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Abstract

Consider a two-person zero-sum search game between a hider and a searcher. The hider hides

among n discrete locations, and the searcher successively visits individual locations until finding

the hider. Known to both players, a search at location i takes ti time units and detects the

hider—if hidden there—independently with probability αi, for i = 1, . . . , n. The hider aims to

maximize the expected time until detection, while the searcher aims to minimize it. We prove

the existence of an optimal strategy for each player. In particular, any optimal mixed hiding

strategy hides in each location with a nonzero probability, and there exists an optimal mixed

search strategy which can be constructed with up to n simple search sequences.

Keywords: Search games, Gittins index, semi-finite games, search and surveillance.

1 Introduction

Consider the following two-person zero-sum game. A hider chooses one of n locations (henceforth

boxes for conciseness) to hide in, and a searcher searches these boxes one at a time in order to

find the hider. A search in box i takes ti > 0 time units and will find the hider with probability

αi ∈ (0, 1) if the hider is there, for i = 1, . . . , n. Due to the possibility of overlook, the searcher

may need to visit a box many times to find the hider, and the total time until detection can be

arbitrarily long. The searcher wants to minimize the expected total time until the hider is found,

while the hider wants to maximize it.
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If the hider announces to the searcher the probability with which they will hide in each box

at the beginning of the search, then the resulting search model is one that is well studied in the

literature. An optimal search strategy, first discovered by Blackwell (reported in Matula (1964)), is

to always next search a box with a maximal probability of detection per unit time at that moment.

In other words, if presently the hider is believed to be in box i with probability p′i, i = 1, . . . , n—a

value updated throughout the search using Bayes’ theorem—then it is optimal to next search box

i with a maximal p′iαi/ti. A comment by Kelly in Gittins (1979) notes that Blackwell’s solution is

equivalent to a Gittins index policy obtained by modeling the search as a tractable version of the

multi-armed bandit problem (Gittins et al., 2011). Other variations of this search model have been

studied in Ross (1969); Kadane (1971); Chew (1973); Wegener (1980); Kress et al. (2008); Clarkson

et al. (2020).

The search problem becomes a substantially more complicated search game if the searcher does

not know the hiding strategy. Whilst the hider has n pure strategies to choose from—each corre-

sponding to hiding in a box—a pure search strategy must specify an indefinite, ordered sequence

of boxes for the searcher to search, because the search can take arbitrarily long.

The special case of our search game with ti = 1 for i = 1, . . . , n—the case of unit search time—

has been studied in the literature with limited results. Bram (1963) proves an optimal search

strategy exists, and Ruckle (1991) solves a few special cases and finds the best pure search strategy.

Roberts and Gittins (1978) and Gittins (1989) further specialize to n = 2 boxes; the former finds an

optimal hiding strategy under certain conditions, while the latter shows the existence of an optimal

search strategy that randomly chooses between just two simple search sequences. Gittins and

Roberts (1979) develops an algorithm to estimate an optimal hiding strategy for n ≥ 3 boxes. The

technical report Lin and Singham (2015) presents an algorithm to estimate each player’s optimal

strategy by successively bounding the value of the game. However, as discussed in Hellerstein et al.

(2019), an algorithm that guarantees convergence in polynomial time remains a challenge, mainly

because the searcher’s pure strategy set is infinite.

In another special case with αi = 1 for i = 1, . . . , n—the case of perfect detection—each box

needs to be searched at most once. The strategy space of the searcher is thus the set of all n!

permutations of the n boxes. Lidbetter (2013) derives an analytic solution to the game, and

Lidbetter and Lin (2019) further extends the results to the case with two or more hiders.
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Subelman (1981) studies a different objective function in which the searcher wants to maximize

the probability of finding the hider by an announced deadline, while the hider wants to minimize

it. Lin and Singham (2016) extends the results in Subelman (1981) to show that the searcher has a

uniformly optimal strategy that maximizes the probability of finding the hider simultaneously for

all deadlines.

The main contribution of this paper is to develop a rigorous mathematical framework to extend

earlier results to the search game in its full generality. In particular, we allow for an arbitrary

number of boxes n, each having its own search time ti > 0, i = 1, . . . , n. We first prove that

the value of the game and an optimal hiding strategy both exist by a simple appeal to general

game theory. On the other hand, our next proof that an optimal search strategy exists requires

considerable technical innovation. We finally develop properties of the searcher’s optimal strategies,

and show that the searcher can construct an optimal strategy by a careful randomization among

n simple search sequences. Based on these properties, we present a practical procedure to test the

optimality of a hiding strategy. If the test is positive, it also yields an optimal search strategy. The

findings in this paper both strengthen our understanding of the search game of interest and provide

insight into effective practice in real-world search for an intruder.

Our work falls in the general area of search theory, where a searcher seeks a hidden target.

Besides the aforementioned papers closely related to our work, search theory has a rich literature

with a variety of search models. Common choices of search spaces include the real line, a two-

dimensional area, or a network of nodes connected by edges. The target may be stationary, or

move around the search space via either a known or random path. Some works assume that the

searcher detects the target when their paths cross, and some others consider the possibility of

overlook. The searcher may aim to find the target as soon as possible, or maximize the probability

of detection before a deadline. For a general review of search theory, see Washburn (2002), Stone

(2004) and Stone et al. (2016). For a summary of search games in which the target is a hider

actively trying to avoid detection in a time-stationary search space, see Book 1 of Alpern and Gal

(2003) and Part I of Alpern et al. (2013). See Garrec and Scarsini (2020) for a novel stochastic

search game where the search space, a network, changes randomly over time. If the hider is, for

example, a survivor of a disaster, then the hider and the searcher both want to meet up, so the

rendezvous search in Book 2 of Alpern and Gal (2003) applies.
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The rest of the paper proceeds as follows. Section 2 formulates our search game as a semi-finite

two-person zero-sum game and establishes some preliminary results, including the existence of both

the value of the game and an optimal strategy for the hider. Section 3 proves the existence of an

optimal strategy for the searcher. Section 4 discusses several properties of the optimal strategies

and shows that there exists an optimal search strategy which involves a careful randomization

among n simple search sequences. Section 5 concludes and offers some future research directions.

2 Model and Preliminaries

Consider a two-person zero-sum search game G as follows. A hider decides where to hide among n

boxes labeled 1, . . . , n, and a searcher decides an ordered sequence of boxes to search. A search in

box i takes time ti and will find the hider with detection probability αi, i = 1, . . . , n, if the hider is

indeed hidden there. These quantities are common knowledge to both players. The game proceeds

until the searcher finds the hider, with the total time to detection being the payoff of the game. The

searcher wishes to minimize the expected payoff—namely the expected time to detection—while

the hider wishes to maximize it.

The hider’s pure strategy space is {1, . . . , n}, where each pure strategy corresponds to a box in

which to hide. A mixed hiding strategy is a probability vector p ≡ (p1, . . . , pn) ∈ ∆n, where pi is

the probability that the hider hides in box i and

∆n ≡

{
(p1, . . . , pn) : pi ∈ [0, 1] for i = 1, . . . , n and

n∑
i=1

pi = 1

}
.

The searcher’s pure strategy space is the infinite Cartesian product C ≡ {1, 2, . . . , n}∞. Each pure

strategy is a search sequence—an infinite, ordered list of boxes to search until the hider is found. A

natural way to define a mixed search strategy is by a probability measure over the uncountable set

C of pure search strategies. In this paper, however, we will restrict the searcher to mixed strategies

over countable subsets of C. In other words, we define a mixed search strategy as a non-negative

function θ with domain C such that the set {ξ ∈ C : θ(ξ) > 0} is countable, and
∑

ξ∈C θ(ξ) = 1.

Under strategy θ, the searcher plays search sequence ξ ∈ C with probability θ(ξ), and we say θ is

a mixture of those ξ with θ(ξ) > 0. As we shall show in the paper, there exists an optimal mixed

strategy for the searcher that mixes no more than n search sequences, so this restriction does not

hinder the searcher’s ability to find an optimal mixed strategy.
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For a search sequence ξ ∈ C, write u(i, ξ) for the expected time to detection if the hider hides in

box i, for i = 1, . . . , n. In other words, u(i, ξ) is the expected payoff for the hider-searcher strategy

pair (i, ξ). While the hider’s pure strategy space is of size n, the searcher’s pure strategy space C

is uncountable; therefore, G is a two-person zero-sum semi-finite game.

The hider seeks a mixed strategy to guarantee the highest possible expected time to detection

regardless of what the searcher does, so the hider seeks to determine

(Hider) v1 ≡ max
p

inf
ξ∈C

n∑
i=1

piu(i, ξ). (1)

Likewise, the searcher seeks to determine

(Searcher) v2 ≡ inf
θ

max
i∈{1,...,n}

∑
ξ∈C

u(i, ξ)θ(ξ).

By definition, it is clear that v1 ≤ v2. Using the standard results for semi-finite games (see,

for example, Chapter 13 in Ferguson (2020)), we can establish the following. Because the payoff

function—namely the time to detection—is bounded below by 0, it follows that v1 = v2, which is

the value of G, written by v∗. In addition, the hider has an optimal strategy that guarantees an

expected time to detection of at least v∗, and the searcher has an ε-optimal strategy; that is, for an

arbitrarily small ε > 0, the searcher can find a strategy to guarantee an expected time to detection

of at most v∗ + ε.

2.1 A Gittins Search Sequence

Recall that a pure search strategy is a search sequence—an infinite, ordered list of boxes. In this

section, we define a particular type of search sequence.

Definition 1 A Gittins search sequence against a mixed hiding strategy p ≡ (p1, . . . , pn) is an

infinite, ordered list of boxes that meets the following rule. If mi ∈ N0 ≡ {0, 1, 2, . . .} searches have

already been made of box i during the search process, for i = 1, . . . , n, then the next search is some

box j satisfying

j = arg max
i∈{1,...,n}

pi(1− αi)miαi
ti

. (2)

The terms in (2) are known as Gittins indices, and a Gittins search sequence always next searches

a box with a maximal Gittins index. Note that there may be multiple Gittins search sequences

against the same hiding strategy p due to ties for the maximum in (2).
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If the searcher knows that the hider will choose mixed strategy p, several authors (Norris (1962),

Bram (1963), Blackwell (reported in Matula (1964)), Black (1965), Ross (1983)) have proved that

any Gittins search sequence against p is the searcher’s best response. This result is also recognized

by a comment by Kelly on Gittins (1979), which formulates the search game with known p as a

multi-armed bandit problem optimally solved by Gittins indices. Further, the proof of Ross (1983)

shows the reverse is also true; in other words, any pure strategy that is a best response to the

hiding strategy p must be a Gittins search sequence against p. Therefore, we write CB
p ⊂ C for the

set of Gittins search sequences against hiding strategy p.

2.2 Preliminary Properties of Optimal Strategies

This section presents a few preliminary results regarding an optimal hiding strategy and, if one

exists, an optimal search strategy.

For any ξ ∈ C, as a function of p, the expected payoff
∑n

i=1 piu(i, ξ) is a hyperplane in Rn+1.

