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Abstract

This paper proposes a novel model that allows time variation in volatility, skewness and kurtosis based on the

multivariate stable distributions. The analysis looks at set of bank sector CDS, insurance sector CDS, sovereign

bonds, equity and volatility indices. Our new findings corroborate their results and indicate significant evidence

of contagion, especially through the channels of co-skewness and co-kurtosis. In addition, it establishes a higher

order channel of causality between co-skewness and co-kurtosis. Finally, a significant novelty of the paper is that

it documents that after splitting the sample over the period prior and after the 2008 financial crisis, the results

are dominated by those obtained over the latter period. Overall, the strong empirical results have important

implications for international capital flows, the efficiency of international portfolio diversification, as well as for

market efficiency.
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1 Introduction

The goal of this paper is to provide a model with time-varying variance, skewness and kurtosis in a principled way.

Previous attempts, based on the multivariate skew-t distribution have the drawback that the degrees of freedom of

the multivariate student-t should exceed 4, which excludes several cases of empirical interest. A prominent approach

has been provided by Wilhelmsson (2009).

In a recent paper, Apergis, Christou and Kynigakis (2019) investigate whether contagion occurs during the

2007/08 global financial crisis across European and US financial markets. They use the linear (mean) channel of

contagion by employing the correlation-based contagion tests proposed by Forbes and Rigobon (2002). Furthermore,

they use the asymmetric dependence test developed by Fry et al. (2010) to study the co-skewness channel of

contagion, as well as the Fry-McKibbin and Hsiao (2018) extremal dependence tests to explore the co-kurtosis and

co-volatility channels.

Our work uses the family of multivariate stable distributions which allows separation of volatility, skewness

and kurtosis, but it has no second or higher moments, in agreement with the evidence of fat tails in financial data.

Although the family of multivariate stable distributions is quite suited for this task, it has never been used before,

due, perhaps, to computational difficulties. The new results confirm Apergis, Christou and Kynigakis (2019) and

they open up the way for summary tools in the analysis of co-kurtosis, co-volatility, and co-skewness.

Broda et al. (2013) recommend an approach based on mixtures of stable Paretian distributions. The tests of

Forbes and Rigobon (2002), Fry et al. (2010), and Fry-McKibbin and Hsiao (2018) focus on bivariate comparisons,

without explicitly considering or conditioning on all other variables as they should have. Our analysis corrects this

by using the family of multivariate stable distributions. Overall, a couple of novelties are provided by this study.

First, our findings corroborate those reached in the international literature under the new corrective methods.

Our modeling approach also provides supportive evidence on the direction of contagion across CDS and

other financial markets between US and Europe under a new modeling approach. While our new results provide

supportive evidence to those reached by Apergis et al. (2019), the current analysis splits the overall time period

into that prior and after the 2008 crisis event to clearly highlight that the similarity of the obtained results with

those in the literature is due to the dominance of the latter period which increased the occurrence of contagion

effects across all markets under investigation, as well as across all new contagion metrics used by the empirical

analysis. The results are expected to be of high importance since contagion per se is a policy-relevant issue given

that it results in an inefficient allocation of risks.

Contagion induces people not to consider the effect of their actions on others, thus, raising the overall level of

risk in the economy, which calls from intervention actions by policymakers, such as regulatory actions, to stabilize

financial and real markets in terms of efficiency. Moreover, contagion usually results in an overall destabilization of

the financial system with detrimental effects on economic growth. In this case, explicit intervention macroeconomic

policies are needed to be implemented so as to mitigate negative spillovers to the real economy arising from a
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destabilized financial system.

In addition, the presence of strong contagion phenomena may substantially undermine the rationale for

international diversification across assets, while the risk of negative shocks hitting asset markets may significantly

reduce financial flows across markets and/or across countries, even in cases where the fundamentals of the economies

are strong (Sun and Zhang, 2009).

2 Literature review

There has been great interest in the empirical literature on cross-country and cross-market contagion events. Many

empirical studies have been undertaken to measure the extent of financial spillovers to mature and emerging markets,

as well as to detect specific channels of transmission of shocks to other markets and/or countries.

The presence of financial contagion phenomena has been stronger following the liberalisation of financial

markets which allowed stronger mobility for information and capital flows, thus intensifies international asset prices

and volatility linkages. The literature has explicitly emphasized the importance of asset prices in the transmission

of idiosyncratic shock across markets and countries (Kindleberger and Aliber, 2011).

Our work is closely related to the strand of the literature that focuses on investor-based contagion (the

so called ‘pure contagion’ hypothesis) (Kumar and Persaud, 2002); according to this literature, the presence of

shock propagation is unrelated to fundamentals, but it can still induce changes in investors’ behavior. Theoretical

explanations put forward are associated with theories of multiple equilibria due to changes in investors’ self-fulfilling

expectations.

Diamond and Dybvig (1983) present a bank run model in which many bank customers suddenly withdraw

their deposits if they expect that the bank might become insolvent. In this modelling approach depositors form

expectations about the behavior of other depositors. If the others run, the former will also run, thus, showing a

type of herd behavior.

This bank running phenomenon is expected to exhaust a bank’s liquid assets, which leads to more withdrawals

and, eventually, to bank bankruptcy. In addition, contagion phenomena could be explained by portfolio rebalancing.

More specifically, negative shocks in one economy may lead to the deterioration in the value of leveraged investors’

collateral, inducing them to liquidate assets even in unaffected economies so as to meet margin calls.

According to the portfolio theory, such portfolio rebalancing effects can be explained by that international

investors decide how much to invest in a risky foreign country by weighing their expected returns against the

associated risks.

If a shock occurs in any part of the economy, portfolios change to reflect the new equilibrium prices of risk.

In relevant to this explanation, contagion phenomena could be caused by information asymmetries and herding

behavior. Under the assumption of uncertainty conditions and that investors do not have a complete picture of
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a country’s or market’s fundamentals, they are prompted to reach investment decisions based on the actions of

other investors, thus causing herding behavior or financial panic. Calvo and Mendoza (2000) illustrate that it is

expensive to collect and process country-specific information; in that case, less informed or uninformed investors

tend to watch and obtain beneficial informational strings by observing informed investors who act early in adjusting

their portfolios.

If the latter group moves to a bad equilibrium, then the former group causes another bad equilibrium. Forbes

and Rigobon (2002) also introduce the term “shift-contagion’ and classify the theoretical approaches explaining the

occurrence of shifts as crisis-contingent theories. Accordingly, contagion is nothing else but a substantial increase

in cross-market linkages after a negative shock hits a country or a market.

