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Title 

Validation of a LiDAR-based player tracking system during football-specific tasks. 

 

Abstract 

Tracking players’ movements in sports is important to monitor and optimise exercise volume, 

avoid injuries, and enhance game performance. A new LiDAR-based system (Sportlight®) 

purports to provide accurate velocity and acceleration metrics derived from player 

movements. This study examined the validity of the LiDAR-based system against a 3D 

motion analysis system. Two competitive football players (age: 18 years, height: 1.74 ± 0.01 

m, mass: 66.5 ± 7.8 kg; playing experience at this level: 3 years) completed nine trials each 

of six sport-specific movements, consisting of straight-line sprints, cuts, and curved runs. 

Trials were recorded concurrently by a four-unit LiDAR system and a 64-camera 3D motion 

analysis system. Instantaneous velocity and acceleration, and time spent within key 

performance indicator bands (defined by velocity and acceleration thresholds) were 

compared between systems. Agreement between the systems was evaluated by root mean 

square error. Differences in time spent within each key performance indicator band between 

systems were assessed with t-tests and standardised effect sizes. Velocity root mean square 

error values ranged from 0.04 to 0.14 m·s-1 across all movements and acceleration root mean 

square error values ranged from 0.16 to 0.7 m·s-2. Differences between systems for time spent 

within each key performance indicator band were mostly trivial. These results show that the 

LiDAR-based system can provide valid measures of velocity and acceleration in football-

specific tasks, thus providing accurate tracking of players and calculation of relevant key 

performance indicator bands. 

 

Keywords: accuracy, movement analysis, performance analysis, sports technology, sports 

analytics 
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1. Introduction 

Recent advances in electronic performance and tracking systems (EPTS) have allowed 

tracking football players’ movements in training and competition [1]. Such player tracking 

has helped avoid injuries and overtraining by monitoring and optimising exercise volume and 

progression [2,3]. Additionally, live tactical changes are facilitated by in-game physical and 

tactical performance assessment [3]. Common EPTS used include global navigation satellite 

systems (GNSS; e.g. [4]), semi-automatic cameras systems (e.g. [5]) and local positioning 

measurement systems (LPM; e.g. [6]). 

 

GNSS technology is amongst the most popular EPTS [2], and can provide relevant data 

alongside embedded inertial measurement units, offering measures of exercise volume, forces 

or stride variables [2]. GNSS yielded good validity for instantaneous speed and acceleration, 

and total distance travelled measures (as indicated by lower error values) in comparison to a 

video-based system and a local positioning system (LPS) when evaluated against a 3D 

motion capture system (the ‘gold standard’ method for motion capture) [7]. Moreover, 

GNSS’s portable nature has the advantage that it can be used at both training and competition 

grounds, enabling consistent monitoring [1,7]. Video-based systems, another popular option 

for player tracking, provide similar data to GNSS, but with less invasiveness (no units to be 

worn), and loss of data, as video footage can restore any initial data loss [8]. The validity is 

very high when compared to timing gates (Pearson’s r ranging 0.72-1.00 for various 

movements) [9] or a 3D motion capture system (as indicated by lower error values) [8]. 

However, they require ground installation, which limits measurements to activities taking 

place in the stadium, thus impacting on training monitoring [1].  LPM systems, although used 

in football to track the position of each player [6,10], are less well-researched, possibly due to 

the development of GNSS technology shortly after the introduction of LPM. Nonetheless, 

LPM was also found to be less accurate for non-linear running than for straight-line running 

(approximately double the CV% for total distance covered) [11], which is frequently seen in 

football games [12]. 

 

Light detection and ranging (LiDAR) remote sensing is an emerging technology that can 

record variable distance. LiDAR uses infrared lasers to measure distances between a given 

target and a sensor [13]. Distance is calculated from the time the laser beam takes to reach, 

reflect and return from the intended target. Such positioning identification subsequently 

allows calculation of speed and acceleration. LiDAR has been used in fields such as earth and 
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ecological sciences [14], transportation [15], object recognition [16], archaeology [17], and 

motion tracking [18].  It can also assess human walking and running speed with good 

accuracy (ICC>0.88 and R>0.89 for all comparisons) when compared to a 3D motion capture 

system [13].  

