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Abstract. In this paper we determine the torsion free rank of the group of en-
dotrivial modules for any finite group of Lie type, in both defining and non-defining
characteristic. Equivalently, we classify the maximal rank 2 elementary abelian `-
subgroups in any finite group of Lie type, for any prime `. This classification may be
of independent interest.

1. Introduction4

Endotrivial modules play a significant role in the modular representation theory of5

finite groups; in particular, they are the invertible elements in the Green ring of the6

stable module category of finitely generated modules for the group algebra. Tensoring7

with an endotrivial module is a self equivalence of the stable module category and8

these operations generate the Picard group of self equivalences of Morita type in this9

category. The endopermutation modules, defined for finite groups of prime power10

order, are the sources of the irreducible modules for large classes of finite groups, and11

these endopermutation modules are built from the endotrivial modules.12

Let G be a finite group and let k be a field of prime characteristic ` that divides the13

order of G. A finitely generated kG-module M is endotrivial if its k-endomorphism14

ring Homk(M,M) is the direct sum of a trivial module and a projective module. The15

isomorphism classes in the stable category of such modules form an abelian group16

T (G) under the tensor product ⊗k, where M ⊗k N is equipped with the diagonal G-17

action. The group has identity [k] and the inverse to a class [M ] is the class [M∗],18

where M∗ is the k-dual of M . As T (G) is finitely generated it is isomorphic to the19

direct sum of its torsion subgroup TT (G), and a finitely generated torsion free group20

TF (G) = T (G)/TT (G). We define the torsion free rank of T (G) to be the rank of21

TF (G) as a Z-module. In [29], the second author used homotopy theory to describe22

TT (G), tying the structure of TT (G) to that of G itself, and in doing so, he also proved23

a conjecture by the first author and Thévenaz [16]. In a forthcoming article [12], we24

will provide a description of the torsion subgroup TT (G) for G a finite group of Lie25

type for all primes, using homotopy theoretic methods. For more information on the26
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history and applications of endotrivial modules, see the survey papers [11, 40], and the1

book by the third author [33].2

We recall that, for any finite group G, there is a distinguished element in T (G),3

namely the class of the shift of the trivial module, defined to be the kernel of the map4

from a projective cover of k to k. It is easily verified to be endotrivial. Moreover, by5

elementary homological algebra, the class of this element has infinite order in TF (G)6

if and only if G contains a subgroup isomorphic to Z/`× Z/`.7

Our main theorem of this paper determines the rank of TF (G) for G any finite group8

of Lie type of characteristic p. We show that it is generated by the class of the shift of9

the trivial module except in a few low-rank cases, that we describe explicitly. Before10

stating the precise version of the main theorem, we need to make clear what we mean11

by a finite group of Lie type.12

Definition 1.1 (Finite group of Lie type). By a finite group of Lie type in characteristic13

p we mean a group G = GF for G a connected reductive algebraic group over an14

algebraically closed field of characteristic p, and F a Steinberg endomorphism, i.e., an15

endomorphism of G such that F s is a standard Frobenius map Fq, for q = pr and some16

s, r ≥ 1.17

This definition is a bit more general than that of [32, Definition 21.6] in that we18

only assume G to be reductive instead of semisimple. For example, this includes the19

classical group GLn(q). We now present our main theorem:20

Theorem A. Let G be a finite group of Lie type in characteristic p as in Definition 1.1.21

The group TF (G) of torsion free endotrivial modules over a field of characteristic `,22

with ` | |G|, is zero or infinite cyclic generated by the class of the shift of the trivial23

module, except when G is on the following list:24

(1) ` 6= p and G ∼= H ×K, where ` - |K|, and H is either25

(a) PGL`(q) with ` | q − 1,26

(b) PGU`(q) with ` | q + 1, or27

(c) 3D4(q) with ` = 3.28

(2) ` = p and G/Z(G) is either PSU3(p) for p ≥ 3 and 3 | p+1, PSL3(p) for p ≥ 2,29

PGL3(p) for p ≥ 2, PSpin5(p) for p ≥ 5, SO5(p) for p ≥ 5, or G2(p) for p ≥ 7.30

In case (1), TF (G)
∼=−→ TF (H) has rank 3 if H ∼= PGL`(q) or PGU`(q) and ` > 2,31

and rank 2 if ` = 2 or H ∼= 3D4(q); see Theorems 3.1 and 6.1. In case (2) the ranks32

are listed in the tables in Section 7; see Theorem 7.1.33

The quotient groups G/Z(G) occurring above as the classical groups PSL3(p) =34

SL3(p)/C3, PSU3(p) = SU3(p)/C3, and PSpin5(p) = Spin5(p)/C2 are in fact not them-35

selves finite groups of Lie type; see Remark 2.5 and Section 5 for more about this sub-36

tlety. Section 5 also contains analogous results for all groups of the form GF/Z(GF ),37

for simply connected simple G, i.e., the finite simple groups associated to finite groups38

of Lie type. Special cases of the above results can be found in [13, 14, 15]. Note that39

the rank of TF (G) depends on the characteristic ` of k, but not on the finer structure40

of k.41

An elementary abelian `-subgroup of G is a subgroup isomorphic to an F`-vector42

space. Its `-rank is its F`-vector space dimension. The `-rank of G, denoted rk`(G),43
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is the maximum of the `-ranks of elementary abelian `-subgroups of G. The groups in1

(1a) and (1b) of Theorem A have `-rank ` − 1 when ` is odd, while all other groups2

listed in (1) and (2) have `-rank 2.3

By a well-known correspondence, recalled in Theorem 1.2 below, our main result4

translates into a purely local group theoretic statement, Theorem B, which is in5

fact what we prove. Let A≥2` (G) denote the poset of noncyclic elementary abelian6

`-subgroups of G, ordered by subgroup inclusion. We say that an elementary abelian7

`-subgroup ofG is maximal if it is maximal inA≥2` (G), i.e., if it is not properly contained8

in any other elementary abelian subgroup of G. The poset A≥2` (G) has a G-action by9

conjugation, and we can also consider the orbit space A≥2` (G)/G. For any poset X, we10

can define its set of connected components π0(X), as equivalence classes of elements11

generated by the order relation, and note that, for a G-poset, π0(X)/G
∼=−→ π0(X/G).12

The following theorem states the correspondence.13

Theorem 1.2 ([1, Theorem 4] [13, Theorem 3.1]). For any finite group G and prime `14

dividing the order of G, the rank of the group TF (G) is equal to the number of connected15

components of the orbit space A≥2` (G)/G. This number is 0 if rk`(G) = 1; it is equal16

to the number of conjugacy classes of maximal elementary abelian `-subgroups in G if17

rk`(G) = 2; and it is equal to 1 more than the number of conjugacy classes of maximal18

elementary abelian `-subgroups of rank 2, if rk`(G) > 2.19

The theorem above is Alperin’s [1] original calculation of the torsion free rank of20

T (G) in the case that G is a finite `-group. The proof for arbitrary finite groups is21

given in [13] and uses very different methods. With this dictionary in place, we can22

state a local group theoretic version of our main result:23

Theorem B. Let G be a finite group of Lie type in characteristic p (see Definition 1.1)24

and ` an arbitrary prime.25

(1) If rk`(G) > 2, then G does not have a maximal elementary abelian `-subgroup26

of rank 2, unless ` > 3, ` 6= p, and G has the form given in Theorem A(1a) or27

(1b) (where rk`(G) = `− 1).28

(2) If rk`(G) = 2, then all elementary abelian `-subgroups of G of rank 2 are con-29

jugate unless G has the form given in Theorem A(2), in Theorem A(1c), or in30

Theorem A(1a)(1b), ` ≤ 3.31

To provide additional context to Theorem B, recall that G can only have a maximal32

elementary abelian `-subgroup of rank 2 when rk`(G) ≤ ` for ` odd, and rk2(G) ≤ 433

when ` = 2, by a theorem of Glauberman–Mazza [24] and MacWilliams [31] (restated34

as Theorem 2.3). Theorem B pins down exactly the cases where this does in fact35

occur for finite groups of Lie type. The study of elementary abelian `-subgroups of G36

and GF has a long history, with close relationship to cohomology and representation37

theory; see e.g., [6, 7, 34, 35, 39]. When ` 6= p, conjugacy classes of elementary abelian38

`-subgroups of G identify with those of the corresponding complex reductive algebraic39

group, or compact Lie group (see [3, Section 8]). In fact, they only depend on the `-40

local structure as encoded in the `-compact group (BG)̂` obtained by `-completing the41

classifying space BG in the sense of homotopy theory [28]. Similarly, the elementary42

abelian `-subgroups of G are determined by BGˆ̀, an `-local finite group [9] describable43
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from the action of F on BGˆ̀; see e.g., [30, Appendix C] for a summary. The question1

of existence of maximal rank 2 elementary abelian `-subgroups can thus be asked more2

generally in the context of homotopy finite groups of Lie type, i.e., homotopy fixed-3

points of Steinberg endomorphisms on connected `-compact groups [10, 30]. In fact we4

expect Theorem B to generalize to this setting, with the same conclusion, as simple5

`-compact groups not coming from a compact connected Lie group are centerless and6

have a unique maximal elementary abelian `-subgroup (see [3, Theorems 1.2 and 1.8]7

and [2, Theorem 1.1]). We do not pursue the details here, but see Remark 3.4.8

One may similarly wonder if TF (G) of Theorem A only depends on the `-local9

structure in the stronger sense that if H → G induces an isomorphism of `-fusion10

systems, is the map TF (G) → TF (H) an isomorphism? That question, however, has11

a negative answer in general, and we need to replace `-fusion by a stronger `-local12

invariant [5].13

Structure of the paper. Section 2 collects background results needed later, including14

the aforementioned general Theorem 2.3 that gives conditions on rk`(G) ensuring no15

maximal elementary abelian `-subgroups of rank 2.16

In Sections 3–7, we determine TF (G) when G = GF , and G is simple. The cases17

when 3 ≤ ` 6= p are handled in Sections 3 and 4. In many cases it is known that the18

orbit space A≥2` (G)/G is connected (see [27, Section 4.10]). This allows us to reduce19

to examining some groups of small Lie rank, in Proposition 3.3, and these are then20

analyzed in Section 4. In Section 5, we extend the results of the previous sections to21

also compute TF (G), for G a group closely associated to a group of Lie type such as22

PSLn(q) or PSpn(q), in the case that ` ≥ 3.23

The case where 2 = ` 6= p is handled in Section 6. Section 7 investigates the final24

case when ` = p, extending work in [13]. In the case that ` = 2 the associated groups25

are included in the analysis of Section 6.26

Finally, in Section 8, we prove Theorems A and B in the general case where G is a27

connected reductive algebraic group.28

Acknowledgments. In the course of writing this paper, the authors checked many ex-29

amples using the computer algebra system Magma [8]. We thank John Cannon and his30

team for providing this wonderful tool. The authors also acknowledge Gunter Malle for31

helpful conversations at various stages throughout this project. In particular we thank32

him for his detailed comments on an earlier version of this manuscript that, among33

other things, clarified the treatment of the very twisted groups in Section 3.34

2. Preliminaries35

Throughout the paper G is finite group (maybe subject to more assump-36

tions, specified locally) and k is a field of some positive characteristic37

`, dividing the order of G.38

In this section we provide some background material used throughout this paper.39

Definition 2.1. A finitely generated kG-module M is endotrivial if Homk(M,M) ∼=40

k ⊕ P where P is a projective kG-module and k is the trivial kG-module. Thus,41

Homk(M,M) ∼= k in the stable category of kG-modules modulo projectives. The set42
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T (G) of stable isomorphism classes of endotrivial kG-modules forms a group under1

