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 122 

Abstract  123 

Global change drivers such as anthropogenic nutrient inputs simultaneously alter 124 

biodiversity, species composition, and ecosystem functions such as aboveground biomass. 125 

These changes are interconnected by complex feedbacks among extinction, invasion, and 126 

shifting relative abundance. Here, we use a novel temporal application of the Price equation 127 

to quantify the functional contributions of species that are lost, gained, and persist under 128 

ambient and experimental nutrient addition in 59 global grasslands. Under ambient 129 

conditions, compositional and biomass turnover was high, but species losses (i.e., local 130 

extinctions) were balanced by gains (i.e. colonization). There was biomass loss associated 131 

with species loss under fertilization. Few species were gained in fertilized conditions over 132 

time but those that were, and species that persisted, contributed to net biomass gains, 133 

outweighing biomass loss. These components of community change are key to 134 

understanding the relationship between diversity change and functioning. 135 

 136 
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Introduction 138 

Human pressures are fundamentally changing the global environment in terms of 139 

species diversity and the functioning of ecosystems (Moreno-Mateos et al. 2017; Chaplin-140 

Kramer et al. 2019). There are elevated extinction rates globally, but this is often not 141 

reflected in measures of species richness and diversity at local scales (Dornelas et al. 2014; 142 

Blowes et al. 2019). Instead, compositional change in species is predominant (Hillebrand et 143 

al. 2018; Blowes et al. 2019), as there is a mixture of winners and losers in ecological 144 

communities under anthropogenic pressures (Dornelas et al. 2019). Biodiversity is known to 145 

positively influence ecosystems in terms of important functions such as biomass production, 146 

nutrient absorption, and carbon sequestration (Cardinale et al. 2013; Hooper et al. 2016), 147 

and species loss is known to negatively affect these measures of ecosystem function (Smith 148 

& Knapp 2003; Isbell et al. 2013; Genung et al. 2020). However, aggregate community 149 

measures of biodiversity and functioning, while somewhat interdependent, can also respond 150 

independently to external processes and pressures (Grace et al. 2016; Ladouceur et al. 151 

2020). It is not well understood how compositional change resulting from global change 152 

pressures or disturbance affects measures of ecosystem function.  153 

A major driver of global biodiversity change is the increased inputs of biologically 154 

limiting nutrients to the environment from anthropogenic activities (Ackerman et al. 2019; 155 

McCann et al. 2021). In plant communities, fertilization can act independently on multiple 156 

resource-limited processes, which may interact with one another (Harpole & Tilman 2007). 157 

Specifically, alterations in nutrient supplies change the conditions of species coexistence via 158 

tradeoffs in competition for limiting resources, which can result in dramatic, long-term shifts 159 

in species richness and composition (Harpole et al. 2016; Midolo et al. 2019; Seabloom et al. 160 

2020). Resulting changes in biodiversity might further alter key ecosystem functions and 161 

services such as the production of biomass, carbon sequestration, and nutrient cycling 162 

(Hooper et al. 2005). Live aboveground biomass is a particularly important measure of 163 

ecosystem function, as plant biomass is an important source of energy for most life on land 164 

(Yang et al. 2020). However, the relationship between biodiversity and aboveground 165 
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biomass under global change pressures such as nutrient enrichment varies in direction and 166 

strength across contexts, systems, and sites (Harpole et al. 2016). Understanding how 167 

biodiversity, composition, and aboveground biomass change are interrelated is essential for 168 

anticipating the impacts of global change pressures such as nutrient deposition on 169 

ecosystems and their functions.  170 

Global change drivers such as nutrient addition can alter community assembly 171 

processes, community composition, and ecosystem functioning concurrently (Bannar-Martin 172 

et al. 2017; Leibold & Chase 2017; Leibold et al. 2017). In some cases, small changes in 173 

species richness mask large compositional changes (Spaak et al. 2017; Hillebrand et al. 174 

2018). Changes in competition and coexistence resulting from nutrient inputs can affect 175 

compositional turnover, or community change, including gains of novel species, losses of 176 

existing species, and changes in abundance of species that persist. Because the functional 177 

contributions of novel species may not offset the functional contributions of species that are 178 

lost, the processes controlling species diversity and those controlling ecosystem functions 179 

may be decoupled. Differences in community change following fertilization could also help 180 

explain findings of little change in overall community function despite substantial loss of 181 

diversity (Fay et al. 2015; Harpole et al. 2016). 182 

Here, we apply an adaptation of the Price equation (Price 1970, 1972; Fox & Kerr 183 

2012) to quantify the functional contributions of individual species that are lost, gained, or 184 

persist under ambient and fertilized conditions to better understand the role of these 185 

community assembly processes on the functioning of ecosystems (Bannar-Martin et al. 186 

2017). The Price equation was originally developed for use in evolutionary biology (Price 187 