Combined with (1), it follows that v∗ is the maximum of the lower envelope of an uncountable set of

hyperplanes, which is a concave function of p. Let ∆n
opt be the set of p attaining this maximum, so

∆n
opt is the set of optimal hiding strategies. Since ∆n

opt is the set of maxima of a concave function,

it is a convex set. If |∆n
opt| = 1, then the optimal hiding strategy is unique; an example with

|∆n
opt| > 1 can be found in Example 13 in Section 4.

For any finite two-person zero-sum game, every pure strategy in the support of an optimal

mixed strategy of one player must be a best response to every optimal strategy of the other player

(see Theorem 9.1 of Ferguson (2020)). This result can be extended to any semi-finite two-person

zero-sum game with a value, as seen in the following proposition in the context of our search game

G.

Proposition 2 Any optimal search strategy θ∗—if one exists—is a mixture of sequences contained

in ∩p∈∆n
opt
CB

p .

Proof. Since the search game G has a value v∗, if the searcher chooses θ∗ and the hider any

p∗ ≡ (p∗1, . . . , p
∗
n) ∈ ∆n

opt, the expected time until detection is v∗; in other words, we have

v∗ =
∑
ξ∈C

θ∗(ξ)

(
n∑
i=1

p∗iu(i, ξ)

)
. (3)
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Suppose the statement of the proposition is false, so there exist p̄ ≡ (p̄1, . . . , p̄n) ∈ ∆n
opt and ξ̄ /∈ CB

p̄

such that θ∗(ξ̄) > 0. Since p̄ is optimal for the hider,
∑n

i=1 p̄iu(i, ξ) ≥ v∗ for all ξ ∈ C. Because

ξ̄ /∈ CB
p̄ , however,

∑n
i=1 p̄iu(i, ξ̄) > v∗. Consequently, the right-hand side of (3) must be strictly

greater than v∗ when p∗ = p̄, leading to a contradiction.

It is intuitive that adding a new box will increase the value of the game, because the hider has

one more place to hide, so the searcher needs to cover more ground, as seen in the next proposition.

Proposition 3 Write u(i, θ) for the expected time to detection if the hider hides in box i and the

searcher uses mixed strategy θ. The following statements are true.

(i) If p∗ ≡ (p∗1, . . . , p
∗
n) is optimal for the hider, then p∗i > 0 for i = 1, . . . , n.

(ii) If θ∗ is optimal for the searcher, then u(i, θ∗) = v∗ for i = 1, . . . , n.

(iii) Adding a new box increases the value of the game.

Proof. We begin by proving (i), which concerns the hider. Write u(p) for the expected time to

detection when the hider chooses p and the searcher chooses any search sequence in CB
p ; therefore,

any optimal hiding strategy maximizes u(p). Let ξp be the element of CB
p which, when multiple

boxes satisfy (2), searches the box with the smallest label.

To prove the statement by contradiction, suppose that we have p∗ ≡ (p∗1, . . . , p
∗
n) ∈ ∆n

opt with

p∗k = 0 for some k ∈ {1, . . . , n}. Without loss of generality, relabel the boxes such that we have

p∗n = 0, so

u(p∗) =

n−1∑
i=1

p∗iu(i, ξp∗). (4)

Take any ε ∈ (0, 1) and consider p̄ ≡ (p̄1, . . . , p̄n), where

p̄i = p∗i (1− ε), i = 1, . . . , n− 1;

p̄n = ε.

Compare ξp̄ ∈ CB
p̄ and ξp∗ ∈ CB

p∗ . Both apply the same rule when multiple boxes satisfy (2),

and for any i, j ∈ {1, . . . , n− 1}, we have

p̄i
p̄j

=
p∗i (1− ε)
p∗j (1− ε)

=
p∗i
p∗j
.
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Therefore, the subsequence of ξp̄ consisting of searches of boxes 1, 2, . . . , n−1 is identical to ξp∗ . In

other words, ξp̄ is just ξp∗ with searches of box n inserted between some searches of the first n− 1

boxes. Hence, we must have u(i, ξp̄) > u(i, ξp∗) for any i ∈ {1, . . . , n− 1} with p∗i > 0. Further, we

may choose ε small enough so that ξp̄ does not search box n until at least u(p∗) time units have

passed, ensuring u(n, ξp̄) > u(p∗). From these observations and (4), it follows that

u(p̄) = εu(n, ξp̄) +
n−1∑
i=1

p∗i (1− ε)u(i, ξp̄)

> εu(p∗) + (1− ε)
n−1∑
i=1

p∗iu(i, ξp∗) = u(p∗),

contradicting the optimality of p∗, and therefore proving (i).

Next, we prove (ii), concerning the searcher. Suppose θ∗ is optimal for the searcher and p∗ is

optimal for the hider. The expected time to detection under the strategy pair (p∗, θ∗) is

v∗ =
n∑
i=1

p∗iu(i, θ∗). (5)

To prove by contradiction, suppose that u(j, θ∗) < v∗ for some j ∈ {1, . . . , n}. By (5), there must

either exist k ∈ {1, . . . , n} such that u(k, θ∗) > v∗, or we must have p∗j = 0. The former cannot

happen as θ∗ guarantees the searcher an expected time to detection of at most v∗. The latter

cannot happen by (i), which leads to a contradiction proving (ii).

Finally, we prove (iii) by showing that v∗n+1 > v∗n, where v∗n is the value of an n-box game, and

v∗n+1 is the value if a new box is added to the n-box game. In the game with n + 1 boxes, the

hider can guarantee an expected payoff of at least v∗n by not hiding in the new box, so v∗n+1 ≥ v∗n.

However, any such strategy has pn+1 = 0 so it is not optimal by (i). Therefore, v∗n is not the value

of the (n+ 1)-box game, so v∗n+1 > v∗n, proving (iii).

Note that (i) in Proposition 3 is also proved by Bram (1963) for unit-search-time G via a

different method to the proof above.

3 Existence of Optimal Search Strategies

The aim of this section is to prove that the searcher has an optimal strategy that guarantees an

expected time to detection of at most v∗ in the search game G. By using an S-game formulation,
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we first show that the searcher has an optimal mixed strategy in a modified search game. The

results of Section 2.2 then enable us to draw the same conclusion for the search game G.

3.1 S-Game Formulation for Search Game G

We begin by reformulating G as an S-game of Blackwell and Girshick (1954), in which, instead of

choosing a pure strategy in C, the searcher chooses a vector in the set

S ≡ {(u(1, ξ), . . . , u(n, ξ)) : ξ ∈ C} ⊂ Rn.

If the hider hides in box i ∈ {1, . . . , n} and the searcher selects (u(1, ξ), . . . , u(n, ξ)) ∈ S, then the

payoff is u(i, ξ).

By Theorem 2.4.1 of Blackwell and Girshick (1954), the searcher selecting a mixed strategy is

equivalent to choosing a point in Conv(S), the convex hull of S. By Theorem 2.4.2 of Blackwell

and Girshick (1954), if S, or equivalently Conv(S), is closed, then there exists an optimal search

strategy which is a mixture of at most n search sequences.

The intuition behind this result is the following, adapted from Section 13.1 of Ferguson (2020).

If s ≡ (s1, . . . , sn) ∈ Conv(S), then there exists a mixed search strategy which, if the hider hides in

box i, achieves an expected payoff si, i = 1, . . . , n. It follows that the value of the game v∗ satisfies

v∗ = inf
s∈Conv(S)

{
max

i∈{1,...,n}
si

}
. (6)

If Conv(S) is closed, then the infimum in (6) is attained, since the payoff function u is bounded

below by 0. Consequently, there exists s∗ ≡ (s∗1, . . . , s
∗
n) ∈ Conv(S) with maxi∈{1,...,n} s

∗
i = v∗,

so s∗ is an optimal search strategy. See Ruckle (1991) for more on the geometrical interpretation

of optimal strategies in the search game, particularly for n = 2. The reason why there exists

an optimal search strategy that is a mixture of at most n search sequences follows from the fact

that the hider has n pure strategies, so Conv(S) sits in an n-dimensional space. See the proof of

Theorem 15 for a full argument.

Bram (1963) concludes that an optimal search strategy exists for the search game with ti = 1

for i = 1, . . . , n by showing that Conv(S) is closed. In this paper, we take a different approach,

using the modified search game below, to extend the result to arbitrary ti > 0, i = 1, . . . , n.
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3.2 A Modified Search Game G(ε)

In this section, we introduce a modified search game and use its S-game formulation to show that

an optimal search strategy exists in this modified game.

Consider a search game G(ε), parametrized by ε ∈ (0, 1/n), identical to G in all aspects apart

from its set of pure search strategies, which are constructed by the following. For i = 1, . . . , n,

write

Mi(ε) ≡ inf{u(i, ξ) : ξ ∈ CB
p with pi < ε}. (7)

In words, among all Gittins search sequences against hiding strategies with pi < ε, Mi(ε) is the

smallest expected time to detection in G if the hider is in box i. Unlike G, in G(ε), a pure strategy

ζi(ε) is available to the searcher for i = 1, . . . , n. When selected in G(ε), for i = 1, . . . , n, ζi(ε)

results in payoff Mi(ε) if the hider is in box i or payoff 0 otherwise. In addition, available to the

searcher in G(ε) are Gittins search sequences against hiding strategies in ∆n(ε), where

∆n(ε) ≡ {p ∈ ∆n : pi ≥ ε, i = 1, . . . , n}.

To summarize, in G(ε), the searcher has the following pure strategy set:

C(ε) ≡ {ξ ∈ CB
p : p ∈ ∆n(ε)} ∪ {ζi(ε) : i = 1, . . . , n}. (8)

For any ε ∈ (0, 1/n), since the payoff in G(ε) is bounded below by 0, by the standard results

for semi-finite games (see, for example, Section 13 in Ferguson (2020)), we can conclude that G(ε)

has a value and optimal hiding strategy. To prove that G(ε) has an optimal search strategy, we

consider its S-game formulation, in which the searcher chooses a vector in

S(ε) ≡ {(u(1, ξ), . . . , u(n, ξ)) : ξ ∈ C(ε)} ⊂ Rn.

By Theorem 2.4.2 of Blackwell and Girshick (1954), if S(ε) is closed, then there exists an optimal

search strategy for the game G(ε). Write

S̄(ε) ≡ S(ε) \ {(u(1, ζi(ε)), . . . , u(n, ζi(ε))), i = 1, . . . , n}.

Since S(ε) adds only a finite subset of Rn to S̄(ε), if S̄(ε) is closed, then S(ε) is closed. The majority

of this section is devoted to showing that S̄(ε) is closed.
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Write U(ξ) ≡ (u(1, ξ), . . . , u(n, ξ)); therefore, any element of S̄(ε) takes the form U(ξ) where ξ

is a Gittins search sequence against some p ∈ ∆n(ε).