−⊗k −, called the group of endotrivial kG-modules.2

Recall that in this context, Homk(M,M) ∼= M∗⊗kM as kG-modules, and therefore3

the endotrivial modules are the invertible objects under tensor product in the stable4

module category of kG-modules modulo projectives.5

The group T (G) is a finitely generated abelian group ([13, Corollary 2.5]) hence6

T (G) ∼= TT (G)⊕TF (G), for TT (G) the torsion subgroup of T (G), a finite group, and7

TF (G) = T (G)/TT (G), a finitely generated free abelian group. In Theorem 1.2, the8

rank of TF (G) is stated to be equal to the number of conjugacy classes of maximal9

elementary abelian `-subgroups of G of rank 2 if rk`(G) = 2, or that number plus 1 in10

case rk`(G) > 2.11

We start with a few elementary but useful observations.12

Lemma 2.2. Let P be a finite `-group.13

(a) If P has a normal elementary abelian `-subgroup H of `-rank ` + 1 or more,14

then P has no maximal elementary abelian subgroups of rank 2.15

(b) If P has `-rank 2 and the center of P is not cyclic, then P has exactly one16

maximal elementary abelian subgroup with `-rank 2.17

(c) If P has `-rank at least 3 and the center of P is not cyclic, then P has no18

maximal elementary abelian subgroups of `-rank 2.19

Proof. The proofs of parts (b) and (c) are straightforward. For (a), let x be a noncentral20

element of P of order `. If x ∈ H, then CP (x) ≥ H has `-rank at least 3 by assumption21

and the statement holds. If x /∈ H, then the conjugation action of x on H can be22

regarded as a linear action on an F`-vector space of dimension at least ` + 1, and23

therefore must have at least two linearly independent eigenvectors for the eigenvalue 1.24

That is, conjugation by x fixes two nontrivial distinct generators of H in some suitable25

generating set, and since x /∈ H, we conclude that the subgroup of P generated by26

x and these two elements is elementary abelian of rank 3. So x is not contained in a27

maximal elementary abelian subgroup of P of rank 2, and part (a) follows. �28

For our analysis, we employ results of Glauberman–Mazza and MacWilliams that29

guarantee, under suitable conditions on the `-rank of the finite group G, that the group30

has no maximal elementary abelian `-subgroups of rank 2. The sectional `-rank of a31

group G is the maximal `-rank of any section of G. A section of G is the quotient of a32

subgroup of G by a normal subgroup of that subgroup.33

Theorem 2.3. Let G be a finite group and let ` be a prime.34

(a) [24, Theorem A] If ` ≥ 3 and rk`(G) ≥ `+1, then G has no maximal elementary35

abelian `-subgroups of rank 2.36

(b) [31, Four Generator Theorem] Suppose that G has sectional 2-rank at least 5.37

Then a Sylow 2-subgroup of G has a normal elementary abelian subgroup with38

2-rank 3. In such a case G has no maximal elementary abelian 2-subgroup of39

rank 2.40

Part (b) in Theorem 2.3 is a reformulation, which better suits our analysis, of [31,41

Four Generator Theorem]. The theorem (which was part of the program to classify42
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finite simple groups) asserts that, in a finite 2-group G with no normal elementary1

abelian subgroup of rank 3, every subgroup can be generated by at most four elements.2

Thus, if the sectional 2-rank of a 2-group G is 5 or more, then some Frattini quotient3

P/Φ(P ), for P a subgroup of G, has 2-rank 5 or more. By the theorem, G has a4

normal elementary abelian subgroup with 2-rank 3, implying that G has no maximal5

elementary abelian subgroup of rank 2, by Lemma 2.2. Our interpretation follows6

because, for any `, the sectional `-rank of a finite group is equal to that of its Sylow7

`-subgroups.8

We also record the following result, which is used to relate the torsion free ranks9

of groups of endotrivial modules of finite groups of Lie type arising from isogenous10

algebraic groups.11

Proposition 2.4. Let

1 // Z // H // G // K // 1

be an exact sequence of finite groups where Z and K have order prime to `, and Z12

central in H. Then the induced map A≥2` (H)/H � A≥2` (G)/G is a surjection, which is13

an isomorphism of posets if the image of H in G controls `-fusion in G. In particular14

TF (H) ∼= Z implies TF (G) ∼= Z, with the converse also true if the image of H in G15

controls `-fusion in G (e.g., if K = 1).16

Proof. Since K and Z have orders that are prime to `, the map H → G induces a17

bijection of `-subgroups. Furthermore, conjugacy in H implies conjugacy in G, with18

the converse also being true if the image of H in G controls `-fusion in G. Note that19

the image of H in G is isomorphic to H/Z. The statement about torsion free ranks20

follows using the standard translation by Theorem 1.2. �21

We conclude this section with a discussion of our conventions for finite groups of Lie22

type.23

Remark 2.5 (Finite groups of Lie type). As stated in Definition 1.1 we take a finite24

group of Lie type to mean a group of the form G = GF , for G a connected reductive25

algebraic group over an algebraically closed field of positive characteristic p, and F a26

Steinberg endomorphism. We refer to [32], or the original [38], for a thorough descrip-27

tion of properties of such groups, but quickly go through a few key points to aid to28

the reader: A connected reductive algebraic group G over an algebraically closed field29

is classified by its root datum D (which is field independent). The action of F on G30

(up to inner automorphisms) is also determined by its effect on D (up to Weyl group31

conjugation) allowing for a “combinatorial” classification of finite groups of Lie type32

GF . It is most explicit when G is further assumed simple, see [32, Table 22.1]. In33

this case GF is “close” to being simple, in the following sense: A formula of Steinberg34

[38, Corollary 12.6(b)] says that G/Op′(G)
∼=−→ π1(G)F , the coinvariants of the action35

of F on the fundamental group π1(G). (As usual Op′(−) denotes the smallest normal36

subgroup of p′ index, and Op′(−) denotes the largest normal subgroup of p′ order.)37

Thus, subgroups H with Op′(G) ≤ H ≤ G can be parametrized by “Lie theoretic”38

data consisting of G, F , and a subgroup of π1(G)F . They are hence “close” to finite39

groups of Lie type, though, e.g., the order formula [32, Corollary 24.6] does not hold —40
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some books dealing with finite simple groups, e.g., [27, Definition 2.2.1], instead refer1

to groups of the form Op′(GF ) as finite groups of Lie type. Dual to p′-quotients we2

have that3

(2.1) Z(G) = Op′(G) = Z(G)F

(see [32, Lemma 24.12]). Normal p′–subgroups and quotients are related, as4

(2.2) GF
sc/Z(GF

sc)
∼=−→ Op′((G/Z(G))F ),

for Gsc the simply connected cover of G (see [32, Proposition 24.21]). With a few small5

exceptions [32, Theorem 24.17], this is a finite simple group, if G is simple. For example6

PSLn(q) ∼= Op′(PGLn(q)) is simple unless (n, q) is (2, 2) or (2, 3). We determine TF (H)7

for for such groups H in Section 5.8

3. When G is simple, 3 ≤ ` 6= p: Generic case9

In this section G is a finite group of Lie type as in Definition 1.1, where we further-10

more assume that the ambient algebraic group G is simple (and hence determined by11

an irreducible root system and an isogeny type). The aim of Sections 3 and 4 is to12

prove the following.13

Theorem 3.1. Let G = GF be a finite group of Lie type where G is a simple algebraic14

group. Assume that 3 ≤ ` 6= p and that rk`(G) ≥ 2. Then TF (G) ∼= Z except in the15

following cases:16

(a) ` ≥ 3 and G is isomorphic to either PGL`(q) with ` dividing q − 1 or PGU`(q)17

with ` dividing q + 1. In these cases, TF (G) ∼= Z⊕ Z⊕ Z.18

(b) ` = 3 and G is isomorphic to 3D4(q). In this case, TF (G) ∼= Z⊕ Z.19

The proof of Theorem 3.1 entails a reduction, accomplished in this section, to some20

cases of small rank and specific types. The analysis of the small rank cases is done in21

Section 4.22

The following is taken from [27, Theorem 4.10.3].23

Theorem 3.2. Let G = GF be a finite group of Lie type arising from a simple algebraic24

group G with a Steinberg endomorphism F , and ` 6= p, and write G ∼= Gsc/Z for a25

finite central subgroup Z. Assume that26

(i) the prime ` does not divide the order of ZF . This is true if ` - |Z(Gsc)
F |.27

(ii) the prime ` is odd and good for G (meaning that ` > 3 if the type of G is E6,28

E7, F4 or G2, ` > 5 if the type of G is E8).29

Then any elementary abelian `-subgroup A of G is contained in an elementary abelian30

`-subgroup of maximal rank. Also, any two elementary abelian `-subgroups of maximal31

rank are conjugate except possibly if ` = 3 and G ∼= 3D4(q).32

Proof. Assume first that G is simply connected, i.e., Z is trivial. Under condition (ii),33

[27, Theorem 4.10.3(e)] says that every elementary abelian `-subgroup of G is contained34

in an elementary abelian `-subgroup of maximal rank. Finally [27, Theorem 4.10.3(f)]35

implies that all maximal elementary abelian `-subgroups of G are conjugate, unless36

G ∼= 3D4(q), again using (ii). This proves the theorem in the simply connected case.37
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Because |ZF | is assumed prime to `, the conclusion for G follows from that of Gsc1

by Proposition 2.4 applied the exact sequence2

(3.1) 1 // ZF // Gsc
// G // ZF // 1 ,

of [32, Lemma 24.20], where |ZF | = |ZF | and |Gsc| = |G| by [32, Corollary 24.6]. �3

The next proposition builds on Theorem 3.2 and handles many of the cases in The-4

orem 3.1, with the rest being postponed to the next section. In the proof we employ5

the non-standard notation, where e.g., B2(p) without subscript “sc” or “ad”, denotes6

any group arising from a simple algebraic group G over an algebraically closed field of7

characteristic p with root system B2, and F = Fp is the standard Frobenius given by8

raising to the pth power.9

Proposition 3.3. Let ` be an odd prime, ` 6= p. Suppose that G = GF is a finite group10

of Lie type where G is a simple algebraic group and F is a Steinberg endomorphism.11

Assume that the `-rank of G is at least 2, and G does not have one of the forms An−1(q)12

with ` dividing both q− 1 and n, 2An−1(q) with ` dividing both q+ 1 and n, or 3D4(q)13

with ` = 3. Then TF (G) ∼= Z.14

Proof. Let Z = Z(Gsc), whose order is given in [32, Table 9.2] (the order of “Λ(Φ)”).15

The order of ZF = Z(Gsc) is given in [32, Table 24.2]. It follows from Theorem 3.216

that TF (G) ∼= Z if ` is odd and good for G, ` - |ZF |, and G is not isomorphic to17
3D4(q). Consequently, it remains to discuss the cases that either (i) ` divides |ZF |, (ii)18

` = 3 and G has exceptional type or (iii) ` = 5 and G has type E8. We show, by19

explicit arguments, that in those cases there are also no maximal elementary abelian20

`-subgroups of rank 2, unless the `-rank of the group is 2, in which case there is a21

unique one. This shows that TF (G) ∼= Z by Theorem 1.2.22

First note that case (i) is basically ruled out by the hyphotheses. That is, if G has23

type Bn, Cn or Dn, then |Z| is a power of 2 and hence is not divisible by `. If G has24

type An−1 then the only cases where ` | |ZF | are exactly the ones we exclude in our25

formulation of the proposition. Finally if G is of exceptional type and ` | |Z|, then the26

only possibility is G having type E6 and ` = 3, which is covered under (ii) below.27

