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ABSTRACT
Anomaly detection in multivariate time series data is chal-
lenging due to complex temporal and feature correlations
and heterogeneity. This paper proposes a novel unsupervised
multi-scale stacked spatial-temporal graph attention network
for multivariate time series anomaly detection (STGAT-
MAD). The core of our framework is to coherently capture
the feature and temporal correlations among multivariate
time-series data with stackable STGAT networks. Mean-
while, a multi-scale input network is exploited to capture the
temporal correlations in different time-scales. Experiments
on a new wind turbine dataset(built and released by us) and
three public datasets show that our method detects anoma-
lies more accurately than baseline approaches and provide
interpretability through observing the attention score among
multiple sensors and different times.

Index Terms— Multivariate Time Series, Anomaly de-
tection, Spatial-Temporal Graph Attention Network

1. INTRODUCTION

Anomaly detection in multivariate time series is an important
research area in data mining and provides a vital basis for
intelligent operation and maintenance [1]. Time series data
are widespread in our production facilities and lives, such as
running data of mechanical equipment and network intrusion
data, which reflect the intrinsic activity of a system. Nor-
mally, the patterns will not change suddenly, and vice versa.
Multivariate time series are collected from independent sen-
sors with complex coupling relations. Therefore, each vari-
able depends on its historical value and other variable values,
bringing great challenges to anomaly detection.

For the earlier studies, the researchers solved the prob-
lems of anomaly detection in multivariate time series data
mainly by using the methods of statistical analysis or autore-
gressive [2]. These methods estimated anomalies based on
the overall data distribution, while the spatial-temporal cor-
relations of data were not considered. With the development
of deep learning, many deep learning models are applied

and achieved good performances [3] which can usually be
categorized into prediction-based and reconstruction-based
methods. The prediction-based methods focus on contextual
anomalies, and the typical models include long-short term
memory (LSTM) [4], convolutional LSTM (ConvLSTM)
[5], etc. While the reconstruction-based methods focus on
overall distribution anomalies of subsequences, and the most
usual methods are based on encoder-decoder (AE) [6] and
generative adversarial networks (GANs) [7]. However, these
methods lack the considerations of the complex coupling re-
lation between sensors, resulting in instability when dealing
with high-dimensional data with lots of potential correlations.

Recently, graph neural network(GCN) [8] is effective in
dealing with complex graph structure data. Inspired by this,
we utilize graph networks to extract complex spatial-temporal
correlations from multivariate time series data. There are
three significant challenges to this idea: 1) Abnormal mode
is not available during the training, which means the algo-
rithm must depend separately on non-abnormal data. 2) When
temporal features are captured, the correlations between vari-
ables should be considered. 3) Multivariate time series data
usually show heterogeneity, and high-level implicit features
are difficult to capture. Therefore, we propose STGAT-MAD
framework. Our main contributions are summarized as :

• We for the first time propose to exploit the multi-scale
temporal correlations of multivariate time-series input
data for anomaly detection.

• A novel stackable STGAT network is designed for co-
herently capturing the feature and temporal correlations
among multivariate time-series data.

• Extensive experiments show that the performance of
our model is improved by up to 13% in terms of F1 and
provides good interpretability, i.e., the underlying cor-
relations among different features collected from mul-
tiple sensors.

• A new wind turbine dataset is built and released for
multivariate time series anomaly detection, derived
from a real wind farm. Our code and dataset are avail-
able at: https://github.com/zhanjun717/STGAT MAD.



2. RELATED WORK

Traditional anomaly detection methods: Due to high com-
plexity and anomaly uncertainty, it is hard to obtain labels.
Hence, the unsupervised method is more suitable for anomaly
detection. The traditional statistical models [2], distance-
based [9] and clustering-based [10] models have been widely
used. These methods do not map input features to a more
discriminant feature space, while linear discriminant analysis
[11] maps input features to different spaces to discriminate
between normal and abnormal features. However, the above
methods ignore the importance of temporal correlations. Au-
toregressive [12] is a method for specially handling time
series, but it requires the data must be autocorrelative.

