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Abstract—The role of electricity theft detection (ETD) is crit-
ical to maintain cost-efficiency in smart grids. However, existing
ETD methods cannot efficiently handle the sheer volume of data
now available, being limited by issues such as missing values,
high variance and non-linearity. An integrated infrastructure is
also required for synchronizing diverse procedures in electricity
theft classification. To help address such problems, a novel ETD
framework is proposed that combines three distinct modules. The
first module handles missing values, outliers, and unstandardised
electricity consumption data. The second module employs a newly
proposed hybrid class balancing approach to deal with highly
imbalanced datasets. The third module utilises an improved artifi-
cial neural network (iANN) based classification engine, to predict
electricity theft cases accurately and efficiently. We propose
three distinctive mechanisms, including hyper-parameters tuning,
regularization and skip connections, to improve the performance
of standard ANN to handle more complex classification tasks
using smart meter (SM) data. Furthermore, various structures
of iANN are investigated to improve the generalization and
function fitting capabilities of the final classification. Numerical
results from real-world energy usage datasets confirm that the
proposed ETD model has superior performance compared to
existing machine learning and deep learning methods, and can
effectively be applied to industrial applications.

Index Terms—Smart grid, Smart meter data, Classification,
Electricity theft detection.

I. INTRODUCTION

Energy crises are real, extensive and seem to be long-lasting.
This is neither inevitable nor desirable. During the transfer of
energy, power system networks encounter two types of losses:
technical losses (TL) and non-technical losses (NTL) [1]. TL
are inherent and cannot be averted because of their occurrence
in transformers, cables and long-distance transmission lines
during the transfer of energy. NTL has long plagued the
utilities and has two dominant components, namely electricity
theft and non-payment of utility bills.

Electricity theft with its many facets usually has an enor-
mous cost to utilities compared to non-payment because of
energy wastage and power quality problems. It has always
been a problem for power utilities and no electric power utility
is immune to power theft. Today, it is estimated that electricity
theft costs the power industry as much as $96 billion/year
globally. In developing countries, this proportion is much
higher, with an estimated cost of $60 billion/year [2]. This
huge loss drives up prices for end-users, increases the need
for costly government subsidies, and cripples utility companies
around the globe.

One of the main aims of the smart grid is to lower power
system losses to equate the electricity demand-supply gap.
With the recognition of the internet of things (IoT) tech-
nologies and data-driven approaches (based on single-level
data collection), power utilities have enough tools to combat
electricity theft and fraud. The electricity consumption changes
frequently and a large amount of installed IoT devices mon-
itor the multi-source real-time data, such as climatic factors
(wind, solar, temperature), transmission and the consumers’
electricity usage record. For example, during the uncertain
times of COVID-19, when people could be spending more
time indoors, the quantity of historical data is big and difficult
to analyse [3], [4].

II. RELATED WORK AND CONTRIBUTIONS

Machine learning (ML), deep learning (DL) and time-series
models are the main approaches for electricity theft detection
(ETD) in smart grid. Based on smart meter data, normal and
abnormal power consumption patterns and footprints can be
identified with irregular, longer and higher electricity usage
patterns than regular and normal consumption. The ML algo-
rithms are gradually trained based on supervised learning to
determine the relationship between input features (consump-
tion) and corresponding labels (field inspection results). The
work described by [4]-[7] concerns supervised ML algorithms
to characterize the class label of normal and anomalous power
consumption patterns. Since these algorithms utilize already
fabricated data, the computational cost is moderate with no
requirement for new hardware devices and prior knowledge
about network topology. However, there are several short-
comings in existing classification-based schemes, such as the
high false-positive rate (FPR), time-consuming engagement of
experts, and low adaption to new types of electricity fraud [2].

Given the importance of boosting and DL algorithms, a
limited but growing body of literatures [8]-[11] utilized the
publicly available SGCC (State Grid Corporation of China)
dataset and successfully applied for NTL detection in smart
grid. Hussain er al. [8] used a feature engineered based
category boosting (CatBoost) algorithm in conjunction with
the SMOTETomek sampling algorithm for ETD. The proposed
model achieved an area under the curve (AUC) score of 92%.
However, it is very challenging for boosting algorithms to
attain a higher accuracy due to the presence of the various out-
liers, noise and data sparsity since each estimator in boosting
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Fig. 1: Proposed electricity theft detection framework

algorithms is obliged to fix the error of the predecessors. Study
in [9] exploited a CNN based long short term memory (LSTM)
model for ETD. In this proposed hybrid model, CNN is used
to automate the feature extraction process, whereas LSTM is
used to solve a classification problem. The authors also utilized
the synthetic minority oversampling technique (SMOTE) to
avoid class imbalance problem. However, SMOTE algorithm
generates synthetic data instances for minority class samples
to obtain an equal distribution of both majority and minority
samples. It causes low generalization and overfitting problems,
resulting in inaccurate prediction model results for unseen/test
data. In [10], the authors proposed a DL methodology based
on multilayer perceptron (MLP) and a convolutional neural
network (CNN) to capture electricity theft from raw electricity
consumption (EC) data. However, a major drawback of using
CNN and MLP networks is their difficulty in handling large
time series data. Due to this, the input is limited to a fixed size
window and the prediction model cannot capture a descent in
the EC data if it occurred before the analysis period. More
recent work in [11] utilized a deep siamese network (DSN) to
discriminate between honest and dishonest consumers in EC
data. The proposed model achieved good prediction results but
at the cost of two shortcomings, as compared to the other well
performing DL methods [12]. First, DSNs are relatively slow
to train due to quadratic pairs learning. Secondly, the output
of DSN does not involve probabilities due to involvement of
the pairwise learning, hence making it not generalizable and
sensitive to some variations in the input [13].