This leaves (ii) and (iii), i.e., the exceptional types with ` = 3 and E8 with ` = 5. In28

other words, by the classification of Steinberg endomorphisms [32, Theorem 22.5], the29

groups we need to consider are G2(q), F4(q),
2F4(q), E6(q),

2E6(q), E7(q) and E8(q)30

at ` = 3 and E8(q) at ` = 5. (Note that 2F4(q) only exists in characteristic 2 and31
2G2(q) does not appear on the list as we assume q 6= 3.) We handle these groups on a32

case-by-case basis:33

F4(q), E6(q), 2E6(q), E7(q), and E8(q) with ` = 3: We claim that in all these34

cases, there is an elementary abelian 3–subgroup of rank at least 4, in fact inside a35

maximal torus, which then shows TF (G) ∼= Z by Theorem 2.3(a). When ` - |ZF |36

it is enough to see that the multiplicity of the cyclotomic polynomials Φ1 and Φ2 in37

the order polynomial of the complete root datum dD is (at least) 4, by [27, Theorem38

4.10.3(b)]. (Recall that a complete root datum dD consists of a root datum D together39

with the twisting “d”, see [32, Definition 22.10] and [27, Definition 2.2.4].) This follows40

by inspecting [26, Part I, Table 10:2]. The only cases where we can have ` | |ZF |41

are (again by [32, Table 24.2]) when either E6(q) with q ≡ 1 (mod 3) or 2E6(q) with42
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q ≡ −1 (mod 3). But as the multiplicity of Φ1, respectively Φ2, in the order polynomial1

of the complete root datum E6, respectively 2E6, is 6, we have that the `-rank of Gsc is2

(at least) 6 for these groups (again by [27, Theorem 4.10.3(b)]), and hence the `-rank3

of G is at least 5.4

G2(q) with ` = 3: We give a direct argument that all elementary abelian 3-subgroups5

of rank 2 are conjugate. By [4, Lemma 4], the commutator subgroup of the centralizer6

of the center of a Sylow 3-subgroup of G is isomorphic to SL3(q) if q ≡ 1 (mod 3),7

respectively to SU3(q) if q ≡ −1 (mod 3). In either case, any two elementary abelian8

3-subgroups of rank 2 are conjugate by Theorem 3.2.9
2F4(2

2a+1) with ` = 3: It follows from [26, Proofs of (10-1) and (10-2), p. 118]10

that 2F4(2
2a+1) contains SU3(2

2a+1) of index prime to 3. All rank 2 elementary abelian11

3-subgroups are conjugate in SU3(2
2a+1) by Theorem 3.2, and hence this holds for12

2F4(2
2a+1) as well.13

E8(q) with ` = 5: From [26, Proofs of (10-1) and (10-2), p. 118] we see that E8(q)14

contains SU5(q
2) as a subgroup of index prime to 5 (the coefficients are in Fq4). Hence,15

every elementary abelian 5-subgroup of G is contained in one of rank 4 by Theorem 3.2.16

Consequently, there are no maximal elementary abelian 5-subgroups of rank 2. �17

Remark 3.4. For the interested reader, we briefly sketch how Proposition 3.3 (and18

Theorem 3.2) could alternatively be obtained via homotopy theory. If ` does not19

divide the order of the fundamental group of a connected `-compact group BG, then20

every elementary abelian `–subgroup of rank at most 2 is conjugate into a torus by [3,21

Theorem 1.8], generalizing Borel and Steinberg’s classical theorem [39, Theorem 2.27].22

The homotopical Lang square of Friedlander–Quillen [10, (1)] now relates elementary23

abelian `–subgroups in BG to those in the homotopical finite group of Lie type BGhF .24

When F is the standard Frobenius with q congruent to 1 modulo ` this shows that25

the centralizer of every element of order ` in BGhF has `-rank at least the Lie rank of26

the `-compact group BG. For general F one first uses untwisting [30, Theorem C.8] to27

reduce to the previous case, now inside another `-compact group. Note that untwisting28

assumes that the order of the twisting is prime to `, which explains why 3D4(q) when29

` = 3 needs to be treated separately. Indeed the conclusion that TF (G) has rank 2 in30

this case shows that this is not only a technical limitation.31

4. When G is simple, 3 ≤ ` 6= p: Specific cases32

In this section, we examine the cases not covered by Proposition 3.3, thereby com-33

pleting the proof of Theorem 3.1. The analysis is case by case, and we assume ` 6= p34

throughout.35

Proof of Theorem 3.1. First consider G = 3D4(q), with ` = 3 - q. By [26, Part I, 10-36

1(4)], a Sylow 3-subgroup S of G has the form (C3a+1×C3a)oC3, where 3a = |q2−1|3.37

From [21, Theorem 5.10], we also know that S ∼= B(3, 2(a + 1); 0, 0, 0) is a 3-group of38

maximal nilpotency class of 3-rank 2 and order 32a+2. Let A be the maximal subgroup39

of S of the form C3a+1×C3a , let B be the subgroup of A formed by the elements of order40

3, and let V1 be any non-normal maximal elementary abelian subgroup of S (necessarily41

of rank 2). The subgroups B and V1 are those denoted likewise in [21]. In [21, Theorem42

5.10], the authors prove that all the non-normal maximal elementary abelian subgroups43
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of S are G-conjugate. They also show that V1 is the Sylow 3-subgroup of CG(V1), and1

from the description of S, it is clear that B is not a Sylow 3-subgroup of CG(B).2

Therefore, B and V1 cannot be G-conjugate, and it follows that TF (G) ∼= Z⊕ Z.3

For the remainder of the proof assume that G has type either An−1(q) with ` ≥ 3 and4

` | q − 1 or 2An−1(q) with ` ≥ 3 and ` | q + 1. We assume also that ` divides the order5

of ZF and thus n is a multiple of `. If n > `, then TF (G) ∼= Z by Theorem 2.3(a).6

Thus, we are reduced to consider the cases G = A`−1(q) with q ≡ 1 (mod `), and7

G = 2A`−1(q) with q ≡ −1 (mod `). Because ` is prime there are exactly two distinct8

isogeny types. If G is simply connected, the asserted result follows by Theorem 3.2.9

We are left with the cases G = PGL`(q) and G = PGU`(q) with the appropriate10

congruences of q modulo `. Because the `-local structures of the two groups are almost11

identical, we consider only G = PGL`(q).12

Let Ĝ = GL`(q) with ` dividing q − 1. We choose a Sylow `-subgroup of Ĝ to be13

a subgroup of the normalizer of a maximal torus of diagonal matrices (see Theorem14

3.2). The normalizer of the torus is a wreath product, of the form N ∼= GL1(q)
×`oS`,15

where S` is the symmetric group on ` letters. That is, it is the subgroup of diagonal16

matrices with an action by the group of permutation matrices. Let ζ be a primitive `th17

root of unity in Fq. Let γ be a generator for the Sylow `-subgroup of GL1(q), so that18

ζ = γ`
s−1

for some s and γ`
s

= 1. Let x be the `× ` permutation matrix19

x =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0

 ,
let y be the diagonal matrix (of size `) with diagonal entries γ, 1, . . . , 1, and let z = γI20

be the scalar matrix. A Sylow `-subgroup Ŝ of Ĝ is generated by x and y. Then21

a Sylow `-subgroup of G is S ∼= Ŝ/〈z〉. The subgroup Ŝ has a maximal subgroup22

T = 〈y, xyx−1, . . . , x`−1yx1−`〉, which is abelian.23

Let φ : Ŝ → S be the quotient map. We note that two subgroups E and F in S are24

conjugate in G if and only if their inverse images φ−1(E) and φ−1(F ) are conjugate in25

Ĝ. Consequently, to find the maximal elementary abelian subgroups of rank 2 in S,26

it suffices to look for the subgroups E of order `s+2 in Ŝ that contain z and have the27

property that E/〈z〉 is elementary abelian. For the sake of this proof, call such a group28

Q2-elementary.29

For our analysis, we identify three subgroups. Let a = y`
s−1

and let b be the diagonal30

matrix with diagonal entries 1, ζ, ζ2, . . . , ζ`−1. Notice that xbx−1b−1 = ζ · I = z`
s−1

.31

Let32

E1 = 〈a, xax−1, . . . , x`−1ax1−`, z〉, E2 = 〈x, b, z〉, and E3 = 〈ax, b, z〉.

We claim that every Q2-elementary subgroup of Ŝ is either conjugate to one of E2 or33

E3 or is conjugate to a subgroup of E1. Note that E1 is abelian whereas the other two34

are not. Also, every element of order ` in E2 has determinant 1, but this is not true of35

E3. Hence, E2 and E3 are not conjugate, and neither is conjugate to a subgroup of E1.36
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Note first that any Q2-elementary subgroup of T must be contained in E1 as E1 is a1

direct product of ` cyclic subgroups of order ` and 〈z〉 is a direct factor. In particular,2

E1/〈z〉 contains all elements of order ` in T/〈z〉. Suppose that H is a Q2-elementary3

subgroup that is not in T . Then H contains an element of the form tx for some t ∈ T .4

By a direct calculation, we notice that the centralizer in T/〈z〉 of the class of x is a5

direct factor of T/〈z〉 that is cyclic of order `s. It is generated by the image in T/〈z〉6

of diagonal matrix u with entries 1, γ, . . . , γ`−1. The subgroup of elements of order `7

in this group is generated by b = u`
s−1

. So we can assume that H = 〈tx, b, z〉.8

It remains to find the conjugacy classes. Suppose that w ∈ T is diagonal with entries9

w1, . . . , w`. Then wxw−1 = vx where v has diagonal entries w1w
−1
2 , w2w

−1
3 , . . . , w`w

−1
1 .10

In other words, x is conjugate in Ŝ to vx for v any diagonal matrix with entries11

v1, . . . , v` satisfying the condition that the product v1 · · · v` = 1. It follows that any12

possible conjugacy class of Q2-elementary subgroups not in T has a representative of13

the form H = 〈aix, b, z〉 for i = 1, . . . , `s − 1. Now, (aix)` = zi. If i = m` for some14

m ≥ 1, then v = aixz−m has the property that v` = 1. In this case v = tx where t ∈ T15

has the property that the product of its (diagonal) entries is 1. Thus, v is conjugate16

to x by an element in T , and H is conjugate to 〈x, b, z〉.17

So we are down to the situation that H = 〈aix, b, z〉, for i = 0, 1, . . . , ` − 1. But18

now notice that x is conjugate to xj for j = 1, . . . , `− 1 by a permutation matrix, an19

`-cycle, that centralizes a and normalizes 〈b, z〉. It follows that if i 6= 0, then aix is20

conjugate to aix−i and H = 〈aix, b, z〉 is conjugate to E3. This proves the claim.21

Recall that E1/〈z〉 has `-rank ` ≥ 3. It follows that E1/〈z〉, E2/〈z〉 and E3/〈z〉22

are in three distinct connected components of the orbit poset A≥2` (G)/G of noncyclic23

elementary abelian `-subgroups and that there are no other components containing24

subgroups of rank 2. In other words, TF (G) has rank 3. �25

We now establish the rank of TF (G) in some specific cases that are useful in Sec-26

tion 5.27

Proposition 4.1. Suppose that ` ≥ 3, and either G ∼= PSL`(q) with q ≡ 1 (mod `),28

or G ∼= PSU`(q) with q ≡ −1 (mod `). Assume that if ` = 3, then q ≡ 1 (mod 9) in29

the first case and q ≡ −1 (mod 9) in the second. Then TF (G) has rank `+ 1.30

Proof. The `-local structures of PSL`(q) with ` dividing q − 1 and PSU`(q) with `31

dividing q + 1 are very similar. We give the proof only in the case that G = PSL`(q).32

The proof in the case of PSU`(q) follows by the same line of reasoning. We include a33

complete analysis, though much of the information in the proof is in the more general34

paper [20].35

We continue mostly with the notation introduced in the proof of Theorem 3.1 for36