By Definition 1, the next box searched by any Gittins search sequence against a hiding strategy

p must satisfy (2). If, at some point whilst following a Gittins search sequence against p, multiple

boxes satisfy (2), we say the searcher has encountered a tie and p is a tie point. When encountering

a tie, any Gittins search sequence must immediately search each of the tied boxes once in some

arbitrary order. Thereafter, any two Gittins search sequences will be identical until another tie is

encountered.

Note that an equivalent definition of a tie point p is |CB
p | > 1. If |CB

p | = 1, we say p is a non-tie

point. If p is a non-tie point, then there is a unique Gittins search sequence against p, whereas, for

a tie point p, a specific Gittins search sequence against p is entirely determined by how we break

ties between boxes.

How the searcher chooses to break ties is important, since knowledge of the searcher’s tie-

breaking preferences could be used by the hider to their advantage. Write Sn for the set of permu-

tations of {1, . . . , n}; a permutation σ ∈ Sn serves as a preference ordering to choose which box to

search next if a tie is encountered. For example, a tie between boxes 1, 2 and 4 is broken in the

order 2, 1, 4 by the permutation (2, 3, 1, 4) ∈ S4.

There are a variety of rules for breaking ties. For example, the searcher could roll an n!-sided

die every time a tie is encountered to determine a preference ordering. For another example, the

searcher could use permutation (1, 2, . . . , n) if the tie involves box 1, and (n, . . . , 2, 1) otherwise.

Still another example, the searcher could use a predetermined sequence of tie-breaking permuta-

tions to break ties; in other words, before starting the search, write down an infinite sequence of

permutations of {1, 2, . . . , n}, and use the jth element of the sequence to break the jth tie en-

countered. Since any Gittins search sequence can be attained by such a predetermined sequence

of permutations, we shall write R ≡ (Sn)∞, the set of all infinite sequences of elements of Sn, and

restrict our attention to tie-breaking rules using a predetermined sequence of permutations.

For example, suppose n = 5, and the jth tie encountered following a Gittins search sequence

against p involves boxes 2, 3 and 5. Consider a tie-breaking rule r ∈ R and suppose its jth

element is (5, 4, 2, 3, 1). Then, under rule r, tie j is split by searching boxes 5, 2 and 3 in that

order. Note that changing the jth element of r to (4, 5, 1, 2, 3) does not affect the Gittins search
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sequence generated, demonstrating that multiple rules in R can generate the same Gittins search

sequence. For convenience, we write r ≡ r1, r2, . . . such that rj ∈ Sn is the jth element in r, for

j ∈ N ≡ {1, 2, . . .}.

For any r, r̃ ∈ R, define their distance by

d(r, r̃) ≡ sup
j∈N

D(rj , r̃j)

j
, (9)

where

D(x, y) =


1, if x 6= y,

0, if x = y.

In other words, for any k ∈ N, we have d(r, r̃) = 1/k if and only if the first k− 1 elements of r and

r̃ are identical and the kth differs. In addition, d(r, r̃) = 0 if and only if r = r̃. It is straightforward

to verify that the distance function in (9) satisfies the three conditions of positivity, symmetry, and

the triangle inequality. Hence, R with the distance function in (9) forms a metric space. Further,

because the metric space R ≡ (Sn)∞ is a product of compact spaces, by the countable version of

Tychonoff’s theorem, R is compact (see, for example, Theorem 7.4.2. in Wilansky (2008)).

Recall that we write

∆n ≡

{
(p1, . . . , pn) : pi ≥ 0,

n∑
i=1

pi = 1

}
for the space of mixed hiding strategies. Write f for the function from R×∆n → S̄(ε) satisfying

f(r,p) = U(ξ(r,p)), where ξ(r,p) is the Gittins search sequence against p that breaks ties using

rule r. In other words, f maps a tie-breaking rule r and a hiding strategy p to the vector of

expected times to detection (across all boxes) of the corresponding Gittins search sequence.

The continuity of f in both of its arguments will be fundamental to achieving our aim of showing

that S̄(ε) is closed. We prove this continuity by a series of lemmas whose proofs are deferred to

Appendix A. First, we establish continuity in the first argument of f in the following lemma with

proof in Appendix A.1.

Lemma 4 For any p ∈ ∆n with pi > 0 for i = 1, . . . , n, the function f(r,p) is continuous in r.

Before moving on to continuity in the second argument of f , we first use Lemma 4 to prove

the compactness of a subset of S̄(ε) concerning only Gittins search sequences against a fixed hiding

strategy with pi > 0 for i = 1, . . . , n.
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Lemma 5 For any p ∈ ∆n with pi > 0 for i = 1, . . . , n, the set

Sp ≡ {U(ξ) : ξ ∈ CB
p } (10)

is compact.

Proof. To prove this result, we will use the theorem that the image of a compact set under a

continuous function is compact (see, for example, Theorem 9.3.4 in Strichartz (1995)).

Recall from its definition that f(r,p) = U(ξ(r,p)), where ξ(r,p) is the Gittins search sequence

against p that breaks ties using rule r. Therefore, for any fixed p ∈ ∆n, Sp is the image of R

under f with respect to its first argument. Because R is compact, and for p ∈ ∆n with pi > 0 for

i = 1, . . . , n the function f(r,p) is continuous in r (Lemma 4), it follows that Sp is compact.

Next, via two lemmas, we investigate the continuity of the function f(r,p) in its second argu-

ment at different p for any fixed r ∈ R. The first lemma, whose proof is deferred to Appendix A.2,

deals with the simpler case of continuity at non-tie points in ∆n(ε).

Lemma 6 If p ∈ ∆n(ε) is a non-tie point, then, for any fixed first argument r ∈ R, f is continuous

in its second argument at p.

Now we consider the continuity of f in its second argument at tie points in ∆n(ε), the more

challenging case. Informally, if p ∈ ∆n(ε) is a tie point, then f is only continuous in its second

argument at p for certain fixed first arguments r ∈ R, and only approaching p via certain paths in

∆n.

To state the continuity conditions precisely, we first need a few definitions. Let p ≡ (p1, . . . , pn)

be a tie point in ∆n(ε). Recall Sn as the set of permutations of {1, . . . , n}, and let Σ ⊆ Sn. For

σ ∈ Sn, write σ(i) for the number in the ith position of σ and write

∆n(p,Σ) ≡
{
x ≡ (x1, . . . , xn) ∈ ∆n : xσ(i)/pσ(i) ≥ xσ(i+1)/pσ(i+1), i = 1, . . . , n− 1, σ ∈ Σ

}
. (11)

For x ∈ ∆n(p,Σ), if there is a tie among Gittins indices calculated using p and σ ∈ Σ is used

to break the tie, then replacing p with x in the Gittins index calculation—and then applying σ if

needed—would produce the same search order for the tied boxes. Clearly p ∈ ∆n(p,Σ) for any

subset Σ of Sn. Further, for each σ ∈ Σ, the x in (11) is defined by n−1 inequalities, each of which

induces a half-space including p. Therefore, ∆n(p,Σ) is the intersection of ∆n and a finite number

of half-spaces, so it is a convex set.
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Informally, the following lemma says that, if its first argument is fixed to be some r ∈ R

containing only elements of Σ ⊂ Sn, then f is continuous in its second argument at p approaching

from any path in ∆n(p,Σ).

Lemma 7 Suppose p ∈ ∆n(ε) is a tie point and Σ ⊂ Sn. Let {xa : a ∈ N} be a sequence in

∆n(p,Σ) with lima→∞ xa = p. Then, for any r ∈ R whose elements all belong to Σ, we have

lima→∞ f(r,xa) = f(r,p).

The proof of Lemma 7 is deferred to Appendix A.3. We are now ready to show that S̄(ε) is

closed.

Proposition 8 The set S̄(ε) is closed.

Proof. Write {sa : a ∈ N} for a convergent sequence in S̄(ε), and write s0 ≡ lima→∞ sa for its

limit. To show that S̄(ε) is closed, we need to show that s0 ∈ S̄(ε).

Since each element of S̄(ε) corresponds to some mixed hiding strategy p ∈ ∆n(ε) and tie-

breaking rule r ∈ R, S̄(ε) is equal to f(R × ∆n(ε)). Therefore, for all a ∈ N, we may choose

xa ∈ ∆n(ε) and ra ∈ R such that sa = f(ra,xa). Further, since ∆n(ε) is bounded, the sequence

{xa : a ∈ N} has a convergent subsequence {xh(a) : a ∈ N}, and, since ∆n(ε) is closed, x0 ≡

lima→∞ xh(a) ∈ ∆n(ε). Any infinite subsequence of the convergent sequence {sa} must converge to

the same limit as {sa}; therefore, we have s0 = lima→∞ sh(a).

We consider two cases. First, suppose that {xh(a)} attains its limit x0. In other words, there

exists A ∈ N such that xh(a) = x0 for all a ≥ A. In this instance, the sequence {sh(a) : a ≥ A},

which has limit s0, is a sequence in the set Sx0 defined in (10), which was shown to be compact by

Lemma 5. Therefore, s0 ∈ Sx0 ⊂ S̄(ε), completing the proof for the first case.

Second, suppose that {xh(a)} does not attain its limit x0. Since x0 ∈ ∆n(ε), we have f(r,x0) ∈

S̄(ε) for any r ∈ R. To complete the proof for the second case, we show that s0 = f(r,x0) for some

r ∈ R. To do this, we split the second case into two subcases.

First, consider the easier subcase in which x0 is a non-tie point. Then, for any r ∈ R, we have

s0 = lim
a→∞

sh(a) = lim
a→∞

f(rh(a),xh(a)) = f(r,x0),

where the last equality follows by Lemma 6 and the fact that the f(r,x0) are equal for all r ∈ R.
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The rest of the proof concerns the more challenging subcase, in which x0 ≡ (x0,1, . . . , x0,n) is

a tie point. Note that, for any x ≡ (x1, . . . , xn) ∈ ∆n, there exists a subset Σx ⊆ Sn for which

σ ∈ Σx if and only if

xσ(i)/x0,σ(i) ≥ xσ(i+1)/x0,σ(i+1), i = 1, 2, . . . , n− 1.

Recalling the definition in (11), we have x ∈ ∆n(x0,Σx), and further Σx is the unique subset of

maximal size such that x ∈ ∆n(x0,Σx). Since the elements {xi/x0,i, i = 1, . . . , n} must lie in some

size order, Σx is non-empty for any x ∈ ∆n(ε).

Since there are a finite number of subsets of Sn, there must exist Σ∗ ⊂ Sn and a convergent

subsequence of {xh(a)}, say {xm : m ∈ N}, such that Σxm = Σ∗ for all m ∈ N. In other words,

{xm} is a sequence in ∆n(x0,Σ
∗).

Since {xm} is a convergent subsequence of {xh(a)}, we have limm→∞ xm = x0, and

lim
m→∞

f(rm,xm) = lim
m→∞

sm = s0.

To complete the proof, it remains to show s0 = f(r,x0) for some r ∈ R. We split into two

further subcases, numbered below.

