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Abstract
Multi-criteria decision analysis (MCDA) is a quantitative approach to the drug benefit-risk assessment
(BRA) which allows for consistent comparisons by summarising all benefits and risks in a single score.
The MCDA consists of several components, one of which is the utility (or loss) score function that
defines how benefits and risks are aggregated into a single quantity. While a linear utility score is one of
the most widely used approach in BRA, it is recognised that it can result in counter-intuitive decisions,
for example, recommending a treatment with extremely low benefits or high risks. To overcome this
problem, alternative approaches to the scores construction, namely, product, multi-linear and Scale
Loss Score models, were suggested. However, to date, the majority of arguments concerning the
differences implied by these models are heuristic. In this work, we consider four models to calculate the
aggregated utility/loss scores and compared their performance in an extensive simulation study over
many different scenarios, and in a case study. It is found that the product and Scale Loss Score models
provide more intuitive treatment recommendation decisions in the majority of scenarios compared to
the linear and multi-linear models, and are more robust to the correlation in the criteria.
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1 Introduction

The benefit-risk analysis of a treatment consists of balancing its favourable therapeutic effects versus
adverse reactions it may induce1. This is a process which drug regulatory authorities, such as EMA2 and
FDA3 use when deciding whether a treatment should be recommended. Benefit-risk assessment (BRA)
is mostly performed in a qualitative way4. However, this approach has been criticised for a lack of
transparency behind the final outcome, in part due to large amounts of data considered for this assessment,
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and the differing opinions on what this data means. To counter this, quantitative approaches ensuring
continuity and consistency across drug BRA, and making the decisions easier to justify and to communicate,
were proposed5,6.

While there is a number of methods to conduct the quantitative BRA, the multi-criteria decision analysis
(MCDA) has been particularly recommended by many expert groups in the field7 8 9 10. MCDA provides a
single score (a utility or loss score) for a treatment, which summarises all the benefits and risks induced
by the treatment in question. These scores are then used to compare the treatments and to guide the
recommendation of therapies over others.

Mussen et al.7 proposed to use a linear aggregation model in the MCDA, which takes into account all
main benefits and risks associated with a treatment (as well as their relative importance) to generate a
treatment utility score by taking a linear combination of all criteria. This utility score is then compared
against the utility score of a competing treatment, and that with the highest score is recommended. This
model appealed for numerous reasons, one of which was its simplicity. The proposed method, however,
was deterministic, point estimates of the benefit and risk criteria were used, and no uncertainty around these
estimates was considered. Yet, uncertainty and variance are expected in treatments’ performances, and must
therefore be accounted for in the decision-making.

To resolve this shortcoming, probabilistic MCDA (pMCDA)11 that accounts for the variability of the
criteria through a Bayesian approach was proposed. Generalisations of pMCDA for the case of uncertainty
in the relative importance of the criteria were developed, named stochastic multi-criteria acceptability
analysis (SMAA)12 or Dirichlet SMAA13. However, it was acknowledged that by accounting for several
sources of uncertainty, these models become more complex and should be used primarily for the sensitivity
analysis.

All the works discussed above concern a linear model for aggregation of the criteria, which is thought
to be primarily due to its wider application in practice rather than its properties. One argument against
the linear model is that a treatment which has either no benefit or extreme risk could be recommended
over other alternatives without such extreme characteristics.14 15 16. In addition, the linearity implies that the
relative tolerance in the toxicity increase is constant for all levels of benefit that might not be the case for a
number of clinical settings. To address these points, a Scale Loss Score (SLoS) model was developed. This
model made it impossible for treatments with no benefit or extremely high risk be recommended. It also
incorporates a decreasing level of risk tolerance relative to the benefits: where an increase in risk is more
tolerated when benefit improves from “very low” to “moderate” compared to an increase from “moderate”
to “very high”. SLoS model resulted in similar recommendations to the linear MCDA model when the one
treatment is strictly preferred to another (i.e. has both lower risk and higher benefit), but resulted in more
intuitive recommendations if one of the treatments has either extremely low benefit or extremely high risk.

Whilst other methods are discussed in the literature, the only application of a non-linear BRA model to
the medical field is made by Saint-Hilary et al14, and this only compares the linear and SLoS models. This
paper shall build on this comparison by introducing various different aggregation models (AM) to analyse
how each work compared to the other in the medical field (by conduction a case study and a simulation
study), and allow an informed decision to be made as to which one should be used using the results of an
extensive and comprehensive simulations study over a number of clinical scenarios. We will also use a case
study to demonstrate the implication of the choice of AM on the actual decision-making using the MCDA.

The rest of the paper proceeds as follows. The general MCDA methodology, the four different aggregation
models considered, linear, product, multi-linear and SLoS, and the choice of the weights for them are given
in Section 2. In Section 3, we revisit a case study conducted conducted by Nemeroff17 looking at the
effects of Venlafaxine, Fluoxetine and a placebo on depression, applying the various aggregation models to
a given dataset. In Section 4, a comprehensive simulation study comparing the four aggregation models in
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many different scenarios is presented, as well as the effects any correlation between criteria may have. We
conclude with a discussion in Section 5.

2 Methodology

All of the aggregation models (referred to as to “models” below) considered in this work are all classified
within the MCDA family - they aggregate the information about benefits and risks in a single (utility or
loss) score. Therefore, we would refer to each of the approaches by their models for the computation of the
score. Below, we outline the general MCDA framework for the construction of a score using an arbitrary
model. We consider the MCDA taking into account the variability of estimates, pMCDA11.

2.1 Setting

Consider m treatments (indexed by i) which are assessed on n criteria (indexed by j). To ensure continuity,
we use the same notations as those of Saint-Hilary et al.14:

• ξi,j is the performance of treatment i on criterion j, so that treatment i is characterised by a vector
showing how it performed on each criterion: ξi,j = (ξi,1, ......, ξin).

