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Abstract:     39 

Background:  The use of artificial intelligence (AI) is growing in food supply chains. The 40 

ethical language associated with food supply and technology is contextualised and framed by 41 

the meaning given to it by stakeholders. Failure to differentiate between these nuanced 42 

meanings can create a barrier to technology adoption and reduce the benefit derived. 43 

Scope and approach: The aim of this review paper is to consider the embedded ethical 44 

language used by stakeholders who collaborate in the adoption of AI in food supply chains.    45 

Ethical perspectives frame this literature review and provide structure to consider how to shape 46 

a common discourse to build trust in, and frame more considered utilisation of, AI in food 47 

supply chains to the benefit of users, and wider society.  48 

Key findings and conclusions: Whilst the nature of data within the food system is much 49 

broader than the personal data covered by the European Union General Data Protection 50 

Regulation (GDPR), the ethical issues for computational and AI systems are similar and can be 51 

considered in terms of particular aspects: transparency, traceability, explainability, 52 

interpretability, accessibility, accountability and responsibility. The outputs of this research 53 

assist in giving a more rounded understanding of the language used, exploring the ethical 54 

interaction of aspects of AI used in food supply chains and also the management activities and 55 

actions that can be adopted to improve the applicability of AI technology, increase engagement 56 

and derive greater performance benefits. This work has implications for those developing AI 57 

governance protocols for the food supply chain as well as supply chain practitioners. 58 

Keywords:   responsibility, accessibility, explainability, accountability, interoperability, 59 

artificial intelligence, 60 

Highlights  61 

•  AI applications are increasingly being adopted in food supply chains.  62 

• AI empowers decision-making, but its use must be framed by ethical considerations. 63 
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• Benefits/risks of using AI are constantly evaluated in the AI development cycle. 64 

• Improving explainability, interpretability and accessibility enables transparency. 65 

• Responsibility and accountability relate to governance structures for use of AI. 66 

1. Introduction 67 

 Artificial intelligence (AI) is a computational technology that seeks to mimic, to differing 68 

extents, human abilities to perceive their environment, process information, make decisions and 69 

to take steps to achieve pre-determined goals. From banking to autonomous driving, and from 70 

healthcare to farming, AI is empowering decision-making in every field and at every level. 71 

Within the agri-food space, digital technologies and information architectures are being used 72 

by farmers to maximise land use in terms of efficient yields of food commodities whilst also 73 

enhancing biodiversity (Cambra Baseca, Sendra, Lloret & Tomas, 2019; Köksal & 74 

Tekinerdogan, 2019; Mkrttchian, 2021). The collection of data and subsequent use of advanced 75 

data analytics, algorithms and AI enables the analysis of large datasets derived from multiple 76 

sources to deliver specific objectives or outcomes. This is already the case in many other 77 

domains such as medicine, but such activities must be approached cautiously to maintain trust 78 

(Durán & Jongsma, 2021).  79 

The use of advanced data analytics, algorithms and AI can inform the wider supply chain 80 

on how a weather event, plant or animal disease, or other supply chain shock may impact, and 81 

if or when food crises are likely to happen (Kiran, Narayana Raj & Talawar, 2020). Agri-food 82 

and supply sectors and activities, where AI is being used, include smart irrigation and nutrient 83 

management, smart soil management, harvest predictions, livestock monitoring and behaviour 84 

prediction, quality and food safety assessment (Kakani et al., 2020). Data from multiple 85 

connected, and also discrete, sources can be assimilated, aggregated and translated within a 86 

smart farming approach (Wolfert, Ge, Verdouw & Bogaardt, 2017). The potential for AI to aid 87 

and address humanity’s problems, such as food insecurity or climate change is also matched by 88 
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concerns about the impact of indiscriminate unconsidered use and the harms that may arise. To 89 

this end, the developments in the use of AI have been concurrent with a growth in frameworks 90 

and approaches to AI-related ethics seeking to safeguard against the considerable potential for 91 

AI enabled harm whilst maximising the significant benefits of AI technologies to society (AI 92 

Ethics Guidelines Global Inventory, nd). 93 

The ethics of food production and food consumption is already a vast field of enquiry to 94 

consider, made larger still when the ethics associated with technology and its socioeconomic 95 

and socio-political impact are considered (Mepham, 2000). Applying AI requires consideration 96 

of the ethical implications of not only the implementation of the systems proposed, but also 97 

their impact on the wider food community. This impact ranges from how the technology affects 98 

the grower/farmer, to how it affects business practices along the supply chain, to how right, or 99 

wrong is contextualised, and whether it is a requirement to encourage or empower consumers 100 

to ethically use the extra information such technology would bring. The increasing use, and 101 

interconnected nature of distributed information technology, and the ever-growing reliance 102 

upon greater volumes of big data to feed AI algorithms are raising ethical challenges across the 103 

agricultural and food industry that regulators and society are struggling to contextualise and 104 

operationalise in practice (Ahearn, Armbruster & Young, 2016).  105 

Algorithms “sift through data sets to identify trends and make predictions” (Martin, 2019, 106 

p.835). Algorithms can vary from simple, specified transparent sets of rules (instructions) that 107 

can be followed to solve a problem or undertake a calculation or process data, to algorithms 108 

that are sophisticated self-learning processes that can self-train and adapt their analysis 109 

procedures and self-learn (Durán & Jongsma, 2021). The latter are often called black box 110 

algorithms as they cannot be interrogated by the humans that use them and are often considered 111 

opaque in terms of the outputs they produce (Setzu et al. 2021).  This raises ethical concerns of 112 

hidden discrimination and bias within system design and application, and questions can arise 113 
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around aspects of transparency, responsibility, accountability, auditability, trustworthiness, 114 

culpability, reliability, explainability, interpretability and accessibility (Friedman & 115 

Nissenbaum, 1996; Martin, 2019; Durán & Jongsma, 2021; Setzu et al. 2021).  116 

Ethical considerations of AI are often centred on issues of privacy, agency and 117 

accountability, particularly in relation to the use of personal data in computational systems. 118 

This can be seen in the enactment into law of the European Union General Data Protection 119 

Regulation (GDPR, 2018) which stipulates a series of principles, definitions, rights and 120 

responsibilities for the development and use of systems that capture and process personal data 121 

(EUR-Lex, nd). Key amongst these considerations are issues of explainability, accountability, 122 

transparency (e.g., a right to an explanation) and responsibility (e.g., a right to determine 123 

responsibility for outcomes).  Whilst the nature of data used within food systems is much 124 

broader than the personal data covered by the GDPR, the ethical issues for computational and 125 

