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 13 

Combining magnetostratigraphy and organic carbon isotopic changes has allowed a more 14 

precise position to be determined for the base of the Norian in Svalbard successions. A 15 

magnetostratigraphy is constructed from two sections (Binnedalen, Nørdstefjellet) from the 16 

northern end of Hopen Island (southern Svalbard archipelago), from the De Geerdalen 17 

Formation and the lowest part of the Flatsalen Formation. A magnetostratigraphy is also 18 

determined from the upper part of the De Geerdalen Formation on Wilhelmøya (eastern 19 

Svalbard). On Hopen a composite magnetostratigraphy tied to the Binnedalen section was 20 

constructed using correlation based on detailed photographs and logs of the adjacent cliffs. 21 

The palaeomagnetic data shows a strong Brunhes overprint, but mean palaeomagnetic 22 

directions pass the reversal test and are consistent with other Triassic virtual geomagnetic 23 

palaeopole data from Svalbard. The palaeomagnetic signal is carried by magnetite. Organic 24 

carbon isotope data identifies three negative excursions in the Hopen succession— below the 25 

Hopen Member, within the upper Hopen Member and at the De Geerdalen – Flatsalen 26 

formation boundary. The carbon isotope variations are correlated to Tuvalian (late Carnian) 27 

excursions seen in lower paleolatitude sections. The magnetostratigraphy of the Isfjorden 28 

Member from Wilhelmøya and central Spitsbergen are similar, and when integrated with the 29 

carbon isotope stratigraphy suggests that the Isfjorden Member is not equivalent to the units 30 

of the De Geerdalen Formation exposed on northern Hopen, but is older. These relationships 31 

suggest the sequence boundary at the base of the Wilhelmøya Subgroup probably cuts down 32 

into mid Tuvalian age strata of the De Geerdalen Formation in Spitsbergen and Wilhelmøya, 33 

but only into the latest Tuvalian strata on Hopen. A revised Tuvalian geomagnetic polarity 34 

scale is also proposed, linked to the carbon isotope excursions. 35 
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 49 

Introduction 50 

The Upper Triassic in the Barents Sea and Svalbard consists of the Kapp Toscana Group 51 

which is divided into two subgroups (Figs. 1 & 2a). These subgroups show major regional 52 

differences in sedimentary systems (Riis et al., 2008; Klausen et al., 2015), an upwards 53 

decrease in accumulation rates (Anell et al., 2014; Rismyhr et al., 2018) and an increase in 54 

sandstone maturity (Mørk, 1999). This major boundary is marked by the base of the 55 

Wilhelmøya Subgroup (Flatsalen and Knorringfjellet formations) in Svalbard and the base of 56 

the Fruholmen Formation in the Barents Sea (Fig. 2a). 57 

The inferred position of the Carnian–Norian boundary with respect to the lithostratigraphy 58 

and sequence stratigraphy has varied between studies, in part due to the poor 59 

chronostratigraphic constraints available from the underlying De Geerdalen Formation. The 60 

Carnian–Norian boundary has been variably placed: 1) in the mid De Geerdalen Formation 61 

(Hochuli et al., 1989; Harland, 1997), 2) at the base of the Isfjorden Member of the De 62 

Geerdalen Formation (Pčelina, 1972; Riis et al., 2008; Nagy et al., 2011; Anell et al., 2014; 63 

Mueller et al., 2016; Paterson et al., 2016; Lord et al., 2019; Fig. 2a); 3) in the top-most De 64 

Geerdalen or Snadd formations (Glørstad-Clark et al., 2010; Klausen et al., 2015; Paterson & 65 

Mangerud, 2015; Gilmullina et al., 2021), and 4) at the base of the Wilhelmøya Subgroup 66 

(Lord et al., 2014; Vigran et al., 2014; Paterson & Mangerud, 2020, Gilmullina et al., 2021).  67 

Part of the uncertainty in the placement of the base of the Norian in these units relates to the 68 

lack of an agreed global stratotype section and point (GSSP) for the base of the Norian; 69 

something that has been resolved recently (Hounslow et al., 2021b), but the GSSP remains to 70 

be ratified by the International Commission on Stratigraphy. The base Norian is now 71 

expected to be placed at the first occurrence of the flat clam Halobia austriaca in the Pizzo 72 

Mondello section in Sicily (Hounslow et al., 2021b). 73 

In addition, age control using the multiple sets of palynological zonations proposed (Fig. 2b), 74 

can only be generated through their relationship to other chronostratigraphic correlation tools, 75 

since the ranges of many palynomorphs in the Svalbard and Barents Sea region generally 76 

extend into older intervals than successions from more southerly palaeolatitudes (such as in 77 

the Germanic Basin), due to climatic and environmental controls (Smith, 1982; Cirili, 2010, 78 

Paterson & Mangerud, 2020). The key tools for providing the independent 79 

chronostratigraphic correlation are therefore the sporadic ammonoid occurrences (Smith, 80 

1982; Korchinskaya, 1980; Dagys & Weitschat 1993, Fig. 2a), and magnetostratigraphy 81 

(Hounslow et al., 2007; Lord et al., 2014).  82 

Magnetostratigraphy provides age control through correlating the pattern of polarity changes 83 

between sections. Polarity boundaries are ideally synchronous (at a few ka uncertainty) at a 84 

global scale, providing a means for detailed chronostratigraphic correlation. The age-85 

calibrated pattern of polarity changes in the Late Triassic is reasonably well known (Krystyn 86 
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et al., 2002; Gallet et al., 2003; Hounslow & Muttoni, 2010; Maron et al., 2019), although the 87 

pattern of polarity changes in the mid Carnian is less clear. The magnetostratigraphy of the 88 

early Carnian (Julian Substage) is reasonably well known from Tethyan sections at Prati di 89 

Stuores (Broglio Loriga et al., 1999; Mietto et al., 2012), Bolücektasi Tepe (Gallet et al., 90 

1992) and Mayerling (Gallet et al., 1994, 1998). The magnetostratigraphy of the late Carnian 91 

(Tuvalian Substage) and early Norian (Lacian Substage) is well studied from sections at 92 

Pizzo Mondello (Muttoni et al., 2004), Silická Brezová (Channell et al., 2003) and Kavaalani 93 

(Gallet et al., 2000) and some other sections (Maron et al., 2017). The geomagnetic polarity 94 

during the mid Carnian is either inferred as unknown (Maron et al., 2019), or the 95 

magnetostratigraphy from the poorly dated Stockton Formation of the Newark Supergroup is 96 

projected downwards into this interval (Hounslow & Muttoni, 2010; Kent et al., 2017; Zhang 97 

et al., 2020).  98 

The aims of this work have been to provide a magnetostratigraphy from the Kapp Toscana 99 

Group on Hopen and Wilhelmøya (Fig. 1), in sections which cover the interval from the 100 

upper parts of the De Geerdalen Formation into the lower part of the Flatsalen Formation 101 

(Fig. 2a), thereby addressing the issue of a more precise position for the base of the Norian. 102 

We also use organic carbon isotope stratigraphy to constrain polarity correlations in this 103 

interval, by proposing a succession of negative carbon isotope excursions in the Tuvalian and 104 

earliest Lacian that allow additional correlation to low palaeolatitude sections. This analysis 105 

also provides a revised geomagnetic polarity record through the Tuvalian tied to the carbon 106 

isotope excursions. 107 

 108 

Regional lithostratigraphy and sequence stratigraphy 109 

The De Geerdalen Formation below the Isfjorden and Hopen members (Fig. 2a) consists of 110 

repeated coarsening-upward sandstone bodies separated by shales (Lord et al., 2017), inferred 111 

as prograding units. The sandstone bodies vary in thickness from a few metres up to 30 m and 112 

represent development of deltaic channel sandstones, coastal and shoreface sandstones and 113 

offshore sandstone bodies (Mørk et al., 1982, Riis et al., 2008). The major sandstone bodies 114 

can show great thickness variations laterally, over several hundred metres, because of the 115 

development of channel systems. The De Geerdalen Formation thickens from 200 – 300 m on 116 

central and eastern Spitsbergen (Mørk et al., 1999; Mørk & Worsley, 2006) to about 700 m at 117 

Hopen (Riis et al., 2008).  118 

The Isfjorden Member (50 – 70 m thick) is dominated by siltstone and shale with thin 119 

sandstone beds, occasionally phosphatic and most significantly bioclastic beds and red to 120 

green nodular (i.e., in part calcrete) palaeosols (not seen in the underlying parts of the De 121 

Geerdalen Formation; Haugen, 2016; Lord et al., 2017). The Hopen Member. (66 –70 m 122 

thick) is a heterolithic unit without coals or palaeosols, comprising dark shales and 123 

interbedded hummocky cross-bedded sandstones, with rare bivalves (Lord et al., 2014). The 124 

N1 3rd order sequence of Klausen et al. (2015) is represented by the upper parts of the Hopen 125 