Deep learning-based methods: To extract complex pat-
terns implied in multivariate time series, deep learning meth-
ods are widely adopted. Autoencoder-based methods (AE)
are the most typical methods, such as VAE-LSTM [6, 3, 13,
14], which recognize abnormal data according to reconstruc-
tion error but are usually rough. The introduction of GANs
has well-optimized this problem. Dan Li et al. [7] proposes
MAD-GAN, using both the discrimination and reconstruction
errors for anomaly detection. Julien Audibert [15] proposes
USAD combing AE and GAN to improve network stability.

Spatial-Temporal Networks: Spatial-temporal net-
works have optimal performance in dealing with complicated
spatial-temporal data, such as Spatio-Temporal Graph Con-
volutional Networks(STGCN)[16], attention based spatial-
temporal graph convolutional network (ASTGCN) [17]. In
a broader perspective view, multivariate time series data is
spatial-temporal data in essence. Hence, Graph Convolu-
tional Networks(GCN) [18], MTAD-GAT [19] and GAT [20]
have applied graph networks into the correlations extraction
between variables in multivariate time series and achieved
good performance. Nevertheless, these methods still extract
spatial-temporal correlations in a single layer.

3. METHODOLOGY

3.1. Problem Formulation

Given a time series X = {x1, x2, · · · , xT } with length T ,
where xt ∈ Rd is a d–dimensional vector collected at each
time t, we first use sliding window with length w to process
long sequence into subsequence set S = {s1, s2, · · · , sN},
where N is the number of the subsequence. The task of
anomaly detection is to reconstruct subsequences. Finally,
the deviation of reconstruction value and actual value is quan-
tified as an anomaly score for abnormal discrimination.

3.2. Proposed Framework

As shown in Fig.1, the basic framework of STGAT-MAD con-
tains four core components—multi-scale input network to

obtain different receptive field features, stacked STGAT net-
work to extract high-level implicit feature and temporal cor-
relations, data fusion and reconstruction network to recon-
struct input data according to the implicit features, anomaly
assessment module to distinguish the abnormality and pro-
vide an explanation. At the former three networks, complex
spatial-temporal correlations between multivariate time series
is extracted, and finally, signal reconstruction is achieved. At
the anomaly assessment module, abnormal data are usually
not isolated but form a continuous abnormal segment, hence,
we use point-adjustment method widely used in [14, 21, 15].
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Fig. 1. STGAT-MAD basic framework.

Multi-scale input network: For multivariate time series
signals, the data with various time scales contains various in-
formation [22]. As shown in Fig.1, we set three input chan-
nels composed of convolution units with different kernels.
For input subsequence sn, the multi-scale feature information
matrix can be calculated by:

s′n (k, s) = σ (Conv1Dk,s (sn,W ) + b) (1)

where σ denotes ReLU activation function. k ∈ {1, 5, 7} is
the size of convolution kernel, s = 1 is convolution step. W
and b are weight and bias, respectively.

Stacked STGAT network: To extract spatial-temporal
correlations in the feature and temporal dimensions, we re-
spectively map data from these two dimensions into graph
structure data. As shown in the Fig.2, in the feature dimen-
sion, the subsequences sn at the moment t containing d di-
mension are expressed as weighted undirected graph Gxt

=(
V,Ef

)
, where V = {vd|d ∈ [1, D]} is node set, and Ef is

edge set. Arbitrary two nodes i and j have connection re-
lations. Adjacent matrix denoted as Af

ij = 1, for i; j ∈
[1, D]. In the temporal dimension, we denote subsequences
sn as new representations Gxv

= (W,Et), where W =
{xt−k|k ∈ [0, w − 1]} is node set, k denotes the time inter-
val between the current and last node xt, and w is the corre-
sponding window size of input subsequence sn. Et represents
edge set of the corresponding nodes at different moment t and
the nodes at other moments. Discriminated from the feature
graph, we consider there is no connection between the current



node and the future nodes. Hence, the connection relation be-
tween the moments m and n can be expressed as:

At
mn =

{
1,m ≥ n
0,m < n

for m;n ∈ [1, w] (2)
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Fig. 2. The spatial-temporal graph structure, where the dot-
ted line denotes the aggregate representation of the node. (a)
indicates feature dimension. (b) and (c) represent temporal
dimension.

