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We address a natural question in noncommutative geometry, 
namely the rigidity observed in many examples, whereby 
noncommutative spaces (or equivalently their coordinate 
algebras) have very few automorphisms by comparison with 
their commutative counterparts.
In the framework of noncommutative projective geometry, 
we define a groupoid whose objects are noncommutative 
projective spaces of a given dimension and whose morphisms 
correspond to isomorphisms of these. This groupoid is then a 
natural generalization of an automorphism group. Using work 
of Zhang, we may translate this structure to the algebraic 
side, wherein we consider homogeneous coordinate algebras 
of noncommutative projective spaces. The morphisms in our 
groupoid precisely correspond to the existence of a Zhang 
twist relating the two coordinate algebras.
We analyse this automorphism groupoid, using the geometry 
of the point scheme, as introduced by Artin-Tate-Van den 
Bergh, to relate morphisms in our groupoid to certain 
automorphisms of the point scheme.
We apply our results to two important examples, the two-
dimensional quantum projective space and Sklyanin algebras. 
In both cases, we are able to use the geometry of the point 
schemes to fully describe the corresponding component of the 
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automorphism groupoid. This provides a concrete description 
of the collection of Zhang twists of these algebras.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

It is well-known that affine algebraic varieties can have many automorphisms, but 
that noncommutative deformations of these typically have very few automorphisms. For 
example, let q ∈ k∗, q not a root of unity, and denote by Oq(Pn

k ) the k-algebra

Oq(Pn
k ) = k〈x0, . . . , xn〉/〈xixj = qxjxi ∀ i < j〉.

Then Alev and Chamarie ([1]) have shown that

Aut(Oq(Pn
k )) =

{
(k∗)n+1 n �= 2,
k � (k∗)3 n = 2.

The same phenomenon of a significantly smaller automorphism group has been ob-
served for many other quantum algebras: quantized enveloping algebras and related 
algebras, quantum matrices, quantum Weyl algebras, Nichols algebras, and others. Con-
tributors include Andruskiewitsch-Dumas [2], Fleury [9], Goodearl-Yakimov [11], Joseph 
[14], Launois-Lenagan [16], Rigal [19] and Yakimov [23], [24].

This suggests that the notion of automorphism might be too strong, and that look-
ing at other ways in which noncommutative spaces can be regarded as the same might 
“recover” some of the lost symmetries. To do this we will follow the philosophy of non-
commutative geometry and focus on (graded) module categories as noncommutative 
spaces.

As we will see, noncommutative algebras sharing homological properties with a given 
commutative algebra have the property that module categories associated to them will 
be equivalent and even isomorphic - induced by so-called twists of these algebras. We 
wish to remember how these categories are equivalent and so we encode this data in a 
groupoid, rather than a group.

We will take a collection of noncommutative spaces that model our chosen classical 
space and, instead of allowing all possible morphisms between them, concentrate on 
just the isomorphisms between them. Such a groupoid typically has many connected 
components. This will be the basis for the construction we describe, which we approach 
through noncommutative projective geometry.

In this setting, certain graded module categories are considered to be noncommutative 
projective schemes. We define the class of algebras that we are interested in, and these 
will play the role of homogeneous coordinate rings of our noncommutative projective 
spaces. We then recall the definition of a Zhang twist of a graded algebra. This is a 
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family of automorphisms of the underlying vector space which induce a new associative 
multiplication, “twisting” the original multiplication. We will need to restrict our atten-
tion to geometric algebras, as defined by Mori ([17]): for these algebras, there is a natural 
subscheme E of Pn and automorphism σ of E whose role we explain shortly.

We introduce and define our main object of study, the groupoid N C (Pn), in Sec-
tion 3. This is a groupoid whose objects are certain module categories for the coordinate 
rings of geometric noncommutative Pns and whose morphisms are particular equiva-
lences of these categories induced by Zhang twists. That this is a groupoid is deduced 
from a result of Zhang, that twisting preserves the properties of a noncommutative Pn. 
We study slice categories of N C (Pn), which allow us to study all the twists - that is, 
all of the “generalized automorphisms” - of a given noncommutative Pn.

We then link Zhang twists of geometric algebras with automorphisms of their asso-
ciated point schemes, for arbitrary n. Let A be an object in N C (Pn) associated to a 
noncommutative Pn which is geometric in Mori’s sense. Let E ⊂ Pn be its associated 
point scheme, σ a certain automorphism of E and L the very ample line bundle giving 
the embedding into Pn; these are packaged together to give the geometric triple (E, σ, L)
associated to A. Twists of geometric noncommutative Pns correspond to geometric sys-
tems, certain families of maps between triples.

Let Aut(E ↑ Pn) be the subgroup of automorphisms of the point scheme that extend 
to Pn and let ResE : Aut(Pn ↓ E) → Aut(E ↑ Pn) denote the homomorphism taking an 
automorphism of Pn that preserves E to its restriction to E.

The main result of the paper is the following, Theorem 28:

Theorem. Let A be a geometric noncommutative Pn with associated geometric triple 
(E, σ, L). Then the twists of A are parameterised by a subset of Aut(E ↑ Pn)σ ×
(ker ResE)N (up to isomorphism of the associated homogeneous coordinate ring).

In important examples, ResE is injective: in such cases, we see that twists are pa-
rameterised (up to isomorphism) by a subset of the coset Aut(E ↑ Pn)σ. We can 
also give a geometric condition for the subset corresponding to twists being all of 
Aut(E ↑ Pn) × (ker ResE)N .

The theorem therefore says that the (generalized) automorphisms of a geometric non-
commutative Pn are controlled by the geometry of the point scheme with its embedding 
in Pn. We conclude with three examples of the theorem: the commutative case of O(Pn); 
quantum deformations of polynomial rings in n variables; and Sklyanin algebras, an im-
portant class of noncommutative P 2s.
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2. Preliminaries on noncommutative projective geometry

2.1. Noncommutative projective spaces

Let k be an algebraically closed field of characteristic 0 and let A be a right Noetherian 
Z-graded k-algebra. Let GrA denote the category of (not necessarily finitely generated) 
Z-graded right A-modules with morphisms of degree 0. Henceforth, by any graded mod-
ule category over a k-algebra A, we mean the category of right A-modules. We denote 
by (1) the grading shift functor on GrA; this functor is an auto-equivalence. That is, for 
M a Z-graded right A-module, and n ∈ Z denote by M(n) the graded module whose 
degree m component is given by M(n)m = Mn+m. Recall from [5] that, for M in GrA, 
an element x ∈ M is called torsion if xA≥s = 0 for some s. The set of torsion elements 
of M forms a graded A-submodule, τ(M). The module M is called torsion if τ(M) = M

and torsion-free if τ(M) = 0. The submodule τ(M) is the smallest such that the quotient 
M/τ(M) is torsion-free. The collection of all torsion modules forms a Serre subcategory 
of GrA which we denote Tors(A).

Let π : GrA → GrA/Tors(A) be the canonical quotient functor and define QGrA 
def=

GrA/Tors(A). One can roughly think of QGrA as the category whose objects are the 
same as those of GrA, but with torsion modules isomorphic to the zero module. More 
precisely, the objects of QGrA are those of GrA and the morphisms can be described as

HomQGrA(π(M), π(N)) ∼= lim−−→HomGrA(M ′, N/τ(N))

where the limit runs over the quasi-directed category of submodules M ′ of M such 
that M/M ′ is torsion. Note that the shift functor (1) descends to QGrA; we will abuse 
notation and denote the shift on QGrA by (1) also. See [5] and [21] for more details.

We now restrict to considering noncommutative analogues of Pn. That is, we want to 
define the class of noncommutative k-algebras that we consider as giving rise to noncom-
mutative projective n-space - triples of the form (QGrA, πA, (1)) where the k-algebra A
shares important homological and algebraic properties with a graded polynomial ring in 
n + 1 variables. We adopt a variant of the definition given in section 4 of [15]. We direct 
the reader to the survey [21] for definitions not included here as well as more detailed 
intuition and motivation behind this definition.
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Definition 1 (cf. [15, Definition 4.3]). Let A be a connected graded k-algebra. We say 
that the triple (QGrA, πA, (1)) is a noncommutative Pn and that A is the (homogeneous) 
coordinate ring of a noncommutative Pn if

(i) A is a Noetherian domain;
(ii) A is AS-regular of dimension n + 1;
(iii) A is generated in degree 1; and
(iv) A has Hilbert series (1 − t)−n−1.

