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ABSTRACT 

Tropical montane forests are fragile ecosystems that provide a wide range of 

ecosystem services such as hydrological services, protection of biodiversity, and a 

contribution to climate change mitigation, yet they face degradation as well as losses 

due to deforestation. Deforestation poses a major threat yet whether these tropical 

montane forests recover from these changes is not well understood, especially for 

African montane forests. This study assessed rates of deforestation, and recovery 

using remote sensing of two important tropical montane forests of East Africa: the Mau 

Forest complex and the Mount Elgon forest. An in-depth study of aboveground 

biomass, species diversity and richness, and soil carbon and nitrogen stocks were 

conducted for the Mau forest complex. To conduct the detailed study, 47 forest plots 

were established to collect data subsequently used to calculate the rate of recovery of 

the aboveground biomass (AGB) and species recovery in 3 blocks of the Mau forest 

complex. From the same plots, soil samples were collected to assess the response of 

soil carbon (C) and nitrogen (N) stocks to 60 cm of soil depth from the different 

recovery stages.  

This study found that 21.9% (88,493 ha) of the 404,660 ha of the Mau forest Complex 

was lost at an annual rate of -0.82% yr-1 over the period between 1986-2017. However, 

18.6% (75,438 ha) of the forest cover that was cleared during the same period and is 

currently undergoing recovery. In the Mt Elgon forest, 12.5% (27,201 ha) of 217,268 

ha of the forest cover was lost to deforestation at an annual rate of -1.03 % yr-1 for the 

period between 1984 - 2017 and 27.2% (59,047 ha) of the forest cover that was lost 

is undergoing recovery. The analysis further revealed that for the Mau forest complex, 

agriculture (both smallholder and commercial) was the main driver of forest cover loss 

accounting for 81.5% (70,612 ha) of the deforestation, of which 13.2% was due to 
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large scale and 68.3% was related to the smallholder farming. For the Mt Elgon forest, 

agriculture was also the main driver of forest loss accounting for 63.2% (24,077 ha) of 

deforestation followed by the expansion of human settlements that contributed to 

14.7% (5,597 ha) of forest loss. For the aboveground biomass (AGB), it was found 

that AGB recovered rapidly in the first 20 years at an annual rate of 6.42 Mg ha-1, but 

the rate of recovery slowed to 4.67 Mg ha-1 at 25 years and 4.46 Mg ha-1, at 30 years 

of age. At 25 years, the mean AGB (198.32 ± 78.11 Mg ha-1) was statistically 

indistinguishable from the mean AGB in the old growth secondary forest (282.86 ± 

71.64 Mg ha-1). Stem density, species diversity, and richness (i.e., Evenness index, 

Shannon’s index, and Simpson’s index) did not show any significant changes with the 

recovery stages of the secondary forest, although there existed a significant variation 

between the young secondary forests of age below 15 years from the old growth 

secondary forests. The study further found that, unlike the AGB and aboveground 

carbon (AGC), the soil C and N stocks were not significantly different across the 

recovery periods with mean soil C in the youngest forest  184.1 ± 41.0 Mg C ha-1 and 

old growth secondary forest as 217.9 ± 51.8 Mg C ha-1, the N stocks in the youngest 

forest was 16.4 ± 4.8 Mg N ha-1 and 20.1 ± 3.9 Mg N ha-1  for the old growth secondary 

forest. 

The findings of the study indicate that these tropical montane forests of East Africa are 

under threat resulting from forest clearance and deforestation. The forest AGB 

recovers after 25 years while the tree species richness and diversity, soil C and N 

stocks do not change significantly with the recovery stages. The effects of 

disturbances i.e., forest fire, charcoal burning, grazing (livestock), elephant damage, 

and fuelwood collection on the soil C and N stocks within the different recovery stages 

were not significantly different between old growth secondary forests and the other 
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recovery stages. These findings contribute to the knowledge on the response of the 

tropical montane forest of East African to pressures of forest clearance and 

deforestation. 
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An aerial view of the section of Mau Forest in Southwestern Mau Forest showing the forest and the neighbouring 

largescale farms [photo by Patrick Sheperd/CIFOR] (a), Mara River inside Mau Forest complex (b) and forest stand 

in a Mature Forest plot in Southwestern Mau Forest (c). Photos b and C were taken during the field work in March 

2019. 
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1.1. Background 

Forests account for 31% of the total land cover and provide vital ecosystem functions 

that sustain the biodiversity and minimize the effects of climate change (FAO, 2020; 

Potapov et al., 2021). The forests sequester and store large amounts of carbon in 

woody vegetation and soils which remains balanced depending on the stability and 

undisturbed ecosystem functioning (Houghton, Byers, and Nassikas, 2015; Pugh et 

al., 2019). Of the global forest cover, tropical forests cover 45% i.e. both tropical 

lowland with 87% and tropical montane forests 13% of the forest area (FAO, 2020; 

Salinas et al., 2021).  

Tropical montane forests (TMFs) are characterized by numerous endangered species 

and are reported to be one of the major reservoirs of carbon (Cuni-Sanchez et al., 

2021). Yet these forests face severe alteration in structure and composition as a result 

of disturbance and are undergoing recovery (Ding, Zang, Lu, and  Huang, 2017; 

Edwards, Massam, Haugaasen, and  Gilroy, 2017). Forest disturbance is a broad term 

that refers to discrete events that change the physical structure and composition of the 

forest ecosystem. The events may encompass changes in forest canopy cover leading 

to gaps that may vary spatially depending on the cause that may be both natural and 

anthropogenic. The changes in the canopy may be due to the removal or clearance of 

trees within the forest as a result of the disturbance events (Sasaki and Putz, 2009). 

Different criteria are used to determine whether an existing landscape is classified or 

defined as a forest for example according to the United Nations Framework 

Convention on Climate Change (UNFCCC), a forest comprises of an area between 

0.05 – 1 ha characterized with between 10 – 30 (%) canopy cover and between 2 – 5 

m height of trees (Asner, 2013; Sasaki and Putz, 2009). However, according to the 

Food and Agriculture Organization of the United Nations (FAO), a forest may be 
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defined by 40% canopy cover with trees that are 5 meters tall. Over a period of time, 

forest clearance may alter the structure and composition of the forest ecosystems 

(Johnstone et al., 2016; Mohandass, Campbell, Hughes, Mammides, and Davidar, 

2017), yet it remains within the definition of forest hence collectively referred to as 

disturbance (Shapiro et al., 2021). Globally, the TMFs face clearance due to both 

natural processes for example drought and anthropogenic processes such as 

deforestation, forest fires, logging, and other forms of degradation (Gallegos et al., 

2016; Suescún et al., 2017; Vásquez-Morales et al., 2017)  

Across sub-Saharan Africa, the TMFs have experienced severe deforestation, 

logging, forest fires, and encroachment due to agriculture expansion (DeVries, 

Verbesselt, Kooistra, and Herold, 2015; Vollstädt et al., 2017) causing changes in 

forest composition and functioning (Bussmann, 2001; Jung et al., 2017). In order to 

sustainably manage these forest ecosystems, the understanding of the rate of 

clearance, deforestation, and rate of forest recovery is essential. Also, the 

understanding of the relationship between soil physical and chemical properties plays 

important role in the recovery process especially species recovery, abundance, and 

coexistence (Long et al., 2018).  

In East Africa, the Mau forest complex and Mt Elgon forest are one of the major TMFs 

that have faced intense processes of forest disturbance (Brandt et al., 2018). Yet, the 

forest provides critical ecosystem services such as the provisioning of water to urban 

and rural populations (Jiang, Bamutaze, and Pilesjö, 2014; Kanui, Kibwage, and 

Murangiri, 2016). The forest benefits the local communities with essential household 

products (Langat, Maranga, Aboud, and Cheboiwo, 2016). 
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1.1.1. Tropical Montane Forests (TMFs) 

Tropical Montane Forest (TMF) are rainforests that are found in areas with varying 

elevation and are reported to be the world’s high biodiversity hotspots (Richter, 2010; 

Salinas et al., 2021). In East Africa, the TMFs are found in areas with minimum 

elevation of 800 m and are characterised with Afroalpine vegetation from over 1,000 

m elevation (White, 1983). The TMFs ecosystems harbour various and unique species 

both flora and Fauna, for example in East Africa, the TMFs are characterised with 

natural vegetation types ranging from savanna to cloud forests and alpine vegetation, 

they provide habitat for approximately 3,000 species of plants and animal (Hemp and 

Hemp, 2018; Wang and Gamon, 2019) 

The TMFs of East Africa grow under specific environmental constraints notably 

elevation, rainfall, and human interaction (Table 1-1) 

Table 1-1: Environmental constraints/characteristics of the Tropical Montane forests of East Africa  

Constraint/Characteristics Range Reference 

Elevation > 800 m White (1983) 
  White (1983) 
Temperature 10 °C – 30 °C  
   
Rainfall 1,000 mm which varies with Inter – 

Tropical Convergency Zones (ITCZ) 
White (1983) 

Vegetation At lower elevation, the dominant 
vegetation is forest and higher 
altitude, they are characterised with 
Alpine vegetation composed of heath 
and moorlands 

White (1983) 

 

The tropical montane forests of East Africa have historically been subjected to forest 

cover loss. In the recent decades, the governments have made efforts to conserve 

these forests, yet they still face disturbance from the local communities. Prior to the 
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1980’s, the land had been allocated to the local settlements as a result of colonial 

government policies. 

The tropical montane forests of East Africa offer various benefits to the local 

community especially, provision of fuelwood, timber, poles etc. At national level, they 

offer income in terms of tourism and indirectly providing economic resilience to the 

countries through value addition (Crafford and Strohmaier, 2012). Globally, the TMFs 

offer ecological benefits especially their contribution to the regulation of climate by 

sequestering and storing the carbon (Hofer and Zingari, 2014). 

1.1.2. Disturbance and Recovery of the tropical montane forests (TMFs) 

Bawa and Hadley (1991) defined disturbance in terrestrial forest ecosystems as ‘a 

relatively discrete event causing a change in the physical structure of the environment’. 

Disturbance shapes the forest's systems, by influencing the composition, structure, 

and functional process (Dale et al., 2001). The disturbance is a widespread 

phenomenon in tropical montane forests (Crausbay and Martin, 2016; Panayotov et 

al., 2017), this is attributed to both natural (fire, landslides, high energy windstorms, 

and natural die out) and human activities that have changed the dynamics in the recent 

years (Frelich, 2002; Holl, 2012). Whereas clearance as a result of wind has been 

identified in most temperate forests (Holeksa et al., 2016; Peterson, et al., 2016; Nagel 

et al., 2017), meanwhile drought and climate conditions from wet and humid to dry 

conditions (Pederson et al., 2014).  

The term forest disturbance is related to forest degradation which refers to the 

reduction of the capacity of a forest to provide goods and services (Simula, 2009), 

meanwhile Schoene et al., (2007) defined forest degradation as “changes within the 

forest which negatively affect the structure or function of the stand or site, and thereby 
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lower the capacity to supply products and/or services”. Forest degradation is a direct 

result of disturbance that varies with extent as well as severity (Schoene et al., 2007).  

Several studies such as Seidl et al., (2017) have provided a synthesis of climate 

change effects on disturbance agents, with a view of how they influence forest 

disturbance. The agents mainly focus on the natural drivers of forest disturbance 

especially, wind, fire, insects, and pathogens among others. Most of the effects were 

evaluated under three different pathways i.e., direct, indirect, and interaction-related 

effects of climate change on forest disturbance. However, the study of Seidl et al., 

(2017) was undertaken at a global scale as compared to the study in East Africa and 

specifically the Mau forest complex and Mt Elgon forest that face disturbance from 

anthropogenic pressures though little is known about the extent to which this has 

affected the forest cover. While Seidl et al., (2014) also noted that forest disturbance 

due to climate change has an impact on the capacity of forests to sequester and sink 

carbon, the main drivers of disturbance cited in the study of Seidl et al., (2014) were 

forest fires, wind, and bark beetles. The effects of disturbance do not only affect carbon 

stocks but wider ecosystem services and in the Mau forest complex and Mt Elgon 

forest, little is known about the effects of natural disturbance on carbon and ecosystem 

services and the overall response of the ecosystem. Thorn et al., (2017) also 

investigated the effects of natural disturbance due to windstorms, bark beetle and 

consequently assessed the salvage logging effects on biodiversity and found out that, 

the disturbance resulting from salvage logging provides a strategy to keep the forest 

ecosystem natural. Salvage logging allows logging of trees within forest area that has 

been damaged by natural disturbances and maximizes economic return as well as 

pest control that would have been lost as aresult of the disturbance (Mehr, Brandl, 

Kneib, and Müller, 2012; Noss and Lindenmayer, 2006). In areas where salvage 
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logging was not undertaken, natural succession took place. In the case of the Mau 

forest complex and Mt Elgon forest, it is believed that the main drivers of forest 

disturbance or clearance are anthropogenic in nature especially change in land use 

where the forest is cut for agricultural expansion, logging and charcoal burning as 

reported by Were et al., (2013). These activities are however detrimental to the forest 

cover rather than a strategy to manage the forest while maximizing the economic 

returns as reported by Thorn et al., (2017). It should therefore be noted that the study 

of Thorn et al., (2017) was conducted in a temperate forest meanwhile the current 

study area is in a tropical montane forest that has a different physiological 

characteristic. Meanwhile, Rutten et al., (2015) carried out a study of the forest 

structure and composition in both selectively logged and non selectively logged forests 

to assess the effects of selective logging approach in Mt Kilimanjaro forest, a montane 

forest in East Africa. The findings of the study revealed that, the selectively logged 

forest had more stem diversity compared to those that were not selectively logged. 

Meanwhile, Gourlet-Fleury et al., (2013) revealed that selective logging and thinning 

increased AGB and recovery of central African tropical lowland rain forests, however, 

the current study was carried out in a tropical montane forest as opposed to a lowland 

rain forest in central Africa.  

According to Crafford et al. (2012) large revenues are generated from illegal 

deforestation from Kenya’s montane forests and this is seen as an incentive to 

deforestation. Interventions to reduce and reverse the impacts of degradation and 

clearance of montane forests for example afforestation and reforestation are vital to 

improving the provision of ecosystem services such as provision of hydrological 

services (Trabucco, Zomer, Bossio, van Straaten, and Verchot, 2008). Petursson et 

al., (2013) conducted an institutional analysis of the deforestation process within the 
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protected areas of Mt Elgon forest and reported that despite the establishment of 

protected areas in the Mount Elgon forest, deforestation has persisted. The main driver 

of the persistent deforestation in the Mt Elgon forest was illegal logging (Petursson et 

al., 2013). Petursson et al., (2013) further revealed that deforestation possesses 

ecological effects as well as social conflicts and demonstrated that the deforestation 

in the protected areas was driven by institutional and political factors. Frolking et al., 

(2009) also identified major processes that are collectively referred to as forest 

disturbance in a forest ecosystem as indicated in Tab. 1-2. 

Table 1-2: Major drivers/agents of forest clearance and deforestation 

Agent/Type Description Cause 

Logging Clear cut, selective cut, reduced impact; 

Logging for poles, timber, and  fuel wood 

(firewood) 

Anthropogenic 

Charcoal burning Cutting of trees for making charcoal Anthropogenic 

Land conversion Permanent (land remains non-forest use), 

temporary (land cultivated for few years, 

regeneration, or regrowth) focusing on 

agriculture both large scale and smallholder. 

Anthropogenic 

Urban and Road 

construction 

Urban expansion and infrastructure 

development like roads 

Anthropogenic 

Fires Most fires are associated with anthropogenic 

activities. 

Natural/ 

Anthropogenic 

Firwood Collection Locals collecting and cutting down trees for fire 

and fuelwood for domestic use 

Anthropogenic 

Grazing (Livestock 

and Elephants) 

Livestock grazing by the local community as 

well as Elephant damage resulting from 

grazing of the Elephants and wildlife  

Natural/ 

Anthropogenic 

Much as forest clearances resulting from natural and anthropogenic agents have been 

researched across various regions, spatial and temporal dynamics vary with different 

forest biomes (Frolking et al., 2009). In Africa, studies on forest clearance were 

undertaken in the Democratic Republic of Congo and Tanzania (Ahrends et al., 2021; 

Shapiro et al., 2021) with limited information regarding the assessment of forest 

clearance in the TMFs. Potapov et al., (2012) also quantified forest cover loss in the 
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Democratic Republic of Congo and discovered that between the years 2000 – 2010, 

total gross forest cover loss increased by 13.8% with a forest loss rate of 0.4% in 

protected areas. Meanwhile, similar studies conducted in Mt Elgon, where the role of 

protected areas and changing contexts (management and policies) were evaluated 

and the findings revealed that protected areas continued to lose forest cover (Sassen 

et al., 2013). It should be noted that these studies did not consider annual change 

analysis to provide information on the annual rate of forest cover change resulting from 

clearance and how they recover over time.  

The time taken by a forest to recover following a clearance differs by region. Cole et 

al., (2014) evaluated the recovery and resilience of tropical forests following a 

clearance and discovered that most forests in Central America and Africa recover 

faster compared to those from South America and Asia following exposure to natural 

large infrequent clearances as opposed to post-climate and human impacts. The study 

of Cole et al., (2014) also revealed that site-specific higher frequencies of clearance 

elevates recovery rates which shows the resilience in an exposed forest to past 

deforestation. However, the study by Cole et al., (2014) focused on the influence of 

climate (rainfall /precipitation) as the main natural driver of clearance and burning, 

forest clearing for agriculture as the main anthropogenic agents of the forest 

clearance. It should further be noted that the study of Cole et al., (2014) was conducted 

at a continental scale and used a standardized rate of forest clearance events as 

compared the current study in the Mau forest complex and Mt Elgon forest which are 

at ecosystem scale which requires a clear investigation of past clearance and recovery 

rates at a local scale. 
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Rosa et al., (2015) assessed the relationship between the agents of land cover change 

associated with the forms of land cover degradation, the study focused on three 

landscape metrics to model forest transitions (i.e., forest to deforested, regeneration 

to deforested, and deforested to regeneration) in Amazonia. The study revealed that 

the landscape in the Amazonia had shown a strong decrease in forest cover which 

suggested and demonstrated the relevance of using land cover change models that 

could be relevant to understand the forest cover change in the Mau forest complex 

and Mt Elgon forest that are believed to have changed over time.  

Forest clearance and deforestation in Eastern Africa dates to the 1990s and varies 

from different localities within the region depending on the demands of the 

communities as well as government policies. According to Mitchell (2010), practical 

management of forests requires the understanding of the past dynamics leading to 

forest cover clearance. Various studies have cited agricultural expansion as the main 

driver of tropical forests clearance as the forest land are seen as the main source of 

new agricultural lands. Due to the growing population, there has been an increase in 

the demand for the agricultural products as well extraction from the forests products 

for subsistence purposes (Choksi, 2019; Gibbs et al., 2010) 

1.1.3. Approaches for mapping forest disturbance, degradation, and 

recovery 

Approximately 70% of the earth is covered with vegetation which forms the most vital 

component of the ecosystem (Jensen, 2007). Remote sensing tools have widely been 

used for assessing and quantifying forest cover change i.e., clearance, and detection 

of loss due to deforestation, and they provide an affordable assessment of forest cover 

change (Mitchell, Rosenqvist and Mora, 2017; Cohen et al., 2020; De Marzo et al., 
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2021). The availability of satellite data at global level particularly Landsat data has 

come with new developing trends in vegetation monitoring at local and regional scales 

(Cohen and Goward, 2004).  

To manage the forest ecosystem sustainably and effectively, there is a need for 

information on the trends and conditions of the forest. Given the change of land cover 

and forest, in particular, there is a need for consistent information on the forest change 

and this can be offered by the remote sensing tools (Achard et al., 2002). Several 

studies have used remote sensing particularly Landsat data for assessing and 

quantifying forest cover loss (Cohen et al., 2010; Goward et al., 2008; Hansen et al., 

2010; Pratihast et al., 2014). However, according to Frolking et al., (2009), space-

borne remote sensing approaches still have challenges for mapping forest clearance 

in areas with high land-use dynamics requiring frequent observation at least annually 

to capture high temporal clearances and cover loss events. Landsat data has been 

frequently used in annual and biennial temporal resolutions to map and monitor forest 

cover change (Cohen et al., 2010; Gu et al., 2016; Hermosilla et al., 2015). Cohen et 

al., (2010) detected trends in forest recovery and clearing using annual Landsat time 

series and they conducted validation using the TimeSync algorithm, and compared 

the results with LandTrendr (Kennedy, Yang, and Cohen, 2010). The TimeSync 

according to Cohen et al., (2010) in addition to change detection algorithm calibration 

and map validation also allows comparative exploration of the behavior of the spectral 

indices, masking of forest verse non-forest, and quantification of change transitions.  

Meanwhile (Huang et al., 2010) used a vegetation change tracker (VCT) algorithm for 

reconstructing recent history of forest distribution from available Landsat data. The 

VCT method is based on the spectral and temporal properties of the forest, stand 
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clearance, and post-clearance recovery process. These methods accordingly offer 

acceptable results about trends of forest degradation and recovery. 

Previous research has demonstrated that available Landsat data can provide near 

real-time monitoring of forest disturbance or forest change (Devries et al., 2013). To 

date, many applications have been developed to map forest disturbance and 

degradation, assess the recovery, and monitor overall change to forest cover. These 

approaches range from image to image change detection and time series analysis 

(Hirschmugl et al., 2017). However, most of the recent studies reported have mapped 

and detected forest clearance and cover changes from using remote sensing at global 

scale ( Hansen et al., 2013). There still exist gap in information on degradation at 

national and local scales (Hirschmugl et al., 2017). The reported approaches use the 

available multispectral Landsat data and detect the forest cover change from the 

spectral signatures. Fig. 1-1 indicates the spectral response of the three main features 

i.e. green vegetation (which includes forests, grass, and crops), soil, and water (Chen, 

Guerschman, Cheng, and Guo, 2019). The features are either directly classified using 

the traditional classification algorithms (for example Maximum Likelihood) or indirectly 

detected from the indices like NDVI, EVI LAI among others. The direct detection of 

forest cover resulting from clearance may require use of fine resolution imagery (i.e., 

Landsat with 30 x 30 m resolution) which can detect changes in forest cover (Hansen, 

et al., 2008).  
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Figure 1-1: Spectral response of vegetation, soil and water adopted from Chen et al., (2019). To classify 
forest, bands 1 (Blue), 2 (Green), 3 (Red), and 4 (Near-infrared) are used in a combination of 4 – 3 – 2 
(false-color composite) for the standard Red, Green and Blue color guns. 

Baldyga et al., (2007) assessed land-use change in the Mau forest complex and 

concluded that there is a significant change in land use across a range of spatial 

scales. However, the study of  Baldyga et al., (2007) used bi-temporal images to 

determine the land-use change in River Njoro watershed. The assessment involved 

analysis of bi-temporal satellite data. Past research studies undertaken in the Mau 

forest complex and Mt Elgon forest focus on land use and land cover change over two 

different periods usually between decadal time spans. Yet, there is a need for annual 

information on the trends of forest change for sustainable management.  

1.1.4. Rate of recovery of the Tropical Montane forests (TMFs) 

Tropical montane forests are reported to be regenerating and rapidly expanding with 

much debate on how they replicate old-growth (mature) intact forests (Goosem et al., 

2016). In this current study, forest recovery refers to the re-establishment of forest 

structure and composition following clearance for instance redevelopment of forest 

biomass and canopy structure. The rate of recovery of the components depends on 

the magnitude and severity of the stand and structural replacement of the events for 
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example clearance, logging, fire, windstorms (Frolking et al., 2009). The recovery 

process can be measured from the structure and composition i.e. the return of 

biomass, stem density, basal area as well as species richness and diversity after the 

degradation process (Hector et al., 2011; Lin et al., 2015). The processes of recovery 

may also follow different trajectories depending on nature of degradation i.e., in cases 

of fire, forest clearances are usually followed by a limited pioneer species that may be 

influenced by small seed dispersals. The rate of recovery can also depend on the pre-

clearance situation, the processes of seedling establishment and nutrient cycling, and 

the inherent productivity of the land (Johnstone and Chapin, 2006). 

1.1.5. Belowground carbon responses to clearance and recovery of 

TMFs. 

Forest soils have played the role of a sink of carbon with association to changes in 

forest land management (Kucuker, Guney, Oral, Copty, and Onay, 2015). Forest 

clearance has been reported to have significantly decreased soil C and N 

concentrations (Guan, Tang, Fan, Zhao, and Peng, 2015). Conversion of the land 

cover has a great influence on the soil C and N concentrations (Thomas, Hao, and 

Willms, 2017).  Understanding belowground or soil C response to recovery and 

clearance in forest areas is essential for understanding the best approaches that can 

be used in the restoration process and policy formulation in order to maximise the C 

sink and storage.  

1.2. The Tropical montane forests of East Africa 

The East African montane forests approximately cover a total area of 65,500 Km2 

(25,300 square miles), from Mt Kinyeti in the Imatong mountains of Southern Sudan, 

extending towards south to Mt Moroto in the north eastern Uganda and Mt Elgon that 
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lies on the Uganda – Kenya border (WWF, 2021). In Kenya, the montane ecoregion 

follows the mountains east and west of the eastern rift valley (Fig. 1-2) with the 

associated volcanoes for example the Aberdare range, Mt Kenya, the Mau complex, 

Mt Kulal, Nyiru, and the Nguruman escarpments of Kenya. The region stretches to Mt 

Kilimanjaro, Meru, Ngorongoro, Mbalu highlands, and Mt Hanang in northern Tanzania  

(WWF, 2007).   