Member, with the lower parts of the Hopen Member and underlying De Geerdalen Formation 126 

(on Hopen) equivalent to the upper parts of the older C4 3rd order sequence (Fig. 2a). 127 

On Spitsbergen and Wilhelmøya the Slottet Bed overlies the Isfjorden Member (Lord et al., 128 

2017), but on Hopen it overlies the Hopen Member (Lord et al., 2014; Fig 2a). The Slottet 129 

Bed marks the base of the Wilhelmøya Subgroup over a large part of Svalbard. The Slottet 130 

Bed (often 2–3 m thick) is a regionally quite variable unit, in places a calcareous glauconitic 131 

sandstone with phosphatic nodules ranging to a calcareous siltstone and sometimes a 132 

polymict conglomerate. It is not known on Barentsøya and Edgeøya (Fig. 2a). Internal 133 



 

 

CIE Magnetostratigraphy: 4 

 

channelling and planar and hummocky cross stratification are common in the sandier 134 

expressions of the Slottet Bed (Mørk et al., 1999; Lord et al., 2017; Rismyhr et al., 2018). In 135 

central and western Spitsbergen, the base of the Slottet Bed (lowest part of the Knorringfjellet 136 

Formation) is a combined subaerial unconformity which down-cuts into the underlying De 137 

Geerdalen Formation (Rismyhr et al., 2018). The Slottet Bed is likely a condensed 138 

transgressive deposit at the base of the Wilhelmøya Subgroup and represents the upper part of 139 

the N1 3rd order sequence of Klausen et al. (2015). On Hopen the overlying Flatsalen 140 

Formation (Wilhelmøya Subgroup) is a marine dark-grey shale unit with regularly spaced 141 

beds of bioturbated fine-grained sandstone, containing siderite-nodules (Lord et al., 2019). 142 

This represents the N2 and overlying R1 3rd order sequences of Klausen et al. (2015).  143 

Biostratigraphy 144 

On Svalbard, Carnian to Norian ammonoid dated units are restricted to two intervals. Firstly, 145 

in the lowest part of the Tschermakfjellet Formation where ammonoids define the Stolleyites 146 

tenuis Zone (Dagys & Weitschat 1993; Konstantinov, 2014; Fig. 2a), which immediately 147 

follows the earliest Carnian Daxatina canadensis Zone (Mietto et al., 2012), which is only 148 

found on Bjørnøya in the Skuld Formation (lithologically like the Tschermakfjellet 149 

Formation; Mørk et al., 1990; 1999).  150 

Secondly, ammonoids from the mid and upper parts of the Flatsalen Formation on Hopen 151 

(Fig. 2a), described from studies of Russian workers (Konstantinov & Sobolev, 2000). From 152 

Hopen, Korčinskaya (1980) describes Norosirenites nelgehensis, N. obruchevi and “sirenites” 153 

nabeshi from the Flatsalen Formation, which in NE Asia occurs in the Pinacoceras 154 

verchojanicum Zone (Zakharov 1997; Konstantinov & Sobolev, 2000). Konstantinov & Klets 155 

(2009) and Bragin et al. (2012) correlate this zone to the mid parts of the early Norian. The 156 

Flatsalen Formation also contains nautoloids suggesting a similar relationship to the NE 157 

Asian Norian zonations (Konstantinov & Sobolev, 2000). In NE Asia the occurrence of the 158 

conodont Norigondolella navicula in the same beds bearing the P. verchojanicum Zone 159 

ammonoid fauna (Konstantinov et al., 2003; Bragin et al. 2012), suggests much the same 160 

correlation, with the range of N. navicula corresponding to the interval approximately from 161 

near the base of the Lacian-1 (Tethyan Jandianus Zone) to mid parts of Lacian-2 interval 162 

(Tethyan, Paulckei Zone), of Krystyn’s (1980) Tethyan substage divisions (Krystyn et al., 163 

2002; Orchard, 2010). The inferred base of the Norian expressed in the chronostratigraphy of 164 

the NE Asian ammonoid zonations is a level approximately at or slightly below the first 165 

occurrence of H. austriaca (i.e., base Norian GSSP) at the Pizzo Mondello section 166 

(Hounslow et al., 2021b).  167 

The age equivalence of the Hopen and Isfjorden members has been proposed (Mørk et al., 168 

2013; Lord et al., 2014), partly based on the marine intercalations throughout the Isfjorden 169 

Member. Whilst palynological zonations of the upper De Geerdalen Formation are well 170 

established on Hopen and in equivalent units in the Barents Sea (Fig. 2b), the palynological 171 

characterisation of the Isfjorden Member is less well defined. Palynological data for the 172 

Isfjorden Member come from the Festningen section in western Spitsbergen, and at 173 

Dalsnuten and the DH4-CO2 core from central Spitsbergen (Vigran et al., 2014; Rismyhr et 174 

al., 2018). The upper part of the Isfjorden Member (in the DH4 core and Festningen section) 175 

has miospores indicating the Protodiploxypinus spp. Zone of Paterson & Mangerud (2020). 176 

The Protodiploxypinus spp. Zone also occurs in the Hopen Member (Fig. 2b), and locally in 177 

the upper c. 20 m of the underlying De Geerdalen Formation (Paterson & Mangerud, 2015), 178 

suggesting the Hopen and Isfjorden members may be partly correlative, or represent similar 179 

sets of palynofacies. However, from Dalsnuten the lower part of the Isfjorden Member 180 

contains common to dominant Leschikisporis aduncus (Vigran et al., 2014), the major 181 
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component of the underlying L. aduncus Zone (Paterson & Mangerud, 2020) of the De 182 

Geerdalen Formation, that underlies the Hopen Member on Hopen. This indicates a 183 

potentially older age for part of the Isfjorden Member in central Spitsbergen.  184 

Sampling and intersection correlation 185 

Oriented paleomagnetic samples were collected from two sections on the northern end of 186 

Hopen: A) The Binnedalen section during 2011 (Figs. 1c & 3), and B) a section on the NW 187 

cliff of Nørdstefjellet during 2010 (Figs. 1c & 4). The Binnedalen section has been 188 

extensively sampled for palynology (Paterson & Mangerud, 2015) and both sections have 189 

been studied for sedimentology (Lord et al., 2014). The Hopen outcrops represent only the 190 

upper part of the De Geerdalen Formation (Fig. 2a). 191 

Paleomagnetic samples were also collected from the Tumlingodden section on Wilhelmøya 192 

above the dolerite sill in the section, covering a c. 100 m interval through the uppermost part 193 

of the De Geerdalen Formation and lowermost part (basal unit of Worsley, 1973) of the 194 

Flatsalen Formation (Figs. 1a & 5, SI Fig. S2). Haile et al. (2019) has described the lower 195 

part of the De Geerdalen Formation below the dolerite sill in the section. At Tumlingodden 196 

sampling started some 59 m stratigraphically above the dolerite intrusion that occurs in the 197 

middle parts of the De Geerdalen Formation, well above the apparent effects of heating from 198 

the underlying sill. A further 3 sample levels from the dolerite intrusion and its contact 199 

metamorphic interval were collected to investigate potential thermal overprint magnetisations 200 

on the palaeomagnetic data from the De Geerdalen Formation.  201 

In each case samples were oriented with a magnetic compass and an orientation staff. 202 

Collected samples were re-oriented in plaster and cut into palaeomagnetic specimen cubes on 203 

a diamond saw (fragmented samples were glued together using Na-silicate or PVA glue). In 204 

most cases, several sister specimens were cut from each block to measure. A variety of 205 

lithologies were sampled including sandstones, siltstones and claystones. 206 

The sampling levels from the Nørdstefjellet section on Hopen were correlated to the 207 

Binnedalen section, using field notes, and photo correlation of selected levels between the 208 

two sections (Figs. 3 & 4 and SI Fig. S1). Interpretation of the section photos allowed us to 209 

determine several bed-levels which could be correlated between the sections and mapped 210 

onto the logs of the sections. This allowed us to approximate the position of the Nørdstefjellet 211 

section samples onto the Binnedalen log, with an accuracy of about 1–2 metres (Fig. 6). 212 

The inter-section correlations were controlled by 4 primary bed-levels: 213 

1) S1 level, corresponding to the upper level of Solvi (2013) Channel-1 sandstone, which is 214 

clearly seen to pinch out to the North adjacent to the sampled Nørdstefjellet section 215 

(rightside of Fig. 4). This same bed-level is probably displaced by the fault to the north of 216 

the main Binnedalen section (rightside of Fig. 3) and constitutes the lowest part of the 217 

sampled section at Binnedalen. 218 

2) S2 level, corresponding to the upper beds of the Channel-2 of Solvi (2013). This level can 219 

be traced from the cliffs to the south to intersect with the Nørdstefjellet section (Figs. 3 & 220 