1970, 1972), but has potential to be widely adapted and applied in many contexts to 188 

compare two samples and quantify what is unique in each, versus shared between the two 189 

(Lehtonen et al. 2020). In ecology, this approach can help elucidate the biological 190 

relationships that underpin the variation between aggregate changes in species richness, 191 

composition, and additive measures of ecosystem functioning, and has been adapted for this 192 

use in many ways (Winfree et al. 2015; Genung et al. 2020; Lefcheck et al. 2021; Ulrich et 193 
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al. 2021). We use a novel application of this approach based on previous developments (Fox 194 

& Kerr 2012; Bannar-Martin et al. 2017), to link temporal changes in biodiversity to an 195 

additive measure of ecosystem functioning (i.e., aboveground biomass) using a long-term 196 

dataset with global coverage. By following compositional changes in experimental plots 197 

through time, we separate species richness change to quantify the cumulative number of 198 

species lost, gained, and persisting, as well as the associated change in aboveground 199 

biomass attributed to each (Fig.  1). 200 

We quantify how community compositional change induced by nutrient addition 201 

contributes to altered ecosystem function (aboveground biomass) using data from sites 202 

within the Nutrient Network, a globally distributed nutrient addition experiment, replicated 203 

across grassland sites (NutNet; http://www.nutnet.org) (Borer et al. 2014a). Specifically, we 204 

synthesize results from 59 experimental sites across six continents comparing control plots 205 

and plots that were fertilized with a combination of nitrogen (N), phosphorus (P), potassium 206 

(K) and micronutrients (hereafter the NPK treatment). We leverage long-term data to 207 

determine rates of change over time for each component. 208 

Previous work has that documented that grassland communities experience reduced 209 

richness and increased aboveground biomass with fertilization (Borer et al. 2014b; Harpole 210 

et al. 2016) (Box 1). We expect that how a loss in richness will be associated with change in 211 

function likely depends on the functional contributions of species lost, gained, or persisting in 212 

the community. On one hand, a weak response of persistent species or the loss of relatively 213 

high-functioning species could be associated with minimal changes or even reductions in 214 

biomass (Fay et al. 2015; Harpole et al. 2016). On the other hand, if functional change 215 

associated with persisting and gained species exceeds that of lost species in response to 216 

nutrient addition, biomass may increase even if more species are lost than gained. 217 

Determining which components of community change are associated with changes in 218 

function would advance understanding of how global change affects interdependent 219 

dimensions of natural systems.  220 

 221 

http://www.nutnet.org/
http://www.nutnet.org/
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 222 

Methods 223 

Experimental Design 224 

The Nutrient Network (NutNet) is a distributed experiment replicated in herbaceous 225 

terrestrial systems across six continents, representing a range of grassland habitats (Borer 226 

et al. 2014a) (Table S1, Fig. S1). At each site, a factorial combination of nitrogen (N), 227 

phosphorus (P), and potassium (K with a one-time addition of micronutrients) are applied 228 

annually, alongside an unmanipulated control treatment with no added nutrients. Plots are 5 229 

m x 5 m and treatments are applied in a randomized block design, usually with three blocks 230 

(range 3 - 6 among sites). All sites have the same experimental design and sampling 231 

protocols. 232 

For this study, we used data from two treatments: unfenced control (ambient 233 

conditions) and full fertilization (NPK) treatments. Sites with measurements the year prior to 234 

fertilization (year 0) and for at least three years with fertilization were included in this 235 

analysis. The mean length of experiments across all sites included in this analysis is eight 236 

years. This resulted in 59 sites meeting all criteria, situated on every continent except 237 

Antarctica (Supplementary Table S1, Fig. S1, Fig. S2). 238 

  239 

Sampling 240 

Aboveground plant biomass and plant community composition were sampled 241 

annually during the peak of the local growing season. All aboveground biomass was clipped 242 

in two 0.1 m x 1 m strips. Live (current year’s growth) and dead (previous year’s growth) 243 

biomass were separated, and live biomass was typically sorted into functional group 244 

categories (e.g., graminoid, forb, legume, fern). All sites recorded total live biomass. 245 

Biomass was dried at 60°C and weighed to the nearest 0.01 g. The location of the biomass 246 

clip plot was moved every year within a subplot designated for biomass sampling. 247 

Community composition was sampled as percentage cover in a permanent 1 m x 1 m 248 

subplot close to biomass strips. Absolute cover was estimated visually for each species, so 249 
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that the summed cover of all species could exceed 100% to most accurately represent multi-250 

layered grasslands. We excluded non-living litter and debris, woody species, and non-251 

vascular species such as bryophytes from the data for this analysis, as these categories 252 

were not consistently accounted for in living herbaceous biomass samples across sites. 253 