• The monotonically increasing partial value functions 0 ≤ uj(·) ≤ 1 are used to normalise the criterion
performances. Let ξ′j and ξ′′j be the most and the least preferable values, then uj(ξ

′′
j ) = 0 and

uj(ξ
′
j) = 1. The inequality uj(ξij) > uj(ξhj) indicates that the performance of the treatment i is

preferred to the performance of the treatment h on criterion j. In this work, we focus on linear partial
value functions, one of the most common choice in treatment benefit-risk assessment5,7,11,12,18 that
can be written as

uj(ξij) =
ξij − ξ′′j
ξ′j − ξ′′j

. (1)

• The weights indicating the relative importance of the criteria are known constants denoted by wj . The
vector of weights used for the analysis is denoted by w = (w1, ..., wn).

• The MCDA utility or loss scores of treatment i are obtained as

u(ξi,w) := u (wj, uj(ξij)) , j = 1, ....., n

and
l(ξi,w) := l (wj, uj(ξij)) , j = 1, ....., n

respectively, where u (·) and l (·) are the functions specifying how the criteria should be summarised
in a single score, and are referred to as “aggregation models”. The impact of this model’s choice on
the performance of treatment recommendation is the focus on this work. The higher the utility score,
or lower the loss score, the more preferable the benefit-risk ratio. Then, the comparison of treatments
i and h is based on

∆u(ξi, ξh,w) := u(ξi,w)− u(ξh,w) (2)

or
∆l(ξi, ξh,w) := l(ξi,w)− l(ξh,w). (3)

Within a Bayesian approach, the utility score u(ξi,w) and the loss score l(ξi,w) are random variables
having a prior distribution. Given observed outcomes xi = (xi1, . . . , xin) and xh = (xh1, . . . , xhn)
(corresponding to treatment performances ξi and ξh, respectively) for i and h, one can obtain the posterior
distribution of ∆u(ξi, ξh,w) or ∆l(ξi, ξh,w), respectively. The inference is based on the complete

Prepared using sagej.cls



4 xxxx XX(X)

posterior distribution and the conclusion on the benefit-risk balance is supported by the probability of
treatment i to have a greater utility score (or smaller loss score) than treatment h:

P ihu = P(∆u(ξi, ξh,w) > 0 | xi,xh). (4)

or
P ihl = P(∆l(ξi, ξh,w) < 0 | xi,xh). (5)

The probabilities (4) or (5) are used to guide a decision on taking/dropping a treatment. A possible
way to formalise the decision based on this probability is to compare it to a threshold confidence level
0.5 ≤ ψ ≤ 1. Then, P ihu > ψ (or P ihl > ψ) would mean that one has enough evidence to say that treatment
i has a better benefit-risk balance than h with a level of confidence ψ. Note that P ihu = 0.5 (and P ihl = 0.5)
corresponds to the case where the benefit-risk profiles of i and h are equal according to the corresponding
MCDA model.

2.2 Aggregation Models

Below, we consider four specific forms of aggregation models, namely, linear, product, multi-linear, and
Scale Loss Score, that were argued by various authors to be used in the MCDA to support decision-making

2.2.1 Linear Model A linear aggregation of treatment’s effects on benefits and risks remains the most
common choice for the treatment development7,12,13,18,19. Under the linear model, the utility score is
computed as

uL(ξi,w
L) :=

n∑

j=1

wLj uj(ξi,j) (6)

where wLj > 0 ∀j and
∑n

j=1w
L
j = 1, the superscript L referring to the linear model. The expression (6) is

used in Equation (2) and Equation (4) to compare the associated linear scores for a pair of treatments.
As an illustration of all considered aggregation models, we will use the following example with two

criteria: one benefit indexed by 1, one risk indexed by 2. The linear utility score for treatment i at fixed
parameter values θi1, θi2 takes the form

uL(θi1, θi2, w
L) := wLu1(θi1) + (1− wL)u2(θi2). (7)

As values u1(θi1), u2(θi2) ∈ (0, 1), one can interpret u1(θi1) as a probability of benefit and 1− u2(θi2) as
a probability of risk. This utility score can be transformed into a loss score by subtracting it from one:

lL(θi1, θi2, w
L) := 1− uL(θi1, θi2, w

L) (8)

We do this as, historically, the concept of a loss function is preferred both in statistical decision theory
and Bayesian analysis for parameter estimation.20 The contours of equal linear loss score for all values
of u1(θi1) and (1− u2(θi2)) are given in Panel (A) of Figure 1 using wL = 0.5 (top row) and wL = 0.25
(bottom row).

The contours represent the loss score for each benefit-risk pair. Lower values of lL(θi1, θi2, w
L)

correspond to better treatment benefit-risk profiles. It is minimised (right bottom corner) when the maximum
possible benefit is reached (u1(θi1) = 1) with no risk (1-u2(θi2) = 0). The contours are linear, with a constant
slope wL/(1-wL). This implies that if one treatment has an increased probability of risk of x% compared
to another, its benefit probability should be increased by (1-wL)/wL × x% to have the same utility score,
and this holds for all values of benefit and risk. This figure allows for an illustration of the penalisation
of various benefit-risk criteria and for an illustrative comparison between treatments with different criteria.
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Figure 1. Contour plots for Linear (A), Product (B), Multi-Linear (C), and SLoS (D) models with (i) two equally important criteria (top
row), and (ii) the risk criterion being twice as important (on average for non-linear model) as the benefit criterion (bottom row). Red lines
on Panels B–D represents the tangents at the middle point (0.5,0.5).

For example, any pairwise comparison that lies on a contour line shows that the two treatments are seen as
equal.

The major advantage of the linear model is its intuitive interpretation: a poor efficacy can be compensated
by a good safety, and vice-versa. However, the linear utility score can result in the recommendation of highly
unsafe or poorly effective treatment6,21 and, consequently, in a counter-intuitive conclusion. Moreover, the
linearity implies that the relative tolerance in the toxicity increase is constant for all levels of benefit14. These
pitfalls could be avoided (or at least reduced) by using non-linear models6,22. Specifically, Saint-Hilary et
al.14 advocated introducing two principles a desirable benefit-risk analysis aggregation model should have:

1. One is not interested in treatments with extremely low levels of benefit or extremely high levels of
risks (regardless of how the treatment performs on other criteria);

2. For an equivalent absolute increase in benefit, one can tolerate a larger risk increase if the amount of
benefit is small than if it is high.