The empirical literature has explored contagion events through probability models, such as probit and logit

models, without, however, assuming the presence of structural breaks in cross-market linkages (Caramazza et al.,

2000; Haile and Pozo, 2008). In particular, this strand provides estimates about the probability of spreads of

financial crises, while identifying specific channels through which contagion occurs. Additionally, another sub-

group in this empirical literature identifies contagion as volatility spillovers by using the GARCH methodological

approach, according to which conditional variances of financial variables could be potentially linked to each other

across asset classes / markets (Chancharoenchai and Dibooglu, 2006; Tanai and Lin, 2013). A major drawback of

this approach, however, is that it does not consider the presence of any structural break in the data generating

process caused by the crisis. A very popular method in the literature to test for contagion comes from the family

of correlation breakdown tests; in this approach, the correlation coefficients of asset returns are estimated over

crisis and non-crisis periods; the test explores whether there has been any significant change in correlations across

regimes.

King and Wadhwani (1990) first applied this approach to explore structural changes in cross-market linkages

in the US, the UK and Japan after the 1987 stock market crash. Their findings document that contagion increased

during and immediately after the crash event as higher volatility; in that sense, there is a transmission channel

that cannot be explained by a model based on fundamentals. These correlation breakdown tests suffer from serious

heteroskedasticity problems, since the correlation across asset returns is affected by their corresponding volatilities,

which tend to be extremely high during crisis events (Forbes and Rigobon 2002; Rigobon 2003).

Within the same strand, Corsetti et al. (2005) argue that increases in variances associated with the crisis

market may be caused by both idiosyncratic components and non-observable variables, yielding high biases to

estimated coefficients. They recommend weighting the increasing factor for each component of shocks. Another

problem with these methods has to do with the fact that they provide estimates only through bivariate testing.

Dungey et al. (2005) resolve the problem by recommending a multivariate version of the Forbes and Rigobon

test by scaling the asset returns and correcting for endogeneity bias. In another part of the empirical strand and

based on theoretical arguments in favour of the presence of multiple equilibria caused by changes in investors’
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expectations during a crisis, the literature stresses the need the underlying distribution of asset returns not to be

multimodal, thus avoiding discontinuities in the data-generating distribution.

Ismail and Rahman (2009) assess an Markov Switching (MS) model to study the link between US and Asian

stock markets; their findings clearly display the pre-eminence of non-linear MS-VAR over linear VAR in modeling

asset return interactions across countries. Similarly, by using an MS-VAR framework, Guo and Stepanyan (2011)

study contagion effects between stock markets, real estate markets, CDS markets, and energy markets in the US.

Their results document contagion effects from these markets, across two distinct regimes. In that sense, all financial

markets respond highly significantly to economic shocks when a highly volatile regime is dominant.

3 Univariate and multivariate stable distributions

Stable distributions have received quite a lot of attention in econometrics, statistics and finance over the past few

decades (Samorodnitsky and Taqqu, 1994). Their empirical application is still hampered by the fact that their

density is not available in closed form, despite advances in Bayesian computation using Markov Chain Monte Carlo

(MCMC).

Buckle (1995) and Tsionas (1999) provided Gibbs sampling schemes for general and symmetric stable dis-

tributions, respectively. The problem is that the conditional posterior distributions of certain latent variables are

cumbersome to deal with and require careful tuning. This work falls squarely within recent advances in the econo-

metrics of stable distributions. Dominicy and Veredas (2012) propose a method of quantiles to fit symmetric stable

distributions. Since the quantiles are not available in closed form they are obtained using simulation resulting in

the method of simulated quantiles or MSQ.

Hallin, Swan, Verdebout and Veredas (2012) propose an easy-to-implement R-estimation procedure which

remains
√
n-consistent contrary to least squares with stable disturbances. Broda, Haas, Krause, Paolella and Steude

(2012) propose a new stable mixture GARCH model that encompasses several alternatives and can be extended

easily to the multivariate asset returns case using independent components analysis.

Ogata (2012) uses a discrete approximation to the spectral measure of multivariate stable distributions and

proposes estimating the parameters by equating the theoretical and empirical characteristic function in a generalized

empirical likelihood / GMM framework. Regarding (Bayesian) indirect inference for the parameters of univariate

stable distributions, we provide useful results that can be used to implement MCMC for any data set when draws

from the posterior distribution of normal mixtures are available. Classical indirect inference has been examined by

Garcia, Renault and Veredas (2011) among others, using the skewed Student-tas auxiliary model. As the authors

mention this “appears as a good candidate since it has the same number of parameters as the α-stable distribution,

with each parameter playing a similar role”.

Lombardi and Veredas (2007) used a multivariate Student-t to perform indirect estimation for for elliptical
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stable distributions based on the same argument.

A random variable X is called (strictly) stable if for all n,
∑n
i=1Xi ∼ cnX, for some constant cn, where

X1, ..., Xn are independently distributed with the same distribution as X. It is known that the only possible choice

is to have cn = n1/α, for some α ∈ (0, 2]. General non-symmetric stable distributions are defined via the log of

the characteristic function (CF) which is given by the following expression (Samorodnitsky and Taqqu, 1994, and

Zolotarev, 1986):

logϕ (τ ;α, β) , logE exp (ιτX) =

 ιµτ − σα |τ |α
[
1− ιβsgn(τ) tan πα

2

]
, α 6= 1,

ιµτ − σ |τ |
[
1 + ιβsgn(τ) 2π log |τ |

]
, α = 1,

(1)

for any τ ∈ R, where µ and σ are the location and scale parameters of the distribution, respectively, ι =
√
−1 ,

α ∈ (0, 2], −1 ≤≤ β ≤ 1. The tail index is α and β measures asymmetry. We denote a general stable random

variable by: X ∼ Sα,β (µ, σ). The density is given by:

f (x;α, β) = 1
2π

∫ ∞

−∞
exp (−ιτx)ϕ (τ ;α, β) dτ. (2)

The density is not available in closed form making it difficult to implement maximum likelihood or Bayesian

MCMC procedures. Buckle (1995) and Tsionas (1999) considered scale mixture representation of stable distributions

for Bayesian analysis in the general and symmetric class respectively. Tsionas (1999) exploited the fact that

for symmetric laws, that is X ∼ Sα,0 (µ, σ) we have: X = W 1/2Z, where Z ∼ N (0, 1), and independently

W ∼ Sα
2 ,1

(0, 1).