  254 

Data Preparation 255 

We used species relative cover and aboveground biomass to estimate per species 256 

biomass in two ways. In sites and years when biomass was sorted into functional groups, 257 

the species percentage cover was summed within those same functional groups and the 258 

relative cover of each species within a functional group was multiplied by the sorted biomass 259 

of that functional group to estimate per-species biomass (Axmanová et al. 2012). This 260 

relates the species cover to biomass for different functional groups (Fig.  S3a), and accounts 261 

for differences in the mass to cover relationships among different life forms. For example, 262 

broadleaf forbs will likely have a higher cover to mass relationship as their leaves are more 263 

horizontal. 264 

In sites and years where biomass was not sorted to functional groups, or in plots 265 

where samples of functional groups were not matched between cover and biomass data 266 

(e.g., a legume recorded in cover measurements but not in biomass samples), total live 267 

biomass values were used to estimate per species biomass. In these cases, cover of each 268 

species relative to the whole plot was multiplied by the total live biomass for the plot 269 

(Axmanová et al. 2012; Hautier et al. 2014; Isbell et al. 2015) (Fig.  S3b). We expect that the 270 

first method provides more accurate species-level estimates, so this method was used 271 

wherever possible. These approaches use the best available data from destructively 272 

sampled biomass strips to estimate species-level biomass from percent cover data. We 273 

acknowledge that this is not an exact measure of per species biomass, and introduces some 274 

uncertainty in our analyses. However, we compared both methods and found no major 275 

differences in estimates of overall biomass change associated with components of diversity 276 

change between major functional groups (Fig. S3c). In addition, we examined whether using 277 
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species’ percent cover instead of biomass as a response altered our inferences (Fig. S4). 278 

Changes in percent cover through time were broadly qualitatively consistent with those 279 

estimated using biomass. However, cover is a constrained and two-dimensional measure 280 

that does not fully describe growth in a plant community. We find that the rate of change in 281 

cover does not change as much in response to NPK, but still demonstrates turnover within 282 

communities, so when we relate biomass measures to cover to estimate per species 283 

biomass, biomass estimates are moderated by cover and likely underestimated due to these 284 

differences (Fig. S4). 285 

 286 

Data Analysis 287 

After data were prepared and cleaned, species richness and total live biomass was 288 

quantified for every 1 m2 subplot each year. To partition plot level measures into changes 289 

associated with species losses, gains, and species persistence, we made pairwise 290 

comparisons between each plot pre-treatment (t0) to itself at every subsequent time point 291 

after nutrient addition treatments were applied (tn; Fig. 1). 292 

 293 

Quantifying components of change 294 

We used two approaches to quantify community change under nutrient addition. 295 

First, we used an ecological adaptation of the Price equation (Fox & Kerr 2012; Bannar-296 

Martin et al. 2017) to partition overall richness and biomass changes into those associated 297 

with species losses, species gains, and persistent species between two samples in time in 298 

every plot (Fig. 1). This equation quantifies additive differences between comparable units 299 

(e.g., plots). Here, this equates to additive species-level changes in aboveground biomass 300 

through time associated with specific changes in species composition, relative to the plot 301 

before experimental treatments began. Specifically, we use the ‘Community Assembly’ 3-302 

part partition approach suggested by Bannar-Martin et al. 2017 (Fig. 1, Box 1). We used a 303 

complementary, but separate approach to quantify absolute species losses and gains 304 

(Figure 1). To quantify changes in species and biomass through time, we compared the 305 
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composition of each plot in the year before fertilization (year 0,  t0) to itself at every 306 

subsequent time-step (comparison, year n, tn) using the R package priceTools (Bannar-307 

Martin et al. 2017) (Fig. 1). Importantly, there are different options to arrange the pairwise 308 

comparisons for the Price equation, which depend on the questions being asked. There has 309 

been other work that looks at temporal variance or change through approaches different to 310 

that presented here (Winfree et al. 2015; Genung et al. 2017). The approach we take here is 311 

rooted in the original temporal approach taken by Price (Price 1970, 1972) to quantify 312 

change by comparing the same unit to itself through multiple temporal samples. In the 313 

context of the Nutrient Network, this quantifies the cumulative change in each plot across 314 

time, relative to the starting point of the plot before experimental fertilization began. These 315 

species and biomass partitions sum up to the exact change quantified between two plots in 316 

time (Fig. 1). 317 

We partitioned changes in species composition and biomass in each plot into five 318 

continuous components: 1) number of species lost (s.loss, species unique in baseline (t0) 319 

compared to same plot at another point in time (tn)), 2) number of species gained (s.gain, 320 

species unique in comparison plot (tn) compared to species in baseline (t0)), and using the 321 

