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Abstract

Cultural and geographical properties of the environment have been shown to deeply influence
cognition and mental health[1–6]. While living near green spaces has been found to be strongly
beneficial [7–11], urban residence has been associated with a higher risk of some psychiatric
disorders [12–14] (although see [15]). However, how the environment one grew up in impacts
later cognitive abilities remains poorly understood. Here, we used a cognitive task embedded
in a video game[16] to measure non-verbal spatial navigation ability in 397,162 people from 38
countries across the world. Overall, we found that people who grew up outside cities are better
at navigation. More specifically, people were better at navigating in environments topologically
similar to where they grew up. Growing up in cities with low Street Network Entropy (e.g.
Chicago) led to better results at video game levels with a regular layout, while growing up outside
cities or in cities with higher Street Network Entropy (e.g. Prague) led to better results at more
entropic video game levels. This evidences the impact of the environment on human cognition
on a global scale, and highlights the importance of urban design on human cognition and brain
function.

Introduction

Cognitive abilities, including spatial navigation, have been shown to correlate with specific
genotypes [17]. However, research on brain plasticity supports the notion that experience shapes
brain structure as well as function [2, 3]. In particular, cultural and geographical properties of the
environment have been shown to deeply influence cognition and mental health [4, 6]. In rodents,
exploring complex environments has a positive impact on hippocampal neurogenesis and cognition
[1, 5]. In humans, spatial navigation activates the hippocampus [18], and continuous navigation
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of a large complex city environment increases posterior hippocampal volume [19]. However, how
the environment one grew up in impacts later cognitive abilities remains poorly understood for
two reasons. First, human environments are manifold and much harder to characterize than
a rodent’s cage. Second, collecting cognitive data of large samples from populations living in
different environments is very costly [20]. To overcome these limitations, we measured non-verbal
spatial navigation ability in 3.9 million people across all countries and examined a subset of this
data (397,162 people, in 38 countries). We used a cognitive task embedded in a video game, that is
predictive of real-world navigation skill [16, 21, 22]. While the task has been described previously
[16], we now report new data not previously published. We focused on spatial navigation due to
its universal requirement across cultures, and parallels to rodent studies [23, 24]. We quantified
the complexity of participants’ environments with OSMnx, a tool giving access to the street
network topology of cities anywhere in the world [25]. We found that, on average, people who
reported having grown up in cities have worse navigation skills than those who reported growing
up outside cities, even when controlling for age, gender, and level of education. This difference
between city and non-city people varied across countries, being – for instance – more than 6 times
larger in the USA than in Romania. To investigate these variations we computed the average
Street Network Entropy (SNE) of the biggest cities of 38 countries; grid-like cities (e.g. Chicago)
have a small SNE, while more organic cities (e.g. Prague) have a higher one. We found that
growing up in cities with low SNE led to better performance at video game levels with a regular
layout, while growing up outside cities or in cities with higher SNE led to better performance
at more entropic video game levels. This confirms the impact of the environment on human
cognition on a global scale, and highlights the importance of urban design on human cognition
and brain function.

Results and discussion

We used the Sea Hero Quest database, which contains the spatial navigation behaviour of 3.9
million participants measured with a mobile video game, ’Sea Hero Quest’ (SHQ) [16, 22]. SHQ
involves navigating a boat in search of sea creatures (Figure 1). Performance of SHQ has been
shown to be predictive of real-world navigation ability [21]. It has also allowed to differentiate
high-risk preclinical Alzheimer’s disease cases from low-risk participants [26]. Here, we focused
on the wayfinding task [16], where players are initially presented with a map indicating the start
location and the location of several checkpoints to find in a set order. To provide a reliable
estimate of spatial navigation ability, we examined the data only from participants who had
completed a minimum of eleven levels of the game, and who entered all their demographics (see
Methods). This resulted in 397,162 participants from 38 countries included in our analysis, (see
Table S1). Among them, 212,143 males (mean age: 37.81 ± 13.59 years old) and 185,173 females
(mean age: 38.67 ± 14.92 years old).

The association between environment and spatial ability stratified by age, gen-
der and education - To quantify spatial ability, we defined the ”wayfinding performance”
metric (WF ), which captures how efficient participants were in completing the wayfinding
levels, while correcting for video-gaming skills (see Methods). We performed the same anal-
ysis for path integration levels, see Supplementary Methods and Extended Data Fig. 6. It
yielded similar results. A multivariate linear regression was calculated to predict wayfinding
performance based on age, gender, education and environment. Age has the strongest effect
(F1,397157 = 61389, p < 0.001, η2 = 0.127, Hedge’s g = 0.98, 95% CI = [0.97, 0.99]), followed
by gender (F1,397157 = 20665, p < 0.001, η2 = 0.043, Hedge’s g = 0.44, 95% CI = [0.43, 0.45]),
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Figure 1. |Wayfinding task - a Screenshots from the game Sea Hero Quest (SHQ). See also
Supplementary Video 1. b Nine examples of trajectory heatmaps out of the 75 SHQ levels. c - e
Heatmaps of the trajectories of all participants in level 42 (N=171,887) and level 68 (N=40,251)
of SHQ.The black triangle represents the starting position, and the circled numbers represent the
ordered checkpoints the participants must reach. d - f Examples of trajectories in level 42 and
68 of SHQ. g - h - Association between Environment and SHQ Wayfinding Performance
stratified by age, gender, and education. The SHQ Wayfinding Performance is computed from
the trajectory length and has been averaged within 5-years windows. See Extended Data Fig. 2
for a breakdown of the environment classes. The error bars represent the standard errors and the
center values correspond to the means.