Since this is a scale mixture of normal distributions, Bayesian numerical procedures are greatly facilitated.

Buckle (1995) used another representation due to Zolotarev (1986, pp. 65-66):

X =
sinαU

(cosαU)
1/α

[
cos (α− 1)U

E

](1−α)/α
, (3)

for α 6= 1, where U is uniformly distributed in
[
−π

2 ,
π
2

]
, and E is standard exponential. Approximate computation

of the general stable densities is facilitated by the Fast Fourier Transform (FFT), see Mittnik, Doganoglu, and

Chenyao (1999) and Mittnik, Rachev, Doganoglu, and Chenyao (1999)1. The integral representation in (2) is

computed at N equally spaced points with distance h, that is xk =
(
k − 1− N

2

)
h, k = 1, ..., N . If τ = 2πω, and

we omit the conditioning of density and CF on α, β, the integral becomes

f
((
k − 1− N

2

)
h;α, β

)
=

∫ ∞

−∞
ϕ (2πω;α, β) exp

(
−ι2πω

(
k − 1− N

2

)
h
)
dω,

1See also Matsui and Takemura (2006).
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which can be approximated using the rectangle rule as:

f
((
k − 1− N

2

)
h;α, β

)
∼= 1

hN
(−1)

k−1−N2
N∑
n=1

(−1)
n−1

ϕ
(
2π

(
n− 1− N

2

)
h/N ;α, β

)
exp

(
−ι2π (n− 1)) (k − 1) /N

)
.

(4)

In turn, this is equivalent to performing a FFT to the sequence:

(−1)
n−1

ϕ
(
2π

(
n− 1− N

2

)
h/N ;α, β

)
, n = 1, ..., N.

A fairly accurate procedure results when N = 216, and h = 10−4. Accuracy of the FFT has been examined in

detail by Tsionas (2012) in a different context. In the case of symmetric stable distributions, Sα,0 (µ, σ), McCulloch

(1998) developed a more efficient procedure without sacrificing accuracy.

In connection with multivariate stable Paretian distributions, even the computation of the CF becomes

complicated because they are only defined through their spectral measure, an object that is needed in order to retain

the equivalence between the density and the characteristic function (Tsionas, 2016). As this computation is quite

difficult, we use the following representation. Let ε = [ε1, ..., εn]
′ and u = [u1, ..., un]

′. Define:

ε = Cu, ui ∼ iid Sαi,βi
(0, 1) , i = 1, ..., n, (5)

so we take a linear combination of u = [u1, ..., un]
′ where the uis follow independent Sαi,βi

(0, 1) distributions. The

scale matrix is defined as Σ = CC ′ although it does not represent a covariance matrix, unless α = 2 (for any value

of β). Moreover, αi and βi are directly related to fat tails and skewness respectively. The important feature of this

multivariate stable distribution is that it allows for different α and β for each time series.

We denote α = [α1, ..., αn]
′ and β = [β1, ..., βn]

′. Their time-varying versions are denoted by αt and βt. We

denote the n-dimensional stable distribution by Sn,α,β (Σ), assuming the location parameter is a zero vector.

4 Time-varying scale, skewness and kurtosis

For the tail coefficient we first set α̃i = − ln
(

2
αi

− 1
)

, which gives αi

2 = 1
1+e−α̃i

, viz. the standard logistic distribu-

tion function, so that α̃i ∈ R.

α̃t = γ1 + Γ1α̃t−1 + Γ2β̃t−1 + vt1. (6)

For the skewness coefficient, it is convenient to define β̃i = 1
2 ln

1+βi

1−βi
= arctanh(βi), the well-known Fisher’s

transformation so that β̃i ∈ R, and assume

7
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β̃t = γ2 + Γ3α̃t−1 + Γ4β̃t−1 + vt2. (7)

For other approaches to modeling skewness, see Theodossiou (1998, 2000) and Theodossiou and Savva (2015).

In (6) and (7) both the tail and skewness coefficients follow a vector autoregressive (VAR) scheme. The specification

of vt1 and vt2 is detailed below. We denote all elements in γj ,Γjs by γ. The initial conditions in (6) and (7) are

treated as unknown parameters.

Suppose ut = [ut1, ..., utn]
′, t = 1, ..., T , is a vector of random variables distributed as Sn,α,β (Σ). Recall that,

so far, we have assumed that utis have unit scale. As Σ is positive definite, it has n positive eigenvalues λ. Letting

U denote the orthogonal matrix of orthonormal eigenvectors of Σ and Λ = diag(λ), we can write

Σ = UΛU ′. (8)

Define L = Λ1/2U ′, where Λ1/2 denotes a diagonal matrix which contains the square roots of the eigenvalues along

the main diagonal. In turn, we get a factorization of Σ = L′L based on the spectral decomposition, and we define

that

εt = L′ut, (9)

follows a multivariate SGT distribution. Based on (8), we can use the Givens parametrization (Appendix A) which

uses the eigenvalues of Σ directly in the definition of a parameter vector δ. The Givens parametrization is based on

the spectral decomposition of Σ given in (8). In summary, the Givens decomposition provides n(n+1)
2 parameters

(whose domain is R) so that using elementary operations (described in Appendix A) we can recover the scale matrix

Σt. To these parameters we must, of course, add the two equations in (6) and (7).

Since we need the scale matrix to be stochastic and time-varying, say Σt, it is enough to make the parameters

δ in (A.3) of Appendix A, time-varying and stochastic, as follows:

δit = θi0 + θi1δi,t−1 + σiξit, i = 1, ..., d = n+ n(n−1)
2 , (10)

where

ξit ∼ iidN (0, 1). (11)

Notice that in (10) we do not use a VAR as in (6) and (7), since all elements of the scale matrix Σt will

be time-varying through the Givens decomposition. To these equations, we add (6) and (7), so in total, we have

d = n(n+1)
2 +2 elements in δt = [δ1, ..., δd, α̃t, β̃t]

′ and 3d parameters in (10) plus six additional parameters from (6)

8
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and (7). Moreover, these two additional equations introduce:

vt = [v
t,
n(+1)

2 +1
, v
t,
n(+1)

2 +2
]′, (12)

which we represent as:

vt1 = σn(n+1)
2

ξ∗t1, vt2 = σn(n+1)
2

ξ∗t2, (13)

and

ξ∗t1, ξ
∗
t2 ∼ iidN (0, 1). (14)

The multivariate model has a large number of parameters but, on the other hand, it is quite flexible for

empirical purposes. Our parameters are:

θ = [γ′, θ′0, θ
′
1, σ1, ..., σd]

′ ∈ R10+3d, (15)

where θ0 = [θi0, i = 1, ..., d]
′, and θ1 = [θi1, i = 1, ..., d]

′.