Price equation: 3) biomass change associated with species loss (SL, biomass change 322 

associated with species loss, year 0), 4) biomass change associated with species gains (SG, 323 

biomass associated with species unique in comparison, year tn), and 5) the change in 324 

biomass associated with persistent species (PS, species shared between comparisons year 325 

t0 and year tn) (Fig. 1, Box 1). We compare control plots to themselves through time, and 326 

NPK plots to themselves through time to examine component changes under ambient 327 

conditions and under fertilization. These pairwise comparisons resulted in continuous 328 

response metrics for every year after year 0 (t0) that we hierarchically modelled as a function 329 

of time. This estimates a rate of change over time (i.e., slope) for each metric, allowing us to 330 

examine general temporal trends and make direct comparisons of site-level variability within 331 

and among treatments and sites. We use this approach to estimate 1) absolute average total 332 
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change in each component and experimental treatment and, 2) the estimated overall rates of 333 

change (slope parameters) for each metric component in our results and discussion.  334 

  335 

Statistical Models 336 

We examined how nutrient addition (NPK treatment) influenced species losses and 337 

gains, and the three components associated with the Price equation partition, using 338 

multilevel regression models. We fitted five separate univariate multilevel regression models, 339 

one to each metric to quantify the effect of NPK treatments on local communities across time 340 

compared to community change across time in control plots. We also examined species 341 

richness and plot level biomass across time using this unique dataset containing more sites 342 

and time points than in previous analyses (Box 1. Supplementary Fig. S5). 343 

Each univariate model included treatment (NPK or Control) as a categorical fixed 344 

effect, time since experimental start as a continuous fixed effect (in years), and their 345 

interaction. These same covariates were also allowed to vary as random intercepts and 346 

slopes among sites, blocks (nested within sites), and plots (nested within blocks).  347 

 To quantify the joint response of these metrics to NPK treatments across time, we 348 

also fitted two multivariate multilevel regression models that included multiple response 349 

variables in the same model. The first multivariate model was fitted to examine the joint 350 

response of species richness and biomass to NPK treatments; the second examined the 351 

joint response of all five components of the partition (species loss, species gain, and 352 

biomass change associated with species loss, gain and persistent species) in control and 353 

NPK plots. This multivariate approach allows for correlations between responses to be 354 

quantified. For the multivariate models assessing the joint responses between variables, we 355 

could only allow treatment, year, and their interaction to vary among sites, as models did not 356 

converge when finer grouping variables were included. We report results from the univariate 357 

models for our main results, and report the strength of the correlation between different 358 

responses estimated with the multivariate models. We visually examined plots of residuals 359 

for all models to assess whether model assumptions (e.g., homogeneity of variance) were 360 
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met. Posterior predictive plots were used to visually determine how well models reproduced 361 

the data (Supplementary Information Fig. S6 a-n). Our results did not qualitatively change 362 

when only sites with experiments running for varying numbers of years (all years, ≥ 3, ≥ 6, or 363 

≥ 10 years) were included (Fig. S7), and we present results using a minimum of 3 years in 364 

the main text. 365 

For Bayesian inferences and estimates of uncertainty, all models described above 366 

were fitted using the Hamiltonian Monte Carlo (HMC) sampler Stan (Carpenter et al. 2017), 367 

and coded using the ‘brms’ package (Bürkner 2018) in the R for Statistical Computing and 368 

Graphics environment (v.4.0.2; (R Core Development Team 2019). All models were fitted 369 

with 4 chains, and varying iterations (Supplementary Information). We report the 95% 370 

Credible Intervals (hereafter CI) around the absolute average total change and the mean 371 

overall slope for each metric in the main results (Table S2). We used weakly regularizing 372 

priors and visual inspection of HMC chains showed excellent convergence. 373 

  374 

Results 375 

Average total change  376 

On average, in controls, a similar number of total species were lost (-5.74, 95% CI: -377 

7.02 to -4.48) and gained (4.46, 95% CI: 3.40 to 5.54) (Fig.2 a, b). Biomass loss in control 378 

plots associated with species loss (-37.9, 95% CI: -48.7 to 27.4) was slightly less than 379 

biomass gained associated with species gain (61.8, 95% CI: 41.6 to 84.9) (Fig. 2 c, d). 380 

Biomass change associated with persistent species was negative, but was not found to differ 381 

from zero (-30.9 95% CI: -81.2 to 19.8) (Fig. 2 e). 382 

On average, in NPK plots, a much greater number of species were lost (-8.32, 95% 383 

CI: -9.90 to -6.73) than gained (2.73, 95% CI: 1.91 to 3.55) (Fig. 2 a b). NPK treatments 384 

resulted in greater biomass loss associated with species loss (-127, 95% CI: -159 to -95.6) 385 

than biomass gain associated with species gain (106, 95% CI: 77.3 to 137) (Fig. 2 c, d). 386 

Biomass change associated with persistent species greatly increased on average (171, 95% 387 