3

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 10, 2022. ; https://doi.org/10.1101/2020.01.23.917211doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.23.917211
http://creativecommons.org/licenses/by-nc/4.0/


a - Environment effect across countries

b - Environment effect across cities

Figure 2. | Street Network Entropy (SNE) and environment effect in 38 countries -
a - Differences across countries. We fit a linear mixed model for wayfinding performance, with
fixed effects for age, gender and education, and random environment slopes clustered by country
(n=397,162 participants). We plot the environment effect sizes (country slopes) for each country,
with positive values indicating an advantage for participants raised outside cities. Error bars
correspond to standard errors. b - Left: Two examples cities with low (Chicago, USA) and high
(Prague, Czech Republic) SNE. See also Extended Data Fig. 10. Distribution of the street
bearings across 36 bins of 10 degrees. Right: Average SNE as a function of the environment
effect size (random environment slope) in each country. Positive values indicate an advantage of
participants raised outside cities compared to their urban compatriots. Average SNE is the
weighted average over the 10 most populated cities of the country, weighted by their population.
Squares and circles correspond to the low-SNE and high SNE country groups, determined with
k-means.

education (F1,397157 = 1476.9, p < 0.001, η2 = 0.003, Hedge’s g = 0.13, 95% CI = [0.13, 0.14]),
and environment (F1,397157 = 1628.8, p < 0.001, η2 = 0.003, Hedge’s g = 0.09, 95% CI = [0.09,
0.10]). The Hedge’s g of age is computed between participants under 25 years old (N=88,101)
and above 55 years old (N=59,982). Figures 1g-h represent the effect of the environment on WF
stratified by age, gender, and education. We replicate previous studies showing that wayfinding
performance decreases with age [27, 28], males perform better than females [29], and performance
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Figure 3. | Comparison of Street Network Entropy (SNE) to other measures of city
complexity measures - a - b We simulated 1000 routes in each of the 380 included cities.
Four example representative routes in two contrasting cites high/low SNE are displayed. c We
derived five key variables from each route: Number of above 50 degree turns, Number of unique
streets, Deviation from regular 90 degree turns at each turn, Overall deviation from the target
and Number of transitions in the partitions in street network structure. The spider plot shows
the route variables for these 4 routes, for full visualisation of the average of the 1000 routes in
the 380 included cities, see Extended Data Fig. 9. We also explored a range of other
graph-theoretic measures commonly considered for spatial analysis of cities. d Absolute
correlation coefficient between all the metrics and the environment effect size. SNE is by far the
metric most correlated to the environment effect size.

increases with the level of education [30, 31]. Here we now report that participants raised outside
cities are more accurate navigators than city-dwellers. Having a tertiary level of education while
having grown up in a city is roughly equivalent to having a secondary level of education while
having grown up outside cities in terms of wayfinding performance. The sample sizes for each
demographic and country are available Table S1. Given the magnitude of the dataset, most effects
are likely to always be ‘significant below the 0.001 threshold’. In the following, we will focus on
effect sizes as they are independent of sample size. We computed Hedge’s g between the city and
not-city groups. To marginalize the effect of age, we computed Hedge’s g within 5-years windows,
see Extended Data Fig. 1. Averaged over all age groups, g = 0.13, 95%CI=[0.12, 0.14], positive
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Figure 4. | Participants are accurate at navigating more entropic game levels when
they grew up in more entropic environments - a The entropy of the Sea Hero Quest
(SHQ) levels is computed from the bearing distribution (rose plot), shown for 2 example levels. b
Least square regression lines of the environment effect size on game level entropy for the
High-SNE and low-SNE country groups (see mini-maps and Figure 2b). We included the players
that played all the SHQ wayfinding levels (N = 10,626). Positive values indicate an advantage of
participants raised outside cities. Low-SNE environment slopes are negative for low entropy SHQ
levels, suggesting that in less entropic SHQ levels, people who grew up in less entropic cities
perform better than their compatriots who grew up outside cities. c Normalized trajectory
length as a function of the level length. Trajectory lengths have been z-scored for each level. The
level length is estimated by the median length over all the players. d For each level, the effect
size of the environment on the normalized trajectory length as a function of the level length
median. Positive Hedge’s g corresponds to longer trajectories (i.e. worse wayfinding performance)
for city participants. e - Screenshots from City Hero Quest (CHQ), a city-themed version of
SHQ. Map and image show 1 of the 5 levels tested. f - Association between Environment and
trajectory lengths in SHQ and CHQ (N = 599). The center values correspond to the means. In
all panels error bars correspond to 95% confidence intervals.6
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values corresponding to an advantage for participants who grew up outside cities. As shown in
Figure S1, Hedge’s g remained stable across age. This stability is interesting as one could have
hypothesized that the influence of the environment one grew up in could fade with age. This
stability is consistent with the literature on the timing of enriched environment exposure in mice,
showing that an early enriched environment exposure could provide a “reserve”-like advantage
which supports an enduring preservation of spatial capabilities in older age [32].

