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Abstract Inductive constructions are established for countably infinite sim-
ple graphs which have minimally rigid locally generic placements in R

2. This
generalises a well-known result of Henneberg for generically rigid finite graphs.
Inductive methods are also employed in the determination of the infinitesimal
flexibility dimension of countably infinite graphs associated with infinitely
faceted convex polytopes in R

3. In particular, a generalisation of Cauchy’s
rigidity theorem is obtained.
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1 Introduction

A finite simple graph G is said to be rigid for the Euclidean space R
d (or

d-rigid) if its generic vertex realisations p : V → R
d determine bar-joint frame-

works that are infinitesimally rigid. Also, G is minimally rigid if the removal of
any edge leads to a non-rigid graph. A celebrated characterisation proved in-
dependently by Pollaczek-Geiringer [19] and Laman [14] asserts that minimal
rigidity for the plane is equivalent to the edge count |E| = 2|V | − 3 together
with the uniform sparsity condition |E(H)| ≤ 2|V (H)| − 3 over subgraphs H
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with at least one edge. Recently we have obtained variants of this theorem for
non-Euclidean ℓq-spaces and for countably infinite simple graphs in Euclidean
and non-Euclidean ℓq-spaces (Kitson and Power [12,13]). The countably infi-
nite variants derive from a relative rigidity principle, valid for all dimensions,
to the effect that an infinite graph is rigid if and only if there exists an edge-
complete inclusion tower G1 ⊂ G2 ⊂ . . . of finite subgraphs each of which is
relatively rigid in its successor (for an illustration of a tower with this property
see Example 15). The characterisations of minimal rigidity for infinite graphs
in the Euclidean and non-Euclidean settings for R2 are then obtained through
the identification of a derived tower that consists of the appropriate minimally
rigid graphs.

Henneberg [8] proved that if a finite graph is minimally rigid for the Eu-
clidean plane then it may be constructed by applying a finite sequence of graph
moves, starting with a single edge, where each move is either a vertex addition
or edge splitting move. With the Laman graph characterisation this leads to
the well-known fact that a finite graph is rigid for the Euclidean plane if and
only if it contains a spanning subgraph which can be constructed by applying
a finite sequence of these moves. In contrast to the sufficiency of this subgraph
condition it is straightforward to see that a countable sequence of the moves
can give rise to a non-rigid infinite graph. An example of this phenomenon is
given in Example 12. We show that nevertheless, the necessity of the condition
does hold for infinite graphs. In particular, the minimally rigid infinite graphs
are no more mysterious than those which can be constructed one step at a
time by Henneberg moves.

In Theorem 10 we show that a countably infinite minimally rigid graph
may be constructed from a base graph by a countable sequence of construction
moves. In the Euclidean case the base graph is K2 and each of the moves is
one of the two usual Henneberg moves for the plane. In the non-Euclidean
cases, with distance metric determined by any of the ℓq-norms, 1 < q < ∞,
q 6= 2, we require the rigidity matroid associated with the sparsity count
|E| = 2|V | − 2 and additional construction moves. Here the base graph is K1

and there are four move types required, namely, the Henneberg vertex and edge
moves, the vertex-to-K4 move and the vertex-to-4-cycle move. The existence of
a Henneberg move construction chain for a finite minimally rigid graph requires
the identification of a low-degree vertex which admits an inverse Henneberg
move to a minimally rigid graph (see [7,8]). We remark that such descent
arguments are not available in the countable case and indeed a minimally
rigid graph may have no vertices of finite degree. In Examples 11, 12 and
14, we indicate various countable graphs determined by inclusion towers and
construction chain limits. Also we indicate the notion of relative rigidity, which
becomes significant for dimensions d ≥ 3.

Turning to three dimensions, the celebrated rigidity theorem of Cauchy [2]
asserts that if all the faces of a closed convex polyhedron are infinitesimally
rigid in the Euclidean space R

3 then the polyhedron itself is infinitesimally
rigid. (Alexandrov [1], page 125.) In particular, the bar-joint framework asso-
ciated with a convex polyhedron with triangular faces is infinitesimally rigid.
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The generic form of this phenomenon, which no longer requires convexity, has
been obtained more directly by Whiteley who introduced vertex splitting con-
struction moves as a key tool in geometric rigidity theory. (Whiteley [21,22].)
In Theorem 19 we use such inductive methods to determine variants of the
generic Cauchy theorem. In particular, we see that a generic finite triangu-
lated sphere in the non-Euclidean space (R3, ‖ · ‖q) is infinitesimally flexible
with generic infinitesimal flex dimension 3. We then consider the rigidity of
countable graphs G in Euclidean 3-space which correspond to triangulations
of a finitely punctured 2-sphere. The generic infinitesimal flex dimension is de-
termined in terms of the asymptotic minima of cycle lengths at the puncture
points. As a consequence we see that for these graphs the three properties of
minimal rigidity, rigidity and sequential rigidity are equivalent (Theorem 26).

Finally, we determine the generic flex dimension of countable graphs asso-
ciated with some infinitely-faceted convex polytopes in R

3.

2 Preliminaries

A bar-joint framework (G, p) in R
d consists of a simple graph G with vertex set

V (G) and edge set E(G) together with a placement of the vertices p : V (G)→
R

d, v 7→ pv, with the property that pv 6= pw for each edge vw ∈ E(G). If H is
a subgraph of G then the bar-joint framework (H, p) obtained by restricting
p to the vertices of H is called a subframework of (G, p). The complete graph
on the vertices of G is denoted KV (G).

We consider here the collection of ℓq norms on R
d where q ∈ (1,∞). An

infinitesimal flex of (G, p), for a given ℓq-norm, is a map u : V (G) → R
d,

v 7→ uv, which satisfies

‖(pv + tuv)− (pw + tuw)‖q − ‖pv − pw‖q = o(t), as t→ 0,

for each edge vw ∈ E(G). The real vector space of infinitesimal flexes of
(G, p) is denoted by Fq(G, p) and the subspace of trivial infinitesimal flexes of
(G, p) is denoted Tq(G, p). For q 6= 2 this is simply the d-dimensional space of
infinitesimal translations. (See [12].) The infinitesimal flex dimension of (G, p),
denoted as dimd,q(G, p), is defined to be the dimension of the quotient space
Fq(G, p)/Tq(G, p). A bar-joint framework is infinitesimally rigid in (Rd, ‖ · ‖q)
if dimd,q(G, p) = 0.