We use a recent advance in sequential Monte Carlo methods known as the Particle Gibbs (PG) sampler, see

Andrieu et al. (2010). The algorithm allows us to draw paths of the state variables in large blocks. Particle filtering

is a simulation based algorithm that sequentially approximates continuous, marginal distributions using discrete

distributions.

This is performed by using a set of support points called “particles” and probability masses; see Creal (2012)

for a review. The PG sampler draws a single path of the latent or state variables from this discrete approximation.

As the number of particles M goes to infinity, the PG sampler draws from the exact full conditional distribution.

Here, we follow Creal and Tsay (2015). As mentioned in Creal and Tsay (2015, p. 339): “The PG sampler is

a standard Gibbs sampler but defined on an extended probability space that includes all the random variables that

are generated by a particle filter. Implementation of the PG sampler is different than a standard particle filter due

to the “conditional” resampling algorithm used in the last step. Specifically, in order for draws from the particle

filter to be a valid Markov transition kernel on the extended probability space, Andrieu et al. (2010) note that there

must be positive probability of sampling the existing path of the state variables that were drawn at the previous

iteration. The preexisting path must survive the resampling steps of the particle filter. The conditional resampling

step within the algorithm forces this path to be resampled at least once.

We use the conditional multinomial resampling algorithm from Andrieu et al. (2010), although other resam-

pling algorithms exist, see Chopin and Singh (2013).”

Suppose the posterior is p(θ, δ1:T |y1:T ) where δ1:T denotes the latent variables whose prior can be described

by p(δt|δt−1, θ). In the PG sampler we can draw the structural parameters θ|δ1:T ,y1:T as usual, from their posterior

conditional distributions. This is important because, in this way, we can avoid mixture approximations or other

9
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Monte Carlo procedures that need considerable tuning and may not have good convergence properties. As for

posterior conditional distributions of parameters in θ we omit details as all of them are quite standard. Provided

ut ∼ iidN (0,Σt), t = 1, ..., T , under (10) estimation is possible by using Sequential Monte Carlo (SMC) techniques,

also known as particle filtering.

When ut ∼ Sn,α,β (Σt), the major obstacle is that the density function of Sα,β(0, 1) is not available in closed

form (notice that Sn,α,β (Σ) depends, essentially, on computing n times the density function of Sαi,βi
(0, 1)). If Σ is

a constant matrix, this computation is not exceedingly difficult provide we use the FFT. When Σt is time varying,

the situation is more involved. For drawing the latent variables, the details are in Appendix B.

5 Data

The analysis uses the same data set obtained from Apergis, Christou and Kynigakis (2019). The data set is

composed of daily observations of the equity, volatility, government bond, insurance sector CDS, and bank sector

CDS indices for Europe and the US. As the authors mention: “[T]he two equity indices are the Euro Stoxx 50

index (EUEQ) and the S&P 500 index (USEQ) for Europe and the US, respectively. The VSTOXX (EUVOL)

is a volatility index based on option prices on the Euro Stoxx 50 index, while the CBOE volatility index or VIX

(USVOL) is based on options written on the S&P 500 index. The bond indices for the European Monetary Union

(EMU) and the US (EMUGB and USGB, respectively) are based on five-year sovereign bonds.

Finally, the credit default swaps indices are based on Thomson Reuter’s five-year CDS data for the European

and US bank (EUBCDS and USBCDS) and insurance sectors (EUICDS and USICDS)” (p. 5). All returns are

computed as rit = log(pit/pi,t−1), where pit is the corresponding price. The time span is from January 15, 2004

to January 14, 2012 (2,088 observations). The crisis event is set to September 15, 2008, which is the date when

Lehman Brothers filed for Chapter 11 bankruptcy.

Apergis, Christou, and Kynigakis (2019) split the sample into two periods at the date when the shock

occurred; the pre-crisis period from January 15, 2004 to September 15, 2008 and the post-crisis period from

September 16, 2008 to January 14, 2012, for a total of 1,044 observations for each sub-period. In contrast, in our

study we do not split the sample. However, results based on splitting the sample are reported in Section 6.2. The

daily market returns are filtered with a 29-lag VAR model and the residuals are used, as in Apergis, Christou, and

Kynigakis (2019).
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6 Results

6.1 Results based on the whole sample

Figure 1 presents the first principal component of αt and βt across all series. The first principal component accounts,

in both cases, for over 90% in total variation of αt and βt. Clearly, there is a break around the date of the sub-prime

crisis: from an average of 1.63, the characteristic exponent drops to 1.2 and reverts back to an average of 1.60 after,

roughly, 400 days.

Towards the end of the sample, the characteristic exponent is close to 1.7. The skewness coefficient drops from

an average of -0.25 to -0.37 and remains well below the pre-crisis level thereafter. This indicates higher skewness

towards negative values for stock returns and fatter tails relative to the pre-crisis level for 400 trading days after

the sub-prime crisis. In summary, although tails are somewhat thinner compared to the pre-crisis period, negative

skewness prevails, and has substantial time persistence. If we ignore the time-varying nature of αt and βt and

assume that they are constant over time and the same across all series, we obtain posterior densities as shown in

Figure 2.

Figure 1: Posterior mean estimates of αt and βt
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In Figure 1, we present the first principal component of αt and βt across all series. The first principal

component accounts, in both cases, for over 90% in total variation of αt and βt. Clearly, there is a break around

the date of the sub-prime crisis: From an average of 1.63, the characteristic exponent drops to 1.2 and reverts back

to average of 1.60 after, roughly, 400 days.

Towards the end of the sample, the characteristic exponent is close to 1.7. The skewness coefficient drops

from an average of -0.25 to -0.37 and remains well below the pre-crisis level thereafter. This indicated higher

skewness towards negative values for stock returns and fatter tails relative to pre-crisis level for 400 trading days

after the sub-prime crisis. In summary, although tails are somewhat thinner compared to the pre-crisis period,

negative skewness prevails, and has substantial time persistence.

If we ignore the time-varying nature of αt and βt and assume that they are constant over time and the same
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across all series, we obtain posterior densities as shown in Figure 2.