Time-series data analysis methods are widely used in
ETD. For example, autoregressive integrated moving average
(ARIMA) have shown good performance in stable electricity
markets. In this regard, Singh et al. [14] proposed a relative

entropy concept that captures variations in probability distri-
bution obtained from multiple consumers. Similarly, Jokar et
al. [15] made use of energy consumption patterns as a base
recognition system to model the predictability of normal and
abnormal consumption patterns with advanced metering in-
frastructure (AMI). Although statistical methods help capture
the partial non-stationariness in recorded data and could be
critical for ETD, the presence of various outliers and building
the model on raw data may make the classification accuracy
unstable.

Macro-level (micro-grid) and micro-level (smart meter) en-
ergy consumption profiles are fundamental to the application
of the classifier. It is essential to enrich the attributes of
normal energy consumers and differentiate the outliers to relate
to the energy theft phenomenon. In a binary classification
problem, various aggregating methods are also used for ETD.
In a recent work, Jindal et al. [16] proposed energy con-
sumption data aggregation for multiple households in local
communities. For households, the authors employed a decision
tree (DT) algorithm to predict the energy consumption value
and, subsequently, a support vector machine (SVM) classifier
was trained on multiple features to locate customers with
anomalous consumption behaviour. On a similar task, Pulz
et al. [17] used census data to extract social indicators to
find the interdependence between losses and socio-economic
indices for ETD under various scenarios. Such aggregated
data-driven approaches are useful; however, problems like
non-stationary high-volume data measurements need to be
addressed to compose useful clusters.

Mostly, the aforementioned literature focuses on classifier
design or feature engineering algorithms, where conventional
classifiers, e.g., SVM and DT algorithms are popular [3], [19].




However, SVM usually has a high computational cost and it
is a challenge to find optimal values of hyper-parameters to
achieve higher classification results. DT, on the other hand,
possesses over-fitting problems that mean its performance is
high during training (seen data) but not in prediction (unseen
data). Besides, ML and DL methods rarely take big data into
account and the experiments are conducted considering load
or price data, which is not sufficient. Thus, theft detection
precision could still be improved considering big data from
grid sources.

A. Contributions

In this work, we examine binary classification issues for
ETD in smart grids. Our objective is to predict the honest
and dishonest consumers accurately using big data from the
smart grid. To achieve this challenging task, we propose an
improved artificial neural network (ANN) for the underpinning
framework that performs energy theft tasks efficiently with
normal and anomalous consumption patterns. Compared to the
shallow ML methods, we preferred to choose ANN for the
classification task because it has stronger non-linear computa-
tional and complex function abilities. Also, it is more suitable
for classification tasks due to many potential advantages to
learning essential laws and key features from mass data. An
ANN is formed when neural structures are constituted in
the form of layers. The computational power of a neural
network is attained by connecting hundreds of single-unit
artificial neurons with their respective weights. The artificial
neuron, a processing element, has weighted inputs and an
output associated with a transfer function. Although ANN is
a promising approach, the subsequent challenges need to be
addressed to predict electricity theft with higher accuracy:

e Challenge 1 (Highly imbalanced theft data): In real
datasets, data samples are not represented in equal propor-
tion. It is the scenario when the fraudulent instances far
outweigh non-fraud instances. Standard methods to tackle
imbalanced class problems are random over-sampling
and under-sampling. However, due to certain known
drawbacks, the classifier is biased towards majority class
samples (honest consumers) and shows inaccurate per-
formance for minority class samples (fraudulent in our
case). In binary class problems, the accurate classification
of minority class samples is more important to handle.

e Challenge 2 (High computational complexity). The DL
methods are slow to train. According to e.g. [20], the neu-
ral networks’ performance is constrained by processing
uncertain pieces of information. Also, these methods have
high computational costs due to the operation of forward
and backward propagations through the hidden layers. In
the ETD process, irrelevant and repetitious features make
the classifier training procedure challenging and prevent
it from being a good fit model, which ultimately lowers
the final prediction outcome of the classifier.

o Challenge 3 (Problem of limited generalization and over-
fitting): One major difficulty with training deep archi-
tectures is exploding and vanishing gradients. As back

propagation computes gradients using the chain rule,
gradients can exponentially grow or vanish, preventing
weights from updating and thus stalling training. Another
issue faced by neural networks is the internal covari-
ate shift (ICS) which occurs when the distribution of
network activation changes because of variations in net-
work parameters during training. As ANNs have a large
number of layers, this shift in input distribution can be
problematic in achieving fast convergence. Also, ANNs
have the most common problems of over fitting, limited
generalization and limited control over convergence and
stability.

To address the above mentioned challenges and to assist
electrical utilities to identify energy fraud, we develop a novel
ETD framework, called sequential preprocessing, resampling
and classification (SPRC), as presented in Fig. 1. The main
components of SPRC are sequential preprocessing based on in-
terpolation, outliers handling and standardization (I0S), hybrid
data resampler (HDR) and final classification with improved
ANN (iANN). Precisely, an interpolation method fills missing
values in the dataset to attain data uniformity. Afterwards, op-
erations like outliers handling and normalization are performed
to make data consistent and set data values between 0-1. Like
any other real-world data, electricity theft data also contain
primarily samples of honest (91%>) consumers and very few
data samples are of fraudulent (9%<) consumers. Thus, we
develop an HDR based an adaptive synthetic (ADASYN)
oversampling and near-miss under-sampling (NMU) technique
to obtain balance distribution for classifier training. Once the
data are in well-organized shape, the processed data are sent to
the iANN for final classification. In the proposed framework,
we also propose different iANN structures (sequential, parallel
and other combinations) to improve the generalization and
better function capabilities of the classifier. In contrast to
relying on the output of a single structure, it is expected
that numerous mixes of iANN structures would give higher
prediction performance. We also proposed an integrated pre-
processing approach in one of our recent conference papers
and showed some initial results [21]. The current work is built
on the same concept but uses a new procedure for resampling
and classifier design and, more importantly, we investigate
different configurations of the iANN and new methods to
improve the ANN performance. In particular, to achieve higher
accuracy and computational efficiency, this paper makes the
following improvements:

o First, an 10S-based data preparation module employs
data imputation, outliers handling and standardization
algorithms to ensure data accuracy and critical insights.
This helps reduce human error during inspections, such as
typos or overlooked items missed by the human eye. Sec-
ondly, an HDR combines the advantages of over-sampling
and under-sampling techniques to avoid the severely
skewed class distribution problem for real-world datasets.
Finally, a multi-mode classification engine, based on
1ANN, is designed to complete the prediction task. The



ANN’s performance is improved by adopting different
procedures such as hyper-parameters tuning, regulariza-
tion methods and skip connections (HRS). The HRS-
ANN has significantly better performance than many ML
and DL methods proposed in this field. Moreover, among
the different structures of the multi-mode classification
engine (1IANN), the most effective structure is chosen for
the final classification.

o For performance assessment of the proposed methods,
extensive experiments have been conducted on real-world
data traces from the electric grid’s workload. The simu-
lation results reveal that the presented method achieves
better classification results than existing approaches pro-
posed in this field.

The remainder of this paper is organised as follows. Section
IIT presents the data preparation and class balancing modules.
In section IV, the ANN and its improvement methods are
presented. Section V verifies the proposed framework with
experimental results. Finally, section VI concludes this work.

III. SYSTEM FRAMEWORK

The primary issue in ETD methods is to maximize clas-
sification accuracy. However, various factors affect the elec-
tricity consumption pattern and make the classifier training
process difficult and complex. To enhance proposed framework
accuracy, we propose a sequential IOS, a newly developed
HDR for class balancing and an HRS-ANN-based improved
classification method. As shown in Fig.1, the SPRC procedure
starts with ordering and standardizing the raw data. The
standardization methods are essential for the implementation
of the whole framework under consideration. Secondly, the
standardised data are fed into the class balancer to handle
class imbalance issues. Finally, the prepared data are sent
to develop the ANN. Since ANN performance depends on
several hyper-parameters, we employ the simulated annealing
(SA) algorithm to tune these parameters. Furthermore, we
use regularization methods such as batch normalization, early
stopping and weight decay for addressing the dual challenges
of generalization and computational efficiency.

It is well-established that neural network performance de-
grades when more hidden layers are added to the network
[22]. However, the addition of hidden layers is essential when
handling large datasets in ETD. The addition of extra layers
offers better opportunities to learn hierarchical re-composition
of complex features. To avoid the degradation problem, we
propose the use of a skip connection-based ANN to improve
classifier accuracy. Finally, learned from [23], the most ef-
fective topology of multi-mode iANN is utilized for theft
prediction. A detailed explanation of these modules is given
in the following sections.

A. Data Preparations

Data preparation is often the first and most essential step
when analysing electricity consumption data for a specific
problem. This section describes the process of data preparation
for which we apply a sequential IOS method on the collected

data. This includes data imputation, outlier handling and data
standardization (data centring and scaling). We assume a
matrix

T11 T2 T1n t_1>
T21  X22 Ton -
to
X = = ; (1)
0
| Tml  Tm2 Tmn | m
where
%
tr = [xkl,xkg, xkn} ke [l,m] 2)

represents the electricity consumption pattern. The rows and
columns depict the time stamps and the feature index of
recorded data, respectively. The index, i.e., T, is the n —th
component of the m — th power usage values that require
classification.

1) Recovering missing data: Due to various reasons,
the recorded data often have missing values. Some of the
associated reasons are failure of hardware, storage issues,
unscheduled maintenance, unreliable transmission of mea-
surement data and data corruption. In the present work, the
unknown (missed values) are recovered using an interpolation
method [10] based on,

z;, otherwise,

(3)

where z; is a missed (null) recorded value represented as NaN.

2) Handling outliers: The presence of outliers increases

data variability and distorts real results. The “three-sigma rule

of thumb” introduced in [10] is used to deal with outliers as
follows,

X s Zf xT; > X s

x;, otherwise,

ey ={ @
where X is a vector that consists of multiple entries of z; and
can be computed as Avg(X) + 20(X). Avg(X) and o(X)
represent the average value and standard deviation of X.

3) Data standardization: Often, attributes in historic data
comprises of different scales. We apply the MIN-MAX scaling
method to rescale all the values to the range 0-to-1 as follows,

x; — min(x)

&)

Tnew = .
" max(x) — min(x)

B. Hybrid Data Resampler

One of the critical problems which require particular at-
tention in real-world electricity theft datasets is the unequal
data distribution or domination of the majority class (honest
samples) over the minority class (fraud samples). Due to the
imbalanced data distribution of target class, the classifier gets
skewed towards majority class samples and better learn key
characteristics and features belonging to the majority class
[24]. As a result, minority samples are most often left unat-
tended, and hence the classifier shows inaccurate prediction
results towards fraud cases (minority class samples).



To address the above-mentioned issue, a strategic combi-
nation of both over-sampling and under-sampling techniques
are proposed to reduce the misclassification cost of minority
samples. The proposed novel method is named HDR, and it is
used for the first time to solve the unequal class distribution
problem in this framework design.