Below, we consider three models having one or both of these properties.

2.2.2 Product Model A multiplicative aggregation (known as a product model) is an alternative method of
comparing treatment’s effects on benefits and risks23. Under the product model, the utility score is computed
as

uP (ξi,w
P ) :=

n∏

j=1

uj(ξi,j)
wP

j (9)

where the superscript P refers to the product model. The expression (9) is used in Equation (2) and
Equation (4) to compare the associated product scores for a pair of treatments.

The product utility score for treatment i with two criteria at fixed parameter values θi1, θi2 takes the form

uP (θi1, θi2, w
P ) := u1(θi1)

wP × u2(θi2)(1−w
P ). (10)
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Similarly as for the linear model, this utility score can be transformed into a loss score by subtracting it
from one:

lP (θi1, θi2, w
P ) := 1− uP (θi1, θi2, w

P ) (11)

The contours of equal product loss score for all values of u1(θi1) and (1− u2(θi2)) are given in Panel (B)
of Figure 1 using wP = 0.5 (top row) and wP = 0.25 (bottom row).

One advantage the product model has over the linear model is that it cannot recommend treatments with
either zero benefit or extreme risk. This is because either of these two options would result in a score of
zero for the utility function, and as such would make it impossible for such a treatment to be recommended.
The contour lines in Panel (B) in Figure 1 demonstrate how the product model penalises undesirable values
compared to the linear model. These contours are curved, and are bunched together tightest at points where
benefit values are low and where risk values are high. This shows how the penalisation differs this model
from the linear model, as under the linear model, an increase/decrease in benefit-risk is treated equally
regardless of the marginal values of these criteria, whereas the values of these criteria often have an effect
on our decision making under the product model.

2.2.3 Multi-Linear Model A multi-linear model for the aggregation of treatments’ benefits and risks
provides a one more alternative for the comparison of two treatments22. This model can be seen as attempt
to combine the linear and product model. Under the multi-linear model, the utility score is computed as

uML(ξi,w
ML) :=

∑n
j=1w

ML
j uj(ξi,j) +

∑n
j=1,k>j w

ML
j,k uj(ξi,j)uk(ξi,k)+∑n

j=1,l>k>j w
ML
j,k,luj(ξi,j)uk(ξi,k)ul(ξi,l) + ......+ wML

1,2,....,nu1(ξi,1)u2(ξi,2)....un(ξi,n)
(12)

where the superscript ML refers to the multi-linear model, and the weight criteria wML
i,j,... refer to the weight

criteria given to the interaction term between criteria i, j, .... We require all the weights in the ML model
to sum up to 1. The expression (12) is used in Equation (2) and Equation (4) to compare the associated
multi-linear scores for a pair of treatments.

Considering the example with two criteria, the multi-linear utility score for treatment i at fixed parameter
values θi1, θi2 takes the form

uML(θi1, θi2, w
ML
1 , wML

2 , wML
1,2 ) := wML

1 u1(θi1) + wML
2 u2(θi2) + wML

1,2 (u1(θi1)u1(θi2)). (13)

Note that the even under the constraint of the sum of the weights to be equal to one, there is one more
weight parameter than for the linear and product models. This immediately can make the weight elicitation
procedure more involving for all stakeholders. To link the weights of the ML model with the rest of
the competing approaches (see more details in Section 2.3), we set up one more constraint, so that the
number of weight parameters is the same in all considered model (for the purpose of the comparison in
this manuscript). Specifically, we fix wML

1,2 = c where 0 ≤ c ≤ 1, implying that we fix the effect of the
interaction term. Similarly as for the linear and product models, this utility score can be transformed into a
loss score by subtracting it from one:

lML(θi1, θi2, w
ML) := 1− uML(θi1, θi2, w

ML) (14)

The contours of equal linear loss score for all values of u1(θi1) and (1− u2(θi2)), c = 0.20 are given in
Panel (C) of Figure 1 using wML

1 = 0.40 (top row) and wML
1 = 0.15 (bottom row).

The contour lines demonstrate the almost linear trade-off between benefit and risk, but that there is a
slight curvature (which becomes more prominent as it moves further away from more desirable values),
indicating a moderate penalisation of extreme values. This shows that while this model attempts to penalise
the undesirable criteria values, this effect does not seem to be as strong as in the product model, admittedly
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due to the chosen value of the weight, wML
1,2 , given to the interaction term . A moderate level of penalisation

for the chosen value of the weight corresponding to the interaction term allows for treatments to be
recommended when there is no benefit or extreme risk, as is the case in the linear model. The more the
weight of the interaction terms, the less likely this would happen.

2.2.4 Scale Loss Score (SLoS) Model An alternative to the models proposed above is the Scale Loss
Score (SLoS) model, which was proposed by Saint-Hilary et al.14 to satisfy the two desirable properties
for an aggregation method. First of all, in contrast to the three models above, SLoS considers a loss score,
rather than a utility score, as the output. Therefore, lower values are more desirable. Under the SLoS model,
the loss score is computed as

lS(ξi,w
S) :=

n∑

j=1

(
1

uj(ξi,j)

)wS
j

(15)

where the superscript S refers to the SLoS model. The expression (15) is used in Equation (3) and
Equation (5) to compare the associated SLoS scores for a pair of treatments.

Coming back to the example with two criteria, the loss score for treatment i at fixed parameter values θi1,
θi2 takes the form

ls(θi1, θi2, w
S) :=

(
1

u1(θi1)

)wS

+

(
1

u2(θi2)

)(1−wS)

. (16)

The contours of equal scale loss score for all values of u1(θi1) and (1− u2(θi2)) are given in Panel (D)
of Figure 1 using wS = 0.5 (top row) and wS = 0.25 (bottom row).