As Keeler notes, his characterization is more restrictive than is found elsewhere in the 
literature.

Remark 2. Note that we have reordered the conditions in Keeler’s definition so that A
being Noetherian is placed first. In this case, A has equal left and right global dimensions, 
and equal left and right injective dimensions. Moreover, the definition of AS-regularity 
is left-right symmetric and so we can omit the conditions placed on Aop by Keeler.

2.2. Zhang twists

We recall the definitions related to the notion of a Zhang twist, the relevance of which 
will become clear shortly.

Definition 3 ([25, Definition 2.1]). Let G be a semigroup with identity e and let A be a 
G-graded k-algebra. A twisting system for A is a set of graded k-linear A-automorphisms 
τ = {τg | g ∈ G} such that

τg (yτh (z)) = τg (y) τgh (z)

for all g, h, l ∈ G, y ∈ Ah and z ∈ Al.

Any semigroup homomorphism G → AutG (A) given by g �→ τg produces a twisting 
system {τg | g ∈ G} where AutG (A) denotes the group of graded algebra automorphisms 
of A. Twisting systems arising from semigroup homomorphisms as above are called al-
gebraic. For example, for G = Z and f ∈ AutZ (A), we have the homomorphism n �→ fn

and corresponding twisting system {fn | n ∈ Z}.
In the case of a connected N-graded algebra A =

⊕
Ai generated in degree 1, the 

fundamental defining relations for a Zhang twist are equivalent to the following ([25, 
p. 284]). A twisting system in this case is a set τ = {τn | n ∈ N} of graded linear 
isomorphisms satisfying

τm(ab) = τm(a)τm+nτ
−1
n (b)
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for a ∈ An. Notice that if τm+nτ
−1
n were equal to τm, we would have that τm was an 

algebra map (and in fact then an automorphism). So this formulation makes visible 
another way in which twisting systems are close to, but more general than, algebra 
automorphisms.

As with other notions of twisting, such as twisting by automorphisms or by group 
2-cocycles, given a twisting system τ for A, we can form a new algebra Aτ , whose 
underlying k-vector space is the same as that of A but whose multiplication is twisted 
by τ .

Definition 4 ([25, Definition and Proposition 2.3]). Let A be a G-graded k-algebra and 
τ = {τg | g ∈ G} be a twisting system for A. One defines the twisted algebra of A by τ , 
denoted Aτ , as the triple (⊕gAg, �, 1τ ) where � is an associative, graded multiplication 
given by

y � z
def= yτh (z)

for y ∈ Ah and z ∈ Al and where 1τ
def= τ−1

e (1A) is the identity in Aτ .

The following straightforward lemma concerns twisting systems for quadratic algebras 
and generalizes an observation of Zhang, made in examining Example 5.12 in [25].

Lemma 5. Let A be a connected N-graded finitely generated algebra, generated in degree 
1 and quadratic. Let τ = {τm | m ∈ N} be a twisting system. Suppose the graded linear 
isomorphism τ1 is additionally an algebra automorphism and set τ ′ = {τm1 | m ∈ N}. 
Then we have an isomorphism of algebras Aτ ∼= Aτ ′ . �
Remark 6. Note that the condition on τ1 in the lemma is necessary, in the sense that 
τ ′ = {τm1 | m ∈ N} is a twisting system if and only if τ1 is an algebra automorphism, 
under the other assumptions of the lemma.

Given a coordinate ring of a noncommutative Pn (that is, an algebra A satisfying 
the conditions in Definition 1), Theorem 1.3 in [25] states that if A is a Noetherian 
domain, then so is any twist of it. Clearly, the degree of an element is preserved by 
twisting, and hence any twist of A is generated in degree 1 with Hilbert series (1 − t)−n−1. 
From Theorem 5.11 of [25], we have that any twist of A will be AS-regular of the same 
dimension. The class of connected graded k-algebras defined above is thus closed under 
Zhang twisting. With this in mind, we make the following definition.

Definition 7. Let A and B be G-graded k-algebras. We say that A and B are twist-
equivalent if there exists a twisting system τ for A such that B ∼= Aτ as graded k-algebras.

The above description of Zhang twisting is rather concrete, which has advantages 
when one wants to explicitly calculate specific twists. However, even demonstrating some 
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elementary properties, such as showing that twist-equivalence is actually an equivalence 
relation, can be cumbersome when using this definition.

Along with the definition, the other key insight of Zhang was that twist-equivalence 
of A and B is equivalent to the existence of a well-behaved functor between certain 
corresponding categories of graded modules for A and B. From this, it is easy to see 
that twisting gives an equivalence relation. We briefly outline the results of Zhang in 
this direction, taken from [25], in order to motivate the definition of the groupoid we 
wish to study.

Assume that A is a connected Z-graded k-algebra. In Definition 1, we assume a lot 
more about algebras that are associated to noncommutative Pns, but even this is already 
reasonably strong.

Let GRA denote the category of Z-graded A-modules with morphisms being graded 
morphisms of any degree - that is, HomGRA(M, N) =

⊕
r∈Z HomGrA(M, N(r)) (note 

that Zhang writes Hom(M, N)).
We also note that HomGRA(M, M), denoted Γ(M) by Zhang, is important in a key 

theorem of Zhang ([25, Theorem 3.3]), most notably in the case M = AA. We define 
GrEnd(AA) def= HomGRA(AA, AA), the graded endomorphism algebra of AA. By the 
proof of [25, Theorem 3.4], with the above assumptions, GrEnd(AA) ∼= A; that is, by 
analogy with the ungraded theory, A is isomorphic to its graded endomorphism algebra.

We say that A and B are graded Morita equivalent1 if GRA is equivalent to 
GRB by a functor F which induces a map of graded rings on Hom spaces, i.e. 
F (HomGRA(M, N)r) ⊆ HomGRB(FM, FN)r. For connected graded algebras, such as 
those we consider, we have the following equivalent characterisations.

Proposition 8. Let A and B be coordinate rings of noncommutative Pns, so that 
(QGrA, πA, (1)) and (QGrB, πB, (1)) are noncommutative Pns. The following are 
equivalent:

(i) A ∼= GrEnd(PB) as graded algebras for PB a graded progenerator of GrB;
(ii) GRA is equivalent to GRB via a functor preserving degrees of morphisms;
(iii) GrA is equivalent to GrB via a graded functor, i.e. one that commutes with the 

shift functors;
(iv) A is isomorphic to B as graded algebras.

Proof: The equivalence of the first three conditions holds more generally (not just for 
connected graded algebras) and details may be found in [10, Theorem 5.4] and [12, 
Theorem 2.3.8].

The equivalence of all of these with the fourth for coordinate rings of noncommutative 
Pns in particular follows from noting that for those algebras the only indecomposable 

1 Unfortunately, this terminology is used differently by different authors. Our usage follows Zhang’s and 
is justified by the following proposition.



N. Cooney, J.E. Grabowski / Journal of Algebra 604 (2022) 296–323 303
graded projective right modules are shifts of the right regular module (cf. [25, Theorem 
3.5]), as they are connected graded. �

Note that as a consequence of this proposition, we may replace (iii) by the stronger 
statement

(iii)′ GrA is isomorphic to GrB via a graded functor.

In fact, the strength of the assumptions on the algebras we are considering allows us 
to prove the following.

Proposition 9. Let F : GrA → GrB be a graded Morita equivalence. Then, up to shift, 
F is isomorphic to the pushforward f∗ of a graded isomorphism of algebras f : B → A.

Proof: By graded Morita theory (see e.g. [12, Theorem 2.3.7]), F is represented by 
a graded progenerator; that is, F ∼= HomGrA(P, −) and GrEnd(P ) ∼= GrEnd(B) ∼= B. 
Again using that since A is connected graded, the only indecomposable graded projective 
right modules are shifts of the right regular module, hence P ∼= A(α) for some α ∈ Z. 
Hence, by shifting, we may assume that P ∼= A.