1. Suppose that there are finitely many tie points in {xm}. In this case, we may choose M such

that there are no tie points in the sequence {xm : m ≥ M}. Therefore, for all m ≥ M , we

have f(rm,xm) = f(r,xm) for all r ∈ R. Let r∗ ∈ R contain only elements in Σ∗. Then we

have

s0 = lim
m→∞

f(rm,xm) = lim
m→∞

f(r∗,xm) = f(r∗,x0),

where the last equality follows by Lemma 7.

2. Now suppose that there are infinitely many tie points in {xm}. We begin with two observations

for any x ∈ ∆n(ε).

(i) The position of any equalities in the ordering of the terms {xi/x0,i, i = 1, . . . , n}

completely determines Σx. In particular, for any pair of boxes i, j ∈ {1, . . . , n}, we

have xi/x0,i = xj/x0,j if and only if there exists σ1, σ2 ∈ Σx with σ1(i) > σ1(j) and

σ2(j) > σ2(i). Also, we have xi/x0,i > xj/x0,j if and only if σ(i) > σ(j) for all σ ∈ Σx.
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(ii) For any pair of boxes i, j ∈ {1, . . . , n} and any y, z ∈ N0 ≡ {0, 1, 2, . . .} write

ki,j(y, z) ≡
αj(1− αj)zti
αi(1− αi)ytj

,

recalling that αi (resp. ti) is the detection probability (resp. search time) of box i,

i = 1, . . . , n. Then, inspection of (2) shows that, following a Gittins search sequence

against x, there is a tie between boxes i and j after y (resp. z) searches of box i (resp.

j) have been made if and only if xi/xj = ki,j(y, z).

Now consider the sequence {xm}, and write xm ≡ (xm,1, . . . , xm,n) for the mth term, m ∈ N.

Since {xm} has limit x0, for any two boxes i, j ∈ {1, . . . , n}, we have

xm,i
xm,j

→ x0,i

x0,j
as m→∞. (12)

Now choose x ∈ {xm} and suppose that c, d ∈ {1, . . . , n} satisfy xc/x0,c 6= xd/x0,d. Then, by

(i), the same must be true for every element of {xm} since Σxm = Σ∗ for all m ∈ N. Hence,

the limit in (12) is never attained for i = c and j = d. In other words, xm,c/xm,d approaches

but never reaches x0,c/x0,d as m→∞.

Let y, z ∈ N0 and consider kc,d(y, z) defined in (ii). There are two scenarios. First, we may

have kc,d(y, z) = x0,c/x0,d; in this scenario, since the limit in (12) is never attained, in no

Gittins search sequence against any element of {xm} is there a tie between boxes c and d

after y (resp. z) searches of box c (resp. d) have been made. Second, if kc,d(y, z) 6= x0,c/x0,d,

by the limit in (12), there exists a finite smallest element of N, say Mc,d(y, z), such that the

same statement holds after the Mc,d(y, z)th term of {xm}; in other words, in no Gittins search

sequence against any element of {xm : Mc,d(y, z) ≥ m} is there a tie between boxes c and d

after y (resp. z) searches of box c (resp. d) have been made.

For any b ∈ N, write

M b
c,d ≡ max{Mc,d(y, z) : y, z ∈ N0 with y + z ≤ b}.

It follows that, whilst the total number of searches of boxes c and d is no larger than b, no

ties involving both boxes c and d are encountered in a Gittins search sequence against any

element of {xm : m ≥M b
c,d}. Clearly {M b

c,d : b ∈ N} forms an increasing sequence; therefore,
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as m→∞, any tie involving both boxes c and d occurs increasingly later and later into the

search, so the effect on the expected time to detection of how such a tie is broken decreases

to 0.

Therefore, as m→∞, only the manner in which ties involving only boxes i and j satisfying

xi/x0,i = xj/x0,j are broken has any effect on the expected time to detection under a Gittins

search sequence against an element of {xm}. Without a loss of generality, suppose such a tie

is between boxes 1, . . . , y, for some y ∈ {2, . . . , n}. Suppose the tie is broken by σ ∈ Sn. By

(i), since x1/x0,1 = · · · = xy/x0,y, there exists σ∗ ∈ Σx which ranks boxes 1, . . . , y in the same

order as σ. Therefore, breaking the tie using σ∗ leads to boxes 1, . . . , y being searched in the

same order as breaking the tie using σ. It follows that there exists r∗ with only elements in

Σ∗ such that, if, for all m ∈ N, we replace rm with r∗, as m→∞, the effect on the expected

time to detection tends to 0. In other words,

s0 = lim
m→∞

f(rm,xm) = lim
m→∞

f(r∗,xm) = f(r∗,x0),

where the last equality follows by Lemma 7.

The proof is completed.

We conclude this section by showing that there exists an optimal search strategy in the game

G(ε).

Proposition 9 For any ε ∈ (0, 1/n), the game G(ε) has an optimal search strategy which is a

mixture of at most n search sequences.

Proof. Since S(ε) adds only a finite subset of Rn to S̄(ε) and S̄(ε) is closed (Proposition 8), it

follows that S(ε) is closed. It then follows from Theorem 2.4.2 of Blackwell and Girshick (1954)

that there exists an optimal search strategy for the game G(ε).

3.3 The Connection Between G and G(ε)

In this section, we show that the existence of an optimal search strategy in G(ε) implies the existence

of an optimal search strategy in G. The following result draws upon the properties in Section 2.2

to conclude that, for small enough ε, the games G and G(ε) are almost equivalent.
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Lemma 10 Consider G and its set of optimal hiding strategies ∆n
opt. For any p∗ ∈ ∆n

opt, there

exists εp∗ ∈ (0, 1/n] such that, for all ε ∈ (0, εp∗), the games G and G(ε) share the same value, p∗

is optimal in G(ε) as well as in G, and a search strategy is optimal in G if and only if it is optimal

in G(ε).

Proof. Let p∗ ≡ (p∗1, . . . , p
∗
n) ∈ ∆n

opt and ε1 ≡ mini∈{1,...,n} p
∗
i ; we have ε1 > 0 by (i) in Proposition

3. Further, under any mixed hiding strategy, some box is chosen with at most probability 1/n, so

ε1 ≤ 1/n.

The function Mi(ε) in (7) decreases in ε, since the set over which the infimum is taken grows

with ε. Write p ≡ (p1, . . . , pn). If pi = 0, then any ξ ∈ CB
p never searches box i, so u(i, ξ) is infinite,

and hence Mi(ε) ↑ ∞ as ε ↓ 0. On the other hand, if pi = 1, then any ξ ∈ CB
p only searches box i,

so u(i, ξ) = ti/αi, and hence Mi(ε) ↓ ti/αi ≤ v∗ as ε ↑ 1, where v∗ is the value of G. Combining the

above information, we may conclude that

ε2 ≡ sup{ε : Mi(ε) > v∗/p∗i , i = 1, . . . , n}

exists, and Mi(ε) > v∗/p∗i for all ε ∈ (0, ε2), i = 1, . . . , n.

Let εp∗ ≡ min(ε1, ε2); we show that εp∗ satisfies the conditions of the lemma. For any C̄ ⊂ C,

write

u(p, C̄) ≡ inf
ξ∈C̄

u(p, ξ),

where u(p, ξ) is the expected time to detection if the hider chooses mixed strategy p and the

searcher chooses pure strategy ξ. Throughout the following, let ε ∈ (0, εp∗).

Recall from (8) that C(ε) is the pure strategy set in G(ε). In G, a best response to a hiding

strategy p is any sequence in CB
p , which leads to an expected time to detection of u(p, C), where

C is the pure strategy set in G. Bearing the above in mind, we show that u(p, C) ≥ u(p, C(ε)) for

any hiding strategy p by considering two cases.

1. p ∈ ∆n(ε). In this case, CB
p is contained in C(ε); therefore, if the hider chooses p, the searcher

does no worse when C is replaced with C(ε), so u(p, C) ≥ u(p, C(ε)).

2. p /∈ ∆n(ε). In this case, there exists j ∈ {1, . . . , n} such that pj < ε. By the construction

of the sequences ζj(ε) defined at the start of Section 3.2, we have u(i, ζj(ε)) ≤ u(i, ξ) for any
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ξ ∈ CB
p , i = 1, . . . , n. Therefore, ζj(ε) ∈ C(ε) \ C dominates any sequence in CB

p . It follows

that u(p, C) ≥ u(p, C(ε)).

Now consider u(p∗, C(ε)); by the above, v∗ = u(p∗, C) ≥ u(p∗, C(ε)). Since ε < ε1, we have

p∗ ∈ ∆n(ε), and hence CB
p∗ ⊂ C(ε). The only pure search strategies in C(ε) that, when the hider

chooses p∗, could achieve a lower expected time to detection than a sequence in CB
p∗ are those not

in C, namely {ζi(ε), i = 1, . . . , n}. Therefore, we have

u(p∗, C(ε)) = min

v∗, min
i∈{1,...,n}


n∑
j=1

p∗ju(j, ζi(ε))




= min

(
v∗, min

i∈{1,...,n}
p∗iMi(ε)

)
= v∗,

where the final equality holds since ε < ε2.

To conclude, we have u(p, C) ≥ u(p, C(ε)) for all hiding strategies p, and v∗ = u(p∗, C) =

u(p∗, C(ε)). It follows that p∗ is optimal in G(ε) and the value of G(ε) is v∗.

As for the searcher, since the set of pure hiding strategies and the value are the same for G and

G(ε), any optimal search strategy in G is optimal in G(ε) if it is available to the searcher in G(ε)

and vice versa. By Proposition 2, any optimal search strategy in G chooses only search sequences in

CB
p∗ , available in G(ε) since CB

p∗ ⊂ C(ε). Further, for i = 1, . . . , n, we have p∗iMi(ε) > v∗. Therefore,

it is suboptimal in G(ε) for the searcher to choose any strategy in C(ε) \ C = {ζi(ε), i = 1, . . . , n}.

It follows that a search strategy is optimal in G if and only if it is optimal in G(ε), completing the

proof.

We conclude this section with its main result.

Theorem 11 In the search game G, for any optimal hiding strategy p∗, there exists an optimal

search strategy which is a mixture of at most n elements of CB
p∗ .

Proof. By Lemma 9, there exists a search strategy θ∗, optimal in G(ε), which is a mixture of at

most n search sequences. By Lemma 10, θ∗ is also optimal in the search game G. By Proposition

2, for any optimal hiding strategy p∗, the search sequences mixed by θ∗ must all belong to CB
p∗ ,

completing the proof.
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4 Properties of Optimal Strategies

While we have shown that each player has an optimal strategy in the search game G, it turns out

that each player’s optimal strategy need not be unique. In this section, we demonstrate how to

identify an optimal hider-searcher strategy pair, present an example where the hider has multiple

optimal strategies, and show that the searcher may always choose a simple optimal strategy among

the many available. These findings will underpin the development of a practical optimality test for

any hiding strategy.

We begin by combining Propositions 2 and 3 to identify simple conditions on a hider-searcher

strategy pair which are both necessary and sufficient for optimality.