 

Recently, Sportlight® (Oxford, UK) capitalised on the application of LiDAR to measure 

player velocity and acceleration. Their LiDAR-based system consists of portable units that 

can be placed around indoor or outdoor pitches for training and matches. It provides a 

continuous measure of distance from the unit without requiring calibration or placement at 

known distances [13], thus increasing its usability by practitioners. Multiple units provide 

greater coverage, but measurements can take place with one unit, as each one is claimed to be 

capable of tracking players independently to the other units. Proprietary software then 

directly uses the unfiltered velocity and acceleration data to provide player relevant metrics to 

the user.  

   

The purported advantages of this system (i.e. non-invasive nature, portability enabling 

assessment by the same tool across training or games, ability to continuously track motion) 

make it an attractive option for motion tracking. However, while these are important 

parameters in determining possible uptake by practitioners [2], such devices must be accurate 

to allow appropriate exercise volume prescription and correct monitoring [1,11], particularly 

with the rapidly increasing demand for individualised velocity and acceleration thresholds for 

training decisions [2,3]. This study aimed to examine the validity of the LiDAR-based system 

against a 3D motion capture system during football-specific movements. 

 

2. Methods   

 

2.1. Participants 

Two competitive football players (mean ± SD: age 18 years, height 1.74 ± 0.01 m, mass 66.5 

± 7.8 kg, three years of playing experience at this level) free from self-reported injury in the 

past 12 months, agreed to participate in the study. Both players were from a local 

professional football club. The study was approved by the Institutional Ethics Committee, 

and both players gave written informed consent. 

 

2.2. Protocol 
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Both players completed individually and on one day a course of distinct sport-specific 

movements (SSM), outlined by FIFA [20] and described in Linke et al [7]. The full course 

was performed in an indoors facility, on a 10m × 20 m hardwood floor area, with a ~10 m 

‘run-off’ area allowing deceleration outside the recording area. The course was marked with 

non-reflective cones and incorporated (in order): SSM1) a 20 m run (15 m sprint, 5 m 

deceleration), SSM2) 20 m sprint, SSM3) a 20 m run (10 m backward running, 10 m forward 

running), SSM4) the 5-0-5 agility test, SSM5) two rapid 90° cuts (one left, one right); and 

SSM6) five curved runs (sprint / jog / jog / sprint / jog). Following a standardised warm-up, 

the players familiarised themselves with the full course (marked with non-reflective cones) 

by performing it once with sub-maximal and once with maximal effort. The players then 

completed the course nine times, with three minutes rest between each repetition, and data 

was collected from those nine repetitions. The decision for the number of trials in the present 

study was based on what was deemed a balance between achieving a sufficiently large 

number of repetitions per player to make the statistical comparisons presented below [21], 

while ensuring that a high number of repeated efforts did not result in slower movements due 

to fatigue, thus not appropriately replicating higher velocities [22]. 

 

2.3. Data collection 

Data was recorded from a 64 × camera motion capture system (MoCap) sampling at 100 Hz 

(Vantage, Vicon, Oxford, UK; 3D) and a 4 × unit Sportlight® system sampling at 10 Hz 

(Sportlight®, Oxford, UK; LiDAR). The MoCap cameras were calibrated by the facility’s 

dedicated technician following standard manufacturer protocols. The cameras were 

positioned around and overhead the course, allowing unobstructed and full coverage of the 

testing area. Four reflective markers (18 mm diameter) were securely attached on the left and 

right anterior and posterior superior iliac spine of each participant. LiDAR units (Fig 1) were 

placed outside of and near the four corners of the testing area.  

  

FIGURE 1 ABOUT HERE 

 

2.4. Data analysis 

2.4.1. Parameters 

To validate the LiDAR system, we firstly compared its proprietary velocity and acceleration 

data to velocity and acceleration derived from the MoCap system. One would typically 
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compare positional data between such systems for validation purposes. However, at the time 

of testing, the LiDAR system did not provide positional data. 