Figure 2: Marginal posterior densities of α and β
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From these densities, it turns out that the characteristic exponent is 1.3 on the average, ranging from 1.2

to 1.4, and the distribution has positive skewness. The posterior density of the skewness parameter is clearly

multimodal, with a dominant mode around -0.38 and ranging from -0.46 to -0.31. Given that this model is more

restrictive relative to the previous model, the extent of misspecification that time-varying parameters can eliminate,

is quite important.

Next, we present some evidence regarding co-skewness and co-kurtosis. In Figure 3, we provide marginal

posterior densities of the diagonal elements of Γ1 and Γ4 (panels (a) and (b)), as well as marginal posterior densities

of the off-diagonal elements of these matrices (panels (c) and (d)). All diagonal elements of Γ1 and Γ4 show that

there is substantial persistence in αt and βt with evidence of unit roots in βt as there is considerable probability

concentration around unity. The evidence is corroborated by the marginal posterior densities of parameters in Γ3

and Γ4.

From the marginal posterior densities in panels (a) and (b) of Figure 4, it is clear that all the off-diagonal

elements are away from zero so, this provides direct evidence in favor of co-kurtosis and co-skewness. Notice that

there are 100 elements in Γ3 and Γ4 so we plot 100 different posteriors in each case. For the majority of off-

diagonal elements in panels (c) and (d) of Figure 3 their marginal posterior densities are away from zero but certain

coefficients are close to zero, in a probabilistic sense.
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Figure 3: Marginal posteriors of coefficients in Γ1 and Γ4
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As certain off-diagonal elements are zero it is important to find precisely which series are involved. A contagion

test can be performed using the relevant lags of each pair in the VAR. We call it “C”. To examine whether there

is co-volatility for a given pair (“V”) we compute the generalized impulse response function (Koop, Pesaran, and

Potter, 1996) Σt implied by (10) along with its 95% highest posterior density interval.

For co-skewness (S12 and S21) and co-kurtosis (K12 and K21) we rely on the elements of Γ4 and Γ1, respec-

tively. In all cases, except “V”, we rely on a Bayes factor against the hypothesis that there is no contagion, no

co-skewness, and no co-kurtosis. The Bayes factors are computed easily using the Verdinelli and Wasserman (1995)

approximation without the need to apply MCMC for each instance.

The results are presented in Table 1 which is in the same spirit as in Tables 1–4 of Apergis, Christou, and

Kynigakis (2019).
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Table 1: Contagion, Co-volatility, co-skewness and co-kurtosis summaries
Notes: EUBCDS, USBCDS and EUICDS, USICDS are the European and US bank sector CDS indices, and the European and US insurance
sector CDS indices, respectively. EMUGB and USGB are the EMU and the US sovereign bond indices. EUEQ, USEQ and EUVOL, USVOL are
the European and US equity and volatility indices, respectively. C stands for contagion, S12 and S21 for co-skeweness, K12 and V for co-kurtosis
and V stands for co-volatility. The first column indicates the source market, while the first row indicates the recipient market. The symbols
refer to results from Apergis, Christou and Kynigakis (2019) as follows:
• CS12 in their Table 2, † CS21 , 2 CK13 in their Table 3a, ◦ CK31 in their Table 3b, 1 CV22 in their Table 4.

EUBCDS EUICDS EMUGB EUEQ EUVOL USBCDS USICDS USGB USEQ USVOL

EUBCDS – S12

S21

K12

K21

V

• †2◦ 1

S21

K21

†◦

C

S12

S21

K21

V

• †2◦ 1

S12

S21

K12

K21

V

• †2◦ 1

S12

S21

K12

K21

V

• †2◦ 1
†2◦ 1

C

S12

S21

K12

K21

• † ◦

S12

S21

K12

K21

V

• † ◦ 1

C

S12

S21

K21

• † ◦

S21

K12

K21

V

◦ †2

EUICDS C

S12

S21

K12

K21

V

• † ◦ 1

– S21

K21

C

S12

S21

K21

V

†◦

S21

K12

K21

V

†◦ 1

S12

S21

K12

K21

V

• † ◦ 1

C

S12

S21

K12

K21

V

• †2◦ 1

S12

K12

K21

V

• †2◦ 1

S12

S21

K21

V

• † ◦ 1

S21

K12

K21

◦ †2

EMUGB S12

S21

K12

K21

•2

S12

K12

K21

•2

– C

S12

K21

V

• ◦2

S12

K12

V

2

S12

S21

K12

K21

V

• †2◦

V

K21

2◦

C

S12

S21

K12

K21

V

• †2◦

S21

K12

K21

V

†2◦

S12

K12

V

•2 1

EUEQ C

S12

S21

K12

K21

V

• †2◦ 1

C

S12

K12

K21

V

• †2◦ 1

S21

K12

K21

V

†2◦ 1

– S21

K12

K21

V

• †2◦ 1

S12

K12

K21

V

•2◦ 1

S12

K12

K21

V

•2◦ 1

S21

K12

K21

V

• †2◦ 1

S21

K12

V

†2◦ 1

S21

K21

V

†◦ 1

EUVOL S12

S21

K21

V

• †2◦ 1

S12

K21

•2◦ 1

S21

K21

V

◦ 1

S12

S21

•†

– S12

K12

K21

V

•2◦ 1

C

S12

K12

•2 1

S12

K12

V

2◦ 1

S12

K12

V

2 1

S12

K12

K21

V

◦ •2 1
USBCDS S12

S21

K12

K21

V

• †2◦ 1

S12

K12

K21

V

• †2◦ 1

S12

S21

K21

V

• †2◦ 1

C

S21

K12

K21

V

†2◦ 1

S21

K21

V

†◦ 1

– C

S12

S21

K12

V

V

• †2◦ 1

S21

K12

K21

V

• †2◦ 1

S21

K12

V

K21

• †2◦ 1

S21

K12

K21

V

†2◦ 1

USICDS C

S12

S21

K12

V

• †2◦

C

K12

V

K21

• †2◦ 1

C

S21

K21

V

◦ 1

S21

K21

V

†2◦ 1

C

S21

K12

K21

†2◦ 1

C

S12

S21

K12

K21

V

• †2◦ 1

– C

S21

K12

K21

V

• †2◦ 1

K12

V

2 1

C

K12

K21

V

2◦ 1

USGB S12

S21

K12

K21

V

• †2◦ 1

V

K21

†2◦ 1

C

S12

S21

K21

V

• †2◦ 1

C

S12

S21

K12

K21

V

• † ◦ 1

V

K21

1

S12

S21

K12

K21

V

• †2◦ 1

C

S12

K12

K21

V

• †2◦ 1

– S21

K12

K21

V

†2◦ 1

K12

K21

V

2◦ 1

USEQ S12

S21

K12

• †2

S12

K12

V

• †2

S12

S21

V

•

S12

V

K21

•2

K12

K21

2

S12

S21

K12

V

• †2

K12

K21

V

2

K12

K21

V

•2

– K12

V

2 1

USVOL S12

K12

K21

V

•2◦

S12

K12

K21

•2◦ 1

S21

V

K21

†◦ 1

C

S12

V

K21

•2◦ 1

K12

V

K21

†2◦ 1

S12

K12

K21

V

•2◦ 1

C

K12

K21

V

2◦ 1

K12

K21

V

2◦ 1

K12

K21

V

2◦ 1

–
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Figure 4: Marginal posteriors of coefficients in Γ2 and Γ3
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Our results are very similar to those presented by Apergis, Christou and Kynigakis (2019). We summarize