AI systems are comparable.  126 

The aim of this review paper is to consider the ethical narrative used by stakeholders when 127 

collaborating to adopt AI in food supply chains. This review has been undertaken to explore 128 

ethical perspectives to consider how to develop a common discourse to build trust in, and more 129 

considered utilisation of, AI in food supply chains. This will benefit multiple stakeholders 130 

including food scientists, policy makers and industry specialists as they collaborate and 131 

communicate about AI with each other. The authors, who come from a range of academic 132 

disciplines, organised a series of review workshops that formed a central part of the research 133 

process to explore the collective narrative and interplay of perspectives that inform the paper. 134 

These discussions and the paper itself emerged from a foundational body of literature within 135 

each discipline and were developed through a snowball academic literature review that 136 

synthesized evidence that supported and deepened the collective narrative (Kowalska & 137 

Manning, 2021; Jacobs et al., 2021). For a wider explanation of the methodology for the whole 138 
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research project see Jacobs et al., (2021). The seven aspects considered in this paper have been 139 

critiqued and positioned (Table 1) in terms of the inherent characteristics and corporate and 140 

supply chain activities and mechanisms which can embed these aspects in food supply chains.  141 

Take in Table 1. 142 

After reflecting on some of the ethical aspects of the use of AI in the context of the food 143 

supply chain, we explore the aspects of the vocabulary that were commonly used in the 144 

workshop discussions: transparency, traceability, explainability, interpretability, accessibility, 145 

accountability and responsibility. We critique how this range of vocabulary is framed by 146 

different actors and relate these terms to the development and implementation of AI within the 147 

food supply chain.  148 

2. Ethics, morality and food 149 

Ethics is defined for the purposes of this research as a set of moral principles that inform 150 

judgements of right or wrong for a particular group or activity. As a discipline, ethics can be 151 

broadly divided into three areas of interest: firstly, moral philosophy or meta-ethics, which is 152 

concerned with the nature of morality, and secondly, normative ethics which seeks to provide 153 

structures or norms to guide ethical behaviour according to approaches such as virtue, 154 

deontological or consequentialist measures, including the notions of rights for example. The 155 

third area is applied ethics which seeks to adapt such normative frameworks and other 156 

consideration to guide behaviour in real life contexts according to the area of interest, for 157 

example medical ethics or bioethics (Durán & Jongsma, 2021). The intersection of applied food 158 

supply related ethics and emerging technology focused ethics is where this work is situated. 159 

2.1 Socially and technologically determined ethics 160 

The influence of AI and the associated ethical considerations is often viewed through the 161 

lens of the degree of agency the technology is afforded in how it influences, constrains, and 162 

produces the lived experience of the people that are subject to it.  The agency associated with 163 
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technology can be seen as a continuum. One perspective is that technology is an innocent value-164 

free tool whereby it can bear no innate responsibility for its influence on the people who use it. 165 

This viewpoint suggests responsibility is socially determined (social determinism) and solely 166 

the responsibility of the stakeholders that interact with the technology. At the other extreme, 167 

technological determinism, sees technology being innately afforded responsibility and 168 

influence in shaping human behaviour and society, and cultural development through its use or 169 

other social factors (Kostina & Khorina, 2012). Martin (2019) states that the greater the degree 170 

of agency that an individual has over the operation of the algorithm the less the degree of 171 

accountability that can be attributed to the role of the algorithm itself within the decision 172 

process. Others suggest there is an interaction between accountability and answerability, where 173 

algorithms are used to inform human decision-making and this requires aspects of explanation 174 

and justification to be suitably addressed (Busuioc, 2021). 175 

Whilst there are different perspectives on where technologies such as AI, are positioned on 176 

this socio-technological spectrum (between social and technological determinism), and on 177 

where ethical questions sit as well, it is important to consider that there will be variation in 178 

perspectives and the socio-technological aspects of interest may change over time.  With the 179 

introduction of AI technologies, we may also have to address questions relating to how much 180 

responsibility can be afforded to automated systems that aid or make decisions independently. 181 

Adoption of technology in agriculture will potentially reorder or reengineer already complex 182 

animal-human-technology-plant-natural-environment relationships. For example, using 183 

automatic milking machines as a case, technological determinism will inform the design and 184 

deployment of automatic milking machines to drive optimum performance, but their adoption 185 

can fundamentally influence associated human-animal relationships (Schewe & Stuart, 2015). 186 

The reverse can also be the case in that as human-animal relationships evolve this will influence 187 

how technology is used to support those reframed human-animal relationships. Dafoe (2015) 188 
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proposes that this social versus technical dichotomous argument is problematic and we ought 189 

to consider that lived reality is a more nuanced socio-technical relationship that is dynamically 190 

centred around the autonomy of technological change and the associated change of society. 191 

Further, Dafoe argues the design of technological solutions can deliver not only intended 192 

outcomes, but also unintentional outcomes especially in the event of unforeseen selective 193 

pressures. These unintentional outcomes can then shape societal norms and expectations. 194 

The development of AI technologies in the sphere of agri-food brings data and new 195 

technological interactions into food-related socio-technical systems with the promise of greater 196 

efficiency. This both raises new ethical issues and also potentially addresses complex ethical 197 

dilemmas that already exist within the food system. Smart agriculture, climate-smart 198 

agriculture, or internet of things (IoT) based agriculture are terms that can be considered as an 199 

example of this contextualisation. These terms frame the widespread adoption of technology as 200 

having a net positive benefit, but they also reorient agricultural systems under a new reality 201 

(Lipper et al., 2014). However, there is the potential for such technologies to increase power 202 

imbalances to the commercial disadvantage of those who are unable to access or afford such 203 

technologies or the infrastructure to operate them (Long, Blok & Coninx, 2016). This is often 204 

called the “digital-divide” (Mark, 2019). New technological approaches in food supply chains 205 

mean that the digital-divide is no longer just information asymmetry and a lack of knowledge 206 

and information for some stakeholders, but also the wider ethical framing of financial and social 207 

accessibility to that data and information (Long, Blok & Coninx, 2016). The processes that have 208 

been used to package information for users, the decisions, the pre-existing and emergent biases 209 

(Friedman & Nissenbaum, 1996; Buolamwini & Gebru, 2018), which drive opacity and prevent 210 

open and free sharing of data (Martin, 2019; Durán & Jongsma, 2021), or fail to disclose the 211 

inherent value of the data collected, all impact trust in such technology (Mark, 2019). If the 212 

data produced and stored could be integrated in a mutually agreed way, e.g., in the form of a 213 
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data trust (Brewer et al., 2021, Durrant et al. 2021), then this could reduce such concerns, yet 214 

there are significant barriers to achieving this (van der Burg, Wiseman & Krkeljas, 2020). Thus, 215 

applying ethical consideration is central to realising the potential organisational and individual 216 

benefits in a fair and equitable way for all the actors involved in the food system. 217 