As is the case with the product model, this penalisation makes it impossible for treatments with either no
benefit or extreme risk to be recommended over other potential treatments, compared to the linear and multi-
linear models (which can recommend such treatments). This is because a treatment that had either of these
would return a loss score of infinity (regardless of the values of any other criteria) and would therefore be
non-recommendable. On the Figure, the white colour at extreme undesirable values (either very low benefit
or very high risk) corresponds to very high to infinite loss scores and demonstrate the penalisation effect.

Even when the contour plots in Figure 1 concern the same values of weights in the models, the weights
themselves are different in each model (represented by different indices). Therefore, when to provide a
fair comparison of these models, it is important to ensure that the models carry (approximately) the same
relative importance of the criteria defined through the slope of the contour lines. We propose an approach
to match the relative importance of the models below.

2.3 Weight Elicitation and Mapping

Methods for quantifying subjective preferences, for example, Discrete Choice Experiment and Swing-
Weighting, have been widely studied in the literature6,7,24,25. Applied to drug BRA, the majority of the
weight elicitation methods concern the linear model. In the linear model framework, the weight assigned to
one criterion is interpreted as a scaling factor which relates one increment on this criterion to increments on
all other criteria.

Note that each of the aggregation models use the individual weights, wL, wP , wML, and wS . However, in
the actual analysis, regardless of the aggregation model used, one can expect only one underlying level of
the relative importance of the considered benefit and risk criteria, as the stakeholders’ preferences between
the criteria should not depend on the methodology used for the decision-making. Therefore, it is crucial
to make sure when applying different models to the same problem that they reflect the same stakeholders’
preferences. We adapt the approach proposed by Saint-Hilary et al.14 to achieve that. Since comprehensive
work has been published and is currently being continued on the weight elicitation for the linear model,
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we will map the weights wLj (hypothetically) elicited for the linear model to the weights wP , wML, and wS

such that they reflect the same trade-off preferences between the criteria.

2.3.1 Mapping for Two Criteria As described in Saint-Hilary et al.14, formally, the trade-off between the
criteria could be represented by the slope of the tangent of the contour lines where the contour line passes
through the point (0.5, 0.5) (see the red lines in the contour plot of Panels B-D in Figure 1). Therefore, the
expressions for the mapping of the linear weight to the competitive models are found through the equality
of the slopes of the tangents to the corresponding contour lines.

We start from the setting with two criteria. As stated above, even for the two criteria setting, the multi-
linear model requires one more weight to be specified. Therefore, we impose a constraint on the weight
corresponding to the interaction term to obtain the unique solution for the mapped weight wML, specifically
wML

1,2 = 1− wML
1 − wML

2 = c, where 0 ≤ c ≤ 1. Note that for c = 0, the multi-linear model reduces to the
linear one, and for c = 1 it becomes the product of the two criteria values.

Using the utility/loss scores zP , zML, zS obtained at point (u1(θi1), u2(θi2)), the expressions of the
equality of the tangents with two criteria take the form

wL

1−wL = wP

1−wP

(
1

u1(θi,1)

)(
zP

u1(θi,1)w
P

) 1

1−wP

,

wL

1−wL =
wML

1 wML
2 +zML−zML(1−c)(
wML

2 +cu1(θi,1)
)2 ,

wL

1−wL = wS

1−wS

(
zS − u1(θi1)−wS

)wS−2

1−wS × u1(θi1)
−(wS+1).

(17)

where the slope for the linear model is given in the left hand size, and the slopes for the product, multi-linear
and SLoS models are given in the right hand side, respectively.

Note, however, that the slope of the tangent of the contours for the linear model are constant for all values
of parameters and defined by the weights wLj only, while the slopes for the competitive models change with
the values of the criteria. For the purpose for the weights mapping, we would interpret wLj as an average
relative importance of each criterion over the others, and would match the slopes of the tangents to the
corresponding contours in the middle point, u1(θi1) = u2(θi2) = 0.514. Then, the equalities above reduce to

wL = wP ,
wL = wML + c/2,
wL

1−wL = wS

1−wS . 2(2wS−1).
(18)

Therefore, the product weight coincides with the linear weight in the given middle mapping point. For
the SLoS model, the weight mapping does not have an analytical solution, but the approximate value of wS

can be obtained by line search. Figure 2 shows the mapping from the linear model to the multi-linear and
SLoS models. It demonstrates how the value for the linear model (x-axis) can be used to find the respective
weights for the multi-linear and SLoS models on the y-axes.

One can note that for the multi-linear model, the proposed mapping process may result in the obtained
negative mapped values of weight. This is because of how the weight mapping function is elicited in the
two criteria case: if the value of a weight under the linear model is less than half the value of c, then this will
map to a negative value (which, in theory, gives our criteria a negative importance - which is impossible)
to reflect the same relative importance as induced by the linear model. Intuitively, if the interaction terms
already contributes more to the importance of the one of the criterion in the interaction, the model needs to
subtract the “excessive” importance from the weight corresponding to this criterion standing alone. Whilst
this effect can be negated by setting an upper limit of the values c can take, this in term limits the effect the
interaction terms have, and can make the model more similar to the linear model. This is demonstrated in
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Figure 2. Weight mapping from the linear model to the multi-linear model (left) and to the SLoS model (right).

Figure 2 for c = 0.2, where any weights for the linear model that are given a value of 0.1 or less would be
mapped to 0 in the multi-linear model, rather than a negative value.

Proof for the above workings is given in the Supplementary Material.

2.3.2 Mapping for Setting with More Than Two Criteria The derivation above concerns the setting with
two criteria only but could be directly extended for the product and SLoS models. Specifically, one can apply
the proposed mapping function to each of the weights in the setting with more than two criteria marginally.
This would imply that the weights are mapped with respect to the importance of all other criteria rather than
a single benefit (or risk)14.

