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ABSTRACT

Genetic code improvement systems start from an existing piece of
program code and search for alternative versions with better perfor-
mance according to a metric of interest. The search space of source
code is a large, rough fitness landscape which can be extremely
difficult to navigate. Most approaches to enhancing search capabil-
ity in this domain involve either novelty search, where low-fitness
areas of the search space are remembered and avoided, or formal
analysis which attempts to find high-utility parameterizations for
the genetic improvement (GI) process. In this paper we propose
the use of phylogenetic analysis over genetic history to understand
how different mutations and crossovers affect the fitness of a popu-
lation over time for a particular problem; we then use the results of
that analysis to tune a GI process during its operation to enhance
its ability to locate better program candidates. Using phylogenetic
analysis on 600 runs of a genetic improver targeting a hash func-
tion, we demonstrate how the results of this analysis yield tuned
mutation types over the course of a GI process (dynamically and
continually set according to individual’s ancestors’ ranks within
the population) to give hash functions with over 20% improved
fitness compared to a baseline GI process.
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1 INTRODUCTION

Genetic algorithms have long been used across many different com-
puting applications, from finding the ideal parameters of systems
with large parameter search-spaces [1], to a useful meta-heuristic
approach to code repair [5, 6]. In this paper we focus on genetic
code improvement (GI), which aims to derive new versions of exist-
ing computation logic that are optimised towards a utility function
such as calls-per-second. GI has been approached in a wide variety
of ways, from modifying bytecode to working on syntax trees or
with grammar models of the target programming language [11].
We use an approach based on the compiler-derived syntax tree of a
piece of source code, augmented with grammar rules guiding which
mutations are valid. We particularly target our GI approach towards
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emergent software systems, which are composed of many small
interchangeable building blocks such as a sorting algorithm or a
hash table [13]. At runtime, emergent software systems monitor
their environment and learn which variants of each building block
are best suited to each set of deployment conditions encountered.
Because each building block in these systems is relatively small
(100-200 lines of code), our particular GI approach mixes new code
synthesis with more traditional mutation types so that sufficient
new genetic material is available.

Despite the success of GI processes, finding the ideal parameter
setting for genetic algorithms remains a key challenge; at present
this tends to be done either through a general search of the pa-
rameter space by hand, or through the use of meta-heuristics [10].
Finding the ideal parameter settings for elements such as mutation
bias and population size aid in allowing a GI process to reach the
highest-utility parts of a search space, and these ideal parameters
may be different for different target problems (such as improving a
hash function, or improving a cache eviction policy). In this paper
we propose the use of phylogenetic analysis — i.e., analysis of the
way in which particular modifications contributed to utility across
successive generations — from existing GI operation on a given
target problem to inform the ideal parameter settings for GI against
that problem. This approach has the potential to automatically de-
rive the ideal GI configuration, including the relative weightings of
each type of mutation, for each target problem as it is encountered.

In this paper we report on an initial study into the analysis of
historical GI information in order to find possible improvements
to GI parameter settings for a target problem. We consider the
independent effects of both crossover and our different mutation
types to see exactly what has been most effective in improving the
relative performance of individuals. We consider these effects not
just at the end of a GI run, but in discrete time quanta during a
GI process, to then inform potentially different parameter settings
that are introduced in different generations of a new GI process.
In this feasibility study we use the results of 600 previous genetic
improvers targeting a hash function, the objective of which is to
most evenly distribute a set of keys across a set of buckets in order
to minimise average lookup time. These historical runs worked
across different data treatments and target data classes and variant
fitness functions. We use the results of this analysis to define new
parameter settings for our GI system on a single setting to examine
whether this results in faster training, higher-performing individu-
als, better generalisation of population members to unseen data, or
more reliable results across an entire GI process.

Our results show positive effects in modifying mutation weights
based on generation and an individual’s lineage to improve perfor-
mance on unseen data, leading us to conclude that the approach
has some significant merit in enhancing GI’s ability to find better
program variants. We provide a replication package, with detailed
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instructions, with which all of our results can be repeated !. In
the remainder of this paper we first examine related work (Sec. 2),
then introduce our GI algorithm (Sec. 3). We then examine our
phylogenetic analysis of this algorithm in terms of mutation and
crossover (Sec. 4.1-4.2), and present our results from experiments
that use GI parameter settings informed by this analysis (5).