4 SI Fig. S1), and is clearly seen in the main Binnedalen section log as the dominant 221 

channel sandstone at around 55 m height (Fig. 3; sandstone channel off to the south of the 222 

photograph). 223 

3) A distinctive thick shale layer (called HMS) in the upper part of the Hopen Member 224 

(Solvi, 2013; Lord et al., 2014) seen in the cliff photos of both sections (Figs. 3 & 4). This 225 

lies directly below a cliff-forming unit in the upper part of the Hopen Member. South of 226 

the Binnedalen section this shale layer becomes less distinct in the cliff photographs. 227 
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4) The Slottet Bed (SL level; Figs. 3 & 4) at the base of the Flatsalen Formation. 228 

Within these basic divisions, secondary correlation levels were used: 229 

A. The upper boundary of a strongly banded interval (many ~1 m-thick sandstone beds in 230 

shale) in the lower part of the sections (Figs. 3 & 4) 231 

B. A prominent ledge about 5 m above the S2 level (Figs. 3 & 4). This bed-level correlation 232 

implies there are some substantial thickness variations in the beds which underlie and 233 

overlie this level. 234 

HM1 to HM3, three distinctive intervals within the lower part of the Hopen Member, which 235 

can be correlated between these two sections (Figs. 3 & 4) 236 

The detailed correlation of the sample heights from the Nørdstefjellet onto the Binnedalen 237 

section, using the bed-levels outlined above is indicated by the correlation lines in Fig. 6.  238 

Methods 239 

Palaeomagnetic methods 240 

Measurements of natural remanent magnetisation (NRM) were made using a CCL cryogenic 241 

magnetometer (noise level ~2 A/m), using three specimen positions (12 measurements of 242 

x,y,z in total), from which the magnetisation variance was determined. Other than when 243 

being measured or demagnetised, specimens were housed in Mu-metal boxes with an ambient 244 

magnetic field <10 nT. Low frequency magnetic susceptibility (K) was monitored after 245 

heating steps, measured using a Bartington Ltd. MS2B sensor to assess thermal alteration. 246 

The NRM of specimens from all sections were treated with a combination of thermal and 247 

alternating field (AF) demagnetisation. Thermal demagnetisation used a Magnetic 248 

Measurements Ltd. MMTD, and AF demagnetisation used a reverse-tumbling Molspin Ltd. 249 

demagnetiser. The magnetisation directions were extracted from the demagnetisation data 250 

using principal component analysis as implemented in the LINEFIND software (Kent et al., 251 

1983). This analysis extracts characteristic magnetisation components (ChRM), utilising the 252 

variance from the multiple measurements at each demagnetisation step. The software has 253 

statistical procedures for objective identification of linear and planar structure. Details on 254 

using this program and its merits over conventional methods are in Hounslow et al. (2021a). 255 

Specimen behaviour during demagnetisation was classified into two types. Firstly, S-type 256 

behaviour in which the ChRM could be defined, using three or more points on a straight-line 257 

segment, commonly directed through the origin. Specimens were visually classified into three 258 

sub-groups (S1, S2 and S3), with S1 having the least noisy line fits and most datapoints in the 259 

ChRM range and S3 the noisiest (S3 line fits had > = 3 datapoints). Secondly, T-type 260 

behaviour in which specimen data exhibited a great-circle path towards an interpreted 261 

Triassic-like direction. Specimens with T-type behaviour were classified qualitatively into 262 

best quality (T1) and inferior quality (T2, T3) great-circle trends, based on the directional 263 

scatter. Average fitting statistics for these qualitative demagnetisation classes are in SI Table 264 

S2. 265 

Based on the specimen demagnetisation data, each specimen was assigned a qualitative 266 

polarity-quality rating. This comprised 7 classes, 3 for each of normal and reverse polarity, 267 

with the samples labelled N (or R) showing the best quality data, and N?, N?? (or R?, R??) 268 

for poorer quality data (Fig. 7). The last ‘?’ class is for specimen data in which it is not 269 

possible to unambiguously interpret the geomagnetic polarity recorded. The virtual 270 

geomagnetic pole (VGP) latitude (Opdyke & Channell, 1996) of specimen data was 271 
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determined using the mean direction determined from the section as the reference pole 272 

(Pmagtool v.5 software was used; Hounslow, 2006). For the T-class specimens, the VGP 273 

latitudes were determined by using the point on the specimen great-circle plane nearest the 274 

appropriate section mean direction (i.e., ‘all’ means from Table 1; like in Hounslow et al., 275 

2007; 2008a). We also use the VGP-mean dispersion (A95; Table 1) and the A95min and 276 

A95max thresholds of Deenen et al. (2011) as an expression of likely capture of secular 277 

variation in the directional data. 278 

Carbon isotopes 279 

A sub-sample from the palaeomagnetic samples was measured for 13Corg. The ~20 g sub-280 

sample was powdered in a ball mill, and carbonate minerals were removed by reacting the 281 

homogenised material with 6N HCl at 25°C for 24 hours, which also removes siderite and 282 

ankerite (Larson et al., 2008; Brodie et al., 2011). After reaction-ceased, residues were 283 

washed several times with distilled water to remove any traces of acids. Residues were then 284 

oven-dried at 50°C for 24 hours and subsequently re-powdered prior to δ13Corg isotope 285 

analysis. Decarbonated residues were weighed into tin capsules and loaded into an auto-286 

sampler connected to an Elementar Vario MICROcube, from where they were dropped into 287 

the furnace at 950oC. Produced gases were passed (under He) through chemical traps to 288 

remove sulphur, excess oxygen, and water. Large sample volumes could be used, so we could 289 

reliably measure δ13Corg down to around 0.02% total organic carbon. Percent total carbon 290 

(%C) and total nitrogen (%NT) were measured with a precision of c. 0.01%. Nitrogen was 291 

separated from CO2 by temperature programmed desorption. The isotopic composition of the 292 

resultant purified CO2 was then measured using an Isoprime100 Isotope mass spectrometer. 293 

Carbon isotope ratios are reported as delta values (δ13C) in per mil relative to the international 294 

VPDB scale (standards used: NBS-18 = -5.0140/00; LSVEC = -46.60/00). Analytical precision 295 

(1σ) is estimated to be c. ± 0.15‰ for δ13Corg based on the replicate analysis of pure, well-296 

mixed, organic compounds used as laboratory calibration materials.  297 

Results 298 

For most lithologies the last useful thermal demagnetisation heating step was dictated by the 299 

onset of mineralogical alteration (i.e., start of the ‘susceptibility crisis’), which for many 300 

specimens began at about 200–250oC. This prevented much useful data thermal 301 

demagnetisation data beyond ~250oC. Magnetic susceptibility measurements were made after 302 

each heating step to identify this susceptibility crisis step during initial runs. Following trials, 303 

identifying the crisis point with respect to lithology, specimens were subsequently AF 304 

demagnetised following thermal demagnetisation at temperatures just prior to the on-set of 305 

the susceptibility crisis. Tumbling AF demagnetisation was in 5 – 10 mT steps until magnetic 306 

fields of 70 – 90 mT. Thermal demagnetisation of isothermal remanent magnetisation (IRM) 307 

and IRM backfield demagnetisation indicates magnetite dominates the magnetic mineralogy 308 

(SI Figs. S6 & S7; SI Table S1). 309 

A low-stability component (LT component) was typically isolated with thermal 310 

demagnetisation, with most LT components starting from 100 – 160oC, until the early or 311 

occasionally mid stages of alternating field (AF) demagnetisation (see SI excel file for 312 

details). The LT directions show mean directions scattered around a northerly down-directed 313 

magnetisation with a mean inclination of ~83o (SI Fig. S3a). The expected inclinations (Inc.) 314 

for the Brunhes-age (i.e., 0.7 Ma to 0 Ma) magnetic field at the latitude of Hopen and 315 

Wilhelmøya are 83.3o and 84.6o , respectively. The mean LT component is similar in 316 

inclination in both Hopen sections and was probably acquired during the Brunhes.  317 
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For the Tumlingodden section the magnetisation in the dolerite sill (SI Fig. S3b) has a ChRM 318 

mean direction of Dec. = 191°, Inc. = -70° (95 = 17.6°, k = 22.6, n = 5). The specimens from 319 

the De Geerdalen Formation in the section, mostly show typical LT component behaviour 320 

like samples on Hopen, without low-stability reverse polarity directions, as might be expected 321 

if heating or alteration had taken place due to the dolerite intrusion. Therefore, the 322 

demagnetisation data indicate the dolerite intrusion has not imparted the ChRM directions 323 

observed in the De Geerdalen Formation.  324 

The ChRM was commonly defined starting with the last thermal demagnetisation steps (240–325 

