was determined as 201 

4. Next, a convolutional layer with   filters (each with a size of 1 1) is employed to increase the 202 

dimensionality for further excitation, followed by a sigmoid activation function. After excitation, a 203 

residual multiplication layer is used for channel-wise feature recalibration. Afterwards, a fusion 204 
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block is applied to integrate the CA-derived features. The fused features consider the spatial 205 

information in both the hazy images and the spatial distribution prior from the temporally 206 

neighboring images. 207 

 208 

 209 
Fig. 1. The whole architecture of the proposed TIIN. 210 

 211 

 212 
Fig. 2. Different components of the proposed architecture in Fig. 1. 213 

 214 

2.4. The MSA block 215 

Temporal neighbor 

3
×

3
 C

o
n
v

3
×

3
 C

o
n
v

T
II

 B
lo

c
k

C

Dehaze image

3
×

3
 C

o
n
v

3
×

3
 C

o
n
v

T
II

 B
lo

c
k

Group 

Conv

Group 

Conv

Group 

Conv

F
u

si
o
n

 B
lo

c
k

MSA 

Block
×

3
×

3
 C

o
n
v

T
II

 B
lo

c
k

C

×

Concatenate

Multiply

Hazy image

Temporal branch

Hazy branch

3
×

3
 C

o
n
v

5
×

5
 C

o
n
v

1
×

1
 C

o
n
v

C

F
u

si
o
n

 B
lo

c
k

3
×

3
 C

o
n
v

1
×

1
 C

o
n
v

3
×

3
 C

o
n
v

1
×

1
 C

o
n
v

+

1
×

1
 C

o
n
v

3
×

3
 C

o
n
v

Group convolution

Basic block Fusion block

C

×

Concatenate

Multiply

˷ 
Sigmoid

+ Add

5
×

5
 C

o
n
v

5
×

5
 C

o
n
v

3
×

3
 C

o
n
v 7

×
7
 C

o
n
v

˷ 

MSA block

Hazy features Fusion Block

Temporal features ...

...Basic Block

Basic Block

GAP

1×1 Conv

1×1 Conv

˷ 
C

C
A

 b
lo

c
k

TII block

Hazy branch

Temporal branch



 

 

11 

After the TII block, the extracted features from both the hazy and temporal branches are 216 

integrated via a concatenation and fusion block. To focus on the hazy regions in the spatial domain, 217 

the spatial attention block is applied. However, spatial attention usually utilizes global average 218 

pooling and maximal pooling to capture global common and distinctive information (Li et al., 219 

2020a), which is non-learnable. For robustness, the pooling operators of spatial attention are 220 

replaced by convolutional layers in this paper. The MSA strategy is applied to adjust automatically 221 

the spatial-wise weights. As shown in Fig. 2, the pooling operator in spatial attention consists of 222 

multiscale convolutional layers with filter sizes of 3×3 pixels and 5×5 pixels, followed by a 7×7 223 

pixels convolutional layer to extract more multiscale contextual information. It should be noted 224 

that only one channel is considered consistently for these convolutional layers to achieve spatial 225 

attention, with only one sigmoid function for activation in the final layer. 226 

 227 

2.5. The basic and fusion blocks in TIIN 228 

 229 

Since remote sensing images always contain complicated spatial context and semantic 230 

information, hierarchical CNNs are considered to represent the spatial features. Therefore, basic 231 

blocks with residual learning are applied to enhance the performance of feature extraction. The 232 

detail of the proposed basic block is portrayed in Fig. 2. The basic block is a derivative of a 233 

residual model. Specifically, as shown in Fig. 2, three convolutional layers are applied for feature 234 

extraction with the ReLU as activation function. Meanwhile, the input of the basic block is 235 

convolved via a 1 1 filter and then skip-connected with the output of the last convolutional layer 236 

for residual learning. 237 
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To integrate the various feature maps derived from two branches of the network, a fusion block 238 

is employed, as depicted in Fig. 2. Two convolution layers are applied to aggregate different 239 

feature maps and the filter sizes are 1 and 3. These layers also apply ReLU for activation. 240 

 241 

2.6. Residual learning and the loss function in TIIN 242 

 243 

In the Retinex Theory (Land, 1978; Li et al., 2020a), a hazy image can be considered as a 244 

dehazed image multiplied by the residual illumination map. Residual learning is a popular strategy 245 

to reduce the requirement for network training (He et al., 2016), as the residual learning strategy 246 

can estimate the residual between the network input and the reference. Hence, the expected results 247 

are the summation of residual (network outputs) and the network inputs. Based on the theory, a 248 

global product residual operator is proposed for haze removal. Specifically, the summation 249 

operator of residual learning is modified to an elementwise product operator. Therefore, the 250 

expected dehazed result is the elementwise product of      and      in Eq. (3): 251 

             (3) 

where    denotes the haze-free features,   is the hazy image,      is the output of the first 252 

convolutional layer of the shallow feature extraction, and      is the output of the MSA block. 253 

Based on the Retinex Theory,      can be seen as hazy features and the reciprocal of      is the 254 

residual illumination map. The final 3 3 pixels filter can transform the haze-free feature    to the 255 

dehaze result  . 256 

In terms of the loss function for the network, the widely-used mean square error (MSE) loss 257 

function is considered to guide the network training iteratively. 258 

 259 
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3. Experiments 260 

 261 

Comprehensive experiments on simulated data and real-data were carried out to examine the 262 

robustness and applicability of the proposed TIIN method. Specifically, Landsat-8 OLI data of the 263 