2 RELATED WORK

Our general approach aims to improve how a GI process searches a
fitness landscape to find higher-value individuals. The main existing
approaches to this problem involve either novelty search during
execution, or empirical analysis of the problem space.

The most common method used is novelty search [8, 16] in
which unique solutions are saved for future reference. In the se-
lection process, the GI system then performs a comparison with
each previously saved solution and only uses those individuals in a
new population which represent new areas of the search space not
present in the stored list. This approach is effective in searching a
wider area of the fitness landscape, avoiding repeatedly falling in
to the same local minima, and can be applied independently along-
side a wide range of other GI process optimisations. It does not by
itself, however, guarantee good coverage of a fitness landscape [3].
Novelty search also has an inherent limit to how many individuals
can be usefully stored before the cost of enumerating them, when
evaluating new individuals, slows down the GI process to a point of
being non-viable [14]; because the entire genetic material of each
individual must usually be stored, there are memory constraints on
the total number of points that can be saved. So while useful novelty
search is not a substitute for well-tuned GI parameters which guide
a process towards high-value areas of a fitness landscape.

The use of empirical analysis in GI attempts to quantify an over-
all fitness landscape in order to derive the most appropriate mu-
tations or parameter settings to reach high-utility areas [15]. This
is related to our approach of using historical information of the
fitness landscape, relative to the modifications that were made in
each generation, to inform future decisions on how the GI system
proceeds. A complete empirical analysis, however, is only viable
for highly constrained fitness landscapes, where success and fail-
ure are easily defined. In general the use of synthesised code for
insertion-mutations, as employed in our approach to augment small
amounts of initial starting genetic material, presents far larger and
less well-defined fitness landscapes than GI without synthesis.

Our approach of historical analysis is inspired by the field of
phylogenetics, most commonly applied to biological evolution. In
biological study, researchers are often curious about when different
species appeared or what contributed to the evolution of particu-
lar genetic traits. When studying genetic history to answer these
questions, researchers are faced with a similar problem of the sheer
size of the probability landscape in their attempt to track evolu-
tion backwards in time. Even with complete or fragmented DNA
available, the probability space for tracking the sexual recombina-
tion and mutation of DNA back in time is intractable to formal
analysis. Instead a combination of heuristics [4, 7] and phenotype
comparisons across generations are used to predict a likely tree
of evolution backwards in time which is compared with known
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Figure 1: Our overall approach, with data capture from a run-
ning emergent software system, requests for improved vari-
ations of particular building blocks to a GI system, and a GI
process which uses mixed code synthesis to counter a low
volume of available genetic material, along with input data
synthesis to counter a sparsely sampled input trace towards
which we are optimising.

changes to the environment to derive possible drivers of change in
evolutionary pressure towards particular adaptions [2, 9].

Unlike the biological analogue, we are able to access complete
information about the exact past set of re-combinations and muta-
tions across generations; by analysing these relationships relative
to phenotypic improvements (or negative changes) in the code we
hypothesise that we should be able to derive the correct pressures
to create efficient evolutionary pressure towards our goals. In effect
we use a very similar phylogenetic analysis approach to drive rather
than to explain evolution.

While our approach does require the analysis of large bodies of
data, from previous uses of a genetic improver, the results of this
analysis require minimal storage and can provide useful changes
to many future uses of the improver — such that the proportional
increase in memory and processing per-run is minimal. Our modi-
fied GI process, which is able to support dynamic and individual
parameter settings across generations, does very slightly increase
the storage size of our individuals but only by the storage of 3
additional floating-point numbers.