Theorem 12 Write u(p, θ) for the expected time to detection if the hider and the searcher use

mixed strategies p and θ, respectively. The mixed strategy p (resp. θ) is optimal for the hider

(resp. searcher) if and only if

(i) θ is a mixture of some subset of CB
p .

(ii) u(i, θ) = u(p, θ), for i = 1, . . . , n.

Proof. First, we prove the forwards implication. If p is optimal for the hider and θ is optimal for

the searcher, then (i) follows from Proposition 2. Further, if p and θ are optimal, then u(p, θ) is

the value of the game, so (ii) follows from Proposition 3 (ii).

Second, we prove the backwards implication. By (i), p guarantees an expected time to detection

of at least u(p, θ) regardless of what the searcher does. In addition, by (ii), θ guarantees an expected

time to detection equal to u(p, θ) regardless of what the hider does. Therefore, neither the hider

nor the searcher can obtain a better guarantee than u(p, θ); it follows that p and θ are an optimal

strategy pair.

Note that the backwards implication of Theorem 12 is Theorem 8.3 of Gittins (1989) applied

to the search game.

Theorem 12 shows that any optimal search strategy θ∗ is an equalizing strategy; in other words,

whenever the searcher plays θ∗, the expected time to detection is the same no matter where the

hider hides. Theorem 5.2 of Ruckle (1991) shows that, in the search game with unit search times,
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there exists an equalizing pure search strategy ξ. However, ξ is not necessarily optimal by Theorem

12, because it is not necessarily a Gittins search sequence against any hiding strategy. Further, the

proof of Theorem 5.2 of Ruckle (1991) does not extend to the search game with arbitrary search

times, as it relies on u(k, ξ) being unaffected when the positions of a search of box i and box j in

ξ are switched.

We next use Theorem 12 to demonstrate that it is possible for the hider to have multiple optimal

strategies.

Example 13

Consider a two-box search game where box i has search time ti and detection probability αi, i = 1, 2,

with α1 < α2 and t1 > t2. Write p for the probability that the hider hides in box 1. Inspection of

(2) shows that if

p ∈
[

α2/t2
α2/t2 + α1/t1

,
α2/t2

α2/t2 + α1(1− α1)/t1

]
, (13)

then there exists a Gittins search sequence against the hiding strategy (p, 1 − p) that begins by

searching box 1, followed by box 2, and then box 1 again.

Suppose that

(1− α2) = (1− α1)2; (14)

therefore, for any p, if the searcher makes, in any order, two unsuccessful searches of box 1 and

one unsuccessful search of box 2, then the posterior probability that the hider is in box 1 returns

to p, and hence the problem has reset itself. It follows that the sequence ξ that repeats the cycle

of boxes 1, 2, 1 indefinitely is a Gittins search sequence against any hiding strategy (p, 1− p) with

p satisfying (13).

Calculate

u(1, ξ) =

∞∑
k=1

(1− α1)2(k−1)α1 [(k − 1)(2t1 + t2) + t1 + (1− α1)k(2t1 + t2)] ,

u(2, ξ) =
∞∑
k=1

(1− α2)k−1α2 [(k − 1)(2t1 + t2) + t1 + t2] .

By rewriting

u(1, ξ) =
∞∑
k=1

(1− α1)2(k−1)[α1t1 + α1(1− α1)(2t1 + t2) + (1− (1− α1)2)(k − 1)(2t1 + t2)],
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and using (14), we have

u(1, ξ)− u(2, ξ) = [α1(t1 + (1− α1)(2t1 + t2))− α2(t1 + t2)]

∞∑
k=1

(1− α2)k−1,

from which it follows that u(1, ξ) = u(2, ξ) if and only if

α1 =
t1 − t2
t1

. (15)

By choosing α2 to satisfy (14), it follows from Theorem 12 that ξ is optimal for the searcher and

(p, 1− p) for any p satisfying (13) is optimal for the hider.

For a numerical example, if α1 = 0.4, α2 = 0.64, t1 = 1 and t2 = 0.6, then (p, 1 − p) for any

p ∈ [8/11, 40/49] is an optimal choice for the hider. 2

By Theorem 12, it is sufficient for the searcher to consider Gittins search sequences against any

optimal hiding strategy. Therefore, if there exists an optimal p against which there is a unique

Gittins search sequence ξ (so |CB
p | = 1), then the pure strategy ξ is optimal for the searcher. One

example can be found in Example 13; any (p, 1 − p) with p satisfying (13) (aside from the two

endpoints) is both optimal for the hider and has CB
(p,1−p) = {ξ}, so the pure strategy ξ is optimal

for the searcher.

Interestingly, the condition |CB
p | = 1 for some optimal p is not always necessary for the existence

of an optimal pure search strategy. Ruckle (1991) shows that in the search game with αi = 0.5 and

ti = 1, i = 1, . . . , n, the unique optimal hiding strategy p∗ selects each box with probability 1/n,

and therefore any search sequence repeatedly passing through the n boxes is in CB
p∗ , meaning CB

p∗

is of infinite size. Ruckle (1991) further shows that one such search sequence is optimal, namely

1, 2, . . . , n;n, n− 1, . . . , 1;n, n− 1, . . . , 1; . . . ,

which passes through the boxes once in ascending order, then in descending order ad infinitum.

Since all boxes are identical, by symmetry, any sequence beginning by permuting 1, 2, . . . , n before

applying the reverse permutation ad infinitum is also optimal.

Other than specifically constructed cases, however, it is more common that any optimal search

strategy is a mixed strategy when |CB
p | > 1 for all optimal p, a more challenging case on which

we focus henceforth. Recall that, by Definition 1, the next box searched by any Gittins search

sequence against a hiding strategy p must satisfy (2). If |CB
p | > 1, at some point in the search,
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the searcher must encounter a tie where some k ∈ {2, . . . , n} boxes satisfy (2). At such a tie, any

Gittins search sequence must search the k tied boxes next in some arbitrary order. Thereafter, any

two Gittins search sequences will be identical until another tie is encountered. Therefore, elements

of CB
p differ from one another only in how they break ties.

The way that the searcher breaks ties is important, however, as information about the searcher’s

tie breaking rule could be exploited by the hider. A mixed tie-breaking strategy adds some un-

predictability to the searcher’s behavior. Recall Sn as the set of permutations of {1, . . . , n}. As

discussed in Section 3.2, whilst there are a variety of rules the searcher can use to choose how to

break ties, any Gittins search sequence can be attained by some rule which writes down an infinite

sequence of elements in Sn and uses the jth element of the sequence as a preference ordering to

choose which box to search next when the jth tie is encountered, for j = 1, 2, . . .. For example, a

tie between boxes 1, 2 and 4 is broken in the order 2, 1, 4 by the permutation (2, 3, 1, 4) ∈ S4.

One particularly simple tie-breaking rule to generate a Gittins search sequence is to break every

tie using the same preference ordering. Write ξσ,p for the Gittins search sequence against p that

breaks every tie encountered using σ ∈ Sn. We define the following subset of CB
p :

ĈB
p ≡ {ξσ,p : σ ∈ Sn}.

Whilst CB
p could be an infinite set, |ĈB

p | ≤ n! since |Sn| = n!. By Theorem 11, there exists an

optimal search strategy that is a mixture of at most n elements of CB
p∗ for any optimal hiding

strategy p∗. The aim of the remainder of this section is to show that the same holds true if we

replace CB
p∗ with ĈB

p∗ .

For any search strategy θ (pure or mixed), write U(θ) ≡ (u(1, θ), . . . , u(n, θ)). For any hiding

strategy p, recall

Sp ≡ {U(ξ) : ξ ∈ CB
p }

from (10), and additionally define

Ŝp ≡ {U(ξ) : ξ ∈ ĈB
p },

noting that Ŝp ⊂ Sp ⊂ Rn. Clearly, if some search strategy θ is a mixture of a subset of CB
p ,

then U(θ) can be written as a convex combination of the elements in Sp. The following lemma

shows that the same statement is true replacing Sp with Ŝp if p hides in each box with a nonzero

probability.
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Lemma 14 For any hiding strategy p ≡ (p1, . . . , pn) with pi > 0, i = 1, . . . , n, the convex hull of

Sp is equal to the convex hull of Ŝp.

Proof. If |CB
p | = 1 then Sp = Ŝp and the result is trivially true. For the rest of the proof, assume

|CB
p | > 1.

Write Conv(Sp) for the convex hull of Sp. By definition, Conv(Sp) is convex, and, since Sp

is compact (Lemma 5) in the finite-dimensional vector space Rn, Conv(Sp) is also compact. (See

Corollary 5.33 of Charalambos and Aliprantis (2013).) Therefore, we may apply the Krein-Milman

theorem to deduce that Conv(Sp) is equal to the convex hull of its extreme points. To prove Lemma

14, we show that Ŝp is the set of extreme points of Conv(Sp). We first note the following useful

facts.

• By definition, a point x ∈ Conv(Sp) is extreme if and only if, for any y, z ∈ Conv(Sp) and

λ ∈ (0, 1) satisfying x = λy + (1− λ)z, we have x = y = z. In other words, the only way we

can express x as a convex combination of elements of Conv(Sp) is by x itself.

• For any s ≡ (s1, . . . , sn) ∈ Sp, the weighted average
∑n

i=1 sipi is equal to the expected time

to detection if the hider chooses p and the searcher any best response ξ ∈ CB
p . Therefore, all

elements of Sp lie on the same hyperplane, say H, in Rn.

• By the definition of Sp, we have

Sp ⊂ R ≡

{
(v1, . . . , vn) ∈ Rn : min

ξ∈CBp
u(i, ξ) ≤ vi ≤ max

ξ∈CBp
u(i, ξ), i = 1, . . . , n

}
,

where R is a hyperrectangle in n-dimensional space (also known as an n-orthotope). Further,

since Conv(Sp) is the smallest convex set containing Sp, and R is also a convex set containing

Sp, we have Conv(Sp) ⊆ R.

The proof will be done by double inclusion. In the first half of the double inclusion proof, we

show that any point in Ŝp is an extreme point of Conv(Sp). Let x ≡ (x1, . . . , xn) ∈ Ŝp. Then there

exists ξσ ∈ ĈB
p such that x = U(ξσ), where ξσ breaks all ties using some σ ∈ Sn. Without loss of

generality, let σ = (1, 2 . . . , n). Suppose that

x = λy + (1− λ)z (16)
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for some y, z ∈ Conv(Sp) and λ ∈ (0, 1). To prove that x is extreme, we show that we must have

x = y = z.

Since, when breaking any tie, ξσ gives preference to box 1 over any other box, no other search

sequence in CB
p makes the jth search of box 1 any sooner than ξσ, j = 1, 2, . . .; therefore, we have

x1 = minξ∈CBp u(1, ξ). For any v ≡ (v1, . . . , vn) ∈ Conv(Sp), since Conv(Sp) ⊂ R, we must have

v1 ≥ x1. It follows that, for (16) to hold, we must have y1 = z1 = x1.