The association between environment and spatial ability across countries - To
quantify how spatial ability and environment are associated across countries, we fit a Linear
Mixed Model (LMM) for wayfinding performance, with fixed effects for age, gender and education,
and a random effect for country, with random slopes for environment clustered by country:
WFperf ∼ age + gender + education + (1 + environment/country). Figure 2a represents the
environment slopes for each country, positive values indicate an advantage for participants raised
outside cities. In terms of Hedge’s g, this spectrum ranges from Romania (g = -0.03, 95%CI=[-0.10,
0.04])) to the United States (g = 0.19, 95%CI=[0.17, 0.21]). Figure S2 illustrates this difference
in effect size across age in different countries. For instance, while the effect size is close to being
null in Germany, growing up in cities in the USA cost the equivalent of aging four years in terms
of spatial ability, see Extended Data Fig. 3.

Associations between the topology of cities and spatial ability - To explain the varia-
tions in the association between environment and spatial ability across countries, we hypothesized
that countries with lower effect sizes contain cities with more complex layouts, which places
greater demands on navigation, honing the skill of those growing up in them. The impact of city
topology on human spatial ability has previously been theorized in the urban design literature
[33, 34], but the empirical studies on street networks suffer from limitations, mostly due to data
availability, gathering, and processing constraints [35, 36], although see [37]. To overcome these
limitations, we coupled our global dataset with the OSMnx toolbox, which provides the street
network layout for anywhere in the world via OpenStreetMap [25, 38]. Street network complexity
is a manifold concept, and many metrics have been proposed to quantify it. Shannon’s information
entropy [39] is arguably the simplest and the most general measure of network complexity, from
neural to spatial networks [40–43]. The entropy of a variable can be interpreted as the average
level of uncertainty inherent in its possible outcomes. Here, we computed the Shannon entropy of
the city’s street orientations’ distribution. The smaller the entropy, the less complex - i.e. the
more ordered - the city street network, see examples in Figure 2b and in Extended Data Fig.
10. Since SHQ participants only reported their home country, and not finer-grained regional
information, we computed the Street Network Entropy (SNE), defined as the average of the
entropy of the ten biggest cities of each country in terms of population, weighted by the city
population (Table S2). Thus, we had one SNE value per country. Figure 2b represents the SNE
of countries as a function of their environment slope from the above mixed model. The majority
of the countries have a similar SNE, corresponding to the typical organic street pattern of old city
cores (e.g. France, Romania, Spain, but also Thailand or India). However some other countries
have distinctly smaller SNE, corresponding to the orthogonal grid, a very common planned street
pattern (e.g. the United States, Argentina). The bivariate correlation between country SNE
and their environment slope is significant (Pearson’s r(36) = −0.60, p < 0.001, 95%CI =[-0.78
-0.30]). This validates our hypothesis: the lower the SNE (i.e. the simpler the street network), the
worse the spatial ability of the people who grew up in cities compared to their compatriots raised
outside cities. This effect remained when we control for Gross Domestic Product (GDP) per
capita (linear regression predicting environment slopes, GDP per capita t(35)=4.02, p < 0.001,
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SNE t(35)=-5.86, p < 0.001), see Table 2 in Methods. We did not find a correlation between
GDP per capita and SNE (r(36)=0.14, p=0.40), see Extended Data Fig. 7a.
While SNE captures the spatial organisation of a city, metrics based on the graph theoretic
network measure topological properties of the cities, which could also play a role in shaping
navigation skill. Across our 380 cities we measured the betweenness, closeness and degree
centrality, average circuity, average neighborhood degree, clustering coefficient and average street
length (see Methods) [43, 44]. After applying Bonferroni correction for multiple comparisons,
we found that only circuity (network distance/Euclidean distance) was significantly correlated
with SNE (r(36)=0.47, p = 0.02), which is coherent with [43]. This indicates that less regular city
layouts are associated with paths across them that require more deviation around obstacles, see
Figure 3.
What are the mechanisms by which exposure to high SNE would lead to better navigation
ability? We surmised that navigating cities with irregular street layouts would require increased
demands on: 1) Keeping track of the goal direction due to greater varying street angles; 2)
Spatial/prospective memory for street names and upcoming turns due the human tendency to
minimise the streets/turns in an irregular laid out city [45, 46]; 3) More hierarchical planning
across neighbourhood, due to larger number of neighborhoods that might occur in irregular
cities. Such demands would likely enhance the capacity of neural systems underlying orientation,
prospective memory and planning abilities [19, 47]. To empirically determine whether the specific
variables we propose are linked to SNE, we employed agent-based modeling to simulate 1000
routes through each of the 380 cities to quantify: number of turns, number of streets, deviation
from a 90 degree turns, overall deviation from the target and number of crossed partitions in
street network (see Methods and Figure 3). After applying Bonferroni correction for multiple
comparisons, we found that turns and the deviation from the goal were not significantly higher
in high-SNE cities, indicating that these may not be key factors in enhancing navigation skill.
Rather we found that SNE was significantly correlated with deviation from 90 degree turns
(r(36)=0.77, p < 0.001), number of streets (r(36)=0.57, p < 0.001), and number of partitions
crossed (r(36)=0.48, p = 0.007). Thus, it appears that having to accommodate turns that deviate
from 90 degrees and to navigate more streets and neighborhoods are key to enhancing navigation
skill. We incorporated all network and route measures into a linear model to predict the envi-
ronment effect size, and failed to find a significant equation (F(10,25)=1.44, p = 0.21). On the
other hand, when using SNE only as a predictor, a significant equation was found (F(1,36)=20.1,
p < 0.001), see Methods. This implies that it is the combination of navigational challenges that
high SNE cities provide that is important for enhancing the inhabitants navigational skill.

