Euclid preparation:I. The Euclid Wide Survey

, Euclid Collaboration (2022) Euclid preparation:I. The Euclid Wide Survey. Astronomy and Astrophysics. ISSN 1432-0746

Text (2108.01201v1)
2108.01201v1.pdf - Submitted Version

Download (43MB)


Euclid is an ESA mission designed to constrain the properties of dark energy and gravity via weak gravitational lensing and galaxy clustering. It will carry out a wide area imaging and spectroscopy survey (EWS) in visible and near-infrared, covering roughly 15,000 square degrees of extragalactic sky on six years. The wide-field telescope and instruments are optimized for pristine PSF and reduced straylight, producing very crisp images. This paper presents the building of the Euclid reference survey: the sequence of pointings of EWS, Deep fields, Auxiliary fields for calibrations, and spacecraft movements followed by Euclid as it operates in a step-and-stare mode from its orbit around the Lagrange point L2. Each EWS pointing has four dithered frames; we simulate the dither pattern at pixel level to analyse the effective coverage. We use up-to-date models for the sky background to define the Euclid region-of-interest (RoI). The building of the reference survey is highly constrained from calibration cadences, spacecraft constraints and background levels; synergies with ground-based coverage are also considered. Via purposely-built software optimized to prioritize best sky areas, produce a compact coverage, and ensure thermal stability, we generate a schedule for the Auxiliary and Deep fields observations and schedule the RoI with EWS transit observations. The resulting reference survey RSD_2021A fulfills all constraints and is a good proxy for the final solution. Its wide survey covers 14,500 square degrees. The limiting AB magnitudes ($5\sigma$ point-like source) achieved in its footprint are estimated to be 26.2 (visible) and 24.5 (near-infrared); for spectroscopy, the H$_\alpha$ line flux limit is $2\times 10^{-16}$ erg cm$^{-2}$ s$^{-1}$ at 1600 nm; and for diffuse emission the surface brightness limits are 29.8 (visible) and 28.4 (near-infrared) mag arcsec$^{-2}$.

Item Type:
Journal Article
Journal or Publication Title:
Astronomy and Astrophysics
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
09 May 2022 11:25
Last Modified:
21 May 2022 00:54