L1 level Collection 2 product (30 m spatial resolution and 16-day temporal resolution) were used 264 

in this study. Moreover, hazy images with different land cover scenarios and temporally 265 

neighboring images with long-time interval were also considered. 266 

 267 

Table 1. Details of the training images used in the experiments 268 

No.  Date Centre position Size 

Pair 1 
Original haze-clear images 2019.06.02 48°40’38 58’’N, 2°20’0 30’’E 3741×5023 

Temporally neighboring images 2019.07.04 48°40’38 58’’N, 2°20’0 30’’E 3741×5023 

Pair 2 
Original haze-clear images 2018.10.05 48°52’42 90’’N, 2°2 ’ 8 49’’E 5094×4995 

Temporally neighboring images 2018.10.21 48°52’42 90’’N, 2°2 ’ 8 49’’E 5094×4995 

 269 

3.1. Data preparation 270 

 271 

The available data were organized into training data and testing data. To provide training 272 

images for the proposed TIIN architecture, several haze-clear images and temporally neighboring 273 

images of Landsat-8 OLI with seven bands (including coastal, blue, green, red, NIR, SWIR1, and 274 

SWIR 2 bands) covering Paris, France (path is 199, and row is 26) were acquired. Note that the 275 

output of the TIIN architecture is an image with the same size (i.e., the number of bands is also the 276 

same as the input). Moreover, the training data are spatially neighboring to the testing data. More 277 

detailed information on the acquired images is depicted in Table 1. It should be noted that the 278 

temporal neighboring images mean the images that cover the same location as the original image 279 

but were acquired at different times. The max-min scaling normalization was applied to each band 280 

of the Landsat-8 OLI images. Moreover, the uncertainty in image registration between the original 281 
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images and temporal neighbors was ignored due to the high confidence in the registration of the 282 

Landsat-8 product (Irons et al., 2012). 283 

The CNN is a supervised learning strategy, which needs massive labelled data for training. For 284 

image dehazing, however, it is unrealistic to acquire both haze-clear and haze-contaminated 285 

conditions for the same scene at the same time. Therefore, a haze simulation strategy was 286 

implemented based on Guo et al. (2020b) to generate sufficient training data for more reliable 287 

fitting. First, the haze transmission map      in Eq. (1) can be estimated: 288 

          ,        (4) 

where   indicates the wavelength of a certain band of the hazy image,   is the scattering coefficient, 289 

  is the distance between satellite sensors and surface objects, and      is a spatial-based function 290 

to determine the haze spatial distribution at pixel   (Guo et al., 2020b). In general,   ranges from 0 291 

to 4 (Chavez, 1988; Guo et al., 2020b). The scattering coefficient can be estimated as: 292 

   ,         
     

 (5) 

where   is a constant. Therefore, the haze imaging model can be transformed as follows: 293 

              ,                 ,         (6) 

Moreover, the first band of the Landsat-8 OLI image was selected as the reference band. Then, a 294 

natural logarithm was implemented on both sides of Eq. (4) to further derive:  295 

ln          ,        (7) 

The ratio between the first band and the other bands can be calculated as follows: 296 

ln      

ln      
 
 
 
   ,      

 
 
   ,      

 
(8) 

Based on Eq. (8), the transmission map      of each band of the hazy Landsat-8 OLI image can be 297 

estimated. Therefore, each hazy band of the Landsat-8 OLI image can be expressed as:  298 
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ln      
      

 
  
  
 
    

ln      
  

(9) 

In Eq. (9),       is a reference transmission map. To be close to the real haze conditions, a cirrus 299 

band from a cloudy region was employed as reference in this paper to simulate nonuniform haze 300 

cover, as in Guo et al. (2020b). Hence, the reference transmission map can be formulated as: 301 

              (10) 

where      is the selected cirrus band of the Landsat-8 OLI image, and the weight coefficient   302 

ranges from 0 to 1, controlling the haze contamination level. Normally, larger   indicates heavier 303 

haze. 304 

For haze simulation, 35 cirrus maps of Landsat-8 OLI from different cloudy regions were 305 

acquired as reference transmission maps during training samples preparation. In Eqs. (9) and (10), 306 

the unknown parameters include the global atmospheric light  , spatial-based function     , 307 

weight coefficient  , and the wavelength of the  -th band   . For global atmospheric light  , the 308 

strategy of Guo et al. (2020b) was used, and      was set to 1 in training. To be applicable for 309 

various haze conditions, the weight coefficient   was parameterized randomly from 0 to 1, with an 310 

interval of 0.1 for each image to simulate different haze contamination. The central wavelength of 311 

the Landsat-8 OLI images is used to set    during haze simulation. Finally, the simulated haze 312 

images and temporally neighboring images were fed into the proposed architecture under the 313 

supervision of the corresponding reference haze-clear images. 314 

Training data were prepared by cropping the simulated hazy images, temporally neighboring 315 

images, and original haze-clear images with 33635 mini-patches. To ensure sufficient patches, 316 

each mini-patch was cropped with a spatial size of 32×32 pixels. Using rotation and flipping for 317 

data augmentation, 100905 mini-patches were eventually produced as training data. Moreover, 10% 318 

of the set of training mini-patches were deployed for validation. For network training, the Adam 319 
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optimization operator (Kingma, 2015) was applied with momentum parameters set to 0.9, 0.999, 320 

and 10
-8

, respectively. The entire architecture was trained iteratively via 100 epochs with a 321 

learning rate of 10
-4

. The whole model was implemented in Windows 10 equipped with an 322 

NVIDIA GTX 2080 Ti graphics processing unit. The training time was about 4 h. In addition, the 323 

architecture was implemented in the Keras framework via TensorFlow as back-end. 324 