IfG is a finite graph then the space of infinitesimal flexes Fq(G, p) is linearly
isomorphic to the kernel of an associated rigidity matrix Rq(G, p) as given in
[12]. The rank of this matrix may vary depending on the choice of placement
p and (G, p) is said to be regular in (Rd, ‖ ·‖q) if the rank at p is the maximum
possible. The framework (G, p) is generic in (Rd, ‖ · ‖q) if pv 6= pw for all
pairs v, w ∈ V (G) and given any graph H with V (H) ⊆ V (G), the bar-joint
framework (H, p) is regular. The generic placements of G, regarded as points
in

∏

v∈V (G)R
d, form an open and dense subset of this product space (see [13,

Lemma 2.7] for further details). In this sense, almost all placements of G are
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generic. The infinitesimal flex dimension of (G, p), regarded as a function of p,
is constant on the set of generic placements of G.

A countable bar-joint framework (G, p) is locally generic in (Rd, ‖ · ‖q) if
every finite subframework of (G, p) is generic. It is shown in [13, Section 3] that
every countable simple graph has such a placement and that the infinitesimal
flex dimension of a locally generic countable bar-joint framework (G, p) is
independent of the choice of locally generic placement.

The infinitesimal flex dimension of a finite (resp. countable) simple graph
G, denoted as dimd,q(G), is defined to be the dimension of the quotient space
Fq(G, p)/Tq(G, p) where p is any generic (resp. locally generic) placement of
G. A finite or countable graph is rigid in (Rd, ‖ · ‖q) if dimd,q(G) = 0, and
minimally rigid if, in addition, G does not contain a proper spanning subgraph
which is rigid.

A tower of finite graphs is an inclusion chain G1 ⊂ G2 ⊂ G3 ⊂ · · · of finite
graphs Gk. We say that it is an edge-complete tower in a countable graph G if
the Gk are subgraphs of G, respecting the given inclusions, and every edge of
G is an edge of some Gk. If G has an edge-complete tower in which each Gk is
rigid for (Rd, ‖·‖q) then G is said to be sequentially rigid for (Rd, ‖·‖q). In [13,
Section 3] it is shown that a sequentially rigid countable graph is necessarily
rigid and, in two-dimensions, sequential rigidity is equivalent to rigidity. This
equivalence does not hold in general for higher dimensional spaces as we note
in Example 15.

Given two simple graphs H and G we will use the notation H
µ
−→ G to

indicate that G is the result of a graph move µ applied to H . A construction
chain is a finite or countable sequence of graphs G1, G2, G3, . . . together with

graph moves, G1
µ1

−→ G2
µ2

−→ G3
µ3

−→ · · · .
Finally, we recall that a finite graph G is said to be,

(a) (2, 3)-sparse if |E(H)| ≤ 2|V (H)| − 3 for each subgraph H of G which
contains at least two vertices,

(b) (3, 6)-sparse if |E(H)| ≤ 3|V (H)| − 6 for each subgraph H of G which
contains at least three vertices,

(c) (k, k)-sparse, where k ∈ N, if |E(H)| ≤ k|V (H)| − k for each subgraph H
of G.

In addition, G is said to be (2, 3)-tight if it is (2, 3)-sparse and |E(G)| =
2|V (G)| − 3, (3, 6)-tight if it is (3, 6)-sparse and |E(G)| = 3|V (G)| − 6, and
(k, k)-tight if it is (k, k)-sparse and |E(G)| = k|V (G)| − k.

3 Construction chains for countable rigid graphs in R
2

In this section we establish the existence of Henneberg-type construction chains
for the countable simple graphs that are minimally rigid for (R2, ‖ · ‖q) for
1 < q <∞. To begin we prove a simple lemma on the existence of low-degree
vertices in (2, 2)-tight and (2, 3)-tight graphs. The degree of a vertex v in G is
denoted deg(v).
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Lemma 1 Let G be a (2, l)-sparse graph with l ∈ {2, 3}. Then

(i) deg(v) ≤ 3 for some v ∈ V (G).
(ii) If G is (2, l)-tight then min{deg(v) : v ∈ V (G)} ∈ {2, 3}.
(iii) If G is (2, l)-tight and H is a (2, l)-tight subgraph of G which is not a

spanning subgraph then there exists a vertex v ∈ V (G)\V (H) such that
v is either 2-valent or 3-valent in G.

Proof We leave (i) and (ii) to the reader. To show (iii), suppose deg(v) ≥ 4
for every vertex v in V (G)\V (H). Then we obtain

∑

v∈V (G)\V (H) deg(v) ≥

4|V (G)\V (H)|. The vertex-induced subgraph K of G determined by the ver-
tices in V (G)\V (H) is (2, l)-sparse and so by (i) there exists a vertex v0 ∈
V (G)\V (H) which is at most 3-valent in K. It follows that v0 must be incident
with a vertex w of H and that deg(w) must be strictly greater than the de-
gree of w in H . Since H is (2, l)-tight we have 1

2

∑

v∈V (H) deg(v) > |E(H)| =

2|V (H)| − l. Hence,

|E(G)| =
1

2

∑

v∈V (G)

deg(v) > 2|V (G)\V (H)|+ 2|V (H)| − l = 2|V (G)| − l.

This contradicts the (2, l)-sparsity count for G and so there must exist a vertex
v ∈ V (G)\V (H) with deg(v) ≤ 3. The result now follows from (ii). ⊓⊔

We now define four graph moves which will allow us to construct a given
(2, l)-tight graph from another (2, l)-tight graph with fewer vertices. The first
two moves, vertex addition and edge splitting, are the standard Henneberg
moves for the Euclidean plane. The two additional moves are required for the
non-Euclidean setting.

Definition 2 A simple graph G′ is obtained from a simple finite graph G by
applying a move µ : G→ G′.

(i) µ is a vertex addition move if G′ results from adjoining a vertex v0 to
V (G) and two edges v0v, v0w to E(G).

(ii) µ is an edge splitting move if it results from removing an edge vw from
E(G) and adjoining a vertex v0 of degree 3 to G\vw where the three
new edges include v0v and v0w. We refer to these new edges as the
replacement-derived edges of the move.

(iii) µ is a vertex-to-K4 move if a vertex w0 is chosen in G and three vertices
w1, w2, w3 are adjoined to V (G) together with all interconnecting edges
{wiwj : i, j = 0, 1, 2, 3, i 6= j} and every edge vw0 in G which is incident
with w0 is either left unchanged, or, is reassigned to an edge of the
form vwj for some j ∈ {1, 2, 3}. We refer to these new edges as being
reassignment-derived.

(iv) µ is a vertex to 4-cycle move if a vertex v is chosen in G together with
edges vv1, vv2 and a vertex v0 is adjoined to V (G) together with the
edges v0v1, v0v2, and every edge of the form vw ∈ E(G), w 6= v1, v2, is
either left unchanged, or, is reassigned to the edge v0w. We again refer
to these new edges as being reassignment-derived.
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If a (2, l)-tight graph G contains a 2-valent vertex then an inverse of a
vertex addition move may be applied to G by simply removing the 2-valent
vertex and its two incident edges. It is clear that the resulting graph is again
(2, l)-tight. The following lemma shows that if v is a 3-valent vertex in G then
an inverse edge splitting move can be applied. However, if G is (2, 2)-tight,
then a proviso is that v is not contained in a copy of the complete graph K4.