Fig.3 is the basic framework of the STGAT block. To
optimize training, the residual connection is added between
blocks. Input subsequence after STGAT block processing
can coherently explore the correlations of feature dimen-
sion and temporal dimension. In the feature dimension, for
V = {~v1, ~v2, · · · , ~vD} , ~vi ∈ Rw in graph Gxt

. After the
STGAT block processing, attention coefficient can be com-
puted through the following formula:

αij =
exp

(
δ
(−→a T [W~vi‖W~vj ]

))∑
k∈Ni

exp (δ (−→a T [W~vi‖W~vk]))
(3)

where δ is LeakyReLU activation function[23]. −→a ∈ R′′
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Fig. 3. The basic framework of the STGAT block, which is
connected by temporal and feature attention units.

is learnable weight vector, W is shared weight matrix, and ‖
denotes the split joint of two nodes information. Finally, the
output of each node can be gained by aggregating its neigh-
boring nodes, as shown in zl,i

c of Fig.3.

zl,i
c = σ

 1

H

H∑
h=1

∑
j∈Ni

akijW
k~vj

 (4)

where c and l are the channel number and layer number of
STGAT block, respectively. i is node number, H denotes the
number of multi-head attention mechanism. To facilitate the
training, we adopt average method to aggregate the results of
multi-head attention mechanism.

In the temporal dimension, we adopt the same method to
capture temporal correlation in different time periods. The
computational methods of attention coefficient and aggregate
expression are similar to formulas (3) and (4). Therefore, we
can obtain attention coefficient of temporal dimension βij and
output of each node hl,i

c .
Fusion and reconstruction network: After the spatial-

temporal feature vectors in multi-channel are concatenated,
they are reconstructed by the BiSLTM-AE reconstruction net-
work, which is expressed as frecon according to the shape of
original input sN . The reconstructed vector is :

Ŝn = frecon
(
‖Cc=1

(
hLc
))

(5)

here L is the largest layer number of the stack, C is the num-
ber of input channels. In this paper, C = 3.

Anomaly assessment module: By comparing the recon-
struction sequence and the original sequence of input, we cal-
culate the abnormal score of each sample as:

score =
1

D
‖xt − x̂t‖2 (6)

where xt and x̂t correspond to the data at the latest moment
in Sn and Ŝn, respectively. we discriminate the data whose
scores are larger than the threshold as anomalies, and the ab-
normal result is denoted by Y ′. The final result Y can be ob-
tained after point-adjustment [15]. Because the selection of
threshold involves complicated expert knowledge, best evalu-
ation results are reported in this paper.

4. EXPERIMENTAL STUDIES

4.1. Performance evaluation

We evaluate our method on three public datasets (Secure
Water Treatment (SWat) Dataset [24], Water Distribution
(WADI) Dataset [25] and Server Machine Dataset(SMD)
[21], and a new private real-world Wind Turbine Dataset(WTD).
Precision, recall, F1 and AUC are chosen as evaluation in-
dexes. The results are compared with the present advanced
methods including LSTM-NDT [24], GDN [20], LSTM-VAE
[13], USAD [15] and MTAD-GAT [19]. In the experiment,
we set the STGAT block layer number l = 2, the sliding
window size w = 5 under SWAT, w = 60 under WTD, and
w = 100 under other datasets.