 325 

Table 2. Details of the images used in the experiments 326 

No. Regions  Date Centre Position Size 

Case 1 

Region 1 
Original image 2019. 06. 02 49°5’27 62’’N, 

3°39’5  73’’E 
300×300 

Temporal neighbor 2019. 07. 04 

Region 2 
Original image 2020. 04. 01 48°38’42  4’’N, 

3°  ’24 46’’E 
500×500 

Temporal neighbor 2020. 05. 19 

Region 3 
Original image 2020. 04. 01 49°25’30 8 ’’N, 

3°38’26 67’’E 
400×400 

Temporal neighbor 2020. 05. 19 

Region 4 
Original image 2013. 12. 10 49° ’59 74’’N, 

 °43’33 38’’E 
400×400 

Temporal neighbor 2014. 03. 16 

Case 2 Region 5 
Original image 2019. 02. 26 48°37’28 80’’N, 

2°56’ 9 92’’E 
400×400 

Temporal neighbor 2019. 06. 18 

Case 3 Region 6 
Original image 2020. 04. 01 46°58’29 69’’N, 

0°37’44 52’’E 
500×500 

Temporal neighbor 2020. 05. 19 

Real haze Region 7 
Original image 2020. 07. 22 49° ’32 4 ’’N, 

2°29’20 48’’E 
800×800 

Temporal neighbor 2020. 08. 07 

Real haze Region 8 
Original image 2020. 07. 22 48°57’38 73’’N, 

2° 8’7 49’’E 
1000×1000 

Temporal neighbor 2020. 08. 07 

Real haze Region 9 
Original image 2021. 11. 23 3 °53’5  86’’N, 

 2 °53’ 8 32’’E 
900×900 

Temporal neighbor 2021. 04. 29 

Real haze Region 10 
Original image 2019. 04. 15 49°6’13.18’’N, 

1°43’13.09’’E 
2000×2000 

Temporal neighbor 2019. 02. 26 

Real haze Region 11 
Original image 2019. 04. 15 48°23’ 9 43’’N, 

2°34’5 97’’E 
2000×2000 

Temporal neighbor 2019. 02. 26 

 327 

To facilitate the validation of the proposed TIIN solution for haze removal objectively, several 328 

Landsat-8 OLI images located near 48°N and 2°E were collected for haze simulation to test the 329 

different haze removal methods. Specifically, three groups of haze-clear Landsat-8 OLI images 330 

with different spatial extents were contaminated based on the haze simulation model in Eq. (10). 331 

Moreover, four real hazy images were used to examine the practicability of the proposed method. 332 

More details of the used images are depicted in Table 2. 333 
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Fig. 3. Results of different methods for the four regions (Region 1: 300×300 pixels, Region 2: 500×500 pixels, Region 337 

3: 400×400, Region 4: 400×400 pixels) and the corresponding enlarged sub-regions (yellow rectangle region in the 338 

corresponding full images) in Case 1 (NIR, red, and green as RGB).  339 
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 340 

3.2. Experiments on simulated haze data 341 

 342 

In this section, the feasibility of the proposed TIIN solution for different scenarios was 343 

validated with both visual and quantitative assessment, as the reference data representing the 344 

haze-clear images are known perfectly. Specifically, three different cases were implemented, 345 

including various land cover scenarios with different levels of haze (Case 1), temporally 346 

neighboring images with long-time interval (Case 2), and haze image spatially distant to the 347 

training images (Case 3). Moreover, the proposed method was compared with four state-of-the-art 348 

dehaze methods existing in both the computer vision and remote sensing communities, including 349 

two learning-based methods (i.e., AOD-Net (Li et al., 2017) and RSDehazNet (Guo et al., 2020b)) 350 

and three model-based methods (i.e., the method in Cho et al. (2018), the automatic cloud removal 351 

method (ACRM) (Xu et al., 2014)) and CR-NAPCT (Xu et al., 2019). The correlation coefficient 352 

(CC), universal image quality index  UIQI  and root mean square error (RMSE) were employed to 353 

quantitatively evaluate the accuracy of the different methods. 354 

 355 

3.2.1. Case 1 (various land cover scenarios with different levels of haze) 356 

 357 

In this case, four images covering different land cover scenarios and simulated with different 358 

levels of haze (i.e., heavy haze for Regions 1 and 4; and moderate haze for Regions 2 and 3) were 359 

considered. The dehaze results of the four regions are displayed in Fig. 3. The sub-regions indicate 360 

the enlarged region of the yellow area in the original images. In Region 1, both AOD-Net and 361 