We deduce that there exists an isomorphism f : B→A such that F ∼= HomGrA(A, −) ∼=
f∗ as required. The latter follows since the functor − ⊗B BAA is a right adjoint for both 
functors, where the bimodule structure on BAA is that induced by f . �

As previously, we say A and B are twist-equivalent if B is isomorphic to a Zhang 
twist of A.

Proposition 10. Let A and B be coordinate rings of noncommutative Pns, so that 
(QGrA, πA, (1)) and (QGrB, πB, (1)) are noncommutative Pns. The following are 
equivalent:

(i) A and B are twist-equivalent, via a twisting system τ .
(ii) GrA is isomorphic to GrB.
(iii) QGrA is equivalent to QGrB via a functor F and

F((πA)(m)) ∼= (πB)(m) for all m (SSS)

(the “preserves shifts of the structure sheaf” condition).

Proof: This follows by combining results of [25, §3] and [5]. The key assumption is that 
the algebras considered are AS-Gorenstein and as such⊕

HomQGrA(πA, (πA)(m)) ∼= A

m∈N
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which very much need not be the case in general. �
As noted above, Artin and Zhang proved that the graded endomorphism algebra of 

πA in QGrA,

GrEnd(πA) def=
⊕
m∈N

HomQGrA(πA, (πA)(m))

is isomorphic as a graded k-algebra to A. Hence, in our setting the algebra A can be 
recovered from the data (QGrA, πA, (1)).

We thus take condition (iii) in Proposition 10, QGrA being equivalent to QGrB and 
(SSS) holding, as the most appropriate formulation of the isomorphism of two noncom-
mutative projective spaces.

However it is useful to phrase certain statements in terms of properties of the algebras 
that are coordinate rings of noncommutative Pns, as we have being doing, as not all of 
the conditions of Definition 1 have a convenient expression internal to QGrA.

Noting the above remarks on graded endomorphism algebras, for completeness we 
may add additional items to our list of equivalent conditions in Proposition 8:

(v) QGrA is equivalent to QGrB via a graded functor;
(vi) A and B are twist-equivalent via the identity twisting system.

2.3. Geometric algebras

Our approach will tie algebraic properties (being a twist of an algebra) to geometric 
ones, and to do this we will need to restrict the algebras we consider to those that are 
geometric, in the following sense due to Mori.

Let V be a finite-dimensional vector space and I a vector subspace of V ⊗r. Denote 
by V(I) the projective subscheme of P (V ∗)r determined by I, thinking of elements of I
as multilinear functions on (V ∗)r.

Definition 11 ([17, Definition 4.3]). A quadratic algebra A = T (V )/R is called geometric 
if there is a triple (E, σ, L) where j : E → P (V ∗) is an embedding of E as a closed k-
subscheme, L is the associated line bundle and σ is a k-automorphism of E such that

1. Γ2 = V(R) ⊂ P (V ∗) × P (V ∗) is the graph of E under σ, and
2. setting L = j∗OP(V ∗)(1), the map

μ : H0(E,L) ⊗H0(E,L) → H0(E,L ⊗OE
σ∗L)

defined by v ⊗ w �→ v ⊗ (w ◦ σ) has kerμ = R, with the identification

H0(E,L) = H0(P (V ∗),O(P (V ∗)(1)) = V
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as k-vector spaces.

If A is geometric as above, we associate the triple (E, σ, L) to both A and the triple 
(QGrA, πA, (1)); we will make this association more formal later.

Theorem 12 ([17, Theorem 4.7]). Let A = T (V )/I and A′ = T (V )/I ′ be graded algebras 
finitely generated in degree 1 over k.

1. If A is geometric with associated triple (E, σ, L) and GrA ∼= GrA′ then A′ is also 
geometric with associated triple (E′, σ′, L′) and there is a sequence of automorphisms 
{τ∗n} of P (V ∗), each of which sends E isomorphically onto E′ such that (τ∗n+1|E)σ =
σ′(τ∗n|E) for every n ∈ Z.

2. Conversely if A and A′ are geometric, with associated triples (E, σ, L) and (E′, σ′, L′)
respectively, and there is a sequence of automorphisms {τ∗n} of P (V ∗), each of which 
sends E isomorphically onto E′ such that (τ∗n+1|E)σ = σ′(τ∗n|E) for every n ∈ Z, 
then GrA ∼= GrA′.

Diagrammatically, writing τEn = (τ∗n)|E ,

E

E′

E

E′

E

E′

E

E′

E

E′

τE0

σ

σ′

τE1

σ

σ′

τE2

σ

σ′

τE3

σ

σ′

τE4

σ

σ′

We note that if A, A′ are N-graded, the index n may be taken to range over N rather 
than Z, with no change to the conclusions.

As noted in Remark 4.9 of [17], one obtains from this result the well-known statement 
that, with notation as above, A ∼= A′ as graded algebras if and only if there is an 
isomorphism τ : E → E′ which extends to an isomorphism τ : P (V ∗) → P ((V ′)∗) such 
that the diagram

E

E′

E

E′

τ

σ

σ′

τ

commutes.
We will insert the adjective “geometric” into our terminology for noncommutative 

projective spaces in the natural way, referring to (QGrA, πA, (1)) as a geometric non-
commutative Pn if (QGrA, πA, (1)) is a noncommutative Pn for a geometric algebra A, 
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and similarly refer to such an A as a coordinate ring for a geometric noncommutative 
Pn.

To conclude this section, we generalise a proposition of Artin–Tate–van den Bergh. 
Specifically, in §8 of [4] the authors define the notion of twisting a 3-dimensional reg-
ular Z-graded algebra A by a graded A-automorphism. This twisting process was later 
generalized by Zhang to that described above. They then define an action of graded A-
automorphisms on the set of so-called regular triples and demonstrate a correspondence 
between twists of a given algebra and images of its regular triple under the action of 
A-automorphisms.

In this proposition, we are able to remove the assumption on the dimension at the 
expense of requiring geometricity. We will also drop the term “regular”.

Proposition 13. Let A be a homogeneous coordinate ring for a geometric noncommutative 
Pn and let (E, σ, L) be its associated triple. Let τ be a twisting system for A.

By dualization and projectivization, there is an automorphism τ1∗ of P (A∗
1) induced 

by τ1 and τ1∗(E) = E. Denote by τE1 the induced automorphism of E and let TτE
1 σ be 

the triple 
(
E, τE1 σ,L

)
. Then Aτ is the algebra determined (up to isomorphism) by TτE

1 σ.

Proof: By Theorem 12, Aτ is geometric and has an associated triple (E′, σ′, L′). Now 
since Aτ is a twist of A, there are graded linear isomorphisms φm : Aτ → A such that 
φm(a ∗Aτ b) = φm(a) ∗A φm+l(b) for a ∈ Aτ

l , where ∗Aτ and ∗A are the multiplications in 
Aτ and A respectively. These graded linear isomorphisms are obtained via [25, Proposi-
tion 2.8(1)] and a careful examination of the proof of that result - which is stated for an 
algebra B isomorphic to a twist of A - shows that if B is equal to a twist of A, i.e. we 
take B = Aτ in Zhang’s proposition, then in fact φm = τm. (In general, φm = τm ◦ f for 
f : B → Aτ .)

Consequently, in Mori’s theorem (12), the key to the proof of the first part is the 
dualization of the maps τm|A1 , namely τm∗ : P (A∗

1) → P (A∗
1). (Since the τm|A1 are 

isomorphisms, it follows that the maps (τm|A1)∗ are also isomorphisms and hence, being 
injective, they descend to the projectivization of A∗

1.)
Then Mori shows that E′ = (τ0∗|E)(E) and σ′ = (τ1∗|E) ◦ σ ◦ (τ0∗|E)−1. As above, 

set τE1 = τ1
∗|E .

In principle, τ0 can be any graded k-linear automorphism of A and then these claims 
would be best possible. However, by [25, Proposition 2.4], we may if necessary - with an 
acceptable loss of generality - replace τ by a twisting system τ ′ for which τ ′0 = id, and 
have Aτ ∼= Aτ ′ .