CI: 104 to 241) (Fig. 2 e). 388 
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Rates of change 389 

In controls, similar numbers of species were lost per year (-0.19, 95% CI: -0.28 to -390 

0.11, species loss (s.loss)/year) and gained per year (0.12, 95% CI: 0.04 to 0.21, species 391 

gained (s.gain)/ year) (Fig.  3 a, b). Biomass loss in controls associated with species losses 392 

each year (-0.56, 95% CI: -0.97 to -0.26, SL g/m2 associated with species loss/year) was 393 

slightly less than the biomass gain associated with species gains each year (4.02, 95% CI: 394 

2.6 to 5.86, SG g/m2 associated with species gain /year) (Fig.  3c, d). Biomass change 395 

associated with persistent species showed considerable variation, but no directional change 396 

(-4.47, 95% CI: -10.76 to 1.84, PS g/m2 associated with persistent species/year) (Fig. 3e). 397 

Compared to controls, NPK treatments increased the rate of species loss over time (-398 

0.38, 95% CI: -0.51 to -0.26 species/year Fig. 3a), whereas the rate of species gain did not 399 

differ from zero (-0.01, 95% CI: -0.08 to 0.06 species/year, Fig. 3b). That is, species were 400 

gained in NPK (average total ~3, Fig. 2b), but this gain stayed relatively constant overtime 401 

(Fig. 3b). In NPK plots, biomass loss was associated with species loss per year (-7.44, 95% 402 

CI: -10.18 to -4.92 g/m2/year, Fig. 3c). Species that were gained in NPK plots were 403 

associated with positive biomass change per year (7.36, 95% CI: 5.27 to 9.77 g/m2/ year, 404 

Fig. 3d), similar to that of biomass lost associated with species loss. Finally, change in 405 

biomass over time associated with persistent species exhibited considerable variation in 406 

NPK treatments (3.05, 95% CI: -6.14 to 11.88 g/m2/year, Fig. 3e). Combined, biomass gains 407 

associated with species gained, and biomass increases associated with persistent species 408 

over time contributed to overall biomass gained in NPK plots. 409 

The components of species and associated biomass change relative to the starting 410 

community before experimental treatments began can be considered together as an 411 

absolute average total change (Fig 4 a) and as a slope or rate of change through time (Fig 412 

4b). This helps to understand the change in each component relative to the starting 413 

community and as a contribution to total community change to better understand different 414 

treatment conditions. In control plots, the average total change indicates there is species and 415 

biomass turnover that balance each other out (Fig. 4a) and that while this turnover continues 416 
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over time (Fig b), there is no effect on community change overall. Under fertilization, we 417 

learn that average total species loss and associated biomass loss is pronounced compared 418 

to controls (Fig. 4a), and that this increasing loss increases over time (Figure 4b). We learn 419 

that the average total species gains and associated biomass gain is less than the loss (Fig. 420 

4a), and that these reduced gains stay relatively constant over time, even a slightly negative 421 

slope, indicating species gains slightly decline over time relative to species gains between 422 

year 0 and year 1 of experimental treatments (Fig 4b). However, the species that are gained 423 

contribute to associated increasing biomass gains through time (Fig. 4b). Lastly, the average 424 

total biomass change associated with persistent species contributes the biomass gained 425 

under nutrient addition in grasslands globally, relative to the starting point before 426 

experimental treatments, and relative to control plots Across time, biomass change 427 

associated with persistent species shows much variation at the site level (Fig. 3e), and does 428 

not indicate large increases through time relative to the starting point, but still an overall 429 

positive trend. 430 

Species losses and gains due to nutrient addition were largely uncorrelated (0.29, 431 

95% CI: -0.03 to 0.58, Table S5), as was the net change in biomass from losses and gains (-432 

0.07, 95% CI: -0.38 to 0.23). Biomass change associated with species losses and biomass 433 

change in persistent species responses to NPK were also uncorrelated (-0.24, 95% CI: -0.55 434 

to 0.09), as was the relationship between biomass changes from species gains and 435 

persistent species (-0.06, 95% CI: -0.39 to 0.29).   436 

 437 

 Discussion 438 

We used an ecological adaptation of the Price equation to partition components of 439 

compositional change across time into species and functional change associated with gains, 440 

losses, and persistent species. Using data from 59 global grasslands we show that high 441 

compositional turnover under ambient conditions also affects turnover in community 442 

aboveground biomass, while aggregate plot-level biomass remains stable over time. In 443 

contrast, the addition of multiple limiting nutrients resulted in greater species loss and 444 
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reduced gains over time compared to controls, which both contribute to a net decline in 445 

richness. Under fertilization, species loss was associated with a decline in biomass over time 446 

and the species that were gained were associated with overall biomass gains. Species that 447 

persisted over time were also associated with biomass gained, jointly leading to overall 448 

biomass increases with nutrient addition, on average. 449 

 Some of the most important components of biodiversity change are not obvious when 450 

considering just changes in species numbers (i.e. species richness) because these 451 

aggregate measures often obscure functional contributions resulting from change in species 452 

composition (Jones et al. 2017; Hillebrand et al. 2018). In addition, compositional change 453 