 

Secondly, we compared time spent within key performance indicators (KPIs) derived from 

both systems velocity and acceleration data. We calculated our own KPIs using the same 

thresholds as Linke et al. [7] rather than the KPIs (and their thresholds) provided by the 

LiDAR system. This enabled a more transparent analysis, considering the proprietary nature 

of the LiDAR algorithms, in addition to a more effective comparison of the results with 

previous literature. The velocity bands chosen for the KPIs were low speed (slow) (0.3 to 

<1.6 m∙s-1); moderate speed (moderate) (1.6 to <4.2 m∙s-1); elevated speed (fast) (4.2 to <5.5 

m∙s-1); high speed (very fast) (5.5 to <6.9 m∙s-1); and very high speed (sprint) (≥6.9 m∙s-1). 

High acceleration and deceleration thresholds were ≥3 m∙s-2 and <3 m∙s-2, respectively. These 

KPIs were calculated from data recorded throughout each entire course run through 

(combining all sport specific movements).  

 

The KPI measures were used to outline time spent at these velocity bands / accelerations / 

decelerations, rather than distance covered, a metric commonly used in determining football 

demands [23]. However, the two variables (distance and time) conceptually describe the 

same aspect in that both longer distances covered at a given speed and longer time spent at a 

given speed reflect a higher volume of work. 

 

2.4.2. Data processing 

MoCap marker trajectories were tri-dimensionally reconstructed in Vicon Nexus (Vicon 

Motion Systems Ltd., Oxford, England) and exported for offline analysis (SciPy, scientific 

tools for Python). Trajectories with gaps smaller than 10 frames were interpolated (cubic 

spline) and filtered with a phase-corrected 4th order low-pass Butterworth filter (10 Hz cut-

off). Trajectories with gaps that exceeded 10 frames were excluded from analysis. X and Y 

coordinates (Z component excluded) were then used to derive 2D centre of mass (CoM) of 

each player, defined as the mean position of the four markers on the pelvis segment.  

Raw velocity was computed using finite differentiation (central difference) of CoM position 

(change in position over time). Gait-neutralised velocity was calculated by filtering raw 

velocity with a phase-corrected 4th order low-pass Butterworth filter (1 Hz cut-off) [7,8]. 

Gait-neutralised acceleration was computed using finite differentiation (central difference) of 

gait-neutralised velocity (change in gait-neutralised velocity over time) [7,8]. Velocity and 
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acceleration from the MoCap and LiDAR systems were then aligned according to the 

protocol outlined in FIFA [20]. Firstly, LiDAR data were up-sampled to 100 Hz (cubic spline 

interpolation) in accordance with the motion capture data [20] (Online Resource 1). 

Secondly, we calculated time off-sets between data sets by computing the root mean square 

error (RMSE) over all possible time shifts (in intervals of one frame). The shifting of the data 

that resulted in the lowest RMSE then defined the correct alignment [20]. 

 

2.5. Statistical analysis 

Level of agreement between velocity and acceleration derived from the MoCap and LiDAR 

systems was defined as vRMSE (velocity: m∙s-1) and aRMSE (acceleration: m∙s-2), 

respectively. We calculated these individually for each SSM. Accuracy of the KPIs derived 

from the LiDAR data was determined by comparing them to those derived from the MoCap 

system using t-tests (α = p<0.05 [9]). The specific outcome evaluated was time spent within 

each KPI band rather than distance covered at each band (as explained above). Whilst only 

two participants were included in the study, each completed nine full circuits. Therefore, 

instead of collapsing these to the mean for each player (which would give n=2 samples from 

each system), each trial was treated as an individual sample, thus totalling 18 samples from 

each system. The t-tests were run using these samples. This approach is applied in similar 

studies (e.g. [21,22,24]) and treating the trials as subjects allows repetition to enable 

assessment of the agreement of the relevant variables. Cohen’s d effect sizes are also 

provided for these comparisons as a standardised relative measure of meaningfulness of the 

differences shown; they were interpreted as trivial (<0.20), small (0.20-0.49), medium (0.50-

0.79) and large (≥0.80). Statistical analyses were performed with the R software package for 

statistical computing (package: ‘stats’; version 4.1.0).  