The extension for the multi-linear model, however, is less straightforward. Generally, it would be a much
more involving procedure to elicit weights for all the interactions terms as their number increases noticeably
if more than two criteria are considered. Specifically, in the case study considered in Section 3, there are
4 criteria resulting in 11 interaction terms. Following the two criteria setting, we suggest to fix the total
weight attributed to all the interactions to be equal to c = 0.2. Then, the ML model for the setting with 4
criteria takes the form

uML(ξi,w
ML) :=

∑n
j=1w

ML
j uj(ξi,j) + c

2n−n−1
∑n

j=1,k>j uj(ξi,j)uk(ξi,k)+
c

2n−n−1
∑n

j=1,l>k>j uj(ξi,j)uk(ξi,k)ul(ξi,l) + ......+ c
2n−n−1u1(ξi,1)u2(ξi,2)....un(ξi,n)

(19)

where the fraction c
2n−n−1 ensures that the sum of all the interaction terms equals c and this is split equally

between all interaction terms. To calculate the individual weights wj, j = 1, . . . , n, again, a mapping to the
linear weights can be used. In order for the weights to sum up to 1, the transformation wML = wML − c/n
could be applied. For n = 2, this translates into the corresponding mapping in Equation 18. While this
procedure does not guarantee the equality of the slopes of the tangents, it, however, emphasises the
potential challenge associated with the use of the multi-linear model that should be taken into account
when considering it.

3 Case study

In this section, the performance of the four aggregation models is illustrated in the setting of an actual case
study. This will provide an insight on how the various models perform, and what difference in the decision-
making they induce when applied to real-life data. The case study in question analyses the effects of two
treatments (Venlafaxine and Fluoxetine) compared to a placebo, on the effects of treating depression. This
study uses data from Nemeroff17, and expands on the studies conducted by Tervonen et al.12 and Saint-
Hilary et al.13.

Fluoxetine and Venlafaxine are both treatments used to treat depression. Here, the benefit criterion is the
treatment response (an increase from baseline score of Hamilton Depression Rating Scale of at least 50%),
and the three risk criteria are nausea, insomnia and anxiety.
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Table 1 shows the outcomes of the trial for the two treatments and the placebo.

Venlafaxine Fluoxetine Placebo
Treatment response 51/96 45/100 37/101
Nausea 40/100 22/102 8/102
Insomnia 22/100 15/102 14/102
Anxiety 10/100 7/102 1/102

Table 1. Number of events and number of patients for each criteria for Venlafaxine, Fluoxetine and Placebo

For all criteria, we approximate the distributions of the event probabilities by Beta distributions B(a, b),
with a = number of occurrences and b = (number of patients − number of occurrences) of the considered
event (response or adverse event), assuming Beta(0,0) priors. We generated 100,000 samples from each
distribution. These samples are then used to approximate the distributions of the linear partial value
functions (PVFs) as defined in equation (1) for all criteria and all treatment arms, with the following most
and least preferred probabilities of occurrence ξ′j and ξ′′j :

• Most and least preferable values of ξ′j = 0.8 and ξ′′j = 0.2 for the response,
• Most and least preferable values ξ′j = 0 and ξ′′j = 0.5 for the adverse events.

Venlafaxine Fluoxetine Placebo
Treatment response
ξi,1 0.52 (0.42,0.62) 0.45 (0.35,0.55) 0.37 (0.28,0.46)
u1(ξi,1) 0.53 (0.37,0.70) 0.42 (0.26,0.58) 0.28(0.13,0.44)
Nausea
ξi,2 0.40 (0.31,0.50) 0.22 (0.14,0.30) 0.08 (0.04,0.14)
u2(ξi,2) 0.20(0.00,0.39) 0.57 (0.40,0.72) 0.84 (0.72,0.93)
Insomnia
ξi,3 0.22 (0.15,0.31) 0.15 (0.09,0.22) 0.14 (0.08,0.21)
u3(ξi,3) 0.56 (0.39,0.71) 0.71 (0.56,0.83) 0.73 (0.58,0.84)
Anxiety
ξi,4 0.10 (0.05,0.17) 0.07 (0.03,0.13) 0.01 (0.00,0.04)
u4(ξi,4) 0.80 (0.67,0.90) 0.86 (0.75,0.94) 0.98 (0.93,1.00)

Table 2. Mean (95% Credible Interval) of the Beta posterior distributions of benefit and risk parameters and of corresponding PVFs for
Venlafaxine, Fluoxetine and Placebo (with values in bold corresponding to those that leading to significant differences between models).

This case study considers three different weighting combinations, which were used under the linear
model by Saint-Hilary et al.13. These sets of weights correspond to three different scenarios of the relative
importance of the criteria for the stakeholders. The first scenario reflects the case when all four criteria are
equally important. The second scenario corresponds to the benefit criterion having more relative importance
than all risk criteria together. The third scenario can be considered as a “safety first” scenario, in which each
risk criterion has a higher weight than the benefit criterion. As discussed in Section 2.3, the weights of the
criteria for the product, multi-linear and SLoS models are obtained by mapping. Note, again, that while
the multi-linear model might not exactly induce the same average relative importance of the criteria, the
proposed procedure suggests to control the contribution of the interaction terms in the decision at the given
level of c = 0.20, and therefore is used for the sake of simplicity. The mapped weights for each of the three
scenarios are presented in Table 3.
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Scenario 1 Scenario 2 Scenario 3
Model w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4

Linear 0.25 0.25 0.25 0.25 0.58 0.11 0.15 0.15 0.18 0.28 0.25 0.29
Product 0.25 0.25 0.25 0.25 0.58 0.11 0.15 0.15 0.18 0.28 0.25 0.29
Multi-Linear 0.20 0.20 0.20 0.20 0.53 0.06 0.10 0.10 0.13 0.23 0.20 0.24
SLoS 0.30 0.30 0.30 0.30 0.56 0.16 0.21 0.21 0.24 0.33 0.30 0.34

Table 3. Table of mapped weights for each of the three scenarios.