G = A`−1(q), except that we let H = SL`(q) and G = PSL`(q) = H/〈z〉 where z = ζI37

generates the center of H (not the same z as in the previous proof). A Sylow `-subgroup38

of H has the form S = T o 〈x〉, where T is the collection of diagonal `-elements having39

determinant 1. Any element of S that is not in T is a power of an element of the40

form ax for some a ∈ T . We note that the diagonal element y as above, with entries41

γ, 1, . . . , 1, is not in H. The subgroup S is generated by x and w = x−1y−1xy which42

is diagonal with entries γ, γ−1, 1, . . . , 1, and T is generated by the conjugates of w by43

powers of x.44



12 JON F. CARLSON, JESPER GRODAL, NADIA MAZZA, AND DANIEL K. NAKANO

A Q2-elementary subgroup, if it is not contained in T , must have the form Ja =1

〈ax, b, z〉 for some a in T . That is, these are the nonabelian subgroups J such that J/〈z〉2

is elementary abelian of rank 2. Note that Ja = Ja′ if and only if a′a−1 ∈ 〈b, z〉. So there3

are |T |/`2 such subgroups. A direct calculation shows that NS(Ja) has order |S|/`4.4

Thus, there are exactly ` S-conjugacy classes of such subgroups. Let Ei = 〈wix, b, z〉,5

for i = 0, . . . , `−1. All of these subgroups are conjugate in Ĝ = GL`(q) by some power6

of the element y. Our purpose is to show, however, that no two of them are conjugate in7

H. The theorem then follows, because our observation implies that the classes Ei/〈z〉8

for 0 ≤ i < ` are distinct conjugacy classes of maximal elementary abelian `-subgroups9

of PSL`(q) of rank 2. The subgroup T/〈z〉 also has a maximal elementary abelian10

subgroup E/〈z〉, and none of the Ei’s is conjugate to a subgroup of E since the latter11

is abelian.12

Consider the subgroup N = NH(E0), the normalizer in SL`(q) of E0 = 〈x, b, z〉.13

The subgroup E0 is an extraspecial group of order `3 and exponent `. Its outer au-14

tomorphism group is isomorphic to GL2(`) (see the discussion in [41]). Because the15

centralizer of E0 in H is the center of H, N is an extension16

1 // E0
// N // U // 1

where U is isomorphic to a subgroup of SL2(`) since it must also centralize 〈z〉.17

Observe that E0 is a proper subgroup of NS(E0). In particular, there is an element18

u of T whose class generates the center of S/〈b, z〉 that is in NS(E0). Hence, U has19

an element of order `. Moreover, NH(T )/T is isomorphic to the symmetric group on20

` letters. This group has an ` − 1 cycle that normalizes the subgroup generated by21

the class of the element x. It must also normalize 〈b, z〉 and 〈u, b, z〉. Consequently,22

U contains the subgroup B of upper triangular matrices in SL2(`). Because B is a23

maximal subgroup of SL2(`), we need only show that U has at least one element that24

is not in B to conclude that U ∼= SL2(`).25

Let v be the Vandermonde matrix26

v =


1 1 1 . . . 1
1 ζ ζ2 . . . ζ`−1

1 ζ2 ζ4 . . . ζ2(`−1)

...
...

... . . .
...

1 ζ`−1 ζ2(`−1) . . . ζ(`−1)
2

 so that v2 =


` 0 . . . 0 0
0 0 . . . 0 `
0 0 . . . ` 0
...

... . . .
...

0 ` . . . 0 0

 .
Note that the columns (and also the rows) are eigenvectors for the matrix x with corre-27

sponding eigenvalues 1, ζ, ζ2, . . . , ζ`−1. Thus, we have that xv = vb. The computation28

of the matrix v2 is straightforward as each row is orthogonal (under the usual dot29

product) to all but one of the columns.30

Next we note that the determinant of v2 is ε`` = (ε`)` where ε = ±1, the sign31

depending on the parity of (` − 1)/2. Because the group F×q is cyclic and ` is prime32

to 2, the determinant of v is also an `th-power. That is, there is some µ in F×q such33

that Det(v) = µ` and µ2 = ε`. Let h be the product of v with the scalar matrix µ−1I.34

Then Det(h) = 1, h ∈ H and xh = hb. In addition, h2 has the same form as v2 except35

that the nonzero entries that are equal to ` in v2 are replaced by ε in h2. That is,36
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h2 = (1/ε`)v2. So we find that h2xh−2 = x−1 by direct calculation. Also, we have that1

h−1xh = b and h−1bh = x−1. So h is in N and its class in U , identified in a subgroup2

of SL2(`), is the matrix3 [
0 1
−1 0

]
.

This element is not in the subgroup B, and hence we have shown that U ∼= SL2(`).4

Because NH(E0)/E0 is the outer automorphism group of E0 we have that NĜ(E0) =5

NH(E0)Ẑ, where Ẑ denotes the center of Ĝ = GL`(q). The same holds if we replace6

E0 by Ei since they are conjugate in Ĝ. Thus, we have that if g ∈ NĜ(Ei), then the7

determinant of g is an `th power of some element in F×q .8

Finally, suppose that there is an element g in H such that gEig
−1 = Ej for i < j.9

We know also that yj−iEiy
i−j = Ej. Therefore, yi−jg ∈ NĜ(Ei). However, this is10

not possible. The reason is that γ is a generator of the Sylow `-subgroup of the11

multiplicative group F×q and 0 < i− j < `, the determinant of yi−jg, which is equal to12

γi−j, is not an `th power. Hence, if i 6= j, then Ei is not H-conjugate to Ej and then13

Ei/〈z〉 is not G-conjugate to Ej/〈z〉. This proves the proposition. �14

5. Groups associated to finite groups of Lie type for ` ≥ 315

In this section we are interested in some of the groups associated to finite groups of16

Lie type. Suppose that G0 = Gsc is a finite group of Lie type arising from a simply17

connected simple algebraic group G. If G0 = SLn(q) or SUn(q), let G1 = GLn(q), or18

GUn(q), respectively. If G is symplectic or orthogonal, take G1 to be the conformal19

group of that type (cf. [32, pp. 7-8] and [27, Section 2.7]). For example, ifG0 = Sp2n(q),20

then G1 = CSp2n(q), the group of all 2n × 2n-matrices X with the property that21

XfX tr = af for some a ∈ Fq, where f it the matrix of the symplectic form. If22

G0 = Spin+
2n(q), then G1 is the conformal group CSpin+

2n(q).23

We see below that if G0, the fixed points of a simply connected algebraic group under24

a Steinberg endomorphism, has trivial center, then we may assume that G0 = G1 and25

any associated group is a direct product of G0 with some abelian group. For that26

reason we concentrate on the classical groups. For the groups of type E6,
2E6 and E7,27

we have the following. This applies also in the case that ` = 2.28

Proposition 5.1. Suppose that G is the simple finite group of type E6, 2E6 or E7.29

Then for any prime ` we have that TF (G) ∼= Z provided G has `-rank at least 2.30

Proof. In the case that the group has type E6 or 2E6, the center of Gsc, coming from31

the simply connected algebraic group of the same type, has order 1 or 3. If ` 6= 3, then32

any inflation of an endotrivial kG-module to Gsc is also endotrivial, and the proposition33

follows from known results. If ` = 3, then the 3-rank of G is greater than 4 and we are34

done by Theorem 2.3. The center of the group Gsc of type E7 has order 1 or 2. The35

same argument as above works in this case. �36

For the remainder of the section, assume that G0 = Gsc is a classical group, thus37

having one of the types An,
2An, Bn, Cn, Dn or 2Dn. We see from Tits’ Theorem [32,38

Theorem 24.17]) that G0 is a perfect group, unless G0 is isomorphic to one of SL2(2),39
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SL2(3), SU3(2) or Sp4(2). Moreover, except in those cases, |G1/G0| = |Z(G1)|, and1

because G1/G0 is abelian, G0 = [G1, G1].2

By an associated group of G0, we mean a group G = H/J , where G0 ≤ H ≤ G13

and J ≤ Z(H) ≤ Z(G1) such that G contains the group G0/Z(G0) as a section. For4

example, in type An−1, an associated group is a quotient G = H/J where SLn(q) ≤5

H ≤ GLn(q) and J ≤ Z(H) ≤ Z(GLn(q)). The simple group PSLn(q) is an example.6

In any type, a diagram for such groups has the form7

G1

HZ(G1)

H G0Z(G1)

G0Z(H) Z(G1)

G0 Z(H)

Z(G0)

where the associated group is G = H/J for J some subgroup of Z(H). Note that J8

may or may not contain Z(G0).9

Our analysis will entail understanding the structure of G, and will benefit substan-10

tially from knowing when G is isomorphic to a product of groups.11

Lemma 5.2. In addition to the above notation, assume that G0 = [G1, G1] is a perfect12

group. Let π be the set of primes that divide the order of Z(G0). Let G = H/J be a13

section of G1 as above so that G0 ≤ H, J ≤ Z(G1) ∩ H. Then there exist subgroups14

H ′ ≤ H, J ′ ≤ Z(H) and V ≤ Z(H/J) such that15

G = H/J ∼= Ĝ× V

where Ĝ ∼= H ′/J ′, Z(Ĝ) and Ĝ/[Ĝ, Ĝ] are π-groups and V is a π′-group.16

Proof. Write G1/G0
∼= U1 × V1 and Z(G1) ∼= U0 × V0 where Ui is a π-group and Vi is17

a π′-group for i = 0, 1. Let φ : G1 → V1 be the quotient by G0 composed with the18

projection onto V1. LetX denote the kernel of φ. Note thatG0∩V0 = {1} since Z(G0) is19

a π-group. Moreover, since |G1/G0| = |Z(G1)|, we have that |V0| = |V1|. Consequently,20

the restriction of φ to V0 gives an isomorphism from V0 to V1, and G1
∼= X × V0.21

The subgroup H contains G0, and hence it is the inverse image under the quotient22

map G1 → G1/G0 of a subgroup U ′1 × V ′1 for U ′1 ≤ U1, V
′
1 ≤ V1. Thus, H ∼= H ′ × V ′023

where H ′ is the inverse image under φ of U ′1 and V ′0
∼= V ′1 is the inverse image of V ′1 under24

the restriction of φ to V0. It follows that Z(H) = Z(H ′) × V ′0 where Z(H ′) ≤ Z(X)25
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is a π-group. Thus, J = J ′ × V ′′0 for J ′ ≤ Z(H ′) and V ′′0 ≤ V ′0 . The lemma follows by1

letting V = V ′0/V
′′
0 . �2

The main aim of the section is to prove the following theorem.3

Theorem 5.3. Let G0 = GF be a finite group of Lie type, where G is a classical, simple4

and simply connected algebraic group. Let G be one of the associated finite groups of5

G0. Assume that ` ≥ 3 does not divide p and that the `-rank of G is at least 2. Then6

TF (G) ∼= Z except in the following cases.7

(a) If G ∼= PSL`(q) with q ≡ 1 (mod `) if ` > 3, and with q ≡ 1 (mod 9) if ` = 3,8

then TF (G) has rank `+ 1.9

(b) If G ∼= PSU`(q) with q ≡ −1 (mod `) if ` > 3, and with q ≡ −1 (mod 9) if10

` = 3, then TF (G) has rank `+ 1.11

(c) If ` = 3 and G ∼= 3D4(q), then TF (G) has rank 2.12

Proof. The last case (c) was treated in Section 4 (see also Theorem 3.1).13

Assume that the group has the form G = H/J as in the previous notation of the14

section. We prove the theorem for groups of Lie type Bn, Cn, Dn and 2Dn, by noticing15

that G0 = Gsc has center that has order either 2 or 4 (see [32, Table 24.2]). Conse-16

quently, if ` divides the order of Z(G) = Z(H)/J then G has a direct factor that is a17

cyclic `-group. In such a case the center of a Sylow `-subgroup of G has `-rank at least18