The use of AI requires both effective governance structures and also open collaboration 218 

between multiple stakeholders such as food businesses, traditional technology companies, and 219 

new entrant disrupters (Wolfert, Ge, Verdouw & Bogaardt, 2017). Albeit in a non-food context, 220 

studies have explored the barriers to collaboration caused by a lack of understanding of common 221 

domain expertise, an absence of shared vocabulary, or a lack of trust (Saunders & Corning, 222 

2020). With such a variety of uses and users, the language surrounding the new technology and 223 

the inherent assumed meaning derived from given activities and operations may vary depending 224 

on the specific implementation of AI at a given step or stage in the supply chain. Each 225 

disciplinary domain defines the language surrounding their work. In food and agriculture 226 

specifically, complex meaning can develop around local and industry level vocabulary and 227 

when and how language and discourse is used, revised and refined, so specific vocabulary 228 

becomes culturally embedded over generations (Malhotra, 2001, p.7).  229 

Addressing food supply and sustainability from a systems level perspective requires a 230 

collaborative approach from all actors with a common, mutually understood vocabulary.  231 

Ethical concerns can arise, and we can highlight some areas of primary ethical concerns 232 

identified by the Nuffield Council for Bioethics for the need to provide food in a sustainable 233 

manner (Jackson, 2018). Summarising their discussions according to the values embodied 234 

therein they identified the following areas of key interest: food and nutritional security; health 235 

and access to sufficient, safe nutritious food; fairness and equity through fair access to food, 236 

distribution of risk and treatment of farmers and others within the food system; responsibilities 237 

i.e. consideration of the roles of actors in the systems including governments, farmers, 238 



11 
 

manufacturers amongst others; democracy and giving people a say in food systems and 239 

associated research; autonomy choice and diversity enabling choice to allow people to express 240 

their identities and preferences; high farm animal welfare; and environmental sustainability i.e. 241 

preserving the environment for future generations due to its intrinsic value.     242 

Considering ‘ethics’ as a whole is an important first step in laying the groundworks for 243 

how we view the rest of the terms described in this paper. Without properly interrogating each 244 

of the aforementioned ethical aspects it becomes difficult to properly assess the ethical 245 

implications of any decisions that have been made to embed AI in agri-food chain applications. 246 

It is important to ethically interrogate the human-technology interaction and the ethical impact 247 

of actors (food technologists, computer programmers, farmers etc.) using differentiated 248 

meanings to frame the use of AI. Differentiated meanings are considered in this paper to 249 

represent meanings that can be enacted by different people from the same information at the 250 

same time, or when considering the same issue at different times (Malhotra, 2001). Further, 251 

Malhotra (p. 7) suggests that meaning is a critical construct to understand: “how humans convert 252 

information into action and consequently performance, it is evident that information-processing 253 

based fields of AI and expert systems could understand how humans translate information into 254 

meanings that guide their actions.” In summary, stakeholders need to develop sense making 255 

strategies to position a collective narrative that all disciplines can own and use and as a result 256 

reduce ambiguity and build mutual trust.  The seven aspects are now considered in turn. 257 

3. Aspects of AI and algorithm application in food supply chains 258 

3.1 Transparency and Traceability 259 

It is important here to differentiate between transparency and traceability. Traceability is 260 

the ability to follow the history, application, movement and location of an object (product, 261 

material, unit, equipment or service) through specified stage(s) of production, processing and 262 

distribution (ISO, 22000:2018). Regulation EC/178/2002 defines traceability as the ability to 263 
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trace and follow a food, feed, food-producing animal or substance intended to be, or expected 264 

to be incorporated into a food or feed, through all stages of production, processing and 265 

distribution. A traceability system is therefore a “record-keeping and task-triggering 266 

mechanism to improve consumer confidence in food consumption and to efficiently reduce the 267 

asymmetry of information across food supply chains” (Chen, 2015, p.70). Traceability 268 

information adds value to the product as it enables supply chain partners to meet product 269 

standards and customer expectations (Pizzuti & Mirabelli, 2015).  Thus, traceability is a 270 

transactional process of tracing ingredients forward to final products and food products back to 271 

source ingredients, and yet at the same time the process creates a set of credence attributes such 272 

as consumer confidence, trust, promotion of health benefits (Anastasiadis, Apostolidou, & 273 

Michailidis, 2021), openness or transparency that add value to the product itself (Islam & 274 

Cullen, 2021).   275 

Traceability systems also underpin reliable, cost-effective quality and safety 276 

management (Anastasiadis, Apostolidou, & Michailidis, 2021). Qian et al., (2020) suggest there 277 

has been three evolutions of traceability systems: 278 

Traceability System 1.0 compliance and information recording in simple paper or 279 

electronic systems. 280 

Traceability System 2.0 data integration – real-time information sensing and integration 281 

across the supply chain utilising Internet of Things (IoT) and Distributed Ledger Technology 282 

(DLT). 283 

Traceability System 3.0 intelligent decision-making systems that improve food safety 284 

and quality management and utilise emerging technologies. 285 

Transparency is the characteristic of being visible and open. In the food context, 286 

transparency is about the visibility and assessment of the production process and the associated 287 

disclosure activities by one actor to other actors in the supply chain (Turilli & Floridi, 2009; 288 
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Manning, 2018). Modern food supply chains with a wide range of stakeholders have become 289 

increasingly more complex (Astill et al., 2019) and there are serious potential consequences to 290 

non-transparent food supply chains such as food adulteration e.g. horsemeat substitution or 291 

seafood fraud (Leal et al., 2015), and under diagnosis during outbreaks of foodborne illnesses 292 

(Hoelzer et al., 2018). It is the nature of the disclosure mechanism, the access agreement and 293 

the purpose for access that is most important when considering transparency, and a failure to 294 

do so will drive inbuilt bias and embedded power relationships (Egels-Zanden, Hulthen & 295 

Wulff, 2015; Mol, 2015; Gardner et al. 2019). In order to monitor operational activities and 296 

mitigate supply chain risk, organisations will focus on supply chain transparency, enabling 297 

them to monitor and manage operational activities (Zhu et al. 2018). Supply chain transparency 298 

is a tool that can respond to consumer pressure to disclose information and a willingness to buy 299 

or alternatively a corporate mechanism to increase revenue and reduce costs (Egels-Zandén & 300 