3 ALGORITHM

Our overall GI framework is illustrated in Fig. 1. An emergent soft-
ware system is assembled from a large collection of small building
blocks, such as stream processors, memory cache implementations,
hash tables, and so on, and is deployed into a real environment.
Once that system has learned the best composition of blocks for a
given environment, it will select one of those building blocks and
capture a short trace of the method calls that are issued to that
block within the present environment. This trace is then sent to a
GI system, along with the source code of the building block from
which it was captured, so that the GI system can attempt to gener-
ate an improved variation of that building block which has higher
performance for the given input data sample. If the GI system is
successful, the improved building block is pushed back to the emer-
gent software system which uses real-time learning to determine
if the proposed improvement does yield higher performance for
the intended environment conditions in deployment. Our GI im-
plementation is designed to operate on source code written in the
Dana programming language, which supports sound hot-swapping
of code for emergent software systems [12].
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For the purposes of this study we examine only the GI element
of this overall concept. We focus on one particular building block
throughout our experiments (a hash table), and we assume that
short traces of function calls to this block have already been cap-
tured by the emergent system. We also assume that the GI process is
able to identify the hash function of the hash table implementation
as the specific area in which to focus when generating improved
variations; in practice this focus area could be determined using
function call frequency or CPU intensity analysis.

Algorithm 1 Genetic Improvement Algorithm

for i = 0 to generations do
if i == 0 then
create initial population of clones
end if
mutate a % of the population
check fitness of all population members
if i%5 == 0 then
check performance on unseen data of all population mem-
bers
end if
select new population (roulette wheel)
crossover a % of the population
end for

The core of our system is then based on a typical genetic im-
provement process, Algorithm 1, using mutation, fitness, selection,
and crossover. We include crossover in this work to make use of
existing code to expand the code base of members of our population.
Because our volume of starting genetic material is very small, we
also include new code synthesis in our set of available mutations,
in combination with more typical mutation types. The crossover
and mutations in our system are described in more detail in the
relevant sections.

Our selection process, where we choose which individuals to
select for copying from one generation for inclusion in the next
(with associated crossover/mutation), uses a rank-weighted roulette
wheel approach. Each population is ordered by fitness and ranked.
This rank is then used such that the fittest individuals have the
highest probability of selection for the next generation. Selection is
done with replacement, so some individuals will appear multiple
times in the following generation, and some will be completely
absent, with a (small) possibility of even the worst individual being
selected for the next generation.

3.1 Rank vs Fitness

Throughout this paper we use relative fitness rather than raw fitness
to analyse the results of a GI process. We do this because our raw
fitness is drawn from the system clock timing our code running
(such as how quickly it takes a candidate hash table to process 1,000
‘put’ operations). This timing approach includes some degree of
noise, both between different machines and, at times, on the same
host machine. To account for this noise we measure our original
code’s raw fitness at the start of each run, with the relative fitness
derived as a proportion of that original fitness. Because faster is

GECCO ’22, July 9-13, 2022, Boston, MA, USA

Changes to Relative Fitness and Rank between -2 and 2

30 1

20 +

10 A

Rank Change
o
.

—-10

—20

T T T T
2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0
Relative Fitness Change

Figure 2: Scatter graph showing the change in relative fitness
(scaled to the fitness of the original code) against the change
in rank both changes from the individuals immediate ances-
tor, limited to the rank -2 to 2.

better in our target problem, this means an individual with a relative
fitness of 0.8 is a 20% improvement on the original code.

In this research we use the results of many runs, including those
that train on different data and with different data treatments. We
could examine changes in relative fitness for each individual run in
this data, as each run has a common end-point of 200 generations;
however, within this dataset some examples have less than 20%
improvement by the end while others have almost 40% depending
on the training data that was used. Because we want to combine
many GI runs for phylogenetic analysis, the difference in improve-
ment between runs and the internal relative fitness noise makes
comparison based on relative fitness very difficult. We instead fo-
cus on relative rank within a population, rather than fitness. Rank
is determined by ordering individuals based on their fitness and
assigning ranks, e.g. the fittest (fastest) member of the population is
assigned rank 1, the second fittest rank 2 and so on with the worst
individual given rank 30 (all population sizes in this work are 30).