In HDR, ADASYN [25] and NMU [26] are employed
sequentially. First, ADASYN synthetically generates alterna-
tives (not duplicates) for each observation of the minority
class. Let m; and m; be the observations of majority and
minority class samples respectively, such that m; < m;
and m; + m; = m. The degree of imbalanced ratio is
calculated using d = Z; . The cumulative number of synthetic
samples required for the minority class is determined as
G = (mj — m;) x (. The variable § represents the desired
balanced level of minority and majority samples after applying
ADASYN. An ideal situation arises when 3 = 1, meaning
that the minority and majority samples are equal. For each
observation of the minority class, z; € m;, the k nearest
numbers are obtained based on Euclidean distance to calculate
the ratio r; = w After normalizing the density
distribution 7; = ’—;, the synthetic samples to generate per
neighbourhood are calculated using ¢g; = 7; x G. Finally,
synthetic data alternatives S; are generated using the following
equation,

Si =z + Mag — x;) (6)

where variable A represents a random number A € [0, 1] and
(xr — x;) is the difference vector in n dimensional space.
Unlike ADASYN, the NMU is based on the nearest neighbour
algorithm with multiple variants to remove unnecessary major-
ity class observations from class boundaries. First, the number
of majority and minority class observations are counted.
Secondly, the average distance of majority class observations
to each minority class observation d(m;, m;) is calculated
based on their Euclidean distances. Finally, each minority
class observation picks three closest k£ nearest majority class
observations in the majority class. The resampled dataset has
only those majority class observations which have the least
distance with minority observations in the feature space and
discards the others. This procedure repeats until the algorithm
achieves a uniform distribution for both classes.

Note that the efficiency of the iANN classifier in terms of
ADASYN, NMU and HDR (ADASYN+NMU) is evaluated in
Section V-C.

IV. CLASSIFIER ADJUSTMENT

After the two stages of data preparations and resampling,
the data are in a standardised form to train the classifier.
This section provides a detailed description of our proposal
to accomplish the final classification task. Since the ANN is
robust and efficient enough for supervised learning tasks, we
choose ANN as the classifier.

A. Problem Formulation

In this paper, the classification problem is modelled to com-
pute binary cross entropy loss between actual and predicted
class using the following equation,

N
L= —% Zyz x log(he(wi)) + (1 —y;) log(1 — he(z;))
= (7)

where IV and y; denote training samples and true class value
for the input-output pair (x;,y;). The non-linear hypothesis
hg(x) of the neural network is calculated below,

ho(z) = f(w"z +b), (8)

where w and b represent weights and biases to train the model,
and the activation function is denoted by f(.) : R — R.
Compared to the conventional logistic sigmoid function and
hyperbolic tangent, we prefer rectified linear unit (ReLU)
f(2) = max {0, z} to increase the ANN learning rate. For
a given sample, the output value (activation) of unit ¢ in layer
k is defined as follows,

af = f(zF) = flwf ekt 4wk lab !

i1
+...+ wh=1 gkt
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+057h )

where z¥ denotes the weighted sum of all activations a¥, py
denotes the number of neurons in layer k. Similarly, input
layer K and output layer K, units activation are computed
as,

a}l = x;, (10)
ho(w) = ai* = f(wirlat* ™t +wifap !
bt ape T B (1D

The activations of each unit in the input, output and hidden
layers are computed using forward propagation. The objective
is to minimize L by adjusting the trainable parameters w and b
using a stochastic gradient descent (SGD) algorithm. For this
purpose, first small random values (near zero) of wfj and b¥
are initialized and forward propagation computes the activation
of each unit from the first hidden layer towards the final layer.
In every iteration of the SGD algorithm, each parameter is
updated in order to minimise the loss as follows,

0 L(w,b)

wij = W~ & TR (12)
bF = b — o 2L000), (13)

where « represents the learning rate. We apply back-
propagation to compute the partial derivatives and update
each weight in the network, thereby minimizing the error for
each output neuron and the network as a whole. The back-
propagation algorithm is based on four fundamental steps to
compute the error (6%) and the gradient of the cost function
[27].

1) First, the forward propagation computes the activation of

each unit in layer Ky up to the layer K,, .



TABLE I: ANN hyper-parameters using simulated annealing

Hyper-parameter | Range of values Optimal value
Activation Tanh, Relu, Sigmoid Relu
Batch_size 15, 30, 45, 60, 75, 90 60

Solver Sgd, Adam, Nadam Sgd

Alpha 0.0001, 0.003, 0.05, 0.07 | 0.05
Learning_rate Constant, Adaptive Adaptive

2) Calculate the residual (error) for each unit ¢ in layer ny,

n 0 n fromn
ot = WH& —ho(xi)| = —(yi —a*) f('"). (14)
3) Calculate the residual in each unit ¢ in layer k, k = ng
,ng-2,...,2,
Pk+1
= (2 widy D 1s)

4) Calculate the partial derivatives with respect to w and b,

0 L(w,b) 0 L(w,b)
k sk+1 ) k+1 )
T = —— 0,7 = ————=. 16
9wk, ok U9
5) Finally, weight updating to minimise the error,
k __ o L(wv b)

ij
With the process of back forward and iterative steps of SGD,
the neural network is trained to decrease the cost function in
Eq. 7.

B. Optimal Classification

As discussed before, the main objective of this framework
design is to minimize the loss function given in Eq. 7.
However, there exists a strong relationship among the loss
function and ANN hyper-parameters, which are the number
of hidden layers, activation function, batch size and learning
rate. It is hard to obtain optimal values of hyper-parameters
to improve accuracy and efficiency. The conventional methods
adopted for the adjustment of ANN’s hyper-parameters are the
SGD algorithm or cross-validation [18]. However, the adoption
of these two methods may lead to higher computational costs
and convergence problems. DL models are computationally
expensive. According to [28], DL models are approaching
computational limits. The researchers discovered that DL
models advancement has been “strongly reliant” on increased
computational power. They asserted that continued progress
would require “dramatically” more efficient computational DL
methods, either through modifications to existing methods or
new as-yet-undiscovered procedures. In SPRC, therefore, HRS
methods are applied for optimal classification. These methods
are described below.