2 and we are done. On the other hand, if ` does not divide the order of Z(G), then19

by Lemma 5.2, a Sylow `-subgroup of G is isomorphic to that of G0. These cases have20

already been considered.21

A similar thing happens in types An and 2An. That is, if ` does not divide the22

order of Z(G0), then regardless of whether ` divides |Z(G)|, we are done by the same23

arguments as above. Consequently, we can assume that ` divides the order of Z(G0),24

requiring that ` divides both n+ 1 and q− 1 in type An, and that ` divides both n+ 125

and q + 1 in type 2An.26

For the untwisted type An, we need to consider the case when ` divides both n + 127

and q− 1. However, by Theorem 2.3, if n+ 1 > `, then the `-rank of G is greater than28

`, and therefore G cannot have any maximal elementary abelian `-subgroup of rank29

2. So it remains to consider the case ` = n + 1 with q ≡ 1 (mod `). Similarly, in the30

twisted case 2An, we may assume that ` = n + 1 with q ≡ −1 (mod `). In addition,31

by Lemma 5.2, we may assume that the orders of J and H/G0 are powers of `.32

If J = {1}, then G ≤ GL`(q) or G ≤ GU`(q). In either case, an eigenvalue argument33

tells us that any element of order ` is conjugate to an element of the diagonal torus.34

Hence, we are done in this case, and we may assume that J 6= {1}.35

If J 6= Z(H), then there exists an element x in Z(H) such that x /∈ J but x` ∈ J .36

Also, because J is not trivial, there exists an element of order ` in the diagonal torus37

in H whose class in H/J is central in a Sylow `-subgroup. Thus, in such a case, the38

center of a Sylow `-subgroup of H/J has `-rank 2 and we are done by Lemma 2.2. So39

assume that J = Z(H). Thus, G is a subgroup of PGL`(q) or PGU`(q).40

In the untwisted situation, we are down to two possibilities. First if H/G0 is a41

Sylow `-subgroup of G1/G0 then J is a Sylow `-subgroup of Z(G1). In such a case42

G = H/J ∼= PGL`(q). This case has been treated in Section 4. In the other case, that43
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J < Z(G1), we have that G ∼= PSL`(q) and ` divides q − 1. Similarly, in the twisted1

case we are down to the situation that G ∼= PSU`(q) and ` divides q + 1.2

Observe that if ` = 3, with 3 dividing q − 1 and 9 not dividing q − 1, then a Sylow3

3-subgroup of PSL3(q) is elementary abelian of order 9. The same holds for PSU3(q) if4

3 divides q+ 1 and 9 does not divide q+ 1. Hence, TF (G) has rank 1 in both of these5

cases. Thus, it remains to calculate the ranks of TF (G) in the cases (a) and (b) of the6

theorem. These cases are covered by Proposition 4.1. �7

6. When G is simple, 2 = ` 6= p8

The goal of this section is to establish Theorems 6.1 and 6.2. Some results of this9

section will also be used in Section 8.10

Theorem 6.1. Let G be a finite group of Lie type (see Definition 1.1) with the ambient11

group G a simple algebraic group. Suppose ` = 2 6= p and that TF (G) has rank greater12

than 1. Then G has nonabelian dihedral Sylow 2-subgroups, G ∼= PGL2(q) ∼= PGU2(q)13

for q odd, and TF (G) ∼= Z⊕ Z14

We also calculate the ranks of TF (G) when G is one of the associated groups in15

the case that ` = 2 is not the defining characteristic of the group. The notion of16

an associated group was introduced in Section 5. We adopt the notation used at the17

beginning of Section 5. In particular, G1 is one of the general linear or conformal group18

such as GLn(q), GUn(q) or CSpn(q) and G0 = Gsc. The group G = H/J is a section19

of G1 such that G0 ≤ H ≤ G1 and J ≤ Z(H).20

The groups of endotrivial modules for the associated groups of type An are deter-21

mined in the paper [15]. Our aim in this section is to take a more conceptual and less22

technical approach. For this reason some arguments from [15] are included here. In23

particular, exceptional cases occur when G0
∼= SL2(q), and some additional explanation24

is provided.25

Our main theorem to address the associated groups is the following.26

Theorem 6.2. Let G ∼= H/J be an associated group of a finite group of Lie type as27

defined above with q odd, and let ` = 2. Then TF (G) ∼= Z is cyclic except in the28

following cases.29

(a) G = SL2(q) ∼= SU2(q).30

(b) G = PSL2(q) × C ∼= PSU2(q) × C with q ≡ ±1 (mod 8) and C a cyclic group31

of odd order. (See Lemma 5.2.)32

(c) G = PGL2(q)× C ∼= PGU2(q)× C, where C is a cyclic group of odd order.33

In case (a), a Sylow 2-subgroup of G is quaternion and TF (G) = {0}. In cases (b)34

and (c), Z(H)/J has odd order, a Sylow 2-subgroup of G is (nonabelian) dihedral and35

TF (G) ∼= Z⊕ Z.36

In the proof, we first show that the theorem holds for groups of large Lie rank.37

The groups of small Lie rank are considered on a case by case inspection. The main38

reduction theorem is taken from [25].39
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Theorem 6.3. Let Ĝ = GF be a finite group of Lie type in odd characteristic, with G1

simple and simply connected, and set ` = 2. Then TF (G) ∼= Z, for G any associated2

group to Ĝ, as defined above, provided that Ĝ is not one of the following types.3

(a) A1(q), A2(q), 2A2(q),4

(b) A3(q) for q 6≡ 1 (mod 8),5

(c) A4(q) for q ≡ −1 (mod 4),6

(d) 2A3(q) for q 6≡ 7 (mod 8),7

(e) 2A4(q) for q ≡ 1 (mod 4),8

(f) B2(q),9

(g) 3D4(q),10

(h) G2(q), or 2G2(q).11

Proof. Recall that by Tits’ theorem [32, Theorem 24.17] Ĝ/Z(Ĝ) is simple, except in a12

few cases which are among the cases excluded above. In [25, Main Theorem], all finite13

simple groups having sectional 2-rank at most 4 are listed. If the finite simple group14

associated to Ĝ is not on the above list, then G has sectional 2-rank greater than 4.15

(See [19, Section 3.5] or [27, Theorem 2.2.10] for a list of isomorphisms between finite16

groups of Lie type.) So G has no maximal elementary abelian 2-subgroups of rank 2,17

by Theorem 2.3(b) as desired. �18

We may now complete the proofs of the main theorems of this section. For the19

proof, recall that if G ∼= A×B, with B of order prime to `, then TF (G) ∼= TF (A), by20

Proposition 2.4.21

Proof of Theorems 6.1 and 6.2. By Theorem 6.3, we need only deal with the groups22

listed. The Sylow 2-subgroups of finite groups of Lie type are known to be cyclic only23

when G is associated to a finite group of Lie type A1(2). The groups SL2(q) ∼= SU2(q)24

have quaternion Sylow 2-subgroups, and hence TF (G) ∼= {0} in those cases.25

Recall that for any finite group G with (nonabelian) dihedral Sylow 2-subgroup we26

have TF (G) ∼= Z⊕Z as it is not possible for the two S-conjugacy classes of elementary27

abelian subgroups of order 4 in S to fuse in G (cf. [33, Section 3.7]). The Sylow28

2-subgroups of the groups in Theorem 6.2(b) are nonabelian dihedral. Note that if29

q ≡ ±3 (mod 8) then the Sylow 2-subgroups of PSL2(q) are elementary abelian of30

order 4, and TF (PSL2(q)) ∼= Z. It is easily verified that the Sylow 2-subgroups of31

PGL2(q) ∼= PGU2(q) are dihedral and not abelian. So TF (G) ∼= Z⊕ Z in this case.32

An eigenvalue argument tells us that any involution in H for either SL2(q) ≤ H ≤33

GL2(q) or SU2(q) ≤ H ≤ GU2(q) is conjugate to a diagonal matrix. In the unitary34

case, note that the eigenspaces of an involution are orthogonal to each other, so that35

we can construct a change of basis matrix that is unitary. Hence, TF (G) ∼= Z if J36

has odd order. Therefore, for the proof for groups of type A1, we need only consider37

quotients G = H/J where J has even order.38

Note that GL2(q) is not isomorphic to GU2(q). However, arguments for these cases39

are almost identical. That is, we can find q′ with q′ ≡ −q (mod 4) such that SL2(q
′) or40

GL2(q
′) have isomorphic Sylow 2-subgroups to those of SU2(q) or GU2(q), respectively41

(cf. [18, Section 1]). So we prove only the linear case.42

If q ≡ 3 (mod 4), then 4 does not divide the order of Z(GL2(q)). By our assumptions,1

Z(H)/J has odd order, and hence, by Lemma 5.2, Z(H)/J is a direct factor of H/J2

and we are done. So we may assume that q ≡ 1 (mod 4) and that Z(H)/J has even3

order. Then there is an element z in Z(H) that represents a nontrivial involution in4
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H/J . In addition, the diagonal matrix with entries 1 and −1 is an involution whose5

image in H/J is central in a Sylow 2-subgroup and distinct from the image of z. Thus,6

the center of a Sylow 2-subgroup of H/J has 2-rank equal to 2 and TF (H/J) ∼= Z by7

Lemma 2.2.8

Types A2, A4,
2A2 and 2A4. The proofs that TF (G) ∼= Z for groups of type A29

and A4 are given in [15, Sections 6 and 9]. The structure of the Sylow 2-subgroups are10

very similar for the twisted and untwisted cases [18]. Hence, we leave the proofs of the11

twisted cases, 2A2 and 2A4, to the reader. We note that centers for all finite groups12

Gsc of these types have odd order. Consequently, by Lemma 5.2, the Sylow 2-subgroup13

of Z(H)/J of these types is a direct factor, which can be assumed to be trivial for the14

purposes of the proof.15

Types A3,
2A3 and B2. We prove the results only for groups of type A3 and B2,16

because the proofs for groups of type 2A3 are very similar to those of type A3 (in17

the 2A3 case, we take the matrix of the hermitian form to be the identity matrix).18

Following the notation introduced at the beginning of Section 6, let G0 be SL4(q) or19

Sp4(q)
∼= Spin5(q) in type A3 or B2, respectively. Let G1 = GL4(q) in the first case20

and G1 = CSp4(q) in the second. Here, CSp4(q) is the group of 4 × 4 matrices X21

with entries in Fq having the property that X trfX = af for some a ∈ F×q , f being22

the matrix of the symplectic form. For the purposes of this proof assume that the23

symplectic form is given as24

f =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 .
Let G = H/J be a group associated to G0. That is, G0 ≤ H ≤ G1 and J ≤ Z(H).25

Then a Sylow 2-subgroup S = SG of G is a section of a Sylow 2-subgroup SG1 of G1.26

Indeed, a Sylow 2-subgroup SH of H is subgroup of a Sylow 2-subgroup R of GL4(q).27

The group R is isomorphic to a wreath product R = (U1 × U2) o C2 where U1, U2 are28

Sylow 2-subgroups of GL2(q) [18]. In particular, we use the following notation:29

s(A,B) =

[
A 0
0 B

]
, t(A,B) =

[
0 B
A 0

]
= ws(A,B),

where these are matrices of 2×2 blocks, A andB are elements of GL2(q) and w = t(I, I).30

Then R is generated by all s(A,B) for A and B in SGL2(q) and the element t(I, I) where31