The following lemma, showing the possibility of an inverse edge splitting
move for a degree 3 vertex, is well-known for (2, 3)-sparse graphs while for
(2, 2)-sparse graphs it is a special case of Lemma 3.1 in Nixon and Owen [15].
For completeness we give proofs.

Lemma 3 Let G be a (2, l)-sparse simple graph containing a 3-valent vertex
v with adjacent edges vv1, vv2, vv3 ∈ E(G). Suppose that,

(a) l = 3, or,
(b) l = 2 and vivj /∈ E(G) for some distinct pair vi, vj ∈ {v1, v2, v3}.

Then,

(i) there exists vi, vj ∈ {v1, v2, v3} with vivj /∈ E(G) such that no (2, l)-tight
subgraph of G\{v} contains both vi and vj,

(ii) there exists an edge splitting move H
µ
−→ G where H is a (2, l)-sparse

graph obtained by removing the vertex v and adjoining an edge with ver-
tices in {v1, v2, v3}.

Moreover, if G is (2, l)-tight then H is also (2, l)-tight.

Proof The assumption in (b) that vivj /∈ E(G) for some vi and vj is auto-
matically satisfied in case (a). Otherwise, the subgraph of G induced by the
vertices {v, v1, v2, v3} would contradict the (2, 3)-sparsity count for G.

(i) Suppose that every pair of distinct vertices vi, vj ∈ {v1, v2, v3} with
vivj /∈ E(G) is contained in a (2, l)-tight subgraph Hi,j of G\{v}. We may
assume that each Hi,j is maximal in the sense that it is not a proper subgraph
of any other (2, l)-tight subgraph of G\{v} which contains both vi and vj . Let
H be the union of the subgraphs Hi,j together with the vertices v, v1, v2, v3,
the edges vv1, vv2, vv3 and the edge vivj whenever vivj ∈ E(G). Then it can
be verified that H is a subgraph of G which violates the (2, l)-sparsity count.

(ii) By (i) there exists vi, vj ∈ {v1, v2, v3} with vivj /∈ E(G) such that no
(2, l)-tight subgraph of G contains both vi and vj . Let H be the graph with
vertex set V (H) = V (G)\{v} and edge set E(H) = (E(G)\{vv1, vv2, vv3}) ∪
{vivj}. Then

|E(H)| = |E(G)| − 2 ≤ 2|V (G)| − l− 2 = 2(|V (H)|+1)− l− 2 = 2|V (H)| − l.

If H ′ is a subgraph of H and vivj /∈ E(H ′) then H ′ is a subgraph of G and
so the (2, l)-sparsity count holds for H ′. If vivj ∈ E(H ′) then H ′\{vivj} is
a subgraph of G which contains the vertices vi and vj and so H ′\{vivj} is
(2, l)-sparse but not (2, l)-tight. Hence

|E(H ′)| = |E(H ′\{vivj})|+ 1 ≤ (2|V (H ′\{vivj})| − l− 1) + 1 = 2|V (H ′)| − l.
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Thus H is (2, l)-sparse and there exists an edge splitting move H
µ
−→ G. The

final statement is clear. ⊓⊔

Definition 4 A construction chain is called

1. a Henneberg construction chain if each graph move in the construction
chain is either a vertex addition move or an edge splitting move. These
moves are also known as the Henneberg 1 and Henneberg 2 moves (as well
as 0-extension and 1-extension moves), and

2. a non-Euclidean Henneberg construction chain if each graph move is either
a vertex addition move, an edge splitting move, a vertex-to-K4 move or a
vertex to 4-cycle move.

The existence of a finite Henneberg construction chain from K2 to G is
equivalent to the statement that G is minimally rigid for the Euclidean plane.
This result is due to L. Henneberg [8]. Pollaczek-Geiringer [19] and Laman [14]
later proved that such a construction chain exists if and only if G is (2, 3)-tight.
We require the following more general statement.

Proposition 5 Let G be a (2, 3)-tight subgraph of a finite simple graph G′.
Then the following statements are equivalent.

(i) G′ is (2, 3)-tight.
(ii) There exists a Henneberg construction chain from G to G′.

Proof (i)⇒ (ii) SupposeG′ is (2, 3)-tight and there does not exist a Henneberg
construction chain from G to G′. We may assume that G′ is minimal in the
sense that it is a smallest (in terms of vertices) (2,3)-tight graph that contains
G as a subgraph but cannot be reached from G by a Henneberg construction
chain. By Lemma 1 (iii) there exists v ∈ V (G′)\V (G) such that v has degree
2 or degree 3 in G′.

Suppose deg(v) = 2, in G′, with vv1, vv2 ∈ E(G′). Let H be the vertex-
induced subgraph of G′ with V (H) = V (G′)\{v}. Then G is a subgraph of H
and H is (2, 3)-tight. By the minimality of G′ there must exist a Henneberg
construction chain from G to H . Applying a vertex addition move to H based
on the vertices v1 and v2 we obtain G′. This is a contradiction.

Suppose deg(v) = 3, in G′, with vv1, vv2, vv3 ∈ E(G′). By Lemma 3,
there exists a (2, 3)-tight graph H obtained by removing the vertex v from G′

and adjoining an edge of the form vivj . Moreover, there is an edge splitting

move H
µ
−→ G′. Now G is a subgraph of H and so by the minimality of G′

there must exist a Henneberg construction chain from G to H . Applying the
edge splitting move to H based on the vertices v1, v2, v3 and the edge vivj we
obtain G′. This is a contradiction and so we conclude that there must exist a
Henneberg construction chain from G to G′.

(ii)⇒ (i) It is clear that vertex addition and edge splitting moves preserve
the class of (2, 3)-tight graphs and so, since G is (2, 3)-tight, G′ must also be
(2, 3)-tight. ⊓⊔
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The next proposition presents the corresponding fact for (2, 2)-tight graphs.
This generalises the statement, proved in [17], that there exists a non-Euclidean
Henneberg construction chain from K1 to G if and only if G is (2, 2)-tight.

Proposition 6 Let G be a (2, 2)-tight subgraph of a finite simple graph G′.
Then the following statements are equivalent.

(i) G′ is (2, 2)-tight.
(ii) There exists a non-Euclidean Henneberg construction chain from G to

G′.