The Mau forest Complex and Mt Elgon forest that have been selected in this study are 

faced with long history of Management and use. In 1930s the Mau forest was 

considered as crown land under the colonial government and then made a National 

Reserve in 1945 and officially gazetted in 1954 as a Forest Reserve under the Forest 

Act (Klopp and Sang, 2011; KFS, 2022). Similarly, the history of Mount Elgon forest 

can be traced to the 1900 colonial East Africa where Mt Elgon was broadly referred to 

as a protected area which was classified as a game reserve and forest reserve where 

the former focused on wildlife and the later focused on the forest resources 

(Petursson, Vedeld and Sassen, 2013). 
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Figure 1-2: The global tropical forest region (A) and the East African Montane forest region (B). The five 
major Water towers of Kenya which are also classified as the Tropical Montane forests of East Africa: 
the Mau forest Complex (1), Mount Elgon forest (2), the Cherang'any Hills (3), the Aberdare ranges and 
Aberdare national park (4) and Mount Kenya forest and Mount Kenya National park (5); source: 
Patterson (2012).  

 

 

(A) 

(B) 
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1.2.1. The Mau forest complex 

The Mau forest complex is located in the rift valley region of Kenya and it is the largest 

water tower (major water catchments areas) of Kenya which stores water during the 

rainy season and releases it in the dry season (Nabutola, 2010a). The forest is also 

the largest closed-canopy montane forest in Kenya. The Mau forest ecosystem 

comprises several forest blocks namely from Narok, Masai Mau, Eastern and Western 

Mau, Southern to South West Mau as well as Transmara regions with the major 

catchment area for 12 rivers draining into lake Baringo, Nakuru, Turkana, Natron, and 

the trans-boundary Lake Victoria shared by Kenya, Uganda, and Tanzania (Olang and 

Kundu, 2011; Chrisphine, Maryanne and Mark, 2015; Boitt, 2016). Olang and Kundu 

(2011) also reported that the Mau forest complex region receives an annual rainfall of 

1300 mm without the consideration of the climate extremes; the North-South 

movement of Inter - tropical Convergence Zones (ITCZ) that is modified by the relief 

features influences the climate. The Mau forest complex region is characterised with 

cold to hot and humid weather conditions. The lower part of the region is characterised 

with arid and semi‐arid. The mean annual rainfall averages of 750 mm are recorded 

from  December to March (KFS, 2021; WWF, 2021). The forest provides habitat to key 

biodiversity endemic species such as African olive (Olea europaea subsp. cuspidata), 

Dombeya torrida (tree species) and shrubs (KFS, 2021) and for birds species such as 

Hieraaetus ayresii, Stephanoaetus coronatus, Sheppardia polioptera among others  in 

Kenya (BirdLife International, 2021). 

1.2.2. Mt Elgon forest  

Mt Elgon forest is located approximately 100 Km northeast of Lake Victoria (Penny 

Scott, 1998) and it is a protected area that covers approximately 2045 Km2 (Mukadasi, 

Kaboggoza, and Nabalegwa, 2007). It is a volcanic mountain with five major peaks 
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located in Eastern Uganda and Western Kenya at approximately 01°07′06″N and 

34°31′30″E. The five major peaks include; Wagagai with 4,321 meters (m) above sea 

level, Mubiyi (4,211 m), Masaba (4,161 m) all these are predominantly located in 

Uganda meanwhile Koitobos (4,222 m) is in Kenya and Sudek which stands at (4,302 

m) is located on the Kenya/Uganda border (Wielochowski and West Col Productions., 

1989). Uganda Wildlife Authority currently manages Mt Elgon forest and the national 

park since the merging of the Uganda National Parks (UNP) with the Game 

department. 

The montane forests of East Africa have been widely reported to be facing the 

pressure of clearance and degradation due to agricultural expansion and demand for 

fuel wood due to the rising population (Sassen  et al., 2013; DeVries et al., 2015). They 

experience severe selective tree logging hence changes in the species composition 

(Bussmann, 2001). Both Mt Elgon forest and the Mau forest complex face intense 

anthropogenic pressures and degradation (Buyinza and Nabalegwa, 2008; Mugagga 

et al., 2012). According to (GoK, 2012; KFS, 2017), the degradation is mainly induced 

by the communities that live adjacent to the forests. The reported anthropogenic 

pressures include deforestation to convert the land use from forestry to other land uses 

like subsistence farming, charcoal burning, encroachment for settlement (Chrisphine 

et al., 2015; Jacobs et al., 2017), and poor land management have undermined the 

ability of these landscapes to provide critical ecosystem services like support to the 

hydrological cycle (Jiang et al., 2014; Kanui et al., 2016). The TMFs of East Africa 

have faced degradation i.e., fires, charcoal burning (Fig. 1-3) 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Mount_Elgon&params=01_07_06_N_34_31_30_E_type:mountain_scale:100000
https://tools.wmflabs.org/geohack/geohack.php?pagename=Mount_Elgon&params=01_07_06_N_34_31_30_E_type:mountain_scale:100000
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Figure 1-3: Fire outbreak in the Western Mau during the dry month (A) and Charcoal burning site in 
Western Mau (B) in the Mau forest complex. 

Several land cover change studies have been undertaken in the Mau forest Complex 

and Mt Elgon forests (Bailis et al., 2015; Baldyga et al., 2007; Olang and Kundu, 2011), 

but the influence and trends of the different drivers of forest cover change as well as 

the rate of forest loss are not well documented. Measures aimed at halting 

deforestation and restoring tree cover have been instituted in the past decade by 

stakeholders in the region (Kanui et al., 2016; Sassen et al., 2013). However, the 

information on the effectiveness of these measures in achieving sustainable forest and 

water management is lacking (KWTA, 2015). 

Sun et al., (2005) discovered that a reduction of forest Leaf Area Index (LAI) would 

increase streamflow in forested watersheds; this would consequently increase the 

ground water table in wetlands. MIKE SHE model was used to simulate the effects of 

land use and climate change on watershed hydrology (Lu, 2006), the results revealed 

that forest removal would cause water table levels to rise, however, the results in a 

wetland were not significant. It should therefore be noted that the study of Lu (2006) 

was conducted in the United States, although the montane forests of East Africa (the 

Mau forest complex and Mt Elgon forest) are water catchment to several streams and 

Lakes in East Africa (Joseck et al., 2016; Nabutola, 2010) 

A) B) 
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D’Almeida et al., (2007) has found out that deforestation in Amazonia shows a 

contrasting effect on the hydrological regimes. The condition and terrain of tropical 

montane forests have made them unique ecologically and hydrologically due to the 

terrain/altitude compared to low-lying tropical forests (Bruijnzeel, Scatena, Hamilton, 

Bubb, and Das, 2010). In addition, studies carried out to assess the relationship 

between forest cover change and hydrological regimes indicate that forest cover loss 

increases runoff and consequently supply of water (Boitt, 2016; Guzha, Rufino, Okoth, 

Jacobs, and Nóbrega, 2018; Luo et al., 2018; Zhang et al., 2016). 

The montane forests directly provide woody biomass inform of fuel wood, timber as 

well as poles which contributes positively to the national economy (Crafford, Rita, et 

al., 2012; WWF, 2005). The rift valley region of Kenya has undergone a massive land 

cover change in the past decades hence ecological changes due to agricultural 

activities particularly smallholder farming (Baldyga et al., 2007; Luke Omondi Olang, 

Kundu, Bauer, and Fürst, 2011).  

The Mt Elgon forest, shared by Uganda and Kenya, is also an important water 

catchment, with rivers draining into Lake Turkana and Lake Victoria. The Mt. Elgon 

conservation area covers areas under Uganda Wildlife Authority and Kenya Forest 

Service and the Kenyan Wildlife Service (Roussel and Daval, 2012). The Water 

Towers of Kenya and most notably Mau forest complex positively influence the 

economic resilience of Kenya as a country (Crafford, et al., 2012). The forest sector in 

Kenya provides various products that directly support the livelihood of the local 

communities such as the Ogiek who have settled around the Mau forest Complex 

(Langat et al., 2016) and the Sabaots ethnic community in Mt Kenya (Ongugo, 

Njuguna, Obonyo, and Sigu, 2001).  
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1.3. Aims of the study 

To assess the rate of clearance and recovery of the TMFs in East Africa, this research 

project aims to quantify the trends and rate of forest loss due to deforestation in the 

Mau forest complex and Mt Elgon forest, determine the rate of natural recovery of the 

forest i.e. structure and composition notably aboveground biomass, species diversity, 

and richness; assess the changes and response of soil physical and chemical 

properties i.e. soil C and N, soil organic matter (SOM), bulk density (BD). 

 In order to achieve the aims, remote sensing tools and techniques were used to 

quantify the rate of forest clearance and current trends of deforestation and forest 

recovery from the time since the forest was last cleared. In addition, the study also 

assessed the changes in soil physical and chemical properties in different recovery 

regimes in the montane forest of east Africa. To minimize the false classification, the 

current study used satellite imagery collected during the dry months in the Mau forest 

complex. The main goal of this study is to quantify the stage of forest degradation and 

clearance in in two montane forests of East Africa (Mt Elgon forest and Mau forest 

complex) and determine the rate of forest recovery in the Mau forest complex. 

1.3.1. Specific Objectives 

1. To assess the trend, rate of deforestation, and forest clearance in the Mau 

forest complex and Mt Elgon forest. 

2. To determine the rate of forest recovery (biomass and species) in the 

tropical montane forest of east Africa. 

3. To determine changes in C stocks, soil physical and chemical properties 

in different recovery regimes in the Tropical Montane forest of East Africa. 
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1.4. Overall thesis structure 

The thesis will be organized into five (5) chapters. The current chapter (1) contains the 

general introduction and background to the study; aims and objectives as well as the 

research questions.  

Chapter 2:  Focuses on the assessment of the rate of deforestation and forest 

degradation in the tropical montane forests of East Africa (the Mau forest complex and 

Mt Elgon forest) the specific objectives/research questions include:  

• To identify the areas where deforestation and forest clearing has occurred  

• To determine when the first and last deforestation took place  

• To assess and determine the annual rate of deforestation and recovery in the 

montane forests of east Africa. 

Chapter 3: Focuses on the determination of the rate of forest recovery in the tropical 

montane forest of East Africa. In this chapter, the study assessed how forest structure 

and composition recover after clearance and deforestation. The forest structural and 

compositional parameters measured include stand height (H), diameter at breast 

height (DBH), stand density, basal area (BA), aboveground biomass (AGB), species 

richness, and diversity across different recovery stages (stand age).  

Chapter 4: Focuses on the determination of the changes in soil physical and chemical 

properties in different recovery stages and quantifying soil C and N stocks. The soil 

properties include soil bulk density (BD), soil organic matter (SOM), soil pH, soil C and 

N concentration (N), soil C:N ratio, and disturbance index (DI).  

Chapter 5: Synthesizes and discusses the whole thesis and indicates how the key 

findings and objectives of the research study were achieved. It also indicates how the 
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findings of the research can be integrated into existing policies to improve forest 

monitoring and management as well as the conclusions.
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2. MAPPING DEFORESTATION AND RECOVERY OF TROPICAL MONTANE 

FORESTS OF EAST AFRICA 

 

 

Evidence of cutting down of trees for fuelwood, (a) and (b) Southwestern Mau Forest, collection of firewood and 

charcoal burning (C) in Transmara block in Mau Forest complex – Photographs taken during the field work in the 

Mau forest Complex in March 2019. 

  

(a) (b) 

(c) 
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Abstract 

Deforestation poses a major threat to the tropical montane forest ecosystems of East 

Africa. Tropical montane forests provide key and unique ecological and socio-

economic benefits to the local communities and host diverse flora and fauna. There is 

evidence of ongoing deforestation and forest clearance in these montane forests 

although estimates diverge among different sources suggesting rates of 0.4-3% yr-1. 

Quantifying deforestation rates and identifying areas that are affected by deforestation 

is critical to design conservation and sustainable forest management policies. This 

study quantified the rate of deforestation and forest recovery over the last three 

decades based on the available remote sensing data for the Mau Forest Complex and 

Mount Elgon forests in Kenya and Uganda using remote sensing imagery from the 

Landsat time series. This study presents trends in areas of forest loss, rates of 

deforestation, and forest recovery providing quantitative evidence that can be used for 

effective monitoring and management of these forests. With the analysis, classification 

accuracies of 86.2% and 90.5% and Kappa Coefficients of 0.81 and 0.88 were 

obtained for the Mau Forest Complex and the Mt Elgon forests, respectively. This 

study shows that 21.9% (88,493 ha) of the 404,660 ha of Mau forest was lost at an 

annual rate of -0.82% yr-1 over the period between 1986 - 2017, 18.6% (75,438 ha) of 

the forest cover that was disturbed during the same period and is currently undergoing 

recovery. In the Mt Elgon forest, 12.5% (27,201 ha) of 217,268 ha of the forest cover 

was lost to deforestation at an annual rate of -1.03 % yr-1 for the period between 1984 

- 2017 and 27.2% (59,047 ha) of the forest cover disturbed is undergoing recovery. 

The analysis further revealed that for the Mau forest Complex, smallholder and large-

scale agriculture were the main driver of forest cover loss accounting for 81.5% 

(70,612 ha) of the deforestation, of which 13.2% was as a result of large scale 
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agriculture and 68.3% was related to the smallholder agriculture. For the Mt Elgon 

forest, agriculture was also the main driver accounting for 63.2% (24,077 ha) of 

deforestation followed by the expansion of human settlements that contributed to 

14.7% (5,597 ha) of forest loss. This study provides new ecosystem wide estimates of 

the rate of deforestation for the Mau forest complex and Mt Elgon forest ecosystems. 

These rates are higher than previously estimated and this study identified areas where 

recent deforestation occurred, which provides a quantitative basis for forest restoration 

programs and to design conservation policies.  
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2.1. Introduction 

Deforestation poses a global challenge to humanity due to its contribution towards 

greenhouse gas (GHG) emissions to the atmosphere and the impact that forest loss 

has on the hydrological cycle globally. Forests regulate water flows in catchments by 

playing an important role in the interception of rainfall, reducing runoff, attracting 

rainfall through their high evapotranspiration rates, and contributing to condensation 

(Sheil, 2018; Sheil and Murdiyarso, 2009). Forests also contribute to cloud formation 

by releasing biogenic volatile compounds into the atmosphere, which accelerate 

condensation (Ellison et al., 2017), contrarily deforestation increases the surface 

temperature which contributes to increased evaporation and reduces 

evapotranspiration (Lawrence and Vandecar, 2015). Since 1990, an estimated total of 

420 million hectares of forests have been lost globally because of conversion to other 

land uses most notably agriculture and human settlements. Between 2015 and 2020, 

the global rate of deforestation was estimated at 10 million ha yr-1 down from 16 million 

ha yr-1 in the 1990s (FAO and UNEP, 2020). Between 2001 and 2019, forest clearing 

resulted in global gross GHG emission of 8.1 ± 2.5 GtCO2e yr−1, yet tropical forests 

contribute most (5.3 ± 2.4 GtCO2e yr−1) to the removal of atmospheric carbon dioxide 

(CO2) emissions (Harris et al., 2021).  

Despite the importance of tropical forests, their cover has dropped from 1,966 million 

ha in 1990 to 1,770 million ha in 2015 (FAO, 2015; Keenan et al., 2015; MacDicken, 

2015). Large areas of tropical forests have been deforested between 2000-2012 of 

which 20% were in Africa (Kim, Sexton, and Townshend, 2015; Mitchard, 2018). The 

tropical forests in sub-Saharan Africa are facing a rapid loss as a result of deforestation 

and degradation at an estimated annual conversion rate of approximately 0.4 to 0.5% 

yr-1 (Mayaux et al., 2005; FAO, 2015). The reported rapid loss of the forest land may 
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also be associated with the increasing demand for land for agriculture and human 

settlements which means that forests are the main target for conversion (Kissinger et 

al., 2012; Curtis et al., 2018). The rates at which forests are lost have been reported 

for global and continental scales, for example, by the Global Forest Change (GFC) 

platform and Global Forest Watch (Hansen et al., 2013). The GFC data shows forest 

gain and loss from 2001 and these forest cover change estimates provide the global 

perspective of the forest cover change with accuracy that differs largely by region. The 

usefulness of global datasets at a local scale has not been closely examined for East 

Africa in particular the Mau forest Complex and Mt Elgon forest (Hamunyela et al., 

2020), although evidence elsewhere suggests that GFC underestimates rates at a 

local scale (Milodowski, Mitchard, and Williams, 2017) and in Tanzania (Ahrends, et 

al., 2021). The GFC dataset (Hansen et al., 2013) provides estimates of the scale and 

magnitude of forest cover change as a gain or loss, and although these estimates are 

valuable there is a need to distinguish permanent losses due to deforestation and to 

identify areas under-recovery over time especially through forest clearing events i.e. 

fragmentation, logging, shifting cultivation or fires (Curtis et al., 2018; Grantham, 

Costa, Elsen, Laurance, and Watson, 2020). Reliable estimates for the rates of 

deforestation for Africa are lacking at both national or regional levels (Achard et al., 

2014). Understanding the magnitude and spatial distribution of deforestation hotspots 

is crucial to effectively monitor, sustainably manage, and protect tropical forest 

ecosystems (Hansen et al., 2008). 

In East Africa, the annual rates of deforestation at the national level are debated and 

estimated at 0.05% yr-1 (Kenya) for the period 1990 - 2010 and 0.4-3% yr-1 (Uganda) 

in 2016 (Mwangi, Cerutti, Doumenge, and Nasi, 2018). These rates are contentious 

and differences in estimates arise due to differences in forest types, measurements, 
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definitions of forest cover, and reporting methods (MacDicken, 2015). This study aims 

to contribute reliable estimates of forest change for East African montane forests, 

focusing on two important forests of Kenya and Uganda because of their ecological 

and socio-economic value to the whole region (Cavanagh, 2017; KEFRI, 2018; WWF, 

2007). The East African montane forests are found in moderate to high altitudes 

comprising of several separate mountain areas above 2,000 meters spanning from 

South Sudan through Uganda and Kenya to Northern Tanzania along the Rift valley 

(EAC, UNEP, and GRID-Arendal, 2016) as indicated in Figure 1-2.  

In Kenya and Uganda, the montane forests are referred to as the “Water towers of 

East Africa” because they play significant roles in the regulation of the water cycle 

(Nabutola, 2010). These “water towers” include the Mau Forest Complex, Mount 

Kenya, the Cherangani hills, Aberdare Range, and the Mt Elgon forest that borders 

both Uganda and Kenya (Kenya Water Towers Agency, 2015). These montane forests 

and especially the Mau forest complex and Mt Elgon forest face high risks of 

deforestation and forest clearance resulting from human encroachment (Brandt et al., 

2018; Sassen et. al., 2013; Mugagga et. al., 2012). Previous studies on these montane 

forests focused on the land-use change dynamics in a section or specific blocks of the 

Mau forest complex and the Mt Elgon forests with a focus on land cover and land-use 

change (e.g. Baldyga et al., 2007; Were et al., 2013). Although some studies such as 

Ayuyo and Sweta (2014); Kimutai and Watanabe (2016); Swart (2016) assessed land 

use and land cover change and the underlying drivers for the Mau forest complex, 

their findings do not report rates of deforestation, forest clearing and the rates of forest 

recovery. This study presents the latest estimates of deforestation and compares 

these two important forests in their dynamics of change, the underlying drivers of forest 

change, and the extent of forest recovery. Quantifying the rates of deforestation and 
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understating its underlying causes is a critical element for designing and developing 

policies aimed at tackling forest cover loss for example by government or international 

agencies to support the implementation of the programs such as REDD+ (Entenmann 

et al. 2014).  

Different remote sensing tools and approaches are used to detect, monitor, and map 

forest loss due to deforestation and other forms of forest clearance. For example, 

Breaks For Additive Season and Trend (BFAST) which uses Landsat time-series data 

(DeVries et al., 2015), TimeSync (Cohen, Yang and Kennedy, 2010), spectral forest 

recovery trajectories (Frazier, Coops and Wulder, 2015), and supervised image 

classification (Margono et al., 2012). The progress achieved with developing 

methodologies has been supported by the availability of Landsat data at no cost from 

United States Geological Surveys (USGS) database that makes it feasible to assess 

trends in forest cover change over time (Griffiths et al., 2014; Mitchell, Rosenqvist and 

Mora, 2017). This study assesses trends of forest cover change leading to forest loss 

using the freely available satellite data of the use of Landsat time-series data for 

mapping deforestation and recovery (gain) after the resulting forest clearance. In this 

study, deforestation is defined according to Hirata et al., (2012) as “direct human-

caused conversion of forested land to non-forested land” and therefore detected as a 

loss. In this study, Landsat imagery from 1984 was classified to determine forest cover 

change i.e., determine the rate of deforestation (loss) and forest recovery (gain) in 

Mau forest complex and Mt Elgon forest.  

The specific research objectives were; 

(i) to identify the areas where deforestation has occurred  

(ii) to detect when the first and last deforestation took place  
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(iii) to quantify the annual rate of deforestation and recovery for montane 

forests.  

To address the specific objectives, the study used the archived and freely available 

Landsat data collected between December – March every time series from 

1984/1985 to 2017 to analyze forest cover change. Images with no cloud cover or 

up 10% cloud cover were selected from the Landsat data archives and supervised 

classification with Maximum Likelihood (ML) algorithm was used to classify and 

determine the forest cover change.   
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2.2. Materials and Methods 

2.2.1. Study area 

The study areas were the Mau Forest Complex (01°2’21.60” S, 36° and 0°14’33.04” 

N, 35°13’40.92E) in Kenya and Mt Elgon forest (01°07′06″N and 34°31′30″E) located 

in western Kenya and eastern Uganda (Fig. 1). The Mau forest ecosystem comprises 

several forest blocks namely: Narok, Masaya Mau, Eastern, and Western Mau, 

Southern to Southwestern Mau, and Transmara regions (Chrisphine et al., 2015). This 

forest is the major catchment area for 12 rivers (Chrisphine et. al., 2015; Olang and 

Kundu, 2011) draining into Lake Baringo, Nakuru, Turkana, Natron, and the Trans-

boundary Lake Victoria shared by Kenya, Uganda, and Tanzania. 

 

Figure 2-1: Location of the Mau forest complex and Elgon forest in East Africa. (a) Map showing the 
official boundaries of the Mt Elgon forests (Scott, 1998) and (b) Map showing the official boundaries of 
the Mau forest complex (KFS, 2009).  

(a) 

(b) 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Mount_Elgon&params=01_07_06_N_34_31_30_E_type:mountain_scale:100000
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2.2.2. Data sources 

This study used Landsat satellite imagery acquired from the USGS archives for the 

study area including Path/Raw 170/59 (for Mt Elgon forest) and 169/60 – 61 for the 

Mau forest complex as indicated in Tab. 2-1. Available data from Landsat 4 and 5 

Thematic Mapper [TM], Landsat 7 Enhanced Thematic Mapper Plus [ETM+], and 

Landsat 8 OLI were collected during dry months (from December to March) for both 

the Mau forest Complex and Mt Elgon forest ecosystems. Forest boundaries created 

in 2009 for the Mau forest Complex were obtained from the Kenya Forest Service 

(KFS) and for the Mt Elgon forest from the National Forestry Authority (NFA) for the 

part of Mt Elgon forest located in Uganda. The Mt Elgon forest boundary was 

demarcated in 1968 for the Kenyan side and in 1992 for the Uganda side (Scott, 1998). 

The Landsat data were processed and classified using GIS and remote sensing 

(image analysis) software mainly; ArcGIS and ENVI using the steps indicated in Fig. 

2-2. 



Mapping deforestation and recovery of tropical montane forests of East Africa 

34 

 

Table 2-1: Landsat data obtained from the USGS database for the Mau forest complex 
and Mt Elgon forest area. The selected images were those that were available for the 
study area with less than 10% cloud cover. Additionally, the images were selected for 
the period between December – March, every year which reflects the dry season in 
the study area to avoid the influence of vegetation phenology to be classified as forest.   

Path/Raw 
Date of 

Acquisition 
Sensor 

Number of 
Images 

Study Area 

169/60-61 09/01/1985 L5 TM 2 Mau forest complex 
169/60-61 28/01/1986 L5 TM 2 Mau forest complex 
169/60-61 01/03/1989 L4 TM 2 Mau forest complex 
169/60-61 21/01/1995 L5 TM 2 Mau forest complex 
169/60-61 12/02/2000 L7 ETM+ 2 Mau forest complex 
169/60-61 14/02/2001 L7 ETM+ 2 Mau forest complex 
169/60-61 01/02/2002 L7 ETM+ 2 Mau forest complex 
169/60-61 04/02/2003 L7 ETM+ 2 Mau forest complex 
169/60-61 30/01/2010 L5 TM 2 Mau forest complex 
169/60-61 26/02/2014 L8 OLI 2 Mau forest complex 
169/60-61 17/03/2015 L8 OLI 2 Mau forest complex 
169/60-61 16/02/2016 L8 OLI 2 Mau forest complex 
169/60-61 17/01/2017 L8 OLI 2 Mau forest complex 
169/60-61 05/02/2018 L8 OLI 2 Mau forest complex 

170/59 31/12/1984 L5 TM 1 Mt Elgon forest 
170/59 08/03/1986 L5 TM 1 Mt Elgon forest 
170/59 27/03/1987 L5 TM 1 Mt Elgon forest 
170/59 18/02/1988 L4 TM 1 Mt Elgon forest 
170/59 12/01/1995 L5 TM 1 Mt Elgon forest 
170/59 06/03/2000 L7 ETM+ 1 Mt Elgon forest 
170/59 05/02/2001 L7 ETM+ 1 Mt Elgon forest 
170/59 07/01/2002 L7 ETM+ 1 Mt Elgon forest 
170/59 10/01/2003 L7 ETM+ 1 Mt Elgon forest 
170/59 21/01/2010 L5 TM 1 Mt Elgon forest 
170/59 05/03/2014 L8 OLI 1 Mt Elgon forest 
170/59 03/01/2015 L8 OLI 1 Mt Elgon forest 
170/59 23/02/2016 L8 OLI 1 Mt Elgon forest 
170/59 09/02/2017 L8 OLI 1 Mt Elgon forest 
170/59 12/02/2018 L8 OLI 1 Mt Elgon forest 

This study also used the Global Forest Change (GFC) dataset from 2000 to 2017 

(version 1.5), which was obtained from the google earth engine database 

(http://earthenginepartners.appspot.com/science-2013-global-forest) resulting from 

the analysis of time series Landsat data (Hansen et al., 2013). The 30-meter resolution 

data were obtained in 10 x 10° granules. For the Mau forest complex and Mt Elgon 

forest, 0° – 10°N, 30° – 40°E and 0° – 10°S, 30° – 40°E granules were downloaded 

from the University of Maryland (UMD) database with all the data layers such as 

‘treecover2000’, ‘loss’, ‘gain’, ‘loss year, ‘datamask’, ‘first’ (circa year 2000) or ‘last’ 

http://earthenginepartners.appspot.com/science-2013-global-forest
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(circa year 2014). In this study, the ‘lossyear’ layer was used to compare with the forest 

loss from supervised classification results for the period 2000 – 2017. 