Hansson, 2016).  Transparency in the political context can be described as information about 301 

decisions and decision-making processes that is provided or made available to the public (de 302 

Fine Licht, 2014a). Information in this context is different to data.  303 

Indeed, there is a difference between actual decision-making processes and public 304 

perception of decision-making processes that means perceptions of transparency also influence 305 

attitudes towards legitimacy and this in part is mediated by trust (de Fine Licht, 2014b). 306 

Legitimacy in this context is the perception that the actions of an individual or organisation are 307 

“desirable, proper, or appropriate within some socially constructed system of norms, values, 308 

beliefs, and definitions” (Suchman, 1995, p.574). Thus, the central constructs “upon which the 309 

concept of legitimacy rests are norms, values, beliefs, and morals” (Suddaby, Bitektine & 310 

Haack, 2017). de Fine Licht (2014a) suggests that there are degrees of transparency i.e., 311 

transparency can be partial or full, indeed the same can be said of personal or corporate 312 

disclosure itself. Therefore, perceptions of transparency are shaped by transparency cues, and 313 

https://www.sciencedirect.com/science/article/pii/S0305750X18301736#b0070
https://www.sciencedirect.com/science/article/pii/S0305750X18301736#b0070
https://www.sciencedirect.com/science/article/pii/S0305750X18301736#b0250
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how they are appreciated and understood by a range of stakeholders, rather than by the degree 314 

of actual transparency in information sharing in the first place (de Fine Licht, 2014b).   315 

Transparency cues are statements provided by external sources (de Fine Licht, 2014b). 316 

In the food supply chain, for example, third-party certification (TPC) provides market signals 317 

and the opportunity for assurance that such cues are associated with a set of defined private 318 

standards that are routinely independently verified at steps in the supply chain (Rees, Tremma 319 

& Manning, 2019). In a given context, these cues can be cognitively or procedurally ordered in 320 

terms of hierarchy (rank-ordered cues) and value in order to inform decision making and can 321 

drive perceptions via positive validity or negative validity mechanisms (Kurz-Milcke, 322 

Gigerenzer & Martignon, 2008), for example the binary aspects of organic versus conventional 323 

product, geographic origin versus no claim being made and so on.  This area is worthy of further 324 

research to consider the use of transparency cues in machine learning applications in food 325 

supply chains (Chao, Cakmak & Thomaz, 2010).  326 

The process of being transparent allows autonomy, greater democracy and equity and 327 

informed decision-making in the supply chain and also drives accountability (Dingwerth & 328 

Eichinger, 2010; Mol 2015). However, it is important to share information using mechanisms 329 

that will retain the quality and quantity of information i.e., no loss, delay, distortion or noise 330 

(Hofstede et al. 2004; Wognum et al. 2011). These mechanisms also play a role in supply chain 331 

agility and response (Zhou et al. 2014). Further, the innate characteristics of the data and 332 

information itself impact on its innate transparency e.g., accuracy, relevance, reliability and 333 

timeliness (Hofstede et al. 2004; Wognum et al. 2011). The characteristics of the data and the 334 

process of translation into distinct disclosure activities influences the extent to which 335 

stakeholders believe that an organisation itself has acted in an open and transparent way 336 

(Manning, 2018). Mol (2015) states there are multiple forms of disclosure that reduce 337 

information asymmetry that can be characterised as disclosure of information ‘by’ economic 338 
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actors in supply chains, regulators and certification bodies and disclosure of information ‘for’ 339 

the downstream economic actors in supply chains, regulatory, certification and inspection 340 

bodies, consumers, the public as citizens and the media. Context around the disclosure activity 341 

e.g., whether it is voluntary or not, willing or reluctant, accessible or dense will influence actors’ 342 

perceptions of whether an organisation is perceived to have been transparent (Turilli & Floridi, 343 

2009). The quality of information disclosure therefore not only reflects the quantity of 344 

information, but also the density or richness of content (Beretta & Bozzolan, 2004).   345 

   In summary, transparency firstly depends on effective traceability i.e., collection, analysis 346 

and dissemination of data (Mol, 2015); and creating greater visibility of the findings often 347 

taking complex supply chain information and developing processes of “simplification, 348 

reduction, standardisation and disembedding” of data from its existing contexts (Gardner et al. 349 

2019). Dissemination through reporting and disclosure can be via reports, score cards, 350 

platforms, calculators, certification, labelling and packaging cues (Egels-Zanden et al. 2015, 351 

Gardner et al. 2019).  This approach in turn can drive active, timely decision-making and action. 352 

Transparency within food supply chains will then enable informed decision-making by single 353 

and multiple actors. The notion of “being transparent” at the technology level is more nuanced. 354 

Consideration at the wider socio-technical perspective, means transparency is crucial when 355 

defining both explainability and the ethical questions that surround food supply chain processes 356 

and activities. Achieving transparency across these complex supply chain/network models is 357 

not a simple task. In recent years though, a new suite of technologies such as Federated AI, 358 

DLTs (including Blockchain) and IoT have enabled significant advances that, when combined 359 

with AI and machine learning, could be used to create a new level of digital systems to enhance 360 

transparency in the food chain. 361 

The ethical consideration of algorithmic transparency in particular has become even 362 

more important with the emergence of these new advanced technologies (Bertino, Kundu & 363 

https://www.sciencedirect.com/science/article/pii/S0305750X18301736#b0070
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Sura, 2019; Larsson & Heintz, 2020). Indeed, transparency has become one of the key 364 

requirements in “Trustworthy AI” (European Commission, 2019), with a strong focus on 365 

creating transparent algorithms (Blacklaws, 2018; Boscoe, 2019; Rauber, Trasarti & Giannotti, 366 

2019). Thus, a transparent algorithm should be visible and open in order to comply with these 367 

regulations, which would apply to any digital system for the food supply chain with respect to 368 

both the food itself, and any associated data and algorithms. A key aspect is considering how 369 

to make algorithms transparent as opposed to black box algorithms that are opaque (Martin, 370 

2019). Making the code behind algorithms open source and therefore available to access is one 371 

approach. This outcome however, as noted by Blacklaws (2018), is often not enough by itself 372 

and is not likely to make the algorithm non-opaque due to the innate complexity, inscrutability, 373 

and lack of understandability inherent in such algorithms. Less complex interpretable 374 

algorithms are proposed as an approach instead (Busuioc, 2021). Indeed Busuioc (2021, p. 834) 375 

questions whether the use of black-box algorithms is justifiable, particularly when 376 