1. Simulated annealing-based ANN: For practical and com-
putationally hard optimization problems, the SA algorithm
is preferred over exact algorithms such as gradient descent
[29]. The main inspiration behind the algorithm operation
is annealing mechanism in metallurgy that fist applies the
heating process followed by a gradual cooling procedure

of substance to obtain defect-free crystals [29]. The task is
performed in three steps: initialization, transition mechanism
for diverse states, and finally, the cooling schedule composed
of an objective function with multiple variables. The elements
in the SA algorithm are represented by a vector that contains
hyperparameter values for optimization. This procedure is
repeated unless the optimal values of all hyper-parameters
given in Tables I and II are obtained. It is pertinent to mention
that important hyper-parameters as well as their initial values
for ML models (used later for comparison in Section V) and
iANN are borrowed from Ref. [2]. The four main steps of the
SA algorithm are as follows:

i. Start with random initialization of population.

ii. At each iteration, evaluate more suitable solution consider-
ing the fitness (objective) function.

iii. Selection of new solution based on a probability-based
decision whether to discard or retain current solution.

iv. Progressive decrease in temperature from a maximum to
the minimum (zero) values. An inadequate solution receives a
zero moving probability, while a positive moving probability
is assigned to the adequate solution.

For parameter tuning, a hyper-parameters application program-
ming interface (API) is used to configure hyper-parameters
automatically [31]. The optimization toolkit is highly adapt-
able to perform model optimization for different preprocessing
and classification modules. Contrary to the traditional tedious
search methods, it searches the best combination of hyper-
parameters in an automated manner and can therefore outper-
form human professionals and experts in algorithms design.
2. The role of regularization: Regularizations are the process
of modifying a learning algorithm to prevent over-fitting.
Regularizers help limit the learning process to a subset of
the hypothesis space with manageable complexity. With the
adoption of modern regularization techniques such as batch
normalization, early stopping and weight decay to penalize
large weights, the effective Rademacher complexity of the
possible solutions is dramatically reduced [32].

2A). Batch normalization accelerates the learning process of
deep ANN and reduces ICS problem and generalization error.
It stabilizes the initial random weights and configuration of the
learning algorithm to achieve a stable distribution of activation
throughout training [33]. ICS of activation ¢ at time ¢ is defined
as the difference,

[|Gti — Gyl (18)
Gm:A <t>L(w§*),.. w) (19)
i = Ao L™ e el el w) 20

where L is loss, w! , ..., w' are the parameters of each ny
layers, G ; corresponds to the gradient of the layer parameters,
and G’ is the same gradient after all the previous layers have
been updated with their new values.

2B). An early stopping technique is incorporated into the
training process, which not only prevents over-fitting but helps
train a model with fewer epochs [34]. It is a form of regulariza-



TABLE II: Hyper-parameters of the benchmark models

Classifier Main hyper-parameters Values range Obtained values
C = 0.001, 0.01, 10, 100. C =0.01,
LR Penalty strength (C), Penalty (R). R = Ly norm, Ly norm. R = Ly norm.
Number of sample leaves (SL), SL =3,5,8, 11, 15. _ _
RF Decision trees (DT), DT =5, 10, 20, 30, 40. gé‘ B g’ DT = 20,
Sample splits (SS), SS=5,6,7,8,9, 10. C L
L . .. riterion = gini.
Criterion. Criterion = gini, entropy.
Kernel function (K), K= linear, rbf, sigmoid, poly. K= rbf,
SVM Loss function (o), o =0.001, 0.01, 0.1, 1, 10. o =0.01,
Penalty (C). C =0.01, 0.1, 1, 10, 100. Cc=1.

(a) Sequential Block
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Fig. 2: Structure of the proposed prediction engine; (a): Sequential block, (b): Parallel block, (c): Sequential-Parallel block,
(d) Parallel-Sequential block, (e): Parallel input to Sequential and Parallel block

tion that allows an arbitrarily large number of training epochs
and terminates the training process when model performance
stops improving.

2C). Weight decay is a well-established regularization tech-
nique to keep neural network weights small and avoid an
exploding gradient [35]. The general formula for updating the
weights as follows,

t+1 t t—1

w, T =w; — n=— — pAw; 2D
1 7 awl K3 )

where 7 and p represent learning rate and momentum terms in

the ANN, respectively. The simple addition of a regularization

term to prevent over-fitting and to constrain the magnitude of

the weights is as follows,

0L

0 ,quf_l — YTw}.
K3

wi =w} —n (22)
where T is a weight decay parameter to control the relative
importance of regularization. When YT = 0, the weight decay

property can be easily disabled to obtain typical behaviour.

Cross-validation (CV) is a standard well-performing method
for generalized model performance evaluation. The SGCC
dataset has a relatively high imbalance distribution of the
target class values and using traditional k-fold CV may lead
to inconsistent test results [36]. We use stratified k-fold CV
(SCV), an advanced version of k-fold CV, to obtain an equal
distribution of both classes. As a result, a small difference
between the testing performance of the model is obtained.
Guided by feedback from the SCV used in our experiments,
we received very reliable estimates when using 6-fold SCV
for iANN.