RSDehazeNet cannot recover the heavy haze region satisfactorily, where color distortion can be 362 
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observed clearly. The proposed TIIN method can produce a more accurate result, although the 363 

temporally neighboring image contains apparent land cover changes (such as the decrease in 364 

vegetation cover). The same advantage of TIIN is seen in the results of Region 2. In Region 3, even 365 

with a 49-day temporal distance, the proposed method can still fully utilize the spatial distribution 366 

prior of the temporally neighboring image and produce more acceptable dehaze results than 367 

AOD-Net and RSDehazeNet. This advantage is attributed to the parallel stacking convolutional 368 

layers and different attention modules of the proposed network. Moreover, the proposed TIIN 369 

method can still produce visually pleasant results under large areas of snow cover in Region 4. The 370 

same conclusion can also be drawn from Fig. 4, where the error maps are provided for clearer 371 

visualization of the difference between the various methods. Generally, in each band, the proposed 372 

method can produce dehaze results with less error than the other methods. 373 

Quantitative assessment results for Case 1 are presented in Table 3. It is seen that the proposed 374 

TIIN method can generally produce the most accurate dehaze results. Specifically, the proposed 375 

method can produce larger mean CC and UIQI and smaller mean RMSE for almost all bands of the 376 

Landsat-8 OLI images in the four regions. For example, in Region 1, compared with AOD-Net and 377 

RSDehazeNet, the mean CC of TIIN are 0.1698 and 0.1677 larger, respectively. Correspondingly, 378 

the mean RMSE of TIIN is 0.0102 and 0.0201 smaller than the two methods. 379 

 380 

3.2.2. Case 2 (temporally neighboring images with long-time interval) 381 

 382 

In this case, to evaluate the robustness of the TIIN method in relation to the long-time interval 383 

of temporally neighboring images, a Landsat-8 OLI image with a 112-day temporal distance was 384 

applied in TIIN. As seen from the results for Case 2 in Fig. 5, AOD-Net cannot remove the haze 385 
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thoroughly. Both RSDehazeNet and TIIN can produce cleaner images. As depicted in the 386 

corresponding enlarged regions, however, RSDehazeNet fails to reconstruct the spectral 387 

information precisely, presenting spectral distortion. On the contrary, the proposed TIIN solution 388 

recovers the haze region more accurately, as it takes full advantage of the available temporal 389 

information and also can take land cover changes into account. Quantitative evaluation for Case 2 390 

is depicted in Table 3. Both mean CC and UIQI of the proposed TIIN method are larger than for 391 

the other two methods, and the mean RMSE is also smaller. 392 

 393 

 394 

Table 3. Quantitative assessment of different dehaze results in the simulated experiment 395 

  Methods CC UIQI RMSE 

Case 1 

 

Region 1 

AOD-Net 0.7159 0.6530 0.0642 

RSDehazeNet 0.7180 0.6172 0.0741 

TIIN 0.8857 0.8133 0.0540 

Region 2 

AOD-Net 0.9596 0.9147 0.0417 

RSDehazeNet 0.9385 0.8922 0.0381 

TIIN 0.9696 0.9489 0.0289 

Region 3 

AOD-Net 0.9500 0.9164 0.0390 

RSDehazeNet 0.9280 0.8797 0.0420 

TIIN 0.9585 0.9275 0.0310 

Region 4 

AOD-Net 0.7908 0.5540 0.1403 

RSDehazeNet 0.8808 0.6949 0.1330 

TIIN 0.9453 0.8449 0.1044 

Case 2 

AOD-Net 0.8703 0.8529 0.0192 

RSDehazeNet 0.9571 0.9447 0.0119 

TIIN 0.9740 0.9585 0.0138 

Case 3 

AOD-Net 0.8919 0.8312 0.0458 

RSDehazeNet 0.8324 0.7840 0.0472 

TIIN 0.9158 0.8857 0.0326 

 396 

Table 4. Classification accuracy of the land cover maps derived from different dehaze results 397 

 Region 1 Region 3 

 OA Kappa OA Kappa 

AOD-Net 0.7594 0.5083 0.9821 0.0267 

RSDehazeNet 0.8048 0.5710 0.9887 0.5425 

TIIN 0.9269 0.8167 0.9970 0.9077 

 398 
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Fig. 4. Error maps (in absolute value) of different dehaze results of the three regions in Case 1. 400 
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Fig. 5. Results of Cases 2 (400×400 pixels) and 3 (500×500 pixels) (NIR, red and green as RGB). 402 

 403 

 404 

3.2.3. Case 3 (haze image spatially distant to the training images) 405 

 406 

In the aforementioned experiments, the images for prediction were spatially in the same tile 407 

(path 199, and row 26, with a size of 7911×8011 pixels) as the training images (but acquired at 408 

different times). In this section, a scene (path 199, row 27) spatially distant to the training images 409 

was used and cropped as Region 5 to examine the proposed solution. The dehaze results of TIIN 410 

and the benchmark methods are presented in Fig. 5. It is clear that AOD-Net fails to remove the 411 

haze fully. Likewise, there is still haze remaining in the RSDehazeNet result. The proposed TIIN 412 

method can produce a dehaze result that is visually clearer and spectrally closer to the reference. 413 