Proof (i) ⇒ (ii) Suppose G′ is (2, 2)-tight and there does not exist a non-
Euclidean Henneberg construction chain from G to G′. We may assume that
G′ is minimal in the sense that it is a smallest (in terms of vertices) (2,2)-
tight graph that contains G as a subgraph but cannot be reached from G
by a non-Euclidean Henneberg construction chain. By Lemma 1 there exists
v0 ∈ V (G′)\V (G) such that v0 has degree 2 or degree 3 in G′. If deg(v0) = 2
in G′ then we can apply an inverse vertex addition move as in Proposition 5
to obtain a contradiction.

Suppose deg(v0) = 3 in G′ with incident edges v0v1, v0v2, v0v3 ∈ E(G′). If
vivj /∈ E(G′) for some distinct pair vi, vj ∈ {v1, v2, v3} then we can apply an
inverse edge splitting move as in Proposition 5 to obtain a contradiction. If the
complete graph K on the vertices {v0, v1, v2, v3} is a subgraph of G′ then every
vertex v ∈ V (G′)\V (K) is incident with at most two vertices in {v1, v2, v3}.
Otherwise, the vertex-induced subgraph on {v, v0, v1, v2, v3} would contradict
the sparsity count for G′. We consider two possible cases. Firstly, the case
when there does not exist a vertex in V (G′)\V (K) which is incident with two
vertices in {v1, v2, v3}. And secondly, the case when there does exist a vertex
in V (G′)\V (K) which is incident with two vertices in {v1, v2, v3}.

In the first case, let H be the (2, 2)-tight graph obtained from G′ by
contracting the complete graph on {v0, v1, v2, v3} to any one of the vertices
v0, v1, v2, v3. From the (2, 2)-sparsity of G′ it follows that K ∩ G consists of
at most one vertex vi ∈ {v1, v2, v3} and so G is a subgraph of H . By the
minimality of G′, there exists a non-Euclidean Henneberg construction chain
from G to H . We can now obtain G′ by applying a vertex-to-K4 move to H .
This is a contradiction.

In the second case, suppose w0 ∈ V (G′)\V (K) and w0 is incident with
the vertices v1 and v2. Let H be the (2, 2)-tight graph obtained from G′ by
identifying v0 with w0. Thus the edges v0v1 and v0v2 are removed, the edge
v0v3 is replaced with w0v3 and the vertex v0 is removed. Since v0 /∈ V (G), G
is a subgraph of H . By the minimality of G′ there must exist a non-Euclidean
Henneberg construction chain from G to H . Now G′ may be obtained by
applying a vertex to 4-cycle move to H based on the edges w0v1 and w0v2.
This is a contradiction and so the result follows.

(ii) ⇒ (i) It is clear that the four types of graph move which may occur
in a non-Euclidean Henneberg construction chain each preserve the class of
(2, 2)-tight graphs. Thus, since G is (2, 2)-tight, G′ is also (2, 2)-tight. ⊓⊔
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A (k, l)-tight edge-complete tower in G is an edge-complete tower G1 ⊂
G2 ⊂ G3 ⊂ · · · in G with the additional property that each Gk is (k, l)-tight.
The following result is proved in [13, Section 4].

Theorem 7 Let G be a countable simple graph.

(A) The following statements are equivalent.
(i) G is minimally rigid for (R2, ‖ · ‖2).
(ii) G contains a (2, 3)-tight edge-complete tower.

(B) If q ∈ (1, 2) ∪ (2,∞) then the following statements are equivalent.
(i) G is minimally rigid for (R2, ‖ · ‖q).
(ii) G contains a (2, 2)-tight edge-complete tower.

A consequence of Theorem 7 is that every countable minimally rigid graph
for (R2, ‖ · ‖q) necessarily contains arbitrarily large finite rigid subgraphs.

Definition 8 Let {Gk : k ∈ N} be a sequence of finite simple graphs such
that V (Gk) ⊆ V (Gk+1) for all k ∈ N. The countable graph limit lim

−→
Gk is

the countable graph with vertex set V (lim
−→

Gk) =
⋃

k∈N
V (Gk) and edge set

E(lim
−→

Gk) = {vw : for some n ∈ N, vw ∈ E(Gk) for all k ≥ n}.

The graph moves we have considered have the property that each move

Gk
µ
−→ Gk+1 is associated with a vertex set inclusion V (Gk) ⊂ V (Gk+1).

In particular, every countable (Euclidean or non-Euclidean) Henneberg con-

struction chain G1
µ1

−→ G2
µ2

−→ G3
µ3

−→ · · · has an associated graph limit
G = lim

−→
Gk. It may be that every edge in every finite graph in the sequence is

subject to later removal, in which case the graph limit G will have no edges.
Such extreme oddities can be avoided by restricting attention to construction
chains which are edge stable in the sense of the following definition.

Definition 9 Let G = lim
−→

Gk be the countable graph limit associated to a
(Euclidean or non-Euclidean) Henneberg construction chain with vertex inclu-
sion chain V (G1) ⊂ V (G2) ⊂ . . . . Let v be a vertex of Gj . Then a sequence
of edges vwj , vwj+1, . . . , with vwk ∈ E(Gk), is a derived edge sequence if, for
every k ≥ j, the edge vwk+1 is either,

(i) equal to vwk, or,
(ii) replacement-derived from vwk by an edge splitting move, or,
(iii) reassignment-derived from vwk by a vertex-to-K4 move on wk, or,
(iv) reassignment-derived from vwk by a vertex-to-4-cycle move on wk.

A derived edge sequence is stable if there exists k0 ∈ N such that vwk = vwk0

for all k ≥ k0. The construction chain is edge stable if every derived edge
sequence is stable.

We now prove that every countably infinite graph which is minimally rigid
for (R2, ‖ ·‖q) arises as the graph limit determined by an edge stable construc-
tion chain.
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Theorem 10 Let G be a countable simple graph which is minimally rigid for
(R2, ‖ · ‖q) where q ∈ (1,∞).

(A) If q = 2 then there exists an edge stable countable Henneberg construction

chain K2 = G1
µ1

−→ G2
µ2

−→ G3
µ3

−→ · · · such that G = lim
−→

Gk.
(B) If q 6= 2 then there exists an edge stable countable non-Euclidean Hen-

neberg construction chain K1 = G1
µ1

−→ G2
µ2

−→ G3
µ3

−→ · · · such that
G = lim

−→
Gk.