The interaction between virtual and real-world topologies and their influence on
spatial abilities - We tested the symmetrical effect: do different SHQ level topologies interact
with the effect of participant’s home environment? Here our hypothesis was that people growing
up in environments with more complex topologies might perform better at more elaborate,
entropic SHQ levels. Conversely, people growing up in regular cities might perform better at
regular SHQ levels. We used k-means to split the countries into two SNE groups, revealing
a low-SNE group and high-SNE group, see Figure 2b. We defined the SHQ level entropy as
we did for the cities, with the orientations’ distribution computed from the level’s simplified
Voronoi map (see Figure 4a and Methods for details). In order to include in our analysis as many
level topologies as possible, we ran the following analysis on a subset of included participants
who completed all SHQ levels (75 levels, 9,439 participants). We fit two LMMs for wayfinding
performance: one with the participants from low-SNE countries (N=2021), the other with the
participants from high-SNE countries (N=7418). Both models had fixed effects for age, gender and
education, and a random effect for level, with random slopes for environment clustered by level:
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WFperf ∼ age+ gender+ education+ (1 + environment/level). We included all the wayfinding
levels (N=42). Figure 4b represents for each level its entropy as a function of the environment
slope slow computed from participants in the low-SNE countries, and shigh computed from the
high-SNE countries. Positive values correspond to an advantage of participants growing up outside
cities. We observed that the only negative environment slopes correspond to low-SNE participants
in less entropic levels, suggesting that people used to less entropic environments perform better
in less entropic SHQ levels. The correlation coefficient was higher between the entropy of the
levels and the low-SNE environment slopes (Pearson’s correlation rlow = 0.57, p < 0.001) than
between the entropy of the levels and the high-SNE environment slopes (Pearson’s correlation
rhigh = 0.44, p = 0.003). This correlation slope difference did not reach statistical significance
(Fisher’s z = 0.77, p = 0.22, 95% CI for rhigh − rlow = [−0.46, 0.20]).
People living in city centres typically travel shorter distances than people living in suburbs or in
more rural environments, resulting from the denser arrangement of local activity locations [48,
49]. Thus, we hypothesized that city participants will have better wayfinding performance at
SHQ levels requiring shorter trajectories. To test this hypothesis, we normalized the participants’
trajectory lengths at each level (M = 0, SD = 1) and plotted them against the corresponding
game level length median, taken over all the participants. Figure 4c shows that the performance
(inversely related to the normalized trajectory lengths) of city participants decreases with the
game level length median, while it increases for non-city participants. Figure 4d shows a positive
correlation between the effect size (Hedge’s g) of the environment on normalized trajectory
length and the level length median (Pearson’s r = 0.50, p < 0.001). We computed a multiple
linear regression with the environment effect size as the response variable, the level entropy and
trajectory length median as the predictors. We found that both entropy (F1,39 = 5.20, p = 0.02,
η2 = 0.12) and median trajectory length (F1,39 = 13.71, p < 0.001, η2 = 0.26) are significant
predictors of the environment effect size.

Replication of the association between environment and spatial ability in a city
setting: City Hero Quest - While our virtual levels varied entropy from open waters to
narrow inlets (see Supplementary Video 1), the SHQ navigation task was simulated in rural
settings (rivers and ocean terrain) and may potentially favor participants who reported growing
up outside cities. To test this hypothesis and directly replicate the environment effect with an
independent sample, we designed a city-themed version of SHQ called City Hero Quest (CHQ)
and tested participants with it alongside SHQ. In CHQ, the players performed the same task as
in SHQ, but driving a car in city streets, see Figure 4e and Supplementary Video 2. We collected
data from new participants on 5 SHQ levels and 5 CHQ levels matched for entropy and difficulty
in order to test whether our SHQ results transfer to a city context, see Extended Data Fig. 7b-d.
599 participants were recruited in the United States via the crowdsourcing platform Prolific.
We chose to collect data from the US as it was the most represented country in the Prolific
participant pool, and a country with a high environment effect size in the initial SHQ dataset.
Sample size justification and full description of this new task are available in the Supplementary
Methods. The same data analysis pipeline was applied to Sea Hero Quest and City Hero Quest
data. As shown in Figure 4f, the effect size of the environment on the normalized trajectory
length is similar with SHQ data (Hedge’s g = 0.27, 95%CI=[0.06, 0.47]) and CHQ data (Hedge’s
g = 0.34, 95%CI=[0.14, 0.54]), positive values indicating an advantage (i.e. shorter trajectories)
for participants who grew up in non-city environments. The difference between the CHQ and
SHQ environment effect was not significant (see Supplementary Information, CHQ Data Analysis
section). This is also consistent with the effect size we found in the initial SHQ dataset when
considering participants in the US on the same levels (Hedge’s g=0.30, 95%CI=[0.18, 0.42]).
Because participants also provided their current environment (city/non-city), we were able to
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show that the effect of the current environment on CHQ or SHQ performance did not reach
significance (see Supplementary Information). This suggests that the childhood period is key to
predicting future spatial ability.