The accuracy indices in Table 3 also suggest that the proposed method is more accurate. The mean 414 

CC and UIQI of TIIN are generally the largest. 415 

 416 
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3.3. Application examples 417 

 418 
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Fig. 6. Classification results based on the different haze removal methods (Region 1: 300×300 pixels, Region 3: 419 

400×400 pixels). 420 

 421 

To further analyze the application capability of the methods, post-processing of the dehaze 422 

results was considered, including normalized difference vegetation index (NDVI) image and 423 

normalized difference water index (NDWI) image. The dehaze results and corresponding 424 

haze-clear images in Regions 1 and 3 were acquired for the experiment. NDVI was applied to 425 

represent vegetation cover from both the original haze-clear image and the dehaze results in 426 

Region 1. Specifically, based on Guo et al. (2020b), the NDVI images were classified with a 427 

threshold of 0.5, such that pixels with NDVI larger than 0.5 were determined as vegetation and 428 

vice versa. The classification results are shown in Fig. 6. The overall accuracy (OA) and Kappa 429 

index were presented in Table 4 for quantitative assessment. It is obvious that the classification 430 

result of the proposed method is closer to with the reference than for AOD-Net and RSDehazeNet. 431 

Since several lakes exist in Region 3, NDWI was utilized to evaluate the spectral preservation 432 

of the methods. Specifically, the NDWI images of different dehaze results were classified, where a 433 

pixel was determined as the water class if its NDWI is larger than 0.1. The classification results are 434 



 

 

24 

shown in Fig. 6. Compared with the reference image, the proposed method can produce the most 435 

similar classification map to the reference. 436 

 437 

3.4. Comparison with model-based methods 438 

 439 

   440 
(a)                                  (b)                                   (c) 441 

   442 
(d)                                 (e)                                    (f) 443 

Fig. 7. Dehaze results of the model-based methods for Region 2 (true-color; Region 2: 500×500 pixels). (a) Hazy 444 

image. (b) Reference. (c) Cho et al. (2018). (d) ACRM. (e) CR-NAPCT. (f) TIIN. 445 

 446 

 447 

Fig. 8. Quantitative assessment of the model-based methods for Region 2. Note that only the RGB bands were 448 

considered as the Cho et al. (2018) method can only deal with these three bands. 449 
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To comprehensively validate the advantage of the proposed solution, model-based methods 450 

including Cho et al. (2018), ACRM (Xu et al., 2014) and CR-NAPCT (Xu et al., 2019) were 451 

employed. Specifically, the simulated haze image in Region 2 was used for validation. It should be 452 

noted that Cho et al ’s method was designed to handle the haze in regular images composed of only 453 

RGB bands. Therefore, the RGB bands of the dehaze results of both ACRM, CR-NAPCT and 454 

TIIN were extracted for visual comparison, as displayed in Fig. 7. Compared with the reference 455 

image in Fig. 7(b), obvious haze remains in the result of Cho et al. (2018). ACRM presents 456 

apparent color distortion. Moreover, slight color distortion exists in CR-NAPCT. On the contrary, 457 

the proposed TIIN solution produces a more accurate result than the Cho et al ’s, ACRM and 458 

CR-NAPCT methods. 459 

Quantitative assessment of the dehaze results for all bands is shown in Fig. 8. Note that only 460 

the RGB bands were considered as the Cho et al. (2018) method can only deal with these three 461 

bands. As shown in Fig. 8, the proposed solution can produce larger CC and UIQI than the Cho et 462 

al ’s, ACRM and CR-NAPCT methods. For example, the UIQIs of the Cho et al. results are much 463 

smaller than ACRM, CR-NAPCT, and TIIN owing to the apparent haze remaining in Fig. 7. 464 

Moreover, the accuracy of CR-NAPCT is also smaller (with mean CC and RMSE of 0.9571 and 465 

0.0457, respectively) than our method (with mean CC and RMSE of 0.9696 and 0.0289, 466 

respectively). 467 

 468 

3.5. Effect of the haze level in hazy images  469 

 470 

To analyze the applicability of the dehaze methods to tackle different haze levels, the weight 471 

coefficient   in Eq. (10) was varied from 0.1 to 1 with an interval of 0.1. As   increases, the haze 472 
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contamination is heavier. The haze-clear images in two regions of Case 1 and the corresponding 473 

temporally neighboring images were collected for experiment. 474 
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Fig. 9. Accuracy of different methods under various weight coefficients indicating different haze levels (larger 476 

weights indicate heavier haze). 477 

 478 

The three learning-based methods (i.e., AOD-Net, RSDehazeNet and TIIN) were implemented 479 

for two regions in Case 1 and the accuracy indices of the results are displayed in Fig. 9. For all 480 

three methods, the accuracies vary apparently under different haze levels. Specifically, the CC and 481 

UIQI of AOD-Net and RSDehazeNet decrease with increasing haze, and the corresponding RMSE 482 

increases noticeably, especially for Region 1. To reduce the influence of the magnitude of 483 

reflectance, the relative RMSE (RRMSE) (Tang et al., 2020) was used. The variation in RRMSE is 484 

aligned with the RMSE. However, the decrease in RRMSE for Region 2 is not obvious. This may 485 

be attributed to the different spatial heterogeneity and haze contamination due to cirrus cloud in the 486 

regions. Furthermore, the proposed TIIN solution can produce more stable results and the 487 

advantage is greater when the haze is heavy. 488 

 489 
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3.6. Effect of the haze level in temporally neighboring images 490 