 

3. Results 

 

3.1. Velocity and acceleration 

vRMSE (Fig 2) ranged from 0.08 to 0.12 m·s-1 across all SSMs and for both players. The 20 

m sprint presented the smallest mean RMSE difference, with the rest of the SSMs having 

slightly increased values. Similarly, aRMSE values ranged from 0.36 to 0.60 m·s-2. As with 

vRMSE, the 20m sprint presented the smallest difference, with the SSMs involving change of 

direction (SSM4, SSM5 and SSM6) showing increased difference between the two systems.    
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FIGURE 2 ABOUT HERE 

 

3.2. KPIs 

The comparison of velocity and acceleration KPIs between the systems showed mostly trivial 

differences, except for Sprint and High deceleration where small differences were found 

(Table 1). 

 

TABLE 1 ABOUT HERE 

 

4. Discussion 

The aim of the study was to examine the validity of a LiDAR-based system against a 3D 

motion analysis (MoCap) system. Our results showed that LiDAR velocity and acceleration 

values, obtained during football-specific movements, are in close agreement with those from 

the MoCap system, indicating LiDAR provided valid measures of velocity and acceleration 

in football-specific tasks.  

 

RMSE, a standard way to quantify the level of agreement between data [25-27], is 

recommended in the FIFA guidelines [20] and enables comparison to recent assessments of 

EPTS with similar measurement protocols. The range of error values we report for velocity 

(0.08 to 0.12 m·s-1) and acceleration (0.36 to 0.60 m·s-2) are lower than other portable EPTS 

when they were compared to a 3D motion capture system using the same football-specific 

course (GNSS: 0.32 m·s-1 and 1.18 m·s-2; LPS: 0.32 m·s-1 and 0.69 m·s-2) [7].  

 

When compared to fixed-position systems, LiDAR had lower error values than a video-based 

system (VIDEO: 0.41 m·s-1  and 0.78 m·s-2 ) but higher error values than an optical-based 

system (0.03 to 0.09 m·s-1 and 0.06 to 0.27 m·s-2) [8]. However, it should be noted that these 

fixed systems present the issue that Buchheit et al [1] identified with teams utilising multiple 

tracking systems that are not interchangeable, impairing the use of such data for monitoring 

purposes. Therefore, the LiDAR-based system can be considered favourably in this context.  

 

The velocity values indicate good agreement, as they are sufficiently small to be able to 

detect practically meaningful changes. The difference of 0.08 m·s-1 (from SSM1) is 
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sufficiently small to detect changes in sprinting velocity between different ability athletes in 5 

m, 10 m and 20 m sprints, while the difference of 0.12 m·s-1 (from SSM4) is sufficiently 

small to detect differences between the same groups of athletes in change of direction tasks 

[28]. Finally, it is smaller than the smallest worthwhile change in football (defined as being 

ahead of the opponent on on-to-one duels) which was deemed to be at least 0.04 s quicker 

over 20 m sprint [29], a velocity difference of at least 0.09 m·s-1 [30].  

 

KPI comparisons between the two systems were good, with most differences being of trivial 

meaningfulness (range trivial – small). When the same KPIs were compared between 3D 

motion analysis, an LPS, a GNSS and a video-based system, the differences ranged from 

trivial to large (for all three systems, across the full sport-specific course) [7], while the 

present results are very similar to those of the fixed optical tracking system [8]. This is an 

important finding, since many professionals working in team sports are often interested in 

quantifying work done, based on velocity or acceleration KPI thresholds in an attempt to 

design their training and conditioning programmes, monitor players’ exercise volume and 

decrease injury risk [2]. 

  

A limitation of the present study is that the system was validated with one player completing 

the course at a time. Further research is required to examine whether the same accuracy, or 

indeed ability to distinguish players, will be demonstrated when multiple players (as in a 

football game) are involved.    

 

5. Conclusion 

The present data suggest that the LiDAR-based system provides valid measures of velocity, 

acceleration and time spent at a given KPI for individual football-specific movements. 