We now demonstrate how this argument may be repeated to show that y2 = z2 = x2. Let CB
1,p be

the elements of CB
p which, when breaking any tie involving box 1, give preference to box 1; therefore,

for any ξ ∈ CB
p , we have u(1, ξ) = x1 if and only if ξ ∈ CB

1,p. Recall U(ξ) ≡ (u(1, ξ), . . . , u(n, ξ)) and

write S1,p ≡ {U(ξ) : ξ ∈ CB
1,p}; therefore, for any v = (v1, . . . , vn) ∈ Sp, we have v1 = x1 if and

only if v ∈ S1,p. Since S1,p ⊂ Sp, we have Conv(S1,p) ⊂ Conv(Sp). Note that y, z ∈ Conv(S1,p)

since y1 = z1 = x1.

Write

R1 ≡

{
(x1, v2, . . . , vn) ∈ Rn : min

ξ∈CB1,p
u(i, ξ) ≤ vi ≤ max

ξ∈CB1,p
u(i, ξ), i = 2, . . . , n

}
.

Then R1, a hyperrectangle in (n − 1)-dimensional space, is a convex set containing S1,p, so

Conv(S1,p) ⊂ R1. Since, when breaking any tie, ξσ gives preference to box 1 over box 2, but

then to box 2 over any other box i, i = 3, . . . , n, no other sequence in CB
1,p makes the jth

search of box 2 sooner than ξσ, j = 1, 2, . . .; therefore, we have x2 = minξ∈CB1,p
u(2, ξ). Since

any v ≡ (v1, . . . , vn) ∈ Conv(S1,p) also belongs to R1, we must have v2 ≥ x2. It follows that, for

(16) to hold, we must have y2 = z2 = x2.

We may repeat the above argument a further n − 3 times to conclude that yi = zi = xi for

i = 1, . . . , n − 1. Finally, since y, z and x all lie in the same hyperplane H in Rn, we must have

yn = zn = xn, so y = z = x, and x must be an extreme point of Conv(Sp).

In the second half of the double inclusion proof, we show that any extreme point of Conv(Sp) is

in Ŝp. We will prove the contrapositive of this statement; i.e., we show that any a ∈ Conv(Sp) \ Ŝp

is not an extreme point of Conv(Sp).

To begin, note that, by definition, any element of Conv(Sp) can be written as a convex combi-

nation of some m ∈ N elements of Sp. If b ∈ Conv(Sp) \ Sp, then any such convex combination

must contain at least m ≥ 2 elements of Sp, so b is not an extreme point of Conv(Sp). Hence, our
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task is reduced to showing that any a ∈ Sp \ Ŝp is not an extreme point of Conv(Sp).

Consider a ∈ Sp \ Ŝp, and write ξa for the corresponding search sequence in CB
p \ ĈB

p satisfying

a = U(ξa). Since ξa /∈ ĈB
p , there exists no permutation in Sn with which ξa breaks every tie it

encounters. It follows that there must exist some k ∈ {2, . . . , n} boxes (without loss of generality

boxes 1, . . . , k) and k ties encountered by ξa such that no permutation of {1, . . . , k} serves as a

preference ordering for how all k ties are broken. Suppose, again with no loss of generality, tie m

involves (at least) boxes m and m+1, with box m searched before box m+1 by ξa, m = 1, . . . , k−1,

and tie k involves (at least) boxes k and 1, with box k searched before box 1 by ξa. Note that ties

1, . . . , k are not necessarily consecutive nor in chronological order.

We now aim to construct a mixture of elements of CB
p which mimics the performance of ξa; it

will follow that a is not an extreme point of Conv(Sp).

Consider tie k, which is broken by ξa using the preference ordering

j1, . . . , jβ−1, k, jβ+1, . . . , jγ−1, 1, jγ+1, . . . , jn,

bearing in mind that box ji is not necessarily involved in tie k, i ∈ {1, . . . , n} \ {β, γ}. In other

words, box k ranks in the βth position, and box 1 ranks in the γth position, for some 1 ≤ β < γ ≤ n.

Let ξa,β ∈ CB
p break tie k using preference ordering

j1, . . . , jβ−1, 1, k, jβ+1, . . . , jγ−1, jγ+1, . . . , jn,

and all other ties in the same order as ξa. Similarly, let ξa,γ ∈ CB
p break tie k using preference

ordering

j1, . . . , jβ−1, jβ+1, . . . , jγ−1, 1, k, jγ+1, . . . , jn,

and all other ties in the same order as ξa. Note that if γ = β + 1 (so there are no boxes searched

between boxes k and 1 by ξa when breaking tie k), then ξa,β = ξa,γ , but the following argument is

still valid.

Note that u(i, ξa,β) = u(i, ξa,γ) = u(i, ξa) for any box i ∈ {j1, . . . , jβ−1, jγ+1, . . . , jn}. Recall ti

is the search time of box i, and let

θk ≡
tk

t1 + tk
ξa,β ⊕

t1
t1 + tk

ξa,γ ,

where pξ1 ⊕ (1 − p)ξ2 denotes the mixture of ξ1 and ξ2, which selects ξ1 with probability p and

ξ2 with probability 1 − p. Clearly u(i, θk) = u(i, ξa) for i ∈ {j1, . . . , jβ−1, jγ+1, . . . , jn}. For i ∈
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{jβ+1, . . . , jγ−1}, let wi be the probability that the hider is found on the first search of box i after the

kth tie is reached, conditional on the hider being in box i. Then we have u(i, ξa,β) = u(i, ξa) +wit1

and u(i, ξa,γ) = u(i, ξa)− witk for i ∈ {jβ+1, . . . , jγ−1}. It follows that

u(i, θk) =
tk

t1 + tk
(u(i, ξa) + wit1) +

t1
t1 + tk

(u(i, ξa)− witk) = u(i, ξa)

for i ∈ {jβ+1, . . . , jγ−1}.

Because u(k, ξa,γ) > u(k, ξa,β) > u(k, ξa), we have u(k, θk) > u(k, ξa). Since U(θk) and U(ξa)

lie in the same hyperplane, H, in Rn, we must have u(1, θk) < u(1, ξa). To summarize, we have

u(k, θk) > u(k, ξa), u(1, θk) < u(1, ξa), and u(i, θk) = u(i, ξa) for i 6= 1, k. (17)

Now, for m ∈ {1, . . . , k − 1}, we repeat the same procedure with tie m for boxes m and m+ 1

to create θm which satisfies:

u(m, θm) > u(m, ξa), u(m+ 1, θm) < u(m+ 1, ξa), and u(i, θm) = u(i, ξa) for i 6= m,m+ 1.

(18)

To complete the proof, we develop a mixture of {θ1, . . . , θk} which mimics the performance of

ξa. To begin, by (18) with m = 1, 2, for any λ ∈ (0, 1), the mixture

θ1,2(λ) ≡ λθ1 ⊕ (1− λ)θ2 (19)

satisfies

u(1, θ1,2(λ)) > u(1, ξa), u(3, θ1,2(λ)) < u(3, ξa), and u(i, θ1,2(λ)) = u(i, ξa) for i = 4, . . . , n.

Also by (18), there exists λ∗ ∈ (0, 1) such that θ1,2 ≡ θ1,2(λ∗) satisfies u(2, θ1,2) = u(2, ξa). There-

fore, we have

u(1, θ1,2) > u(1, ξa), u(3, θ1,2) < u(3, ξa), and u(i, θ1,2) = u(i, ξa) for i 6= 1, 3. (20)

By (18) with m = 3 and (20), there exists a mixture, θ1,2,3, of θ3 and θ1,2 satisfying

u(1, θ1,2,3) > u(1, ξa), u(4, θ1,2,3) < u(4, ξa), and u(i, θ1,2,3) = u(i, ξa) for i 6= 1, 4.

We may repeat this process of mixing θm and θ1,...,m−1 to create θ1,...,m for m = 4, . . . , k − 1, with

the resulting θ1,...,k−1 satisfying

u(1, θ1,...,k−1) > u(1, ξa), u(k, θ1,...,k−1) < u(k, ξa), and u(i, θ1,...,k−1) = u(i, ξa) for i 6= 1, k.

(21)
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Finally, by (17) and (21), we may mix θk and θ1,...,k−1 to create θ1,...,k satisfying u(i, θ1,...,k) = u(i, ξa)

for i = 2, . . . , n. Yet, since U(θ1,...,k) and U(ξa) both lie in H, we must also have u(1, θ1,...,k) =

u(1, ξa). It follows that, for some λ̄ ∈ (0, 1), we have

a = U(ξa) = U(θ1,...,k) = λ̄U(θ1,...,k−1) + (1− λ̄)U(θk).

By the construction of the θm for m = 1, . . . , k as mixtures of elements of CB
p , U(θ1,...,k−1) and

U(θk) are two distinct elements in Conv(Sp) different from a, showing that a is not an extreme

point of Conv(Sp) and completing the proof.

Lemma 14 allows us to present the main theorem of this section, which strengthens Theorem

11 by replacing CB
p∗ with ĈB

p∗ .

Theorem 15 In search game G, for any optimal hiding strategy p∗, there exists an optimal search

strategy which is a mixture of at most n elements of ĈB
p∗ .

Proof. Let p∗ ≡ (p∗1, . . . , p
∗
n) be an optimal hiding strategy. By Theorem 11, there exists an

optimal search strategy θ∗ which is a mixture of elements of CB
p∗ . Therefore, U(θ∗) can be written

as a convex combination of elements of Sp∗ and hence belongs to Conv(Sp∗), the convex hull of

Sp∗ .

By (i) in Proposition 3, p∗i > 0 for i = 1, . . . , n. Therefore, by Lemma 14, Conv(Sp∗) =

Conv(Ŝp∗). It follows that U(θ∗) ∈ Conv(Ŝp∗) and hence can be written as a convex combination

of elements of Ŝp∗ .

By Carathéodory’s theorem, U(θ∗) can be written as a convex combination of at most n + 1

elements in Ŝp∗ . Yet, for any hiding strategy p ≡ (p1, . . . , pn) and s ≡ (s1, . . . , sn) ∈ Sp, the

weighted average
∑n

i=1 sipi is equal to the expected time to detection if the hider chooses p and

the searcher any best response ξ ∈ CB
p . Therefore, all elements of Sp lie on the same hyperplane in

Rn, and hence so do all elements of Ŝp ⊂ Sp. It follows that the number of elements in the convex

combination of U(θ∗) can be reduced to at most n, so θ∗ is a mixture of at most n strategies in

ĈB
p∗ .

Proposition 8.5 of Gittins (1989) proves a special case of Theorem 15 with n = 2 and t1 = t2 = 1,

but that proof does not extend directly to n ≥ 3; see Appendix B for some discussion. Our result

applies to an arbitrary number of boxes and to general search times.
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The significance of Theorem 15 is twofold. First, it shows that, in order to construct an optimal

search strategy, it is sufficient to consider only the simple type of Gittins search sequence which uses

the same preference ordering to break every tie. Second, while Theorem 11 shows that an optimal

search strategy exists and can be formed among some collection of (at most) n search strategies,

it gives no indication of how to find a suitable collection among CB
p∗ , the possibly uncountable set

of best responses to an optimal hiding strategy p∗. Theorem 15 shows that, once p∗ is found, the

searcher only needs to consider the search sequences in ĈB
p∗—of which there are at most n!—reducing

the search game G to a finite matrix game. Then, by computing u(i, ξ) to required accuracy for

i = 1, . . . , n and ξ ∈ ĈB
p∗ , one can use linear programming methods (see Section 10.4 in Ferguson

(2020)) to compute, to an arbitrary degree of accuracy, both the value of the game and an optimal

search strategy which is a mixture of at most n search sequences.