Conclusions

Exploring population-level cognitive performance in 38 countries, we reveal that people are better
at navigating in environments topologically similar to where they grew up. We show that this
association is independent of age, gender, video games skill and education. Participants who grew
up in less entropic cities show better performance at less entropic game levels, while participants
who grew up in more entropic cities are better at navigating more complex game levels. Similarly,
participants who grew up in cities generally perform better in game levels in smaller spaces than
they do in game levels in larger spaces, while participants who grew up outside cities are better
in larger game levels than in game levels in smaller spaces. These results support the idea that
humans develop navigation strategies aligned with the type of environment they are exposed to,
which become sub-optimal in other environments (see Supplementary Discussion). It indicates
that the environment one grew up in is associated with cognitive ability, and that this association
is stable across the life-span. Future research will need to explore how these differences emerge
during childhood through adolescence, where abrupt changes in ability can occur [50].
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Methods

Data

The design and the data collection process of Sea Hero Quest have been thoroughly described in
[16].
Video game - In this study we focused on the wayfinding task. At the beginning of each
wayfinding level, participants were shown locations (checkpoints) to visit on a map. The map
disappeared, and they had to navigate a boat through a virtual environment to find the different
checkpoints. Checkpoints were generally not encountered in the order of passage, but rather have
to be navigated to by returning form one checkpoint to another (Figure 1). Participants were
encouraged to collect as many ‘stars’ as possible across the levels: the faster the more stars were
obtained. The first two levels were tutorial levels to familiarise the participant with the game
commands.
Participants - A total of 3,881,449 participants played at least one level of the game. 60.8% of
the participants provided basic demographics (age, gender, home country) and 27.6% provided
more detailed demographics (home environment, level of education, see Methods). To provide
a reliable estimate of spatial navigation ability, we examined the data only from participants
who had completed a minimum of eleven levels of the game (including the first 4 wayfinding
levels: levels 6, 7, 8 and 11) and who entered all their demographics. We removed participants
above 70 years old because we previously showed a strong selection bias in this group causing
their performance to be substantially higher than would be expected in unselected participants of
the same age [16]. We also removed participants from countries with fewer than 500 players, or
with education or environment levels more than 10-fold imbalanced. This resulted in 397,162
participants from 38 countries included in our analysis, (see Table S1).
Demographic information - Participants were made aware of the purpose of the game
within the opening screen. Demographics were provided by consenting participants in two steps.
First, their age, gender and home country were asked. Then, after having played a few levels,
participants were invited to provide further information such as their level of education and the
type of environment they grew up. They were asked whether they were willing to share their
data with us and were guided to where they can opt out. The opt out was always available
in the settings. Among the included participants there were 212,143 males (mean age: 37.81
± 13.59 years old) and 185,173 females (mean age: 38.67 ± 14.92 years old). The levels (N
= sample size) of education were: university (N=166,714), college (N=111,463), high-school
(N=107,849), and no formal (N=11,290). We merged the university with the college levels due to
their ambiguous meaning in some countries, and the high-school with the no formal level due
to the relative low sample size of the latter. Hence, in our analysis the education variable had
two levels: secondary and lower (N=119,139) and tertiary (N=278,177). The levels of home
environment were: city (N=109,111), suburbs (N=131,738), mixed (N=80,266), rural (N=76,047).
We merged the mixed, suburb and rural levels together to facilitate the interpretation of the effect
of growing-up in city (N=109,111) and non-city (N=288,051) environments. City environments
are distinguished from other settings due to the higher propensity for active, self-propelled travel
(e.g. walking, cycling), relative to passive, car - or public transport-based travel [51], resulting
from the denser arrangement of local activity locations. We furthermore anticipate that where
participants have stated growing up in a city environment that there is a definitive and salient
personal association with a city underlying this selection, whereas in other cases (e.g. suburban,
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mixed) this association is less clear, and better described as non-city. Both factors are common
across international settings. Indeed, the observed clear difference between the city group and the
other three groups, but little dissociation between the other three groups supports this approach,
see Extended Data Fig. 2. To further validate this city / non-city dichotomy, we asked the
participants to the City Hero Quest follow-up experiment the street they lived on in their home
environment, and computed the entropy of the street network (SNE) in a spatial window around
it (see Supplementary Methods). We then compared the SNE of people who reported having
grown up in a city (N=114), suburb (N=326), rural (N=84) or mixed (N=75) environment. As
shown in Extended Data Fig. 4c, the SNE in cities was significantly lower than the SNE in
the other environments. We ran a one-way ANOVA with the reported home environment as
independent variable and the SNE as dependent variable and found a significant effect of home
environment (F(1,3)=25.72, p<0.001). Post-hoc pairwise t-test Bonferroni-corrected for multiple
comparisons showed that the SNE of a city environment was significantly lower than the SNE of
all the other environments (all p<0.001). We found no significant difference in the SNE of mixed
vs rural (p=1), suburbs vs. mixed (p=0.20), and a small difference in the SNE of suburbs vs.
rural (p=0.02).
For the analysis on the game level entropy, we included the participants that played all the Sea
Hero Quest wayfinding levels (N = 10,626). There were 5,219 males (age: 41.89± 15.95 years
old), 5,407 females (age: 41.98± 16.32 years old), 7,429 with tertiary education, and 3,604 grew
up in cities.
Behavioural data - We collected the trajectory of each participant across each level. The
coordinates of participants’ trajectories were sampled at Fs = 2 Hz.