Practitioners and coaches that want to examine those metrics can therefore confidently use 

the LiDAR system to obtain them, while not needing to trade-off between portability and 

accuracy. 
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Figure and legends 

 

 

Fig 1 LiDAR unit 
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Fig 2 Root mean square error (RMSE) scores for each player by sport-specific movement 

(SSM). Velocity (top) and acceleration (bottom) RMSE values for Player A (left) and Player 

B (right). The central rectangle represents the first to the third quartile. The gold line represents 

the median. The ‘whiskers’ above and below the central rectangle represent the maximum and 

minimum values, respectively. Crosses indicate outliers. SSM1, 20 m run (15 m sprint, 5 m 

deceleration); SSM2, 20 m sprint; SSM3, 20 m run (10 m backward running, 10 m forward 

running); SSM4, the 5-0-5 agility test; SSM5, two rapid 90° cuts (one left, one right); SSM6, 

five curved runs (sprint / jog / jog / sprint / jog). 
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Table 1 Key performance indicators (KPIs) for velocity and acceleration. Velocity thresholds: 

slow (0.3 to <1.6 m∙s-1); moderate (1.6 to <4.2 m∙s-1); fast (4.2 m∙s-1 to <5.5 m∙s-1); very fast 

(5.5 to <6.9 m∙s-1); and sprint (≥6.9 m∙s-1). High acceleration threshold: ≥3 m∙s-2. High 

deceleration threshold: <3 m∙s-2. 3D motion analysis system (MoCap) and LiDAR-based 

system (LiDAR) data presented as mean ± SD. p:  the significance value obtained from the t-

test (α = 0.05). Cohen’s d: effect size. N: the number of observations compared from each 

system; each observation represents time detected running within a given velocity threshold 

(e.g. sprint) for a unique trial. Note: where MoCap lost the data, no comparison was made. 

 

 MoCap LiDAR p Cohen’s d N 

Velocity KPI      

Slow (s) 9.70 ± 2.94 9.42 ± 2.78 0.024 0.098 (trivial) 18 

Moderate (s) 24.97 ± 5.08 24.77 ± 5.13 0.005 0.04 (trivial) 18 

Fast (s) 6.19 ± 1.37 6.20 ± 1.33 0.908 0.005 (trivial) 18 

Very fast (s) 3.01 ± 0.92 2.97 ± 0.90 0.315 0.044 (trivial) 17 

Sprint (s) 0.21 ± 0.21 0.16 ± 0.23 0.119 0.264 (small) 12 

Acceleration KPI      

High acceleration (s) 19.79±4.87 19.52±4.82 0.002 0.057 (trivial) 18 

High deceleration (s) 4.95±1.27 4.54±1.25 <0.001 0.325 (small) 18 
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Manuscript title: Validation of a LiDAR-based player tracking system during football-

specific tasks. 

 

Online Resource 1: Comparison of up-sampling the LIDAR-based system (sportlight) from 

10 to 100 Hz and down-sampling the 3D motion analysis system (vicon) from 100 to 10 Hz. 

 

In the present study, the LiDAR-based system data were up-sampled from 10 to 100 Hz in 

accordance with previous literature [7].  

The function, ‘InterpolatedUnivariateSpline’ from the scipy Python library was used 

(documentation available at https://docs.scipy.org/doc/scipy/reference/generated/ 

scipy.interpolate.InterpolatedUnivariateSpline.html) for this purpose as follows:  

Interpolate the sportlight data to "new_length" samples  

1. Define sportlight array: ‘sy’  

2. Determine length of sportlight array: ‘sportlight_length’  

3. Calculate target length of up-sampled array: ‘target_length’  

4. Generate array of values from 1 to ‘sportlight_length’ in intervals of 1: ‘x’  

5. Generate target array of values from 1 to ‘target_length’: ‘target_x’  

6. Interpolate ‘sy’:   

 InterpolatedUnivariateSpline(‘x’, ‘sy’)(‘target_x’)  

Exemplar comparison of up-sampled vs down-sampled results plotted below:  

 

Left: Up-sampled sportlight data (RMSE: 0.129927976880182); Right: down-sampled 

Vicon data (RMSE: 0.13080798173983). Difference in RMSE outcomes (0.00088000485) is 

negligible. x-axis: sample index; y-axis: velocity. 
 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.html