300oC), or the early stages of AF demagnetisation (Figs. 7 & 8). The end range of the ChRM 326 

component typically went to the 60 – 75 mT steps or the origin of the Zijderveld plot. In 327 

some specimens, noise imparted by the AF demagnetiser at high fields (>~75mT), often 328 

precluded origin-fits. S-type behaviour is seen in 38% and 20% of specimens from Hopen 329 

and Wilhelmøya, respectively. On Hopen only 2% of these S-type specimens are inferred to 330 

be reverse polarity (Fig. 9b, c), whereas on Wilhelmøya 50% are reverse polarity (Fig. 10b, 331 

c). Some 62% of specimens on both Hopen and Wilhelmøya displayed T-type behaviour 332 

(Figs. 9 & 10). On Hopen, these are dominated by specimens inferred to have reverse polarity 333 

Triassic magnetisations. This kind of polarity-related demagnetisation behaviour is common 334 

in Triassic and Permian samples from Svalbard (Hounslow et al., 2007, 2008b; Hounslow & 335 

Nawrocki, 2008). The inability to fully isolate S-class ChRM directions in most inferred 336 

reverse polarity specimens is probably due to some stability-overlap between the LT 337 

component and the Triassic magnetisation. This overlap of unblocking spectra causes large 338 

arc-length great circle trends in reverse polarity specimens, due to the large directional 339 

difference (c. 160o) between Triassic reverse polarity and the overprint (i.e., the Brunhes 340 

magnetic field; Fig. 7a, b, d). In inferred normal specimens the directional difference between 341 

the Brunhes magnetic field and the Triassic normal polarity magnetic field is smaller (c. 20o), 342 

and great circle trends are less apparent, and near-straight line-like demagnetisation 343 

trajectories dominate (within the measurement uncertainty; Fig. 7c, e, g).  344 

The mean directions of the reverse and normal polarity Triassic directions were determined 345 

(Table 1) by combining the great circles (right of Fig. 8) and the S-class ChRM data in the 346 

combined great circle analysis of McFadden & McElhinney (1988) (see Hounslow et al., 347 

2007, 2008b for details). The VGP-site-mean, A95 is within the thresholds of Deenen et al. 348 

(2011) indicating directional dispersion is within the range of secular variation for all the 349 

sections (Table 1). Reversal tests are also positive (class Rb, Rc) for all the three sections, 350 

and for all the Hopen data combined (Table 1). The sample set includes a few percent of 351 

samples with %VGP45 <|45o| (Table 1), implying a few transitional fields, but these amounts 352 

are within the nominal range of 3–4% expected from recent field models (Cromwell et al., 353 

2018).  354 

Polarity stratigraphy 355 

On Hopen, the resulting magnetozone R–N couplets (labelled HO, for Hopen), generated by 356 

merging the data from the Nørdstefjellet and Binnedalen sections, are labelled from the oldest 357 

parts of the section (HO1r at the base, since by convention normal-reverse couplets start with 358 

a normal magnetozone; Fig. 9). Magnetozones defined by a single sampling horizon within 359 

an interval of opposite polarity are designated sub-zones. There are seven subzones, HO3r.1n, 360 

HO3r.2n, HO4r.1n and the subzones .1r, .2r, .3r and 4r in HO5n. All these are defined by two 361 

or more specimens from each sample (Fig. 9). The polarity boundary between magnetozones 362 

HO3n and HO3r corresponds to an erosive boundary at the base of Channel Sandstone-2, in 363 

the Binnedalen Section, so part of the polarity record is likely missing in the composite 364 

height. However, closely spaced samples 2H-14 and 2H-15 in the Binnedalen section display 365 
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this boundary (Fig. 6). It is also possible that the condensation or hiatus at the Slottet Bed 366 

may have also compressed part of magnetozone HO5r (Fig. 9).  367 

Magnetozones in the Tumlingodden section are labelled Tu, with one major normal 368 

magnetozone (TU2n), and two submagnetozones (TU2r.1n and TU2r.2n; Fig. 10). Since the 369 

base of TU2n also coincides with a sandstone bed with probable erosive contact on the 370 

underlying shale, parts of TU2n and TU1r may have been removed by erosion (Fig. 10). The 371 

Slottet Bed is reverse polarity like seen in the Nørdstefjellet section on Hopen, but unlike on 372 

Hopen we were not able to extend sampling upwards (due to permafrost) to detect the 373 

overlying normal magnetozone like on Hopen.  374 

The reverse-polarity dominated Isfjorden Member at Tumlingodden is clearly not equivalent 375 

to the normal-polarity dominated Hopen Member. (Figs. 9 & 10). However, it is rather 376 

similar in polarity dominance to the Isfjorden Member. at the Dalsnuten section in central 377 

Svalbard (Hounslow et al., 2007), comprising some 64% and 79% of reverse-polarity 378 

samples at Dalsnuten and Tumlingodden, respectively.  379 

Carbon isotope stratigraphy 380 

The 13Corg data from the samples are combined with the data from Paterson et al. (2016) 381 

from the Binnedalen and Lyngefjellet sections (Fig. 9a). Their data include a more detailed 382 

sampling in the Flatsalen Formation. The combined data show three carbon isotope 383 

excursions (CIE), one within the oldest part of the section (around -30 m level) shown by two 384 

samples (HO2, HO3) from approximately the same stratigraphic level, but around 80 m apart 385 

from the lower part of the cliff in the Nørdstefjellet section (CIE magnitude ca -40/00). For the 386 

overlying c. 140 m, 13Corg is relatively similar. However, the data from Paterson et al. (2016) 387 

is displaced by c. -10/00 to lower values, probably due to a lithological contrast in sample 388 

types, with the palynological samples biased to shaley intervals, and the paleomagnetic 389 

samples biased to sandier lithologies. At c. 125 m is a second CIE (magnitude c. -40/00) which 390 

is shown in both the Binnedalen and Nørdstefjellet samples (Fig. 9a). Lastly located at around 391 

the Slottet Bed is a smaller amplitude CIE (c. -20/00), shown in the samples from 392 

Nørdstefjellet and the samples of Paterson et al. (2016) from the Binnedalen and Lyngefjellet 393 

sections.  394 

Discussion 395 

Is there an organic matter compositional control on 13Corg changes? 396 

The part of the sections with the most marine organic matter is probably around and above 397 

the maximum flooding surface (Fig. 9a) inferred in the base of the Flatsalen Formation by 398 

Paterson et al. (2016). However, this interval corresponds to the recovery in the 13Corg data 399 

in the Flatsalen Formation (Fig. 9a), so is not clearly related to enhanced marine OM. The 400 

sampling of Paterson et al. (2016) is not extensive and detailed enough in the underlying De 401 

Geerdalen Formation to identify any short-term major changes in palynofacies, which are 402 

instead dominated by terrestrial organic matter (OM) with rather more lacustrine algal 403 

components in the Hopen Member. The %C of the samples is not related to 13Corg (Figs. 9a 404 

& 11a) indicating that the isotopic variations are not related to changes in OM concentration, 405 

with the 13Corg excursions ranging from low to high values of %C, like the background 406 

values. The background 13Corg values typically ranging from c.-26 to -230/00 are also typical 407 

of the range in terrestrial OM seen in other Late Triassic studies (Fig. 12a).  408 

Terrestrial OM has a larger C/N ratio (elemental ratios used here) compared to marine and 409 
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lacustrine organic matter, which has C/N < c. 10 (Fig. 12b). Although its challenging to 410 

compare total sediment nitrogen (NT) with organic matter C/N components (Rau et al., 1987; 411 

Middelburg & Nieuwenhuize, 1998; Ogrinc et al., 2005), we estimated an approximate 412 

inorganic nitrogen (%Ni) correction to the %NT by assuming that %NT comprises a linear 413 

segment which co-varies with the %C, at higher %C values, and an Ni component which 414 

dominates at lower %C values (Fig. 11b; Goñi et al., 1998). The y-axis intercept of the linear 415 

%C -related component suggests %Ni is c. 0.03% (Fig. 11b). This separates the data into two 416 

subsets with NT >0.03% in which the organic matter C/N ratio can be estimated (Fig. 12b), 417 

and a subset NT <0.03% in which it cannot be estimated (Fig. 12c). The former subset shows 418 

organic matter C/N ratios which overlap the range of terrestrial OM suggested by Meyers 419 

(1994) and Fang et al. (2013), but with a spread towards marine and lacustrine OM with C/N 420 

c. 5–10 (Fig. 12b). Some of this scatter in C/N is clearly related to imprecisely estimated Ni 421 

(e.g., high C/N >50 at NT  = 0.04%; Fig. 12b; SI Table S3). In the samples, the spread of C/N 422 

at <15 is largely from samples below the Hopen Member. (5 out of 6 samples, %C range of 423 

0.23– 1.5%) and may reflect an OM contribution from either marine or lacustrine OM. 424 

Paterson et al. (2016) detected minor but regular contributions from fish, ostracods, and 425 

agglutinated foraminifera in this part of the Hopen sections, which may be reflecting OM 426 

from non-terrestrial sources. A greater contribution of marine organic matter in the shales 427 

probably accounts for the minor offset of c. -10/00 between the shale-dominated samples of 428 