I is the 2 × 2 identity matrix. Note that an element of J must be a scalar matrix32

s(ζI, ζI) for some J . Because of the choices of the form, there are Sylow 2-subgroups33

of CSp4(q) that respect this structure34

Note that there exist subgroups DJ and MH of F×q that determine J and H. That35

is, J is the set of all scalar matrices with diagonal entry in DJ . In type A3, H is the36

subgroup of all elements in GL4(q) with determinant in MH . In type B2, H is the1

subgroup of all X with X trfX = af for some a ∈MH .2

Suppose that J has odd order. Then, by an eigenvalue argument (cf. [14, Lemma3

3.3]), any involution in H is conjugate to a diagonal matrix. Note that in type B24

(and 2A3), the eigenspaces V1 and V−1 corresponding to the eigenvalues 1 and −1 of an5
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involution u are orthogonal to each other. Consequently, there exists a change of basis6

matrix that conjugates u into a diagonal matrix and also preserves the form, and it is7

an element of H. It follows that every elementary abelian 2-subgroup in G is conjugate8

to a subgroup of the image modulo J of the group of diagonal elements of order 2 in9

H. Hence, in this case we are finished. For the rest of the proof assume that J has10

even order.11

Next suppose that SJ 6= SZ(H). That is, suppose that there is an element of the12

center of H whose order is a power of 2, and that is not in J . In particular there exists13

a scalar element of H whose square is in J . In addition, because the order of J is even,14

the element s(I,−I) is central in S = SG. Thus, Z(S) has 2-rank 2 and we are done15

by Lemma 2.2.16

We have reduced the proof to the situation in which SJ = SZ(H). Our aim is to show17

that the centralizer of every involution in S has 2-rank at least 3. This will complete18

the proof in the cases of types A3 and B2 (and 2A3).19

First consider involutions represented modulo J by a matrix of the form s(A,B) in20

the case that q ≡ 1 (mod 4) and the type is A3 or B2. (The argument in the case21

or type 2A3 with q ≡ 3 (mod 4) is very similar.) In this case, a Sylow 2-subgroup of22

GL2(q) is generated by the elements23

W =

[
0 1
1 0

]
, Y =

[
0 −1
1 0

]
and Xζ =

[
ζ 0
0 1

]
for ζ a generator of the Sylow 2-subgroup of F×q . Let T be the subgroup of SGL2(G)24

generated by the scalar matrices of the form WXζmWXζm for any m. If the class of25

u = s(A,B) ∈ H is an involution in H/J , then A2 = B2 = µI for some µ ∈ F×q .26

The quotient SGL2(q)/T is a dihedral group generated by the classes of W and Xζ . An27

involution in this group must be represented by either W or Xζm for some m. Then if28

the class of u = s(A,B) is an involution in H/J , it has either the form s(Xζm , Xζm) or29

s(A,B) with A and B in the subgroup V = 〈X−1,W 〉. Now notice that the subgroup30

generated by w and all s(A,B) with A,B ∈ V is elementary abelian of 2-rank at least31

3. If u = s(Xζm , Xζm) is in H, then so also is w and s(I,−I), and the classes of these32

elements generate a subgroup of H/J having 2-rank 3. So we are done in this case.33

Next suppose that the class of s(A,B) is an involution in H/J , in the case that q ≡ 334

(mod 4) and the type is A3 or B2. (The same argument works when the type is 2A335

with q ≡ 1 (mod 4).) In this case J = Z(GL4(q)) has order 2 and is generated by36

−I4, where I4 is the 4×4 identity matrix. A Sylow 2-subgroup SGL2(q) is semidihedral.37

In this case one of two things can happen. The first is that A and B are actual38

involutions. If A is a noncentral involution, the subgroup generated by the classes of39

w, s(A,A) and s(I,−I) has 2-rank 3 in H/J . The other possibility is that A and B40

have order 4 and commute modulo J . The only possibility here is that A and B are41

contained in a quarternionic subgroup of order 8 in SGL2(q). If A is not contained in42

the subgroup generated by B then the classes of w, s(A,B), and s(B,A) generate an1

elementary abelian subgroup in H/J of order 8. Otherwise, let X be another generator2

of the quaternionic subgroup. Then the classes of w, s(A,B) and s(X,X) generate an3

elementary abelian subgroup of order 8. So we are done in this case.4
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Finally, suppose that the class of u = t(A,B) = ws(A,B) is an involution in H/J .5

It must be that AB = BA = µI for some µ ∈ F×q . That is, B = µA−1. In the case6

that the type is A3, then s(A, I)−1t(I, µI)s(A, I) = t(A,B). So every such involution7

is conjugate to one of the form yµ = t(I, µI). In turn, any yµ commutes with any8

involution s(A,A) for A not central in SGL2(q). Thus, in type A3, the centralizer of u9

has 2-rank at least 3, and we are done.10

So suppose the type is B2. We have that ufutr = µf implying that AY Atr = Y ,11

as expected. A set of representatives of the generators of SGL2(q) can be chosen so12

that their product with their transpose is a scalar matrix (see the above descriptions13

in addition to [18]). The implication is that v = t(y, y) commutes with u. Thus, the14

centralizer of u has 2-rank at least 3, as it contains the image in H/J of 〈u, j, t(−I, I)〉.15

To summarize, we have proved that the centralizers of the involutions in a group16

associated to a finite group of Lie type A3,
2A3 and B2 have 2-rank at least 3, and so17

there are no maximal elementary abelian 2-subgroups of rank 2.18

Types 3D4, G2 and 2G2. Fong and Milgram [22] studied in great detail the 2-local19

structure of G in the case that G has type 3D4 or G2, and described the structure of20

the centralizers of the Klein four groups in a fixed Sylow 2-subgroup of G. They proved21

that these split into two conjugacy classes and that their centralizers both have 2-rank22

3. While they assumed that q ≡ 1 (mod 4), the Sylow 2-subgroups are isomorphic23

to those in the case where q ≡ 3 (mod 4). So the same conclusion is reached. A24

detailed description in the general case is in the paper by Fong and Wong [23]. Note25

that G2(q) embeds in 3D4(q) as a subgroup of odd index, and hence their Sylow 2-26

subgroups are isomorphic (see also [23, Theorem]). We are left with the case of the27

groups 2G2(3
2n+1). By [27, Theorem 4.10.2(e)] (see also [36, Theorem 8.5]), a Sylow28

2-subgroup of 2G2(3
2n+1) is elementary abelian of order 8, and so there are no maximal29

elementary abelian 2-subgroups of rank 2.30

This completes the proof of Theorems 6.1 and 6.2. �31

7. When G is simple, ` = p32

When ` = p, the structure of a Sylow `–subgroup of G does not depend on the33

isogeny type. However, TF (G) can and does depend on the isogeny type because of34

the fusion of `-subgroups. The following theorem summarizes the calculation of TF (G)35

in the defining characteristic.36

Theorem 7.1. Let G be a finite group of Lie type, as in Definition 1.1. Assume that37

the ambient algebraic group G is simple, and ` = p. Then TF (G) ∼= Z, provided G is38

not one of the following types.39

(a) A1(p),40

(b) 2A2(p),41

(c) 2B2(2
2a+1) (for a ≥ 1),42

(d) 2G2(3
2a+1) (for a ≥ 0),43

(e) A2(p),1

(f) B2(p) and2

(g) G2(p).3

In these exceptions, TF (G) is given in Tables 7.1 and 7.2.4
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We proceed to justify this result. For the simple algebraic group G fix an F -stable5

maximal split torus T. Let Φ be the root system associated to (G,T). The positive6

(resp. negative) roots are Φ+ (resp. Φ−), and ∆ is a base consisting of simple roots.7

Let B be an F -stable Borel subgroup containing T corresponding to the positive8

roots, and U be the unipotent radical of B. Then B = U o T with B and U being9

F -stable. Set B = BF and U = UF .10

There are three kinds of finite groups of Lie type G according to the type of F :11

(i) the untwisted groups, (ii) the twisted (Steinberg) groups and (iii) the very twisted12

groups (cf. [13, Section 4], [27, Section 2.3]). In case (ii), F involves a nontrivial13

graph automorphism τ of order d of the underlying Dynkin diagram, as well as the14

Frobenius map. The automorphism τ induces a map from Φ to the twisted root system15

Φ̃ of G. Furthermore, we can define an equivalence relation on Φ̃ by identifying positive16

colinear roots, and let Φ̂ be the set of equivalence classes. Therefore, we have mappings17

Φ → Φ̃ → Φ̂. Let ∆̂ be the image of ∆ under this composition of maps and ∆̃ be18

the image of ∆ under Φ → Φ̃. There are root subgroups of G and these are indexed19

by the elements of Φ̂. In the case that G is untwisted then Φ = Φ̃ = Φ̂. In case G20

is a Steinberg group but not 2A2m(q) we have Φ̃ = Φ̂ (cf. [27, Section 2.3] for more21

details).22

As stated in the proof of [32, Proposition 24.21], there is a short exact sequence of23

groups24

1 // ZF // Gsc
// G // ZF // 1 .

In the case that ` = p, U is a Sylow p-subgroup of G. From [32, Table 24.2], p does25

not divide |ZF |. Therefore, the Sylow p-subgroups of Gsc and of G are isomorphic for26

any isogeny type, and so TF (Usc) ∼= TF (U).27

Given a finite group of Lie type G where the underlying algebraic group is simple28

when ` = p, one can make reductions to analyzing TF (G) in specific cases as follows.29

First, TF (G) ∼= Z when |∆̂| ≥ 3 by [13, Theorems 7.3 and 7.5]. Note that the proofs of30

these results depend only on the structure of the Sylow `-subgroups. In the case when31

|∆̂| = 2, by [13, Theorems 7.3 and 7.5], TF (G) ∼= Z unless G is A2(p), B2(p) or G2(p).32

(Recall that we use the non-standard notation that e.g., B2(p) without any subscript33

denotes any group in this isogeny class.) The computation for TF (G) for these groups34

is given in Table 7.1.1

Table 7.1: |∆̂| = 2

G rank TF (G)

A2(p)sc p = 2 2
A2(p)sc p ≥ 3, p 6≡ 1 (mod 3) 3
A2(p)sc p ≥ 3, p ≡ 1 (mod 3) 5
A2(p)ad p = 2 2
A2(p)ad p ≥ 3 3
B2(p) p = 2, 3 1
B2(p) p ≥ 5 2
G2(p) p = 2, 3, 5 1
G2(p) p ≥ 7 2

2
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Finally, in the case that |∆̂| = 1, the Sylow `-subgroups are trivial intersection3

subgroups. The groups G with |∆̂| = 1 are A1(q),
2A2(q),

2B2(2
2a+1), and 2G2(3

2a+1).4

If G = A1(q) or 2A2(q) with q > p, the Sylow p-subgroups of G have a noncyclic center,5

and therefore TF (G) ∼= Z by Theorem 1.2. For the rest of the cases when |∆̂| = 1,6

TF (G) is given in Table 7.2 (cf. [13, Section 5]).7

Table 7.2: |∆̂| = 1

G rank TF (G)

A1(p) p ≥ 2 0
2A2(p)sc p = 2 0
2A2(p)sc p ≥ 3, p 6≡ −1 (mod 3) 1
2A2(p)sc p ≥ 3, p ≡ −1 (mod 3) 3
2A2(p)ad p = 2 0
2A2(p)ad p ≥ 3 1
2B2(2) 0
2B2(2

2a+1) a > 0 1
2G2(3

2a+1) a ≥ 0 1

8

There is still some explanation needed to justify the data in the tables. We rely on9

some of the computations in [13] in cases where there is one isogeny type. The results10

in [13] were only stated for the finite groups of Lie type arising from groups of adjoint11

isogeny type. Our new result, Theorem 7.1, extends to all finite groups of Lie type.12