GFC quantifies the trend in forest cover change (gain and loss) from the year 2000, 

which has been reported to present limitations at the local scale (Sannier et. al., 2016; 

Hamunyela et al., 2020) compared to the supervised classification approach to 

determine forest cover change since 1986 (Mau forest Complex) and 1984 (Mt Elgon 

forest).  

2.2.3. Image analysis and classification 

Supervised classification with the Maximum Likelihood algorithm (ML) was undertaken 

to assess forest cover change. The ML classifier considers the centers of the clusters 

(class), shape size, and the orientation of the clusters by calculating the statistical 

distance based on the mean values and covariance matrix of the clusters (Bakx, 

Janssen, Schetselaar, Tempfli, and Tolpekin, 2012). The acquired Landsat imagery 

shown in Tab. 2-1 were processed, classified, analyzed and the results were 

compared with the forest cover change from GFC data for the corresponding period. 

The supervised classification approach used in the current study requires reference 

data for training and validation. Available high-resolution Google imagery dated 

February 04, 2017, was used to obtain the reference data for training and validation 

of the classified Landsat data following (Fortier, Rogan, Woodcock, and Runfola, 2011; 

Rutkowska, Dubalska, Bajger-Nowak, Konieczka, and Namieśnik, 2014; Zhu, 

Woodcock, and Olofsson, 2012). Classification accuracy was assessed using the error 

matrix (confusion Matrix) with the high resolution (50 cm) Google images used as the 

reference data following (Olofsson et al., 2014; Strahler et al., 2006; Vogelmann et al., 

2017). 
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Figure 2-2: Flow chart showing a summary of the methodology that was undertaken in the current study. 
The Landsat imagery data were acquired from the USGS database and processed i.e., mosaicked, and 
classified using the ENVI Software (1), available high-resolution imagery from Google earth engine for 
the study area were used to collect and identify the training and validation samples (2). The accuracy 
of the classified images was then assessed using the validation data, from the validated land cover/land 
use data, forest areas were extracted for each year under observation, assessed with the GFC data, 
change detection was carried to determine the deforestation and areas that are under-recovery (3). 

 

To map forest cover change, seven (7) land cover classes (with the corresponding 

land use) were defined namely: forest, agriculture (large scale), agriculture (small 

scale), rangelands, settlement/urban, and moorland as described in Tab. 2-2. The land 

use and land cover classes were defined based on criteria and classification schemes 

obtained from previous studies carried out in the current study area and the region 
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(FAO, 2014; Houghton et al., 2012; Mugagga et al., 2015; Ongong’a and Sweta, 2014; 

Sassen et al.,  2013) and the vegetation map of the Eastern Africa region (VECEA 

Team, 2020).  

Table 2-2: Land cover classes and the scheme used in the study adopted from similar reported studies 
in the same current study area as well as the reported vegetation classification in Eastern Africa. 

Land cover/land use 

Class 

Description (FAO/National Classification and 

Vegetation map for Africa) 

Forest (F) Trees with closed canopy visible on high-resolution 

imagery. With height >2 m, canopy cover of >30%. 

Agriculture large-scale (LA) Large scale commercial agriculture including tea estates of 

>2 ha, large scale irrigated and mechanized agriculture. 

Agriculture smallholder (SA) Smallholder agriculture (Small-scale) mainly rainfed with 

fields of <2 ha for subsistence farming purposes. 

Rangeland (R) This involves open land cultivated with pasture and 

grasslands. 

Settlements/urban (SU) Bare land, developed with high density especially urban 

areas, infrastructure, and markets with limited farmlands. 

Moorland (M) Extensive low-growing vegetation characterized with heath 

in high altitude >1500 meters above sea level commonly 

referred to as Afro-alpine vegetation 

Water (W) This includes lakes, rivers, or open water (both natural and 

man-made). 

In order to correctly match the classes or features observed on the high resolution (50 

cm) Google imagery with the same features on the 30 m resolution Landsat Imagery, 

a visual interpretation of the high-resolution Google imagery and the Landsat 

multispectral image (appendix 1) side by side was undertaken to obtain 500 training 

and validation samples used for the supervised classification of the multispectral 

Landsat images. The visual Image analysis allows spontaneous recognition of 

features on both set images and then draw a logical inference which then can be used 

to implement the digital image classification by selecting classification samples based 

on the clear understanding of the classes (Bakx et al., 2012).  
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2.2.4. Forest cover change, deforestation, and forest disturbance  

Forest cover changes were quantified from the classified satellite images selected with 

at least <10% cloud cover during the dry months of the study area (December to 

March) every year from 1986 to 2017 for the Mau forest complex and 1984 to 2017 for 

the Mt Elgon forest shown in Tab. 2-1. To quantify forest cover change over time, the 

multispectral images and the high-resolution imagery of the study area were visually 

interpreted and areas showing deforestation (loss) and forest recovery (gain) were 

identified as shown in Fig. 2-3, before supervised classification was undertaken.  

 

 
Figure 2-3: Examples from Mau forest complex of areas that show deforestation as a result of fire 
indicated by the red circle (A) and forest clearance and forest recovery as a result of encroachment (B). 
The high-resolution Google imagery is dated February 04, 2017. 

From the classified imagery, forest area for each year was extracted and used to 

calculate; firstly, forest areas that were lost to deforestation and did not recover, 

secondly forest areas that were deforested and were undergoing recovery, and thirdly, 

forest areas that stayed forest since the beginning of the time series. To quantify the 

areas that were permanent forest, recovering and lost (deforested), the current forest 

boundaries for the Mau forest complex and Mt Elgon forest (Government of Kenya, 

2017) were used to clip and estimate area changes within the forest boundary for both 

forests.  

(A) (B) 
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2.2.5. Rate of deforestation 

The rate of deforestation was calculated from the yearly detected change in forest 

cover. This study adopts the method by Puyravaud (2003), who proposed the use of 

the mean annual rate of change of forest cover over time. The method has been widely 

used to quantify the rate of deforestation and land cover change across the tropics 

(e.g. Grinand et al., 2013; Schulz et al., 2010; Reimer et al., 2015). The rate of 

deforestation (Eqn. 1) is based on the change analysis and the method accounts for 

variations in date for the image acquisitions. 

Equation 2-1: Rate of deforestation 

r= (1/(T2 – T1)) x ln(A2/A1) 

where: r = the deforestation rate per year (% yr-1) 

  T1= Year for the beginning of the time step (initial year) 

  T2= Year for the end of the time step (final year) 

  A1= Forest area at the beginning of the time step (initial year) 

  A2= Forest area at the end of the time step (final year) 

Classified images for the Mau Forest Complex and Mt Elgon forest were used to 

determine the change in land cover from forest to the other land cover/land use types 

(gross loss) and other land covers to forest (gross gain), the net change was calculated 

by subtracting the gross loss from the gross gain for the timespans based on the 

available imagery. To determine the transition of change from forest to other land 

covers/land use types, a matrix table for the classified land cover/use types was 

generated and the change areas were obtained. To determine the rate of 

deforestation, the current official forest boundaries for both Mt Elgon forest and the 

Mau forest complex were used to carry out change detection to identify areas that 

were deforested.    
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2.3. Results 

2.3.1. Land cover classification and forest cover change 

Land cover and forest cover change in the Mau forest complex are presented for the 

period 1986 - 2017 and the Mt Elgon forest for the period 1984 - 2017 (Fig. 4). Seven 

land cover classes were identified namely forest, agriculture (large scale), smallholder 

agriculture, rangelands, open/bare land, moorland, and water. Overall classification 

accuracy of 86.2% with Kappa coefficient of 0.81 was attained for the Mau forest 

complex and 90.5% (Kappa coefficient of 0.87) for the Mt Elgon forest as indicated in 

Tab. 2-3 (a) and (b). In the Mau forest complex, rangelands were classified with the 

lowest producer accuracy (P) of 44.51% and the settlements/urban were classified 

with a lower user accuracy (U) of 30.64%. For the Mt Elgon forest, agriculture (A) had 

the lowest producer accuracy of 67.16% and the open/bare land class had the lowest 

user accuracy of 60.77%. 

Table 2-3: Accuracy assessment for the supervised classification of the Mau forest complex (a) and the 
Mt Elgon forest (b) 

(a) The Mau forest complex  

Overall Accuracy = 86.2%, Kappa Coefficient = 0.81 

Class 
Confusion Matrix   

F AL SA R B W Total P (%) U (%) 

F 89.96 0.52 0.21 0.00 0.00 0.00 21.23 89.96 99.45 
AL 0.12 88.19 0.93 0.00 0.80 0.00 6.16 88.19 93.42 
SA 9.83 4.19 91.51 36.01 0.08 0.00 42.91 91.51 82.87 
R 0.00 0.24 4.03 44.51 0.00 0.00 7.48 44.51 78.86 
B 0.09 6.86 3.32 19.48 99.12 0.07 6.27 99.12 30.64 
W 0.00 0.00 0.00 0.00 0.00 99.93 15.96 99.93 100.0 

F = Forest, AL = Agriculture (Largescale), SA = Agriculture (Smallholder), R = Rangeland, B = Bare 
land (Open Land) and W = Water, P = Producer accuracy and U = User accuracy  
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(a) Mt Elgon forest 

Overall Accuracy = 90.50%, Kappa Coefficient = 0.87 

Class 
Confusion Matrix   

F A R M B W Total P (%) U (%) 

F 100 0.00 0.00 0.00 0.00 0.00 19.45 100.0 100.0 
A 0.00 67.16 0.55 0.00 1.54 0.00 18.88 67.16 98.92 
R 0.00 22.66 99.45 0.00 3.82 0.00 31.44 99.45 79.45 
M 0.00 0.88 0.00 100 0.00 0.00 20.29 100.0 98.80 
B 0.00 9.30 0.00 0.00 94.64 0.00 6.59 94.64 60.77 
W 0.00 0.00 0.00 0.00 0.00 100 3.35 100.0 100.0 

F = Forest, A = Agriculture, R=Rangeland, M = Moorland B = Bare land (Open Land) and W=Water P= 
Producer accuracy and U = User accuracy 

 

The analysis shows that in the Mau forest complex, forest areas that existed outside 

the current forest boundary of 2009 were converted to mainly agriculture both small 

and large scale. For the Mt Elgon forest, agriculture was also the main land cover/use 

to which forest area was lost.  
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Figure 2-4: Land cover map from 1986 to 2017 for the Mau forest complex (A), and  from 1984 to 2017 
for the Mt Elgon forest (B) showing forest cover change within and outside the official boundaries of the 
two montane forests. 
 

(B) 
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The results show that 81.5% (70,612 ha) of forest cover was lost mainly to agriculture 

between 1986 to 2017, of which 13.2% (11,440 ha) was be attributed to large scale 

agriculture and 68.3% (59,172 ha) was attributed to smallholder agriculture in the Mau 

forest complex (Fig. 2-5a). For the Mt Elgon forest, agriculture was also the main land 

cover to which forest was lost accounting for 63.2% (24,077 ha) followed by settlement 

at 14.7% (5,597 ha) as indicated in (Fig. 2-5b). 

 
Figure 2-5: Land use change transitions from forest to other land cover i.e., agriculture (large scale), 
agriculture (small-scale), rangeland, moorland, and bare land (open) in (A) the Mau forest complex and 
(B) Mt Elgon forest. Throughout the period, net forest gain, loss, and net change were calculated for 
the Mau forest complex and Mt Elgon forest (Fig. 6a and 6b).   

 

From the gross changes (loss and gain), net forest cover change was established for 

all the years based on the available imagery for the Mau forest complex as shown in 

Fig. 2-6(A) and for the Mt Elgon forest as indicated in Fig. 2-6(B) 
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Figure 2-6: Changes in forest area for the various periods (1984/1986 - 2017) for the Mau forest complex 
(a) and Mt Elgon forest (b). Net change (in blue) is the difference between Gross gain and Gross loss. 
The bars represent the total change for each period while the values represent the annual change within 
the periods. A negative net result indicates overall forest conversion to other land covers. 
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2.3.2. Forest cover change from supervised classification  

The forest cover loss in the Mau forest complex was assessed for the period 1986 to 

2017 and in Mt Elgon forest for the period 1984 to 2017 for the available Landsat 

imagery that were classified using the supervised classification (maximum likelihood 

classifier) approach. The forest area (gains and losses) obtained from the supervised 

classification were compared to the corresponding estimates from GFC for the period 

2000 – 2017.The results indicate that in the period 2000 - 2017, GFC detected a forest 

cover loss of 17.0 % (68,848 ha) out of the 404,660 ha in the Mau forest complex and 

5.3% (11,501 ha) of the 217,268 ha of forest loss in the Mt Elgon forest. The analysis 

conducted in this study with supervised classification from the same period (2000 - 

2017) estimated similar overall figures for the Mau forest complex with 16.8% (68,155 

ha) and larger forest loss with 7.6% (16,496 ha) for the Mt Elgon forest as presented 

in Tab. 2-4.  

2.3.3. Forest cover change, deforestation, and recovery 

Forest cover changes from 1986 to 2017 for the Mau forest complex and the Mt Elgon 

forest from 1984 to 2017 within their respective official forest boundaries are shown in 

Fig. 7. The hotspots, forest blocks, and areas that are more pronouncedly affected by 

deforestation were the Southwestern Mau, Eastern Mau, Londiani (Western Mau), and 

Maasai Mau. For the Mt Elgon forest, deforestation was more pronounced in the 

Kapchorwa area of Uganda and the Southern part of the Mt Elgon forest on the Kenyan 

Table 2-4: Estimates of forest cover loss using Supervised Classification (ML) compared to the GFC 
data for the Mau forest complex (a) and the Mt Elgon forest (b) for the period 2000 - 2017 

Period 
(2000 - 2017) 

Mau Forest Complex Mt Elgon Forest 

ML GFC ML GFC 

Area (ha) % Area (ha) % Area (ha) % Area (ha) % 

Deforestation 68,155 16.8 68,848 17.0 16,496 7.6 11,501 5.3 

Remained forest 282,779 69.9 276,446 68.3 120,497 55.5 166,356 76.6 

Non-forest 53,668 13.3 59,308 14.7 80,275 37.0   39,411  18.1 

Total 404,602 100 404,602 100 217,268  100 217,268 100 
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side of the forest. The result also revealed the specific areas in the two montane 

forests where forest cover was lost to other land cover types (deforestation) within the 

study period and areas that were undergoing forest recovery.
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Figure 2-7: Forest cover change from 1986 to 2017 showing areas that remained forest throughout the time series analyzed, the forest that was disturbed and 
is currently undergoing recovery by 2017, and forest that has been permanently lost to deforestation in the Mau forest complex (A) and the Mt Elgon forest (B). 
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The analysis shows that during the 1986-2017 period, 42.6% (172,250 ha) of the Mau 

forest complex remained forest, 21.9% (88,493 ha) of the forest area was lost to 

deforestation and 18.6% (75,438 ha) was disturbed and is currently at different stages 

of recovery as shown in Tab. 2-5. For the Mt Elgon forest, 24.1% (52,369 ha) of the 

forest remained forest between 1984 to 2017, and 12.08% (26,250 ha) of the forest 

area was deforested and 27.6% (59,998 ha) was disturbed and is currently undergoing 

recovery as indicated in Tab. 2-5. 

Table 2-5: Forest cover change in the Mau forest Complex and Mt Elgon forest calculated from 
classified Landsat imagery from 1984 – 2017 using the supervised classification and change detection 
method. 

Forest cover 
Mau forest complex Mt Elgon forest 

Area (ha) (%) Area (ha) (%) 

Permanent forest (1984 - 2017) 172,250 42.6 52,369 24.1 

Deforested area (2017) 88,493 21.9 27,201 12.5 

Forest under recovery (2017) 75,438 18.6 59,047 27.2 

Non-forest  68,479 16.9 78,651 36.2 

Total  404,660 100 217,268 100 

2.3.4. Rates of deforestation and recovery  

The multi-temporal assessment of the rate of deforestation covers 31 years (the Mau 

forest complex) and 33 years for Mt Elgon forest as shown in Tab. 2-6 (a) and (b) 

respectively. The results indicate that an estimated 88,493 ha of the Mau forest 

complex was lost to deforestation at an annual rate of -0.86% for the period 1986 – 

2017 and an estimated 27,201 ha for the Mt Elgon forest at a rate of -1.03% during 

the same period. The recovery rates for the Mau forest complex and the Mt Elgon 

forest were estimated at an average of 2,434 ha yr-1 and 1,789 ha yr-1, respectively 

presented in Tab. 2-7. 
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Table 2-6: Observed forest cover loss in Mau forest complex (a) and Mt Elgon forest (b) within the 
official forest boundaries for the Mau Forest Complex and Mt Elgon forest. 

Mau forest complex (a) 

Time 
[T1] 

Time 
[T2] 

Period 
(T2 - T1) 

Area (ha) 
[A1] 

Area (ha) 
[A2] 

Def [Period] 
(ha) 

Deforestation 
rate yr-1 [%] 

1986 1989 3 336,181.3 334,563.3 1,618.0 -0.2 

1989 1995 6 334,308.3 330,095.2 4,213.0 -0.2 

1995 2003 8 330,095.2 285,342.4 44,752.8 -1.8 

2003 2010 7 285,342.4 257,817.4 27,525.0 -1.5 

2010 2014 4 257,817.4 253,223.4 4,594.0 -0.5 

2014 2017 3 253,223.4 247,688.0 5,535.4 -0.7 

Average -0.8 

Mt Elgon forest (b) 

1984 1988 4 138,350.0 118,904.4 19,445.6 -3.8 

1988 1995 7 118,904.4 116,699.6 2,204.8 -0.3 

1995 2003 8 116,699.6 121,138.5 -4,438.9 0.5 

2003 2010 7 121,138.5 121,732.9 -594.4 0.1 

2010 2014 4 121,732.9 116,552.9 5,180.0 -1.1 

2014 2017 3 116,552.9 111,149.0 5,403.9 -1.6 

Average -1.0 

 
Table 2-7: Observed forest cover gain (recovery) in the Mau forest complex and Mt Elgon forest within 
the official forest boundaries for the Mau Forest Complex and  Mt Elgon forest. 

Station Time [T1] Time [T2] 
Period  

(T2 - T1) 
Area recovered/ 

Gain (ha) 

Mau 
forest 

Complex 

1986 1989 3 7,710.2 

1989 1995 6 3,803.7 

1995 2003 8 18,573.1 

2003 2010 7 10,565.1 

2010 2014 4 15,562.9 

2014 2017 3 19,222.9 

Mt Elgon 
forest 

1984 1988 4 8,239.4 

1988 1995 7 6,353.9 

1995 2003 8 19,850.4 

2003 2010 7 9,075.8 

2010 2014 4 6,825.2 

2014 2017 3 8,702.4 

Deforestation rates were higher for the Mau forest Complex between 1995 and 2003 

where 44,753 ha were lost and in the period between 2003 and 2010 when 27,525 ha 

of the forest cover were lost as shown Tab. 2-6a. For the Mt Elgon forest, deforestation 
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was high between 1984 - 1988 when 19,446 hectares of the forest were lost as shown 

in Tab. 2-6b. 
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2.4. Discussion 

2.4.1. Mapping and classification of forest cover change 

This study produced a new set of maps that show the extent of intact forest and 

degraded forest following clearance since 1984 for the two montane forests in East 

Africa. The study estimated the forest area that stayed as forest from the beginning of 

the time series from 1986 (Mau forest complex) and 1984 (Mt Elgon forest) until 2017, 

identified areas that were lost due to deforestation and those that are undergoing 

recovery. Supervised image classification with maximum likelihood (ML) algorithm 

was used and attained a classification accuracy of 86.20% (Kappa coefficient of 0.81) 

for the Mau forest complex and 90.50% (Kappa coefficient of 0.88) was obtained for 

the Mt Elgon forest. Deforestation was determined using the change detection method 

between the various time series (Margono et al., 2012). The classification accuracy in 

this study for the Mau forest complex is comparable with a related classification that 

was undertaken by Were et al., (2013) who reported a classification accuracy of 80% 

in the Eastern Mau forest reserve, a section of the Mau forest complex for the years 

1985, 2000 and 2011. However, the results from Were et al., (2013) were only for a 

small section of the Mau forest complex. In this study, the training and validation 

samples for the maximum likelihood classification were obtained from the available 

high-resolution Google images for the two study areas, an approach that conforms 

with the best practices described by Olofsson et al., (2014). Several factors contribute 

to the accuracy of the classification, especially the reliability associated with the use 

of the high-resolution Google image with a variation in the dates of acquisition with the 

classified Landsat imagery. The differences in the date of acquisition may introduce 

possible errors into the class definition and allocation due to changes that occur after 

the acquisition of the Landsat imagery and before the acquisition of the Google 
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Imagery. Using ML for land cover mapping and carrying out change detection provides 

a challenge in class identification and definition given the images were collected during 

the dry months of the study area to be able to segregate forest cover from other land 

cover types. For example, small-scale agricultural land where harvesting has taken 

place could be assigned to the settlement and vice versa. ML assigns classes based 

on likelihood, and this likelihood and the classes assigned are used to assess the 

forest cover change at each time step. However, these challenges were minimized by 

using the forest masks to focus the changes within the areas that had been forest at 

the beginning of the time series.  

The study further shows that the forest cover loss detected from the supervised 

classification were less than the loss detected  by Hansen et al., (2013) by 0.2% for 

the period 2000 – 2017 in the Mau forest Complex and in Mt Elgon forest the 

supervised classification results were relatively higher than the loss detected by 

Hansen et al., (2013) by 2.3%. Hansen et al., (2013) results indicate gross forest loss 

of 17.0 % (68,848 ha) for the Mau forest complex and 5.3% (11,501) for the Mt Elgon 

forest. These estimates from Hansen et. al., (2013) for the period (2000 – 2017) are 

comparable to the results from the classification in this current study which revealed 

16.8% (68,155 ha) and 7.6% (16,496 ha) forest cover loss for the Mau forest complex 

and Mt Elgon forest respectively for the same period. The variations could be 

associated with differences in method, scales, and thresholds used as well as the 

processes involved. For example, ML is operator-based with a focus on the changes 

in the spectral value in different periods, while Hansen et al., (2013) uses the canopy 

cover percentage and determines change using the bagged decision tree in Google 

Earth Engine (GEE)with images collected during the growing season (Arjasakusuma, 

Kamal, Hafizt, and Forestriko, 2018).  
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2.4.2. Spatio-temporal forest cover change and drivers of deforestation 

and forest disturbance  

A comprehensive assessment of the forest cover changes due to deforestation and 

the following forest recovery for the two largest montane forests of East Africa covering 

together 621,928 ha (404,660 ha for the Mau forest complex and 217,268 ha for Mt 

Elgon forest) was undertaken. Over the period from 1984 – 2017, this study showed 

that 21.9% (88.493 ha) and 12.5% (27,201 ha) of the Mau forest and Mt Elgon forest 

respectively was lost to deforestation and 18.6 % (75,438 ha) for the Mau forest 

complex and 27.2% (59,047 ha) of Mt Elgon forest are currently undergoing different 

stages of recovery as indicated in (Fig. 2-7). Despite the losses, the two Montane 

forests have been regarded as the largest closed-canopy forest in East Africa that play 

significant roles in carbon sequestration, regulation of rainfall, nutrient cycling, soil 

formation, and support to biodiversity (Gichuhi, 2013; Omoding et al., 2020; Otieno, 

2016; Plumptre et al., 2019). The Mau forest Complex and Mt Elgon forest are very 

important ecosystems and water catchments to the East African region (Muhweezi et. 

al., 2007; Hesslerová and Pokorný, 2011; Chrisphine et. al., 2015). Due to various 

factors ranging from natural to anthropogenic disturbances, these Montane forests 

have faced large-scale deforestation and disturbance (Landmann and Dubovyk, 2014; 

Mutugi and Kiiru, 2015). In the Mau forest complex, the findings of the current study 

demonstrate that deforestation has been attributed largely to agriculture with the 

largest losses in forest cover resulting from the conversion of forest to small-scale 

agriculture 59,172 ha (68.3%). While in Mt Elgon forest, agriculture was also the main 

driver of forest cover loss accounting for 63.2% (24,077 ha). Previous studies also 

reported agriculture as the main driver of the land cover changes in the Mt Elgon and 

Mau regions indicating 4,500 ha of Mt Elgon forest that has been converted (Petursson 

et.al., 2013), and in the Mau forest complex region at a total of 145,850 ha (1,458.5 
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km2) as reported by Swart, (2016). Temporally, the current study discovered that forest 

cover has been largely lost to agriculture in the two study areas. This agrees with the 

findings of Were et al., (2013) for the Eastern Mau forest and Lake Nakuru basin 

sections of the Mau forest complex, which revealed that there was an increase in 

cropland expansion and built-up area by an annual rate of 6% and 16% and a 

decrease in the forest cover as a consequence for the period from 1973 to 2011. 