Three pairwise comparisons are made: Venlafaxine against Fluoxetine, Venlafaxine against Placebo, and
Fluoxetine against Placebo. We consider that one treatment is recommended over another if the probabilities
defined in (4) or (5) are greater than ψ = 0.8. The probabilities of recommendations under all three scenarios
and for each aggregation model are given in Table 4.

Probability of treatment being Venlafaxine over Venlafaxine over Fluoxetine over
recommended as best treatment Fluoxetine Placebo Placebo

Scenario 1
Linear 1.7% <0.1% 7.2%

Product 1.7% 1.6% 37.0%
Multi-Linear 1.7% <0.1% 9.1%

SLoS 1.8% 3.7% 47.3%
Scenario 2

Linear 48.0% 64.7% 66.9%
Product 42.6% 74.9% 80.4%

Multi-Linear 46.3% 63.0% 66.3%
SLoS 36.6% 72.5% 81.4%

Scenario 3
Linear 0.6% 0% 2.1%

Product 0.5% 0.1% 18.5%
Multi-Linear 0.6% 0% 3.0%

SLoS 0.6% 0.6% 30.1%
Table 4. Probability of treatment being recommended as the best treatment against another for the three pairwise comparison, using
each of the four aggregation models, for each of the three weighting scenarios.

Under the first scenario with the equal weights for all criteria, the treatment with preferable risk criteria
values was more likely to be recommended as the three risk criteria altogether have a greater weight
than the one benefit criterion. For the comparison between Venlafaxine and Fluoxetine, the probability
that Venlafaxine has better benefit-risk characteristics is around 1.7-1.8% under all four models. For the
comparison between Venlafaxine and the placebo, there is only a minor difference in the probability that
Venlafaxine has better benefit-risk characteristics (< 0.1 % in the linear and multi-linear models, 1.6% in
the product model and 3.7% in the SLoS model), not enough of a difference to change the recommendation.
However, when comparing Fluoxetine to the placebo, a notable difference is observed. Under the linear and
multi-linear models, the probability of Fluoxetine having the better benefit-risk characteristics is around
7-10% (suggesting the placebo is much more preferable), whilst this rises to 37% under the product model
and 47.3% under the SLoS model (suggesting near-parity of treatments). This occurs due to the penalisation
of low benefit criterion values for the placebo, where the 95% credible interval includes values close to zero
(in bold in Table 2). These low values are harshly penalised under the product and SLoS models, as they
suggest that the placebo induces no treatment benefit with a non-neglectable probability. The linear model
does not account for this and strongly favours the placebo, while the multi-linear does not penalise these
values strongly.
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Under the second scenario, the treatment response is considered as the most important factor, and
is given a weighting greater than that of the three risk criteria combined. For the comparison between
Venlafaxine and Fluoxetine, both the product and SLoS models say that Venlafaxine has inferior benefit-
risk characteristics (42.6% and 36.6% probability of being better, respectively). More average results are
observed with both the linear model, which gives a probability of 48.0%, and the multi-linear model, which
gives a probability of 46.3%. Again, the difference between the probability of the linear model and those of
the product and SLoS models is due to the penalising effects of the latter. This occurs because of the nausea
risk criterion interval contains zero for Venlafaxine (in bold in Table 2), which causes the product and
SLoS models to recommend Fluoxetine more often than Venlafaxine, despite the weighing criteria giving
preference to the treatment response (which is greater with Venlafaxine). With the multi-linear model, the
penalisation of the undesirable nausea criterion is not as strong as in the product or SLoS models, as the
weight mapping induces a drop from 0.11 to 0.06 in the weight given to the corresponding individual term,
and the effect of the interaction terms is not enough to overcome this.

For the comparison between Venlafaxine and the placebo, the probability that Venlafaxine has better
benefit-risk characteristics is between 63-75% across the four models. The product and SLoS models both
penalise the low benefit value of the placebo, which is why they are both more likely to recommend
Venlafaxine than the other two models. Additionally, the product and SLoS models both also penalise
the nausea criterion value of Venlafaxine, and due to the increase weighting given to it by the SLoS model
mapping, this causes the product model to be more likely to recommend Venlafaxine than the SLoS model.

For the comparison between Fluoxetine and the placebo, the probability that Fluoxetine has better benefit-
risk characteristics is around 65-80% under all four models, with the probability of Fluoxetine being
preferable increasing as the methods increase the penalisation applied to the placebo’s lack of benefit effect.
The stronger penalisation occurs under the product and SLoS models, hence why they are both more likely
to recommend Fluoxetine.

Across all three comparisons, the multi-linear model is always slightly less likely to recommend the
treatment with the greater benefit value than the linear model. As this is the scenario where the benefit
criterion is considered to be the most important, this shows that the weight splitting with the multi-linear
model induces a loss of the preferences that were given when the weights were originally set out for the
linear model, illustrating some of the problems theorised in the methods section.

Under the third scenario, a “safety first” approach is adopted, giving the risk factors a higher weighting.
The probability that Venlafaxine has better benefit-risk characteristics is around 0.5-0.6% when it is
compared to Fluoxetine and around 0-0.6% when it is compared to placebo, under all four models. For
the comparison between Fluoxetine and the placebo, the probability that Fluoxetine has better benefit-risk
characteristics is around 2.1-3.0% for the linear and multi-linear models, whilst this increases to 18.5%
under the product model and 30.1% under the SLoS model. This increase occurs for the same reasons
outlined for the same comparison in scenario 1: The penalisation of the benefit criterion for the placebo,
with its 95% credible interval including low values (in bold in Table 2). The linear model does not account
for this and strongly favours the placebo, while the multi-linear does not penalise these values sufficiently
and still favours the placebo.

Overall, this case study provides us with a number of important observations shedding a light on the
differences in the aggregation performances. Firstly, the effects of extremely undesirable outcomes (those
highlighted in bold in Table 2) are more significantly and consistently penalised in the product and SLoS
models (the penalisation is stronger in the SLoS model than the product model, although they give the same
recommendation for every comparison). These examples also help to show that the models provide similar
recommendations when one treatment is clearly preferable than its competitor. Lastly, the weight splitting
in the multi-linear model induces a change in the relative importance between criteria that may not always
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reflect the choices of weights as well as other models, highlighted in scenario 2. This makes it less appealing
than other models.