We now proceed to dissect the cases when there is more than one isogeny type.13

For A1(p) a Sylow p-subgroup is cyclic of order p, and so TF (G) does not depend14

on the isogeny type. For B2(p) = C2(p), we can use the calculations in [13, Section 8]15

which handle B2(p)sc and B2(p)ad.16

Next we consider the case of A2(p) where there are two isogeny types. Let U ∼=17

Usc ∼= Uad denote a Sylow p-subgroup in either type. The Sylow p-subgroup U of G18

is an extraspecial p-group of order p3 and exponent p, if p > 2. Moreover, if p = 219

then SL3(2) ∼= PSL2(7) so U is a dihedral group of order 8, and has two maximal20

elementary abelian 2-subgroups which are not conjugate in U or in G. Consequently,21

TF (G) ∼= Z⊕ Z.1

If p > 2 when G is of type A2(p), then all the elements of U have order p, and the
maximal elementary abelian p-subgroups have rank 2. Set

xα+β =

1 0 0
0 1 0
1 0 1

 , xiαxjβ =

1 0 0
i 1 0
0 j 1


The maximal elementary abelian p-subgroups of B all contain the central subgroup2

generated by xα+β, and one can choose as the other generator an element of the form3

xiαx
j
β (i.e., elements in the Frattini quotient of U , U/Φ(U)).4

Since B ∼= UoT stabilizes the central subgroup of U , it follows that the B-conjugacy5

classes of maximal elementary abelian p-subgroups are in one to one correspondence6

with the T -conjugacy classes on X = U/Φ(U).7
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Consider the action by conjugation of the group T = {ta,b,c | a, b, c ∈ F×p } where
ta,b,c is the 3 × 3 diagonal matrix with entries a, b, c. Let |X/T | be the number of
T -conjugacy classes on X. Then by a well-known lemma stated by Burnside (due to
Frobenius):

|X/T | = 1

|T |
∑
t∈T

|X t|.

where X t = {x ∈ X | t.x = x}. In this case, a direct computation shows that8

(7.1) |X ta,b,c | =


0 a 6= b and b 6= c,

p2 − 1 a = b = c,

p− 1 [a = b and b 6= c] or [a 6= b and b = c].

By keeping track of the number of elements that occurs in each case of (7.1), it follows
that

|X/T | = 1

(p− 1)3
[(p− 1)(p2 − 1) + 2(p− 1)(p− 2)(p− 1)] = 3.

Consequently, for G = GL3(p), TF (B) = Z⊕3. The argument can be easily adapted9

to also show that for G = PGL3(p), and for SL3(p) when p 6≡ 1 (mod 3), one has10

|X/T | = 3, and TF (B) = Z⊕3.11

Now, set T = {ta,b,c | abc = 1} and consider SL3(p) for p ≡ 1 (mod 3). Then (7.1)
yields

|X/T | = 1

(p− 1)2
[3(p2 − 1) + 2(p− 4)(p− 1)] = 5.

Consequently, TF (B) = Z⊕5. Finally, for all the cases when G = A2(p) one has12

TF (G) ∼= TF (B) by using the Bruhat decomposition.13

Next we consider the case of 2A2(p). When p = 2, U is a quaternion group and the14

2-rank of U is 1. Therefore, in this case TF (G) = {0}.15

Now assume that p ≥ 3. The case where G = SU3(p) was done in [13, Section 5].16

This corresponds to 2A2(p)sc (not 2A2(p)ad which is incorrectly stated in [13, Section17

5]).18

Now consider G = PGU3(p) for p ≥ 3. We will use explicit matrices in GU3(p) and19

the conventions in [13, Section 5]. As in the untwisted case we consider D = {ta,b,c |20

a, b, c ∈ F×p2}, and D ∩ GU3(p). The relations we obtain by intersecting are acp = 1,1

bp+1 = 1, and cap = 1. In U there are p + 1 elementary abelian p-subgroups of p-rank2

2 given by Ei = 〈xi, z〉, 1 ≤ i ≤ p + 1. Let t be a generator for F×p2 . The elements xi3

and z are defined by4

(7.2) xi =

1 0 0
ti 1 0
bi tip 1

 with bi + bpi = ti(p+1) ,

z =

1 0 0
0 1 0
u 0 1

 where u ∈ Fp2 satisfies u+ up = 0.
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For any j, we can find a ∈ F×p2 and b, c such that a−1b = tj satisfying the aforemen-5

tioned relations as follows. Set a = t(p−1)−j, b = tp−1 and c = t−((p−1)−j)p. Then6

(7.3) ta,b,cxit
−1
a,b,c =

 1 0 0
a−1bti 1 0
a−1cbi b−1ctip 1

 =

 1 0 0
ti+j 1 0
a−1cbi t(i+j)p 1

 .
One can verify that a−1cbi satisfies the equation in (7.2) with i replaced with i+j. This7

shows that under conjugation by elements in D ∩ GU3(p), there is a single conjugacy8

class among {Ei | 1 ≤ i ≤ p+ 1}. Hence, for G = PGU3(p) with p ≥ 3, TF (G) ∼= Z.9

8. Extending the results from simple to reductive groups10

Let G = GF be a finite group of Lie type arising from a connected reductive algebraic11

group G and a Steinberg endomorphism F of G. In this section, we show that the12

torsion free rank of the group of endotrivial modules ofG can be obtained by considering13

the components of the decomposition of G as a product of simple algebraic groups. Our14

detailed analysis completes the proofs of Theorems A and B.15

From [17, 1.8], we have that G = [G,G] · S where the derived subgroup [G,G] is16

semisimple and S = Z(G)0 is the connected center of G. The intersection of these17

groups Z = [G,G] ∩ S is a finite group. Therefore, we have an exact sequence18

(8.1) 1 // Z // [G,G]× S // G // 1.

Set G = GF and Gss = [G,G]F . Upon taking fixed points, one obtains an exact19

sequence (cf. [32, Lemma 24.20])20

(8.2) 1 // ZF // Gss × SF
ψ // G // ZF // 1

with ZF denoting co-invariants. Here, ψ is injective on restriction to both Gss and SF .21

Since [G,G] is semisimple one can express [G,G] = H1 · · ·Hs where each Hi is a22

central product of ni isomorphic simple algebraic groups Ki where F preserves Hi and23

HF
i
∼= KFni

i [27, Proposition 2.2.11], the fixed points of Ki under F ni . So there is an24

exact sequence1

(8.3) 1 // A // H1 × · · · ×Hs
// [G,G] // 1

for a finite abelian group A of order prime to p. Once again, we apply [32, Lemma2

24.20] to get the exact sequence3

(8.4) 1 // AF // HF
1 × · · · ×HF

s
// Gss

// AF // 1.

For each i, set Hi = HF
i ≤ Gss. In addition, we have the following statements.4

(i) |ZF | = |ZF | and |AF | = |AF |.5

(ii) Suppose that x is an element in G that is not in Gss. For any i, conjugation6

by x preserves Hi. Moreover, if Hi is isomorphic to SLn(q), SUn(q) or Spn(q),7

then x induces on Hi an automorphism that coincides with conjugation by an8

element in (respectively) GLn(q), GUn(q) or CSpn(q).9
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The equalities in (i) follow from the fact that the order of a finite group of Lie10

type is independent of the isogeny type, which is a consequence of the order formula11

[32, Corollary 24.6]. For (ii), let x ∈ G with x /∈ Gss. From (8.1), x = gz where12

g ∈ [G,G] and z ∈ S with z 6= 1. Here F (x) = x, so that g−1F (g) = zF (z−1).13

Moreover, from (8.3), g = h1h2 . . . hs with hj ∈ Hj for j = 1, 2, . . . , s. Because z is14

central and H1 · · ·Hs is a central product, action of conjugation by x on Hi is the same15

as conjugation by hi. Thus, hi is an element of Hi that normalizes Hi. As explained16

in [27, Proposition 2.5.9(b)], this means that hi lies in the preimage of (Hi/Z)F in17

Hi, with Z a central subgroup of Hi. Now, if Hi is SLn(q), SUn(q) or Spn(q), then18

we can without restriction assume that Ki is either SLn or Spn. Let K̃i be GLn and19

CSpn respectively, and let H̃i be the corresponding central product, constructed as for20

Hi. Note that Hi ≤ H̃i, that the central subgroup Z̃ of H̃i is connected, and that21

(Hi/Z)F ∼= (H̃i/Z̃)F . The preimage of (H̃i/Z̃)F in H̃i equals H̃F
i Z̃, as Z̃ is connected,22

so hi ∈ H̃F
i Z̃. Hence, hi, and therefore x, induce the same conjugation on Hi as an23

element in H̃F
i , which is what we claimed in (ii). The main theorem of this section is24

the following.25

Theorem 8.1. Suppose that G is a finite group of Lie type with G = GF for G a26

connected reductive algebraic group over an algebraically closed field of characteristic27

p, and F a Steinberg endomorphism. Assume that TF (G) has rank greater than 1.28

If ` 6= p then G ∼= U × V where V has order prime to ` and TF (G) ∼= TF (U).29

Moreover,30

(a) if 2 < ` 6= p then U is one of the groups listed in Theorem 3.1, and31

(b) if ` = 2 6= p then U is one of the groups listed in Theorem 6.1 and V is abelian.32

In the event that ` = p, then G/Z(G) ∼= H/Z(H), where H is one of the groups in33

Tables 7.1 and 7.2.34

The proof is divided into three cases. First we deal with ` = p, and then with35

` 6= p, which is again divided into two steps depending on whether ` is odd or even.36

Throughout the proof we employ the conventions introduced prior to the theorem.37

Observe first that if G = U × V , and ` does not divide |V |, then the restriction map38

provides an isomorphism TF (G)
∼=−→ TF (U). This is because, in this case, any en-39

dotrivial kU -module becomes an endotrivial kG-module on inflation, so the restriction40

map T (G)→ T (U) is surjective; and it has finite kernel, again because the index of U41

in G is prime to `.1

Proof of Theorem 8.1 when ` = p. In this case the groups ZF and ZF have order rela-
tively prime to `. Hence, ψ induces an isomorphism on Sylow `-subgroups. Note that,
as we are in the defining characteristic, ` divides the order of each Hi. However, then
s = 1 in (8.4), as otherwise a Sylow `-subgroup S of G would split as a non-trivial
direct product implying TF (G) ∼= Z by Lemma 2.2. This also means that A = 1,
and Gss = H1. We have a central extension 1 → S → G → G/S → 1 producing on
fixed-points another central extension

1→ SF → GF → (G/S)F → 1
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where (G/S)F ∼= KFn1 for some simple algebraic group K by [27, Proposition 2.2.11].2

Now set H = KFn1 so that G/Z(G) ∼= H/Z(H). Observe that TF (G)
∼=−→ TF (H) by3

Proposition 2.4. Hence, Theorem 7.1 says that H is one of the groups listed in Tables4

7.1 and 7.2. �5

Proof of Theorem 8.1 when 3 ≤ ` 6= p. Assume that TF (G) is not cyclic.6

Step 1: We prove first that the prime ` does not divide |Hi| for more than one i.7

Assume that TF (G) is not cyclic and that there is more than one Hi whose order8

is divisible by `. Note that ` has to divide |Z(Hi)| every time it divides |Hi|, since9

otherwise a Sylow `-subgroup S of G splits as a non-trivial direct factor implying10

that Z(S) has `-rank at least 2. This means that we are done by Lemma 2.2. The11

tables of centers of the finite groups of Lie type (cf. [32, Table 24.2]) show that if `12

divides |Z(Hi)|, then Hi has one of the types: An−1(q) for ` | (n, q − 1), 2An−1(q) for13