3. Role of skip connections: The original intuition “the deeper
the better” is not always useful to learn complex features and
representations. A research team at Microsoft [22] investigated
the relationship between depth and network performance and
established that the percentage error for a 56-layer network is
higher than a 20-layer network on both training and testing
data. This problem of training very deep networks has been
addressed to a greater extent with recently developed residual
neural networks (ResNets) [37]. ResNets feature residual or




skip connections to distribute learning behaviour across layers,
display minimum decay in gradients and make the training of
individual residual blocks easier. In ResNets, a direct connec-
tion skips some layers (this may vary in different models) in
between and connects directly to the output. This connection
is called ‘skip connection’ and is the core of residual blocks.
The overall representation of the residual block becomes,

Xi1 = U(Fy(ar) + m) (23)

where F; represents the residual function and ¥(z) is the
ReLU activation max(0, x).

C. Multi-Block Classification Engine

Enlightened by the findings of [23], we develop various
1ANN based classification engines and extensive experiments
have been conducted to achieve higher convergence accuracy
and time management. All variables in the classification engine
are optimized either using the regularization method described
in Section IV-B or with rigorous trial and error to increase
the training mechanism and classification engine precision.
Moreover, we implement various models of the suggested
classification engine, based on iANN, with numerous mixes
such as the sequential/cascade framework, sequential-parallel,
parallel-sequential and combined parallel construction, as il-
lustrated in Fig. 2, in order to choose the best-combined
approach.

Fig. 2a shows the sequence of the serial iANN blocks. First,
the standardised data are provided to the first iANN block as an
input and the predicted results of this particular block are given
to the next block. The main goal of the model is to fit the error
through performance enhancement. Similarly, Fig. 2b presents
the parallel mode of iANN combinations. The sequence of
these blocks is very important to form different connections.
As seen from the figure, the same input at the same time
is considered by all blocks. Also, the same output will be
evaluated by this structure and aggregated as the process result.

Fig. 2c-2e presents the extended building blocks of the
structures mentioned with different topologies. The exogenous
values such as load, price and related parameters in the time
series data are provided to the classification engine as an input
in the form of a matrix. The performance of the extended
structures can be enhanced by assigning higher weights to the
best presentation and by no or low weightings to the weak
networks.

With the integration of I0S, HDR and HRS-ANN, the
electricity theft prediction approach can classify fraudulent
activity accurately. The next section explains experiments and
analyses based on illustrative real-world theft data.

V. EXPERIMENTAL RESULTS
A. Case Study Setup and Data Availability

For performance evaluation, five different case studies are
implemented in Google Co-laboratory in accordance with the
system framework devised in Section III. The load profile data
of 42372 consumers is obtained from SGCC for 1035 days i.e.,
from 2014 to 2016. Here, 38757 consumers are recognized

TABLE III

: Metadata information

Description Value

Time window 01-01-2014 to 31-10-2016
Resolution of data Daily data

Number of consumers 42372

Number of days (features) 1035

Fair consumers 38757

Unfair consumers 3615

Consumers type Residential

Source type (RES, conventional) | Utility

0
Honest (3
Fraudulent ® .

. .

X
(a) Original data distribution (b) Data distribution after HDR

Fig. 3: Data representations before and after handling
imbalanced class

as honest and the 3615 consumers as dishonest, as shown
in Table IIIl. The models are trained and tested on actual
SM data. The SGCC dataset is the only publicly available
labeled dataset with at least one on-field inspection [38] . The
data have been divided into a training and a test dataset to
generalize model capabilities beyond the training/seen dataset.
The division is performed in a stratified manner so that there
is the same percentage (%) of NTL samples in the training and
test datasets. The dataset used for training purposes consists
of 80% of the labeled data, while the test dataset consists of
20%.

B. Performance Metrics

There are four expected outcome values in a confusion
matrix (CM) from a binary classifier i.e., true positives (TP),
false positives (FP), true negatives (TN) and false negatives
(FN). Based on CM results, Accuracy, Precision, Recall and
F1-score performance metrics are computed below,

Accuracy = %7 (24)
Precision = 7TPT+PFP, (25)
Recall = 7550, (26)

Fi Score =2 x hrecsionsficcal @

The AUC score is often chosen as an evaluation metric
to evaluate classification accuracy. It provides more reliable
assessment when the class distribution is highly imbalanced.
The mathematical formula for AUC calculation is as follows
[10],

iepcRank; — 7M(12+M)

AUC—Z
- M x N

(28)



where M and N are the number of positive and negative
instances in the positive class (PC), and Rank; is the rank
value of a sample ¢ in an ascending order. The value of AUC
highlights that the probability of choosing a positive number is
relatively higher then choosing a randomly negative number.
The curve is a graphical representation the true positive rate
(TPR) and false positive rate (FPR) plotted on the y-and x-
axes, respectively.

True positive rate = TPTE;N (29)
False positive rate = prl% (30)

The TPR is the fraction of positive classes labelled correctly
while the FPR represents the fraction of negative class samples
that are misclassified. Notably, the higher the AUC, the better
the classifier’s performance. When the AUC tends straight up
to the maximum value and then turn towards the x-axis, it
indicates that both classes are distinguished perfectly by the
classifier [19]. By contrast, when AUC = 0.5 and the curve
point tends towards the diagonal line, this yields that the
classifier has no power to discriminate between both classes.

C. Performance Results

1) Performance of data balancing module: In this sec-
tion, we empirically study the effects of no sampling, over-
sampling, under-sampling and HDR on the final classification.
Figs. 3a and 3b show the presence of minority and majority
classes of data samples before and after handling the im-
balanced class problem. The majority class samples (green
circles) are in much greater number, as shown in Fig. 3a,
and a biased classification is expected because the classifier is
trained more on negative samples. Without handling the highly
imbalanced data distribution problem, Fig. 4a displays a severe
performance loss when classifying fraudulent users, whereas
the values of TN, FN, FP and TP are 100%, 5%, 0% and 95%,
respectively. The honest customers, TN, are identified 100%
correctly; however, the value of FN is much higher, which
means the classifier incorrectly indicates dishonest consumers
as honest.