(i.e. species turnover) can be uncoupled from changes in species richness (Hillebrand et al. 454 

2018; Blowes et al. 2019), whether richness is changing or not (Harpole et al. 2016; Hautier 455 

et al. 2018; Seabloom et al. 2020) in global grasslands. In this study, we observed 456 

substantial turnover of species and biomass over time but no change in overall richness and 457 

biomass in ambient conditions (Fig. S5, Fig. 2, Fig.  3). In contrast, in fertilised conditions, 458 

there is more average total species loss and biomass loss associated with species loss 459 

under NPK (Fig. 2a, c), and importantly, species continue to be lost through time (Fig. 3a) 460 

and this loss leads to increasing loss of biomass (Fig. 3c). The consequences of biodiversity 461 

loss for aboveground biomass are magnified through time relative to the community before 462 

experimental nutrient addition began. 463 

Species gain and species that persist were also found to contribute to compositional 464 

and functional change over time. Additionally, we found that species gains were reduced 465 

under fertilized conditions relative to the control (Fig. 2b), and that these reduced gains 466 

stayed relatively constant through time (Fig. 3b), so these reduced species gains can be 467 

interpreted to also contribute to declining richness through time. Despite consistent species, 468 

biomass associated with species gained and persistent species outweighed the biomass lost 469 

by species losses (Fig. 3, Fig. 4a, b). Species that are gained under nutrient addition grow 470 

substantially and contribute to overall, total biomass gain on average (Fig. 2d), as well as 471 

increasing biomass gain through time (Fig. 3d). Under fertilized conditions, the average total 472 
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contribution of persistent species to biomass change relative to control plots was very large, 473 

but demonstrated much variation in the trends across time resulting in little change in this 474 

biomass component over time overall (Fig. 3). Species gains and persistent species were 475 

both found to contribute to biomass gain under nutrient addition, on average, through time, 476 

and relative to controls (Fig. 4a, b). Our findings help elucidate how the components of 477 

community change contribute to biomass production under fertilization over time, but we 478 

cannot explicitly comment on whether species change in their dominance or the 479 

mechanisms that cause these changes. We can comment that our findings support the 480 

previous findings that strength and direction of biodiversity change depends on the balance 481 

of species losses, species gains, and species that persist over time (Dornelas et al. 2019), 482 

and as we show here, so do changes in ecosystem functioning. Focusing on aggregate 483 

measures of biodiversity change alone can lead to underestimation of change and its 484 

impacts on the functioning of ecosystems. 485 

Rates of change in the metrics investigated here were uncorrelated, supporting the 486 

idea that drivers of change can act relatively independently on diversity, composition, and 487 

function (Helsen et al. 2014). This indicates that increasing biomass associated with 488 

fertilization may contribute to diversity loss, and changes in composition can in turn have 489 

varying effects associated with biomass (Harpole et al. 2016; Leibold et al. 2017). Our 490 

results support the idea that diversity and functioning changes need to be considered 491 

independently, but concomitantly (Ladouceur et al. 2020) to better understand how these 492 

relationships shift under global change processes and pressures. We’ve found that the effect 493 

of compositional change on ecosystem functioning is dependent on the magnitude and 494 

functional contribution of species entering, persisting, and exiting communities. Which 495 

species thrive under nutrient addition and which are excluded from fertilized communities, is 496 

in part determined by species identities, their traits, and the matching of traits to the 497 

environment (Lind et al. 2013; Seabloom et al. 2015; Morgan et al. 2016). Because species 498 

contribute to ecosystem function to different extents (Isbell et al. 2013; Hautier et al. 2018), 499 

considering various compositional changes simultaneously and in relation to their individual 500 
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contributions to function provides a more comprehensive understanding of the effects of 501 

global change pressures on ecological communities and ecosystems.   502 

          Grassland productivity is often limited by multiple nutrients (Fay et al. 2015; Harpole et 503 

al. 2016), and species richness and productivity are controlled by a complex network of 504 

processes (Grace et al. 2016). Changes in components of compositional change contributes 505 

to variation in site-level responses to fertilization in terms of both richness and biomass (Fig. 506 

S8, S9). This work presented here points to many interesting avenues surrounding species 507 

compositional change and ecosystem functioning for further development and investigation. 508 

For example, because the plots used in this analyses were unfenced, we expect that 509 

herbivory reduced biomass (Borer et al. 2014b, 2020; Hodapp et al. 2018; Ebeling et al. 510 