 491 

In the proposed TIIN method, the spatial distribution prior provided by the temporally 492 

neighboring image plays an important role in haze removal. Generally, the temporally neighboring 493 

images may also be contaminated by haze. Therefore, to examine the robustness and applicability 494 

of the proposed solution, the haze contamination at different levels in the temporally neighboring 495 

images was also considered. Likewise, the haze-clear images and the corresponding temporally 496 

neighboring images of Regions 1 and 2 were assembled for the experiment. The results are shown 497 

in Fig. 10, where the weight coefficient  =0 indicates the haze-clear temporal neighbor. For the 498 

two benchmark methods (i.e., AOD-Net and RSDehazeNet), they do not need the temporal 499 

information. Hence, their accuracies are invariant in relation to the haze level in the temporally 500 

neighboring images, as depicted in Fig. 10. It is seen that the proposed solution can produce larger 501 

CC and UIQI for most haze levels in the temporally neighboring image. The haze in the temporally 502 

neighboring images decreases the accuracy of haze removal because of the decreased amount of 503 

information in the spatial distribution prior. However, TIIN is still applicable to cases where haze 504 

also exists in the temporally neighboring images, but it is more advantageous when the haze is not 505 

heavy. 506 

 507 

3.7. Effect of temporal distance 508 

 509 
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Fig. 10. Accuracy of TIIN under different haze contamination in temporally neighboring images. Note that the 510 

AOD-Net and RSDehazeNet methods do not use any temporal neighbors and, thus, their accuracies are just shown as 511 

dotted line for benchmark. 512 

 513 

 

 
Fig. 11. Accuracy of TIIN under temporally neighboring images with different acquisition times. 514 

 515 

There are usually abundant temporally neighboring images, due to the regular revisit capability 516 

of satellite sensors. However, useful spatial distribution prior may be limited due to land cover 517 

changes caused by a long-time interval. In this section, the influence of temporal distance between 518 

the hazy image and neighboring image was investigated. Specifically, a 300×300 pixels haze-clear 519 

image nearby the images in Case 3 was simulated with haze ( =1). The haze-clear image was 520 
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acquired on July 19, 2013. Another five haze-clear Landsat-8 OLI images, which were used as 521 

temporal neighbors, were acquired on September 5, 2013, March 16, 2014, April 17, 2014, May 19, 522 

2014, and April 20, 2015. The accuracies based on the use of different temporally neighboring 523 

images are shown in Fig. 11. The accuracy of the proposed solution is greater than for AOD-Net 524 

and RSDehazeNet for almost all cases. Moreover, the accuracy of the proposed solution fluctuates 525 

and decreases in general as the time interval increases because of the decreased reliability of the 526 

spatial distribution prior in the temporal neighbors. However, the proposed solution can still 527 

produce more reliable dehaze results than AOD-Net and RSDehazeNet in the cases investigated 528 

here. 529 

 530 

 531 
(a) 532 

 533 
(b) 534 

Fig. 12 Ablation study of temporally neighboring images (Region 1 as an example). (a) Box-plot of different haze 535 

levels. (b) Quantitative assessment for heavy haze ( =1). 536 

 537 

3.8. Ablation study 538 

 539 

3.8.1. Ablation of different blocks in TIIN 540 
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 541 

Table 5. Ablation study for the three blocks (Region 1 as an example; w/o means without) 542 

 CC UIQI RMSE 

TIIN w/o TII 0.7594 0.6538 0.0789 

TIIN w/o MSA 0.7608 0.6470 0.0785 

TIIN w/o GroupConv 0.7806 0.6857 0.0726 

TIIN 0.8857 0.8133 0.0540 

 543 

To validate the effectiveness of the proposed TIIN architecture, several ablation studies were 544 

performed based on the simulated hazy image in Region 1. Specifically, the TII block, MSA block 545 

and group convolution block were considered. The results are displayed in Table 5, where the 546 

greatest accuracy in each case is marked in bold. The results indicate that the TII block, MSA 547 

block, and group convolution block are all effective for haze removal. 548 

 549 

3.8.2. Ablation of temporally neighboring images 550 

 551 

An ablation study of temporally neighboring images was carried out to validate the 552 

practicability of the proposed solution using the simulated hazy image in Region 1. Specifically, 553 

for comparison, a network named TIIN w/o T2, was considered. Its architecture is the same as for 554 

the original TIIN, and the only difference is that the former was trained with an absence of 555 

temporal neighbors. Different haze levels were employed for Region 1. The box-plot of dehazing 556 

accuracy under different haze levels is displayed in Fig. 12(a). The results indicate that the 557 

proposed solution is more stable for different haze levels than TIIN w/o T2. Moreover, 558 

quantitative assessment for the case of heavy haze contamination ( =1) is presented in Fig. 12(b). 559 

It is obvious that the proposed TIIN method outperforms the method without utilizing temporally 560 

neighboring images. 561 

 562 
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3.9. Experiments on real haze images 563 