` | (n, q + 1), E6(q) with ` = 3, or 2E6(q) with ` = 3. Hence, we can assume that Hi14

is one of these types when ` divides |Z(Hi)|. The two last cases, involving the groups15

of type E, can furthermore be eliminated, using Theorem 2.3, as the 3-ranks of E6(q)16

and 2E6(q) are 6.17

We now deal with the groups of type A. Because ` divides n, the `-ranks of these18

groups are at least ` − 1. Therefore, if we have more than one Hi of order divisible19

by `, and none of the groups splits off as a direct factor, the `-rank of the resulting20

group will be at least (` − 1) + (` − 1) − 1 = 2` − 3. This number has to be at most21

` by Theorem 2.3. So we conclude that the only possibility is that ` = 3 and n = 2,22

assuming that ` divides the order of the center of Hi.23

Note that if there is an Hi whose order is not divisible by 3, then Hi is a Suzuki24

group (Lie type 2B2), and these groups have trivial centers. So for the purposes of25

our argument, we may assume that there are exactly two components H1 and H2 both26

having order divisible by 3. Moreover, because Z(H1) and Z(H2) are not trivial we27

have that these groups must be the finite groups arising from the simply connected28

algebraic groups: Hi = SL3(qi) where 3 divides qi− 1, or Hi = SU3(qi) with 3 dividing29

qi + 1. Let 3ti be the highest power of 3 dividing qi − 1 in the first case and dividing30

qi + 1 in the second.31

In the exact sequence (8.4), the image of the group AF is central in H1 × H2 and32

hence it must have order either 1 or 3. Similarly in sequence (8.2), the image of ZF in33

H1H2 = Gss is central and its order is either 1 or 3. We claim first that if AF = {1},34

then we are done. The reason is that then Gss
∼= H1 × H2 which has 3-rank 4. The35

map ψ is injective on Gss, so that G also has 3-rank 4, and we are finished by Theorem1

2.3(a). Hence, Gss = H1H2 is the central product of H1 and H2 over a central subgroup2

of order 3.3

Let Si be a Sylow 3-subgroup of Hi and S a Sylow 3-subgroup of G. Each Si can be4

chosen to have a maximal toral subgroup Ti = C3ti ×C3ti of diagonal matrices with an5

element of order 3 in the form of a permutation matrix acting on it. Thus, its center6

has order 3ti .7

Suppose that |ZF | = 1. In the event that both t1 and t2 are greater than 1, there are8

elements y1 ∈ Z(S1) and y2 ∈ Z(S2) having order 9 such that y31 = z1 and y32 = z2 are9

the central elements in H1 and H2 that are identified when AF is factored out. Thus,10
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the classes of y1y
−1
2 and z2 modulo AF are in the center of S and the center of S has11

3-rank equal to 2. Consequently, we are done in this case and we may assume that12

t1 = 1.13

Still assuming that |ZF | = 1, we are down to the situation that S1 is an extraspecial14

group of order 27 and exponent 3. If the class of (x, y) ∈ S1×S2 modulo AF has order15

3, then (x, y)3 = (1, y3) ∈ AF and y has order 3. Thus, the class of (x, y) modulo AF16

commutes with those of (x, 1) and (1, y). In this way we see that the centralizer of17

every element of order 3 in S has 3-rank at least 3, and we are done with this case.18

We conclude that |ZF | = 3 and we can assume that S is an extension:19

1 // S1S2
// S // ZF // 1

where ZF is cyclic of order 3. From the above arguments, we know that the centralizers20

of elements of order 3 in S1S2 have 3-rank 3. For the purposes of this proof, assume21

that Hi
∼= SL3(qi). Let x ∈ S be an element of order 3 that is not in S1S2. Then x22

must act on S1 as conjugation by an element x̂ of GL3(q1). So x̂ is conjugate (by an23

element SL3(q1)) to an element of the diagonal torus. Therefore, its centralizer K1 in24

H1
∼= SL3(q1) has 3-rank 2. The same happens for the centralizer K2 of its action on25

H2. By a similar argument, the same condition holds when H1 or H2 is isomorphic26

to SU3(q). It follows that the subgroup of G generated by x, K1 and K2 has 3-rank27

at least 4. Hence, G has 3-rank at least 4 and we are done by Theorem 2.3(a). This28

completes the first step.29

Step 2: In this step we complete the proof assuming that ` divides |H1| and does not30

divide |Hi| for i > 1. Assume that TF (G) has rank greater than 1. We wish to show31

that G has the form U × V , where V has order prime to ` and U is one of the groups32

listed in Theorem 3.1.33

If ` - |Z(H1)|, then a Sylow `-subgroup of H1 is a direct factor in some Sylow `-34

subgroup of G. As the `-part of the center of a Sylow `-subgroup of G is cyclic if the35

rank of TF (G) is greater than one, we conclude that |SF | is prime to `. Hence, G has36

the same `-local structure as H1. Theorem 3.1 now shows that H1 is isomorphic to one37

of the groups listed in that theorem. In particular Z(H1) = 1, so G ∼= H1×V for some38

`′-group V , as asserted.39

Next suppose that ` | |Z(H1)|. Our aim is to prove that there are no groups with40

TF (G) having rank greater than 1 that can occur, thus finishing the proof in the case41

that ` ≥ 3. First note that, with our assumptions, G has the same `-local structure42

as (G/(H2 · · ·Hs))
F , and that the `-part of SF is cyclic as the `-part of Z(G) is. The43

rank argument from Step 1 shows that H1 must have Lie type A. More precisely, we1

must have H1
∼= SL`(q) with ` | (q− 1) or H1

∼= SU`(q), with ` | (q+ 1). The sequence2

(8.2) shows that the `-local structure of G must agree with that of a central product3

〈H1, ζ〉∆ where ζ is an element with determinant of order ` inside GL`(q) or GU`(q),4

∆ is cyclic of order `t, for some t, and 〈H1, ζ〉 ∩∆ has order `. However, such a group5

has the same poset of conjugacy classes of elementary abelian `-subgroup as 〈H1, ζ〉,6

which is an associated group as defined in Section 5. Hence, the torsion free rank of7

the group of endotrivial modules cannot be larger than 1, as the group does not appear8

in Theorem 5.3. �9
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Proof of Theorem 8.1 when 2 = ` 6= p. Assume first that s > 1 and that TF (G) has10

rank greater than 1. We want to show that this case cannot occur. Observe first that11

every factor Hi, being a nonabelian finite group of Lie type, has even order, as does12

Hi/Z(Hi). In addition, the order of the center of any factor must be even, as otherwise13

a Sylow 2-subgroup of Hi is a direct factor of some Sylow 2-subgroup of G and hence14

its center has 2-rank greater than 1. As a result we can assume that every Hi has type15

An, for n odd, Bn, Cn, Dn or E7 by the table of orders of centers in [32, Table 24.2].16

Recall that by Theorem 2.3, the sectional 2-rank of G can not be 5 or more. The17

group G contains the direct product H1/Z(H1) × · · · ×Hs/Z(Hs) as a section. From18

the proof of Theorem 6.2, we know that the sectional 2-rank of a group of type A1 or19
2A1 is 2, while the sectional 2-rank of a group of type An or 2An for n ≥ 3 is at least 3.20

In addition, the sectional 2-ranks for groups of types Bn, Cn, Dn and E7 are at least 3.21

As a result, the only possible situation with sectional 2-rank less than 5 occurs when22

there are exactly two components H1 and H2 both of type A1 or 2A1. We henceforth23

assume that this is the situation.24

Because ψ is injective on restriction to SF . It must be that ZF is either trivial or has25

order 2. In addition, the image W of the inclusion of ZF into Gss×SF followed by the26

projection onto SF must be the Sylow 2-subgroup of SF . The reason is that otherwise,27

the quotient group Gss/Z(Gss)× SF/W , which is a section of G, has sectional 2-rank28

5 and by Theorem 2.3(b), TF (G) ∼= Z. If ZF is trivial, then so is ZF and a Sylow 2-29

subgroup S of G is either a direct product or a central product of quaternion groups. In30

the first case, Z(S) has 2-rank 2 and we are done by Lemma 2.2. A direct calculation31

shows that the all maximal elementary abelian 2-subgroups of a central product of32

quaternion groups have 2-rank 3.33

Hence, we may assume that ZF has order 2 and that S is an extension (cf. the exact34

sequence (8.2))35

1 // S1S2
// S // C2

// 1

where S1, S2 are normal quaternion subgroups and S1S2 is a central product. We have36

noted already that the centralizer of any involution in S1S2 has 2-rank 3. We need only37

show the same for any involution x not in S1S2. The involution x must act on each Si38

as an element of GL2(q), which means that it must normalize, but not centralize, some39

(necessarily cyclic, since Si are quaternion) subgroup 〈y1〉 of order 4 in S1 and another40

〈y2〉 in S2. But then y21 = y22 is the nontrivial central element in S1S2, and hence y1y241

is a noncentral involution in the centralizer of x. So we have shown cG(x) has 2-rank42

at least 3. Therefore, we have reduced ourselves to situation where s = 1.1

Now assume that s = 1. We follow the pattern of Step 2 of the proof in the case2

that p 6= ` ≥ 3. As shown in that proof, we may assume that ` = 2 divides the order of3

Z(H1), as otherwise G ∼= H1 × V where H1 is one of the listed groups. In addition we4

may assume that H1 has sectional 2-rank at most 4. The combination of the conditions5

that 2 | |Z(H1)| and that the sectional rank be less than 5, means that H1 must have6

one of the types A1,
2A1, A3,

2A3 or B2 (see Theorem 6.3 and [32, Table 24.2]). Then7

as in Step 2 of the odd characteristic case, the 2-local structure of H1 is that of a8

central product. Note that in the case that H1 has type B2 and H1 = Sp4(q), then9

the element ζ has order 2 in CSp4(q). We note also that if Hi has type A3, and q ≡ 110
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modulo 4, then a Sylow 2-subgroup of H1 has a rank 3 torus that is a characteristic11

subgroup. It follows that TF (G) ∼= Z, as we have seen before. The same happens if12

H1 has type 2A3 and q ≡ 3 (mod 4). Hence, the only possibilities are that H1 is one13

of SL2(q) ∼= SU2(q), SL4(q) with q ≡ 3 (mod 4), SU4(q) with q ≡ 1 (mod 4) or Sp4(q).14

As before we conclude that the group G has the same poset of conjugacy classes of15

elementary abelian 2-subgroups as an associated group to H1 as defined in Section 5.16

In the case that ` = 2 these groups were treated in Section 6. In particular, Theorem17

6.2 is sufficient to finish the proof. �18

This finishes the proof of Theorem 8.1. We now verify that this indeed proves the19

main theorems.20

Proof of Theorems A and B. First recall that Theorem B is equivalent to Theorem A21

by Theorem 1.2, where in Theorem B we have sorted the list by `-rank instead of by22

prime. To verify Theorem A, suppose that TF (G) has rank greater than 1.23

If ` 6= p and ` > 2, then Theorem 8.1(a) says that G ∼= H ×K where ` - |K| and H24

is listed in Theorem 3.1, which is the list in Theorem A(1) with ` 6= 2.25

If ` 6= p and ` = 2 then Theorem 8.1(b) tells us that G ∼= H ×K with ` - |K| and26

H ∼= PGL2(q) ∼= PGU2(q), which is the list in Theorem A(1) with ` = 2.27

Now suppose that ` = p. Then the last part of Theorem 8.1 says that G/Z(G) ∼=28

H/Z(H), where H is one of the groups in Theorem 7.1 with the rank of TF (H)29

greater than 1. An inspection of Tables 1 and 2 now shows that H is either 2A2(p)sc30

with 3 | p + 1, A2(p)sc, A2(p)ad, B2(p)sc with p ≥ 5, B2(p)ad with p ≥ 5, or G2(p)31

with p ≥ 7. This produces the list for G/Z(G) ∼= H/Z(H) given in Theorem A(2), by32

translating into classical group notation.33

The theorems and tables quoted in Theorem A give the indicated ranks, finishing34

the proof of that theorem. �35
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