2021), possibly explaining some variation in the effect of NPK on aboveground biomass in 511 

many sites. Further work could investigate composition and biomass relationships under 512 

fertilization and with herbivory ex-closures. Additionally, some variation in site-level 513 

responses may be due to water limitation, and may account for some cases where nutrient 514 

induced species-loss does not affect biomass (Fig. S10). Opportunities also exist for future 515 

work to explore additional mechanisms driving patterns within and across sites (Fig. S10) 516 

(Avolio et al. 2021), spatial scales (Chase et al. 2019; Barry et al. 2021; Seabloom et al. 517 

2021), and according to species’ identities and characteristics (Crawford et al. 2021). We 518 

now know that the risk of a species being lost from a plot decreases with its abundance in 519 

both space and time, and varies across lifespans and functional forms (Wilfahrt et al. 2021). 520 

The degree to which these species’ characteristics (e.g., traits, dominance) influence the 521 

magnitude of community level species loss and gains and change associated with 522 

functioning are beyond the scope of this investigation, but present nice opportunities for 523 

adaptations to the approach taken here to ask these questions explicitly. However, because 524 

our temporal approach provides estimates of rates of functional change over time, a similar 525 

approach could possibly be adapted to functions that are not additive, such as stability (e.g., 526 

estimates of temporal variability within an assemblage), with some substantial adaptations.  527 
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 In sum, we partition measures of species richness and a measure of ecosystem 528 

functioning (live biomass) to better understand the underlying mechanisms of community 529 

change under pressure from a key driver of global environmental change, nutrient 530 

enrichment. Our results demonstrate that the components of compositional change are key 531 

to understanding the relationship between diversity and ecosystem functioning, particularly 532 

in ecological systems that are experiencing ongoing anthropogenic change. By partitioning 533 

the roles of individual species, this work provides a more detailed understanding of the 534 

relationships between biodiversity change and ecosystem function in natural systems and 535 

how global change drivers can affect them.  536 
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 719 
Figure 1: Schematic illustration of compositional change and the contribution to altered 720 

functioning based on the ecological version of the Price equation as suggested by Fox and 721 

Kerr (2012). And Banner-Martin et al. 2018) A) Represents a Nutrient Network plot at year 0 (t=0, 722 

t0) on the left before nutrient addition, and on the right represents the same plot at a point in time after 723 

NPK addition (Year tn). Species losses (red), species gains (blue), and change in persistent species 724 

(orange) are additive components of this composition-functioning relationship and each component 725 

affects measures of species richness and community biomass change. B) Observed changes in 726 

species and changes in biomass within a community can be together to understand the joint 727 

response. This represents our expectations for the overall effect of NPK addition on change in species 728 

and biomass as a rate over time, and our expectations for partitioning this effect into biomass lost 729 

associated with species loss, biomass gained associated with species gain and the biomass change 730 

associated with persistent species. Plant images by Alex Muravev, The Noun Project. 731 
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 738 

 739 
Figure 2. The absolute average total change in species (a, b) and biomass (c, d, e) across 740 

time. Small grey jittered points show the data models were fit to at every site's most recently 741 

recorded experimental year (maximum); large colored points are the fitted overall effects of 742 

treatment at 13 years (maximum year of experimental measurements across all sites) and 743 

colored lines show the 95% credible intervals.  744 
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 745 

 746 
Figure 3: Changes in the components of species richness and aboveground biomass through 747 

time for control and NPK treatment. In regressions represented in a)-e), the solid thick lines 748 

represent the overall effect estimate for NPK (solid) and Control (dashed) treatments, and the shading 749 

around these black lines shows the 95% credible interval. Each jittered grey point represents a 750 

pairwise comparison of a single plot before NPK nutrient addition (year 0) and for each year after 751 

treatment respectively. Each thin line represents the slope of NPK plots for a site (n=59), estimated as 752 

a random effect. The inset plots represent the overall effect (i.e., slope) estimate of Control (black) 753 

and NPK (colored) treatments, error bars represent 95% credible intervals, and the dashed reference 754 

line at 0 represents a slope of 0 for each metric. 755 
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 761 

 762 

Figure 4: Change in species and biomass. Change in control (dashed lines) and fertilized plots 763 

(solid lines) on species (x-axis) and biomass change (y-axis) as a) an Average overall change after 13 764 

years and b) a rate of change across time (slope). Thick lines show the overall effect estimate (mean 765 

overall change in Control and NPK plots) of each response (a) effect sizes from Fig. 2 and b) slopes 766 

from Fig. 3), and thin lines represent the variation in the posterior distribution (uncertainty) sampled 767 

from each overall effect estimate within the 95% credible intervals (n = 50 samples). Effects can be 768 

plotted in any order but here we start with losses for visual clarity. Both x and y axes vary for clarity. 769 