It also follows from Theorem 15 that if p∗ is optimal when the set of pure search strategies is

C, then p∗ is optimal if the set of pure search strategies is ĈB
p∗ . Below, we show that the reverse

implication is also true, creating an optimality test for any hiding strategy requiring only the

solution to a finite matrix game.

Proposition 16 Consider p ≡ (p1, . . . , pn) with pi > 0 for i = 1, . . . , n. Write GD for the finite

game where the searcher’s pure strategies are D ≡ ĈB
p ⊂ C. Let θ be an optimal search strategy in

GD. The following three statements are equivalent.

(i) p is optimal in GD;

(ii) θ is optimal in G;

(iii) p is optimal in G.

Proof. First, we prove that (i) implies (ii), so suppose p is optimal in GD. Since θ is optimal in

GD, then θ guarantees the searcher an expected time to detection of at most v∗D, the value of GD,

no matter which box the hider hides in. Therefore, u(i, θ) ≤ v∗D for i = 1, . . . , n. By the minimax

theorem for finite games, when the hider plays p and the searcher plays θ, the expected time to

detection is v∗D. In other words, we have

n∑
i=1

piu(i, θ) = v∗D.
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Since pi > 0 for i = 1, . . . , n, we must have u(i, θ) = v∗D for i = 1, . . . , n. In addition, θ is a mixture

of strategies in D ⊆ CB
p . By Theorem 12, θ is optimal in G.

Second, we prove that (ii) implies (iii), so suppose θ is optimal in G. By (ii) in Proposition 3,

u(i, θ) = v∗ for i = 1, . . . , n. Further, because θ is available to the searcher in GD, it is a mixture

of strategies in D ⊆ CB
p . By Theorem 12, p is optimal in G.

Finally, we prove that (iii) implies (i), so suppose p is optimal in G. By Theorem 15, there

exists a search strategy θ∗ which is both (a) optimal in G, so guarantees the searcher an expected

time to detection of at most v∗, and (b) a mixture of strategies in ĈB
p = D, so is available to the

searcher in the game GD. Since p is optimal in G, p guarantees the hider at least v∗ in G; since

D ⊂ C, p has the same guarantee for the hider in GD. By (a) and (b) above, the searcher can

guarantee at most v∗ with θ∗ in GD. It follows that p is optimal in GD, completing the proof.

The hiding strategy p0 ≡ (p0,1, . . . , p0,n) with

p0,i ≡
ti/αi∑n
j=1 tj/αj

, i = 1, . . . , n, (22)

is of particular interest, since it creates a tie between the Gittins indices of all n boxes in (2) at

the start of the search, giving the searcher no preference over which box to search first. Roberts

and Gittins (1978) and Gittins and Roberts (1979) both numerically find that p0 is optimal for the

hider in many (but not all) unit-search-time problems. Further, the former proves p0 is optimal in

a two-box problem with (1 − α1)m = (1 − α2)m+1 if and only if m ≤ 12. Because of these earlier

findings, the hiding strategy p0 is a prime candidate to test for optimality via Proposition 16.

5 Conclusion

This paper develops very significantly the existing literature on a search game in discrete boxes

where the searcher may overlook a well-concealed hider. There is a theoretical connection between

our search game and a related search problem where the hider is replaced by an inanimate object

hidden randomly according to a known probability distribution. In the search problem with an

inanimate object, the searcher can use a predetermined search sequence to exploit boxes attractive

at the beginning of the search. In our search game, however, an intelligent hider will try to make

each box equally attractive before the search starts, and the searcher will need to randomize their

strategy to avoid behavior predictable by the hider.
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Since a pure strategy for the searcher is an indefinite list of boxes to search until the hider

is found, the search game is semi-finite and hence difficult to analyze. As a result, most work in

the current literature is limited to two boxes or boxes searched in unit time. Using novel proof

techniques, we develop a comprehensive theory for the fully-general search game by extending much

of the existing work and uncovering new properties along the way.

By making an adjustment to the set of search strategies, we provide a rigorous proof that an

optimal search strategy exists, extending a result of Bram (1963). We next develop properties of

an optimal search strategy, and, extending a two-box result of Gittins (1989), we show that the

searcher can construct an optimal strategy by randomly choosing between some n of n! known,

simple search strategies. Based on these properties, we present a novel optimality test for any

hiding strategy.

Further work on this search game may involve the combination of the theoretical results in this

paper with the algorithm in Lin and Singham (2015) to produce a practical procedure for estimating

optimal strategies for each player. When the number of boxes is large, design of heuristic polices

may be relevant. Extensions to the search game may involve a network structure rather than

discrete boxes. Such an extension is relevant if the geography of the search space prevents the

searcher from moving quickly between any pair of hiding locations, for example, a structure of

roads. Search games on networks are well studied in the literature, but less so with a chance of

overlook.
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Appendices

A Proofs of the Continuity of the Function f

A.1 Proof of Lemma 4

Since p is fixed, to ease notation we drop the second argument from f and ξ and write f(r) and

ξ(r) instead. We need to show that for every ε > 0 and every r0 ∈ R, there exists δ > 0 such that

d(r, r0) < δ implies that |f(r)− f(r0)| < ε.

First, consider the case in which a Gittins search sequence against p encounters a finite number

of ties, and denote this number by k. By the definition of d in (9), any r with d(r, r0) < 1/k will

break the first k ties exactly the same way as r0, so choosing δ = 1/k leads to |f(r)−f(r0)| = 0 < ε,

showing that f(r) is continuous.

Second, consider the case in which a Gittins search sequence against p encounters infinitely

many ties. Because p1 > 0, the Gittins search sequence ξ(r0) will visit box 1 infinitely many times.

Write aj for the time point when ξ(r0) completes its jth search in box 1. Letting a0 ≡ 0, we can

compute the expected time to detection of the strategy pair (1, ξ(r0)) by

u(1, ξ(r0)) =

∞∑
j=0

(aj+1 − aj)(1− α1)j ,

where we have used the formula E[X] =
∫∞

0 P{X > x}dx for any nonnegative-valued random

variable X.

Now consider some Gittins search sequence η ∈ CB
p and write bj for the time point when η

completes its jth search in box 1. While bj need not be the same as aj , careful examination reveals

that their difference is capped by
∑n

i=1 ti, because both η and ξ(r0) are best responses against p,

and when encountering a tie in Gittins indices—regardless of the tie-breaking rule adopted—the

searcher will visit all boxes involved in the tie in some order before moving on.

Suppose that bj = aj for j = 1, 2, . . . , k, but bk+1 6= ak+1 for some k ∈ N. We can bound
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|u(1, η)− u(1, ξ(r0))| as follows:

|u(1, η)− u(1, ξ(r0))| ≤
∞∑
j=k

|(bj+1 − bj)− (aj+1 − aj)|(1− α1)j

≤
∞∑
j=k

(|bj+1 − aj+1|+ |bj − aj |)(1− α1)j

≤
∞∑
j=k

(
2

n∑
i=1

ti

)
(1− α1)j

= 2

(
n∑
i=1

ti

)
(1− α1)k

α1
.

Define k1 to be the smallest integer such that the preceding is less than ε/
√
n. Therefore, if bj = aj

for j = 1, 2, . . . , k1, then |u(1, η)− u(1, ξ(r0))| < ε/
√
n.

Let h(m) denote the total number of visits to box 1 by ξ(r0) from the beginning until all searches

involved in the mth index tie are completed, for m ∈ N. It is clear that h(m) increases weakly in

m, and limm→∞ h(m) = ∞. Therefore, we can choose some m large enough so that h(m) ≥ k1.

Write m1 ≡ min{m : h(m) ≥ k1}. In other words, if the first m1 elements in r match those in r0,

then

|u(1, ξ(r))− u(1, ξ(r0))| < ε√
n
.

In a similar fashion, for i = 2, . . . , n, we can define mi such that if the first mi elements in r

match those in r0, then

|u(i, ξ(r))− u(i, ξ(r0))| < ε√
n
.

Let m0 ≡ max{m1,m2, . . . ,mn}. We can conclude that for any r ∈ R whose first m0 elements

match those in r0, the Euclidean distance

|f(r)− f(r0)| = |U(ξ(r))− U(ξ(r0))|

=

(
n∑
i=1

[u(i, ξ(r))− u(i, ξ(r0))]2
)1/2

<

(
n

(
ε√
n

)2
)1/2

= ε.

Finally, because any r ∈ R whose first m0 elements match those in r0 has d(r, r0) < 1/m0, the

proof is completed by taking δ = 1/m0.
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A.2 Proof of Lemma 6

Write ξ for the unique Gittins search sequence against p. For k ∈ N, write ∆n
k ⊂ ∆n for the set of

mixed hiding strategies x for which every Gittins search sequence against x is identical to ξ for the

first k searches. Clearly, for any k ∈ N, we have ∆n
k+1 ⊆ ∆n

k and p ∈ ∆n
k .

For any δ > 0, write B(p, δ) for the open ball with radius δ centered at p. Since p is a non-tie

point in ∆n(ε), for any k ∈ N, it is possible, in any direction, to move a small-enough (Euclidean)

distance in ∆n away from p and not disrupt the order of the Gittins indices that generate the first

k searches of ξ. Therefore,

δk ≡ 0.5× sup {δ : B(p, δ) ⊆ ∆n
k} > 0, (23)

with δk ≥ δk+1, and 0.5 chosen arbitrarily in (0, 1) to ensure that B(p, δk) ⊆ ∆n
k for all k ∈ N.

Write δ∗ ≡ limk→∞ δk. There are two cases. First suppose that δ∗ > 0. If x ∈ B(p, δ∗), then

x ∈ ∆n
k for all k ∈ N, so any Gittins search sequence against x is identical to ξ. It follows that ξ,

the unique Gittins search sequence against p, is also the unique Gittins search sequence against x.

Hence, f is constant on R×B(p, δ∗), so f is continuous in its second argument at p.

Second, suppose that δ∗ = 0. Consider a sequence {xa} in ∆n with lima→∞ xa = p. To show

f is continuous in its second argument at p, we show that

lim
a→∞

f(r,xa) = f(r,p) (24)

for any fixed r ∈ R.

For any k ∈ N, since δk > 0, there must exist a smallest number g(k) ∈ N such that every term

in the sequence {xa} after xg(k) belongs to the ball B(p, δk). Formally, for any k ∈ N, write

g(k) ≡ min{A : xa ∈ B(p, δk), a ≥ A}. (25)

Since δk ≥ δk+1, we have B(p, δk+1) ⊆ B(p, δk) and hence g(k) ≤ g(k + 1), so the sequence

{g(k) : k ∈ N} increases weakly.