‘interpretable alternatives are available’. 377 

The code behind some algorithms is only one element in the process, as machine 378 

learning algorithms will learn from the data they are trained on. Indeed, innate biases in the 379 

training data will be learned by, and eventually coded into, the algorithm (Martin, 2019). This 380 

postulates the notion that perhaps access to both data and the algorithm will infer transparency, 381 

although this still may not prove to be the case as an understanding of how the code works and 382 

weights the data would be required.  Another key consideration is who the system is providing 383 

transparency for; as there will be different transparency and explainability requirements 384 

between, for example, users who want to understand why decisions are made by the AI, to 385 

incident investigators who are trying to trace the causes of a food safety or health and safety 386 

incident, and auditors who are evaluating the potential for bias in a system. In proposing a new 387 

standard for transparent autonomous systems, Winfield et al., (2021) highlight that not only do 388 
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these different groups of stakeholders exist, who may have different transparency requirements, 389 

the appropriate level of transparency in each case may vary for each context, taking into 390 

account the specific autonomous system in question and its socio-technical context. For 391 

example, proprietary data and algorithms may need to be protected (Busuioc, 2021) and 392 

therefore are less transparent to all except auditors, and a security system which functions 393 

through its obscurity should not be transparent to the general public, though it may still be 394 

explainable. Explainability as a characteristic is now considered in more detail.   395 

3.2 Explainability 396 

Explainability has been linked with either being intelligent, being knowledge-based, 397 

providing meaning, creating understanding, reconciling differences (Gregor & Benbasat, 398 

1999); or a process of communication and interpretation, “facilitating the human user’s 399 

understanding of the agent’s logic” (Rosenfeld & Richardson, 2019, p674). Setzu et al., (2021) 400 

distinguish between being explainable by design (ante-hoc) i.e., the AI or algorithm is 401 

explainable via the problem it is trying to solve, or post-hoc i.e., explaining the decisions that 402 

have been made. By using explainable design criteria, explainable processes, and explainable 403 

algorithms we can introduce transparency into the use of AI in the agri-food sector.  404 

In the wider field of AI there has been considerable work in positioning ‘explainable 405 

artificial intelligence’ or XAI with the ‘X’ being phonetic for ‘ex’plainable (Gunning et al. 406 

2019; Royal Society, 2019). XAI allows ‘users and parts of the internal system to be more 407 

transparent, providing explanations of their decisions in some level of detail’ (Gilpin et al., 408 

2018, p. 80). The General Data Protection Regulation (GDPR); (2018) introduced, to some 409 

extent, a right of explanation for all individuals to obtain “meaningful explanations of the logic 410 

involved” when automated decision-making takes place. This has a profound effect not only on 411 

the ethics of systems, but on how they regulate safety and industrial reliability too. Meaningful 412 

means that the communication process is framed in a way that recognises different audiences 413 
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have varied capacity to understand and interpret information and as a result supports improved 414 

understanding and accountability through detailed and individualised explanations (Suzor, 415 

West, Quodling & York, 2019). Brauneis and Goodman (2018) use the term meaningful 416 

transparency as the first step towards having sufficient knowledge to approve or disapprove of 417 

an algorithm’s performance. They position this against perfect transparency where stakeholders 418 

have “complete knowledge of an algorithm's rules of operation and process of creation and 419 

validation” (p.31). 420 

Tools are being developed that use big data to optimise food supply chains, increase 421 

food security and help with food production. Fusing these tools with XAI will ensure that there 422 

is meaningful if not perfect transparency across the sector. Indeed, the Food and Agricultural 423 

Organisation of the United Nations (FAO) has signed up to following the ethical resolution on 424 

AI (Mehmet, 2020), the so-called ‘Rome Call for AI Ethics.’ (Romecall, 2020) This “Call” 425 

highlights the importance of implementing a ‘highly sustainable approach, which also includes 426 

the use of AI in ensuring sustainable food systems in the future. One of the key aspects in the 427 

FAO’s ethical resolution on AI is that it must be explainable, though there is no definition either 428 

of what XAI is or how it relates to the food industry specifically. One working definition of 429 

explainability may be that models must be developed (ante-hoc) that are inherently easy for the 430 

user to understand (Rosenfeld & Richardson, 2019), or alternatively “extracting some form of 431 

explanations from complex pre-developed models that are otherwise difficult (if not impossible) 432 

to understand for their users” (Khaleghi, 2019, p.1). However, in this context, Bryson (2019, 433 

p.8) differentiates between explainability and understandability stating: “we do not need to 434 

completely understand how a machine learning algorithm works to regulate automated decision 435 

making, any more than we need to completely understand the physics of torque to regulate 436 

bicycle riding in traffic.”  437 
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A further potentially more technical definition of explainability has been offered by 438 

Dhurandhar, Iyengar, Luss & Shanmugam (2017) where they define explainability relative to 439 

a target model which is applied to a task rather than a concept. In particular, explainability is 440 

defined as a process where some information is extracted from a complex model and 441 

communicated to a target model, in this case a human, to improve performance. The 442 

Dhurandhar, et al., (2017) definition does not require the target model to be a human. In 443 

practice, it can be any model e.g., a linear model or a decision tree. Another advantage of this 444 

contextualisation is that it makes it straightforward to compare different explainability methods 445 

based on the performance gain of the relative target model. If this definition of explainability is 446 

related back to the agri-food industry some constructs become clear. Firstly, the level of 447 

explainability needed will be different at each stage of the chain, and the consequences of not 448 

being able to explain a given output from a machine learning model will also differ at each 449 

stage and with different actors. This is not to suggest that different definitions of explainability 450 

are needed, rather that definitions of explainability must be able to encompass different 451 

perceptions and meanings associated with explainability at each stage by different actors i.e., it 452 

must be human agent centric.  453 

Secondly, decisions driven by the output of an algorithm must be properly tempered 454 

with the experience and insight of human agents if they are to be generally meaningful and 455 

‘explainable’ to users at other points in the chain. Using the previous example of automatic 456 

milking machines whilst an output from a robotic milking system may be explainable to the 457 

farmer in the context in which they are using the technology, it may not be considered as 458 

explainable by consumers who are purchasing the associated dairy products. Therefore, the 459 