Paterson et al. (2016) and those we measured focussed on the sandier lithologies, which are 429 

likely richer in terrestrial OM. Apart from a single sample at a height of 123 m (%C = 1.5%) 430 

in the Binnedalen section (Fig. 12b), the bulk of the samples displaying the CIE’s on Hopen 431 

have %C <0.4% (Fig. 12c) just like other ‘background’ 13Corg samples with similar %C 432 

(Figs. 11a & 12c).  433 

Consequently, there is no compelling evidence that the 13Corg excursions are related to 434 

pulses in either enhanced organic matter input, palynological composition, or C/N ratios. This 435 

suggests that the CIE’s seen in the sections probably reflect rapid input of large amounts of 436 

isotopically light carbon into the Triassic ocean-atmosphere to generate the negative CIE’s 437 

(Saltzman & Thomas, 2012). 438 

Carbon isotope excursions in the late Carnian (Tuvalian) and early Norian 439 

(Lacian) 440 

The primary source of reference carbon isotope data for the late Carnian to early Norian is 441 

from sections at Pizzo Mondello (PM) and Black Bear Ridge (Figs. 13c, d). Each section has 442 

several studies with differing sampling density, but largely focussing on 13Ccarb, using either 443 

whole-rock analyses or microdrilled samples (to try to bias measurements towards to the 444 

micritic limestone components). Only the lower part of the Metapolygnathus parvus Zone has 445 

13Corg data at Black Bear Ridge (Fig. 13d). Additional, 13Ccarb comes from the Silická 446 

Brezová section using whole rock and brachiopod calcite (Fig. 13a), and 13Corg data from the 447 

Quingyan Gou section (Fig. 13b). All these sections possess a magnetostratigraphy, apart 448 

from Black Bear Ridge (BBR). When taken together these allow the relationship between 449 

CIE and magnetozones to be determined in the Tuvalian to early Lacian interval. The 450 

magnetostratigraphic correlation between Pizzo Mondello and Silická Brezová follows 451 

Muttoni et al. (2004) and Maron et al. (2019). To simplify description, the CIE’s have been 452 

labelled as Tuvalian negative CIE’s (TCIE 1 to 6), starting from the basal Tuvalian CIE 453 

(TCIE-1 here) identified by Dal Corso et al. (2018) and labelled by them NCIE-3. 454 

Carbon isotope changes through magnetozone PM4n and PM4r generally display an upwards 455 

trend to more positive values (Onoue et al., 2016; Jin et al., 2019), which is shown well in the 456 
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Quigyan Gou and Pizzo Mondello sections (Fig. 13b, c). The close-spaced sample sets at PM 457 

and BBR suggest that this may be comprised of a brief upper carbon isotope excursion 458 

(TCIE-6), which is seen at BBR in 13Corg and 
13Ccarb, and a brief lower CIE (TCIE-5) seen 459 

in the data of Mazza et al. (2010) at Pizzo Mondello and Lei et al. (2021) at Black Bear Ridge 460 

(Fig. 13c, d). At the Quigyan Gou section, these two CIE’s seem to be combined into the 461 

strong step change in 13Corg in the late part of the oldest normal magnetozone, equivalent to 462 

PM4n (Fig. 13b). TCIE-5 represents the initially most negative part of the transition to more 463 

positive values in the lower part of PM4r (and lower M. parvus Zone). Above TCIE-6 is a 464 

broad positive CIE, followed by a negative excursion approximately near the top of the M. 465 

parvus Zone (Lacian CIE-1; Fig. 13c, d). LCIE-1 is clearly seen within magnetozone PM5n 466 

(at Pizzo Mondello) and the equivalent magnetozone at Quigyan Gou. At BBR, excursion 467 

LCIE-1 is within the lower part of the Kerri Zone and around the FO of Halobia austriaca 468 

(i.e., base of the Norian) in both the PM and the BBR sections.  469 

Within magnetozone PM2r (at Pizzo Mondello) and the equivalent magnetozone at Silická 470 

Brezová is isotope excursion TCIE-4. Ammonoids from this level at PM place this in the 471 

Discotropites plinii Subzone (Tuvalian- 3, (I) sub-interval; Balini et al., 2012). Since the 472 

Macrolobatus Zone of British Columbia correlates to the upper part of the Spinosus Zone 473 

(Tuvalian-3; Balini et al., 2010), it is most likely that TCIE-4 represents the CIE in the 474 

uppermost part of the Welleri Zone at BBR (Fig. 13d).  475 

Reconstructing the likely carbon isotope excursions in the mid and lower Tuvalian is less 476 

certain. Dal Corso et al. (2018) identified a CIE in the early part of Tuvalian-2 (in the base of 477 

the Travenanzes Formation of the Dibona Section), which is possibly that seen at Silická 478 

Brezová and labelled TCIE-2. The additional CIE seen in the base of the PM section is 479 

around the Tuvalian-2 to Tuvalian-3 boundary (labelled as TCIE-3) which is an ill-defined 480 

boundary in all these sections. 481 

Placing the Carnian–Norian boundary in the Svalbard successions 482 

The 13Corg excursions seen in the Hopen sections, combined with the magnetostratigraphy, 483 

allows a precise correlation to the Pizzo Mondello and Silická Brezová sections. At the base 484 

of the Hopen sections, TCIE-4 is likely that seen within the magnetozone HO1r, and the 485 

equivalent PM2r magnetozone in other sections (Fig. 14). Magnetozone PM2r (and HO1r) is 486 

equivalent to UT10r in the magnetochron composite of Hounslow & Muttoni (2010) and 487 

Newark Supergroup magnetozone E5r in the composite of Maron et al. (2019). 488 

The CIE in the Hopen Member, within the normal magnetozone HO5n, is likely to be TCIE-489 

5, within magnetozone PM4n at Pizzo Mondello (Fig. 14; UT12n in composite), and its 490 

correlatives in other sections (Fig. 13). This occurs above a long interval of relatively 491 

consistent 13C in all these sections (Figs. 13d & 14). Whilst TCIE-5 is not so distinct at PM, 492 

it is clearly shown as a brief sharp excursion at BBR with a magnitude of c. -1.50/00 (Fig. 493 

13d).  494 

The smaller negative CIE centred on the Slottet Bed shows an overlying slow recovery 495 

through the lowest part of the Flatsalen Formation, through an interval of normal polarity 496 

(equivalent to UT13n magnetochron; Fig. 14). Since TCIE-6 at PM shows this recovery 497 

within PM4r (UT12r magnetochron), it is likely this CIE on Hopen is condensed (or 498 

truncated), with the lower part of UT13n, so that the upper part of UT13n which contains 499 

LCIE-1, sits on UT12r (marked as missing Hopen interval in Fig. 14). The uppermost 500 

reverse-polarity sample from HO5r (at the Nørdstefjellet section; Fig. 6) is in the upper part 501 

of the Slottet Bed (above an erosional contact within the bed), so it would seem the missing 502 

(or highly condensed) part may be in the lowest, unsampled ~5 m of the Flatsalen Formation 503 
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on Hopen. The Carnian–Norian boundary is therefore close to the base of the Flatsalen 504 

Formation (or in its basal few meters) above the Slottet Bed. A cm-scale carbon isotope 505 

profile in this interval on Hopen may allow a more precise placement of the boundary.  506 

Conclusions 507 

A detailed sampling of two sections on Hopen and one on Wilhelmøya has allowed a more 508 

detailed understanding of the chronostratigraphic relationships of the Tuvalian and Lacian 509 

Substages (late Carnian to early Norian) to the Svalbard lithostratigraphy. This has been 510 

gained through a magnetostratigraphic study linked to new and existing organic carbon 511 

isotope data. The organic carbon isotope data is demonstrated to be little impacted by 512 

changes in the composition of organic matter, so likely reflects global perturbations in light 513 

carbon inputs.  514 

A re-evaluation of existing Tuvalian to earliest Lacian carbon isotope data from Tethyan and 515 

Canadian sections, suggests that six negative carbon excursions exist in the Tuvalian (TCIE 1 516 

to TCIE-6), and one in the earliest Lacian (LCIE-1), briefly following the base of the Norian. 517 

All of these excursions, except TCIE-3, are currently represented in the Carnian– early 518 

Norian successions on Svalbard. The association of the CIE with the magnetostratigraphy 519 

strengthens support for the proposed age model of the upper part of the De Geerdalen 520 

Formation. A revised polarity pattern through the entire Tuvalian (Fig. 14) is also proposed 521 

filling the ‘mid-Carnian gap’ in magnetostratigraphic data.  522 

The base of the Norian is located at the base or lowermost few metres of the Flatsalen 523 

Formation on Hopen, and only a small part of the latest Tuvalian appears to be missing on 524 

Hopen. Based on the magnetic polarity stratigraphy, and carbon isotope data, the Isfjorden 525 

Member from central Spitsbergen and NE Svalbard is likely early Tuvalian-2 in age, 526 

suggesting a major hiatus at the base of the Wilhelmøya Subgroup on Spitsbergen and 527 