Kissinger et al. (2012) associated forest cover loss with increasing demand for land to 

expand agriculture at a global level, this study confirms these claims and demonstrates 

that most of the forest cover was lost to agriculture for both the study areas. Curtis et 

al., (2018) reported deforestation rates in Africa being driven by shifting agriculture i.e. 

small to medium-scale forest and shrubland conversion for agriculture that is later 

abandoned and followed by subsequent forest regrowth. However, this study 

determined that smallholder agriculture contributed to 68.31% of forest loss and large 

scale agriculture to 13.2%, and most of this area remains under agriculture, making it 

the main driver of forest cover loss as suggested by (Albertazzi, Bini, Lindon, and 

Trivellini, 2018; Hosonuma et al., 2012). The higher rate of loss of forest cover to 

agriculture may also be associated with the influence of the politics in the allocation 

and resettlemt of communities (Mbugua, 2011). Although, the political drivers to 

change may be classified as indirect drivers of forest cover change. The current study 

further showed that deforestation in the Mau forest complex and Mt Elgon forest 

occurs in small patches of less than 1 ha, which may be associated with the activities 

of farming communities adjacent to the forest as reported by the empirical studies by 

(Brandt et al., 2018; Sassen et. al., 2013). The finding of this study demonstrates that 

most of the areas deforested were mainly at the edges of agricultural lands both 

smallholder and large scale tea farms. 
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2.4.3. Rate of deforestation and recovery in the Montane forest of East 

Africa 

Deforestation has been reported to be pervasive in sub-Saharan Africa especially in 

the Democratic Republic of Congo (DRC) rainforests and the Miombo woodlands due 

to smallholder agriculture and increasingly commodity crop cultivation (Song et al., 

2018), however, the rates are largely for lowland tropical rainforests.  This study 

quantified the rate of deforestation and recovery for the two east African montane 

ecosystems which revealed 88,493 ha reduction in the forest cover from 336,181.3 ha 

at an annual rate of -0.82% yr-1 for the Mau Forest Complex. While in the Mt Elgon 

forest, forest cover reduced by 27,201 ha from 138,350 ha in 1984 to 111,149 ha by 

2017 at an annual rate of -1.03% yr-1 as indicated in Tab. 2-6. The estimated rates in 

this study are lower than the estimated national rates of 0.54% for African natural forest 

(FAO, 2015b), although this can be due to differences in methods used, errors arising 

from the use of rudimentary methods (without remote sensing tools) that have been 

used in FRAs to adjust estimates of forest area based on the results of these national 

surveys to a common reporting year (Keenan et al., 2015). Comparing the rates of 

deforestation from this study with other reported rates can be challenging because of 

differences in datasets used, scale, and boundaries of the study areas. Most studies 

for the Mau forest complex do not quantify forest cover changes for the whole forest 

but in selected specific blocks out of the 22 blocks. For example, Were et. al., (2013) 

estimated changes for the Lake Nakuru basin, Kinyanjui et al., (2013) calculated 

changes for the Southwestern and Transmara blocks of the Mau forest complex, and 

Swart, (2016) assessed the land cover change in the region that includes the Mau 

forest complex. These previous studies focused on the land-use change and the main 
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drivers within specific blocks, whereas the current study covers the quantification of 

the rate of forest cover change and recovery across all the blocks of the Mau forest 

complex. 

This study shows that the rate of deforestation in the Mau forest complex is also higher 

than the nationally reported annual rates by the Food and Agriculture Organization of 

the United Nations (FAO) for Kenya and Uganda at the national level since there are 

no site-specific reported rates of deforestation for the period 1990 to 2010 at 0.32% 

per year for Kenya and the findings for the Mt Elgon forest are below the national 

reported annual rate of 0.4 - 3% per year for Uganda for the period 1990 to 2010 (FAO, 

2013). In comparison with the regional studies that have assessed rates of 

deforestation, the annual rates for the Mau forest complex and Mt Elgon determined 

in this study were slightly higher about the findings of Brink et al., (2014) that indicated 

an increase in the annual rate of deforestation from 0.2% in the period from 1990 - 

2000 to 0.4% from 2000 - 2010. However, the resolution of satellite data that was used 

in determining forest cover change and rate of deforestation in this current study is 

much higher (30 x 30m) than that used for the previously reported rates. For example, 

the study by Brink et al., (2014) used 20 x 20 km resolution to determine the rate of 

deforestation across Eastern Africa, and therefore, this study established the rate of 

deforestation and recovery at the landscape level for specific forest ecosystems (the 

Mau forest complex and Mt Elgon forest) in Kenya and Uganda.   
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2.5. Conclusion 

Deforestation has been a major problem facing the Mau forest Complex and Mt Elgon 

forests in Kenya and Uganda, yet the annual rate of deforestation over time has not 

been previously quantified. This study provides a detailed multi-temporal and 

extensive spatial analysis of these two important forests hence providing an annual 

rate of forest loss to deforestation and the rate of forest clearance. The results provide 

a basis and spatial-temporal status of the forest for the development of effective 

monitoring of the two forest ecosystems from the areas that are currently deforested 

and those that are undergoing recovery. The study findings also provide the relevant 

scientific evidence on the trends of forest cover loss due to deforestation and forest 

cover clearance in the Mau forest complex and Mt Elgon forest and add to the limited 

information regarding the changes in montane forest ecosystems. The use of MLC 

approach alongside the GFC data for assessing the rate of deforestation and forest 

disturbance in the Mau forest complex and Elgon forest benchmarks the wider use 

and application of these data datasets for assessing deforestation and forest 

clearance in the East African forests.  
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3. DETERMINATION OF RATE OF ABOVEGROUND BIOMASS AND SPECIES 

RECOVERY IN THE TROPICAL MONTANE FOREST OF EAST AFRICA 

 

 

Forest fires observed in Londiani - Western Mau Forest complex  (a) and previous fires inside the areas that are 

undergoing recovery (b) and (C). Photographs taken from the Mau forest Complex during the field work in March 

2019. 

 

 

(a) 

(b) 

(c) 
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Abstract 

Tropical Montane forests are fragile ecosystems that provide a wide range of 

ecosystem services that range from provision of hydrological services, protection of 

the biodiversity and contribution to climate change mitigation. Yet these TMFs face 

degradation and clearance, and their recovery is not well understood. The current 

study assessed the rate of AGB and species recovery following clearance. The current 

study established 47 forest inventory plots to determine the rate of AGB and species 

recovery in 3 blocks of the Mau forest complex in the rift valley region of Kenya. The 

current study showed that AGB recovered rapidly in the first 20 years at an annual rate 

of 6.42 Mg ha-1, but the rate of recovery slowed to 4.67 Mg ha-1 at 25 years and 4.46 

Mg ha-1, at 30 years of age. The current study further revealed that at 25 years, the 

mean AGB  of 198.32 ± 78.11 Mg ha-1 was statistically indistinguishable from the mean 

AGB in the old growth secondary forest which was 282.86 ± 71.64 Mg ha-1. Stem 

density did not show any significant difference across the recovery stages with 321.25 

± 101.34 tree ha-1 in the youngest secondary forest and 445 ± 187.58 tree ha-1  in the 

old growth secondary forests. Also, species diversity and richness indices did not show 

any significant changes with the recovery of the secondary forest for example; the 

Evenness (J) index in the youngest secondary forest was 0.66 ± 0.18 and in the old 

growth secondary forest was 0.75 ± 0.13, Shannon’s (H) index was 1.25 ± 0.45 and 1.63 ± 

0.51 for the youngest and old growth secondary forests respectively, the Simpson’s (D) index 

was 0.47 ± 0.19 and 0.36 ± 0.16 for the youngest and old growth secondary forests 

respectively. Although there existed a significant variation between the young 

secondary forests of age below 15 years from the older and old growth secondary 

forests in terms of AGB, the findings of this study suggest that the Montane tropical 

forests of East Africa require 25 years to recover AGB that is indistinguishable from 

the estimated AGB of the old growth secondary forest. The insignificant results for the 
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species diversity and richness indices suggest that species recovery in the tropical 

montane forest of East Africa is slow and requires a longer time to recover following 

forest clearance.  
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3.1. Introduction 

Tropical montane forests (TMFs) cover 23% of global forest areas (Price et al., 2011) 

and provide essential ecosystem services that include the provision of water, carbon 

sequestration, and biodiversity conservation (Beta, 2019; Brienen et al., 2015; 

Martínez et al., 2009; Soh et al., 2019; Spracklen and Righelato, 2014). TMFs are also 

faced with deforestation and forest disturbance (Crausbay and Martin, 2016), which 

have been on the rise due to the underlying increase in human populations (Carr, 

et.al., 2005) and development. Direct investments resulting from economic inequalities 

and flex-crops have also been reported to significantly impact forest cover and 

biodiversity loss (Ceddia, 2020) and inference by (Lambin, Geist, and Lepers, 2003) 

indicate that the major driver of deforestation and forest disturbance in tropical region 

is 81% by economic factors rather than the increasing population. However, the 

expansion of subsistence farming mainly shifting cultivation is associated with a 

growing population especially in Africa. With projections indicating a continuous 

increase in population (Gerland et al., 2014) and particularly higher population in East 

Africa at a rate of  2.82% compared to the world rate of 1.19% (Hamunyela et al., 

2020), the demand for land to expand agriculture in the tropical regions can be 

expected to place further pressure on the forests (Bussmann, 2002; Brandt et al., 

2017; Mwangi et.al., 2018). Shifting cultivation is reported to be the highest driver of 

tree cover loss in Africa by 92% with map-based estimates and 93 ± 3% sample-based 

estimates from 10 x 10 grid cells (Curtis et al., 2018). Due to these threats to the 

tropical forests, their abilities to sequester carbon and support biodiversity are waning 

(Hubau et al., 2020). 

Despite these pressures, or as part of the shifting agriculture fallow phase, some TMFs 

are in the process of recovery from the cleared forest. Understanding the rate of forest 
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recovery is important to understand the role of these recovering secondary forests in 

mitigating climate change and conserving biodiversity. This can inform the success of 

programs like REDD+ (Deklerck et al., 2019; Huang, 2015), through the provision of 

robust estimates of carbon sequestration (Chazdon et al., 2016), and is vital for 

countries to evaluate progress towards global commitments under the United Nations 

Framework Convention on Climate Change (UNFCCC) and The Convention on 

Biological Diversity (CBD). Substantial progress has been made on understanding the 

recovery rate of lowland forests in some parts of the world (e.g. Poorter et al., 2016; 

Gourlet-Fleury, et al., 2013; Loo et. al., 2017; Bauters et al., 2019; Deklerck et al., 

2019), with results showing that these forests recover much of their original biomass 

within 20 years (Poorter et al., 2016), yet they are much slower in terms of composition, 

while the subtropical forest requires a longer period of not less than 50 years to obtain 

structural recovery following disturbance (Lin et al., 2015). But in human-modified 

forests, there exist convergence in the structure after 20 years following abandonment 

(Loo, Song, and Chao, 2017). The recovery rates across the lowland forests vary by 

the different climatic conditions between the regions (Becknell et.al., 2012; Lewis et 

al., 2013). The forest recovery rates could also be influenced by the presence of 

remnant trees and the previous crops cultivated before abandonment for example the 

biomass recovery rates in the forest of West Africa (N’Guessan et al., 2019). 

For tropical montane forests, post-disturbance aboveground biomass and forest 

structure also vary by altitude (Acharya, Chettri, and Vijayan, 2011; Imani et al., 2017). 

Specific tree species require over 100 years to attain the diameter at breast height 

(DBH) of 20 - 25 cm in Afromontane dry forests (Mokria et. al., 2015). In cases of 

disturbance associated with fires, there is an increase in the small stems in the early 

stages after the fires resulting from regeneration pattern but there are no significant 
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differences in larger trees from burnt and unburnt stands (Oliveras et al., 2018). 

Selectively logged forests have shown higher overall stem density than non-logged 

forests in Kilimanjaro forest which indicates recovery of the montane forests (Rutten, 

Ensslin, Hemp, and Fischer, 2015b). While tree species in areas that have 

experienced clearance have shown higher species richness than old-growth 

secondary forest and more severely degraded areas (Sassen and Sheil, 2013). Most 

of the forest structure and composition recovery especially aboveground biomass 

accumulation studies in Africa are undertaken in plantation forests which have limited 

ecological value as well as the basis for informing rates of recovery in the natural 

forests (Bonner et. al., 2013). The mean total biomass C densities in indigenous 

forests have shown significantly higher biomass densities than those in the plantation 

forests (Omoro et. al., 2013). The default rate of annual net biomass change used as 

reference levels exists for tropical and neotropical subregions (Requena et al., 2019), 

although for East Africa, these reference levels are based on data collected from a 

tropical low land forest (Otuoma et al., 2016). However, African mountain forests are 

predicted to have higher annual aboveground carbon recovery rates which are higher 

than the IPCC (Intergovernmental Panel on Climate Change) default rates (Cook-

Patton et al., 2020). In East Africa and the Mau forest complex, in particular, the 

disturbed forests have shown the potential to regenerate and attain ecological 

recovery (Kinyanjui et. al., 2013) but this is not clearly stated in terms of the stage and 

age. It has been noted that long-term conservation and management policies that 

provide and ensure protection from the surrounding land use contribute to the 

successful recovery of forests (Mensah, Egeru, Assogbadjo, and Glèlè Kakaï, 2020).  

In the face of the previous studies that have demonstrated the response of tropical 

montane forest to degradation and clearance, there are limited studies on TMF rates 
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of recovery in east African forests and particularly in the Mau forest complex, with 

existing understanding coming from a few sites in lowland tropical forests or 

plantations for example (Otuoma et al., 2016). Secondly, it is not known when the 

recovering montane forests reach the equivalence with old-growth forests. Thirdly, 

recovery can be measured in different ways, and it is not clear how the recovery rates 

vary from different forest ages and old-growth equivalence across different ecological 

metrics, from those linked to Carbon (C) accumulation (biomass) to diversity and 

composition. In addition, the need to understand the transitions that result in the 

understanding of the recovery of forest structure and composition e.g. aboveground 

biomass (AGB) following disturbance is critical (IUCN, 2015) to effectively restore the 

natural forest by the management authorities to ensure restoration efforts are 

successful (Deklerck et al., 2019). 

This current study addresses three key knowledge gaps by assessing the 

aboveground biomass (AGB), forest structure, species richness, diversity, and 

composition in 47 secondary (recovering) and old-growth (forests that existed before 

the beginning of the time series) forest plots distributed along a chronosequence of 

time since the clearance in the Mau forest complex, a tropical montane forest in East 

Africa. The key research questions were; 

(i) Is there a significant change in ecological condition over time, and if so?  

(ii) what is the shape of the response (linear or non-linear) and the rate of 

change at different time points?  

(iii) At what age do secondary forests become statistically indistinguishable 

from old-growth forests in terms of biomass, diversity, and species 

composition?  
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The findings from the analysis were used to discuss and understand the rate of forest 

recovery in the montane forest of east Africa. This chapter is based on the estimated  

and mapped forest cover area that was lost to deforestation and currently undergoing 

recovery as indicated in the Chapter 2 of this thesis. The time since last clearance 

and deforestation was used to determine the age classes used for assessing the 

recovery of AGB, forest structure and species composition in the three blocks of the 

Mau forest complex (i.e. Western Mau, Southwestern Mau and Transmara blocks).  

  



Determination of the rate of recovery in the Tropical Montane forests of East Africa 

67 

 

3.2. Materials and Methods 

3.2.1. Study area 

The study was conducted in three forest blocks of the Mau forest complex i.e. the 

Western Mau, Southwestern Mau, and Transmara, located between 0° 11' 28.2228''S, 

35° 40' 21.0828''E and 0° 48' 13.086''S 35° 17' 7.548''E (Fig. 3-1) in the rift valley 

region of Kenya. The study area is classified as tropical Afromontane rainforest with 

an altitude ranging between 1800 – 2800 m above sea level (Kinyanjui, et. al., 2013; 

Paulo et. al., 2015). The soils of the study area are composed of Quaternary volcanic 

deposits with topsoil comprised mainly of clay loam and silt clay loam (Tarus, Kirui, 

and Obwoyere, 2019) 

 

Figure 3-1: Location of the sample plots in the three forest blocks of the Mau forest complex distributed 
in the main recovery stages and the old growth secondary forest (A), the location of the three blocks 
with the whole of the Mau forest complex (B) and the Location of the Mau forest complex in Kenya 
(C).The plots are located on areas that were mapped (Chapter 2) as forest recovering and forest that 
existed throughout the time series.  

(A) (B) (C) 
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3.2.2. Data  

Forest area of different ages from Chapter 2 of this study were used to select and 

survey a total of 47 sample plots of 0.1 ha (20 m x 50 m). The sample plots were 

established and surveyed between March – June 2019 in the Mau forest complex 

following the RAINFOR protocol for inventories in the tropical forests (Marthews et. 

al., 2014). The plot dimension was selected to allow for local forest composition and 

structure variations (Lucas et al., 2002). In each established plot, Diameter at Breast 

Height (DBH) was measured at 1.3 m of bole height for all live trees with a diameter 

greater or equal to 10 cm using diameter tape. Tree height was measured using 

Suunto Clinometer for all the live trees in the plot with DBH ≥10 cm. In addition, tree 

species were also identified and recorded with the help and technical support of the 

Forest experts from the Kenya Forest Services (KFS) and the local community who 

identified the tree species with the local and scientific names as well as their traditional 

uses..  

Forest cover change maps from 1986 to 2017 that were produced through supervised 

classification of the 30 x 30-meter resolution Landsat imagery from the Chapter two of 

this study were used identify the areas for the plots. The maps were used to determine 

the last time degradation/clearance (defined here as complete clearance of the stand) 

happened from which the forest stand age was estimated.  
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Table 3-1: Forest classes based on the time when the forest was last degraded/cleared (estimated age) 

that were used to establish forest sample plots in the three blocks of the Mau forest Complex   

Class Age Description 

1 <10 years  

Forest area that was severely cleared or lost and only show 

recovery since 2010, mostly referred as Youngest 

Secondary Forest (YSF) 

2 10 - 15 
Forest area that was cleared but were stable for the recent 

15 years  

3 15 - 20 
Forest area that experienced clearance or loss but recovery 

started after year 2000 

4 20 - 25 
Forest area that started to recovery from 1995 without being 

cleared or lost again until 2017 

5 25 - 30 
Forest area that started to recover since 1990 and 1995 as 

shown on the time series. 

6 
Old growth 

(>30 years) 

Forest area that has stayed as forest since the beginning of 

the time series (1986) and their exact age is unknown  

The forest cover that did not experience disturbance after 1986 was considered as an 

old growth secondary forest (mature) class with unknown age as it has existed since 

the beginning of the time series and used as reference old growth to determine the 

rate of recovery. Six forest classes were created (Table 3-1), of which the five classes 

(n = 36) were of the known age of up to 30 years and the sixth class (n = 11) of the 

forest with the age of greater 33 years with their observed biophysical characteristics 

as shown in Fig. 3-2.  
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Figure 3-2: Young secondary forest (sample plot No.2) of less than 10 years [A], Second secondary 
forest (plot No.21) of age up to 15 years after major clearance events [B], Secondary forest (plot No. 
11) with age between 16 – 20 years [C], Secondary forest (plot No. 39) with the age of 21 – 25 years 
of age [D], 26 – 30 years of age [E] and the Old-growth (Mature) secondary forest class with over 33 
years of age [F] in the Mau forest complex. 

 

A 

C D 

B 

E F 
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3.2.3. Aboveground biomass (AGB) estimation 

Aboveground biomass was determined for the individual trees using pantropical 

allometric equation (equation 1) developed by (Chave et al., 2005) and improved in 

(Chave et al., 2014). The pantropical allometric equation was adopted since it has 

been widely used in Eastern Africa as the site and species - specific models for all the 

tree species in the study area (Mokria et al., 2015; Imani et al., 2017). Although the 

site and species-specific allometric equations are noteworthy in the quantification of 

forest aboveground biomass (Kebede and Soromessa, 2018), the pan-tropical model 

has shown performance when tested with tree aboveground biomass compared to the 

local allometric models and applicability to different tree species (Chave et al., 2014). 

Equation 3-1: Allometric equation for estimating the AGB 

AGBest = 0.0673 x (ƿD2H) 0.976 

Where; 

AGB:  Represents the estimated Aboveground Biomass (kg),  

D: Refers to the Diameter at Breast Height (DBH) measured at 1.30 

m for every tree with DBH of >10 cm measured in (cm), 

H: is the height of all the trees measured in the plot with the DBH of 

>10 cm measured in (m)  

Ƿ: Represents the wood-specific gravity (wood density) of the trees  

measured in (g). 

The wood density data used for determining the AGB was obtained from the regional 

wood density database for eastern Africa and the global wood database (Jerome 

Chave et al., 2009; World Agroforestry Centre, 2016). In cases where wood density 

for specific tree species was not available, the wood density at the family or genus 

levels were used following (Chave et al., 2006; Poorter et al., 2016). 
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3.2.4. Species richness, diversity, and composition 

Tree species diversity was determined using Shannon’s species diversity index 

following (Githae et. al., 2008; Shannon, 1948), Simpson’s index (Simpson, 1949), 

richness index (Menhinick, 1964), and the evenness metrics (Pielou, 1966; Cao and 

Zhang, 1997; Majumdar, Shankar, and Datta, 2014; Wang et al., 2018). The species 

richness and diversity were assessed using the four diversity indices i.e., Shannon’s 

diversity index (H’), Simpson’s index (D), and Evenness (E) were determined using 

equations 3-2 to 3-4.  

 

Equation 3-2: Shannon’s diversity Index (H’) 

Shannon’s diversity Index (H’) = ∑pi*ln(pi)  

      

Equation 3-3: Simpson’s index (D) 

Simpson’s index (D) = 1/∑pi
2         

  

Equation 3-4: Evenness index (E) 

Evenness index (E) = H/Hmax          

The species composition analysis was undertaken using the non-metric 

multidimensional scaling (NMDS) tool. The distance matrix (matrix of dissimilarities) 

was established using the square root transformation to remove the influence of the 

most dominant species (Bauer and  Albrecht, 2020; Bray and  Curtis, 1957). 

3.2.5. Statistical analysis 

To address question 1, the study used both linear and nonlinear mixed effect models 

to determine the rate of recovery of the AGB and species richness and diversity for 

the different forest classes identified (Bates et. al., 2015; Pinheiro et. al., 2015; R core 
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Team, 2018). For this analysis, the current study only analyzed forest areas that were 

known to be secondary based on the known age from the satellite imagery (n = 36 

plots), excluding the old-growth forests with an unknown or non-existing time since 

abandonment (i.e., before the beginning of the time series). The current study selected 

between linear and nonlinear Generalized Least Squares (GLS) models based on the 

model AIC. Forest stand age was log-transformed to account for the nonlinear 

increase in AGB with stand age (Requena Suarez et al., 2019). The models with lower 

Akaike Information Criterion (AICs) were selected for the different forest structure and 

composition variables as shown in Tab. 3-1. 

To address question 2, this current study used a two-way analysis of variance 

(ANOVA) to determine the variation in the forest structure i.e. basal area, stem density, 

AGB in the different forest classes, species diversity indices, and composition using 

the plot-level data. Additional Turkey’s post hoc tests were undertaken to determine 

the statistically significant differences between the multiple comparisons within the 

forest classes. 

To address question 3, the current study carried out the permutational multivariate 

analysis of variance (PERMANOVA) using distance matrices (Warton, Wright, and 

Wang, 2012), and displayed the results visually using NMDS plots. 
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3.3. Results 

3.3.1. Recovery rates of AGB, Species richness, and diversity 

All the six response metrics had strong and significant relationships with secondary 

forest age after the last recorded clearance. AGB, basal area, stem density, and 

species richness were all best explained by a non-linear GLS model, in which the rate 

of recovery declines with age as indicated in Tab. 3-1 and Fig. 3-3. For example, AGB 

recovered rapidly in the first 20 years at an annual rate of 6.42 Mg/ha, but the annual 

rate of recovery slowed to 4.67 Mg/ha at 35 years and 4.46 Mg/ha at 30 years of age. 

Both diversity indices (Shannon’s and Simpson’s) had a linear relationship with forest 

age, where Shannon’s index was increasing, and Simpson’s index was decreasing as 

shown in Fig. 3-3 (d) and Fig. 3-3 (e) respectively. All model residuals were tested for 

spatial autocorrelation, and none was detected as presented in appendix 4. 
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Table 3-2 Comparison of model Akaike Information Criterion (AIC) between the null model and the Linear and GLS models for the various ecological response 
metrics 

Response Metric 
AGB 

(Mg/ha) 

BA 

(m/ha) 

Stem Density 

(trees/ha) 

Evenness 

(J)  

Shannon's 

(H) 

Simpson's 

(D)  

Species 

Richness 

AIC – Null Model 440.39 279.33 483.71 -34.82 45.19 -26.32 172.10 

AIC – Linear Model 416.00 251.53 483.15 -38.36 38.04 -34.42 168.21 

AIC – GLS Model 401.75 246.42 465.17 -27.37 44.79 -23.64 167.73 

Delta AIC LM/GLS 14.25 5.11 17.98 -10.99 6.75 -10.78 0.48 

Delta AIC Best Model and Null Model 38.65 32.91 18.53 -7.45 7.15 8.10 4.37 
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Figure 3-3: Relationship between the ecological metrics AGB and stand age in the blocks of Mau forest 
complex (a), grey dots are field observed plot AGB (n = 36). The model predicted AGB (blue curve) in 
relation to the stand age (years). The black horizontal dotted line represents the AGB at 20 years which 
separates the young and old-growth (mature) secondary forest. The figure also shows the relationships 
between the other ecological metrics i.e., stem density and stand age (b), species diversity indices with 
stand age i.e., Evenness (J) index (c), Shannon’s diversity index (d), Simpson’s diversity index (e), 
species richness (f) in the 3 Blocks of Mau Forest Complex. The grey dots and blue lines in all the 
figures from (b) – (f) also represent the respective field observation and the model predictions. 