To verify that improvement in rank does correlate sufficiently
with improvement in fitness we compare the two, shown in Figure 2.
If this provided a clean correlation, in the form of a strong positive
correlation, there would be no need to use rank rather than relative
fitness as the two would be equivalent. Conversely if there had been
alarge number of points in the top left and bottom right quadrants it
would suggest that there wasn’t a sufficient correlation between the
two values. The graph shows that there is not a perfect correlation,
but that in most cases individuals with a better fitness do have a
better rank, and vice-versa, such that the bottom-left and top-right
quandrants feature most of the points. This lends confidence to
the use of relative rank throughout our analysis, allowing us to
effectively compare the results of our 600 runs even though they
have differences in their training data and timings.
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4 ANALYSIS

In this section we present our analysis of 600 runs of our GI process
on a hash function; these processes are each aiming to derive an
improved hash function which most evenly distributes keys across
available buckets and therefore minimises average key lookup time.
Among these 600 runs we have a large range of different input data
sets (lists of keys) for which the GI system is trying to yield an
improved hash function variant. We analyse these 600 runs first in
terms of mutations and second in crossover.

Our output from these runs is saved to a comma-separated file
with groups of values, for each generation, on the following data:

o ID - unique identifier of each individual

e Ancestry - the ID of the individual’s immediate ancestor
(recipient code in the case of crossover)

o Fitness - raw and relative values for fitness and performance
and the difference between them and their ancestor’s values

e Rank - individual rank, ancestors’ rank, change in rank, and
average rank of immediate 5 ancestors (based on the experi-
ence of performance checks every 5 generations providing
an accurate trend of the training of the population)

e Modification - boolean flags indicating occurrence of muta-
tion and crossover, ID and rank of crossover donor code, type
of mutation including mutation type, type of token affected,
and operator affected.

Our analysis programs use this data to construct a map of how
modifications, fitness, and rank changes propagate across individu-
als over time through successive generations of our GI process.

We note that our analysis of existing runs examines only the
independent effects of mutation and crossover on individuals in
the population so that we can accurately infer the effects of these
modification types in isolation, ignoring those individuals that
underwent both or neither change. While every one of our 600
studied runs shows continuous or mostly-continuous improvement
of the best individual throughout the run, on some of our analysis
results it therefore appears that rank changes are only negative;
these results are because much of the improvement took place
within the unstudied group of combined modification.

4.1 Mutation

Our GI system has three types of mutation available: insertion,
modification, and deletion. Each time a mutation is called for, we
first select one of these mutation types at random, then choose from
the available specific mutations of that type — such as inserting a
new variable declaration, or modifying an operator.

Insertions are the most complex mutation in our system as they
use newly-synthesised code. When an insertion is selected we first
identify a node in the syntax tree at which the insertion will take
place. The particular kind of insertion is then selected at random
from declarations, operations, and control structures. Declarations
are formed using (i) a variable name drawn from a list of ordered
strings, based on the 26 letters of the English alphabet, (ii) a random
type for that variable, such as int or char[], and (iii) a selection of
either an existing variable of that type or a random value of that
type for assignment of the starting value of the newly declared
variable. These components are assembled as a declaration with a
value assignment, and inserted into the syntax tree at the chosen
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position. The insertion of new operations begins with the selection
of an operator followed by the search for matching variables in
scope for use as operands; if there are insufficient operands available
the process fails. This newly formed operator is then inserted at the
chosen position. Finally, the insertion of new control structures are
drawn from three types: if, while, and for structures. The for loop
simply selects a variable name for the iterator variable, in the same
way as choosing a declaration variable name, and selects an iterator
limit from the available integer variables that are in scope. The
while loop and if statement options select a comparison operator
at random, and the matching variables from the scope as operands.
Control structures are then inserted including a new scope within
them which remains empty to begin with.

Modifications mutations allow for any arithmetic operations and
also the conditional statements of if and while control structure to
be changed. In both cases we choose at random between modifying
an operator or an operand. For the operator case, we can swap an
operator such as ‘+’ for one with the same number and type of
operands, and the same return type, such that it can be exchanged
for the existing operator with no other adjustments needed. For the
operand case, we exchange one operand of a chosen operator for a
different variable which is currently in scope and which has identi-
cal type (where variables-in-scope includes subfields of objects or
array cells indexed by an available integer). If matching operators
or operands cannot be found then the modification fails.