Doing this, and bearing in mind that we have potentially introduced a “hidden” 
isomorphism in the course of doing so, we conclude that the triples (E′, σ′, L′) and 
(E, τE1 ◦ σ, L), with τE1 ∈ AutE, yield isomorphic algebras, one of these being Aτ . �
Remark 14. We note that [13, Proposition 2.6] proves the same result in the special case 
of τ being algebraic.
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Remark 15. Mori’s theorem also tells us how to construct the full twisting system. For 
as in [17, Remark 4.8], the condition (τn+1

∗|E)σ = σ′(τn∗|E) implies that given τ1∗, we 
may inductively define

τn
∗ def= ((σ′)nσ−n)∗ = ((τE1 σ)nσ−n)∗

and dualize and extend these from automorphisms of P (A∗
1) to automorphisms of T (A1), 

which will define a twisting system τ on A.
We note two consequences. The first is that the twisting system τ obtained is com-

pletely determined by τ1, corresponding to A being generated in degree 1.
Secondly, if τE1 commutes with σ then the twisting system τ is algebraic: τn∗ = (τE1 )n

and hence τn = τn1 for all n. As in [4, Proposition 8.8] this is precisely the situation of 
Aτ being a twist by an automorphism. Conversely, non-algebraic twists arise when we 
can find some τE1 that does not commute with σ in Aut(E).

Let A and B be coordinate rings of noncommutative Pns, so that (QGrA, πA, (1)) and 
(QGrB, πB, (1)) are noncommutative Pns. Let F : QGrA → QGrB be an equivalence 
satisfying the condition (SSS), fixing isomorphisms F((πA)(m)) → (πB)(m) for all m. 
Then [25, Theorem 3.3] provides a construction of a family of maps φ = {φn} satisfying 
φm(ab) = φm(a)φm+n(b) for all a ∈ Bm and b ∈ Bn. From this, define τ = {τm =
φmφ−1

0 }, a twisting system for A ([25, Proposition 2.8]); then B ∼= Aτ .

Definition 16. With notation as in the previous paragraph, let τ = {τn∗ : P (A∗
1) →

P (A∗
1)} be the family of isomorphisms obtained from τ by dualization and projectivisa-

tion. We will call τ a geometric system associated to F .

The geometric system depends on the choice of isomorphisms in (SSS) if two choices 
of isomorphisms yield τ and τ ′ respectively, then both Aτ and Aτ ′ are isomorphic to B
and hence each other. In what follows, we will only wish to work up to isomorphism of 
algebras so this ambiguity does not trouble us.

3. Definition of N C (Pn) for geometric noncommutative Pns

We now define our main object of study, the groupoid N C (Pn):

Definition 17. Let N C (Pn) be the category whose objects are the triples (QGrA, πA,

(1)) where A is a geometric noncommutative Pn and whose morphisms are pairs (F , t)
with F : QGrA → QGrB an equivalence of categories and t = {tm} a family of isomor-
phisms tm : F(πA(m)) → πB(m) for all m ∈ N.

By Proposition 10, the groupoid N C (Pn) partitions into connected components 
corresponding precisely to all of the Zhang twists of any given algebra A whose triple 
(QGrA, πA, (1)) is in that component. For example, for n ≥ 2, O(Pn) = k [x0, x1, . . . , xn]
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and Oq(Pn
k ) correspond to triples in different connected components. Henceforth, we call 

the component containing (QGrO(Pn), πO(Pn), (1)) the commutative component.
Our aim is to attempt to understand these connected components, to systematically 

introduce the study of generalized automorphisms into this strand of noncommutative 
geometry, in keeping with the classical literature of Artin, Stafford, Tate, Van den Bergh, 
Zhang et al. and the more recent work of Pym ([18]).

We now adopt the calligraphic font A 
def= (QGrA, πA, (1)) for objects of N C (Pn). 

Given an object A, we wish to focus attention on the morphisms to A. The connected 
components of N C (Pn) do not in general have a terminal object but, for a given A, 
we can form the slice category N C (Pn) /A, whose terminal object is the morphism 
idA : A → A. The objects of N C (Pn) /A are maps B → A and the morphisms are the 
triangles:

B C

A

f

where f is a morphism in N C (Pn).
The slice category N C (Pn) /A comes with a forgetful functor Φ to N C (Pn), given 

on objects by taking the domain, Φ(B → A) = B and on morphisms by taking the map 
f in the triangle above. In our situation, since N C (Pn) is a groupoid, one can easily 
show that this functor is full. However, it is not faithful; N C (Pn) and its slices are 
closely related but do not hold identical information. Part of the reason for this is that 
“unique” is a very strong statement in this set-up whereas “unique up to isomorphism” 
is very weak.

In order to study the groupoid N C (Pn) and its slices, we will introduce a groupoid 
whose objects are triples and a functor from N C (Pn) to this groupoid. We will then 
construct a functor from this groupoid to the categorical analogue of a set with a group 
action, a so-called action groupoid, and thereby identify the structure that generalises 
the action of an automorphism group acting on an algebra to include the “action” of 
(non-algebraic) Zhang twists.

Throughout this section, A is assumed to be a geometric noncommutative Pn.

Definition 18. Let G T (Pn) be the category whose objects are triples T = (E, σ, L) such 
that there exists A ∈ N C (Pn) with triple T , and whose morphisms are as follows: for 
T = (E, σ, L), T ′ = (E′, σ′, L′) define

HomG T (Pn)(T , T ′) = {τ = {τi | i ∈ N} | τi ∈ Aut(Pn), τEi
def= τi|E : E → E′

is an isomorphism and τEi+1σ = σ′τEi }.

Composition is given by τ ′ ◦ τ = {τ ′i ◦ τi}. That is, morphisms in G T (Pn) precisely 
correspond to the geometric systems of Definition 16 (i.e. the families of automorphisms 
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associated to twists in Mori’s theorem) and each such morphism gives rise to a commuting 
diagram

E

E′

E

E′

E

E′

E

E′

E

E′

τE0

σ

σ′

τE1

σ

σ′

τE2

σ

σ′

τE3

σ

σ′

τE4

σ

σ′

Composition of geometric systems τ is the natural one such that on the associated 
diagrams, composition is given by stacking diagrams vertically and composing the con-
stituent maps. It is important to note, however, that τEi may not have a unique extension 
to Pn and so the diagram above may contain less information than the system τ .

It is straightforward to verify that G T (Pn) is a groupoid, with τ−1 = {τ−1
i }. We will 

refer to G T (Pn) as the groupoid of geometric triples of noncommutative Pns.
Let T = (E, σ, L) and T ′ = (E′, σ′, L′) be objects in G T (Pn). We note that the 

existence of a morphism T → T ′ in G T (Pn) implies the following (strong) relationship 
between the point schemes E and E′: namely, there exists an automorphism τ0 ∈ AutPn

such that τ0 maps E isomorphically to E′. That is, E′ and E are not only isomorphic as 
abstract schemes, but they are isomorphic via an automorphism of the ambient projective 
space; expressed in terms of the associated line bundles, this means that L′ ∼= τ∗0L.

Theorem 19. There is a functor T : N C (Pn) → G T (Pn) defined on objects by A �→
T (A) (that is, T sends each geometric noncommutative Pn A to its associated geometric 
triple) and on morphisms by (F , t) �→ τ where τ is the geometric system associated to F
and t.

Proof: The functor T is well-defined by the discussion before Definition 16, explaining 
the construction of the geometric system associated to the choice of F and t. We need to 
show that the construction in [25, Theorem 3.3] of the family φ = {φn} of graded linear 
isomorphisms associated to a twisting functor is (contravariantly) functorial. Then since 
τ is constructed from φ by dualization, which is also contravariant, we will conclude that 
the functor T is (covariantly) functorial.

Let F : QGrA → QGrB and G : QGrB → QGrC be morphisms in N C (Pn). Let 
F : GrA → GrB and G : GrB → GrC be the corresponding isomorphisms, noting that 
we have isomorphisms tn : F (A(n)) → B(n) and un : G(B(n)) → C(n) for all n (cf. [25, 
Theorem 3.4]). Hence there exist isomorphisms vn

def= un ◦ (Gtn) : (G ◦F )(A(n)) → C(n).
In order to match the notation of the proof of [25, Theorem 3.3], let us write Sn for 

all shift functors acting on objects and morphisms in the graded module categories at 
hand. Then, as in that proof, we have associated to F the family of maps

φn :
⊕

HomGrB(Sm(B), B) →
⊕

HomGrA(Sm(A), A),

m m
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φn(a) = (Sn)−1(F−1(t−1
n Sn(a)tm+n)) for all a ∈ HomGrB(Sm(B), B).