Metrics

Geospatial analysis

We focused on the quantification of the structural complexity of larger cities instead of the
complexity of areas outside cities. This is because city streets can be more strictly compared with
one another. On the opposite, areas outside cities can be heterogeneous both within and between
countries, which makes the country-level averaging of their parameters problematic.
Street Network Entropy - We used the OSMnx toolbox to download the street network
topology of cities from OpenStreetMap (OSM) [25]. For each included city we created a street
network graph from OSM data within a 1000×1000 square meter box around the city geographical
center. The use of a bounding box in the city centre is interesting as it is reflective of the wider city
structure, and avoids issues related to classifications of regions, and administrative boundaries.
This definition also has stronger persistence over time (considering city growth during the
theoretical period of our analysis) [52]. To define the city geographical centers, we used the
(latitude, longitude) coordinates provided by OpenStreetMaps. Then, we computed a 36-bin
edge bearings distribution (1 bin every 10 degrees), taking one value per street segment. We
initially took twice as many bins as desired, then merged them in pairs to prevent bin-edge effects
around common values like 0 and 90 degrees. We also moved the last bin to the front, so e.g.
0.01 degree and 359.99 degrees were binned together. We calculated the Shannon entropy of the
city’s orientations’ distribution.

H = −
36∑
i=1

P (oi)log(P (oi)) (1)

where i indexes the bins, and P(oi) represents the proportion of orientations that fall in the ith

bin [43]. For each of the 38 countries included in our analysis, we defined the average Street
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Table 1. Pearson’s correlation between environment effect size and different SNE calculations.
The SNE set in bold is the one used in this manuscript. OSM = OpenStreetMaps, GM = Google
Maps. P-values are from a t-test testing the hypothesis of no correlation against the alternative
hypothesis of a nonzero correlation.

City centre Bounding box size (m) Type of street network correlation

SNE1 GM 500 drive r=-0.60, p < 0.001
SNE2 GM 500 all r=-0.52, p = 0.001
SNE3 OSM 1000 drive r=-0.60, p = 0.001
SNE4 OSM 1000 all r=-0.57, p = 0.001
SNE5 GM 1000 drive r=-0.64, p = 0.001
SNE6 GM 1000 all r=-0.58, p = 0.001
SNE7 GM 2000 drive r=-0.58, p = 0.001
SNE8 GM 2000 all r=-0.53, p = 0.001
SNE9 GM 5000 drive r=-0.54, p < 0.001
SNE10 GM 5000 all r=-0.50, p = 0.001

Network Entropy (SNE) as

SNE =
1∑
i αi

10∑
i=1

αiHi (2)

where (Hi)i∈[1..10] are the Shannon entropies of the 10 biggest cities in terms of population, and

αi is the population of the ith city (see Table S1).
Since OSM mapping relies on the contributions from volunteers, we considered that this could
introduce a bias, some countries being more densely mapped than others. So we compared these
SNE values to the ones based on the city centers (latitude, longitude) coordinates provided by
Google Maps (GM). We computed SNE value both from the drivable public streets network
(’drive’) and from the all non-private streets and paths network (’all’). The ’drive’ network is
a more reliable and consistent source of long-term street network data, given that it represents
the major established roads in each city. The ’all’ network, by additionally covering pathways
and pedestrian zones, is more susceptible to between-country variation in volunteer mapping
practices and recent planning initiatives. We found little variations, see Table 1. We also varied
the size of the street network box around the city centers. If the bounding box were too big it
could go beyond the city boundaries (especially for smaller cities), but if too small it might not
be representative of the whole city. We computed SNEs for 500× 500, 1000× 1000, 2000× 2000
and 5000× 5000 square meter boxes. Again, our results remained stable across the different sizes,
see Table 1.
Graph-theoretic metrics -
Graph based measures are calculated on the ’primal’ representation of the road network for each
study area, where junctions are represented by nodes and roads as edges. This representation is
typical in the calculation of road network-based graph metrics. The metrics selected were chosen
on the basis of their widespread use in describing street networks, and full description of their
implementation can be found in [25].