the findings as follows:

a) Within Europe, there exists contagion between equity and bank and insurance CDSs. Furthermore,

significant contagion also occurs from insurance CDSs to bank CDSs, as well as from government bonds to equities.

Within the US, it is evident that shocks propagate between insurance CDSs and all other indices, with the exception

of equities, which are affected only by bank CDSs. In terms of regional contagion, the findings document that it

runs from US insurance CDSs to all European indices, with the exception of equities. By contrast, US insurance

CDSs are affected by both European CDSs and volatility, while contagion is transmitted to the European equities,

running from US bank CDSs, sovereign bonds and volatility. Finally, contagion spreads from European bank CDSs

to the US equities, and between sovereign bonds in both regions.

b) For co-skewness, in terms of the European markets, contagion originates from sovereign bonds and volatility

towards equities, while, in terms of the S12 and S21 statistics, there are significant volatility (contagion) spillovers

between the equity markets and all the remaining markets on both sides of the Atlantic. Sovereign bonds remain

unaffected by the rest of the European indices. In terms of the US markets, contagion is found running from

equities to sovereign bonds. Moreover, contagion runs from the European and US banking and insurance CDSs to

the majority of the remaining indices; more specifically, within Europe, the analysis detects significant contagion

running from equities to all other markets, as well as from volatility to bank CDSs and equities. By contrast, EMU

sovereign bonds do not affect any other market CDSs. Within the US, contagion also occurs running from sovereign

bonds to all indices, volatility, as well as from equities to bank CDSs. In terms of contagion across the two regions,

the findings highlight contagion running from both sovereign bonds and European equities, as indicated by tests

C12 and C21.

c) Regarding co-kurtosis the findings clearly illustrate that based on the CK13 test (which captures contagion

from the expected returns of the source market to the skewness of the recipient market), European bank CDSs,

insurance CDSs and volatility are all affected by all European indices, while in term of the CK31 test (which
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detects contagion from the skewness of the source market to the expected return of the recipient market), within

Europe, contagion runs from bank CDSs, insurance CDSs, equities and volatility, with bonds affecting only equities.

Contagion is widespread across all financial markets in the US, but US insurance CDSs do not affect any equity

and volatility, respectively. Contagion spreads from the European and US bank and insurance CDSs towards the

financial markets across both regions, while contagion occurs from the European equities to all US markets, as well

as from US government bonds and volatility to all European CDSs. In contrast, the effects of contagion are weaker

when EMU sovereign bonds, European volatility and US equities are considered as origins. In addition, from the

evidence in Figure 4, it turns out that all elements of Γ2 and Γ3 are away from zero, indicating that there is an

additional channel of contagion, running from skewness to kurtosis, and vice versa. The tests in Apergis, Christou

and Kynigakis (2019) leave this channel unexplored as existing tests in the literature do not allow to examine cross

co-skewness to co-kurtosis (panel (a)) and cross co-kurtosis to co-skewness (panel (b)).

This channel is highly significant as no parameter in Γ2 or Γ3 turns out to be close to zero. To put it

differently, there appears to exist bi-directional causality between skewness and kurtosis indices in (6) and (7). To

develop a measure of co-kurtosis we focus on (6). We need to evaluate the hypothesis H : Γ̊1 = O, where for any

square matrix A, we define Å to contain all its off-diagonal elements. From Figure 3 it is clear that there is no

support for H. To develop, however, a summary measure for each series, we estimate the full model as well as the

model under H, for the entire sample using consecutive windows of length 50. In turn, we report the Bayes factor in

favor of the full model and against H. Bayes factors in excess of, roughly, 10, indicate significant evidence in favor

of the full model and against H. For absence of co-skewness we need H : Γ̊4 = O. For absence of co-volatility we

need H : θi1 = 0 ∀i = 1, ..., d in (10). Notice that the Bayes factors we derive are conservative in the sense that we

do allow for stochastic variation in multivariate volatility, skewness and kurtosis. In Figure 5, we report marginal

posterior densities of co-volatility, co-skewness, and co-kurtosis measures for the entire data set.
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Figure 5: Posterior densities of co-volatility, co-skewness, and co-kurtosis measures
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Figure 6: Predictive Bayes factors
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Notes: EUBCDS, USBCDS and EUICDS, USICDS are the European and US bank sector CDS indices, and the European and US insurance
sector CDS indices, respectively. EMUGB and USGB are the EMU and the US sovereign bond indices. EUEQ, USEQ and EUVOL, USVOL
are the European and US equity and volatility indices, respectively.

17

Page 17 of 28

http://mc.manuscriptcentral.com/ijfe

International Journal of Finance & Economics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

In Figure 6 we present predictive Bayes factors (PBF) in favor of our general model and against (i) a model

without co-volatility, (ii) a model without co-skewness, (iii) a model without co-kurtosis, and (iv) a model without

co-skewness and co-kurtosis.2 We leave a total of 100 observations out of the sample and we re-estimate the models

using a rolling window of 10 days. We normalize the PBF for period 1 to unity for ease of comparison. The

figure provides additional evidence in favor of the fact that our full model is essential in terms of out-of-sample

performance, as the PBFs against more restricted versions are overwhelming, and tend to increase over time.

As noticed in Apergis, Christou, and Kynigakis (2019), the findings of co-skewness indicate the systemic

importance of the banking and insurance sectors (Gropp and Moerman, 2004; Allen and Carletti, 2006, respectively),

with contagion affects being prominent among bank and insurance CDS and also between the CDS and the majority

of the remaining indices, for both EU and the US.