Let φ′
n (respectively φ′′

n) be the family of maps constructed in the same way from G
(respectively G ◦ F ).

For a ∈ HomGrC(Sn(C), C), we have

φ′′
n(a) = (Sn)−1((G ◦ F )−1(v−1

n Sn(a)vm+n))

= (S−1
n )(F−1(G−1((Gt−1

n ◦ u−1
n )Sn(a)(um+n ◦Gt−1

m+n))))

= (S−1
n )(F−1(t−1

n G−1(u−1
n Sn(a)um+n)t−1

m+n))

= (S−1
n )(F−1(t−1

n (Sn(S−1
n (G−1(u−1

n Sn(a)um+n))))t−1
m+n))

= (S−1
n )F−1(t−1

n Sn(φ′
n(a))t−1

m+n)

= φn(φ′
n(a)) = (φn ◦ φ′

n)(a),

as required. �
Note that, by the definition of G T (Pn) (Definition 18), the functor T : N C (Pn) →

G T (Pn) is full and surjective (not just essentially surjective) but it is not necessarily 
faithful. It is full because G T (Pn) consists of only those triples arising as the triple of 
a geometric noncommutative Pn.

The functor T between the groupoids N C (Pn) and G T (Pn) induces in a natural 
way a functor between the slice groupoids N C (Pn) /A and G T (Pn)/T (A). For it is 
straightforward to verify2 that TA : N C (Pn) /A → G T (Pn)/T (A) defined

• on objects of the slice category N C (Pn) /A by TA(F : B → A) = (T F : T B → T A)
and

• on morphisms of the slice category, which are commuting triangles, by the image 
triangle under T

is a functor. Since T is full, TA is both surjective on objects and full. Note that if T were 
faithful, TA would be also.

The functor TA gives rises to a surjective function tA with domain the objects of 
N C (Pn) /A and codomain the objects of G T (Pn)/T (A). (It is elementary to check 
that in a slice groupoid G/X, we have | HomG/X(f, f ′)| = 1 for all objects f, f ′ of G/X. 
This implies that to understand a slice groupoid, the principal task is to understand 
its objects, in contrast to the more common situation where attention is focused on 
understanding morphisms.)

Now the (connected) groupoid G T (Pn)/T (A) has a natural distinguished object, 
namely the identity morphism idT (A) : T (A) → T (A) given by (idT (A))i = idPn . We 

2 These claims apply to any functor between two categories; they do not use any properties of the categories 
at hand.
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can then consider the pre-image of this object under tA: we set KA = t−1
A (idT (A)). Then 

F : B → A belongs to KA if and only if T F : T B → T A is equal to idT (A), which in 
particular implies that T B = T A.

In the groupoid G T (Pn), we have a distinguished class of morphisms, as follows. 
Let us say that τ = {τn} ∈ HomG T (Pn)(T , T ′) is constant if τi = τj for all i, j. Let 
Con(T , T ′) be the subset of HomG T (Pn)(T , T ′) of constant morphisms. Note that idT , 
idT i = idPn , is an example of a constant morphism, and that Con(T , T ′) may be empty 
(if T �= T ′).

Then one sees that there is a subcategory C (Pn) with the same objects as GT (Pn)
and morphism sets Con(T , T ′), with composition being the restriction of composition in 
G T (Pn). Indeed, C (Pn) is again a groupoid.

The significance of the constant morphisms is explained by the following proposition.

Proposition 20 (cf. [17, Remark 4.9]). Let A and B be coordinate rings of noncommuta-
tive Pns, so that A = (QGrA, πA, (1)) and B = (QGrB, πB, (1)) are noncommutative 
Pns. Let T = T (A) and T ′ = T (B) be the corresponding geometric triples.

Then there exists τ ∈ Con(T , T ′) if and only if A is isomorphic to B, as graded 
algebras.

Proof: This is a rewriting in our terminology of [17, Remark 4.9], which was, as noted 
there, already well-known; the point here and in what follows is to make very explicit 
the relationship between isomorphism and twist-equivalence. The forwards implication is 
proved by seeing that the twisting system {θn} such that B ∼= Aθ arising from τ is given 
by θn = (τ−1

0 τn)∗ (cf. [17, Remark 4.8]) so θn is the identity for all n if τ is constant. �
An immediate corollary of this is that functors F : B → A that belong to KA are 

twists that yield isomorphic algebras. For being in KA, T F = idT (A) so that the geo-
metric system associated to F is constant. As such, our focus from this point will be on 
understanding G T (Pn)/T .

Let T = (E, σ, L), T ′ = (E′, σ′, L′) be triples in G T (Pn). Let τ : T ′ → T be a 
morphism in HomG T (Pn)(T ′, T ) (or equivalently, an object in G T (Pn)/T ), so τ = {τi |
i ∈ N}. Then let us form the constant morphism generated by τ0: define τ0 to be the 
morphism τ0 : T ′ → T with (τ0)i = τ0 for all i, so τ0 ∈ Con(T ′, T ). As before, we write 
τEi for τi|E .

Consider the triple T ′′ = (E, τE0 (τE1 )−1σ, L). Then ν : T ′′ → T defined by νi = τiτ
−1
0

is a morphism in G T (Pn), since

νEi+1(τE0 (τE1 )−1)σ = τEi+1(τE0 )−1(τE0 (τE1 )−1)σ

= τEi+1(τE1 )−1σ

= τEi+1(σ′(τE0 )−1)

= στEi (τE0 )−1
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= σνEi

and evidently has the property that ν = τ ◦ τ0−1. That is, the algebras represented by 
the triples T ′ and T ′′ are isomorphic.

This observation may be generalised to the following result, where we see that we can 
instead fix T and the equivalent of τ0, we can let T ′ be determined by these, and still 
obtain constant morphisms of triples.

Proposition 21. Fix T = (E, σ, L). There is a homomorphism ρ : Aut(Pn)op →
Aut(G T (Pn)/T ) sending τ ∈ Aut(Pn) to the isomorphism of categories ρ(τ) : G T (Pn)/
T → G T (Pn)/T defined on objects as follows. Let ν : T ′ → T be an object of 
G T (Pn)/T with T ′ = (E′, σ′, L′). Then define a constant geometric system (depending 
on τ and ν) by setting τE

′ = τ |E′ and defining

ρ(τ, ν) : (E′, σ′,L′) → (τ(E′), τE
′ ◦ σ′ ◦ (τE

′
)−1, ((τE

′
)−1)∗L′)

by ρ(τ, ν)i = τ for all i.
Then set

ρ(τ)(ν) = ν ◦ ρ(τ, ν)−1

On morphisms, ρ(τ) is given by

(E′, σ′,L′) (E′′, σ′′,L′′)

(E, σ,L)

μ

ν ν′
�→ (E′, σ′,L′)

(E, σ,L)

(E′′, σ′′,L′′)

(τ(E′), (σ′)τ
E′

, ((τE′
)−1)∗L′) (τ(E′′), (σ′′)τ

E′′

, ((τE′′
)−1)∗L′′)

μ

ν ν′

ρ(τ, ν)−1

ρ(τ, ν′) ◦ μ ◦ ρ(τ, ν)−1

ρ(τ, ν′)−1

where (σ′)τE′ def= τE
′ ◦ σ′ ◦ (τE′)−1.

Proof: This is a straightforward verification. �
Lemma 22. In the setting of the previous Proposition, we have

(a) for all ν ∈ G T (Pn)/T ,

Stabρ(ν) def= {τ ∈ Aut(Pn) | ρ(τ)(ν) = ν}

is trivial; and
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(b) the kernel of ρ is trivial.

Proof: From the definition of ρ, we see that we have ρ(τ)(ν) = ν if and only if ν =
ν ◦ ρ(τ, ν)−1, as objects in G T (Pn)/T . Viewing them as morphisms in G T (Pn), ν is 
invertible, so this is equivalent to ρ(τ, ν) = idT ′ as morphisms in G T (Pn). (Note that 
ρ(τ, ν) is not an object in G T (Pn)/T .)