Proof (A) If G is minimally rigid for (R2, ‖ · ‖2) then by part (A) of Theorem
7 there exists an edge-complete tower {Gk : k ∈ N} in G such that each
Gk is (2, 3)-tight. By Proposition 5, for each k ∈ N there exists a Henneberg

construction chain Gk = Hk,1
µk,1

−→ Hk,2
µk,2

−→ · · ·
µk,nk−1

−→ Hk,nk
= Gk+1. Also

by Proposition 5, there exists a Henneberg construction chain from K2 to G1.
By concatenating these construction chains of finite length and relabelling we

obtain a countable construction chain K2 = H̃1
µ1

−→ H̃2
µ2

−→ H̃3
µ3

−→ · · · . Note
that the countable graph limit for the sequence {H̃k : k ∈ N} has vertex set

V (lim
−→

H̃k) =
⋃

k∈N

V (H̃k) =
⋃

k∈N

V (Gk) = V (G).

Also, the edges of each Gk are edges of Gk+1 and, moreover, because of the
nature of the Euclidean construction moves, no non-edge vivj in H̃k can be-

come an edge in H̃k+1. Suppose vvj , vvj+1, . . . is a derived edge sequence in

this construction chain. There exist k0 ≥ j and l such that H̃k0
= Gl. Thus the

edge vvk0
∈ E(H̃k0

) is not removed by any subsequent graph move and so the
derived edge sequence is stable. It follows that E(lim

−→
H̃k) =

⋃

k∈N
E(Gk) =

E(G). Hence G = lim
−→

H̃k.
For the proof of (B) apply a similar argument using part (B) of Theorem

7 and Proposition 6. ⊓⊔

The following curious example shows that a minimally rigid countably
infinite graph may have no vertices of finite degree.

Example 11 Let T be the tree with countably many vertices and countably
many branches at every vertex. Let G be the cone graph over T obtained by
adding one new vertex w0 and all edges vw0 to the vertices v of T . Then
every vertex of G has infinite degree. The graph G may also be derived as the
graph limit of an edge stable Henneberg construction chain by starting with a
single edge vw0 and applying vertex addition moves. This construction chain
provides an edge-complete (2, 3)-tight tower for G and so G is minimally rigid
for (R2, ‖ · ‖2) by Theorem 7.

Example 12 It is possible that an edge stable Henneberg construction chain
composed of minimally rigid finite graphs Gk for (R2, ‖ · ‖2) has a limit G
which is not rigid. This becomes evident, for example, for limits of planar
Laman graphs Gk where edge splitting moves operate on the boundaries of



The rigidity of infinite graphs II 11

the Gk. For example the semi-infinite strip graph indicated in Figure 1(e) is
flexible and is obtained in this way. One can also obtain in this manner the
infinite grid graph with vertices v(m,n) indexed by Z

2 and edges of the form
v(m,n)v(m+1,n) and v(m,n)v(m,n+1) for all (m,n) ∈ Z

2. This graph fails to be
rigid for (R2, ‖ · ‖2) since, for example, it has no finite rigid subgraphs with
more than two vertices.

Let us also remark that although Euclidean plane countable graph rigidity
is equivalent to sequential rigidity, this equivalence is very much a generic
property and does not hold for general bar-joint frameworks. This can be seen
in Figure 2. The infinite bar-joint framework is infinitesimally rigid but fails to
be sequentially infinitesimally rigid. Also note that this bar-joint framework
has a unique maximal proper infinitesimally rigid subframework.

(a) (b) (c)

(d) (e) · · · · · ·

· · · · · ·

Fig. 1 A flexible graph (e) which is a limit of rigid graphs. The graph (c)=(d) is obtained
from (a) by three Henneberg moves.

Fig. 2 An infinite bar-joint framework in the Euclidean plane that is infinitesimally rigid
but not sequentially infinitesimally rigid.

Remark 13 In Nixon, Owen and Power [16] (see also [17]) a characterisation
of finite (2, 2)-tight graphs was established in order to obtain an analogue of
Laman’s theorem for graphs with respect to placements on a circular cylinder
in R

3. In this setting the placements are viewed as movably attached to the
cylinder so that the admissible flexes (and velocity fields) are tangential to the



12 D. Kitson and S. C. Power

cylinder. These considerations can be extended to countable simple graphs
and it follows from the arguments here that graphs which are minimally rigid
for the cylinder are constructible from K1 by a non-Euclidean construction
chain. A survey of inductive methods for bar-joint frameworks is given in [18].

Recall that the bipartite graph K4,6 is rigid for (R3, ‖ · ‖2) and has no rigid
subgraphs (with more than 2 vertices). We conjecture below that this double
property is not possible for countably infinite graphs and dimensions d ≥ 3.

Conjecture 14 Let d ≥ 3 and let q ∈ (1,∞). Then every countably infinite
graph G which is rigid for (Rd, ‖ · ‖q) contains a finite rigid subgraph with at
least 3 vertices.

The next example shows that countable graph rigidity is a more subtle
consideration in higher dimensions.

Example 15 Figure 3 illustrates the first three graphs of an inclusion tower
{Gn : n ∈ N}. The first graph G1 is the double banana graph, which is flexible
for the Euclidean space R

3. However, as a subgraph of G2 it is relatively rigid
in the sense that every infinitesimal flex of G2 restricts to a rigid motion flex of
G1. Since every graph Gn is relatively rigid in its successor it follows that the
countable graph G formed by their union is rigid. On the other hand, since the
only rigid subgraphs of G are the the single banana graphs (copies of K5\e)
G is not sequentially rigid.

Substituting K4,6 graphs for single banana graphs in this example gives
another example of a minimally rigid countable graph, whose only rigid sub-
graphs with more than 2 vertices are copies of K4,6.

Fig. 3 The graphs G1, G2 and G3 in Example 15.

4 Countable simplicial graphs and Cauchy’s rigidity theorem

The generic form of Cauchy’s rigidity theorem for finite Euclidean bar-joint
frameworks in three dimensions may be stated as follows.

Theorem 16 (Cauchy, 1813) Let G be the edge graph of a convex polyhedron
with triangular faces. Then G is rigid for (R3, ‖ · ‖2).
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We first generalise this by determining the dimension of the space of in-
finitesimal flexes of a generic simplicial polytope which has κ nontriangular
faces. To formalise this we define the following family of finite simple graphs.

Definition 17 A finite simple graph is said to be simplicial with topological
connectivity κ if it has at least three edges and has a planar embedding in
which exactly κ faces (including the unbounded face) are not triangular and
where these faces have no vertices in common.

If κ = 0 then such a graph is the edge graph of a convex polyhedron with
triangular faces (i.e. a convex simplicial polytope in R

3).

The following vertex splitting construction move preserves the class of
(3, 6)-tight graphs and the class of (3, 3)-tight graphs.

Definition 18 Let G and G′ be finite simple graphs. Then G′ is said to be
obtained from G by applying a vertex splitting move (for three dimensions) if
it results from,

(i) adding a vertex v0 to V (G),
(ii) adding an edge v0v1 for a vertex v1 in V (G) which has at least two

incident edges v1v2 and v1v3,
(iii) adding the edges v0v2, v0v3,
(iv) replacing any number of the edges wv1, w 6= v2, v3 by edges wv0.