In ETD, the FN value needs to be reduced because these
consumers are the real culprits who indulged in illegal usage
of electricity. To resolve this issue, we utilize HDR, which
efficiently obtains a balanced distribution for minority and
majority classes, as shown in Fig. 3b. The balanced data
distribution improves model training as well as generalization
capabilities. The improved numerical results are given in the
form of the CM in Fig. 4b.

2) iANN performance comparison with ANN: We com-
pare the performance of iANN with standard ANN and the
results are shown in Figs. 5 and 6. Fig. 5 shows the loss
(how bad or good prediction is) graph for ANN and iANN
only for twenty epochs. The irregular upper plot for ANN
in Fig. 5a reveals that the prediction results both for training
and testing datasets have small granular feedback on perfor-
mance. Also, the standard ANN has issues like overfitting
and generalization errors, due to which it shows unstable
performance for test/unseen data. The lower plot for iANN in

Predicted Class Predicted Class

Actual Class
Actual Class

Fraud
(b) Balanced class

Normal

Fraud

Normal

(a) Imbalanced class

Fig. 4: Prediction results before and after resampling
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Fig. 5: Learning curves

Fig. 5b reveals that the training process converges well and the
loss is smooth between the probability distributions. Parameter
tuning has a big impact on model training as it correlates
model convergence, model accuracy, infrastructure resource
requirements (as a result of cost) and training time. In Fig.
6, the AUC score for iANN is 97.9% compared to the ANN,
which has only 93.6%. The superior performance of iANN
mainly comes from the integration of improvement techniques
in DL areas. It jointly employs HRS first to optimize the hyper-
parameters of the ANN, followed by regularization methods
to resolve over-fitting problems and finally skip connection
to distribute the learning behaviour across the layers. It is
pertinent to mention here that the use of the SA algorithm
increases computational time. However, we apply two newly
developed methods: regularization and skip connections. Due
to the combined effects of these diverse but interconnected
procedures, both higher accuracy and reduction in computa-
tional complexity are achieved simultaneously.

3) Performance comparison of different multi-block clas-
sification engines: This case study employs five different
topologies of iANN, and the one best performing model is
selected as the classification engine. Fig. 6 illustrates AUC
curves for RF, LR, SVM, ANN and iANN with the proposed



TABLE IV: Comparison among different modes of classification engine

Classifier | Accuracy | Precision | Recall | F1-Score | AUC | Training Time
Sequential 0.994 0.996 0.966 0.981 | 0.966 3min 55s
Parallel 0.996 0.996 0.978 0.987 | 0.978 2min 36s
Par_Seq 0.997 0.996 0.987 0.991 | 0.987 4min 12s
Seq_Par 0.996 0.996 0.983 0.989 | 0.983 5min 59s
Par_Seq_Par 0.995 0.995 0.973 0.984 | 0.973 4min 42s

TABLE V: Robustness comparison among SPRC and other benchmark schemes

Classifer Training Ratio 60% Training Ratio 70% Training Ratio 80%
Precision | Recall | F1-Score | AUC | Precision | Recall | F1-Score | AUC | Precision | Recall | F1-Score | AUC
LR 0.550 0.538 0.733 0.624 0.827 0.862 0.875 0.820 0.951 0.954 0.955 0.941
RF 0.573 0.577 0.654 0.641 0.748 0.748 0.733 0.701 0.774 0.771 0.767 0.720
SVM 0.637 0.654 0.664 0.690 0.688 0.689 0.689 0.684 0.773 0.688 0.747 0.719
ANN 0.748 0.744 0.816 0.781 0.793 0.795 0.855 0.878 0.856 0.865 0.947 0.936
CNN-LSTM [9] 0.664 0.615 0.661 0.666 0.629 0.662 0.636 0.670 0.670 0.690 0.676 0.730
WD-CNN [10] 0.640 0.691 0.651 0.689 0.624 0.720 0.770 0.718 0.661 0.760 0.685 0.756
DSN [11] 0.875 0.839 0.857 0.860 0.840 0.850 0.845 0.844 0.912 0.923 0.928 0.934
iANN 0.947 0.945 0.943 0.934 0.941 0.947 0.961 0.958 0.964 0.954 0.982 0.979
Par_Ser 0950 | 0950 | 0973 | 0938 | 0979 | 0978 | 0979 | 0968 | 0996 | 0987 | 0991 | 0.987
(Proposed)
TABLE VI: Benchmark frameworks e
I - __a==z=F
Benchmark Description g | ," eI
SPRC (Proposed) TOS + HDR + Par_Seq Rt
E IOS + HDR + iANN o [ 7
D TOS + HDR + ANN Zo6l | i
C T0S + ADASYN [25] + ANN 2z | /
B TOS + NMU [26] + ANN &l / .
A Without IOS and Resampling 5041 s/ 7 LRAUC= 0941504
- 'l ,l —+- RF AUC = 0.720914
= 'l ,' ° SVM AUC = 0.719856
TABLE VII: Computational time vs accuracy 02 ~*7 ANNAUC= 0936266
', /l =<e= iANN AUC = 0.979656
Classifier name Time (seconds)) | AUC score 0.0 1 * 7 ParSeraUC= 0987312
IR 730 0.941 00 02 04 056 08 10
RE 130 0720 False Positive Rate
SVM 241 0.719 Fig. 6: AUC score for different structures of the multimode
ANN 198 0.936 . . .
ANN i 0979 classification engine
Proposed (SPRC) | 282 0.987
] 98.7%
100 0360 J64% o
topology. Tables I and II show the range of values searched 801 T05ve (0%
as well as the optimal value found with the SA algorithm. It 57.4%
is seen in Table IV that the results obtained from combined S 801
topologies of iANN are comparable. The standalone sequen- <
tial and parallel topologies, however, tend to obtain weak 401
classification results because of the over-fitting problem (and "
other possible reasons associated with ANN as described in
Section II-A). The results in Table IV show the superiority ol

of the parallel_sequential (Par_Seq) and sequential_parallel
(Seq_Par) structures. However, we select Par_Seq topology
as the final classifier to guarantee reduced computational
complexity, higher accuracy and robustness of the prediction
results.