 564 

Two large regions (Regions 7 and 8) with real haze contamination were applied to evaluate the 565 

applicability of the proposed dehaze method. The dehaze results for the two regions are displayed 566 

in Fig. 13. It can be observed that AOD-Net not only produces results with remaining haze, but 567 

also leads to apparent color distortion. Conversely, both RSDehazeNet and TIIN can alleviate the 568 

haze contamination more satisfactorily. However, focusing on the enlarged sub-regions of the 569 

coastal band, there remains noticeable haze in the RSDehazeNet results. Haze removal for Region 570 

8 is more challenging. This is because this region is dominated by buildings with much more 571 

sophisticated spatial heterogeneity. Despite this, the proposed solution can still produce visually 572 

more pleasant results by taking the temporal information into account to deal with the spatial 573 

heterogeneity. Fig. 14 shows the dehaze results of the RGB bands of Cho et al. (2018), ACRM (Xu 574 

et al., 2014) and CR-NAPCT (Xu et al., 2019). Compared with the three benchmark methods, the 575 

proposed solution can simultaneously preserve the color and remove the hazy more satisfactorily.  576 

To fully evaluate the applicability of the proposed TIIN method on regions spatially far from 577 

the training region, a water region (Region 9) located at Shanghai, China with real haze was 578 

considered. The haze removal results of different methods are shown in Fig. 15. Apparently, the 579 

proposed TIIN method can remove the haze more satisfactorily than the other methods.  580 

 581 

 582 

 583 

 584 

 585 
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Fig. 13. Results of real haze images in Regions 7 (800×800 pixels) and 8 (1000×1000 pixels) (pseudo-color: NIR, red 586 

and green as RGB; Sub-regions 1 and 2 are the yellow and blue rectangle regions in the coastal band). 587 

 588 

          589 
(a1)            (b1)            (c1)            (d1)           (e1)            (f1)            (g1)           (h1)            (i1)            (j1) 590 

          591 
(a2)            (b2)             (c2)            (d2)           (e2)            (f2)            (g2)           (h2)            (i2)            (j2) 592 

Fig. 14. Results of the model-based methods for the real haze images in Regions 7 (800×800 pixels; line 1) and 8 593 

(1000×1000 pixels; line 2) (true-color). (a) Real haze image. (b) Cho et al. (2018). (c) ACRM. (d) CR-NAPCT. (e) 594 

TIIN. (f)-(j) are the corresponding zoom regions of the red box marked in (a). 595 

 596 
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Fig. 15. Results of the real haze image covering a water region in Region 9 (900×900 pixels) (pseudo-color: NIR, red 597 

and green as RGB). 598 

 599 
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Two larger regions (i.e., Regions 10 and 11) with a spatial size of 2000×2000 Landsat-8 OLI 600 

pixels were also used to examine the proposed solution. The results for the entire area are 601 

displayed in Fig. 16. It is seen clearly that the proposed TIIN can remove the haze satisfactorily for 602 

the two larger regions. 603 

 604 

  605 
(a)                                                                (b) 606 

  607 
(c)                                                                 (d) 608 

Fig. 16. Haze removal results for two larger regions (2000×2000 pixels). (a) Hazy image of Region 10. (b) TIIN 609 

prediction of Region 10. (c) Hazy image of Region 11. (d) TIIN prediction of Region 11. 610 

 611 

4. Discussion 612 

 613 

4.1. Rationale for utilizing temporal neighbors 614 
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 615 

Temporally neighboring images provided by the regular revisit of satellite sensors contain 616 

sufficient useful information, which can provide a spatial distribution prior to guide haze removal. 617 

It is noticed that the spatial distribution prior in the temporal neighbors is usually not the same as 618 

for the target hazy images due to land cover changes. However, the proportion of land cover 619 

changes is generally small, as most changes (e.g., in terms of hue of images) are driven by 620 

vegetation phenology and the condition of data acquisition. Thus, the spatial distribution in the 621 

temporal neighbors is undoubtedly a useful to guide for the haze removal process, reducing the 622 

uncertainty in this ill-posed problem. 623 

In this research, we developed a TIIN architecture to incorporate temporal information for 624 

haze removal. In previous deep learning-based dehazing methods, the networks are trained to learn 625 

the relationship between the hazy images and haze-clear images directly. This would burden the 626 

training process since haze removal is an ill-posed issue. By incorporating temporally neighboring 627 

images, this burden can be alleviated in our method, as the temporal neighbors can provide 628 

auxiliary features for the input of the network. That is, the network is trained to learn the 629 

relationship between both hazy images and temporal neighbors with the prior. The use of the 630 

auxiliary variable (temporal neighbors) can, thus, reduce the uncertainty in the fitting process. 631 