The preservation of 3-rigidity under the vertex splitting move is well-
known. See Whiteley [22, Theorem 1.4.6]. This argument also has a straight-
forward ℓq-norm variant for q ∈ (1,∞). Note that a move which adds a 3-valent
vertex to the face of a planar graph is a particular case of a vertex splitting
move.

Vertex splitting plays a key role in the proof of the generic Cauchy theorem,
which is the case κ = 0 in the following theorem. Since vertex splitting does
not in general preserve infinitesimal flexibility dimension it is necessary to
appeal to the linear independence of the rows of a generic rigidity matrix for
a minimally rigid graph. We say that a finite graph G is (3, q)-independent if
its rigidity matrix for the norm ‖ · ‖q is row independent. Also, we say that G
is 3-independent if it is (3, 2)-independent.

Theorem 19 Let G be a finite simplicial graph with κ non-triangular faces
which are bordered by cycles of length γ1, . . . , γκ.

(i) For κ > 0

dim3,2(G) = γ1 + · · ·+ γκ − 3κ

while dim3,2(G) = 0 for κ = 0.
(ii) For |V (G)| ≥ 6 and 1 < q <∞, q 6= 2,

dim3,q(G) = dim3,2(G) + 3
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Proof Consider first the case κ = 0. Observe that any simplicial graph G of
connectivity 0 can be constructed from K3 by vertex splitting moves. To see
this note that the inverse of a vertex splitting move (of planar type) is an edge
contraction move (see Figure 4). Also, if G is not equal to K3 then it can be
shown (see [21, Corollary 7]) that there exist adjacent triangles, sharing an
edge, such that edge contraction of this edge results in a simplicial graph of
connectivity 0 which is an antecedent of G for vertex splitting. In view of this
constructibility of G and the fact that K3 is 3-rigid it follows that G is 3-rigid
and dim3,2(G) = 0. Since |E| = 3|V | − 6 the graph G is minimally 3-rigid
and in particular is 3-independent. The formula for dim3,2(G) for κ > 0 now
follows from the fact that the addition of γ1+ · · ·+ γκ− 3κ edges to G creates
a 3-independent simplicial graph with κ = 0.

For q 6= 2, note first that the (3, 3)-tight graph K6 may be viewed as the
graph of a regular octahedron together with three added internal edges. From
the argument above, if κ = 0 then G is constructible from the regular octahe-
dron graph by a sequence of vertex splitting moves. Observe that if the three
internal edges of the regular octahedron are added then they are carried by
these vertex splitting moves to produce a graph G+ which consists of the sim-
plicial graph G and three additional non-incident edges. Thus we have shown
that G+ is constructible from K6 by a sequence of vertex splitting moves. The
graph K6 is known to be infinitesimally rigid for (R3, ‖ · ‖) (see [5, Corollary
3.4] for a more general result) and so it follows that G+ is infinitesimally rigid.
On the other hand G+ is (3, 3)-tight and so it is minimally infinitesimally rigid
for (R3, ‖ · ‖) and in particular is (3, q)-independent. The formula now follows,
as for q = 2, by subtracting edges from G+ to create G. ⊓⊔

0

1

2 3 2 3

1

Fig. 4 Edge contraction as an inverse to a vertex splitting.

For non-Euclidean ℓq-norms we conjecture the following counterpart to the
generic Cauchy theorem. Borrowing terminology from Whiteley [20] we refer
to an internal bar that is added to a polytope framework as a shaft.

Conjecture 20 A generic simplicial polytope framework together with three
non-incident shafts is minimally infinitesimally rigid in (R3, ‖ · ‖q) for 1 < q <
∞, q 6= 2.

We remark that similar vertex splitting considerations hold for the anal-
ysis of the infinitesimal rigidity of block and hole frameworks in which, so to
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speak, simplicial polytope frameworks are adjusted by the deletion of a num-
ber of simplicial discs (holes) and the addition of extra edges to a number
of other simplicial discs (creating blocks). See Finbow-Singh and Whiteley [6]
and Cruickshank, Kitson and Power [3]. Vertex splitting has also been applied
in recent work of Jordan and Tanigawa [10] on the generic global rigidity of
simplicial graphs with added bracing edges in Euclidean 3-space.

4.1 Countable simplicial graphs.

We now consider the countable graphs that can be obtained from finite sim-
plicial graphs of connectivity type κ by certain directed construction chains.
Viewing such graphs as inscribed on the surface of a sphere this “directedness”
corresponds, roughly speaking, to the κ nontriangular faces (the topological
“holes”) converging towards a set F on the sphere consisting of κ points.

The graphs can be thought of as simplicial triangulations of a finitely punc-
tured sphere, S2\F , and we give the following direct definition in these terms,
as a class of infinite planar graphs. This yields a somewhat larger class than
that alluded to in the previous paragraph since it also allows for the infinite
internal refinement of a finite number of triangular faces of the initial graph.

Recall that a countable graph has a planar embedding, or is a planar graph,
if it may be realised by a set of distinct points in the plane and a family of
non-crossing continuous paths. Let S2 be the one-point compactification of
the plane.

Definition 21 Let G be a locally finite countable graph and let ρ and κ be
non-negative integers with 0 ≤ κ ≤ ρ. Then G is said to be a simplicial graph
of type (ρ, κ) if there is a planar embedding of G which is a triangulation of
S2\F , where

(i) F is the set of accumulation points of the vertex points and |F | = ρ, and
(ii) there are exactly κ points p of F for which there exists a neighbourhood

of p which contains no 3-cycles of represented edges around p.

We refer to ρ as the refinement type and κ as the connectivity ofG. It follows
that a countable simplicial graph of type (ρ, κ) has an edge-complete tower
G1 ⊂ G2 ⊂ G3 ⊂ · · · in which successive graphs are obtained by partially
paving in the κ nontriangular faces and ρ− κ triangular faces. In particular a
simplicial graph with (ρ, κ) = (1, 0) is obtained by joining a sequence of simpli-
cial polyhedral graphs over common faces so that each polyhedron (except the
first) has two neighbours. Similarly, a simplicial graph with (ρ, κ) = (1, 1) is
obtained by joining together a sequence of simplicial annuli (see the definition
below) over identified end cycles.

We now formalise the general construction sequence for a simplicial graph
of finite refinement type and introduce a limit form of the joint cycle index.

A simplicial disc graph of type r ≥ 3 is a finite planar graph determined by
the triangulation of an r-cycle. A simplicial polytope graph is a graph deter-
mined by the edges of a convex polyhedron with triangular faces. A simplicial
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annulus graph of type (r, s) is a graph which arises from a simplicial polytope
graph following the removal of the interior edges and vertices of two face-
disjoint simplicial disc subgraphs of type r ≥ 4 and s ≥ 4, respectively. A
simplicial annulus graph is thus a planar graph with two faces that are not
triangles. This includes the degenerate case of a cycle graph with two faces.