Wilhelmøya. This hiatus likely corresponds with much of the regressive part of sequence S5 528 

of Klausen et al. (2015).  529 
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Section/polarity set Mean 

Dec/Inc (o) 

k (95[o]) Ns/NT/Nl/Np Reversal Test 

o/c] (o) 

VGP 

Lat/Long 

(o) 

Dp/Dm 

[paleolat.] (o) 

A95 (min, max), 

%VGP45 (o) 

Nørdstefjellet (N) 45.9/67.3 32.4(4.2) 15/66/20/17 - - - - 

Nørdstefjellet (R ) 244.8/-73.8 15.6 (8.5) 13/66/0/21 - - - - 

Nørdstefjellet (all) 50.4/69.5 18.3 (3.0) 28/66/20/38 Rc, [9/12.5]S 60.1/137.6 4.4/5.1 [53.2] 5.3 (3.2,10.1),1.5 

Binnedalen(N) 47.5/68.9 47.5 (2.7) 28/94/40/18 - - - - 

Binnedalen (R ) 232.6/-70.8 31.4 (5.5) 18/94/1/23 - - - - 

Binnedalen (all) 48.9/69.5 29.4 (2.0) 47/94/41/41 Rb [2.6/5.6]C 60.5/139.3 3.0/3.5 [53.2] 4.8 (2.6, 7.3), 4.3 

Hopen (all) 49.5/69.5 37.0 (1.7) 75/160/21/61 Rb [4.6/5.2]C 60.3/138.6 2.5/2.9 [53.2] 3.5 (2.1, 5.4), 3.1 

Tumlingodden (N) 35.2/60.9 39.3 (11.0) 4/49/3/3    - 

Tumlingodden (R ) 202.9/-71.0 25.2 (6.9) 14/49/3/14    - 

Tumlingodden (all) 27.1/68.5 19.0 (4.5) 21/49/6/17 Rc [11.2/13.2]C 61.0/163.8 6.4/7.6 [51.7] 10.0 (3.6, 12.1), 2.2 

Table 1. Mean palaeomagnetic directions for the sections. Specimen set code, N=normal, R=reverse. k (95) = Fisher concentration parameter 

and 95% cone of confidence. NS =number of sample levels (sites), NT=Total specimens measured, Nl=Number of specimens with line-fits, 

Np=Number of specimens with great circle (GC) fits. GC mean uses method of McFadden & McElhinney (1988) using Nl+Np data, and Fisher 

mean Nl data. For the reversal test (McFadden & McElhinny, 1990), o=observed angle; c=critical angle, c=common-k test, s= simulation test. 

Virtual geomagnetic pole (VGP) is the normal pole. A95 (min, max) = Fisher 95% confidence interval for the site mean VGP direction (Ns 

sites), and A95min and A95max threshold values of Deenen et al. (2011, 2014). %VGP45= percent of samples yielding VGP latitude < |45o|, as a 

reflection of the match to the modern geomagnetic field and field models in which %VGP45 is 3-4% (Cromwell et al., 2018). Statistics 

determined with Pmagtool v.5 (Hounslow, 2006). 
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Figure 1. Location of the magnetostratigraphic sampling sites (marked in red) on (A) Eastern 

Svalbard at Tumlingodden on Wilhelmøya and (B), (C) at Nørdstefjellet and Binnedalen on 

Hopen. Geology maps from Mørk et al. (1999). Other sections and cores discussed in text on 

Spitsbergen also marked on Svalbard map in (B). 

 

Figure  2. (A) Lithostratigraphy and sequence stratigraphy (2nd and 3rd order sequences) of 

central and eastern Svalbard and the Barents Sea region adjacent to the Carnian (from Mørk 

et al., 2013, Klausen et al., 2015; Lord et al., 2017). Intervals of hiatus in late Carnian and 

late Ladinian (in white) based on this work and Hounslow et al. (2008b) respectively. Base 

Norian based on this work. (B) Palynological zonations in the interval of the upper 

Storfjorden to lower Wilhelmøya subgroups (based on Paterson & Mangerud, 2015, 2020). 

A, a, c, r are: acme, abundant, common and rare first and last occurrences. 

 

Figure 3. Correlation of the sedimentary log to the photograph of the cliff just north of the 

Binnedalen section. Interpretative correlated layers labelled (see text for details). Channel 

sandstone numbers (1 and 2) of Solvi (2013).  

 

Figure 4. Correlation of the sedimentary log to the Nørdstefjellet section photograph. 

Interpretative correlated layers labelled (see text for details). Channel sandstone numbers (1 

and 2) of Solvi (2013). 

 

Figure 5. Log and sample location (sample codes WI) on the Tumlingodden section from 

Wilhelmøya. The magnetic polarity of the sample horizons are also shown. Placement of the 

base of the Isfjorden Member based on the Tumlingodden 10-1 log of Lord et al. (2017). 

Samples were placed on the sedimentary log of the section created by Rita Sande Rød. 

 

Figure 6. Sample position on the Binnedalen and Nørdstefjellet logs, showing how the 

samples from the Nørdstefjellet section were projected onto the composite height scale and 

log at Binnedalen. Correlation lines shown in blue are the photo correlation layers shown in 

Figs. 3 & 4. Base of the Hopen Member show in black line. Polarity composite from Fig. 9. 

Palynological zonation at Binnedalen from Paterson & Mangerud (2015). 

 

Figure 7. Example demagnetization data for specimens from: a) to c) Nørdstefjellet; d), e) 

Binnedalen, and f), g) Tumlingodden sections. Each shows a Zijderveld plot and a 

stereographic projection of the demagnetisation steps. g) also shows a typical intensity decay 

plot illustrating the dominating intensity of the Brunhes component. Stereographic projection 

plots in equal area, with filled symbols (unfilled) lower hemisphere (upper). a), c), d), e) have 

some lower demagnetization steps removed to make the plots clearer. 95 is the confidence 

cone statistic of flood from Briden & Arthur (1981). a) Specimen HO2.1 (height -30.7 m) 

interpreted as revere polarity, great circle (GC) trend, class T1, with a GC plane fit from 

NRM to 80 mT. LT component NRM to 15 mT. b) Specimen HO29.6 (height 151.5 m) 

interpreted as reverse polarity, with a GC trend, class T2, and a GC plane fit from 25 mT to 

280oC. No LT component. c) Specimen HO31.5 (height 156.2 m) interpreted as normal 

polarity ChRM line fit, class S2, from 15 mT to the origin; No LT component. D) Specimen 
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2H25.2 (height 75.6 m) interpreted as reverse polarity GC line fit, class T1, with a GC plane 

fit from 40 mT to the origin. LT component 130oC to 40 mT. E) Specimen 2h20.2 (height 

62.9 m) interpreted as normal polarity ChRM line fit, class S3, from 10–40 mT. No LT 

component. f) Specimen WI6.1 (height 67 m) interpreted as revere polarity ChRM line fit, 

class S1, from 10–50 mT; LT component NRM to 10 mT. g) Specimen WI21.1 (height 129.8 

m) interpreted as normal polarity ChRM line fit, class S3, from 40 mT to the origin. LT 

component NRM to 10 mT. 

 

Figure 8. Characteristic remanence (ChRM) extracted from the specimens for: a) 

Nørdstefjellet, b) Binnedalen and c) Tumlingodden sections. In each the S-class directions are 

shown on the left, and the poles to the great circles shown on the right (used to determine the 

combined mean, and the VGP latitude). The single great circle shown on the right is that 

which is orthogonal to the ChRM mean direction. The great circle poles form a girdle along 

this great circle, indicating they can independently be used to determine a mean direction of 

the not-fully resolved Triassic component in these specimens. 

 

Figure 9. Summary magnetostratigraphic, organic carbon isotope (13Corg) and % carbon data 

from Hopen. Positions of possibly erosional hiatuses, and maximum flooding surface (MFS) 

are shown. Demagnetisation behaviour described in text. Specimen polarity is the interpreted 

polarity for all measured specimens, with R and N grades indicating high quality data, R?, 

R?? and N?, N?? lower quality and ? indicating no interpretation possible. VGP latitude is the 

latitude of the specimen VGP direction with respect to the section mean normal polarity 

palaeopole position, with positive values indicating normal polarity. Carbon isotope data and 

maximum flooding surface (MFS) from Paterson et al. (2016) is shown for the Binnedalen 

section in the De Geerdalen Formation, and Lyngefjellet section for the Flatsalen Formation. 

 

Figure 10. Summary magnetostratigraphic data from the east Tumlingodden section. See 

Figure 9 for details. 

 

Figure 11. (A) Organic carbon isotope data (13Corg) from this study vs. the percentage of 

organic carbon (%carbon). (B) Percentage carbon and total nitrogen (NT) with the upper 

range of NT (i.e., > c. 0.03%) indicating a colinear change with %carbon, indicating the same 

organic matter source and a lower range in which the nitrogen has a dominantly inorganic 

source. The y-axis intercept of the regression line provides an estimate of the average 

inorganic nitrogen (Goñi et al., 1998). 