The results in Table 1 indicate that the STGAT-MAD
method obtains the optimal F1 and AUC values on almost
all datasets. In particular, F1 achieves a 13% improvement
on the WTD dataset. In addition, compared with GDN and



Table 1. Performance comparison of different methods and datasets
SWat WADI SMD WTD

Models Rec Pre F1 AUC Rec Pre F1 AUC Rec Pre F1 AUC Rec Pre F1 AUC
LSTM-NDT[24] 0.707 0.990 0.825 0.884 0.906 0.602 0.724 0.615 0.990 0.661 0.796 0.890 0.755 0.530 0.623 0.784
GDN[20] 0.746 0.942 0.833 0.879 0.915 0.409 0.570 0.748 0.990 0.490 0.658 0.931 0.990 0.725 0.821 0.757
LSTM-VAE [13] 0.766 0.979 0.860 0.878 0.910 0.603 0.720 0.800 0.990 0.669 0.802 0.849 0.990 0.667 0.790 0.720
USAD[15] 0.960 0.347 0.510 0.755 0.834 0.159 0.267 0.647 0.979 0.447 0.615 0.908 0.990 0.484 0.652 0.565
MTAD-GAT[19] 0.821 0.903 0.860 0.855 0.518 0.720 0.602 0.687 0.944 0.875 0.908 0.990 0.720 0.829 0.771 0.908
STGAT-MAD 0.965 0.841 0.900 0.903 0.910 0.797 0.849 0.804 0.990 0.964 0.982 0.943 0.904 0.959 0.931 0.977

MTAD-GAT models, the feature extraction layer of STGAT-
MAD can extract deeper implicit spatial-temporal features
from multivariate data, resulting in the data reconstruction
layer being better to restore data distribution contextual in-
formation. Meanwhile, STGAT-MAD introduces multi-scale
input to obtain the features of different receptive fields on the
same layer, thus showing better performances on all datasets.

4.2. Case study

This section provides a case study of WTD dataset abnormal
detection to study how STGAT effectively improves inter-
pretability for abnormal detection. The correspondence be-
tween nodes and sensors is shown in Fig.5. The attention
scores are shown in Fig.4, where lines with different widths
represent connection relationships. From Fig.4(a), we can see
that nodes 3 and 4 have a strong correlation. It is reasonable
because the base bearing is a rotating part and the tempera-
tures in front and behind the base bearing change with wind
speed and rotation rate due to friction. Meanwhile, Fig.4(b)
shows that the attention score at the nearest moment is the
highest, indicating the close relation of the value at the cur-
rent moment and values at its neighboring moments.
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Fig. 4. Attention score in WTD case.

In what follows, the detection results are shown in Fig.5.
Green line on the bottom of the figure represents the labeled
abnormal data in testing set, while the red shadows represent
detected abnormal data. As shown in the location 4©, our
method recognizes most of the anomalies in the labeled ab-
normal period from time points 4000 to 10000. Moreover,
the curves of Node:3 and Node:4 which represent the temper-
atures in front and behind the base bearing indicate that over
the abnormal time period, their patterns change a lot, which
is consistent with the results in Fig.4. In the location 1©, our
algorithm detects the expert unmarked anomalies. This pre-
warning is extremely beneficial to prevent further worsening
of the anomalies of wind turbines. However, in the locations
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Fig. 5. Case analysis for anomaly detection on WTD dataset.

2© and 3©, the algorithm still presents missing detection. Tak-
ing into account these false negative and false positive rates,
we need to combine more domain knowledge for analysis,
which is one of the important works in the future.

5. CONCLUSION

This paper proposes an unsupervised anomaly detection
framework based on deep SAGAT network. By learning com-
plex feature and temporal correlations and combining them
with a multiscale input strategy, we achieves state-of-the-art
results on four different datasets consistently. Furthermore,
our model demonstrates better abnormal detection capability
and interpretability for anomalies, enabling users to rapidly
find and position the anomalies when dealing with actual
anomaly detection. Future work can further combine with
domain knowledge to improve the accuracy and consider ex-
tra architecture to optimize the model’s training and improve
the practicability of the method.
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