6.2 Splitting the sample

Given the evidence on breaks documented above it is more reasonable to split the same and re-examine the robustness

of the findings. For the pre-crisis period, we were not able to document quantitatively and qualitatively important

differences. For the period in the aftermath of the subprime crisis, we summarize our evidence in Table 2, which

has the same structure as Table 1. Overall, the presence of strong contagion effects across markets clearly show

that the results reported in Table 1 are dominated by those occurred in the aftermath of the financial crisis. More

specifically:
2Marginal likelihood and, therefore, Bayes factors are a direct byproduct of Sequential Monte Carlo / Particle Filtering, see Appendix

B.

18

Page 18 of 28

http://mc.manuscriptcentral.com/ijfe

International Journal of Finance & Economics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Table 2: Contagion, Co-volatility, co-skewness and co-kurtosis summaries in the aftermath of the subprime crisis
Notes: EUBCDS, USBCDS and EUICDS, USICDS are the European and US bank sector CDS indices, and the European and US insurance
sector CDS indices, respectively. EMUGB and USGB are the EMU and the US sovereign bond indices. EUEQ, USEQ and EUVOL, USVOL are
the European and US equity and volatility indices, respectively. C stands for contagion, S12 and S21 for co-skeweness, K12 and V for co-kurtosis
and V stands for co-volatility. First column indicates the source market, while the first row indicates the recipient market. The symbols refer
to results from Apergis, Christou and Kynigakis (2019) as follows:

EUBCDS EUICDS EMUGB EUEQ EUVOL USBCDS USICDS USGB USEQ USVOL

EUBCDS – V C

V

V V K21 V C

K21

V

EUICDS C

V

– V C

V

V S12

S21

K12

K21

V

C

V

V V

EMUGB – C

V

V K21

V

V C

S

V

V

EUEQ C

V

C

V

S21

K21

V

– S21

K21

V

S12

V

S12

V

S21

V

S21 S21

EUVOL V V S21 – K21

V

S12

K12

K12

V

K12

V

V

USBCDS K21

V

K21

V

V V V – V V V

K21

K21

V

USICDS V V – V V V

USGB V V C

V

C

S12

V

V S12

S21

C

S12

– S21 K21

V

USEQ V V K21 V V V – K12

V

USVOL V V V C

V

K21

V

K21

V C

V

V V –

Even a cursory look at Table 2 shows that there are important differences relative to Table 1. To trace out

the differences we look again into marginal posterior densities as in Figures 3 and 4. The new marginal posteriors

of elements of the Γ−matrices are reported in Figures 7 and 8.
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Figure 7: Marginal posteriors of coefficients in Γ1 and Γ4 (aftermath of subprime crisis)
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off-diagonal elements of 
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(d)

Surprisingly, perhaps, the diagonal elements of Γ1 and Γ4 are much lower (approximately, 0.73 and 0.55

on the average). The off-diagonal elements are also more concentrated around zero. The same conclusion holds,

broadly, for the marginal posteriors of coefficients in Γ2 and Γ3, reported in Figure 8. Evidently, this change in

marginal posterior densities affects in a substantive way the conclusions that lead to Table 2.

Figure 8: Marginal posteriors of coefficients in Γ2 and Γ3 in the aftermath of the subprime crisis

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

elements of 
2

(a)

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

elements of 
3

(b)

Predictive Bayes factors, similar to the ones reported in Figure 6 are reported in Figure 8. Although the

Bayes factors still favor dependence in volatility, dependence in skewness is favored to a lesser extent when compared

to Figure 6). Also, Bayes factors do not favor, at least by a large margin, dependence in kurtosis (panel(c)) or
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jointly skewness and kurtosis (panel (d)).

Figure 9: Recursive Bayes factors in the aftermath of the subprime crisis
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We summarize our results as follows.

a) Within Europe, there exists contagion running from insurance CDSs to both equity markets on both sides

of the Atlantic. Furthermore, significant contagion also occurs from European insurance CDSs to European bank

CDSs and equities, as well as to US insurance CDS. In addition, contagion also is present running from European

bonds to European equity markets, as well as to US bond markets. In terms of the equity markets, contagion

also runs from these markets to the European bank and insurance markets. Within the US, it is evident that

shocks propagate mainly from the US bond markets to European bond and equity markets, as well as to the US

insurance markets. In terms of US volatility, contagion also occurs onto the US equity and insurance market. The

results seem to be online with a number of studies from the CDS literature. For instance, Belke and Gokus (2011)

suggest that volatility takes a significant higher level in times of crisis, which is particularly evident in the variances

of stock returns and CDS spread changes. Furthermore, they provide evidence that correlations and covariances

also increase after the outbreak of the 2008 crisis, indicating stronger dependency among the examined variables.

Similar findings are provided by Jacobs, Karagozoglu and Peluso (2010) who document that risk aversion, as well

as the uncertainty about credit products (e.g., bonds and CDS) increases after the crisis in a sense that borrowers

paid higher compensations to potential investors for bearing default risks.

b) For co-skewness, in terms of the European markets, there is mutual contagion between European insurance
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and US bank CDS markets. In addition, European equity markets have received substantial contagion from all

markets in Europe and in the US, while they exert significant contagion in both US bank and insurance CDS markets.

In terms of the US markets, contagion is found running from sovereign bonds to equities, as well as to both bank

and insurance CDS markets. The findings corroborate those provided by Norden and Weber (2009), Schreiber et

al. (2009), and Rhaman (2009) who persuasively assert that the correlations between CDS spreads of different

institutions, as well as those between CDS, bond and equity markets increase in turbulent times which indicates

contagion effects. c) Regarding co-kurtosis the findings clearly illustrate that based on the CK13 test (which captures

contagion from the expected returns of the source market to the skewness of the recipient market), European bank

CDSs, insurance CDSs and volatility are all affected by all European indices. Contagion is widespread across all

financial markets in the US. Contagion spreads from the European and US bank and insurance CDSs towards the

financial markets across both regions, while contagion occurs from the European equities to all US markets, as well

as from US government bonds and volatility to all European CDSs. This time, the effects of contagion remain even

when EMU sovereign bonds, European volatility and US equities are considered as origins. These results receive

support from certain studies in the relevant literature. For instance, Heinz and Sun (2014) in an effort to analyse

sovereign CDS drivers show that bank CDSs and sovereign bonds are closely related in terms of volatility, especially

after the financial crisis event.

Similarly, Acharya et al. (2013) present cross-country evidence about the potential for banks to trigger fiscal

crises and, thus, ignite contagion effects. Their evidence documents that since 2010, sovereign risk has become a

major concern with spillover effects from and to financial risk, due to the fact that banks have been heavily exposed

to the sovereign risk.