 

Figure 12. (A) Range of 13Corg in selected studies (y-axis scale as in b) of the Late Triassic, 

divided into terrestrial source and marine-sourced organic matter. The grey and green boxes 

indicate the approximate expected range of terrestrial and marine sources, respectively. Data 

are also shown from the early Carnian and late Ladinian of Spitsbergen from Mueller et al. 

(2016). (B) 13Corg and inorganic-nitrogen corrected C/N ratios of the Hopen samples laid 

over fields of typical ranges proposed by Meyers (1994), Twichell (2002) and Fang et al. 

(2013), indicating the Hopen samples generally fall into the terrestrial range of C/N. (C) 

Those sample in which inorganic-nitrogen corrected C/N ratios could not be determined, 

indicating that the CIEs in the Hopen sections are largely from samples with lower organic 
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carbon (same y-axis scale as in b). 

 

Figure 13. Compilation of selected carbon isotope data in the late Carnian and across the 

Carnian–Norian boundary. (A) Silická Brezová from Korte et al. (2005), with relationship to 

magnetostratigraphy as in Mueller et al. (2016). Samples in red not used in the curve fit. (B) 

Qingyin Gou section data from Jin et al. (2019) and Zhang et al. (2015). (C) Pizzo Modello 

from Muttoni et al., (2004, 2014) and Mazza et al. (2010). Samples in red not used in the 

curve fit. (D) Black Bear Ridge organic carbon isotope (13Corg) data (black dots, red curve) 

from Williford et al. (2007b), and carbonate carbon (13Ccarb) data from Onoue et al. (2016) 

and Lei et al. (2021). Unfilled red circles of Lei et al. (2021) not used in curve fit. The 

inferred negative carbon isotope excursions in the Tuvalian (TCIE) and Lacian (LCIE) are 

labelled sequentially from the base of the Tuvalian, with TCIE-1 equivalent to NCIE-3 of Dal 

Corso et al. (2018). b, md, wr = brachiopod, microdrilled and whole rock samples. Thick red 

correlation line is the base of the Norian correlated to Pizzo Mondello. 

 

Figure 14. Comparison of the magnetostratigraphy from Hopen and Wilhelmøya with other 

key sections, with the inferred carbon isotope excursions marked in purple, and 

magnetostratigraphic correlations in red. Pignola-2 from Maron et al. (2017). Dalsnuten from 

Hounslow et al. (2007) and Mueller et al. (2016); Pizzo Mondello and Silická Brezová as in 

Fig. 13. Magnetochron labelling from Hounslow and Muttoni (2010), (H&M, 2010) with the 

revised Tuvalian polarity composite from this work, and Tuvalian-1 data from the Dalsnuten 

and Pignola-2 section data on the left.  
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Supplementary Information for: Geomagnetic polarity and carbon 

isotopic stratigraphic assessment of the late Carnian -earliest Norian in 

Svalbard: evidence for a major hiatus and improved Boreal to Tethyan 

correlation. 

 

Mark W Hounslow, Samuel E Harris, Vassil Karloukovski & Atle Mørk 

 

This supplementary information contains the following: 

1) Additional section correlations and photographs (Fig. S1, S2) 

2) Stereographic projections of the low stability component and the dolerite intrusion data (Fig. 

S3a, and S3b) 

3) Down-section plots of the magnetic susceptibility (K) and NRM intensity (Figs S4, S5) 

4) Data for thermal demagnetisation of a 3-axis IRM for four specimens (Fig. S6), and rock 

magnetic data for typical specimens from Binnedalen and Tumlingodden (Fig. S7; Table S1) 

5) Discussion of the of the K- NRM intensity relationships for the De Geerdalen Formation and 

its adjacent units (Fig. S8). 

6) Statistics of the line and great circle plane fits with respect to section, and demagnetisation 

class (Table S2). 

7) Carbon isotope data (Table S3) 

8) Compilation of the palaeomagnetic data for each specimen from all sections (in the associated 

excel file). 

 



 

Fig. S1. Correlation of layers between the two sampled sections. The track of the sampled section is shown in red. Only the lower part of the Binnedalen 

section is shown, the main part of the section is to the left of the photo. 



 

 

Fig. S2. The lower part of the Tumlingodden section. Sampling for this work started in the section above the dolerite sill, approximately in the mid De 

Geerdalen Fm.   Here there is around 160 m of the De Deerdalen Formation from the base of slope to the dolerite sill (see Johansen, 2016, fig 8.2)



 

Fig. S3. A) Directional data from the low stability components. Data is in geographic coordinates. B) 

The ChRM directions of the dolerite intrusion in the Tumlingodden section, and it ChRM directional 

mean (also using the one great circle data, upper hemisphere projection of plane shown), along with 

example thermal demagnetisation data for one specimen. Dolerite mean of 191o, -70o, 95=18o, 

k=22.6, n=5. 



 

Fig. S4. Magnetic susceptibility (K) and NRM intensity for specimens from the Hopen sections.  The 

NRM intensity values, show some stratigraphic variation, which may relate to Fe-oxide abundance 

differences between the Hopen Member and the other units. 



 

Fig. S5. Magnetic susceptibility and NRM intensity data of specimens from the Tumlingodden 

section. 



 

Fig. S6. Thermal demagnetisation of a 3-axis isothermal remanent magnetisation (IRM) with fields 

used at 40 mT, 100 mT and 1 T. The data here is rather noisy, in part due to the large thermal 

alteration at >300oC, but clearly shows the 40 mT coercivity fraction demagnetises at around 550oC, 

with the higher coercivity fractions between 400oC to 550oC. It is possible the consistent drop at 

200oC may be a minispin calibration error for this step, rather than a real blocking temperature 

transition.  



 

Fig. S7. Rock magnetic data from Binnedalen (Hopen) and Tumlingodden (Wilmhelmøya) sections. 

a) Isothermal remanent magnetisation (IRM) acquisition data, showing the near saturation at 300 mT, 

with most samples having a small high coercivity tail. The high coercivity tail is probably due to some 

haematite. Sample position WI4 andWI26 are shown in Fig. S5, and Binnedalen codes (2H-17,2H-30, 

2h-43 are shown in main text Fig. 6. b) Data for these five samples plotted over the natural-mineral 

magnetic data of Peters & Thompson (1998), using the S-ratio (bIRM0.1T/IRM 1T) and hardness of the 

anhysteretic remanence (d.ARM 40 mT/ ARM which is: ARM tumble demagnetised at 40 mT field/ 

ARM acquired at 80mT AF, 0.1 mT DC bias field). This indicates that these samples have a very 

similar magnetic mineral content, falling over the soft end of the magnetite and titanomagnetite field. 

bIRM is the backfield magnetisation. 

 

 ARM  SIRM HIRM ARM/    

Specimen 

x10-8 

m3/Kg 

d.ARM40mT/ 

ARM 

x10-5 

Am2/Kg 

x10-5 

Am2/Kg 

SIRM    

x 10-3 

mA-1 

Hcr 

(mT) %HIRM 

S-ratio 

(0.1T) L-ratio 

2H-17.2 41.1 0.18 50.6 4.00 0.81 27.8 7.9 -0.69 0.51 

2H-30.1 40.8 0.15 46.6 1.05 0.88 26.1 2.3 -0.82 0.25 

2H-43.2 27.8 0.17 43.4 0.80 0.64 28.5 1.8 -0.80 0.18 

WI4.1 7.18 0.19 6.6 0.19 1.09 27.2 2.9 -0.79 0.28 

WI26.3 5.43 0.15 12.0 1.05 0.45 31.0 8.8 -0.64 0.48 

Table S1. Full set of mineral magnetic data for the specimens shown in Fig. S7. ARM= 

susceptibility of ARM, SIRM = IRM at 1T, HIRM= high field remanence between 0.3 and 1T. Hcr= 

coercivity of remanence (using DC backfield), %HIRM= percentage of the SIRM between 0.3- 1T. L-

ratio is HIRM/[0.5*(SIRM+ bIRM0.1T)] (Liu et al. 2007). 

1. General magnetic properties of the samples 

Magnetic susceptibility (K) and NRM intensity are strongly related to lithology and sediment body 

colour, with generally mudstones and claystones possessing the largest values of these parameters and 

well sorted sandstones generally the smallest (Fig. S8). There is evidence for the somewhat larger 

NRM intensity (i.e. those > 2 x10-3 A/m) of samples from the Hopen Member compared to units 

above and below this.  