 

(a)  (b)  

(c)  (d)  

(e)  (f)  

y = 106.64 +100 * ln(x) y = 258.29 + 66.25 * ln(x) 

y = 0.54 + 0.07 * ln(x) y = 0.81 + 0.27 * ln(x) 

y = 0.64 - 0.11 * ln(x) y = 4.9 + 1.3 * ln(x) 



Determination of the rate of recovery in the Tropical Montane forests of East Africa 

77 

 

3.3.2. Similarity to the old-growth forest: AGB, Species richness and 

diversity 

The different metrics of ecological condition had different patterns in terms of their 

statistical similarity to the old-growth forest plots in this current study. At 25 years the 

mean AGB (198.32 ± 78.11 Mg/ha) was statistically indistinguishable from the mean 

AGB in the old growth secondary forest as indicated in Fig. 3-4 (A). None of the other 

metrics showed statistical differences between the old growth forest plots and the 

secondary forest age classes. 
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Figure 3-4 Mean variations in the secondary forest structure, species richness, and diversity of the age 
up to 30 years (n = 36)with the stage they become statistically indistinguishable from old-growth 
(Mature) secondary forest (n = 11). (A) Variation in the mean AGB between the six forest classes based 
on the stand age in years, (B) Variation in stem density across the classes, (C) evenness diversity 
index, (D) Shannon’s diversity index, (E) Simpson’s diversity index and (F) Species richness across the 
six classes. 
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Stem density and species richness and diversity indices did not show significant 

relationships between the different forest classes at 95% Confidence interval as 

indicated in Fig. 3-4 (B – F).  

3.3.3. Similarity to the old-growth forest: Species Composition  

In total, 60 tree species from 39 families distributed in the three (3) blocks of the Mau 

forest complex were identified. The study found out that, Neoboutonia macrocalyx 

(Euphorbiaceae) was the most dominant species in the youngest secondary forest as 

well as in the forest with the age of 25 years by 36.3%, 20%, and 21.9% of all the tree 

species observed in the respective forest classes. In the forest class with the age of 

20 and 30 years, Tabernaemontana stapfiana (Apocynaceae) was the most dominant 

species recorded with 23.6% and 27.8% respectively. Trichocladus ellipticus 

(Hamamelidaceae) was the most dominant species in the old growth secondary forest 

class with 18.9% of the total species recorded in the old growth forest class. Psydrax 

schimperiana (Rubiaceae) was also widely distributed in the forest classes with the 

age of 20 and 25 years with 11.8% and 19.2% compositions respectively. Other 

species with high rank include; Acacia melanoxylon (11.6%) and Ehretia cymosa 

(6.9%) in the youngest secondary forest of age less than 10 years, Euclea divinorum 

(14.3%). Detailed high-ranked species in terms of composition are shown in Tab. 3-3 

and complete species composition can be found in Appendix 8. 
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Table 3-3: Three most dominant species under various family recorded for each forest classes (recovery 
stages) in the 3 blocks of Mau forest Complex 

Forest  

Class 
Family Species 

Number of 

Species 

Composition 

(%) 

10 

Euphorbiaceae Neoboutonia macrocalyx 110 36.3 

Mimosaceae Acasia melanoxylon 35 11.6 

Boraginaceae Ehretia cymosa 21 6.9 

15 

Euphorbiaceae Neoboutonia macrocalyx 67 20.0 

Ebenaceae Euclea Divinorum 48 14.3 

Apocynaceae Tabernaemontana stapfiana 39 11.6 

20 

Apocynaceae Tabernaemontana stapfiana 46 23.6 

Rubiaceae Psydrax schimperiana 23 11.8 

Euphorbiaceae Neoboutonia macrocalyx 23 11.8 

25 

Euphorbiaceae Neoboutonia macrocalyx 73 21.9 

Rubiaceae Psydrax schimperiana 64 19.2 

Myrtaceae Sygyzium guineense 30 9.0 

30 

Apocynaceae Tabernaemontana stapfiana 110 27.8 

Flacourtiaceae Casearia battiscombei 45 11.4 

Euphorbiaceae Suregada procera 33 8.3 

Mature 

(old growth) 

Hamamelidaceae Trichocladus ellipticus 91 18.9 

Apocynaceae Tabernaemontana stapfiana 64 13.3 

Ebenaceae Diospyros abyssinica 43 8.9 

 

NMDS using the metaMDS function showed a stress level of 0.19 and the Non-metric 

fit of R2 = 0.97 and Linear fit of R2 = 0.844 was obtained as shown in appendix 5 [A]. 

The PERMANOVA revealed that the Age groups that represent the 6 forest classes 

were significant with R2 of 0.15 at P < 0.0001 and the forest blocks were also 

statistically significant with R2 0.14 at P <0.0001, using the Bray distance metrics. At 

95% confidence level, there existed significant variation between the young secondary 

forest of age below 15 years (g10 and g15) forest classes with the Older secondary 

forest and the old growth secondary forest complex as indicated in appendix 5 [A]. The 

hull plots also show the variation between the 3 forest blocks as shown in Fig. 3-5 (i) 

and variations by age groups especially the old growth secondary forest and the young 

forest classes as indicated in Fig. 3-5 (ii). 
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Figure 3-5 (i) Confidence Ellipses that suggests significance at < 0.05 and Overlaps between the 
different age groups, and (ii) Hull plots for the plots based on the Age groups. The old-growth plots, 
youngest (g10), (g15) show the greatest variance which can explain the significance of the age group 
in the adonis test (PERMANOVA)  

Forest blocks 

Age groups 

(i) 

(ii) 
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3.4. Discussion 

The rates of recovery and variation in the forest structure and composition in this study 

reflect the nature of undergoing processes and changes in the tropical montane forest 

that have faced degradation over time. The observed variations provide a vital basis 

for understanding the rates of forest recovery in the Mau forest complex. In this 

section, the study examines and discusses the distribution and variation in forest 

structure and composition i.e. BA, stem density and AGB, the rate of recovery of the 

AGB, the relationship between the AGB and forest structure, species diversity and 

richness as well as the time it takes the forest to recover the AGB and species diversity 

following clearance.  

3.4.1. AGB Recovery rate 

To the existing knowledge, the current study offers the first assessment of forest AGB 

recovery rates in the montane tropical forests of east Africa. The relationship between 

AGB and age (recovery period) was nonlinear. The AGB recovery of 6.42 Mg ha-1 per 

year in the first 20 years of recovery is slightly higher than the refined default rates for 

African mountain systems which were reported as 5.5 Mg ha-1 by  Suarez et al., (2019) 

and based on just two chronosequences from another related region. These rates are 

slightly lower than those reported for lowland African forests: AGB recovery for intact 

African tropical rainforests (Lewis et al., 2009; Lopez-Gonzalez et al., 2011 and 8.03 

Mg ha-1 in the tropical moist forest following 24-year silvicultural experiment as 

reported by Gourlet-Fleury, et al., (2013). Other reported rates of AGB recovery within 

20 – 25 years as shown in Tab. 3-3 demonstrate that the findings of the current study 

are in line with the reported rates of AGB recovery. The current study also revealed 

that the AGB recovery rate slows as the forest transitions into the old-growth 

secondary forest at an annual rate of 4.67 Mg ha-1 to reach the level of AGB that was 
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measured in the old-growth secondary forests – although the current study recognizes 

that there is higher uncertainty about these latter rates, as the satellite time series only 

goes back to 1984 (as indicated in chapter 2), meaning the baseline for old-growth 

forests (many of the old growth forests could be secondary forests) is dependent on 

what has been determined by the existing satellite imagery. 

The AGB recovery estimates in the current study for the young secondary forest can 

also further be refined based on the visible existence of remnant trees that influence 

the AGB estimates such as indicated in the (N’Guessan et al., 2019). The current study 

demonstrates that in 25 years, AGB of 198.32 ± 78.11 Mg ha-1 (mean ± SD) becomes 

indistinguishable from the AGB measured in the old growth secondary forest i.e., 223.6 

Mg ha-1. The mean AGB determined at 25 years in this study is in line with the mean 

AGB reported IPCC default value of 190 Mg/ha for the tropical montane forests in 

Kenya (IPCC, 2006). The current study shows that the old growth secondary forest 

AGB was (282.86 ± 71.64 Mg ha-1) which is slightly higher than the reported AGB of 

223.6 Mg ha-1 by Kinyanjui et. al., (2014), however lower than the  AGB of 391.6 Mg 

ha-1 from the moist tropical forests in Kenya (Otuoma et al., 2016). 

Table 3-4: Estimated AGB recovery rates  from previous studies across the tropical secondary forests compared 
to the current study  

Period  
(years) 

Rate 
(Mg/ha) 

Site/Ecosystem Location Reference 

0 – 20 6.42 
Mau Forest Complex, Kenya,  

East Africa 
Current Study 

0 – 20  5.50 Tropical Mountain System, Africa Requena et. al., (2019) 

0 – 20  7.60 Tropical rainforest Gourlet-Fleury et. al., (2013) 

0 – 24  8.03 Tropical Moist forest Gourlet-Fleury et. al., (2013) 

0 – 12  9.80 
Montane forests in Southern 

Ecuador  

Spracklen and Righelato, 

(2016) 

0 – 20  6.20 Tropical Secondary forests Poorter  et. al., (2016) 

0 – 20  7.80 Tropical Secondary forests Bonner et. al., (2013) 
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3.4.2. Forest structural recovery 

The study also assessed the recovery of other forest structure parameters especially 

Basal area, stem density, and found out that Basal area was also significantly 

increasing with the age of the secondary forest while stem density did not significantly 

change with the forest age and recovery stages i.e. between the youngest secondary 

forest and the old growth secondary forest as demonstrated in (Fig. 3-4B). The stem 

density could be affected by competition and dominance of certain species following 

forest clearance as has been reported by Kinyanjui, (2009). All the Species diversity 

and richness indices did not show any significant difference between the young and 

old growth secondary forests.  

3.4.3. Species richness and diversity 

The results of this current study demonstrate slow recovery of tree species diversity 

and richness in  Mau forest, with a non-linear relationship between the evenness index 

and species richness and a linear relationship between Shannon's diversity index and 

Simpson's diversity index with stand age, although the Simpson’s diversity index 

declines as the forest age increase. The slow increase in tree species diversity is 

consistent with the reports of similar studies undertaken in other montane forests of 

Kenya (Githae et al., 2008). Species richness and diversity recovery over time in 

montane forest in Kenya have not been widely undertaken, however, the findings of 

the other similar studies in tropical forest ecosystems suggest that forest species 

richness and diversity may take a longer time to recover to the old growth secondary 

forest status (Chapman et al., 2021; Goosem et al., 2016; H. Xu et al., 2015).  
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The slow recovery rate of species richness and diversity could also be associated with 

seed dispersion and seedling regeneration as reported by Wekesa et al., (2019). 

Overall, the findings of the current study suggest that AGB and Basal area recover 

quicker following forest clearance compared to species richness and diversity indices 

that recover slowly during the same recovery condition.  

The species diversity and richness indices did not show any significant difference 

between the youngest secondary forest and the old growth secondary forest. This 

conforms with the reported slow recovery of forest tree species under different 

conditions associated (Wekesa et al., 2019; Wekesa, Maranga, Kirui, Muturi, and  

Gathara, 2018). However, in other forest ecosystems, species richness and diversity 

have been reported to have increased and stabilized between 20 – 25 years (Villa et 

al., 2018).   

3.4.4. Species dominance and Composition  

The study found out that, Neoboutonia macrocalyx (Euphorbiaceae) was the most 

dominant species in the age groups of 10, 15, and 25 years with the composition of 

36.3%, 20%, and  21.9% respectively for the total species composition, while for age 

groups 20 and 30, Tabernaemontana stapfiana (Apocynaceae) was the most 

dominant species with 23.6% and 27.8% respectively, although, in the old-growth 

secondary forest, Trichocladus ellipticus (Hamamelidaceae) was also high in 

composition by 13.8%. The findings are in line with findings of Shisanya et al., (2014), 

although, Tabernaemontana stapfiana (Apocynaceae) was reported as the most 

dominant species as 22.7%, 22.9%, and 30.7% with a relative dominance of 14.3% 

distributed in Lower highland, and the two agro-ecological zones of Upper highland. 

However, the sampling approaches used in the study of Shisanya et al., (2014) differ 
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from those used in the current study, which focuses on the recovery stages based on 

the time when the last clearance occurred.  

The multidimensional analysis in the current study revealed significant differences 

between the youngest secondary forest and the old growth secondary forest with  

R2=  0.14, p <0.0001, the turnover in species composition has been observed in other 

secondary forest chronosequences for example which revealed distinct local 

assemblages although did not conform to the expectations of intermediate disturbance 

hypothesis (Araia, Chirwa, and  Assédé, 2020; X. Han et al., 2021; Hethcoat et al., 

2019). 

The significant PERMANOVA results demonstrates that the species do not vary in the 

different recovery as well as within the same groups.  The PERMANOVA results offers 

new understanding of how the species vary across different recovery regimes which 

had not been undertaken before in the region, however insignificant results were 

observed in a comparison between human modified forest and state protected reserve 

in South Africa (Araia et al., 2020). A similar study that assessed tree species 

distribution in West Africa revealed a wider variation in tree species along disturbance 

gradients with a very low diversity in high disturbed forest compared to intermediate 

and non-stressed vegetation (Bentsi-Enchill, Damptey, Pappoe, Ekumah, and  

Akotoye, 2022). Although, in this current study, species did not vary significantly 

across the disturbance gradients as compared with the findings of Bentsi-Enchill et al., 

2022, this could be attributed to the differences in the forest types, environmental 

variables like altitude among others.  
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3.4.5. Study limitations and implications for policy planning and 

implementation 

The study had limitations in terms of the age of the secondary forests, the old growth 

secondary forest sample plots were of unknown age since they existed before 1986 

from the available remote sensing data which shows the forest cover change until up 

to the year 2017 which potentially represent a shifted baseline in terms of when the 

forest recovers to the level of the primary forest. Some of the plots could have been 

disturbed by cattle, fire, or logging with remnant trees that potentially affect the 

recovery rates of both the AGB and the species richness and diversity, therefore, 

further consideration should include assessing the effects of remnant trees that 

influence both the AGB and species responses to clearance as has been reported to 

significantly affect AGB in secondary forests (Carrière, Letourmy, and McKey, 2002; 

N’Guessan et al., 2019). Future research should focus on re-census of the plots to 

determine the actual changes in biomass, the role of growth and mortality dynamics, 

establish the age from other methods especially measure of tree rings (J. White, 1998) 

to supplement the remotely sensed data and minimize differences in age resulting 

from long rotations and natural regeneration of minors (Maltamo, Kinnunen, Kangas, 

and Korhonen, 2020) and extend the research to other blocks of the Mau forest 

complex that face different interaction from different communities adjacent to them.  

The findings of the current study demonstrate the time needed for AGB to recover to 

the status of the old growth secondary forest (intact) as 25 years and the similarity in 

the tree species diversity and richness indices between the youngest secondary forest 

and the old growth secondary forest in this current study provide the basis for the 

design and development of policies that ensure effective restoration, use, and 

management of the tropical montane forests of East Africa. It is critical to incorporate 
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the findings of this research into the policy and plans to improve the resilience of the 

tropical montane forests (Nagel et al., 2017). The results also demonstrate how 

effective the tropical montane forests contribute to the curbing and mitigation of climate 

change by the amount of AGB and C sequestration which can be used to advance 

greenhouse gas (GHG) accounting and influence the policies towards the REDD+ 

initiatives in the Eastern Africa region and global scales.   
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3.5. Conclusion 

In this study, it was discovered that forest recovers at a higher rate in the first 20 years 

after the forest was cleared, and then the rate of AGB recovery declines as the forest 

reaches the old growth secondary forest stage. Forest structure and composition 

especially basal area increase with the age following forest clearance. It was also 

discovered that forest areas that were recently disturbed were characterized by few 

dominant species. The current study contributes to the existing knowledge offers a 

comprehensive determination of the rate of recovery of aboveground AGB following 

forest clearance, information on species diversity in the montane forest ecosystem 

which has not been widely undertaken in Eastern Africa. The results provide insights 

and require information for the tropical montane forest restoration and monitoring.  
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4. QUANTIFICATION OF SOIL CARBON AND NITROGEN STOCKS ALONG 

FOREST RECOVERY STAGES IN TROPICAL MONTANE FOREST OF EAST 

AFRICA 

 

 

Forest areas undergoing recovery following different forms of disturbance in the Mau Forest complex (a – c) with 

evidence of dead wood in the forest. Photographs taken from the Mau forest Complex during the field work in 

March 2019  

(a) 

(b) 

(c) 
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Abstract 

Tropical montane forests provide key ecological services and play a significant role as 

a carbon reservoir on a global scale. However, there is a lack of understanding of the 

variation in soil C and N stocks following forest clearance and how the forest recovery 

affects the soil C and N stock dynamics. This study assessed the changes in soil C 

and N stocks with the forest recovery process after forest clearance for the Mau forest 

Complex of Kenya. Soil samples from 47 forest plots were collected to assess the 

effect of recovery on the soil C and N stocks at three depths (0 – 10, 10 – 30, and 30 

– 60 cm) and across six recovery stages ranging from  <10 years, 10 – 15, 15 – 20, 

20 – 25, 25 – 30 years and old-growth (mature) secondary forest. The forest plots 

were distributed within the three blocks of the Mau forest complex. This study found 

that soil properties (pH, soil organic matter concentrations, bulk density) did not 

significantly change with the forest recovery stages and that soil C and N stocks were 

also not significantly different across the recovery stages with the average soil C of 

37.93 ± 12.96 Mg C ha-1 from the 0 – 10 cm depth, 57.7 ± 13.67 Mg C ha-1 (10 – 30 

cm) and 88.48 ± 28.07 Mg C ha-1 (30 – 60 cm) measured in the youngest secondary 

forest (<10 years of age) and 40.02 ± 14.64 Mg C ha-1 (0 – 10 cm depth), 71.65 ± 

12.34 Mg C ha-1 (10 – 30 cm) and 106.25 ± 35.66 Mg C ha-1 (30 – 60 cm depth) 

measured at the old-growth secondary forest. Likewise, total soil N stocks were also 

not significantly different between recovery regimes with 3.42 ± 0.85 Mg N ha-1 (0 – 

10 cm soil depth), 5.29 ± 1.81 Mg N ha-1 (10 – 30 cm), and 7.64 ± 2.98 Mg N ha-1 (30 

– 60 cm depth) measured from the youngest secondary forest and 3.87 ± 1.36 Mg N 

ha-1 (0 – 10 cm of soil depth), 6.79 ± 1.29 Mg N ha-1 (10 – 30 cm), 9.41 ± 2.71 Mg N 

ha-1 (30 – 60 cm) measured at the old-growth secondary forest. The findings in this 
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study suggest that the clearance of these secondary forests has a larger effect on 

aboveground C stocks, however, the soil C and N stocks do not significantly change 

with the recovery stages. The results provide empirical evidence of the capacity of the 

tropical montane forests of East Africa to store a considerable amount of soil C stocks 

and provide the vital information that can be used to design management policies 

towards conservation measures that can improve soil properties that ensure retention 

of the soil C stocks. 
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4.1. Introduction 

Forest ecosystems store approximately 70% of the terrestrial carbon (C) of which the 

tropical montane forests play a significant role on a global scale (Spracklen and 

Righelato, 2014; Keenan et al., 2015; Taylor et al., 2017; de la Cruz-Amo, et al., 2020). 

Tropical montane forests cover approximately 8% of the total tropical forests 

(Spracklen and Righelato, 2016) and are recognized for their contribution to mitigation 

of climate change (Keith, Vardon, Stein, and Lindenmayer, 2019; Martínez et al., 

2009),  provision of hydrological services, and protection of biodiversity (Spracklen 

and Righelato, 2014; Stenfert Kroese, Jacobs, et al., 2020; Stenfert Kroese, Quinton, 

et al., 2020). Given that soil serves as a major reservoir of carbon (Saiz et al., 2012; 

de la Cruz-Amo, et al., 2020), the content of soil carbon (C) in areas with native 

vegetation such as forests, shrubs, among others sequester more soil C compared to 

the other land uses such as croplands (Sattler, Murray, Kirchner, and  Lindner, 2014; 

Sun, Zhu, and  Guo, 2015). Soil C sequestration is proposed as a key strategy to 

mitigate the effects of climate change (Liu et al., 2018). Understanding of the dynamics 

of soil C storage in secondary forest recovery following clearance is key to effective 

forest restoration and management (F. Huang et al., 2018; Long et al., 2018) because 

these forests contribute to up to 17% of global C emissions (Santini et al., 2020) 

resulting from the on-going land cover changes (Mendoza-Ponce, Corona-Núñez, 

Galicia, and  Kraxner, 2019). 

The variation in soil C and N stocks with soil physical and chemical properties has 

been widely studied in tropical forests (Quesada et al., 2020; Soong et al., 2020). The 

interaction between soil properties particularly an increase in nitrogen (N) capital can 

increase the capability of forests to sequester soil C (Yang, Luo, and Finzi, 2011). 
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Several studies have demonstrated that changes in land use influence soil C and N 

stocks (Don et.al., 2011; Rahman et al., 2017), of these land-use changes, 

deforestation, is the one that influences most soil properties and functions (Martínez-

Garza, Campo, Ricker, and  Tobón, 2016; Veldkamp, Schmidt, Powers, and  Corre, 

2020). In the last few decades the knowledge of the carbon cycle in lowland tropical 

forest soils have increased significantly (Brienen et al., 2015b; Girardin et al., 2016; S. 

Moore et al., 2018) as well as for planted forest ( Wang and  Huang, 2020). However, 

for tropical montane forests (TMF) there are large gaps in knowledge, and the carbon 

cycling dynamics are understudied (Moser et al., 2011), especially the soil carbon 

dynamics following clearance and recovery (Nyirambangutse et al., 2017; Soh et al., 

2019).  

The storage of C in TMF ecosystems is under threat mainly due to the increasing 

human population, which contributes to the intensification of agriculture, and 

expansion of grazing (Ward et al., 2014), and undocumented logging (Santini et al., 

2019). A study by Sherman et al., (2012) on changes in aboveground biomass and C 

along an altitudinal gradient in a disturbance prone TMF in the Dominican Republic 

reported variability in AGB and C stocks following a forest disturbance at different 

altitudes with AGB decreasing significantly with altitude.  

Unlike TMFs, soil C stocks have been previously reported not to be affected during 

the forest recovery process in tropical forests in central and north Africa (Bauters et 

al., 2021, 2019; Djemel Merabtene et al., 2021) but these forests have different soil 

conditions from the tropical montane forests of Kenya particularly the Mau forest 

Complex. In the tropical montane forest, soil C has also been reported as relatively 

uniform along elevation gradients (Hagedorn et al., 2019; Phillips et al., 2019), at 

different succession stages (Nyirambangutse et al., 2017), although variations exist in 
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the altitude in the case of Yegof mountain natural vegetation in Ethiopia (Eshetu and 

Hailu, 2020). Berihu et al., (2017) and Muktar et al., (2018) reported a significant 

variation in soil C stocks from a dense forest, open forest, grazing land, farmland 

resulting from changes in land use. Soil C and N differed in different forest fragments 

that were affected by deforestation in the central highlands of Ethiopia (Tolessa and 

Senbeta, 2018). The high correlation of soil C and N stocks was established between 

different land uses with a decreasing trend with dept, increasing sequestration of soil 

C from cropland conversion to agroforestry in northern Ethiopia (Gelaw et. al., 2014). 

Land use and slope effects were found to significantly influence the soil 

physiochemical properties especially soil C and N stocks in the north-western 

Ethiopian highlands (Tamene, Adiss, and Alemu, 2020). Recent studies in the Mau 

forest complex particularly have demonstrated fluxes in soil carbon dioxide in both 

forest and agricultural lands (Arias-Navarro et al., 2017) and at different topographic 

positions (Arias-Navarro et al., 2017) with limited knowledge of how forest recovery 

from disturbances influence the soil C and N stocks. 

The montane forests in East Africa are recognized as ecosystems that sequester 

carbon both within the vegetation cover and the soils especially in north-western 

Ethiopia (Gebeyehu et al., 2019). Elsewhere, soil C stocks vary with changes in land 

use and vegetation (Ge, Wang, Fan, Gongadze, and  Wu, 2020; Sun et al., 2015; C. 

Zhang, Liu, Xue, and  Sun, 2013; Zhao et al., 2017), and at a regional scale, climatic 

and soil properties significantly influence soil C stocks (Saiz et al., 2012), yet it is not 

clear how the soil C stocks in the East African montane forests respond to changes in 

the forest resulting from clearance and other forms of degradation. 