4) The SPRC robustness comparison with benchmark
algorithms: Robustness is the ability of a network to perform
well when it is subject to failures. The main aim of this
case study is to examine whether SPRC guarantees network
robustness under multiple scenarios. First, a random noise
(Jitter) is added to each input pattern during network training.
The addition of noise is attained via the Gaussian Noise layer

E Proposed

D

A B C

Fig. 7: Comparison of accuracy among SPRC and
benchmark frameworks

in Keras (the software library used). The layer requires the
standard deviation of the noise to be specified as a parameter.
In this way, time-series patterns are recycled to explicitly learn
robust features and the average accuracy of the algorithm is
observed. Thus, deliberately introducing noise is one way to
help hold our models accountable.

The second way is to observe the model’s performance on



different proportions of training data. The difference is subtle.
A small dataset can cause the network to memorize all training
examples. We seek to have them learn the characteristics of
training data and not memorize them. In essence, DL model
performance is severely affected by the size of input/training
data. The aim is to confirm whether SPRC maintains its
superiority when small (60%), medium (70%) and high sizes
(80%) of training samples, compared to the size of all samples,
are used as input to train the classifier. The experimental results
in Table V illustrate that the SPRC achieves higher prediction
accuracies for all sizes of the training dataset compared to
the other algorithms under consideration. It is notable that
the conventional schemes adopt an expanding trend when
more data are available for training. For these data, the SPRC
attains a maximum AUC score of 0.987 and surpasses the
other well-known algorithms in terms of performance metrics.
Furthermore, under a similar training/testing dataset ratio, the
comparison results in Table V have shown that the proposed
model can surpass the performance of other state-of-the-art
methods such as CNN-LSTM [9], WD-CNN [10] and DSN
[11] due to the reasons as discussed in Section II.

5) The SPRC performance on theft detection: This case
study compares the theft detection performance of the SPRC
approach with other benchmark approaches. The benchmarks
considered for this investigation are given in Table VI. As
displayed in Fig. 6, the SPRC has a higher AUC score
for electricity theft prediction of this data set than all the
benchmarks. The comparison among frameworks A, B, C, D,
E and SPRC in Fig. 7 suggests that every module with the
relevant description we proposed, can increase the accuracy
of electricity theft prediction. The classifier learns the problem
much faster if we can better expose the structure to the net-
work for learning. The SPRC prepares quality data with 10S
followed by HDR to curb the class imbalance problem. The
hyper-parameter tuning, regularizations and skip connections
we proposed improve the ANN performance, hence ensuring
higher accuracy of electricity theft prediction. From Table VII,
it is noticed that the results from LR and standard ANN are
comparable; however, the RF and SVM models are unable to
distinguish fair and fraud electricity consumptions patterns.
This is because RF usually faces overfitting problems and
SVM performance degrades when large datasets are used for
training purposes. Also, when computational times of the pro-
posed method and other benchmark algorithms are compared,
the SPRC takes time to complete the classification task at
a comparable level with LR, SVM and iANN. There exists
a trade-off between higher accuracy and computational time.
More accurate algorithms are generally more computationally
expensive and vice versa.

VI. CONCLUSIONS

We have investigated how a highly imbalanced class dis-
tribution dataset can be arranged to train a classifier for the
identification of normal and abnormal electricity consump-
tion patterns. The presented approach integrates data pre-
processing, resampling and multi-stage classification modules

into a single model. The classification is comprised of a multi-
block neural network that is optimized by an intelligent algo-
rithm, regularization methods and skip connection to increase
model training and classification abilities. Moreover, different
multi-block prediction models were presented to choose the
effective model. The proposed topologies have been applied
over real-world data with a number of cases studied. We found
that tuning the classifier’s hyper-parameters with an intelli-
gent algorithm results in smoother optimization and reduced
computational complexity of the learning process. Similarly,
regularization methods help to reduce the over-fitting and ICS
problems associated with the standard ANN. We found that
residual networks distribute learning across layers, each of
which is responsible for learning better representations, while
standard networks concentrate on learning in shallower layers
and thus do not make effective use of deeper layers.

The above is supported by results for gradient norms,
where non-decaying gradients are observed during training and
testing in terms of robustness. These results show that varied
training rates in SPRS do not change the representation as
much as for the benchmark algorithms. In addition, we find
that the parallel-sequential topology is more robust to varied
learning rates.

In the next step, we will perform three further investigations
to improve the performance of SPRC in terms of robustness
and scalability. First, we will exploit knowledge from
power grid sources, network distribution topology and
geographic information to monitor energy consumption
pattern abnormalities. Secondly, the average accuracy of the
classifier in terms of robustness will be investigated adding
random noise (Jitter) and synthetically generated theft attacks
on selected data. Thirdly, the SPRC performance will be
tested on unsupervised publicly available datasets. For this
purpose, synthetic data will be generated to label the dataset
and make it useful for supervised learning.
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