Deletions select a token and identify it as either a declaration,
operation, or control structure. For operations, which do not create
new variables, the token is removed from the syntax tree with no
further checks. Declarations, by contrast, create a new variable in
the program, meaning we must first check to ensure the variable is
not used elsewhere in the program before we consider the decla-
ration for deletion. Finally, control structures are only removed if
they are empty, such that the removal of a control structure usually
means one or more other deletions must first have taken place
within the scope of the control structure to render it empty.

In the data used here, from our 600 GI system runs, all random
selections in the mutation process were done based on a uniform
probability distribution for the choice of token, operand, insert type,
etc. These uniform distributions are one configuration element that
could be modified in future GI system runs, based on this analysis, to
provide more effective GI optimisation of a target problem. Changes
to these distributions could be made at a population or individual
level, and could be changed based on generation number, current
individual rank, historical rank, and rank trends.

4.1.1 Average Rank Change for Mutation over Time. In our phylo-
genetic inspired analysis we begin by looking for trends over time
in the apparent effects of each of our main three mutation types:
insertion (I), modification (M) and deletion (D), shown in Figure 3.

On all of our rank-based graphs lower numbers on the Y-axis
are better; on this graph we can see that each class of mutation at
some point contributes to lower rank, but that each mutation class
viewed individually increases rank (i.e., has an undesired effect)
over time. Insertion (blue) has a particularly deleterious effect in
early generations but improves over time. Modifications (green)
and deletions (orange) both result in steadily worse ranks over
time, although the change in rank for deletions is much smaller
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Figure 3: Rank change resulting from mutation of particular
type over time. Mutation types: Insertion (I, green), Modifi-
cation (M, purple) and Deletion (D, yellow).

and suggests that deletions are far more likely to yield neutral
drift. Neutral drift can be a useful property in better searching a
fitness landscape as it allows us to find new areas to search despite
continuous selection pressure to focus on improvements.

By increasing the weightings on modification and deletion in
general we may be able to encourage further neutral drift and also
reduce the deleterious effects of insertion in the early generations.
To acknowledge, however, the importance of insertion to the finding
of new solutions, and the improvement in its effect over many
generations, we may opt to taper the weights of insertion over the
course of the run so that the weightings are again equal by the final
generation of a GI process.

4.1.2  Average Rank Change for each Mutation vs Historical Average
Rank. We next consider if the history of each individual in our
system can provide indicators for which mutations would be most
efficient on per-individual basis. To do this we examine the average
rank of an individual’s last 5 ancestors, which is informative both
on the history of an specific individual and on the general survival
times of individuals of different ranks. In general, because our
selection process prefers lower rank individuals, it should be likely
that those with higher rank produce less to no offspring.

In Figure 4 we plot each individual that was subjected to a muta-
tion, from each generation, in each of our 600 GI runs. The X-axis
represents the average rank of an individuals five most recent an-
cestors in its population of 30 (higher ranks are worse), while the
Y-axis represents the degree to which that individual’s rank has
changed relative to the rank of its most recent ancestor. Points that
appear in the top-left quadrant of each graph are therefore indi-
viduals who are on average from the best half of their population,
and whose rank has gotten worse compared to their most recent
ancestor. Overall these graphs indicate that our general intuition of
which individuals survive is correct: there are very few individuals
with an average rank that is currently over 23. In particular, we
can see that the only surviving individuals with historical average
rank over 25, which appear on the far right of the insertion graph,
survive due to an insertion mutation which significantly improves
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Figure 4: The historic average rank (mean of 5 immediate an-
cestors ranks) against current rank change (between current
individual and immediate ancestor) grouped by type of mu-
tation applied. Mutation types: Modification (top left), Dele-
tion (top middle) and Insertion (top right and main).

their fitness. This is particularly interesting as insertion only pro-
duces neutral or better changes to these individuals. We also see,
however, that insertions are responsible for taking well-ranked
individuals through very negative rank changes: the only way for
individuals to appear in the top-right is if they are currently well
ranked, but in their last 5 generations have had an insertions which
caused their rank to become very poor, before a further mutation
brought their rank back to a very good position.

By tracking average historical rank, and limiting those with high
average historical rank to insert mutations, we may therefore help
to create diversity in the population by increasing the survival
chance for these individuals. It may also improve the fitness of the
population as a whole by improving lower fitness individuals faster
through insertion rather than through other mutations.