Consider the sequence {xg(k) : k ∈ N}. We have lima→∞ xa = p by assumption; our next aim

is to show that limk→∞ xg(k) = p also. To do this, we show that, for any ε > 0, we can choose K

such that xg(k) ∈ B(p, ε) for all k ≥ K. Choose ε > 0. Since limk→∞ δk = 0, there exists K such

that δK < ε. By the definition of g in (25), we have xa ∈ B(p, δK) for all a ≥ g(K). Since g is

increasing, we have xg(k) ∈ B(p, δK) ⊂ B(p, ε) for all k ≥ K, showing that {xg(k)} has limit p.
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By the definitions in (23) and (25), we have xg(k) ∈ B(p, δk) ⊆ ∆n
k . Recall ξ as the unique

Gittins search sequence against p, and, for b ∈ N, write ξb for an arbitrary Gittins search sequence

against xb. Since xg(k) ∈ ∆n
k , as k increases, the first time when ξg(k) and ξ may differ becomes

increasingly later and later into the search. Hence, no matter where the hider is hidden, the effect

on the expected time to detection of this difference decreases to 0; in other words, for i = 1, . . . , n,

u(i, ξg(k))→ u(i, ξ) as k →∞, i = 1, . . . , n, so

lim
k→∞

f(r,xg(k)) = f(r,p)

for any r ∈ R. Since limk→∞ xg(k) = lima→∞ xa = p, then (24) follows, completing the proof.

A.3 Proof of Lemma 7

First, note that if ∆n(p,Σ) = {p}, then any sequence in ∆n(p,Σ) is constant, and the result is

trivially true. The rest of the argument, which is similar to the proof of Lemma 6, deals with the

case where ∆n(p,Σ) contains elements in addition to p. Let r ∈ R contain only elements from

Σ ⊂ Sn. For k ∈ N, let ∆n
k,r ⊂ ∆n contain precisely those mixed hiding strategies x for which the

Gittins search sequence against x under rule r is identical to ξ(r,p) (the Gittins search sequence

against p under rule r) for the first k searches. Clearly, for any k ∈ N, we have ∆n
k+1,r ⊆ ∆n

k,r and

p ∈ ∆n
k,r.

For any δ > 0, write B(p, δ) for the open ball with radius δ centered at p. Note that any

two points in ∆n must be within Euclidean distance
√

2 of eachother. Therefore, for any p ∈ ∆n,

we must have B(p,
√

2) = ∆n. For δ ∈ [0,
√

2], write ∆n(p, δ,Σ) ≡ B(p, δ) ∩ ∆n(p,Σ). In other

words, ∆n(p, δ,Σ) is the subset of mixed hiding strategies in ∆n(p,Σ) strictly less than (Euclidean)

distance δ from p.

Write

δk,r ≡ 0.5× sup
{
δ : ∆n(p, δ,Σ) ⊆ ∆n

k,r

}
, (26)

with 0.5 arbitrarily chosen in (0, 1) to ensure that ∆n(p, δk,r,Σ) ⊆ ∆n
k,r for all k ∈ N. Note that

δk,r ≥ 0 for all k ∈ N since ∆n(p, 0,Σ) = {p} ⊂ ∆n
k,r. The aim of the following is to show that

δk,r > 0 for all k ∈ N.

Let k ∈ N. We examine two cases. First, suppose that, in the first k searches of ξ(r,p), no

ties are encountered. Then, it is possible, in any direction, to move a small enough (Euclidean)
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distance in ∆n away from p and not disrupt the order of the Gittins indices in (2) that generate

the first k searches of ξ(r,p). Therefore, we may choose δ > 0 such that B(p, δ) ⊂ ∆n
k,r. It follows

that ∆n(p, δ,Σ) ⊂ ∆n
k,r, and hence that δk,r ≥ δ/2 > 0.

Second, suppose that, in the first k searches of ξ(r,p), we do encounter ties between boxes.

Suppose such a tie involves b boxes. By (2), whilst the order of the next b boxes searched may

depend on the tie-breaking rule, the set of b boxes searched will not. Therefore, after the tie has

been broken, the Gittins indices in (2) will be the same no matter how the tie was broken. Hence,

it is possible, in any direction, to move a small enough (Euclidean) distance away in ∆n from p

and not disrupt the order of the Gittins indices that generate the first k searches of ξ(r,p) at any

point where there is not a tie between boxes. It follows that we may choose δ > 0 such that, for

any x ∈ B(p, δ), any Gittins search sequence against x differs only in the first k searches to ξ(r,p)

for those searches where ξ(r,p) is in the process of breaking a tie. Now suppose additionally that

x ∈ ∆n(p,Σ), so x ∈ ∆n(p, δ,Σ). Since x ∈ ∆n(p,Σ), when a tie is reached by ξ(r,p), if we instead

were following a Gittins search sequence against x, the Gittins indices of any boxes involved in the

tie will either still be tied, or lie in the ordering determined by σ for all σ ∈ Σ. Therefore, since

r contains only elements of Σ, the Gittins search sequence against x that breaks ties using r will

break the tie using the same preference ordering as ξ(r,p), so will be identical to ξ(r,p) for the

first k searches. In other words, ∆n(p, δ,Σ) ⊂ ∆n
k,r, and hence δk,r ≥ δ/2 > 0.

Now we have shown δk,r > 0 for all k ∈ N, we are in a position to finish the proof in a similar

style to Lemma 6. Write δ∗r ≡ limk→∞ δk,r, and let {xa : a ∈ N} be a sequence in ∆n(p,Σ) with

lima→∞ xa = p. There are two cases.

First suppose that δ∗r > 0. Let x ∈ ∆n(p, δ∗r ,Σ); then x ∈ ∆n
k,r for all k ∈ N, so the Gittins

search sequence against x which breaks ties using rule r is identical to ξ(r,p). It follows that f is

constant on ∆n(p, δ∗r ,Σ) when its first argument is fixed at r. Furthermore, since lima→∞ xa = p,

there must exist A such that xa ∈ B(p, δ∗r) for all a ≥ A. Yet, since {xa} is a sequence in ∆n(p,Σ),

we also, for all a ≥ A, have xa ∈ ∆n(p, δ∗r ,Σ) and hence f(r,xa) = f(r,p) for any r with all

elements in Σ; proving the result for the first case.

Second, suppose that δ∗r = 0. As in the proof of Lemma 6, since {xa} has limit p and, for any

k ∈ N, δk,r > 0, there must exist a smallest number gr(k) ∈ N such that every term in {xa} after

xg(k) belongs to the ball B(p, δk,r). Further, since {xa} is a sequence in ∆n(p,Σ), every term in
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{xa} after xg(k) also belongs to ∆n(p, δk,r,Σ). Formally, for any k ∈ N, we write

gr(k) ≡ min{A : xa ∈ ∆n(p, δk,r,Σ), a ≥ A}. (27)

Note from (26) that since ∆n
k+1,r ⊆ ∆n

k,r, we have δk,r ≥ δk+1,r. It follows that B(p, δk+1,r) ⊆

B(p, δk,r), and hence gr(k) ≤ gr(k + 1) for all k ∈ N, so the sequence {gr(k) : k ∈ N} increases

weakly. An identical argument to that in the proof of Lemma 6 for {xg(k)} can be applied to

{xgr(k)} to show that limk→∞ xgr(k) = p.

By the definitions in (26) and (27), we have xgr(k) ∈ ∆n(p, δk,r,Σ) ⊆ ∆n
k,r. Recall ξ(r,x) is

the Gittins search sequence against x which breaks ties using rule r. Since gr is increasing and

xgr(k) ∈ ∆n
k,r, as k increases, the first time when ξ(r,xgr(k)) and ξ(r,p) differ becomes increasingly

later and later into the search. Hence, no matter where the hider is hidden, the effect on the expected

time to detection of this difference decreases to 0. Therefore, u(i, ξ(r,xgr(k))) → u(i, ξ(r,p)) as

k →∞, i = 1, . . . , n. Combined with limk→∞ xgr(k) = lima→∞ xa = p, we have

lim
k→∞

f(r,xgr(k)) = lim
a→∞

f(r,xa) = f(r,p),

for any r with all elements in Σ, proving the result for the second case.

B Gittins’ Proposition 8.5 Extension

For any (pure or mixed) search strategy θ and i, j ∈ {1, . . . , n}, write Di,j(θ) ≡ u(i, θ)− u(j, θ). If

Di,j(θ) = 0 for some i, j ∈ {1, . . . , n}, we say θ equalizes boxes i and j. Let θ1 and θ2 be search

strategies, and choose i, j ∈ {1, . . . , n} such that Di,j(θ1) ≤ 0. Then, by direct computation, it is

easy to show that there exists a mixture of θ1 and θ2 that equalizes boxes i and j if any only if

Di,j(θ2) ≥ 0.

Let p∗ be an arbitrary optimal hiding strategy. Recall from the notation of Section 4 that

ξσ,p∗ is the Gittins search sequence against p∗ that breaks every tie encountered using σ; write

ξσ ≡ ξσ,p∗ . When n = 2, we have ĈB
p∗ = {ξ12, ξ21}, where ξ12 (resp. ξ21) breaks any tie in favor of

box 1 (resp. box 2). The proof of Gittins’ Lemma 8.4 shows that D1,2(ξ12) ≤ 0 and D1,2(ξ21) ≥ 0.

In other words, there exists a mixture θ∗ of ξ12 and ξ21 which equalizes boxes 1 and 2; by Theorem

12, θ∗ is optimal for the searcher.
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By extending Gittins’ method to an n-box problem, for any i, j ∈ {1, . . . , n}, we can show that

Di,j(ξi···j) ≤ 0 and Di,j(ξj···i) ≥ 0, where x · · · y is any permutation of {1, . . . , n} with first element

x and last element y. If either of these two Di,j terms is equal to 0, then the corresponding search

sequence equalizes i and j. Otherwise, since, for any ξ ∈ CB
p∗ , Di,j(ξ) must lie one side of 0, there

exists a mixture of ξ and either ξi···j or ξj···i that equalizes boxes i and j. Therefore, many mixtures

of pairs of sequences in CB
p∗ can be constructed that equalize boxes i and j.

To obtain an optimal search strategy using Theorem 12, we need a mixture of elements of CB
p∗

that equalizes all n boxes. Yet, problems occur when a third box, say k, is introduced. Suppose

θ1 and θ2 both equalize boxes i and j; then, any mixture of θ1 and θ2 that equalizes boxes i and

k (or j and k) will equalize boxes i, j and k. However, there is no guarantee that Di,k(θ1) and

Di,k(θ2) will have opposing signs, so there is no guarantee that such a mixture exists. Whilst we

managed to prove that such θ1 and θ2 with Di,k(θ1) ≤ 0 ≤ Di,k(θ2) exist when n = 3 (thus finding

an optimal search strategy for the three-box case), the proof cannot be generalized to n ≥ 4.
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