 632 

4.2. Applicability of the proposed TIIN method 633 

 634 

In this research, for validation of the generalization ability of the proposed TIIN solution, 635 

several Landsat-8 OLI images with different land cover types or haze conditions were acquired in 636 

the experiments. It should be noted, however, that haze contamination exists widely in remote 637 

sensing images acquired by different optical sensors (such as MODIS, Sentinel-3 and -2 (Wang 638 
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and Atkinson, 2018), Geofen series, etc.), and even in aerial images. For traditional haze removal 639 

methods, specific assumptions are made and parameters need to be determined manually for 640 

images acquired by different sensors, which is laborious and difficult to be generalized in various 641 

applications. This is not the case for TIIN, as the end-to-end learning strategy bypasses the 642 

complicated physical model of haze contamination, and can remove haze directly through 643 

parameter fitting in the network. As a result, TIIN is theoretically applicable for haze removal of 644 

images from different sensors, where the process is similar to that for the Landsat images 645 

investigated in this paper. The key requirement for TIIN is the need for temporally neighboring 646 

images, which may not be as straightforward to produce for aerial images. 647 

 648 

4.3. Uncertainty in training data 649 

 650 

The quality of training data is crucial to the reliability of neural network. In reality, however, it 651 

is impractical to collect hazy and haze-clear image pairs acquired at the same time for training. A 652 

practical strategy is to simulate haze contamination to create training data, as in this paper. 653 

However, the simulated haze is similar to but not equivalent to real haze. That is, real haze cannot 654 

be perfectly characterized by a simple mathematical model in most cases. In future research, it is 655 

necessary to develop a more comprehensive haze contamination strategy for greater 656 

approximation of real haze and, furthermore, to reduce the uncertainty introduced by training data. 657 

With respect to the spatial content in the training data, it is critical to use images with an 658 

appropriate land cover distribution for training. That is, the spatial texture in the training images 659 

should be comprehensive to cover sufficient cases to deal with the haze images in the prediction 660 

stage of the network. The more representative the training images, the more generalized will be the 661 
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network. It would be interesting to develop effective metrics (e.g., the similarity in semivariogram 662 

of longer wavelength bands between hazy images and training images) to identify useful training 663 

data from time-series data at the global scale. 664 

 665 

4.4. Other choices of temporally neighboring images 666 

 667 

In this research, temporally neighboring Landsat-8 OLI images were used, as the hazy images 668 

were also acquired by the same OLI sensor. It would be interesting to examine whether other 669 

choices of temporally neighboring images (e.g., images acquired by sensors that are different from 670 

those of the hazy images) are suitable for TIIN. This can be an important consideration when there 671 

are no effective temporal neighbors of the same sensors, due to cloud contamination in them. That 672 

is, the effective images of the same sensor may be temporally very far from the haze image and 673 

large land cover changes exist. On the other hand, many current satellite sensors provide 674 

temporally dense data including multispectral images (Gaofen series, Sentinel-2, etc.) and 675 

hyperspectral images (Gaofen-5, Zhuhai-1, etc.). These multi-source data can be temporally much 676 

closer to the haze image, even if they are acquired by different sensors. It is worthwhile to develop 677 

solutions to fill the gaps introduced by different platforms, and to take full advantage of these data 678 

and distill useful temporal information for TIIN. 679 

 680 

4.5. Potential general solution for using temporal information in haze removal  681 

 682 

Temporal neighbors can assist the proposed TIIN solution to produce much more reliable 683 

dehaze results than the four benchmark methods in the experiments. This demonstrated that the 684 
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spatial distribution prior in temporally neighboring images is beneficial for the ill-posed problem 685 

of haze removal. In this research, a TII model was designed to extract this prior. It should be 686 

stressed, however, that the solution to incorporate temporal information is not limited to the 687 

specific CNN model proposed in this paper, but many other models might be potentially developed 688 

to enhance haze removal, such as, traditional physical models (atmospheric scattering model, etc.), 689 

and probabilistic models (maximum a posteriori probability, etc.). Thus, this paper provides an 690 

important guidance for considering temporal information in haze removal. In future research, it 691 

would be of great interest to develop the corresponding extended models and, furthermore, 692 

conduct a systematic comparison between them and identify the most advantageous type of 693 

methods for haze removal. 694 

 695 

 696 

5. Conclusion 697 

 698 

Haze contamination exists ubiquitously in remote sensing images. To remove the haze, we 699 

proposed to incorporate temporal information in this study. Following this general idea, the TIIN 700 

method was developed with parallel stacking layers and different attention modules to take full 701 

advantage of temporally neighboring images. As a result, the TIIN method can remove haze when 702 

the temporal neighbors contain inherent haze or land cover changes due to a long-time interval. To 703 

validate the proposed method, experiments on several groups of Landsat-8 OLI haze images were 704 

performed. The core conclusions are as follows. 705 

1) Experiments on both simulated and real hazy images with various land cover types 706 

indicated that temporal information is beneficial to handle the ill-posed issue of haze 707 



 

 

39 

removal. The proposed TIIN method was found to be more accurate than two 708 

learning-based methods (i.e., AOD-Net and RSDehazeNet) and three model-based methods 709 

(i.e., the method in Cho et al. (2018), ACRM and CR-NAPCT). 710 

2) TIIN was consistently more accurate than the benchmark methods under various haze 711 

levels, and the advantage was more obvious for heavy haze. Moreover, the TIIN-based 712 

dehaze results were also advantageous for further applications such as feature extraction. 713 

3) The temporally neighboring images were still useful when they were also contaminated by 714 

haze. However, the haze in the temporal neighbors cannot be too heavy. 715 

4) TIIN was still advantageous even when land cover changes exist between the hazy image 716 

and the temporal neighbor due to a long-time interval. 717 

The code of the proposed TIIN method will be publicly available at 718 

https://qunmingwang.github.io. 719 
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