Circuity - This measures the of the sum length of all edges divided by the sum of Euclidean
distances between nodes. Thus it captures the extent of deviation required from the most
direct route when moving between two points on a network [53].

Mean Cluster Coefficient - This measure records the ratio of number of connections with
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neighbours over the total of number of possible connections, taken as a mean for all nodes.
As such, it captures the degree close to which there is high interconnectivity between nodes
in a network [54].

Mean Closeness Centrality - Closeness represents how close a node is to all other nodes
within a network. It has been demonstrated to align closely with locations of activities [55]
and correlated with activity in the anterior hippocampus when navigating [56]. The mean
value for all nodes is taken.

Mean Betweenness Centrality - Betweenness centrality measures the extent to which a
node features on shortest paths between all node pairs. Again, we use the mean value
for the network, which indicates the extent to which flows of people may be spread or
concentrated across the network [40].

Mean Degree Centrality - This measure records the fraction of nodes that each node is
connected to, taken as a mean for all nodes in the network. This measure reflects the extent
of connectivity between nodes on a network [57], is suitable for analysis interconnectivity in
small areas and correlated with posterior hippocampal activity during navigation [56].

Mean Neighbor Degree - This measures for each node the mean degree of all neighboring
nodes, and reflects the degree of local node connectivity.

Mean Street length - This measures the mean length of street segments, and thus is an
indicator of block length. This provides a measure of the density of the street network.

Route-based metrics from agent-based simulations -
All routes were calculated based on a ’dual’ representation of the road network, whereby road
segments are modelled as vertices and costs between vertices (e.g. distance, angular change)
modelled as network edges. The Djikstra algorithm was used for identifying the optimal paths,
with road length used as the optimisation measure. For each city, 1000 routes were generated for
two randomly selected origin and destination nodes (i.e. road segment centre points). For each
path, the following measures were extracted.

Unique streets - Sum of the unique street names provided by Open Street Map encountered
along the route.

Partitions crossed - Sum of unique partitions encountered during the route. The road network
was partitioned using the Louvain community detection algorithm on the dual graph, setting
edge cost as angular change. These partitions have been used a proxy for deriving perceived
neighborhood boundaries [58], and have demonstrated consistency with well-known regions,
such as Soho and Mayfair in London, see Extended Data Fig. 10.

Snapped angular change - Angular deviations are calculated as the angle of incidence be-
tween two adjacent road segments, based on the connecting straight-line segments on each
road polyline. The sum of absolute angular change between two consecutive road segments
along a route from zero or 90 degrees (whichever is closer). We examined this novel measure
because past work has shown that spatial memory for target locations is better after 90
degree or 180 rotations than other angular changes [59]. Memory for the angle of turns is
biased towards right angles [60]. This suggests that it is easier to develop precise memories
for low-SNE cities than for high-SNE cities. High-SNE cities would then require more
training/learning, thus training navigation abilities.
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Turns - Sum of turns between two consecutive segments surpassing 50 degrees in either direction,
with more turns indicative of higher perceived cognitive distance [61]. We computed the
same metric with 60 degrees, the results remained stable.

Angular deviation from target - The sum of the angular deviation from the destination,
recorded at each road segment. Specifically this is recorded as the sum of differences between
the angular change between two consecutive segments and the angular direction of the target
from the first segment. During navigation angular deviation from the target positively
correlates with activity in the posterior parietal lobe [62–64]. The posterior parietal lobe is
a core part of the brain regions needed for effective navigation of familiar places [47].

Video game analysis

Wayfinding performance - As in [16], we computed the trajectory length in pixels, defined as
the sum of the Euclidean distance between the points of the trajectory. To control for familiarity
with technology, we normalised the trajectory lengths by dividing them by the sum of their values
at the first two levels. The first two levels only reflected video gaming skill (motor dexterity with
the game controls) as no sense of direction was required to complete them. We defined an overall
wayfinding performance metric corrected for video gaming skill (WF ) as the 1st component
of a Principal Component Analysis across the normalized trajectory lengths of the first four
wayfinding levels (levels 6, 7, 8 and 11, 60.5% of variance explained). This metric being based
on the trajectory length, it varies as the opposite of the performance: the longer the trajectory
length, the worse the performance. We took the additive inverse of the metric and added an
offset, so that WF = 0 corresponds to the worst performances. Pearson’s correlation coefficient
between WF and the sum of the trajectory lengths of the first two levels (video gaming skills) is
weak: r = 0.10, p < 0.001, bootstrapped 95%CI = [0.09, 0.10]. The implementation of WF is
available in the code presented in the Code and Data Availability section.
Game Level Entropy - We calculated the Shannon entropy of the Sea Hero Quest level’s
orientations’ distribution similarly as for the cities. To create the equivalent of ”streets” in the
levels of the game, we computed the Voronoi regions from the game level’s layout, and took their
edges. The Voronoi region boundaries are considered equivalent to road centre lines in the city
context. We then used the Douglas-Peucker algorithm to simplify the line made of the connected
segments [65], see Figure 4a. For all game levels, we used a maximum offset tolerance between
the original and the simplified line of three pixels. The entropy of the orientation distribution of
the Game Level’s segments was then computed with equation 1.