‘explainability’ of AI used in the food sector must be judged, by those with the correct expertise 460 

and understanding, for its ability to be understandable for multiple different users sometimes in 461 

different timeframes, and for users with the correct technical experience to come to the same 462 
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conclusion as the AI given the same information or understand the output from the AI and how 463 

it has been derived. Rosenfeld & Richardson (2019), highlight the ethical context of the link 464 

between transparency, explainability, and interpretability. The next section will consider the 465 

characteristics of interpretability in more detail. 466 

3.3 Interpretability 467 

The process of information assimilation and interpretation requires data to be collated, 468 

ordered, and analysed by one or more supply chain actors who each assign a given and 469 

sometimes differentiated meaning. Whilst Lipton (2018) considers terms such as transparency, 470 

explainability, visualisability, and interpretability, the research acknowledges that 471 

interpretability still has a lack of consensus on its definition. Interpretability and visualisability 472 

of algorithms by humans have been linked by other literature (Durán & Jongsma, 2021) 473 

especially the use of visualisation tools, prototype analysis, and feature analysis as a foundation 474 

to demonstrating transparency (Rosenfeld & Richardson, 2019). Doran, Schulz and Besold 475 

(2017) define interpretability as the opposite of opacity or black box i.e., a system where users 476 

can see, study and understand how inputs are mathematically mapped to outputs. The nuances 477 

of social determinism and technological determinism have been touched on in this paper but 478 

are worthy of further research and critique in the context of the use of AI in food supply chains.  479 

Opacity and transparency in the design, development and implementation of AI applications in 480 

the food supply chains can only be assured if the factors that lead to “black box” algorithms are 481 

widely understood. Inherent in this process is the interaction between the technology and human 482 

agents at different stages of the supply chain. As a result, differentiated meaning can arise at 483 

either different steps in the supply chain, or where information asymmetry occurs affecting 484 

interpretability, explainability and transparency.   485 

Rosenfeld and Richardson (2019) propose six approaches to generating interpretations, 486 

each with different aspects of explicitness and faithfulness, the latter which links to trust (see 487 
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also Lipton, 2018). The concept of trust, especially consumer trust is not discussed in depth 488 

here, but is an underlying aspect of meaning associated with the use of AI. The six approaches 489 

are interpretability via: (a) use of a transparent machine learning algorithm, (b) design and 490 

feature selection and/or analysis of the inputs; (c) using an algorithm to create a post-hoc model 491 

tool, (d) using an algorithm to create a post-hoc outcome tool; (e) using an interpretation 492 

algorithm to create a post-hoc visualisation of the agent’s logic or (f) using an interpretation 493 

algorithm to provide post-hoc support for the agent’s logic via use of prototypes.  Interpretation 494 

of given content will be mediated by the degree of local or content specific knowledge of the 495 

user (Suzor et al. 2019) and thus will vary between users.   Accessibility relates to usability of 496 

information, tools or technology and this is now explored in the next section. 497 

3.4 Accessibility 498 

Accessibility can have many different meanings even within the domain of food supply 499 

chains. In the context of food, it can refer to the cognitive accessibility of information pertaining 500 

to the food, such as nutritional information to help consumers make informed choices about the 501 

food they purchase (Wellard, Glasson, Chapman & Miller, 2011).  Alternatively, it can refer to 502 

physical accessibility of food itself, such as enabling access to varied, healthy and inexpensive 503 

food to aid with public health (Apparicio, Cloutier & Shearmur, 2007). In the context of digital 504 

collaboration, data sharing and use of AI in the agri-food sector, it is also important to consider 505 

the technical aspects of accessibility.  In the areas of computer science and data science there 506 

are different characteristics presented by the FAIR principles (Findable, Accessible, 507 

Interoperable and Reusable) i.e., data should be accessible in a way that it can always be 508 

“obtained by machines and humans” (Wilkinson et al. 2016). This definition addresses the need 509 

for appropriate authorisation levels and protocols for data access.  510 

 Accessible does not mean that all should be data be freely available, rather there can be   511 

degrees of accessibility especially for proprietary data where companies do not wish to release 512 
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datasets into the public domain. Proprietary data may be retained as private and ‘permissioned’ 513 

to protect competitive advantage. Similarly, there is often unwillingness to share data between 514 

organisations, making it difficult share information across a supply chain (Brewer et al., 2021); 515 

an issue when developing and embedding traceability systems. Further, certain software can 516 

also make data and consequential information inaccessible by holding it hostage, either through 517 

the use of proprietary data formats that cannot be easily read by other pieces of software, or by 518 

a refusal to allow data to be taken out of a software package which is also known as “vendor 519 

lock-in” (Wiley & Michaels, 2004; (Gutierrez, Boukrami & Lumsden, 2015). Thus, when AI 520 

or algorithms are used in the food supply chain, accessibility for users, individually and 521 

collectively, needs to be negotiated between stakeholders. 522 

3.5  Accountability 523 

Accountability at government and business levels involves tracking and/or mapping 524 

how and why decisions are made, who makes those decisions and on what basis, how power is 525 

used in these processes, whose views are important and who ultimately holds decision makers 526 

to account (Kraak, Swinburn, Lawrence & Harrison, 2014). Nissenbaum (1996) positions 527 

accountability in terms of ‘answerability’: the obligation to give information about an action 528 

taken, explaining or justifying the taking of that action, and the obligation to make some kind 529 

of consequent action, including punishment, rectification etc. Obligation suggests a sense of 530 

duty i.e., that accountability links both to being legally required, compulsory, and also that 531 

obligation is morally framed suggesting legal liability and accountability could be driven by 532 

normative voluntary standards.  Koppell (2015) suggests accountability is comprised of several 533 

dimensions: liability, controllability, responsibility and responsiveness.  534 

Binns (2018, p. 544) considers accountability from a transactional viewpoint i.e., that 535 

“A is accountable to B with respect to conduct C, if A has an obligation to provide B with some 536 

justification for C and may face sanction if B finds [the] justification inadequate.” In the food 537 
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industry this could be illustrated as Business 1 is accountable to Business 2 for the material they 538 

supply being nut-free as per the specification agreed i.e., the justification C is that any presence 539 

of nuts should be prevented. Business 1 may supply assurances to Business 2, but Business 1 540 

may face sanctions if they cannot demonstrate they have suitable protocols in place, or have not 541 

followed those protocols adequately, to provide nut-free product.  In the UK, the House of 542 

Lords Select Committee report on AI (2018), states accountability is primarily framed through 543 

who is responsible if something goes wrong i.e., in terms of culpability. As a comparison, the 544 

Japanese Society for AI principles report (2017, p. 3) includes both pre-emptive and retroactive 545 

approaches to accountability, stating that: “In the event that potential danger is identified, a 546 

warning must be effectively communicated to all of society…. If misuse of AI is discovered 547 

and reported, there shall be no loss suffered by those who discover and report the misuse.”  548 

Accountability can also be considered as a policy structure or framework with 549 

associated principles (trust, inclusivity, transparency and verification), protocols and 550 

mechanisms to hold stakeholders accountable for their actions and behaviours thus making 551 

them answerable to those with a particular level of authority (Kraak et al., 2014). Diakopoulos 552 