Concluding remarks

This study used the family of multivariate stable distributions to provide measures of co-volatility, co-skewness

and co-kurtosis in a principled way, avoiding the shortcomings of recent tests that assume the presence of higher

moments, and perform only pairwise comparisons. As in Apergis, Christou and Kynigakis (2019), the analysis looked

at set of bank CDSs, insurance CDSs, sovereign bonds, equity and volatility indices. The findings corroborated

the results by Apergis, Christou and Kynigakis (2019) and indicated significant evidence of contagion, especially

through the channels of higher order moments.

Following these authors, the subprime crisis was selected to be the decisive crisis event, using data on bank

CDSs, insurance CDSs, sovereign bonds, equity and volatility indices, spanning the period 2004-2012. The evidence

corroborated Apergis, Christou and Kynigakis (2019) in that not only co-volatility, but also co-skewness and co-

kurtosis showed that these are important additional channels of contagion, mainly in the bank and insurance

CDS markets. Although the literature had identified that contagion phenomena do not occur very frequently, our
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results provided evidence that contagion effects are very prevalent across important (developed) financial markets.

As a result, policymakers should adopt policies to maintain financial stability, thus, minimizing the likelihood of

contagion events that harmfully impact markets and economies confidence. In that sense, they should establish

stable macroeconomic environments, as well as resilient domestic financial systems. Moreover, there must be some

extensive collaborating efforts between domestic and international supervisory authorities that would guarantee

efficient financial surveillance methods ending up with low negative spillovers running from financial markets to the

real economy.

Appendix A. Givens decomposition
The Givens parametrization is based on the spectral decomposition of Σ given in (8) and the fact that the eigenvector

matrix U can be represented by n(n− 1)/2 angles, used to generate a series of Givens rotation matrices (Thisted,

1988, §3.1.6.6., Pinheiro and Bates, 1996). Specifically, we have:

U = G1G2 . . . Gn(n−1)/2, (A.1)

where

Gi(j, k) =



cos(ψi), if j = k = m1(i) or j = k = m2(i),

sin(ψi), if j = m1(i), k = m2(i),

−sin(ψi), if j = m2(i), k = m1(i),

1, if j = k 6= m1(i) and j = k 6= m2(i),

0, otherwise,

(A.2)

where m1(i) < m2(i) ∈ {1, ..., n} subject to: i = m2(i) − m1(i) +
(m1(i)−1)(n−m1(i))

2 . In turn, assume that the

eigenvalues of Σ have been sorted in ascending order. We use the Jupp (1978) parametrization:

δi = ln (λi − λi−1) , i = 1, ..., n, λ0 = 1,

δn+i = ln
(

ψi

π−ψi

)
, i = 2, ..., n(n− 1)/2.

(A.3)

To ensure uniqueness of the Givens parametrization we must have ψi ∈ (0, π), i = 1, ..., n(n−1)/2. The main

advantage of the Givens parametrization is that the first n elements of δ provide information about the eigenvalues

of Σ directly. Unsurprisingly, one cannot relate δ to the other elements of Σ in a straightforward way. However, in

(A.3) the δis are unrestricted so, we can recover λis and ψis to use in (A.2), then in (A.1), and, finally, in (8).
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Appendix B. Sequential Monte Carlo
Suppose we have δ(1)1:T from the previous iteration. The particle filtering procedure consists of two phases.

Phase I: Forward filtering (Andrieu et al., 2010).

• Draw a proposal δ(m)
it from an importance density q(δit|δ(m)

i,t−1, θ),m = 2, ...,M .

• Compute the importance weights:

w
(m)
it =

p(yit; δ
(m)
it , θ)p(δ

(m)
it |δ(m)

i,t−1, θ)

q(δit|δ(m)
i,t−1, θ)

,m = 1, ...,M. (B.1)

• Normalize the weights: w̃(m)
it =

w
(m)
it∑M

m′=1
w

(m′)
it

,m = 1, ...,M .

• Resample the particles {δ(m)
it ,m = 1, ...,M} with probabilities {w̃(m)

it ,m = 1, ...,M}.

In the original PG sampler, the particles are stored for t = 1, ..., T , and a single trajectory is sampled using the

probabilities from the last iteration. An improvement upon the original PG sampler was proposed by Whiteley

(2010), who suggested drawing the path of the latent variables from the particle approximation using the backwards

sampling algorithm of Godsill et al. (2004). In the forwards pass, we store the normalized weights and particles

and we draw a path of the latent variables as we detail below (the draws are from a discrete distribution).

Phase II: Backward filtering (Chopin and Singh, 2013, Godsill et al., 2004).

• At time t = T draw a particle δ∗iT = δ
(m)
iT .

• Compute the backward weights: w(m)
t|T ∝ w̃

(m)
t p(λ∗i,t+1|δ

(m)
it , θ).

• Normalize the weights: w̃(m)
t|T =

w
(m)

t|T∑M
m′=1

w
(m′)
t|T

,m = 1, ...,M .

• Draw a particle δ∗it = δ
(m)
it with probability w̃(m)

t|T .

Therefore, δ∗i,1:T = {δ∗i1, ..., δ∗iT } is a draw from the full conditional distribution. The backwards step often results in

dramatic improvements in computational efficiency. For example, Creal and Tsay (2015) find that M = 100 particles

is enough. There remains the problem of selecting an importance density q(δit|δi,t−1, θ). We use an importance

density implicitly defined by δit = ait +
∑P
p=1 bitδ

p
i,t−1 + hitξit where ξit follows a standard (zero location and unit

scale) Student-t distribution with ν = 5 degrees of freedom. That is, we use polynomials in λi,t−1 of order P .

We select the parameters ait, bit and hit during the burn-in phase (using P = 1 and P = 2) so that the weights

{w̃(m)
it ,m = 1, ...,M} and {w̃(m)

t|T ,m = 1, ...,M} are approximately not too far from a uniform distribution.
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Chopin and Singh (2013) have analyzed the theoretical properties of the PG sampler, and proved that the

sampler is uniformly ergodic. They also prove that the PG sampler with backwards sampling strictly dominates

the original PG sampler in terms of asymptotic efficiency.

Alternatively, when the dimension of the state vector is large, we can draw δi,1:T , conditional on all other paths

δ−i,1:T that are not path i. Therefore, we can draw from the full conditional distribution p(δi,1:T |δ−i,1:T ,y1:T , θ).
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