Statistical analysis

Further details are available in the Supplementary Information.
Linear Mixed Model computation - The parameters of the linear mixed models have been
estimated with the maximum likelihood method (ML), and the covariance matrix of the random
effects have been estimated with the Cholesky parameterization.
Low-SNE and High-SNE country clustering - We partitioned the 38 countries into two
clusters based on their SNE with the k-means algorithm. We used the squared Euclidean distance
metric. We ran the algorithm 1000 times and the arrangement never changed. The first group
(low-SNE) comprised Australia, Canada, South Africa, Saudi Arabia, the United Arab Emirates,
the United States of America and Argentina, with mean SNE = 2.69, SD = 0.18. The second
group (High-SNE) comprised all the other countries, with mean SNE = 3.30, SD = 0.13.
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Hedge’s g - Hedge’s g between group 1 and group 2 is defined as

g =
(m1 −m2)

s∗pooled

with mi the mean of group i, and s∗pooled the pooled and weighted standard deviation:

s∗pooled =

√
(n1 − 1)s21 + (n2 − 1)s22)

n1 + n2 − 2

with ni the sample size of group i, and si the standard deviation of group i.
The 95% confidence intervals displayed in this manuscript are exact analytical confidence intervals
based on iterative determination of noncentrality parameters of noncentral t or F distributions.
For more details, see [66].
Confidence Intervals (CI) for Pearson’s correlation coefficient - To estimate the uncer-
tainty around Pearson’s correlation coefficient, we computed its percentile bootstrapped 95%
CI. At each iteration, we resampled pairs of observations with replacement and computed their
correlation values. We iterated this process 1000 times. We then sorted the correlation values
and took the 2.5 and 97.5 percentiles obtained to yield a 95% CI. We illustrated this process for
the correlation between Street Network Entropy and Environment effect size in Extended Data
Fig. 4.
Linear regression predicting environment effect sizes (country slopes) based on SNE
and GDP per capita - A multiple regression was calculated to predict the environment slopes
based on SNE and GDP per capita. A significant equation was found (F(2,35)=22.40, p < 0.001)
with a R2 = 0.56: environment slopes = 0.28 + 8.5× 10−7(GDP) - 0.09(SNE). Both SNE and
GDP per capita were significant predictors of environment slopes, see Table 2.

Table 2. Linear regression predicting environment slopes based on SNE and GDP per capita.
Number of observations: 38, Error degrees of freedom: 35 Root Mean Squared Error: 0.0279
R-squared: 0.561, Adjusted R-Squared 0.536.

Estimate Standard Error t-value p-value

(intercept) 0.296 0.0528 5.61 2.53× 10−6

SNE -0.0976 0.0166 -5.86 1.18× 10−6

GDP 9.76× 10−7 2.43× 10−7 4.01 2.96× 10−4

Modeling the environment effect with SNE vs all the other metrics - Two linear
regressions were calculated to predict the environment slopes based on
1- SNE only (model ’SNE only’): Env-slope ∼ SNE
We found a significant equation (F(1,36)=20.1, p < 0.001), Adjusted R-Squared = 0.341, BIC =
-142.11.
2- All the other metrics (model ’other metrics’): Env-slope ∼ unique-streets + turns + partition-
crossed +dev-from-90-turns + dev-from-targets + street-length + neighbor-degree + circuity +
clustering-coefficient + closeness-centrality + betweenness-centrality + degree-centrality.
We did not find a significant equation (F(10,25)=1.44, p = 0.21), adjusted R-Squared = 0.125,
BIC = -105.18.
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Data Availability

Due to its considerable size (∼ 1 To), the global dataset is available on a dedicated server:
https://shqdata.z6.web.core.windows.net/. A login/password to the server will be pro-
vided from the corresponding author upon request. A lighter version with the preprocessed
trajectory lengths and demographic information is available at https://osf.io/7nqw6/?view_
only=6af022f2a7064d4d8a7e586913a1f157

We also set up a portal where researchers can invite a targeted group of participants to play
Sea Hero Quest and generate data about their spatial navigation capabilities. Those invited
to play the game will be sent a unique participant key, generated by the Sea Hero Quest sys-
tem according to the criteria and requirements of a specific project. https://seaheroquest.

alzheimersresearchuk.org/

Code Availability

The code allowing to reproduce the presented analyses is available along the the prepro-
cessed trajectory lengths and demographic information at https://osf.io/7nqw6/?view_only=
6af022f2a7064d4d8a7e586913a1f157.
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Supplementary Video legends

Supplementary Video 1 | Examples of navigation in two Sea Hero Quest levels: level 27 (left)
and level 58 (right).
Supplementary Video 2 | Example of navigation in one City Hero Quest level.
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