(2015) considers the concept of accountable algorithms and how this relates to the 553 

accountability of the people who develop them or who use them. Diakopoulos (2015) suggests 554 

that an element of accountability is the development of algorithmic accountability reporting 555 

which encompass the assessment of input-output relationships, and aspects of fairness and 556 

understanding an algorithm’s influence, mistakes, and/or biases; all key elements of verifying 557 

transparency. In 2019, the Institute of Electrical and Electronics Engineers (IEEE) launched the 558 

P7000 standards projects intended to create a series of new standards to address ethical issues 559 

in the design of autonomous and intelligent systems, many of which have specific focus on 560 

aspects of responsibility and responsible technology development (Peters, Vold, Robinson & 561 

Calvo, 2020). The final aspect considered in this paper is responsibility. 562 
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3.6 Responsibility 563 

  Responsibility in all areas of food production and supply underpins food safety and 564 

trust, not only with the food itself, but also in production processes. This is often considered in 565 

terms of corporate social responsibility (Maloni & Brown, 2006) i.e., voluntary action by 566 

companies above minimum legal requirements where principles include legitimacy, public 567 

responsibility and managerial discretion. Responsibility can be understood through the lens of 568 

Responsible Research and Innovation (RRI) where it is defined on a high level as an interactive 569 

focus on the societal desirability, ethical acceptability and sustainability of research and its 570 

products to allow a proper embedding of scientific and technological advances in society (Von 571 

Schomberg, 2011). There is a growing field of work seeking to define responsible AI and 572 

consider how it can be achieved in practice (Dignum, 2019). AI-based food industry 573 

applications are frequently deployed in dynamic and unpredictable real-world environments 574 

because they promise the ability to react to complex situations quickly, effectively and with 575 

precision (Yang, Feng & Whinston, 2021). However, this very flexibility means that they might 576 

react in unpredicted or unanticipated ways, which can lead to undesirable or even harmful 577 

consequences. There is also no clear consensus on what it means for AI to be responsible (Jobin, 578 

Ienca & Vayena, 2019). It is generally agreed that responsible systems must address issues such 579 

as bias, transparency, justice and non-maleficence, but Martin (2019, p. 835) seeks to question 580 

whether developers are responsible “for their algorithms later in use, what those firms are 581 

responsible for, and the normative grounding for that responsibility” and concludes that the 582 

responsibility sits with organisation unless the designer has designed the algorithm “to preclude 583 

individuals from taking responsibility within a decision, then the designer of the algorithm 584 

should be held accountable for the ethical implications of the algorithm in use.” (Martin, p. 585 

825). The responsibility for errors in decisions made by AI and machine learning algorithms 586 

also needs to be considered (Kosior, 2020). 587 
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Human decisions about how data is utilised, included or discarded in a given 588 

technological application, will be driven by pre-conceptions. When training and developing AI 589 

systems it is extremely important that the data used do not contain biases or lack 590 

representativeness of specific categories. For example, a given group or community may not 591 

have been adequately represented in the data used to train a given algorithm, and this may 592 

reverberate on the accuracy of the recommendations provided by the AI system. This applies 593 

both to cultural diversity (e.g., recommending types of food that are prohibited by specific 594 

cultures), and ethnic diversity (e.g., specific ethnicities feature particular intolerance for the 595 

specific products or ingredients, e.g., lactase deficiency (see Buolamwini & Gebru, 2018). 596 

Beyond data collection, an algorithm’s design has the potential to echo any pre-existing biases 597 

its human creator may have. Even if this is not the case, there is still scope for any technical 598 

biases to influence an application due to any limitations in the computer programme, its 599 

processing power or any other constraints that there may embedded in the system. Furthermore, 600 

if an otherwise unbiased algorithm is applied in an unanticipated context an emergent bias can 601 

be present. 602 

In 2018, the Montreal Declaration for Responsible Artificial Intelligence was released 603 

following a year of public consultation. One of the 10 key principles included was 604 

responsibility, which is defined in these terms: 605 

1. Only human beings can be held responsible for decisions stemming from 606 

recommendations made by AI system (AIS) based applications, and the actions that 607 

proceed therefrom.  608 

2. In all areas where a decision that affects a person’s life, quality of life, or reputation 609 

must be made, where time and circumstance permit, the final decision must be taken by 610 

a human being and that decision should be free and informed.  611 
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3. The decision to kill must always be made by human beings, and responsibility for this 612 

decision must not be transferred to an AIS.  613 

4. People who authorise AIS to commit a crime or an offense, or demonstrate negligence 614 

by allowing AIS to commit them, are responsible for this crime or offense; and 615 

5. When damage or harm has been inflicted by an AIS, and the AIS is proven to be reliable 616 

and to have been used as intended, it is not reasonable to place blame on the people 617 

involved in its development or use. 618 

These principles do not only encompass obvious harms such as accuracy of recommendations 619 

and predictions (for example, if an automated system failed to give appropriate notification and 620 

labelling of likely allergen contamination) or of bias (for example smaller or marginalised 621 

producers being negatively impacted for loan approvals), but more complex changes too. These 622 

five points also align with Asimov’s “Three Laws of Robotics” (1984): 623 

1. A robot may not injure a human being, or, through inaction, allow a human being to 624 

come to harm. 625 

2. A robot must obey the orders given it by human beings except where such orders 626 

would conflict with the First Law. 627 

3. A robot must protect its own existence as long as such protection does not conflict 628 

with the First or Second Law.   629 

At a wider level, questions of beneficence and harm to humans also include concerns over 630 

system-wide technological change, for example whether sector-wide introduction of AI and 631 

automation might have impact on employment levels, and potential sustainability questions 632 

over the energy requirements of automated and computational systems. It is important to 633 

consider that responsible use of AI must protect human quality of life, and dignity, at all scales. 634 

This section has considered two aspects firstly responsibility of AI and secondly, responsible 635 

use of AI and both need to be considered in any application in food supply chains. 636 
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There have been a wide range of guidelines, recommendations and other materials from 637 

industry and the public sector which attempt to build ethical and responsible practices into the 638 

use of these technologies. For example, the Japanese Society for Artificial Intelligence (JSAI) 639 

set out ethical guidelines in 2017 to be applied by its members, consisting of 9 guidelines or 640 

principles, one of which is accountability and also social responsibility. Jobin, Ienca & Vayena 641 