4.2 Crossover

We next examine the effects of crossover as evidenced by our analy-
sis - i.e., the process by which a fragment of code is shared between
two different individuals in an evolutionary algorithm. Crossover
can take many different shapes and forms dependent on the repre-
sentation of the genotype and the purpose of the algorithm. There
are two main factors of difference between types of crossover: di-
rectionality and fragment selection.

Directionality refers to whether the crossover process changes
one or both individuals. In a bidirectional transfer a fragment is
selected from both individuals and swapped into each others places.
In single directional transfers a location is chose in the recipient
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code and a fragment is chosen from the donor code. The fragment
from the donor code is copied and inserted into the recipient code
at the chosen location.

Fragment selection is either single- or dual-point. A single-point
fragment selection is normally used with bidirectional crossover. A
single point is selected in both individuals and the code before or
after those points are exchanged. Dual-point selection selects the
start and end of a fragment. This could be controlled for a particular
length of fragment or particular positioning in an area of the code.
This can then be used with any directionality for crossover.

The general purpose of crossover is to insert new code into an
individual which is known to be valid and with the potential for
greater complexity than most synthesised code. In this work we
used single directional transfer of code fragments, with dual point
selection having a length of 1 (intended to acquire a single line of
code, with the exception of control loops which if selected include
the contents of the loop).

Possible parameters for control of the crossover in this system
that could be changed based on the results of these analysis include:
how much of the population we perform crossover on, how we
select which member of the population we perform crossover on,
how we select our donor code, or how many tokens we select for
crossover. Each of these factors could be changed statically or at
continuous points in the run time of the algorithm.

We analyse the effects of crossover by considering the relative
ranks of the individuals involved in each crossover, each of which
is in the range 1 to 30. Crossover takes place immediately after
a new generation is formed, transferring genetic material from a
donor individual to a recipient individual. The recipient rank is
the pre-crossover rank from the previous generation, within its
population, of the individual selected for insertion of crossover ma-
terial. The donor rank is the rank, from the previous generation, of
the corresponding individual from which the crossover material is
sourced. The resultant rank is the rank given to the recipient, within
its population for the current generation, after post-crossover fit-
ness testing. Finally, the rank change is the difference between the
recipient rank and the resultant rank.

We analyse two properties of crossover in terms of these rank
differences: the effect of donor rank on recipient/resulting rank,
and general rank change over time as a result of crossover.

4.2.1 Effect of Donor and Recipient Rank. In order to consider the
effect of the rank of the donor code on its recipient, we need to
compare that rank with the recipient’s resultant rank. We note
that rank change per individual is generally limited by the starting
rank of that individual; poorly-ranked recipients have a relatively
high potential for change as their rank can improve more than
well-ranked recipients which have little space for improvement but
a high potential for decline. Figure 5 uses a heat map to show the
mean rank change for each donor-recipient rank pair. The recipient
rank is shown in the x-axis, and the donor rank on the y-axis. The
top-left heat map square at x(0) and y(0) therefore indicates the
resultant rank of a crossover between a donor individual that had
the best rank (0) and a recipient individual that had the best rank
(0). Light-coloured squares then represent negative rank changes
which result in a poorer individual, while dark-coloured squares
represent positive rank changes.
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Figure 5: The recipient rank (horizontal) of code before it is
changed and donor rank (vertical) of the code from which
new material is copied. The heat map shows the average
rank change (from recipient to the created code) resulting
from the pairing of any two ranks. Pale colours are poor
rank change, dark colours are beneficial rank change.

This result shows a clear pattern of crossover efficacy correspond-
ing to the donor individual’s rank, but only for better-ranking recip-
ients. For the two vertical lines of heatmap squares intersecting the
x-axis at positions 0 and 1, therefore, we see a clear continuous gradi-
ent from negative crossover effects originating from poorly-ranked
donor individuals through to positive crossover effects originating
from well-ranked donor individuals. For worse-ranking recipients,
by contrast, crossover generally has a strong positive change re-
gardless of the donor’s rank; most of the the right-hand side of the
heatmap therefore has a dark colour regardless of the y-axis value
of the donor rank. There are also many worse rank recipients for
which we have no data, indicated by a lack of heatmap squares
on the right side of the graph, as the recipient’s resultant rank is
limited by the selection process which is biased against selecting
worse ranked individuals for the new generation and so they are
less likely to undergo crossover.