We define the girth γ = γ(G) of a simplicial annulus graph G of type (r, s)
as the minimum length of an edge cycle in G which winds once around the
annulus. This is also the minimum length of cycles which provide a generator
for the first simplicial homology group of the simplicial complex of G. We say
that a simplicial annulus graph T is of type (r, s, γ) in this case, and if C is
such a minimum length cycle subgraph then C is said to be a girth cycle.

The result of the next lemma appears as Theorem 5.1 of [6] with a proof
based on r-connectivity and Menger’s theorem. We give a direct proof based
on graph reduction by division by girth cycles. In fact the lemma gives a direct
proof that the block and hole r-towers of Finbow-Singh and Whiteley [6], for
r ≥ 4, are 3-rigid if their girth is not less than r. The necessity of this condition
also holds. For more detail see [3], [6].

Lemma 22 If T is a simplicial annulus graph of type (r, r, r) then there is a
finite construction sequence H1 → H2 → · · · → T where H1 is an r-cycle and
the moves are vertex splitting moves.

Proof Let e be an edge which lies on no girth cycle of T . Then the contraction
on this edge gives a simplicial annulus graph T ′ of the same type, (r, r, r).
Since T ′ → T is a vertex splitting move we may assume that all edges lie
on girth cycles. Suppose that T is a graph of this type with the fewest edges
and suppose, by way of contradiction, that T is not an r-cycle. Then T has
an edge e that does not lie on either of the two nontriangular faces of T , the
outer and inner boundary cycles, Ca and Cb say. Let C be a girth cycle that
includes e. Then the simplicial annuli, Ta and Tb say, with boundaries {Ca, C}
and {Cb, C}, respectively, also have girth r. Since Ta and Tb have fewer edges
they are constructible from an r-cycle by vertex splitting. But in this case T
is also constructible, a contradiction. ⊓⊔

Let G be a simplicial disc graph of type r and let T be a simplicial annulus
graph of type (r, s). A graph obtained by identifying the boundary r-cycles of
G and T is referred to as a join, denoted G ⊔ T . In a similar way we define
the join G ⊔ T when G is a finite simplicial graph of connectivity κ with an
r-cycle face and where this r cycle is identified with a boundary r-cycle of T .

Lemma 23 Let G1 ⊆ G2 where G1 is a simplicial graph of type (ρ, κ) with a
boundary cycle of length r1 and where G2 = G1⊔T is a join with T a simplicial
annulus graph of type (r1, r2, r).

(i) If r = r1 = r2 then for generic placements p the natural restriction map,

πG2,G1
: F2(G2, p)→ F2(G1, p|G1

),

is a linear isomorphism.
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(ii) If r = r1 ≤ r2 then the restriction map in (i) is a surjection.

Proof (i) The restriction map is clearly linear and so it is sufficient to show
that it is injective. Consider a non-zero infinitesimal flex u in F2(G2, p) which
lies in the kernel of the restriction map. This provides a non-zero infinitesimal
flex for the framework for Kr ⊔ T obtained by adding bars for all pairs of
joints for the boundary r1-cycle of T . However, Kr is 3-rigid. Also since vertex
splitting preserves infinitesimal rigidity Lemma 22 implies that this framework
is also infinitesimally rigid. This contradiction completes the proof.

(ii) By adjoining a copy of T to G2 along the common boundary cycle
of length r2, we obtain G′

2 = G1 ⊔ T ′ where T ′ = T ⊔ T is a simplicial
annulus graph of type (r1, r1, r). Let p be a generic placement of G′

2 in R
3.

By (i), the natural restriction map πG′

2
,G1

: F2(G
′
2, p) → F2(G1, p|G1

) is a
linear isomorphism. The result now follows since πG′

2
,G1

(F2(G
′
2, p)) is a linear

subspace of πG2,G1
(F2(G2, p)). ⊓⊔

We remark that the isomorphism conclusion in (i) fails if T has type (r, r, s)
with the girth s strictly less than r. This follows from the fact that a single
block and single hole graph Kr ⊔ T is not rigid for (R3, ‖ · ‖2) by the results
in [3] and [6].

Definition 24 Let G be a countable simplicial graph of type (ρ, κ).

(i) If ρ = 1 then the asymptotic girth γ(G), with value in the set {3, 4, . . .}∪
{∞}, is the common value,

γ(G) := lim
k

(

lim
l:l>k

γ(Gl\Gk)

)

,

associated with an inclusion chain G1 ⊆ G2 ⊆ . . . for G of simplicial
discs, where, for l > k, Gl\Gk is the simplicial annulus Tk,l in the join
representation Gl = Gk ⊔ Tk,l.

(ii) For ρ ≥ 2 the joint asymptotic girth is the list (γ1(G), . . . , γρ(G)) of the
asymptotic girths γi(G) associated with the ith refinement point in a
spherical representation of G.

Note that γ(G) in (i) is well-defined since γ(Gl\Gk) is a decreasing sequence
in l, for fixed k, and any two inclusion chains for G have subchains which are
also interlacing subchains of a single inclusion chain.

Theorem 25 Let G be a countable simplicial graph of refinement type ρ and
connectivity κ. Then the infinitesimal flex dimension of G is given in terms of
the asymptotic girth of G by the formula,

dim3,2(G) =

ρ
∑

i=1

(γi(G)− 3).
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Proof Suppose first that the joint asymptotic girth is a ρ-tuple of finite in-
tegers (γ1, . . . , γρ). Then it follows that there exists an edge-complete tower
G1 ⊆ G2 ⊆ . . . where each Gk is a simplicial graph of connectivity κ with
boundary cycles of lengths γ1, . . . , γκ obtained by the addition of κ simplicial
annuli of type (γi, γi, γi) to Gk−1. Let p be a generic placement of (G, p). By
Lemma 23 the natural restriction maps provide linear isomorphisms between
the infinitesimal flex spaces,

F2(G1, p)← F2(G2, p)← F2(G3, p)← · · · .

Note that this sequence of vector spaces and linear maps is an inverse sys-
tem and F2(G, p), together with the natural restriction maps F2(G, p) →
F2(Gk, p), is the inverse limit. It follows that dimF2(G, p) = dimF2(Gk, p)
for each k and so the dimension formula follows.

Suppose now that γi is infinite for some i. Once again we may assume
that there is an edge complete tower for G as before. By Lemma 23 (ii), for a
generic placement (G, p) we have a natural inverse system of surjections,

F2(G1, p)← F2(G2, p)← F2(G3, p)← · · · .