To draw further conclusions regarding the differences between models, we conduct a comprehensive
simulation study under various scenarios and under their many different realisations.

4 Simulation Study

4.1 Setting

To evaluate the performances of the four aggregation models, a comprehensive simulation study covering
a wide range of possible clinical cases is conducted. This allows us to investigate many scenarios and their
various realisations rather than a single dataset as in the case study. The simulation study is preformed in a
setting with two treatments, named T1 and T2, that are compared in randomised clinical trials withN = 100
patients allocated to each treatment. Each treatment is evaluated based on two criteria: one benefit (j = 1)
and one risk (j = 2). We assume that benefit events are desirable (e.g. treatment response), while risk events
should be avoided (e.g. adverse event), with θij being their true probability of occurrence for each treatment
i = 1, 2. The PVFs are defined as u1(θi1) = θi1 and u2(θi2) = 1− θi2. The two criteria are deemed equally
important and therefore are given equal weighting criteria. We start with the case of uncorrelated criteria
and explore the effect of the presence of correlations in Section 4.4. The range of true values of the benefit
and risk criteria and the corresponding simulation scenarios are given in Figure 3.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 ⃝■ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝■

0.2 ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

0.3 ⃝ ⃝ ⃝■ ⃝ ⃝ ⃝ ⃝■ ⃝ ⃝

0.4 ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

0.5 ⃝ ⃝ ⃝ ⃝ ⃝■ ⃝ ⃝ ⃝ ⃝

0.6 ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

0.7 ⃝ ⃝ ⃝■ ⃝ ⃝ ⃝ ⃝■ ⃝ ⃝

0.8 ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

0.9 ⃝■ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝■

⃝ = T2 

 ■ = T1

Probability of benefit θi1 

Probabiltiy 

of risk θi2 

Figure 3. Simulation scenarios for the trial with two criteria.

Figure 3 shows all the different values that the benefit and risk criteria can take for both T1 and T2, where
black squares correspond to the pairs of criterion values for T1 and white circles correspond to the pairs of
criterion values for T2. For each of the nine fixed characteristics of T1, all 81 possible values of T2, with
θ2,1, θ2,2 ∈ (0.1, 0.2, . . . , 0.9) are considered, resulting in 729 scenarios. The fixed characteristics for T1 are
referred to as follows:
Scenario 1: T1=(θ1,1=0.5,θ1,2=0.5) Scenario 2: T1=(θ1,1=0.3,θ1,2=0.7)
Scenario 3: T1=(θ1,1=0.7,θ1,2=0.3) Scenario 4: T1=(θ1,1=0.1,θ1,2=0.1)
Scenario 5: T1=(θ1,1=0.9,θ1,2=0.9) Scenario 6: T1=(θ1,1=0.3,θ1,2=0.3)
Scenario 7: T1=(θ1,1=0.7,θ1,2=0.7) Scenario 8: T1=(θ1,1=0.9,θ1,2=0.1)
Scenario 9: T1=(θ1,1=0.1,θ1,2=0.9)) where θ1,j is the true value of criterion j for T1.
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4.2 Data Generation and Comparison Procedure

The following Bayesian procedure is used for the simulation study:

• Step 1: Simulate randomised clinical trials with two treatments T1 and T2, each with two uncorrelated
criteria, and the sample size of N = 100 in each treatment arm.

• Step 2: Derive the posterior distributions using the simulated data assuming a degenerate prior,
Beta(0,0), to reduce the influence of the prior distribution. Draw 2000 samples from each posterior
distribution of the criteria and obtain the corresponding empirical distribution for the PVF.

• Step 3: Use the posterior distributions of the PVF in each of the aggregation models as given in
Equations 2 and 3 to compute the probability in Equations 4 and 5 that treatment T1 has better benefit-
risk profile, P1,2

X (for some modelX), and compare to the threshold value ψ = 0.8. If P1,2
X > 0.8, then

treatment T1 is recommended. If P1,2
X < 0.2, then treatment T2 is recommended. If 0.2 ≤ P1,2

X ≤ 0.8,
then neither treatment is recommended.

• Step 4: Repeat steps 1-3 for 2500 simulations trials.
• Step 5: Estimate the probability that each treatment is recommended

(
P
(
P1,2
X > 0.8

))
by its

proportion over 2500 simulated trials.

The aggregation models will be compared using P
(
P1,2
X > 0.8

)
, which is the probability that the model

X recommends T1 over T2, and φX−Y = P
(
P1,2
X > 0.8

)
− P

(
P1,2
Y > 0.8

)
, which is the difference between

the probability that the model X recommends T1 and the probability that the model Y recommends T1.
The value of φ represents a difference between two probabilities, and can therefore take the range of values
−1 ≤ φ ≤ 1. If 0 < φ ≤ 1, then the model X recommends T1 more often than model Y . If −1 ≤ φ < 0,
then the model Y recommends T1 more often than model X . If φ = 0, then the two models make the
recommendations with the same probability. Note that, for the ML model, we adopt c = 0.20 as in the case
study above.

4.3 Results

The results are presented on Figures 4 and 5. The first seven scenarios referred to above for treatment T1
are presented in the rows labeled 1-7. Each graph corresponds to fixed expected probabilities of event for
treatment T1, and each cell corresponds to a combination of expected probabilities of benefit and risk for
T2. When reference is made to the “diagonal”, this refers to the diagonal line that runs from the bottom
left corner of the graph to the top right. In all scenarios, all models agree to recommend T1 when it is
undoubtedly better than T2 i.e. when T1 is more effective and less harmful than T2 (or to recommend T2
when T1 is indisputably worse, i.e. less effective and more toxic). For this reason, the results for scenarios
8 and 9 are not presented here, but are included in the Supplementary Material for completeness.