For better-ranked recipients there is an indication in this data
that the improvement potential from crossover is generally reduced
for better individuals, and in fact that better individuals may experi-
ence a rank decline even when receiving crossover code from good
donor individuals. When better recipients receive from poor donors
individuals they suffer far more extreme rank changes which are on
average very deleterious (a rank degradation of more than 15 places
in the population of 30). This suggests an advantage to reducing
crossover in general for better-ranked individuals and weighting
the selection of donors for them towards better ranked donors.

4.2.2  Rank Change Over Time. To confirm the above effects, and
to examine whether there is a temporal effect in crossover charac-
teristics, we split our population into five groups: individuals of
rank 1-6, rank 7-12, rank 13-18, rank 19-24, and rank 25-30.

The first two groups, rank 1-6 and rank 7-12, correspond to the
better-ranked recipients in our above analysis; their average rank
change over time may reveal fine details of the rank change effect.
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Figure 6: Average rank changes over time grouped based on
the rank of the recipient code before crossover

The other groups will show if any recipients undergo changes in
their efficacy due to crossover during the optimisation process.

Figure 6 shows the results for each grouping. As would be ex-
pected, most improvement occurs on the worse-ranked three groups
which have far more room for improvement. The best two rank
categories are only made worse by crossover or otherwise remain
unchanged (their relative rank changes are always above 0). We
stress here that rank change is not the same as fitness change; over
the course of these generations fitness scores steadily improve, even
if relative rank of individuals in a population does not.

While our better-ranked groups (red and orange in the figure)
therefore remain in a near-neutral state as a result of crossover
except at the very start of the time line, our worse two rank groups
exhibit very different characteristics. The rank 19-24 group (green
in the figure) is very erratic in its crossover effects on individual
rank changes, but it is also the most common to have larger indi-
vidual rank improvements due to crossover. We do also see larger
improvement in the rank 25-30 group (purple in the figure) but
there are far fewer data points in this group due to selection pres-
sure on individuals of this rank. An increased chance of crossover
for these poor-rank groups could yield greater improvements on
their individuals — while also potentially improving the overall
population fitness and diversity by helping to find improvements
for poorly-ranked individuals to keep them in the population.

5 EXPERIMENTS

In this section we report on experiments which use new GI pro-
cesses configured based on our above analysis. This answers the
question of whether or not these analysis results can yield improve-
ments in the efficacy of our GI system. We first examine changes
to mutation policies and then examine changes to crossover.

Our evaluation metrics examine the fitness and performance of
the best individual after 200 generations. We define fitness as the
speed of the best individual when tested on its training data (the set
of hash function keys). Performance, by comparison, is the speed
of the best individual when tested on unseen data drawn from the
same distribution as fitness-testing data. Fitness indicates how well
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we have specialised to training data, while performance indicates
how well we have generalised to data of that class.

As well as these evaluation metrics of simple performance against
the target problem, we are also interested in the extent to which
changes that we make result in expected or predictable outcomes
in GI behaviour according to what our analysis results suggested
(e.g. in noise reduction, or genetic diversity increase).

Each experiment is repeated 30 times with the average fitness
and performance reported. Our results show that our mutation
policy changes yield significant improvements in performance of
the best individual against unseen data, indicating a better ability to
generalise. Our crossover policy changes are less successful, yeild-
ing poorer fitness, but do provide near-equivalent performance for
the best individual against unseen data — and notably they greatly
reduce the noise level within performance across generations.

5.1 Mutation Changes

We apply two changes to our mutations: the first is to force the use
of insertion mutations on any individuals whose 5 most immediate
ancestors have an average rank greater than 24. This is referred to
as Lineage Modification, and is expected to yield more diverse
populations which could produce both more noise but also more
long-term-effective optimisation by increasing the overall amount
of useful genetic material in the system.