Now idT ′ is precisely the constant geometric system idPn obtained from idPn ∈
Aut(Pn), i.e. with idPn i = idPn for all i, with the restrictions idPn |E′ being equal 
to idE′ . Since ρ(τ, ν) is the constant geometric system obtained from τ , we deduce that 
ρ(τ, ν) = idT ′ implies τ = idPn . Hence Stabρ(ν) = {idPn}.

It immediately follows that ker ρ =
⋂

ν Stabρ(ν) is trivial also. �
Proposition 23. Let (ν : T ′ → T ) ∈ G T (Pn)/T . Define

Orbρ(ν) def= {ρ(τ)(ν) | τ ∈ Aut(Pn)}.

Then there is a bijection

φ : Orbρ(ν) →
⋃

T ′′∈G T (Pn)

Con(T ′′, T ′).

Proof: Let ρ(τ)(ν) ∈ Orbρ(ν). By definition, we have ρ(τ)(ν) = ν ◦ ρ(τ, ν)−1. We define

φ(ρ(τ)(ν)) = ν−1 ◦ ρ(τ)(ν) = ρ(τ, ν)−1,

noting that by construction ρ(τ, ν)−1 is a constant geometric system whose codomain is 
T ′, the domain of ν.

Conversely, let us take a constant geometric system whose codomain is T ′ and con-
struct a suitable map to Orbρ(ν). Specifically, let ψ :

⋃
T ′′∈G T (Pn) Con(T ′′, T ′) →

Orbρ(ν) be defined as follows. For μ ∈ Con(T ′′, T ′), set ψ(μ) = ν ◦ μ. We need to 
show that ν ◦μ ∈ Orbρ(ν), which reduces to showing that there exists τ ∈ Aut(Pn) such 
that μ = ρ(τ, ν)−1.

Now μ is a constant geometric system, so is given by μ = {μi} with μi ∈ Aut(Pn)
and furthermore μi = μj for all i, j; let μ = μ0 (= μ1 = . . . ). We must have that 
T ′′ = (E′′, σ′′, L′′) satisfies μ(E′′) = E′, σ′′ = μ−1

E′′ ◦ σ′ ◦ μE′′ = (σ′)μ
−1
E′′ and L′′ = μ∗L′, 

by the definition of a geometric system.
Hence set τ = μ−1 so that τE′ = (μE′′)−1 and

ρ(τ, ν) : T ′ → (τ(E′), (σ′)τE′ , (τ−1
E′ )∗L′) = (E′′, σ′′,L′′),

with (ρ(τ, ν)−1)i = τ−1 = μ = (μi) for all i. So μ = ρ(μ−1, ν)−1 as required.
It is straightforward to see that φ and ψ are mutually inverse. �
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We claim that in each orbit there is a canonical element whose domain is a geometric 
triple such that the point scheme in this triple is equal to (and not just isomorphic) to 
E, the point scheme in the chosen triple T .

Lemma 24. Let Orbρ(ν) be the ρ-orbit of ν as defined previously. Then there exists a 
unique element o ∈ Orbρ(ν) with o : (E, σ′, L′) → (E, σ, L) such that o0 = idPn .

Proof: Let μ be the constant geometric system with μi = ν−1
0 for all i. Then ν ◦ μ ∈

Orbρ(ν) and

(ν ◦ μ)0 = ν0 ◦ μ0 = ν0 ◦ ν−1
0 = idPn

so that we may choose o = ν ◦ μ, giving existence.
For uniqueness, if ν′ ∈ Orbρ(ν) is such that ν′0 = idPn then there exists a constant 

geometric system μ such that ν′ = ν ◦ μ. Then ν0 ◦ μ0 = idPn , so that μ0 = ν−1
0 . Since 

μ is constant, μi = ν−1
0 for all i and ν′ = o, hence uniqueness. �

Let us call the element o ∈ Orbρ(ν) the standard representative of Orbρ(ν). Since 
orbits partition, it immediately follows that every geometric system o′ with o′0 = idPn

is the standard representative of exactly one orbit, Orbρ(o′).
Let E be a closed subscheme of Pn and define the following two subgroups:

Aut(E ↑ Pn) def= {σ ∈ AutE | (∃σ̂ ∈ AutPn)(σ̂|E = σ)} ⊆ AutE,

Aut(Pn ↓ E) def= {ρ ∈ AutPn | ρ(E) = E} ⊆ AutPn.

Restriction defines a surjective group homomorphism ResE : Aut(Pn ↓ E) → Aut(E ↑
Pn).

Consider an orbit Orbρ(ν) and let o : (E, σ′, L′) → (E, σ, L) be its standard repre-
sentative, i.e. the unique element with o0 = idPn , as in the lemma. We continue with 
our notation oEi = oi|E . Then, from the definition of geometric systems, we have that 
oEr σ

′ = σoEr−1 yields oEr = σr−1(oE1 σ−1)r−1oE1 ∈ Aut(E ↑ Pn) so o is generated in degree 
1, i.e. oEr is a function of oE1 and σ, for all r. Notice too that if oE1 commutes with σ, the 
formula for oEr simplifies to oEr = (oE1 )r.

Recalling that our aim is to parameterize twisting systems of an algebra, via geometric 
systems, by group-theoretic data associated to the point scheme, we now define a function 
as follows.

Definition 25. Let P = AutPn and

(G T (Pn)/T ) // P = {Orbρ(ν) | ν ∈ G T (Pn)/T }

be the set of ρ-orbits. Define a function Σ: (G T (Pn)/T ) // P → Aut(E ↑ Pn)σ by 
Σ(Orbρ(ν)) = (oE1 )−1σ, for oE1 = o1|E , o the standard representative of Orbρ(ν).
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It follows from the results of this section that this function is well-defined.
A priori, this function discards information, but this is a necessary compromise. Note 

that by defining this function on ρ-orbits, we are (as shown immediately prior to Propo-
sition 21) associating the group-theoretic datum of a coset element to an “isomorphism 
class” of twists; more precisely, the coset element is an invariant under taking twists that 
yield isomorphic algebras.

The extent to which the function does or does not lose information relates to our ability 
to prove injectivity and/or surjectivity. In specific examples, with more information about 
the geometry concerned, stronger results may be possible.

Lemma 26. Let Orbρ(ν) ∈ (G T (Pn)/T ) // P. There is a bijection between the sets

1. Σ−1(Σ(Orbρ(ν))), the pre-image under Σ of Σ(Orbρ(ν)) ∈ Aut(E ↑ Pn)σ and
2. (ker ResE)N = {{kr | r ∈ N} | kr ∈ ker ResE}, the set of N-indexed sequences of 

elements of kerResE.

Proof: Let Orbρ(μ) and Orbρ(ν) be orbits such that Σ(Orbρ(μ)) = Σ(Orbρ(ν)). Let o
and π be the standard representatives of Orbρ(μ) and Orbρ(ν) respectively, so that

(oE1 )−1σ = Σ(Orbρ(μ)) = Σ(Orbρ(ν)) = (πE
1 )−1σ

Then oE1 = πE
1 and, since o and π are generated in degree 1, oEr = πE

r for all r.
Let K = ker ResE , so that Res−1

E (oEr ) = orK. Since ResE(πr) = πE
r = oEr , we must 

have πr ∈ orK and hence there exists kr ∈ K such that πr = orkr. Notice that since o
and π are standard, o0 = π0 = idPn and so k0 = idPn .

Denote by ok the geometric system ok = {orkr}. This is a geometric system, since o is 
and ResE(orkr) = ResE(or)ResE(kr) = ResE(or) = oEr . Note that ok is standard in its 
orbit since ok0 = idPn . Then Σ(Orbρ(ok)) = (ResE(o1k1))−1σ = (oE1 )−1σ = Σ(Orbρ(o)).