Variation in forest soil C and N stocks with forest recovery has not been widely studied 

in the Afromontane vegetations in East Africa with exception of (Yimer, Ledin and 



Quantification of soil carbon and nitrogen stocks along forest recovery stages in Tropical Montane 

Forest of East Africa 

96 

 

Abdelkadir, 2006, 2007; Gebrehiwot et al., 2018) who reported a significant 

relationship between elevation, topographic aspect, and soil moisture with the soil C 

stocks in the Bale Mountains and the Abune Yosef Afroalpine and sub-Afroalpine 

vegetation in Ethiopia. It is not clear how the soil C and N stocks vary with forest 

recovery dynamics in the TMFs of East Africa with an exception of studies by Tarus 

et. al., (2019) and Kinjanjui et. al., (2013) that assessed soil C dynamics in plantation 

forest with different management styles.  Quantification of changes in soil C and N in 

the forested ecosystem that is undergoing recovery following disturbances are limited 

(Kizza et al., 2013), with little knowledge about the relationship and variation in soil C 

and N stocks from different forest recovery stages across the East African montane 

forests. The recent studies have focused on the evaluation of soil C and N stocks 

resulting from forest cover changes to agricultural land use and vice versa (Vittori 

Antisari et al., 2013; Gelaw, Singh and Lal, 2014). For example in Kenya and the Mau 

forest complex, in particular, previous studies have examined GHG fluxes in 

agricultural fields, forested land that has been converted to agriculture, and nutrient 

cycling in other land uses especially Kinjanjui, Karachi and Ondimu, (2013) who 

reported a significant difference between soil C concentration in an undisturbed forest 

as 6.6% and a disturbed forest (i.e. forest converted to farmland) as 4.9%. 

In this study, the main objective was to quantify soil C and N stocks along the different 

stages of the forest recovery process following deforestation and forest clearance in 

the Mau forest complex, a montane forest in Kenya. Synthesize major changes in soil 

properties concerning the forest recovery stages i.e., from the youngest secondary 

forest to old growth secondary forest following clearance. The key research questions 

are: 

Do the soil C and N stocks change with: 
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(i) recovery time? 

(ii) aboveground biomass? 

To answer these questions, the mapped area of forest loss and recovery in chapter 

three of this thesis was used to assess the aboveground forest biomass and species 

recovery as well as the forest structure and composition (in chapter three) which was 

then related with the below ground soil C and N stocks for this current chapter, the 47 

forest plots which were used for assessing recovery in chapter 3 were also sampled 

with each having 4 replicates of depth ranging from 0 -10 cm, 10 – 30 cm, and 30 – 

60 cm and investigated soil properties: soil organic matter content (SOM), bulk density, 

and calculated soil C and N stocks for different recovery stages. The analysis tested 

for associations between soil C and N stocks with the aboveground biomass, 

disturbance index (DI), and then determined variation between the blocks and the 

recovery regimes following deforestation.  
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4.2. Materials and methods 

4.2.1. Study area and experimental design 

The study was carried out in the 3 blocks of the Mau forest complex that have been 

assessed for the AGB and species diversity namely, Western (W), South Western 

(SW), and Transmara (T) in Western Kenya (Fig. 4-1).  Fieldwork was undertaken 

between March – June 2019 and 47 plots were established within the six recovery 

regimes. 

 

Figure 4-1: Location of the 3 forest blocks of the Mau forest complex, the red dots show the 47 sample 
plots that are distributed within the old-growth (permanent forest since 1986) and the forest undergoing 
recovery (A), map of the Mau forest Complex from which the 3 blocks were selected and showing areas 
that were deforested since 1986 (B) and (C) shows the location of the Mau forest complex within Kenya 

The sample plots indicated in Fig. 4-1 were the same that were used for undertaking 

the aboveground biomass and recovery assessment (in Chapter 3) in this thesis. 

Forest cover change classification was undertaken from the available Landsat satellite 
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data was used to determine the time since first and last forest clearance took place 

and areas that remained forest since 1986 as the oldest and old-growth secondary 

forest (Chapter two) of this current study. 

4.2.2. Soil sampling and soil analysis 

A total of 47 plots with dimensions of 20 m x 50 m (0.1 ha) were sampled as shown in 

Fig. 4-1. The plots were further subdivided to create 4 replicate subplots of 5 m x 5 m. 

Soil samples were collected within the three depths i.e., 0 – 10 cm, 10 – 30 cm, and 

30 – 60 cm in each of the replicates. Within each of the 47 plots, evidence of forest 

disturbance was recorded which included signs of firewood collection, charcoal 

burning, livestock grazing, elephant damage, forest fires among others (Fig. 4-2)  
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Figure 4-2: Photographs taken at the sampling sites showing evidence of clearance and disturbance: 
(a) Evidence of forest fire in plot 44 in Western Mau block, (b) a spot in plot 2 in Western Mau block 
where charcoal was recently prepared, (c) Part of forest where a charcoal kiln is being established (d) 
Signs of firewood collection and cutting of trees for fuelwood in South Western Mau block (e) Evidence 
of damage by elephants ; (f) Areas disturbed as a result of livestock grazing.  

Soil samples were collected using the Eikjkelkamp auger and soil sampling equipment. 

The litter was cleared to the soil surface before soil samples were collected. The 

samples were collected in two sets (i) for determining the soil physical properties (bulk 

density, and soil organic matter) and (ii) to measure the soil chemical properties (i.e. 

soil pH, C and N). The collected samples were then air-dried and sieved using a 2 mm 

sieve to remove stones and large roots. In this current study, six soil chemical and 

(a) (b) 

(c) (d) 

(e) (f) 
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physical properties at different forest plots distributed in the 3 blocks of the Mau forest 

complex were evaluated. 

4.2.3. Soil physical properties  

The soil samples that were collected for the analysis of physical properties were oven-

dried at 105oC until a constant weight was obtained and used to determine the soil 

bulk density (BD) following the direct method (Al-shammary et al., 2018; Han et al., 

2016) and using Eq. 4-1. the oven-dried soils at 105oC were then further heated to 550 

oC (loss-on-ignition) to determine and calculate soil organic matter (SOM) content 

(Adamczyk et al., 2019).  

Equation 4-1: Estimation of soil bulk density (BD) 

ƿb (units) = Ms/Vs 

Where:   

ƿb is the Soil Bulk Density in (Mg m-3) 

Ms is the weight of the dried sample (Mg) 

Vs is the volume of the dry soil sample in (m3) 

4.2.4. Soil chemical properties  

The air-dried soil samples were used to determine the pH, C, and N concentrations. 

To determine the pH, 10 g of the soil was mixed with 25ml of distilled water and 

thoroughly shaken using an orbital shaker for 30 minutes and then left to settle for 30 

minutes in a 50 ml beaker. The pH was then measured at the soil-water interface using 

a pH meter (Mettler Toledo Seven Compact, Darmstadt, calibrated with standards at 

pH 4, 7, and 10. To determine the soil C and N concentrations, the air-dried samples 

were ground using the ball mill into powder form. A sub-sample of 20 mg of the 

powdered soil samples was wrapped using tin capsules and combusted at 950°C 

using an elemental micro-analyzer. Carbon and N concentrations were used to 
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calculate the total soil carbon (TSC) and total soil nitrogen (TSN) stocks following 

equations 4-2 and 4-3.   

Equation 4-2: Estimation of the soil carbon stocks 

TSC Stocks (Mg ha-1) = BD x C (%)  x Depth  

Equation 4-3: Estimation of the soil nitrogen stocks 

TSN Stocks (Mg ha-1) = BD x N (%) x Depth 

Where: 

BD is the bulk density of the soil layers (g/cm-3),  

Depth (cm),  

C = Carbon concentration,  

N = Nitrogen concentration 

4.2.5. Statistical analysis 

All analyses were carried out using the R statistical platform (R Core Team, 2020). 

Two-way ANOVA was used to assess the variation in the soil properties with the 

recovery regimes within the soil cores and the three forest blocks of the Mau forest 

complex and this was followed by a Turkey HSD. Spatial autocorrelation was used to 

determine the effects of location using the Moran’s I test for spatial autocorrelation to 

minimize the influence of spatial correlation (Harisena, Groen, Toxopeus, and  Naimi, 

2021). Correlation analysis of the measured variables and Pearson correlation 

coefficient were used to assess the relationship between soil variables and to choose 

variables for mixed models. 

Generalized Linear Mixed effect models (GLMMs) with both random and mixed effects 

(Bolker et al., 2009; Nakagawa, Johnson, and  Schielzeth, 2017) were used to assess 

the relationship between age and changes in soil C and N stocks with the candidate 

soil variables selected as proxy from the Pearson’s correlation analysis. Forest blocks 
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were used as random effect, and age, disturbance index, pH, and aboveground were 

fixed effects in the models. The accuracy of the models with different covariates was 

evaluated using minimum Akaike information criterion (AICs) following (Burnham, 

Kenneth P., Anderson, 2002) to select the best regression model to predict the soil C 

and N stocks from the measured variables.  
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4.3. Results 

4.3.1. Soil Characteristics 

Soils in the study area were found to be acidic to neutral with pH of 5.60 ± 0.81 (mean 

± SD) for 0 – 10 cm depth, 5.50 ± 0.77 in 10 – 30 cm and 5.39 ± 0.70 for 30 – 60 cm 

in the youngest secondary forest (<10 years of age) and for the old growth secondary 

forest were 5.22 ± 0.90 for 0 – 10 cm depth, 5.09 ± 0.80 in 10 – 30 cm and 5.03 ± 0.68 

for 30 – 60 cm. Soil bulk density increased with the depth from 0.70 ± 0.09 (g/cm3) in 

0 – 10 cm to 0.78 ± 0.12 (g/cm3) and 1.07 ± 0.27 (g/cm3) for 10 – 30 cm and 30 – 60 

cm depth, respectively for the youngest secondary forest and 0.67 ± 0.11 (g/cm3) in 0 

– 10 cm to 0.76 ± 0.08 (g/cm3)  and  1.09 ± 0.29 (g/cm3) for 10 – 30 cm and 30 – 60 

cm depth for the old growth secondary forest.  

Soil C and N concentrations across the recovery stages were not significantly different 

for example, soil C concentration in the youngest secondary forest was 3.90 ± 0.70 

(%) and N concentration for the same stage was 0.40 ± 0.10 (%) while for the old 

growth secondary forest were 4.60 ± 0.70 (%) for soil C and 0.40 + 0.10 (%) of soil N 

concentration. 

Soil properties did not significantly vary across sites and the recovery stages as shown 

in Tab. 4-1, soil C and N stocks were also not significantly different between the 

recovery stages across all the soil depths (of up to 60 cm) with the average soil C of 

37.93 ± 12.96 Mg C ha-1 from the 0 – 10 cm depth, 57.7 ± 13.67 Mg C ha-1 (10 – 30 

cm) and 88.48 ± 28.07 Mg C ha-1 (30 – 60 cm) measured in the youngest secondary 

forest (<10 years of age) and 40.02 ± 14.64 Mg C ha-1 (0 – 10 cm depth), 71.65 ± 

12.34 Mg C ha-1 (10 – 30 cm) and 106.25 ± 35.66 Mg C ha-1 (30 – 60 cm depth) 

measured at the old growth secondary forest. Likewise, total soil N stocks were also 

not significantly different between recovery regimes with 3.42 ± 0.85 Mg N ha-1 (0 – 
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10 cm soil depth), 5.29 ± 1.81 Mg N ha-1 (10 – 30 cm), and 7.64 ± 2.98 Mg N ha-1 (30 

– 60 cm depth) measured from the youngest secondary forest and 3.87 ± 1.36 Mg N 

ha-1 (0 – 10 cm of soil depth), 6.79 ± 1.29 Mg N ha-1 (10 – 30 cm), 9.41 ± 2.71 Mg N 

ha-1 (30 – 60 cm) measured at the old growth secondary forest. Detailed distribution 

of the soil properties is indicated in Tab. 4-1. 
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Table 4-1: Soil physical and chemical properties for plots sampled at different recovery periods of the Mau Forest Complex. The values indicate the mean, standard deviation (SD), 
and Coefficient of Variation (CV) of the data for the 6 recovery periods for Bulk Density (BD), Soil organic matter (SOM), Carbon concentration (C), Nitrogen concentration (N), 
C:N Ratio, Soil organic carbon (SOC), Total soil Nitrogen (TSN) and Aboveground Carbon (AGC).  

Soil 
Property 

Depth 
(cm) 

<10 10 – 15 15 – 20 20 – 25 25 – 30 Old growth 

Mean ± SD CV (%) Mean ± SD CV (%) Mean ± SD CV (%) Mean ± SD CV (%) Mean ± SD CV (%) Mean ± SD CV (%) 

pH 

0-10 5.6 ± 0.8a 14.4 5.7 ± 1.1a 19.6 5.5 ± 1.0a 18.9 5.3 ± 0.3a 6.3 4.9 ± 0.6a 12.1 5.2 ± 0.9a 17.3 

10-30 5.5 ± 0.8a 14.0 5.6 ± 1.1a 19.8 5.5 ± 0.9a 18.2 5.0 ± 0.4a 8.8 5.0 ± 0.6a 10.9 5.1 ± 0.8a 15.7 

30-60 5.4 ± 0.7a 12.9 5.5 ± 0.9a 16.1 5.2 ± 0.7a 13.7 4.9 ± 0.3a 4.9 4.8 ± 0.3a 5.9 5.0 ± 0.7a 13.5 

C (%) 

0-10 5.4 ± 1.4a 26.2 6.5 ± 2.1a 31.4 6.1 ± 1.1a 17.3 5.2 ± 0.9a 18.4 5.2 ± 1.2a 22.2 5.9 ± 1.6a 27.1 

10-30 3.7 ± 0.7a 18.9 4.8 ± 1.2a 24.9 4.9 ± 0.4a 7.9 4.1 ± 1.2a 28.6 3.9 ± 0.5a 13.6 4.7 ± 0.8a 17.4 

30-60 2.7 ± 0.5a 16.9 3.1 ± 0.8a 26.3 3.0 ± 0.3a 8.3 2.7 ± 0.9a 36.5 2.7 ± 0.5a 19.7 3.2 ± 0.4a 13.3 

N (%) 

0-10 0.5± 0.1a 20.6 0.6 ± 0.1a 19.5 0.6 ± 0.1a 14.5 0.5 ± 0.1a 17.1 0.5 ± 0.1a 20.7 0.6 ± 0.1a 24.9 

10-30 0.3± 0.1a 28.3 0.4 ± 0.1a 18.3 0.5 ± 0.04a 9.6 0.4 ± 0.1a 23.8 0.4 ± 0.1a 21.9 0.5 ± 0.1a 16.8 

30-60 0.2 ± 0.1a 23.8 0.3 ± 0.1a 27.1 0.3 ± 0.01a 4.6 0.2 ± 0.1a 24.6 0.3 ± 0.1a 27.0 0.3 ± 0.03a 11.2 

C:N 
Ratio 

0-10 11.0 ± 1.8a 16.1 12.2 ± 2.5a 20.1 11.6 ± 1.9a 17.2 10.5 ± 1.5a 14.1 11.5 ± 2.4a 20.8 11.3 ± 3.5a 31.0 

10-30 13.6 ± 5.6a 40.9 11.9 ± 1.9a 16.4 10.8 ± 0.9a 8.5 13.0 ± 6.5a 50.1 10.8 ± 1.7a 16.1 10.7 ± 1.3a 12.5 

30-60 12.1 ± 2.0a 16.6 12.8 ± 2.2a 17.4 10.8 ± 0.8a 7.2 12.3 ± 3.7a 29.9 12.3 ± 4.2a 34.1 11.3 ± 1.4a 12.0 

SOC 
(Mg C ha-1) 

0-10 37.9 ± 12.9a 34.2 44.4 ± 14.2a 31.9 32.0 ± 9.9a 30.9 36.0 ± 7.3a 20.2 33.4 ± 10.9a 32.6 40.0 ± 14.6a 36.6 

10-30 57.7 ± 13.7a 23.7 70.1 ± 14.1a 20.1 64.7 ± 8.7a 13.4 59.8 ± 20.0a 33.5 54.1 ± 7.9a 14.6 71.7 ± 12.3a 17.2 

30-60 88.5 ± 28.1a 31.7 102.9 ± 27.6a 26.8 98.3 ± 23.6a 24.0 99.7 ± 60.3a 60.5 86.3 ± 20.3a 23.5 106.3 ± 35.7a 33.6 

TSN 
(Mg ha-1) 

0-10 3.4 ± 0.8a 24.7 3.8 ± 0.9a 24.6 3.1 ± 1.1a 35.4 3.5 ± 0.7a 21.0 3.2 ± 1.0a 32.7 3.9 ± 1.4a 35.3 

10-30 5.3 ± 1.8 a 34.3 6.0 ± 1.5a 25.7 6.0 ± 1.0a 16.8 5.6 ± 1.7a 29.7 5.3 ± 1.1a 21.5 6.8 ± 1.3a 19.0 

30-60 7.6 ± 2.9 a 39.0 8.4 ± 2.2a 26.1 9.1 ± 2.4a 26.1 8.3 ± 3.5a 41.8 8.1 ± 2.5a 30.6 9.4 ± 2.7a 28.8 

Bulk 
Density 
(g/cm3) 

0-10 0.7 ± 0.1a 12.7 0.7± 0.1a 13.5 0.5 ± 0.2a 35.0 0.7 ± 0.1a 14.4 0.6 ± 0.2a 25.8 0.7 ± 0.1a 17.1 

10-30 0.8 ± 0.1a 15.7 0.7± 0.1a 16.1 0.7 ± 0.1a 20.9 0.7 ± 0.1a 10.2 0.7 ± 0.1a 17.7 0.8 ± 0.1a 9.9 

30-60 1.1 ± 0.3a 25.2 1.1 ± 0.1a 12.5 1.1 ± 0.3a 28.1 1.2 ± 0.3a 23.5 1.1 ± 0.3a 24.7 1.1 ± 0.3a 26.6 

SOM 
(%) 

0-10 18.5 ± 5.4a 29.3 18.7 ± 2.9a 15.3 18.4 ± 3.2a 17.3 20.5 ± 2.9a 14.0 20.9 ± 1.6a 7.5 18.7 ± 2.2a 11.5 

10-30 15.4 ± 4.3a 27.6 15.2 ± 3.4a 22.3 15.5 ± 3.1a 19.9 16.9 ± 2.1a 12.6 18.1 ± 1.2a 6.8 16.0 ± 2.3a 14.5 

30-60 12.1 ± 3.7a 30.3 13.4 ± 2.8a 20.9 14.5 ± 4.4a 30.6 14.4 ± 2.9a 19.9 14.7 ± 1.7a 11.6 12.9 ± 2.8a 21.5 

AGC  
(Mg C ha-1) 

 28.3 ± 18.9a 66.8 42.8 ± 16.0ab 37.4 81.4 ± 32.9bc 40.4 93.2 ± 36.7cd 39.4 132.7 ± 38.9cd 29.3 132.9 ± 33.7d 25.4 
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4.3.2. Relationship between the soil properties 

Soil organic matter (SOM) concentration was significantly correlated with the soil bulk 

density (p = -0.41, p < 0.05 for 10 – 30 cm depth and p = -0.39, p < 0.05 for the 30 – 

60 cm soil depths respectively), C:N ratio across all the soil cores with (p = 0.94, p = 

0.71, p = 0.85 at p < 0.05) for 0 – 10, 10 – 30 and 30 – 60 cm respectively. SOM (%) 

was also significantly correlated with pH (p=-0.44 and -0.31 respectively for the 10 – 

30 cm and 30 – 60 cm). Soil C (%) concentration was positively correlated with 

Nitrogen (%) concentration at (p = 0.81; p < 0.05 for 0 – 10 cm depth, 0.79, p <0.05 

for 10 – 30 cm and the 10 – 30 cm) and negatively correlated with the soil N (%) at (p 

= -0.39; p < 0.05) for the topsoil (0 – 10 cm depth). C:N ratio was also significantly 

correlated with the soil C for the 10 – 30 and 30 – 60 cm by (p = 0.79 and p = 0.77; p 

< 0.05 respectively) and soil C (%) was also correlated negatively with soil N (%) for 

the sub soil cores i.e. (p = -0.56 and p = -0.5; p < 0.05) for 10 – 30 and 30 – 60 cm 

respectively.  

There was significant negative correlation between SOM (%) and disturbance index 

(p = -0.32; p < 0.05) for the 30 – 60 cm depth as well as with the C:N ratio (p = -0.32; 

p < 0.05) at 10 – 30 cm soil depth. Soil C stocks was significantly correlated with the 

N concentration with p = 0.81, p < 0.05 (0 – 10 cm), p = 0.79, p < 0,05 (10 – 30 cm) 

and p = 0.77, p < 0.05 (30 – 60 cm) and was not correlated with the other physical and 

chemical properties that were measured across all the soil cores as shown in Tab. 4-

2.  
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Table 4-2: Correlation analysis for all the variables i.e. Bulk Density (BD), Soil Organic Matter (SOM), pH, Carbon concentration (C), Nitrogen concentration (N), C:N Ratio 
and Disturbance Index (DI). Note: Bold coefficients represent significance at (p < 0.05)  

 BD (g/cm3) SOM (%) pH  C (%) N (%) C:N Ratio 

  0-10 10-30 30-60 0-10 10-30 30-60 0-10 10-30 30-60 0-10 10-30 30-60 0-10 10-30 30-60 0-10 10-30 30-60 

BD 
(g/cm3) 

1.00 1.00 1.00                

SOM (%) -0.24 -0.41 -0.39 1.00 1.00 1.00             

pH  0.13 0.37 0.03 -0.15 -0.44 -0.35 1.00 1.00 1.00          

C (%) 0.00 -0.23 0.10 -0.22 -0.02 -0.04 0.06 -0.06 -0.13 1.00 1.00 1.00       

N (%) 0.04 -0.11 -0.09 0.02 0.14 0.12 0.02 -0.04 -0.05 0.81 0.79 0.77 1.00 1.00 1.00    

C:N Ratio -0.24 -0.12 0.14 -0.19 -0.32 -0.13 -0.16 -0.02 -0.14 0.04 -0.18 -0.04 -0.39 -0.56 -0.50 1.00 1.00 1.00 

DI 0.01 0.27 0.15 -0.13 -0.25 -0.32 0.55 0.53 0.49 -0.11 -0.09 -0.12 0.09 0.13 0.02 -0.27 -0.18 -0.24 
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In order, to select proxy variables for predicting and determining the response of soil 

C and N stocks, the study used the correlation relationships presented in Tab. 4-2 to 

identify variables that were not correlated.   

4.3.3. Response of soil C and N stocks to recovery stages and 

Aboveground C 

In this study eight (8) candidate models were fitted to predict the soil C and N from the 

soil physical and chemical properties that were collected from the field. Of the 8 

models, 2 Null models were fitted each for soil C and N stocks with no predictor and 

compared its AIC with the 3 other models for both soil C and N stocks using the Age, 

DI, pH, and AGC as the covariates as shown in Tab. 4-3.  

Table 4-3: Candidate models fitted to determine the relationship between the Total Soil Carbon (TSC) 
and Total Soil Nitrogen (TSN). The asterisk between covariates shows their interactive effects 

Model/Description Rank AIC BIC ΔAIC 

TSC = β0 + β1 (Age) + β2 (DI) * β3 (Soil pH) + β4(AGC) 1 477.54 492.35 0.00 
TSC = β0 + β1 (Age) + β2 (DI) + β3 (Soil pH) + β4(AGC) 2 486.05 499.00 8.51 
TSC = β0 + β1 (Age) 3 496.32 503.72 18.78 
TSC = β0 + β1 (NULL) 4 501.13 506.68 23.59 
TSN = β0 + β1 (Age) + β2 (DI) * β3 (Soil pH)  1 267.83 280.79 0.00 
TSN = β0 + β1 (Age) + β2 (DI)  2 271.62 280.87 3.79 
TSN = β0 + β1 (Age) + β2 (DI) * β3 (Soil pH) + β4(AGC) 3 274.59 289.39 6.76 
TSN = β0 + β1 (NULL) 4 275.29 280.84 7.46 

 

The model which comprised of Age, DI, soil pH, and AGC as covariates with an 

interaction term between DI and pH performed better with a delta AIC of 8.51 

compared to the next best model that did not include the interaction term between DI 

and pH as shown in Tab. 4-3.  A similar model was also developed and fitted for the 

soil N stocks, with the detailed model coefficients for the best-fitted model at each soil 

depth as well as the combined (0 – 60 cm depth) plot level for the soil C stocks are 

indicated in Tab. 4-4. 
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Table 4-4: Mixed effect models for predicting the soil C stocks for 0 – 10, 10 -30, and 30 – 60 m soil profiles as well as the combined total soil carbon for 0 – 60 cm 
profile in the Mau forest complex. DI = Disturbance Index, AGC = Aboveground C derived from AGB. Average pH across the soil profile (0 – 60 cm) was used to 
determine the soil C stocks for the whole (Overall) profile. σ2 = Residual Variance, ICC = Intra-class correlation coefficient, N = Number of groups (random), est. = 
Estimates 

  0 – 10  10 – 30 cm  30 – 60 cm  0 – 60 cm (Overall soil profile) 

Predictors Est. CI p Est. CI p Est. CI p Est. CI p 

(Intercept) 33.12 -36.05 – 102.29 0.35 47 -32.27 – 126.27 0.25 236.38 -23.17 – 495.93 0.07 274.69 -56.26 – 605.64 0.10 

Age [years] -2.42 -9.80 – 4.96 0.52 1.77 -7.13 – 10.66 0.69 -4.68 -23.90 – 14.55 0.63 -5.55 -36.25 – 25.15 0.72 

DI -9.46 -135.72 – 116.80 0.88 -26.23 -171.05 – 118.58 0.72 -255.25 -682.27 – 171.78 0.24 -253.3 -836.12 – 329.52 0.39 

pH 2.35 -10.35 – 15.05 0.72 1.86 -12.98 – 16.70 0.81 -28.03 -77.85 – 21.79 0.27 -15.24 -77.49 – 47.02 0.63 

AGC 0.04 -0.07 – 0.16 0.43 0.01 -0.12 – 0.15 0.84 0.18 -0.12 – 0.47 0.24 0.26 -0.21 – 0.73 0.28 

DI * pH -0.14 -23.39 – 23.10 0.99 4.85 -21.97 – 31.68 0.72 49.8 -33.51 – 133.12 0.24 45.71 -65.05 – 156.48 0.42 

Random Effects    

σ2 146.50 216.84 995.74 2520.38 

τ00 27.15 Forest blocks 0.00 Forest blocks 491.62 Forest blocks 807.89 Forest blocks 

ICC 0.16 
 

0.33 0.24 

N 3 Forest blocks 3 Forest blocks 3 Forest blocks 3 Forest blocks 

Observations 47 47 47 47 

Marginal R2/  
Conditional R2 

0.03/ 0.18 0.050/NA 0.06/0.37 0.04/0.27 
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From the four (4) models that were fitted to determine soil N stocks, the model with 

age, disturbance index, and soil pH without the AGC performed better with the lowest 

AIC of 267.83 and BIC of 280.79, the model was fitted with low marginal R2 of  0.063. 