  770 

  771 

 772 

Box 1 773 

_________________________________________________________________________774 

_ 775 

After over a decade of the Nutrient Network (Borer et al. 2014a) we know that the 776 

more resources (Nitrogen, Phosphorus, Potassium) that are added to grasslands, the more 777 

species richness declines, and the more aboveground biomass and productivity increases 778 

(Fay et al. 2015; Harpole et al. 2016). We also know that there is an increasing effect of 779 

chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time 780 

(Seabloom et al. 2020) and that species loss due to nutrient addition increases with spatial 781 

scale (Seabloom et al. 2021). Here, we use an updated dataset that includes more sites and 782 
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longer time series than in this previous work, so we analyse the relationship between the 783 

addition of multiple limiting nutrients (A combination of Nitrogen, Phosphorus, Potassium - 784 

NPK hereafter) on species richness over time and biomass over time simply as a reference 785 

point with this updated dataset (Fig S5, Table S2, S3, S4, S5) 786 

The ecological adaptation of the Price equation enables the partitioning of community 787 

change into 5 components, named the ‘5-part Price partition’ or alternatively into 3 788 

components (Fox & Kerr 2012; Bannar-Martin et al. 2017). Here, we use the 3-part 789 

‘Community assembly’ partition proposed by (Bannar-Martin et al. 2017) to understand the 790 

effects on biomass change of all lost species unique in the baseline sample (SL), all gained 791 

species in the comparison sample (SG), and changes in the function of shared species 792 

called the ‘Context Dependent Effect’ or CDE, but here called persistent species (PS) 793 

(Figure 1, Table below). This partition requires two comparable units to quantify pairwise 794 

differences between the two. Here, we compare every plot at the year before experimental 795 

treatments began as a baseline (year 0 = st0) to itself at every point in time as a comparison 796 

(year n = stn) measured since experimental treatments began to quantify cumulative 797 

temporal changes in each and every plot. 798 

The ecological Price equation used here (Figure 1) uses the number of species in 799 

each community (st0 and stn), the number of species shared (ps), the species-level function in 800 

each community (zt0, ztn) and the function of species shared by the baseline (pzt0) and 801 

comparison communities (pztn) (Bannar-Martin et al. 2017). Here, we additionally use the 802 

number of species shared between two samples in time (ps), those unique in the baseline 803 

community (st0) to quantify species loss (s.loss), and those unique in the comparison 804 

community (stn) to quantify species gains (s.gain) (Figure 1). These are the same number of 805 

species used to calculate the impacts of these gains and losses on ecosystem function the 806 

Price equation. Next, we use an ecological version of the Price partition to quantify total 807 

ecosystem function change associated with species loss (SL), gains (SG) and persistent 808 

species (PS). Slightly different language has been used to describe the components of this 809 

partition for different applications and contexts in previous work. Below we describe these 810 

differences in relation to what is presented here. 811 

Descriptions of Price equation components, the different short names each 812 

component has been given in previous literature to address various contexts, and their 813 

acronyms compared against the components used in this work. Acronyms for each 814 

component are in bold italic. Initials used as a short reference for each paper that uses each 815 

acronym for each component (Fox & Kerr 2012) = FK, (Winfree et al. 2015) = W, (Bannar-816 

Martin et al. 2017) = BM, cited in the order they were published. 817 

 818 

5-part Price partition 

component description 

5-part Price partition short names 

and acronyms used in other 

contexts 

 3-part Price partition 

component description 

and acronyms used in 

this work 

Impact of species loss on 

ecosystem function, for 

average functioning species 

a) Species richness effect 

of loss   

SRE.L (FK, BM) 

Rich-L (W) 

 

 

 

a) Impact of 



 

 

27 
 

Impact of species loss on 

ecosystem function, for non-

average functioning species 

b) Species 

composition/identity 

effect of loss  

SCE.L (FK) 

COMP-L (W)   

SIE.L (BM) } 
species loss 

associated with 

ecosystem 

function loss 

Equal to the 

sum of a) and b) 

in 5-part 

partition. 

SL (BM) 

Impact of species gain on 

ecosystem function of 

average functioning species 

c) Species richness effect 

of gain  

SRE.G (FK, BM) 

RICH-G (W) 

} 

 

 

b)  Impact of species 

gain on ecosystem 

function. Equal to the 

sum of c) and d) in 5-

part partition. 

SG (BM) 

Impact of species gain on 

ecosystem function for non-

average functioning species 

d) Species 

composition/identity 

effect of gain  

SCE.G (FK) 

COMP-G (W) 

SIE.G (BM) 

The changes in ecosystem 

in the species shared 

between two samples 

e) Context dependent 

effect/Abundance 

 CDE (FK, BM) 

 ABUN (W) 

 c) Biomass change 

associated with 

persistent species. 

Equal to e) in the 5-part 

partition. 

PS (this work) 
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