Indeed, the same argument shows that if k = {kr} is any choice of N-indexed sequence 
of elements of K, then k is automatically a geometric system, with kEr = idE for all r. 
Moreover, for any geometric system o, ok = o ◦ k satisfies Σ(Orbρ(o)) = Σ(Orbρ(ok)), 
and we conclude the result. �

Corollary 27. If the surjective homomorphism ResE is an isomorphism, then Σ is injec-
tive. �

Having considered injectivity of Σ, let us now develop a criterion for its surjectivity. 
Let ε−1σ ∈ Aut(E ↑ Pn)σ and define maps εr ∈ Aut(E) by εr

def= (σr−1ε)(σ−1ε)r−1.
Then we have a commutative diagram
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E

E

E

E

E

E

E

E

E

E

idE

ε−1σ

σ

ε1

ε−1σ

σ

ε2

ε−1σ

σ

ε3

ε−1σ

σ

ε4

ε−1σ

σ

Then if (and only if) for all r ∈ N there exist maps ε̂r ∈ Aut(Pn) such that ε̂r|E = εr, 
then ε = {εr} will be a geometric system satisfying Σ(Orbρ(ε)) = ε−1σ. That is, Σ is 
surjective if for all ε−1 ∈ Aut(E ↑ Pn) and for all r, we have

(σr−1ε)(σ−1ε)r−1 ∈ Aut(E ↑ Pn), (1)

or equivalently ε∗rL ∼= L. However this is not a practical condition to check if Aut(E ↑ Pn)
is not extremely small. Note that a simple rearrangement of (1) gives an equivalent 
equation (

σr−1(εσ−1)r−1ε−(r−1)
)
εr ∈ Aut(E ↑ Pn), (2)

which has the advantage of making it clear that if σ and ε commute, the computation 
collapses to observing that εr ∈ Aut(E ↑ Pn), which holds by our choice of ε−1.

Note that it is a priori possible that an alternative construction starting from an 
arbitrary ε could yield a geometric system whose image under Σ is ε−1σ; the one above 
is natural, of course.

In particular, we see from the above that Σ is surjective if σ∗L ∼= L, whence σ ∈
Aut(E ↑ Pn). However this is very strong: in dimension 3, as noted in [3], if the triple 
T (A) = (E, σ, L) coming from A ∈ N C (Pn) has σ ∈ Aut(E ↑ Pn) then the algebra 
associated to A is twist-equivalent to O(P 2). But the latter situation is one we can 
analyse directly, as we shall do below (in all dimensions).

As remarked above, when we have a slice groupoid, such as N C (Pn) /A or 
G T (Pn)/T , the only task is to understand its objects, since every Hom-set has car-
dinality 1. We are now in a position to connect together

• the function Orbρ from the objects of G T (Pn)/T (A) to the set of ρ-orbits 
(G T (Pn)/T (A)) // P and

• the function Σ: (G T (Pn)/T (A)) // P) → Aut(E ↑ Pn)σ.

We would like an injective composite function, as then we have an upper bound for the 
number of twists (up to isomorphism), given by | Aut(E ↑ Pn)σ|. We would also like to 
identify elements in the image, as this gives us lower bounds.

The function obtained from composing the maps listed above will very rarely be 
injective. However at the various stages, we have information about the obstructions to 
injectivity, and we can replace our non-injective functions by injective ones, which we 
will do as follows.
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Let S be a set and S = {Si | i ∈ I} an equipartition of S, that is, a partition of S
such that for all i1, i2 ∈ I, there exists a bijection between Si1 and Si2 . If J is a set in 
bijection with Si for some (and hence for all) i, then it follows that there is a bijection of 
S with I×J . Instances of equipartitions include (a) a free group action of G on S (trivial 
stabilizers imply equipartition into orbits) yielding a bijection between S and G × (S/G)
for S/G the orbit space and (b) the partition of a group G into cosets of the kernel of a 
group homomorphism f : G → H yielding a (set) bijection between G and ker f × im f .

Note that if f : X → Y is a function such that {f−1(y) | y ∈ Y } is an equipartition, 
we have a bijection py : X → f−1(y) × im f (for any choice of y). Consequently,3 we have 
an injective function p̂y : X → f−1(y) × Y , induced by the inclusion of im f into Y .

Now we may apply this basic principle (twice) to obtain our main theorem.

Theorem 28. Let A be a geometric noncommutative Pn and let T = T (A). There is an 
injective function

Obj(G T (Pn)/T ) → Aut(E ↑ Pn)σ × (ker ResE)N × Aut(Pn).

Proof: We claim that the functions Orbρ and Σ give rise to equipartitions and hence, at 
the expense of altering the codomains, we may replace them by injective functions.

In the case of Orbρ this is immediate from Lemma 22, telling us that ρ is a free action. 
So Orbρ gives rise to an injective function

Ôrbρ : Obj(G T (Pn)/T ) → ((G T (Pn)/T ) // P) × P,

where we recall that P = Aut(Pn).
For Σ, Lemma 26 implies that Σ determines an equipartition into the set of pre-images 

under Σ, since every pre-image is in bijection with (kerResE)N . Then as above there 
is an induced bijection (GT (Pn)/T ) // P → (ker ResE)N × im Σ and hence an induced 
injection

Σ̂ : ((G T (Pn)/T ) // P) → Aut(E ↑ Pn)σ × (ker ResE)N .

Then (Σ̂ × id) ◦ Ôrbρ is the desired injection. �
We remark that, as previously discussed, the final term in the product that is the 

codomain of the injective function of the theorem—namely Aut(Pn)—relates to choices 
within the isomorphism class of the algebra corresponding to A. This follows from Propo-
sition 20 and the observations immediately afterwards.

3 Of course, this is both elementary and fundamental (especially in the case of homomorphisms) but as 
it is less frequently applied to arbitrary set functions, we include the details for clarity.



318 N. Cooney, J.E. Grabowski / Journal of Algebra 604 (2022) 296–323
The term (kerResE)N corresponds to non-uniqueness in extending maps from E to 
Pn and the associated geometric systems obtained by taking elements of this prod-
uct certainly need not be constant, so this term does not necessarily correspond to 
moving within an isomorphism class. Fortunately, in examples, kerResE can be ex-
plored using only the information of E and its embedding into Pn. Heuristically, if E
is sufficiently large (i.e. has enough points in suitably general position) this kernel will 
be small or trivial; challenging cases here would be when E is a finite collection of 
points.

In several important examples, to be given in detail in the next section, we see that it is 
reasonable to interpret the above theorem and the remarks in the preceding paragraphs 
to say that twists are controlled by the coset Aut(E ↑ Pn)σ, which we can describe 
explicitly.

4. Examples

We conclude with three examples, the first being the commutative algebra O(Pn). 
Secondly, we look at quantum projective space, Oq(Pn). The final example concerns 
3-dimensional Sklyanin algebras, whose point schemes are smooth elliptic curves.

Example 29. Consider A = (QGrO(Pn), πO(Pn), (1)), with associated geometric triple 
T = (Pn, idPn , O(1)). To simplify notation, write id for idPn in what follows.

We need to identify the terms in the product Aut(E ↑ Pn)σ× (ker ResE)N ×Aut(Pn)
in this case. Firstly, Aut(Pn ↓ Pn) = Aut(Pn ↑ Pn) = Aut(Pn) and we see that ResPn

is the identity map.
Now since id∗ O(1) = O(1), Σ is surjective. Indeed, given τ−1 = τ−1 id ∈ Aut(Pn ↑

Pn) id,

τr = idr−1(τ id−1)r−1τ = τ r ∈ Aut(Pn ↑ Pn)

so τ = {τ r} is a geometric system with Σ(Orbρ(τ)) = τ−1 id.
Hence (G T (Pn)/T ) // P is in bijection with Aut(Pn) (as a set). Since every ρ-orbit 

is itself in bijection with Aut(Pn), we conclude that G T (Pn)/T is in bijection with 
Aut(Pn) × Aut(Pn). We may disregard the second term if we wish to consider twists 
up to isomorphism, concluding that twists of O(Pn) are parametrised by Aut(Pn), as 
expected.

Note also that ν = (Pn, σ′, O(1)) → (Pn, id, O(1)) is in the same ρ-orbit as τ =
(Pn, σ, O(1)) → (Pn, id, O(1)) if and only if there is a constant geometric system μ such 
that ν = τ ◦ μ, i.e.
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σ

μ

σ′

σ

μ

σ′

σ

τ0
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τ1

id

τ2

id

τ3
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τ4

id

That is, there must exist μ ∈ Aut(Pn) such that σ′ = μ−1σμ. This recovers the ob-
servation of Zhang that in this case, isomorphic twists correspond to conjugate elements 
of Aut(Pn).