The detailed coefficients of the best fitted model for the soil N stocks based on the AIC 

are indicated in Tab. 4-5.
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Table 4-5: Mixed effect models for predicting the soil N stocks for 0 – 10, 10 -30, and 30 – 60 m soil profiles as well as the combined total soil carbon for 0 
– 60 cm profile in the Mau forest complex. DI = Disturbance Index, Average pH across the soil profile (0 – 60 cm) was used to determine the soil N stocks 
for the whole (overall) profile. σ2 = Residual Variance, ICC = Intra-class correlation coefficient, N = Number of groups (random) 

 0 – 10 cm 10 – 30 cm 30 – 60 cm Overall (0 – 60 cm) 

Predictors Est. CI p Est. CI p Est. CI p Est. CI p 

(Intercept) 3.29 -2.38 – 8.97 0.26 4.29 -3.59 – 12.18 0.29 18.04 -3.51 – 39.60 0.10 22.05 -4.66 – 48.76 0.11 

Age [years] 0.04 -0.40 – 0.48 0.86 0.33 -0.24 – 0.90 0.26 0.44 -0.69 – 1.56 0.45 0.86 -0.93 – 2.65 0.35 

DI -0.81 -11.24 – 9.63 0.88 -1.62 -16.04 – 12.80 0.83 -17.87 -52.89 – 17.16 0.32 -17.92 -64.41 – 28.56 0.45 

pH 0 -1.04 – 1.04 0.99 0.03 -1.47 – 1.52 0.97 -2.23 -6.37 – 1.91 0.29 -1.53 -6.57 – 3.50 0.55 

DI * pH 0.18 -1.71 – 2.07 0.85 0.48 -2.24 – 3.21 0.73 3.67 -3.11 – 10.44 0.29 3.85 -4.83 – 12.53 0.39 

Random Effects          

σ2 1.16 1.94 7.24 19.15   

τ00 0.00 Forest blocks 0.31 Forest blocks 0.34 Forest blocks 0.00 Forest blocks 

ICC       0.05  

N 3 Forest blocks 3 Forest blocks 3 Forest blocks 3 Forest blocks 

Observations 47 47 47 47 
Marginal R2 /  
Conditional R2 

0.01/NA 0.08/0.20 0.05/0.09 0.06/NA 
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Forest age had a negative coefficient on the overall model with an estimate of 

confidence interval (CI) of -36.25 – 25.15 with a model p = 0.104 as shown in Tab. 4-

4. Similar patterns were observed in the topsoil (0 – 10 cm) i.e., -2.42 and -4.68 for the 

30 – 60 cm depth except for the 10 – 30 cm depth which indicated a positive coefficient 

of 1.77. AGC had a positive effect on soil C stocks across all the soil depths as well 

as the model for the whole soil profile with a coefficient of 0.04 for the topsoil as well 

as 0.01 and 0.18 for 10 – 30 cm and 30 – 60 cm depths respectively and 0.26 for the 

whole soil profile as presented in Tab. 4-4. 

 

Figure 4-3: Soil C stocks estimation model coefficient with Age, Disturbance index (DI), soil pH, 
aboveground C, and the interaction effects between DI and soil pH as the model predictors for (A) 
overall model fitted with the best AIC for the whole soil profile, (B) shows the model effects of the 
predictors at 0 - 10 cm depth, (C) for 10 - 30 cm and (D) for 30 - 60 cm. The red dots and the confidence 
line indicate the negative effects while the blue dots and the lines indicate the positive effects.  

(A) (B) 

(C) (D) 
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For the soil C stocks, the model showed positive interaction effects between DI and 

the soil pH in the overall model (0 – 60 cm), model for 10 – 30 cm depth and 30 – 60 

cm as shown in Fig. 4-3 (A), (C) and (D), however for negative interaction effect for 

the topsoil of 0 – 10 cm depth as shown in Fig. 4-3 (B).  

While for the soil N stocks, the interaction effect between Di and soil pH was positive 

in all the layers including the overall soil profile. Age showed positive effect on the 

models at all soil profiles as well as the overall combined soil profile as shown in Fig 

4-4. 

  

Figure 4-4: Soil N stock estimation model coefficient and the interaction effect with Age, Disturbance 
index (DI), soil pH and the interaction effects between DI and soil pH as predictors (A) shows the overall 
model fitted with the best AIC for the whole soil profile, (B) shows the model effect of the predictors at 
0 - 10 cm depth, (C) for 10 - 30 cm and (D) for 30 - 60 cm. The red dots and the confidence line indicate 
the negative effects while the blue dots and the lines indicate the positive effects 

  

(A) (B) 

(C) (D) 
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4.4. Discussion 

4.4.1. Distribution of the soil properties  

Determination of accurate soil carbon stocks depends on accurate measurement of 

soil BD and soil C concentrations (Saiz et al., 2012). In this study, the soil BD and soil 

C concentrations were not correlated across the different soil depths as has been 

reported to be correlated in other landscapes ( Liu, Li, Sun, and  Yu, 2016). This study 

found that both BD and soil C were not significantly different between the recovery 

periods. The estimated soil C stocks were 37.93 ± 12.96 Mg C ha−1 of soil C in the 

topsoil (0 – 10 cm), 57.7 ± 13.67 Mg C ha−1 (10 – 30 cm), and 88.48 ± 28.07 Mg C 

ha−1 (30 – 60 cm) in the youngest forest and there were no significant differences 

between young and old growth secondary forest.  

 

The measured soil C stocks in this current study are in the same range as those 

measured by Berihu et al., (2017), who reported soil C stocks in four different land 

cover categories in Ethiopia (i.e. dense forest had 48.5 t ha−1, open forest 38.60 t ha−1, 

farmland 32.45, and grassland 40.09 t ha−1 of up to 40 cm depth) which was 

significantly higher than grassland open forest and farmland, although differences 

exist in the classification of the forest from the current study which focused on the time 

taken by the secondary forest under-recovery. The findings of Berihu et al., (2017) 

indicate that there was no significant difference in soil C stocks by elevation (upper 

and lower), and soil C concentration significantly declined by depth (i.e. from upper 

elevation 44.89 t ha−1 and for the lower was 34.95 t ha−1) and the C/N Ratio in 

open/dense forest (i.e. open forest was 6.92:1 for the dense forest was 7.29:1) were 

not statistically significant as found in the current study.  
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This study’s findings are also comparable with the findings reported by Tolessa and 

Senbeta, (2018) who reported soil C stocks for Jibat and Chillimo forest fragments in 

Ethiopia with different soil C and N stocks. The current study found that soil C and N 

stocks were not with the DI across all the soil, although the reported findings from a 

semi-arid watershed in northern Ethiopia (Gelaw et al., 2014) indicate that soil C and 

N stocks response to land-use change mainly rainfed crop production (RF), 

agroforestry based crop production (AF), open communal pasture (OP), silvopasture 

(SP) and irrigation-based fruit production (IR) were estimated from 0–5, 5–10, 10–20 

and 20–30 cm soil layers showed a significant relationship. Generally, both magnitude 

and difference in soil C and N concentrations showed a decreasing trend with depth 

within and among most land uses in line with the reported pattern (Yimer et al., 2007). 

Soil C and N concentrations were also highly correlated in all land use and depths.  

Soil bulk density, SOM, pH, and C:N ratio have shown variation across the soil cores 

and forest blocks. The current study findings conformed with the previous estimates 

of the soil properties in the Mau forest complex for example Wanyama et al., (2018) 

with a reported bulk density of 0.65 ± 0.03 g/cm-3 in the forest area that classified as 

smallholder affected, while forest adjacent to tea plantation was reported at 0.60 ± 

0.03 g/cm-3 for the topsoil which was comparable with the bulk density of 0.66 ± 0.13 

g/cm-3 for the topsoil (0 – 10 cm) in the current study. Soil pH in the current study was 

5.33 ± 0.82 g/cm-3  for topsoil which was also comparable with 5.1 ± 0.0 g/cm-3  from 

the previous study in the Mau forest complex. Similar patterns of the C:N ratio were 

also observed across the forest blocks without significant differences. SOM, pH, and 

C:N ratio have demonstrated significant differences in topsoil between the blocks i.e., 

C:N ratio of 11.34 ± 2.41 for this current study compared to 10.8 ± 0.1 as reported in 

the study of Wanyama et al., (2018). 
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The role of SOM and soil properties influencing the soil C stocks has been well 

documented for example in West African landscapes (Saiz et al., 2012), however, in 

the current study, the approach focused on the different recovery periods based on 

the time when the forest recovery period other than the conversion of land from other 

land uses to the forest and vice versa with the results indicating that SOM was not 

related to the soil C. In this study, it was found that SOM was highly correlated with  

C:N ratio, and disturbance index across all soil cores, while bulk density was correlated 

with N concentration (%) in the sub-layer only i.e. 10 – 30 cm and 30 – 60 cm which 

conforms with the findings of Liu et al., (2016) who reported a similar correlation of 

bulk density and soil N concentration (%). 

4.4.2. Determination of soil organic carbon and nitrogen stocks 

With the assessment of contrasting soil chemical and physical properties, this study 

established a model to predict the soil C and N in the Mau forest complex by a 

combination of variables notable the DI, pH, and AGC offering the best fit. The study 

results show that soil C and N stocks were not significantly affected by the disturbance 

processes over time. From the six models that were fitted, the current study further 

revealed that with forest age, disturbance index did not influence the soil C and N, with 

both interactions and without interaction between the DI and soil pH, AGC. Although 

disturbance has been reported to have influence on the soil C stocks especially in the 

topsoil particularly if forest is converted to other land uses like agriculture (Cai and  

Chang, 2020; Mayer et al., 2020). Previous studies such as Gebeyehu et al., (2019) 

carried out in Afromontane forest in northeastern Ethiopia have reported a correlation 

between soil C and N stocks, and AGC. However, it is challenging to find indisputable 

evidence on the role of disturbance, pH, and AGC especially given that the predictor 

used in the model may be correlated with other variables hence it is not clear whether 
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or not the relationships are causative (Saiz et al., 2012). Soil properties (pH, SOM, N) 

were found to vary across land cover types in the semi-arid areas in Eastern Africa 

(Egeru et al., 2019), yet this does not represent the vegetation recovery process in the 

tropical montane forests following deforestation and forest clearance. 

Tropical montane forest soils C stocks are influenced by the soil C in the roots resulting 

from the photosynthetic processes (Kuzyakov and  Gavrichkova, 2010) that also 

determines the AGC, this explains the correlation between the AGC and the rooting 

systems that are correlated with the SOM (%) and consequently influence the soil C 

and N stocks. This study found out that soil C and N did not significantly vary with the 

recovery stages contrary to the AGC where at the age of 25 - 30 years the AGC 

attained the level of the old growth secondary forest and was significantly different 

from the youngest secondary forest. Previously similar observations were reported in 

the African tropical forests of Tshuapa province in the Democratic Republic of the 

Congo (DRC) which is a semi-deciduous lowland rain forest (Bauters et al., 2019), 

although the current study was conducted in a montane tropical forest in East Africa. 

The comparison of AGC with soil C stocks in this study indicated that while AGB and 

consequently AGC recovers and increases to the amount equalling to the old growth 

secondary forest, soil C stocks did not change with the recovery stages (Fig.4-4). 
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Figure 4-5: Variation of aboveground carbon (AGC) and soil organic carbon (SOC) along the forest 
recovery periods in the Mau forest complex. Error bars represent standard deviations.  

The findings of this study suggest that soil C and N stocks did not change during the 

recovery regimes. Mean C stocks ranged from 173.8 ± 30.7 Mg C ha-1 to 217.9 ± 51.8 

Mg C ha-1 across the recovery period (Fig. 4-5) within the 0 – 60 cm depth. Equally, 

soil N stocks ranging from 16.4 ± 4.8 Mg N ha-1  in  <10 years forest recovery regime 

to 20.1 ± 3.9 Mg N ha-1  in the old growth secondary forest Complex in Kenya. The non-

significant change in soil C and N stocks over different recovery periods in the Mau 

forest complex from this study provide new information which contributes to knowledge 

on how the soil C and N stocks in the montane forests of East Africa respond to forest 

clearance and the following recovery stages which had not been widely reported in the 
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montane tropical forest as similar studies focus on the tropical lowland forests (Moore 

et al., 2018).  

The findings in this current study provide knowledge that has been lacking for the 

montane tropical forests of East Africa which demonstrate how the soil C and N stocks 

do not change with forest cover changes resulting from forest clearance and other 

forms of degradation. The study provides the distribution of the forest soil properties 

i.e. organic matter content across the soil profiles, bulk density, and pH which influence 

critical soil functions and provide indicators for awareness rising relating to land and 

soil degradation (Lorenz, Lal, and  Ehlers, 2019). The findings on soil C, N, pH, SOM, 

and DI can be used to identify which of the soil properties can be managed to retain 

soil C and N stocks (Bai et al., 2021). This study also provides information on the 

tropical montane forests of East Africa such as soil C and N stocks from the youngest 

forest (184.1 ±41.0 Mg C ha-1) and the old-growth secondary forest (217.9 ±51.8 Mg 

C ha-1), the relationship between the various soil physical and chemical properties 

such as BD, SOM, pH and the ongoing disturbance processes especially; firewood 

collection, charcoal burning, logging, grazing and elephant damage to predict soil C 

and N stocks in forested montane forests. 

These results in the current study indicate that soil C and N stocks do not change with 

the recovery period that was observed as shown in Tab. 4-1, which suggest that the 

soil C and N requires much more time to recover to the level and magnitude of the old-

growth primary forests.  The results of this study are limited to up to 60 cm soil profile, 

it should be noted that the soil C and N dynamics may vary or decrease with the soil 

depth ( Xu, Pan, Johnson, and  Plante, 2016). The current study did not include the 
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carbon in the plant roots for the live trees as they can increase decomposition which 

influences soil C and N stocks (Adamczyk et al., 2019; J. A. M. Moore et al., 2015). 
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4.5. Conclusion 

Understanding the recovery rate and process of soil organic carbon recovery and 

stocks from the tropical montane forest has been a challenge yet these montane 

forests act as reservoirs of soil C. The current study determined the forest soil C and 

N stocks within different recovery stages following clearance and disturbance 

processes in the Mau forests complex which have not been studied previously. The 

findings further revealed that soil properties were stable and did not significantly vary 

across the recovery stages. The findings can further be used for designing 

management strategies for improving the soil nutrients and increasing the 

sequestration of soil C, designing forest restoration plans in terms of tree species can 

be supported as well as designing policies for the management of the tropical montane 

forests at the national level. 
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5. GENERAL DISCUSSION AND CONCLUSION 

 

 

A recovering forest following disturbance with shrubs and bushes with visible remnant trees (fire) in Western Mau 

(a), moderate mature forest (b – d) with numerous small trees (saplings). The Photographs were taken from the 

Mau forest Complex during the field work in March 2019.  

 

 

 

(a) 

(b) (c) (d) 
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5.1. Discussion and conclusion  

Tropical forests in sub-Saharan Africa are expected to be more vulnerable to 

clearance and loss due to the rapidly growing population which increases the demand 

for land to extend subsistence farming (Gibbs et al., 2010). The tropical montane 

forests of East Africa that are characterized by rich fertile volcanic soils provide a 

feasible option for the local communities to expand and increase food production to 

support the population. This chapter provides a synthesis of the findings and assesses 

the relevance of the findings for planning for the management and restoration of 

tropical montane forests.  

5.2. Summary of the research findings 

This section provides the summary of the findings from the chapters of this thesis that 

assessed the rate of forest cover changes due to deforestation, rate of recovery of the 

aboveground biomass and species, and how the effects on soil carbon and nitrogen 

stocks following clearance in the Mau forest Complex  and how the results contribute 

to the knowledge on the tropical montane forests of East Africa. 

5.2.1. Recovery of the aboveground biomass, species diversity, and 

richness 

Chapter 2 of this thesis identified areas that were cleared and undergoing recovery. 

From these areas that were identified as recovering and intact, the study established 

47 forest plots of 20 x 50-meter plots (0.1 ha plots) to assess the rate of AGB and 

species richness and diversity recovery. It was found that AGB varied significantly 

between the recovery periods for example; AGB measured from the youngest 

secondary forest of less than 10 years of age was 238 ± 26 Mg ha-1 and was 

significantly different from the old growth secondary forest with a mean AGB of 318 ± 
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78 Mg ha-1. The measured AGB could be associated with the pan tropical allometric 

model used as the global models have been reported to underestimate AGB in young 

forest and overestimate AGB in mature forests (Novotný, Navrátilová, Janoutová, 

Oulehle, and  Homolová, 2020), however the findings of Novotny et al (2020) were 

tested in a temperate forest dominated by Norway spruce as opposed to the current 

study area which is characterised by various species as well as remnant trees 

following disturbance.  Stem density within the different recovery stages was not 

significantly different within the different recovery stages especially, in the youngest 

secondary forest (less than 10 years of age), the stem density showed no significant 

difference across the different recovery stages ranging from the youngest secondary 

forest (Less than 10 years) and the oldest old growth secondary forest. Species 

diversity and richness indices did not vary with the recovery stages. The research 

found out that AGB recovers rapidly in the first 20 years following forest clearance at 

an annual rate of 6. 4 Mg ha-1. After 20 years, the recovery rate slows down to 4.2 Mg 

ha-1  to attain the level of AGB measured in the old growth secondary forest. The rate 

of recovery found in the current study is comparable to the redefined IPCC default 

values by Requena Suarez et al., (2019) for African mountain systems, however, 

according to Cook-Patton et al., (2020) the reported IPCC values underestimate the 

aboveground carbon estimation by 53% in the tropics. The current study revealed that 

species recovery across the Mau forest was slow and did not show significant change 

during the various recovery stages. The PERMANOVA results revealed a significant 

variation within the recovery periods with r2 of 0.88, p < 0.0001. A total of 60 tree 

species were identified from 39 families, in the youngest secondary forest, 

Neoboutonia macrocalyx (Euphorbiaceae) was the most dominant species recorded 

during the field inventory, which composed of 36.3% of all the species observed, 
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identified and recorded in the <10, 15, and 25 years old secondary forests, while 

Tabernaemontana stapfiana which is an endangered species according to the Botanic 

Gardens Conservation International (BGCI) and IUCN SSC Global Tree Specialist 

Group (2019) was the most dominant in the 20, 30 and the old growth secondary forest 

recovery stages.  

5.2.2. Effects of recovery on soil C and N stocks 

From the plots 47 plots that were established in the Mau forest complex, the study 

collected soil samples from 0 – 10 cm, 10 – 30 cm, and 30 - 60 cm depths to determine 

the response of soil C and N stocks to the recovery process as indicated in Chapter 4 

of this thesis. Soil C and N stocks did not significantly change with the recovery 

process in the Mau Forest Complex. The current study revealed that, much as soil C 

stocks were not significantly different across the recovery stages with an average of 

184.1 ± 41 Mg C ha -1 in the youngest secondary forest and 217.9 ± 51.8 Mg C ha -1, 

while AGC was significantly different between the young secondary forest i.e., 28.3 ± 

18.9 Mg C ha -1  and 132.9 ± 33.7 Mg C ha -1  for the old growth secondary forest as 

shown in Fig. 4-5. The mean soil C in this study is in line with the findings by Ramos 

Scharrón, Castellanos and Restrepo, (2012) who reported a soil C of 229.00 Mg C ha 

-1  following landslide disturbance in a tropical montane ecosystem in Guatemala,  

Chapter 4 of this thesis also examined the relationship between forest recovery and 

changes in soil physical and chemical properties mainly bulk density, SOM, pH, C, 

and N concentrations in the Mau forest complex. The current study shows that soil C 

stocks in the youngest secondary forest were 184.1 ± 41Mg C ha -1 which was not 

significantly different from the soil C measured from the old growth secondary forest 

with 217.9 ± 51 Mg C ha-1, N stocks ranged from 16.4 ± 4.8 Mg N ha-1 in the youngest 
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secondary forest to 20.1 ± 3.9 Mg N ha-1 in the old growth secondary forest. Mean bulk 

density was 0.9 ± 0.2 g/cm-3 for the youngest secondary forest (less than 10 years of 

age) and 0.8 ± 0.1 g/cm-3 for the old growth secondary forest. The soil bulk density 

across all the recovery regimes did not vary significantly and was not significantly 

correlated with the soil C and N concentrations across all the recovery stages as well 

as the soil profile. Soil pH ranged from medium acidic to slightly acidic, although not 

significantly different within the recovery stages, for example, pH of 5.5 ± 0.7 in the 

youngest forest and 5.1 ± 0.8 in the old growth secondary forest and was not 

significantly different across the recovery stages. However, soil pH was significantly 

correlated with the disturbance index, SOM, and BD. Soil Organic Matter (SOM) in the 

Mau forest complex did not also significantly vary with 15.3 ± 4.4 (%) in the youngest 

secondary forest and 15.9 ± 2.2 (%) for the old growth secondary forest. Soil BD, pH, 

SOM, and C:N ratio however varied significantly with the different depths and blocks. 

Bulk density across the forest blocks for the 0 – 10 cm and 30 – 60 cm were not 

significantly different; however, variations were observed in the 10 – 30 cm depths. 

SOM varied significantly between the different soil profiles. While soil pH and C:N ratio 

varied significantly within the three soil depths. Although the soil pH and BD in this 

current study did not vary with recovery stages within the forest, the results were in 

line with measured pH and BD for forest by Wanyama et al., (2018; 2019) and Owuor 

et al., (2018) who reported soil pH of 6.60 ± 0.10 and bulk density of 0.65 ± 0.03 g/cm-

3 in the forest in 0 – 5 cm soil depth, soil pH of 5.70 ± 0.10 and BD of 0.79 ± 0.02 g/cm-

3 in the forest in 20 – 30 cm depth  The soil C and N concentrations in this current 

study i.e. 4.6 + 0.70 (%) and 0.4 + 0.1 (%) respectively were also comparable with 

those reported by Arnhold et al., (2015) in the Lambwe Valley in Kenya i.e. 5.9 and 
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0.42% for C and N, respectively, although Lambwe Valley is not a Montane forest 

ecosystem. 

Soil BD and SOM were correlated with a Pearson correlation coefficient of r=-0.41; p 

< 0.05, soil pH was also correlated with BD with r = 0.37; p < 0.05, and with SOM, r = 

-0.44; p < 0.05, there was also a significant correlation between disturbance index and 

pH with r = 0.53; p < 0.05. Other significant correlations were between C (%) and (N%) 

with r = 0.79, p < 0.05 as well as C:N Ratio and N (%) with r = 0.56, p < 0.05. Soil 

properties that were not correlated were selected as the proxy variable to be used in 

the model for determining the effects of the recovery period on the soils. 

This study provides the amount of soil C and N stocks that revealed that the soil C and 

N are not significantly affected by clearance and disturbance processes such as forest 

fires, fuelwood collection, grazing (livestock), elephant damage, logging, and charcoal 

burning, Similar studies reported 68 Mg ha-1 of soil C from 0 – 30 cm soil depth in the 

Bwindi highlands in western Uganda (Twongyirwe et al., 2013). While previous studies 

compared the soil C in the forest lands with soil C in other Land use types or 

plantations for example (Omoro et al., 2013), this study assessed the dynamics with 

different forest recovery stages, with the estimates in the forest area that was 

comparable with the other measurements within the indigenous forests in Kenya.  

Although there was no significant variation in the soil C stocks from different recovery 

stages, the amount of soil C measured from the tropical montane forest in the Mau 

forest complex in Kenya are comparable to the amount of soil C measured in other 

montane forests at both continental and global level for example in the current study 

the mean soil C was 217.90 ± 51.80 Mg C ha -1  which is comparable with soil C of 

223.70 Mg C ha -1  measured by Berihu et al., (2017) in northern Ethiopia, 217.60 Mg 
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C ha -1 for altitude ranging between 900 -1870 m.a.s.l. from 0 – 100 cm depth in 

Himalayas reported by Tashi et al., (2016) and soil C stocks ranging from 106.00 ± 

7.00 – 204.00 ± 27.00 Mg C ha -1 between elevation of 1050 – 3060 m.a.s.l in tropical 

mountain forests of South Ecuador with no trend between 1050 – 2380 m.a.s.l but 

higher value close to 3060 m as reported by Moser et al., (2011) The insignificant 

difference in soil C and N in relation to recovery time could indicate the need for a 

longer recovery period after forest clearance to observe a change in soil C, especially 

as has been reported by (Xiaoju Liu and Pan, 2019) who reported 43 years period 

required for recovery of soil C following fires.  