The second change, applied separately, is to use a non-uniform
probability distribution for the selection of insertion, modification
or deletion mutations, using a (0.2, 0.4, 0.4) probability respectively
at the start of our GI run which we then gradually adjust over time
to finish with a uniform distribution by our terminal generation
(200) with increments of (0.001, -0.0005, -0.0005) each generation.
We refer to this system as Generational Modification, as it is a
time-based weighting, and is expected to yield faster optimisation
and/or less noise in the population.

When tested, these systems show two distinct results. First, the
fitness of the best individual in each generation on training data
(the degree to which they specialise) is slightly worse than in our
control system which uses uniform random selection throughout
(Fig. 7). However, their performance on unseen data (the degree
to which they have generalised to the class of data) has greatly
improved, yielding individuals that are 20% better than in our con-
trol (Fig. 7). The improvement on performance could in both cases
come from maintaining higher diversity in the systems encouraging
generalisation rather than specialisation to the training data.

Besides these core results, we also see general characteristics
which confirm to our expectations of these changes relative to our
analysis data. First, we do see higher variation and noise in the
Lineage Modification system, as expected; this is because more
diverse genetic material is kept in the population. Similarly, the
Generational Modification system does train faster with better
ranked individuals focused on incremental changes from modifica-
tion and deletion than our control, though it does not reach quite
the same level of fitness.

These results are encouraging and suggest we can gain meaning-
ful improvement to a GI process based on analysis of its historical
behaviour, and that are changes yield predictable characteristics.
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Figure 7: Mean relative (scaled to fitness of original code)
fitness (left) and performance (right) of the best individual
from 30 runs over 200 generations for the Control, Lineage
Modification and Generational Modification systems.

5.2 Crossover Changes

Our crossover procedure was modified by placing weights on the
chance that an individual will undergo crossover based on their
rank. Instead of all individuals being equal, those in the best 40%
(12 best individuals) of a population were given a 10% chance of
crossover; those in the middle 20% (6 middle individuals) were given
the original 20% chance of crossover; and those in the worst 40%
(12 worst individuals) were given a 30% change of crossover. This
matches our analysis results that crossover disproportionally bene-
fits poor-ranked individuals and can actively harm better-ranked
individuals. These weightings are applied to produce the same
average crossover chance across all groups (20%), but distributed
different between different rank groups.

If an individual in the best 40% of a population is selected as
a crossover recipient we also enforce the selection of the donor
code from only the best 40% of individuals. This should encourage
incremental improvements in the more optimised individuals while
allowing for larger improvements in the less optimised individuals,
again following the patterns found in our analysis.

Figure 8 shows the results for fitness (on the left) against training
data, and shows that the reduction and restriction in crossover for
better ranked individuals has reduced the ability of the system to
train as effectively as the control system. This may be a general
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Figure 8: Mean relative (scaled to fitness of original code) fit-
ness (left) and performance (on unseen data, right) of the
best individual from each of 30 runs over 200 generations
for the Control and Modified Crossover systems.

result, but could also be due to the particular level of reduction
and restriction we chose for our particular target problem; further
experimentation is needed to fully understand this result, but it
may indicate that our current analysis method of crossover lacks
sufficient power to yield predictable results.

Despite this, we do see an expected result in our evaluation of
the performance of the best individuals against unseen data, shown
in Figure 8. Here we see a far less noisy signal across generations
and a result which matches the performance of our control.

6 CONCLUSIONS

In this work we have presented an initial exploration of the potential
for phylogenetic-inspired analysis on GI characteristics to be used
for targeted improvement of parameters on whole-system, temporal,
and individual levels.

We find that where the changes have strong enough indepen-
dent effects we can use these analyses to produce new parameters
regimes that can improve the performance of the GI system. Our
most positive results relate to changes in mutation regimes, which
show improvements in performance and also predictable changes
in the characteristics of a GI process; while our changes to crossover
regimes do not provide improvement in performance, they do also
provide a predictable property of noise reduction.

In future work we will further evaluate our analysis methods,
particularly with respect to crossover, and apply our technique to
additional target problems to further understand its generality —
particular those problems with shared features, as other problems
will exist within the same overall fitness landscape.
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