Example 30. Let n ≥ 2. Recall that we define quantum projective n-space to be the 
k-algebra

Oq(Pn) = k〈x0, . . . , xn〉/〈xixj = qxjxi ∀ i < j〉

where q ∈ k∗ is assumed not a root of unity.
Again, we wish to identify the terms in the product Aut(E ↑ Pn)σ × (ker ResE)N ×

Aut(Pn) in this case.
Define 

[
n+1

2
]

= {I ⊆ {0, . . . , n} | |I| = 2}. By work of De Laet-Le Bruyn4 ([8, 
Proposition 1]), the point scheme of Oq(Pn) is the union of the lines


I
def= V ({xj | j /∈ I}), for I ∈

[
n+1

2
]

in Pn. Set E =
⋃

I∈
[
n+1

2
] 
I .

The associated automorphism of E is defined on each line as

σ|�{i1,i2}(0 : · · · : 0 : pi1 : 0 : · · · : 0 : pi2 : 0 : · · · : 0)

= (0 : · · · : 0 : pi1 : 0 : · · · : 0 : qpi2 : 0 : · · · : 0),

4 See also Belmans-De Laet-Le Bruyn, [6].
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corresponding to the relator xi1 ⊗ xi2 − qxi2 ⊗ xi1 via the correspondence indicated in 
the definition of geometricity (11). Indeed, the existence of such data (E, σ) affirms that 
Oq(Pn) is geometric.

This automorphism does not extend to all of Pn. Indeed, let λ = (λI)
I∈
[
n+1

2
] ∈

(k∗)(
n+1

2 ) and define μ(λ) ∈ AutE by

μ(λ)|�{i1,i2}((0 : · · · : 0 : pi1 : 0 : · · · : 0 : pi2 : 0 : · · · : 0)

= (0 : · · · : 0 : λ{i1,i2}pi1 : 0 : · · · : 0 : pi2 : 0 : · · · : 0).

Then one may check that a purported extension of μ(λ) to Pn would have to be repre-
sented by the image of the diagonal matrix

diag(
n−1∏
k=0

λk(k+1), . . . ,
n−1∏
k=i

λk(k+1), . . . , λ(n−1)n, 1)

in PGLn+1(k) subject to the conditions

λi1,i2 =
i2−1∏
k=i1

λk(k+1)

for all i1 < i2. Now σ = μ(λ) with λi1,i2 = q−1 for all i1, i2, which therefore does not 
extend to Pn since q is not a root of unity.

Noting that any element ν of PGLn+1(k) preserving E ⊆ Pn must be projectively 
linear, send each line 
I to another line 
J and each intersection eIJ

def= 
I ∩ 
J to 
another such intersection, we see that ν is determined up to scalars by its values on 
the intersections eIJ . Furthermore, we must have ker ResE trivial, since if ν fixes E
pointwise, it is the identity on Pn. By Corollary 27, Σ is injective.

From a consideration of the remaining possibilities, it follows that

Aut(Pn ↓ E) ∼= Aut(E ↑ Pn) ∼= Sn+1 � ((k∗)n+1/k∗)

with Sn+1 acting on (k∗)n+1 by the natural permutation action �: that is, for σ ∈ Sn+1, 
μ ∈ (k∗)n+1/k∗ and p ∈ Pn we have (σ � μ)(p) = (σ ◦ μ ◦ σ−1)(p).

By explicit calculation using the above, we have checked equation (1) and established 
that in that case, the image of Σ is equal to ((k∗)n+1/k∗)σ. This recovers the result of 
Mori, who has shown that A = O(α,β,γ)(P 2) and A′ = O(α′,β′,γ′)(P 2) are twist equivalent 
if and only if α′β′γ′ = (αβγ)±1. Recalling that Q = (q−1, q, q−1) gives the single param-
eter quantum P 2, Oq(P 2), we see as a special case that Oq(P 2) is not twist equivalent 
to Oq′(P 2) for all but one other choice of q′ ∈ k∗:

((q′)−1) · q′ · ((q′)−1) = (q−1) · q · (q−1)±1 ⇔ q′ = q±1
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Moreover our computation shows that Oq(P 2) has no other algebras in its twist-
equivalence component other than multi-parameter quantum projective spaces; none 
arise from the S3 factor so there are no non-algebraic twists in this case.

This makes it very clear that N C
(
P 2) has very many connected components. It also 

shows that in the case of quantum algebras defined with respect to a parameter q ∈ k∗ (or 
indeed, multiple parameters) varying q does not give rise to twist equivalences. So while 
twist equivalence has some features of a deformation-theoretic problem, it is too strong 
and somewhat too discrete to be related to smooth variation of deformation parameters 
and the associated geometry of the latter.

Two natural questions remain open, awaiting further exploration. Namely, the cor-
responding calculations for Oq(Pn) and the exploration of algebras associated to other 
elements of Aut(E).

Remark 31. Recent work of Itaba-Matsuno ([13]) gives tables of defining relations for 3-
dimensional quadratic AS-regular algebras. Note that certain statements there and here 
are not directly comparable, due to differences in the definitions and of terminology. 
For example, we reserve the term “graded Morita equivalence” for equivalence of the 
full graded module categories (with morphisms of all degrees), rather than equivalence 
of graded modules categories with morphisms only of degree zero (what we call twist-
equivalence).

Example 32. Let k be of characteristic not equal to 2 or 3. Consider the 3-dimensional 
Sklyanin algebras

Skl3(a, b, c)
def= k〈x0, x1, x2〉/〈axixi+1 + bxi+1xi + cx2

i+2〉

where all indices are taken modulo 3. For all but a known finite set of points (a, b, c), 
this algebra is a geometric noncommutative P 2 with associated point scheme the smooth 
elliptic curve

E : abc(x3 + y3 + z3) − (a3 + b3 + c3)xyz = 0

and automorphism σ given by translation by a point (with respect to the group law on 
E). Note that again kerResE is trivial: E contains sufficiently many non-collinear points 
to ensure that elements of Aut(E ↑ P 2) extend uniquely.

A summary of relevant results and references concerning the 3-dimensional Sklyanin 
algebras (and their relationship with mathematical physics) may be found in work of 
Walton ([22]). For completeness, we also note that De Laet ([7]) has identified an action 
by graded algebra automorphisms of the Heisenberg group H3 of order 27 on Sklyanin 
algebras.

By general results on elliptic curves (see for example, [20, §III]), every automorphism 
of E is the composition of a translation and an isogeny of the curve with itself. Thus 



322 N. Cooney, J.E. Grabowski / Journal of Algebra 604 (2022) 296–323
Aut(E) is the semidirect product of the curve itself with the auto-isogeny group, the 
isogenies preserving a chosen base point and the translations changing the base point.

The auto-isogeny groups of elliptic curves are well-known: depending on the j-invariant 
of the curve, the auto-isogeny group is cyclic of order n = 2, 4 or 6 (cf. [20, Corollary 
III.10.2]). It is common to call the auto-isogeny group Aut(E), but we shall not; rather 
we will denote it I(E). Note that the aforementioned action is projectively linear and 
hence I(E) ⊆ Aut(E ↑ P 2).

Furthermore, it is known when a translation extends to an automorphism of the am-
bient P 2. This is given explicitly in [17, Lemma 5.3], where it is shown that a translation 
τp by a point p extends to P 2 if and only if p is 3-torsion, i.e. τp has order 3. The 
group E[3] of 3-torsion elements of an elliptic curve E is also known: it is isomorphic to 
Z/3Z × Z/3Z, a group of order 9 ([20, Corollary III.6.4]).

Combining these results, we conclude that Aut(E ↑ P 2) ∼= (Z/3Z × Z/3Z) � I(E), 
a finite group of order 9n. One may interpret this as saying that Sklyanin algebras are 
extremely rigid, or very noncommutative, as they have very few twists.

Note that the auto-isogenies act as graded algebra automorphisms of Skl3(a, b, c). 
Furthermore, for a point p, τpσ is again a translation by a point, so that twists of Sklyanin 
algebras by translations are again Sklyanin algebras. Thus, we see that N C (P 2) contains 
uncountably many connected components which consist of Sklyanin algebras, and each 
of these components contains finitely many isoclasses of these.
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