(2019, p. 395) note in their survey of the related literature that: “very different actors are named 642 

as being responsible and accountable for AI’s actions and decisions: AI developers, designers, 643 

institutions or industry”. They note that there is an outstanding debate over “whether AI should 644 

be held accountable in a human-like manner or whether humans should always be the only 645 

actors who are ultimately responsible for technological artifacts.” It is not clear what holding 646 

an AI accountable would necessarily entail in terms of current technology, however, as 647 

discussed in the Montreal Declaration for Responsible Artificial Intelligence (2020), questions 648 

of AI systems themselves being held accountable can be a distraction from necessary 649 

consideration of human rights and harms that may be done to humans by the inconsiderate use 650 

of AI. If an AI driven allergen alert system fails to upload information in the timeframe required 651 

to prevent highly vulnerable individuals from experiencing anaphylactic shock where does the 652 

responsibility for harm lie? Does it lie with the developer who produced the application, the 653 

organisation that has sold the application and/or the user because they are ultimately responsible 654 

for their own safety and should not rely totally on such applications or the manufacturer who 655 

has incorrectly labelled the food? These ethical questions lie at the heart of considerations 656 

around responsibility.  As shown by Busuioc (2021), the nature of accountability with regards 657 

to the use of AI is complex and subject to varied intertwined technical and human factors. It is 658 

not a question therefore of holding technology or human responsible but instead considering 659 

how responsibility and accountability is changed within a (food) system involving the use of 660 

AI.   661 
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4. Concluding thoughts 662 

The emergence of the use of AI and algorithms in food supply chains brings with it a new 663 

vocabulary and context.  The aim of this review paper is to consider the embedded ethical 664 

language used by stakeholders who collaborate in the adoption of AI in food supply chains. 665 

Ethical perspectives frame this review and provide structure to consider how to shape a common 666 

discourse to build trust in, and more considered utilisation of, AI in food supply chains to the 667 

benefit of users, and wider society. The seven aspects of use of AI considered in this paper were 668 

critiqued and positioned in terms of their characteristics, corporate activities and mechanisms 669 

which can embed these aspects in food supply chains. Supply chain examples are included in 670 

Table 1 to explore the aspects in a practical context. 671 

 By structuring and synergising the vocabulary in this way, we are able to begin the 672 

process of considering how these ethical perspectives can be translated into practice in the use 673 

of AI in food supply chains.  Greater supply chain transparency will require the industry to 674 

reduce information asymmetry, improve legitimacy and ensure decision-making is less opaque.  675 

Having a framework within which to discuss ethical aspects of technology implementation in 676 

the food supply chain will facilitate the consideration of complex ethical challenges such as 677 

algorithmic bias, which could lead to the privileging of one group in the food supply chain over 678 

another or compromise the efficacy of AI supported decision-making. This challenge of bias is 679 

worthy of further consideration in future research. 680 

 The drawing together of the narrative in this paper makes a contribution to existing 681 

literature by supporting a more rounded understanding of the ethical interaction of aspects of 682 

AI use in food supply chains and also the management activities and actions that can be adopted 683 

to improve the applicability of AI technology, increase engagement and derive greater 684 

performance benefits. This work has implications for those developing AI governance protocols 685 

for the food supply chain as well as supply chain practitioners. 686 
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The nuances of the social-technological determinism spectrum have been touched on in 687 

this paper but are worthy of further research and critique in the context of real-case use of AI 688 

in food supply chains. The varied interpretation of aspects of AI adoption in food supply chains 689 

e.g., considerations of transparency, accountability, responsibility has implications for different 690 

stakeholders to consider as they work together to develop technological applications.    691 

Stakeholders developing a mutual understanding of language use and a shared vocabulary will 692 

catalyse consideration of the ethical complexities of the use of AI within the food system.  The 693 

outputs of this research assist in giving a more rounded understanding of the language used, 694 

exploring the ethical interaction of aspects of AI used in food supply chains and also the 695 

management activities and actions that can be adopted to improve the applicability of AI 696 

technology, increase engagement and derive greater performance benefits across the food 697 

supply chain. The development of ethical frameworks for the consideration of normative ethics 698 

and applied ethics can inform and guide behaviour in real life contexts. This work has 699 

implications for those developing AI governance protocols and ethical frameworks for 700 

regulation, private standards for the food supply chain as well as supply chain practitioners.  701 
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Table 1. Aspects of AI use in the food supply chain: innate characteristics of aspects and corporate/supply chain mechanisms and 965 

activities to address these aspects.  966 

 967 
Aspect Inherent characteristics Corporate mechanisms/ 

activities 

Supply Chain Example Section of the 

discourse where 

the aspect is 

considered 

Transparency Visible, open (opacity), 

accurate, relevant, reliable, 

timely. 

Data/information disclosure; 

transparency cues; validity 

mechanisms; standardisation, 

simplification, reduction, 

dissemination, certification. 

Open sharing of data in the supply chain to develop 

an ‘end-to-end’ allergen control system. 

Section 3.1 

Traceability Identity, movement, location, 

transactional, information loss  

Tracing, following, tracking, 

record keeping. 

The use of a scanning system and barcodes on pack 

to trace an ingredient from source (farm) to a factory. 

Section 3.1 

Explainability XAI, knowledge based. Giving meaning, creating 

understanding, reconciling 

differences.   

The ability to explain the technology to a range of 

stakeholders so they understand how it is operating in 

practice e.g., yield prediction software in orchards.    

Section 3.2 

Interpretability Answerability, explicit, visible. Information assimilation and 

interpretation, use of tools, 

prototype analysis, feature 

analysis. 

The ability to interpret the output of the technology 

so that it can inform decision-making; for example, 

being able to use scanning technology and translating 

the output into information on the level of lameness 

in a dairy herd.  

Section 3.3 

Accessibility Usable, findable, reusable, 

interoperable, private 

(protected access), public. 

(open access) 

Information provision, 

authorisation protocols, privacy 

protocols, human (inclusive) 

accessibility protocols. 

The development of access rights with robotic 

milking machines on farm so that the farmer, 

veterinarians, machine manufacturers, dairy customer 

have appropriate access to data collected. 

Section 3.4 

Accountability Duty, obligation, liability, 

controllability, responsiveness. 

Corporate justification, 

governance; accountability 

protocols. 

The development of a data governance protocol that 

identifies the uses of data by different stakeholders 

and defines who specific data can and cannot be 

shared with, for example data associated with 

workers in a food factory. 

Section 3.5 

Responsibility Trust, legitimacy. Corporate social responsibility. AI 

design protocols that define roles 

and responsibility. 

The use of a food safety management tool that has an 

inbuilt alert system according to the level of 

responsibility in the factory. 

Section 3.6 
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