Also, the infinitesimal flex space of (G, p) is the inverse limit of this system.
By Theorem 19 this flex space has infinite dimension, as required. ⊓⊔

Theorem 26 Let G be a countable simplicial graph of refinement type ρ and
connectivity κ. Then the following conditions are equivalent.

(i) G is 3-rigid.
(ii) G is minimally 3-rigid.
(iii) G is sequentially 3-rigid.
(iv) κ = 0.

Proof From the definition of κ it follows immediately that if κ = 0 then there
is an edge-complete inclusion chain of finite graphs each of which is the edge
graph of a simplicial polytope. From the generic Cauchy theorem (case κ = 0
of Theorem 19) it follows that G is sequentially 3-rigid, and hence 3-rigid. To
see that G is also minimally 3-rigid we first note that if G1 ⊆ G2 is an inclusion
of finite simplicial polytope graphs obtained by triangulation of several of the
faces of G1 and if e is an edge of G1 then for any generic realisation the natural
restriction map,

F2(G2\e, p)→ F2(G1\e, p)

is an isomorphism of real vector spaces of dimension 7. Indeed, not only are
the spaces of dimension 7 as a consequence of minimal rigidity but every
infinitesimal flex of (G1\e, p) extends to an infinitesimal flex of (G2\e, p) and
so the map is a surjection. It follows that dim3,2(G\e, p) = 1.

That (i) implies (iv) follows from the previous theorem and so the proof
is complete. ⊓⊔
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For a finite simple graph G and i = 1, 2 write Hi(G) for the integral
simplicial homology groups of the simplicial complex ∆(G) whose j-simplexes
correspond to copies in G of the complete graph Kj . One may similarly define
integral homology groups for a countable simple graph in terms of the chain
groups which may now have countably many generators. It follows that Hi(G)
coincides with the direct limit Hi(G) = lim

−→k
Hi(Gk) associated with any edge-

complete tower G1 ⊆ G2 ⊆ . . . for G. These groups are therefore readily
computable for infinite graphs given by construction chains.

For the countable graphs of Theorem 26 we have H1(G) = Z
κ−1 for κ ≥ 1.

Let us also remark that there are sequentially 3-rigid graphs of this type with
κ = 0 and H2(G) = 0. These extreme examples derive from the planar graph
K4 and a construction chain K4 → G2 → G3 → . . . obtained by single vertex
addition moves of planar type in the following sense. Each new vertex of degree
3 in Gk+1 has its edges incident to the vertices of a face of Gk. In particular
H2(Gk) = 0 for all k. See Figure 6.

4.2 Infinite polytopes

We now give examples of countable simplicial graphs of type (ρ, κ) which
arise from various infinitely faceted polytopes. We compute the infinitesimal
flex dimensions by applying Theorem 25. Note first that countable simplicial
graphs G of type (ρ, κ) can be constructed from the edge graph of a convex
polyhedron P with triangular faces by means of the following general scheme.

(a) A finite set F of ρ vertices of P is chosen, κ of which have degree greater
than 3.

(b) The faces of P which are incident to at least one of these vertices, v say, are
countably triangulated towards v by means of sequences of added vertices
on the edges that are incident to v.

(c) The countable graph G has vertex set equal to the union of the added
vertices and the vertices of the complement V (P)\F .

To be more explicit, we may take F = V (P), for example, and triangulate
each face of P in the manner of the template of Figure 5.

Fig. 5 Triangulation of a face of a convex polyhedron.
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Example 27 Applying this refinement process to all vertices for the three pla-
tonic deltahedra one obtains

(i) tetrahedral countable simplicial graphsG with (ρ, κ) = (4, 0), joint asymp-
totic girth γ(G) = (3, 3, 3, 3) and dim3,2(G) = 0,

(ii) octahedral countable simplicial graphs with (ρ, κ) = (6, 6), joint asymp-
totic girth γ(G) = (4, 4, 4, 4, 4, 4) and dim3,2(G) = 6,

(iii) icosahedral countable simplicial graphs with (ρ, κ) = (12, 12), a twelve-
fold asymptotic girth index γ(G) = (5, . . . , 5) and dim3,2(G) = 24.

Example 28 The countable simplicial graph G of type (1, 0) indicated in Fig-
ure 6 is obtained by triangulating the faces of a 3-simplex towards a single
vertex. The asymptotic girth is γ(G) = 3 and the infinitesimal flex dimension
is dim3,2(G) = 0.

Example 29 Figure 7 illustrates a countable simplicial graph G of type (1, 1)
which is obtained by triangulating the faces of an octahedron. The asymptotic
girth is γ(G) = 4 and the infinitesimal flex dimension is dim3,2(G) = 1.

The following example indicates a bar-joint framework which is associated
with an infinitely faceted compact “diamond” polytope. (Its appearance has
a passing resemblance to a cut diamond).

Example 30 Let p1, p2, . . . be a sequence of points on the unit sphere as indi-
cated in Figure 8 and let Pdia be the convex hull of this set of points together
with the north polar point. The associated bar-joint framework (G, p) is deter-
mined by the edges of Pdia and the underlying structure graph for the edges
(omitting the north pole) is a countable simplicial graph of type (ρ, κ) = (1, 1).
In this example the number of vertices of G for successive latitudes doubles
on passing to the next highest latitude and it follows that dim3,2(G) =∞ .

Fig. 6 A countable simplicial graph of type (1, 0) obtained from the 3-simplex K4.
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Fig. 7 A countable simplicial graph of type (1, 1) obtained from an octohedron.

Fig. 8 A countable simplicial graph of type (1, 1), with infinite asymptotic girth, obtained
from a diamond polytope.

4.3 Final remarks

We expect that the preceding arguments can be adapted to the determina-
tion of rigidity and flexibility dimension for bar-joint frameworks arising from
various partial triangulations, both fine and infinite, of other surfaces. In par-
ticular this seems very likely for the projective plane (for all ρ, κ) and for the
torus (for ρ = 1) since minimal infinitesimal rigidity, for finite partial triangu-
lations, has been characterised in these cases. See [11] and [4]. The partially
triangulated torus with ρ = 2 allows double banana phenomena and so there
would be more to say in this case.

We remark that the countable simplicial graphs are also interesting from
the point of view of the continuous flexibility and continuous rigidity of their
placements in R

3. For example it can be shown that the framework indicated
in Figure 7 admits no nontrivial continuous flexes. On the other hand we do
not know if the convex placement of the diamond polytope graph, indicated in
Figure 8, is rigid in this sense. It could well be that the recent paper of Holmes-
Cerfon, Theran and Gortler [9] on the almost-rigidity of finite frameworks
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could give quantitive techniques for determining when specific placements are
continuously rigid.
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