The current study found that most soil physical and chemical properties were not 

statistically significant across the recovery stages. Although there existed a correlation 

between some of the properties, hence, were selected proxy variables based on their 

correlation coefficients to avoid the causation effects on the models for assessing the 

effects of recovery on the soil C and N in the Mau forest complex. 

5.2.3. Limitations of the study and policy planning implications  

In this study, the forest cover change period was limited to the available remote 

sensing data to estimate the age of the forest. This means that it was not possible to 

establish the age of the forest that existed before 1984 periods until 2017 hence a shift 

in the basis for analysis. Reliance on Landsat satellite data would introduce the 

limitations of Landsat imagery and challenges associated with cloud cover on the 

imagery and 30 m x 30 m resolution. Future studies could integrate the findings from 

previous surveys (aerial photography) before the launch of Landsat and newly 

introduced sensors for example the European Space Agency (ESA’s) sentinel imagery 

which offers higher resolution (up to 10 m x 10 m resolution).   
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The assessment of AGB, AGC, soil C, and N stocks was only limited to the 3 blocks 

of the Mau forest complex, this limited the findings of this study to only the 3 blocks 

that were surveyed. However, other blocks of Mau forest may have different forms of 

interaction with the neighbouring forest blocks. The adjacent communities to the forest 

also impact the forest-based on their interaction with the forest. Future studies would 

incorporate the assessment of remnant trees following disturbance (forest clearance), 

rate of mortality, and biomass in the litter and dead trees. Soil property assessment 

was only undertaken to the depth of 60 cm within each plot that was surveyed (n = 

47), hence it is not clear how the soil cores beyond 60 cm depth respond to the 

recovery of the montane forest. Although previous studies report that there is not much 

soil variation in C and N stocks in the deeper soil cores. 

The findings from this study provide information on the current state of the forest i.e., 

structure AGB and AGC, forest tree species, and soil C and N stocks that can be used 

as the basis for designing the policies that ensure sustainable and effective 

management of the Montane tropical forests. Enable effective restoration programs 

and design policies that are participatory in nature to involve the local communities in 

the management and protection of the forest ecosystem. The information regarding 

areas where deforestation took place and forest clearance can be used to plan for 

restoration activities in terms of species that can be introduced depending on the soil 

characteristics that have been reported in this study (chapter 4), protection plan based 

on the rate of clearance (chapter 2).  

5.2.1. Relevance of the study and Future work  

The results of the study offer relevant insights to the changes in the forest cover to the 

local, national, and international stakeholders.  The local authorities can visualize how 
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the forest cover has changed over time as a result of interaction with the local 

communities. At the national scale, the government can use the results of the study to 

inform the policy development process to establish enabling policies that can help to 

curb the identified losses due to deforestation and clearance. Deforestation has been 

reported to have contributed to cost of the economy especially in Kenya. At the global 

scale, the findings of the study contribute to the gap in the knowledge on tropical 

montane ecosystems and provide information regarding the amount of C stocks from 

the Tropical montane forests in East Africa which can be used by the programs like 

the UN-REDD and UNFCCC for the appropriate climate action planning. 

The trend in the forest cover change based on the historical data can then be used to 

relate with how the authorities in Kenya have moved from the historical and colonial 

approaches to the conservation, allocation of the forest land by the past governments 

and how the effects of these political actions could be reversed following the 

appropriate restoration and management plans that maybe adopted.  

The results can also be used for the planning of the restoration activities by different 

stakeholders and authorities like conservationists, researchers for the planning 

purposes. The limitation and recommendations for the future work as a result of the 

finding of the study can help to guide the future studies in the tropical montane forests 

of East Africa.  

The findings of the study especially the rate of recovery of the forest Aboveground 

Biomass and Carbon stocks as well as the Soil C and N stocks can be used to 

determine the overall C budget of the whole Mau forest Complex.   
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5.3. Conclusion 

The study revealed the extent and rate of forest cover change (loss and recovery) 

following forest clearance and degradation in the Mau forest complex. The study also 

revealed the changes in forest structure and composition (mainly AGB, species 

richness, and diversity) following deforestation and disturbance processes and 

provided the quantification of forest soil C and N in the Montane tropical forest. Below 

are the main conclusions resulting from the study. 

• Forest cover was lost to deforestation in both Mau forest complex and Elgon at a 

rate of -0.88% yr-1 and -1.03% yr-1 respectively during the period between 1984 and 

2017 equating to the total area of 88,493 ha (21.9%) and 27,201 ha (12.5%) of the 

Mau forest complex and Mt Elgon forest respectively. During the same period, the 

two montane forests experienced recovery (forest gain) of 75,438 (18.6%) for the 

Mau forest complex and 59,047 ha (27.2%) for Mt Elgon forest. Areas, where these 

changes occurred, were also mapped and the time when the loss or recovery 

happened was also determined from the available remote sensing data (Chapter 

2). 

• The research also revealed the amount of AGB from the different recovery periods, 

the rate at which the Mau forest complex recovers AGB, and the rate of species 

recovery was also established. The study found that there was a significant 

difference in AGB between the youngest secondary forest (<10 years) and 

moderately mature 20 – 25 years of age and old growth secondary forest. It was 

further noted that the AGB recovers rapidly in the first 20 years following forest 

clearance and then the rate slows as the forest matures into the old growth 

secondary stage. AGB would require 25 years to be indistinguishable from the AGB 

in the oldest old growth secondary forest. Species recovery did not show any 
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significant change between the youngest secondary forest and the old growth 

secondary forest (Chapter 3). 

• The study also quantified soil C and N across different recovery regimes and 

revealed that soil C and N stocks were static and did not vary significantly with 

recovery stages. Soil C in this study could be predicted using the AGC, pH, and 

the disturbance index. The results from the analysis of soil C and N dynamics 

suggest that it could take a longer period for soil C to be altered by forest clearance 

and recovery cycles in the Mau forest complex (Chapter 4). 
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APPENDICES 

Appendix 1: Training and validation samples based on visual interpretation from High-resolution Google 
imagery and Multispectral Landsat images. The figure shows the Land cover class identification and 
sample from the high-resolution imagery (a) and Landsat TM, ETM+ (5-4-3 spectral band combination), 
and Landsat 8 OLI (6-5-4 spectral band combination) (b) for each land cover class used for the 
classification scheme. 

Forest  Agriculture (Large scale) 

(a) (b) (a) (b) 

Agriculture (Small scale) Rangeland 

(a) (b) (a) (b) 

Settlement/Urban Moorland 

(a) (b) (a) (b) 
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Appendix 2: Areas that were forest in 1986, 2000, and cleared in 2017 on the Landsat 5, 7, and 8 
imagery respectively displayed as a true color composite in RGB (321 spectral) band combination for 
Landsat 5, 7, and 432 spectral band combination for Landsat 8 in the 1st row (A), and the processed 
Imagery displayed  in three standard RGB color guns as Band 1: Bare substrate (S) in red, Band 2: Live 
and Photosynthetic Vegetation (PV) in Green and  dead /Non Photosynthetic Vegetation (NPV) in Blue 
in the 2nd row (B)  

 

  

1986 2000 2017 

1986 2000 2017 
S 

PV 

NPV 

S 

(A

(B) 
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Appendix 3: Areas that were forest in 1995 on the Landsat 5 imagery (A) displayed as a true color 
composite in RGB (321 spectral band combination) currently seen converted into agriculture in 2017 
Landsat 8 imagery/high-resolution Google imagery (B) displayed in RGB (432 spectral band 
combination). 
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Appendix 4: Spatial Autocorrelation plots for the residuals of the models for determining the recovery 
rates in the Mau forest complex. 
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Appendix 5: Stress plot for the NMDS for the species ordination (A) and the Elipses plot for the MDS 
analysis (B). 

A 

B 
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Appendix 6: Summary of the inventory data showing the forest structure and species and families in the sampled plots in Mau forest complex 

Plot X Y Block 
BA  

(m2 ha-1) 

DBH 

(cm) 

Height 

(m)  

Stem Density 

(tree ha-1) 

Slope 

(%) 

Elevation 

(m) 
Logging Grazing Charcoal 

Elephant  

damage 

Fire 

wood 

Under  

growth 

1 35.57886 -0.22503 1 2.32 45.07 15.69 120 10.00 2347 Yes Yes Yes No Yes No 

2 35.58586 -0.23113 1 1.14 16.28 6.75 460 15.00 2306 Yes Yes Yes No Yes Yes 

3 35.60707 -0.23908 1 1.41 22.56 10.09 280 7.00 2415 Yes Yes Yes No Yes Yes 

4 35.61540 -0.23655 1 1.73 15.01 8.75 830 5.00 2352 Yes Yes No No Yes No 

5 35.62091 -0.22170 1 0.48 17.10 8.84 170 12.00 2283 Yes Yes No No Yes Yes 

6 35.56712 -0.23936 1 4.97 21.38 10.93 870 25.00 2358 Yes No Yes No Yes No 

7 35.42163 -0.30270 1 4.13 33.88 18.80 280 18.00 2242 Yes Yes Yes No Yes Yes 

8 35.54920 -0.25000 1 3.30 21.59 12.33 640 13.00 2336 Yes Yes Yes No Yes No 

9 35.53872 -0.26085 1 3.08 25.90 12.29 430 20.00 2309 Yes Yes Yes No Yes No 

10 35.51865 -0.28038 1 1.22 17.13 12.29 440 3.00 2519 Yes Yes Yes No Yes Yes 

11 35.43472 -0.70918 3 1.66 28.86 13.58 190 5.56 2170 No Yes Yes Yes No Yes 

12 35.44008 -0.70822 3 4.01 33.39 17.20 320 5.00 2124 No Yes No Yes No Yes 

13 35.48716 -0.66114 3 3.40 26.04 13.51 470 6.00 2261 No Yes No Yes No Yes 

14 35.42714 -0.68893 3 2.91 48.57 17.50 120 5.56 2225 Yes Yes Yes No Yes Yes 

15 35.43332 -0.68710 3 4.48 38.05 16.43 300 15.00 2225 Yes Yes No No Yes Yes 

16 35.42707 -0.68038 3 4.01 25.91 12.68 390 20.00 2218 Yes Yes No No No Yes 

17 35.43561 -0.67486 3 4.39 30.59 14.21 400 9.00 2239 Yes Yes No No No Yes 

18 35.46840 -0.72304 3 0.97 21.07 9.87 230 14.00 2173 Yes No No Yes No Yes 

19 35.48482 -0.64112 3 2.46 19.77 12.54 690 35.00 2290 No No No No No No 

20 35.59279 -0.63295 3 1.75 17.96 9.72 570 35.00 2394 No Yes No Yes Yes No 

21 35.52348 -0.76941 3 1.69 25.63 13.34 270 4.17 2240 No Yes No No Yes Yes 

22 35.50982 -0.76940 3 1.54 20.94 11.17 340 4.17 2180 No No No Yes No Yes 

23 35.48669 -0.68769 3 1.29 24.47 13.17 200 28.00 2169 No Yes No Yes No Yes 

24 35.48066 -0.68350 3 1.98 20.17 12.98 400 0.83 2224 No Yes No No Yes Yes 

25 35.32427 -0.56033 2 2.08 26.12 15.99 310 18.00 2087 No Yes No No Yes Yes 

26 35.32846 -0.56152 2 3.05 26.31 14.84 390 2.78 2081 No Yes No No Yes Yes 

27 35.33495 -0.56927 2 2.71 22.98 15.09 540 30.00 2015 Yes Yes No No Yes Yes 

28 35.33179 -0.55846 2 3.92 24.65 15.99 490 10.00 2081 No Yes No No No Yes 
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29 35.33835 -0.56251 2 3.17 24.52 15.58 510 1.39 2070 No Yes No No Yes Yes 

30 35.31657 -0.54234 2 4.10 25.41 15.23 630 11.00 2050 No Yes No No No Yes 

31 35.33667 -0.56029 2 3.35 23.85 14.55 530 5.00 2070 No Yes No No Yes No 

32 35.37669 -0.51624 2 3.38 26.66 14.30 430 5.56 2138 No Yes No No Yes No 

33 35.38913 -0.52346 2 6.59 36.42 17.62 430 5.56 2196 No Yes No No Yes No 

34 35.31816 -0.50690 2 3.16 24.65 16.86 460 2.78 2267 No Yes No No No Yes 

35 35.40889 -0.50807 2 4.03 27.94 16.91 370 2.22 2227 No Yes No No Yes Yes 

36 35.39491 -0.55630 2 3.33 24.20 13.58 480 0.56 2176 Yes Yes No No Yes Yes 

37 35.36162 -0.48064 2 2.32 23.20 16.53 420 1.39 2210 No No No Yes No Yes 

38 35.30602 -0.49291 2 4.32 26.13 18.70 620 0.28 1999 No No No Yes No Yes 

39 35.30402 -0.46515 2 3.45 27.57 18.17 430 1.11 2020 No No No Yes No Yes 

40 35.31286 -0.44426 2 3.58 25.60 16.18 470 1.94 2106 No No No Yes No No 

41 35.30730 -0.45865 2 0.87 16.72 13.42 340 5.00 2020 No No No Yes No Yes 

42 35.38010 -0.48849 2 1.16 17.35 12.57 400 10.00 2253 No No No Yes No Yes 

43 35.40088 -0.37558 2 3.04 21.51 13.56 690 20.00 2315 No Yes No No No No 

44 35.41858 -0.31107 1 1.05 20.92 12.58 230 8.00 2257 No Yes Yes Yes No Yes 

45 35.62873 -0.21022 1 1.25 14.77 11.46 500 20.00 2368 Yes Yes Yes No Yes Yes 

46 35.45064 -0.34096 1 2.72 21.56 13.19 540 5.00 2365 No Yes No No Yes No 

47 35.44332 -0.34350 1 2.98 17.76 14.32 1040 16.00 2341 No Yes No No No No 

Note: Block 1 = Western Mau, 2 = Transmara and 3 = South western Mau 
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Appendix 7: Summary of forest structure and composition i.e. Diameter at Breast height (DBH), tree height (H), Stem Density, Basal area (BA), 
aboveground biomass (AGB), and aboveground Carbon (AGC); Forest species richness and diversity indices i.e. Shannon’s divers ity index (H), 
Evenness (J) and the Simpson’s Diversity Index (D) for the 47 plots in the three blocks of the Mau forest complex distributed in the 6 different 
recovery stages. 

Recovery 
stage (years) 

DBH 
(cm) 

Height 
(m) 

Stem density 
(tree ha-1) 

BA 
(m2 ha-1) 

AGB 
(Mg ha-1) 

AGC 
(Mg C ha-1) 

Shannon's 
(H) 

Evenness 
(J) 

Simpson's 
(D) 

<10 18.82 ± 2.13 11.02 ± 2.35 321.25 ± 101.34 11.48 ± 4.50 60.20 ± 40.32 28.30 ± 18.95 1.25 ± 0.45 0.66 ± 0.18 0.47 ± 0.19 

10 - 15 18.83 ± 3.86 11.67 ± 1.82 570.00 ± 186.28 18.76 ± 6.57 91.14 ± 34.07 42.84 ± 16.02 1.27 ± 0.41 0.62 ± 0.13 0.46 ± 0.16 

15 - 20 24.91 ± 2.64 13.63 ± 2.06 386.00 ± 153.40 24.36 ± 8.57 173.26 ± 70.02 81.43 ± 32.91 1.82 ± 0.36 0.81 ± 0.09 0.27 ± 0.11 

20 - 25 27.21 ± 9.95 15.06 ± 2.08 472.86 ± 296.74 28.46 ± 7.33 198.32 ± 78.11 93.21 ± 36.71 1.63 ± 0.26 0.79 ± 0.10 0.28 ± 0.07 

25 - 30 27.59 ± 4.98 16.17 ± 1.76 440.00 ± 130.00 35.63 ± 8.65 282.35 ± 82.88 132.70 ± 38.95 1.80 ± 0.36 0.80 ± 0.10 0.27 ± 0.12 

Mature 28.95 ± 7.06 14.81 ± 2.39 445.46 ± 187.58 39.51 ± 11.32 282.86 ± 71.64 132.94 ± 33.67 1.63 ± 0.51 0.75 ± 0.13 0.36 ± 0.16 
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Appendix 8: Identified and recorded species and the percentage composition in the 3 Blocks of Mau forest complex 

Family Species 
No. of species recorded in each forest class Composition in each forest class (%) 

10 15 20 25 30 Old-growth 10 15 20 25 30 Old-growth 

Fabaceae Acasia lahai 2 - - - - - 0.66 - - - - - 

Mimosaceae Acacia melanoxylon 35 - - - - - 11.55 - - - - - 

Ericaceae Agauria salicifolia 1 1 - - - - 0.33 0.30 - - - - 

Mimosaceae Albizia gummifera 1 - 2 6 6 6 0.33 - 1.03 1.80 1.52 1.25 

Sapindaceae Allophylus abyssinicus - 2 3 1 11 - - 0.60 1.54 0.30 2.78 - 

Sapotaceae Aningeria adolfi-friederici - - - - - 2 - - - - - 0.42 

Melianthaceae Bersama abyssinica 1 - - 2 1 - 0.33 - - 0.60 0.25 - 

Flacourtiaceae Casearia battiscombei 6 2 2 5 45 8 1.98 0.60 1.03 1.50 11.36 1.66 

Rhisophoraceae Cassipourea malosana 3 - - 22 18 20 0.99 - - 6.61 4.55 4.16 

Ulmaceae Celtis africana 4 8 1 7 4 29 1.32 2.39 0.51 2.10 1.01 6.03 

Rubiaceae Coffea eugenoides - 4 - - - - - 1.19 - - - - 

Euphorbiaceae Croton macrostachyus 16 10 3 11 5 6 5.28 2.99 1.54 3.30 1.26 1.25 

Araliaceae Cussonia holstii 1 - - - - - 0.33 - - - - - 

Ebenaceae Diospyros abyssinica - - 1 - 5 43 - - 0.51 - 1.26 8.94 

Sterculiaceae Dombeya torrida 16 6 22 4 1 2 5.28 1.79 11.28 1.20 0.25 0.42 

Salicaceae Dovyalis abyssinica - - - - - 1 - - - - - 0.21 

Dracaenaceae Dracaena steudneri - - - - 7 1 - - - - 1.77 0.21 

Boraginaceae Ehretia cymosa 21 - 7 - 4 8 6.93 - 3.59 - 1.01 1.66 

Meliaceae Ekerbergia capensis - - 2 - 2 2 - - 1.03 - 0.51 0.42 

Ebenaceae Euclea divinorum 12 48 1 - - 7 3.96 14.33 0.51 - - 1.46 

Euphorbiaceae Euphorbia obovata - 1 - - - - - 0.30 - - - - 

Moraceae Ficus natalensis - - - - - 2 - - - - - 0.42 

Moraceae Ficus thonningii - 1 - - 2 4 - 0.30 - - 0.51 0.83 

Oleaceae Fraxinus berlandieriana - - - 7 - - - - - 2.10 - - 

Saxifragaceae Galineria saxifraga - - 5 1 16 4 - - 2.56 0.30 4.04 0.83 

Stilbaceae Halleria lucida - 1 - - - - - 0.30 - - - - 

Aquifoliaceae Ilex mitis - - - - 2 3 - - - - 0.51 0.62 
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Cupre saceae Juniperus procera 1 3 - - - - 0.33 0.90 - - - - 

Euphorbiaceae Macaranga kilimandscharica - 2 3 12 1 25 - 0.60 1.54 3.60 0.25 5.20 

Euphorbiaceae Makaranga cabensis 2 35 5 12 7 25 0.66 10.45 2.56 3.60 1.77 5.20 

Celastraceae Maytenus heterophylla 2 7 - - - - 0.66 2.09 - - - - 

Celastraceae Mystroxylon aethiopicum 15 - 5 10 - - 4.95 - 2.56 3.00 - - 

Euphorbiaceae Neoboutonia macrocalyx 110 67 23 73 30 33 36.30 20.00 11.79 21.92 7.58 6.86 

Stilbaceae Nuxia congesta - 2 - - - - - 0.60 - - - - 

Oleaceae Olea africana 7 32 - 5 - 16 2.31 9.55 - 1.50 - 3.33 

Oleaceae Olea capensis - - - 4 - 2 - - - 1.20 - 0.42 

Rubiaceae Pavetta gardeniifolia 2 5 1 14 1 - 0.66 1.49 0.51 4.20 0.25 - 

Pittosporaceae Pittosporum viridiflorum 1 3 - - - - 0.33 0.90 - - - - 

Podocarpaceae Podocarpus latifolius - - - 1 - - - - - 0.30 - - 

Araliaceae Polyscias fulva - - 1 - 2 1 - - 0.51 - 0.51 0.21 

Araliaceae Polyscias kikuyensis - - 1 1 - 3 - - 0.51 0.30 - 0.62 

Rosaceae Prunus africana 1 1 2 2 2 2 0.33 0.30 1.03 0.60 0.51 0.42 

Rubiaceae Psydrax parviflora - - - 1 - - - - - 0.30 - - 

Rubiaceae Psydrax schimperiana 1 26 23 64 30 20 0.33 7.76 11.79 19.22 7.58 4.16 

Rhamnaceae Rhamnus prinoides - - - - 5 - - - - - 1.26 - 

Anacardiaceae Rhus natalensis 1 4 1 - - - 0.33 1.19 0.51 - - - 

Araliaceae Schefflera abyssinica 5 2 1 - 1 - 1.65 0.60 0.51 - 0.25 - 

Araliaceae Schefflera volkensii - - - - 1 - - - - - 0.25 - 

Oleaceae Schrebera alata 2 - - - - - 0.66 - - - - - 

Bignoniaceae Spathodea campanulata - - - 1 - - - - - 0.30 - - 

Euphorbiaceae Suregada procera - - 20 9 33 17 - - 10.26 2.70 8.33 3.53 

Myrtaceae Sygyzium guineense 4 8 3 30 22 9 1.32 2.39 1.54 9.01 5.56 1.87 

Apocynaceae Tabernaemontana stapfiana 15 39 46 23 110 64 4.95 11.64 23.59 6.91 27.78 13.31 

Asteraceae Tarconanthus camphoratus 5 - - - - - 1.65 - - - - - 

Rutaceae Teclea nobilis 1 12 3 2 6 20 0.33 3.58 1.54 0.60 1.52 4.16 

Hamamelidaceae Trichocladus ellipticus 7 - - - - 91 2.31 - - - - 18.92 

Rutaceae Vangueria madagascariensis 1 2 3 - 1 - 0.33 0.60 1.54 - 0.25 - 

Rubiaceae Warburgia ugandensis - 1 - - - 1 - 0.30 - - - 0.21 
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Canellaceae Xymalos monospora - - - - 4 - - - - - 1.01 - 

Monimiaceae Zanthoxyllum gillettii 1 - 5 3 11 4 0.33 - 2.56 0.90 2.78 0.83 

Unknown Unknown 1 22 - 2 - 9 0.33 6.57 - 0.60 - 1.87 

Total  303 335 195 333 396 481 100 100 100 100 100 100 
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Appendix 9: Soil physical and chemical properties for plots sampled at different recovery periods of the Mau Forest Complex. The values 

indicate the mean, standard deviation (SD) of the data for the 6 recovery periods for Bulk Density (BD), Soil organic matter (SOM), Carbon 

concentration (C), Nitrogen concentration (N), C:N Ratio, Soil organic carbon (SOC), Total soil Nitrogen (TSN) and Aboveground Carbon 

(AGC) at plot level with combined soil profile (0-60 cm).  
Recovery 

(years) 
BD 

(g/cm3) 
SOM (%) pH C (%) N (%) C:N Ratio 

TSN 
(Mg ha-1) 

SOC 
(Mg ha-1) 

AGC 
(Mg ha-1) 

<10 0.9 ± 0.2a 15.3 ± 4.4a 5.5 ± 0.7a 3.9 ± 0.7a 0.4 ± 0.1a 12.2 ± 2.9a 16.4 ± 4.8a 184.1 ± 41.0a 28.3 ± 18.9a 

10 - 15 0.9 ± 0.1a 15.7 ± 2.7a 5.6 ± 1.0a 4.8 ± 1.3a 0.4 ± 0.1a 12.3 ± 2.6a 18.1 ± 4.1a 217.4 ± 52.5a 42.8 ± 16.0ab 

15 - 20 0.8 ± 0.2a 16.1 ± 2.9a 5.4 ± 0.9a 4.7 ± 0.6a 0.4 ± 0.0a 11.1 ± 0.8a 18.2 ± 4.3a 195.0 ± 40.7a 81.4 ± 32.9bc 

20 - 25 0.9±  0.1a 17.2 ± 2.5a 5.1 ± 0.3a 3.9 ± 1.0a 0.4 ± 0.1a 11.9 ± 3.7a 17.3 ± 5.1a 195.6 ± 81.7a 93.2 ± 36.7cd 

25 - 30 0.8 ± 0.2a 17.9 ± 1.3a 4.9 ± 0.5a 3.9 ± 0.4a 0.4 ± 0.1a 11.5 ±2 .0a 16.5 ± 3.9a 173.8 ± 30.7a 132.7 ± 38.9cd 

Old-growth 0.8 ± 0.1a 15.9 ± 2.2a 5.1 ± 0.8a 4.6 ± 0.7a 0.4 ± 0.1a 11.1 ± 1.8a 20.1 ± 3.9a 217.9 ± 51.8a 132.9 ± 33.7d 
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Appendix 10: Model diagnostic plots for the selected Total Soil Carbon (TSC) prediction (Soil C stocks). 
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Appendix 11: Model diagnostic plots for the selected model for Total Soil Nitrogen (TSN) prediction (Soil N stocks). 

 