Broadly these magnetic data when combined with data from central Spitsbergen from the Botneheia, 

De Geerdalen and Tschermakfjellet formations define several groups of samples: 

a) A cluster with low NRM intensities (<3 x10-3 A/m ) and moderate K (12 to 50 x10-5 SI), which 

predominantly includes mudstone and sandstone samples from the De Geerdalen Fm, with some 



samples from the Botneheia Fm  (the T-DG cluster; Fig. S8);  

b) A cluster with low K (<12 x10-5 SI), and low NRM intensity (<2 x10-3 A/m), marked as the 

Botneheia cluster in Fig. S8. This cluster predominantly represents samples from the Botneheia 

Fm mudstones, siltstones and shales (i.e. not concretions). 

c) A group of siderite-bearing samples, with NRM intensity <3 x10-3 A/m but K >50 x10-5 SI), 

dominantly from the Tschermakfjellet Fm on Spitsbergen, but also some samples from Hopen 

(Fig. S8). 

d) A group of samples with large NRM intensities (i.e. >2.5 x10-3 A/m), and K <20 x10-5 SI which 

includes samples from calcite concretions (‘concretions cluster’) from the Botneheia Fm (Fig. 

S8).  

A number of competing factors related to magnetic-mineral abundance, and its mineralogy source 

probably account for these variations within the rocks.  

1) In the grey-coloured lithologies the remanence carrying mineralogy is mostly in oxide form as 

magnetite (Fig. S7b), and contributes probably to the susceptibility but more importantly 

entirely to the remanence (i.e. NRM intensity). If the Fe-oxide content was entirely 

responsible for the magnetic susceptibility, there would normally be a positive relationship 

between NRM intensity and K values. This is not the case indicating there are other minerals 

responsible for the magnetic susceptibility variations in these units (Fig. S8). 

2) Some types of Fe-bearing minerals such as chlorites, micas, siderite and ferroan dolomite can 

contribute to the magnetic susceptibility, but do not contribute to the NRM intensity. The few 

grey-coloured samples with K >50 x10-5 m3, but NRM intensity < 3 x10-3 A/m are likely to be 

rich in siderite (Fig. S8).  

3) The De Geerdalen Fm rocks show some stratigraphic separating in NRM intensity, with 

samples from the Hopen Member and the Isfjorden Member showing larger values compared 

to the mid-parts of the De Geerdalen Formation at Dalsnuten (Vendomdalen, Spitsbergen; 

Fig. S8). This may represent a provenance difference controlling the abundance of Fe-oxides 

in these sediments. 

 



 

Fig.S8. Magnetic susceptibility (K) versus NRM intensity for specimens from Hopen and land based 

sections on Spitsbergen. Data from the Spitsbergen-sections of the Tschermakfjellet and De 

Geerdalen formations is indicated, and envelopes around ‘Concretion’ and ‘Botheheia’ data clusters 

are indicated. There is some evidence for stratigraphic separation of NRM intensity values, which 

may relate to provenance differences between the low, mid and upper parts of the De Geerdalen Fm.  

Land based data from Hounslow & Nawrocki (2008). Data points for the Botneheia and concretion 

clusters are not shown and are largely data from the Middle Triassic. 

 

Section 
Class N rho 95 (o) equivalent 

aMAD1  (o) 

Binnedalen S1 5 1.8 5.2 0.9/1.1 

 S2 21 1.4 9.1 1.5/2.0 

[13, 87] S3 14 2.1 15.4 2.6/3.3 

 T1 10 2.1 15.9 2.7/3.4 

 T2 21 2.0 17.3 2.9/3.7 

[68,32] T3 22 1.6 21.5 3.6/4.7 

Nørstefjellet S1 7 2.1 6.5 1.1/1.4 

 S2 9 2.1 9.0 1.5/1.9 

[30,70] S3 4 2.1 8.8 1.5/1.9 

 T1 7 2.2 21.3 3.6/4.6 

 T2 14 2.3 17.0 2.8/3.7 

[54,46] T3 25 2.2 19.1 3.2/4.1 

Tumlingodden S1 2 1.7 10.5 1.8/2.3 

 S2 0 - - - 



[40,60] S3 8 3.9 15.9 2.6/3.4 

 T1 3 4.2 17.7 2.9/3.8 

 T2 11 3.5 15.6 2.6/3.4 

[64,36] T3 16 2.9 21.5 3.6/4.6 

Table S2. Statistics from the LINFIND fitting procedures applied to the demagnetisation classes. N= 

number in each category. Rho=median excess standard deviation, and 95 is mean of the 95% 

confidence interval as determined by LINEFIND (Kent et al., 1983). Details about using LINEFIND 

are in Hounslow et al. (2021). For T-class data this uncertainty is on the pole to the great circle. 1 two 

equivalent maximum angular deviation (MAD) angles are shown using Table 8 in Khoklov & Hulot 

(2016) with 3 and 5 points anchored- i.e. their CaMAD (3) CaMAD (5) conversion factors of 6.0, 4.63. For 

the better defined lines and planes with more data points aMAD will be an underestimate. Values in 

[..] are the number in S or T-class datasets with [origin, non-origin fits respectively]. 

 

Sample code 

%NT (wt%) %C (wt%) 

13Corg VPDB 

(0/00) Height (m) 

Nørdstefjellet 

HO1 0.040 0.490 -25.21 -40.0 

HO2 0.020 0.340 -28.95 -32.4 

HO3 0.020 0.350 -28.76 -32.4 

HO4 0.040 0.180 -24.66 -26.6 

HO5 0.040 0.250 -24.97 -12.5 

HO6 0.030 0.130 -24.53 -8.8 

HO7 0.030 0.110 -24.20 -5.3 

HO14 0.030 0.180 -24.36 44.3 

HO15 0.050 0.240 -24.74 45.7 

HO16 0.030 0.270 -24.08 54.5 

HO18 0.010 0.070 -24.43 65.9 

HO19 0.020 0.060 -25.94 71.1 

HO20 0.010 0.040 -25.80 75.2 

HO21 0.130 1.560 -24.74 81.8 

HO22 0.050 1.030 -24.24 102.0 

HO23 0.010 0.280 -28.14 111.4 

HO24 0.020 0.260 -28.49 116.9 

HO25 0.030 0.390 -28.34 122.0 

HO26 0.030 0.260 -24.59 126.1 

HO27 0.020 0.100 -26.07 134.5 

HO28B 0.040 0.320 -25.19 141.5 

HO29 0.006 0.020 -26.68 147.2 



HO30 0.030 0.220 -26.90 149.7 

HO31 0.030 0.400 -25.15 156.1 

HO33 0.020 0.120 -26.68 170.8 

Binnedalen 

1 0.020 0.060 -25.18 -10.7 

2 0.070 0.880 -23.81 -9.3 

3 0.010 0.360 -28.84 7.1 

4 0.020 0.050 -25.35 9.7 

5 0.040 0.180 -24.37 17.9 

6 0.070 0.570 -24.39 19.8 

7 0.040 0.200 -24.58 22.5 

8 0.040 0.140 -24.92 24.9 

9 0.050 0.090 -24.19 26.5 

10 0.020 0.300 -29.20 29.7 

11 0.030 0.270 -24.68 32.3 

12 0.050 0.230 -24.52 35.3 

13 0.020 0.090 -23.99 38.2 

14 0.020 0.070 -24.62 40.7 

15 0.010 0.050 -24.85 44.7 

16 0.020 0.060 -25.86 48.7 

17 0.080 1.100 -23.81 50.8 

18 0.020 0.060 -25.41 53.1 

19 0.030 0.050 -25.79 58.6 

20 0.030 0.160 -24.48 62.9 

21 0.040 0.190 -24.45 67.3 

22 0.030 0.100 -24.00 69.8 

23 0.030 0.160 -25.02 71.2 

24 0.070 0.990 -24.32 72.5 

25 0.010 0.040 -25.63 75.1 

26 0.050 0.230 -24.52 77.5 

27 0.040 0.250 -23.71 80.0 

28 0.010 0.040 -25.18 83.0 

29 0.090 1.260 -24.36 84.9 

30 0.050 0.810 -24.92 87.7 

31 0.070 0.990 -24.62 90.6 



32 0.010 0.020 -25.77 92.4 

33 0.060 0.850 -24.62 95.4 

34 0.040 0.630 -24.26 98.3 

35 0.050 0.900 -25.06 101.3 

36 0.070 1.760 -24.43 104.1 

37 0.120 1.740 -24.56 107.1 

38 0.080 1.930 -23.97 108.5 

39 0.040 0.610 -24.15 109.5 

40 0.070 1.780 -24.31 110.4 

41 0.100 1.500 -26.75 114.0 

42 0.030 0.120 -27.16 114.9 

43 0.020 0.130 -27.61 119.2 

44 0.020 0.050 -25.24 122.2 

45 0.040 0.200 -25.25 123.9 

46 0.120 1.140 -24.32 126.2 

47 0.030 0.090 -25.45 132.8 

48 0.060 0.550 -24.07 137.3 

Table S3. Organic carbon isotope data. Height is the composite height with respect to the log and 

section at Binnedalen. Values marked in red were not used, due to anomalous values. %NT, %C = 

total nitrogen and carbon. 
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