The probabilities P
(
P1,2
L > 0.8

)
(Red), P

(
P1,2
P > 0.8

)
(Purple), P

(
P1,2
ML > 0.8

)
(Orange), and P

(
P1,2
S >

0.8
)

(Blue) are shown in Figure 4, and all six pairwise comparisons in these probabilities are given in
Figure 5. From left to right, Figure 5 shows φP−L, φML−L, φML−P , φS−L, φS−P and φS−ML.

In Figure 5, a colour of a cell corresponds to the aggregation model of this colour to recommend
treatment T1 with higher probability than another method. For instance, red cells in the first column of
Figure 5 showing (φP−L) indicate that, when T2 characteristics take the corresponding value, the linear
model recommends T1 more often than the product one.

In Scenario 1, the four models are in agreement to recommend T1 when T2 corresponds to less benefit
and more risk. On the diagonal, the product and SLoS models both favour T1 over T2 when T2 has either
extremely high benefit and risk (top right corner), or extremely low benefit and risk (left bottom corner),
compared to either the linear or multi-linear models. This occurs due to the penalisation of extremely low
benefit and extremely high risk by the product and SLoS models. Comparing product and SLoS models
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Figure 4. Probability that the model recommends T1 over T2, P
(
P1,2 > 0.8

)
, for scenarios 1-7 for the linear (red), product (purple),

multi-linear (orange), and SLoS (blue) models.

for these values of benefit-risk, SLoS favours T1 over T2 more often for low but not boundary values of
the criteria. This occurs due to the SLoS model penalising the undesirable qualities more than the product
one (this is similar to trends observed in the case study). Compared to the linear model, the multi-linear
model recommends T1 over T2 with higher probability when T2 has either higher benefit and higher risk, or
lower benefit and lower risk due to the interaction term providing mild penalisation of extremely high risk
or extremely low benefit. However, there is (in most cases), a greater magnitude of difference between the
SLoS and product models than between the linear and multi-linear models.

For example, when T2 has criteria values θ2,1 = 0.2 (benefit), θ2,2 = 0.1 (risk) (lower benefit, lower risk),
T1 is recommended in 2% of the trials under the linear model, in 70% under the product, in 8% under the
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Figure 5. Results of the six pairwise comparisons of the four AM, where a cell being a colour indicates that that AM recommended T1

more than the comparative AM (the deeper the colour, the greater the difference in recommendation).

multi-linear and in 90% under SLoS. This tells us that the product and SLoS models do not permit that the
decrease in risk is worth the decrease in benefit that comes with it (the SLoS model more than the product
model), whilst the linear and multi-linear models both consider it acceptable. Considering the case when
θ2,1 = 0.7, θ2,2 = 0.7 (higher benefit and higher risk risk compared to T1), T1 is recommended in 20% of
the trials under the linear model compared to 49% for product model, 25% for the multi-linear model and
61% for SLoS model. This tells us that the product and SLoS models do not permit that the increase in
benefit is worth the increase in risk that comes with it (again, this effect is stronger in the SLoS model than
the product model), whilst the linear and multi-linear both consider it acceptable (the linear model more-so
than the multi-linear model). Similar observations can be made in Scenarios 2-3.

However, a distinguishing difference between the designs under Scenario 1 can be found when T2 has
the criteria θ2,1 = 0.9, θ2,2 = 0.7. In this comparison, T1 is recommended in 0% of the trials under the
linear model compared to 11% for product model, 0% for the multi-linear model and 30% for SLoS model.
Meanwhile, T2 is recommended in 92% of the trials under the linear model compared to 32% for product
model, 84% for the multi-linear model and 13% for SLoS model. This shows that the linear, product and
multi-linear models are all more likely to recommend T2, whilst only the SLoS model is more likely to
recommend T1. This occurs due to the different strengths of penalisation between the models, and only the
SLoS model does not consider this an acceptable trade-off. This shows that the product model and the SLoS
model do not always make the same recommendations, and that these differences can sometimes be quite
large.
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In Scenario 4, where T1 has extremely low benefit and risk, it is very rarely recommended by either the
product of SLoS models, whereas it recommended by both the linear and multi-linear models, in cases
where T2 has some increase in benefit, but a higher increase in risk. This occurs because the SLoS and
product models penalise extremely low benefit so severely that the level of risk has almost no impact on
the recommendation. The multi-linear model also penalises the extreme low benefit, but on a much smaller
scale. For example, for T2 with criteria values θ2,1 = 0.6, θ2,2 = 0.7, T1 is recommended with probability
68% under the linear model, never recommended under the product model, 41% under the multi-linear
model and never recommended under the SLoS model. This shows that the product and SLoS models
reflect the desirable properties outlined above: that we are not interested in the risk criterion value of a
treatment if the benefit criterion value is small/zero, whilst both the linear and multi-linear models do not
reflect this (although the multi-linear model does somewhat penalise this). Similar results are observed in
Scenario 5, where T1 has extreme risk and extreme benefit. The SLoS and product models will recommend
T2 if it has lower risk than T1 as long as it has some benefit, whereas the linear model and the multi-linear
model will recommend T1 over T2 if the benefit of T2 decreases by a greater amount than the risk.

It should be noted that poor recommendations can be made under the product and SLoS models if both
T1 and T2 have a risk criterion value of 0.9, as the strength of the penalisation of the undesirable criteria
overpowers the effect of the benefit. For example, in scenario 5 where T2 has criteria values θ2,1 = 0.8,
θ2,2 = 0.9 (same risk criterion value as T1 but a lower benefit criterion value), T1 is recommended with
probability 75% under the linear model, 27% under the product model, 68% under the multi-linear model
and 23% under the SLoS model (this effect is stronger in the SLoS model than in the product model due
to its harsher penalisation of the undesirable criteria). They both did recommend T2 with probabilities 13%
and 17% respectively, showing that they still recommend the better treatment T1 more often than T2, but that
these two models hardly discriminate very unsafe drugs (for comparison, both the linear and multi-linear
models only recommended T2 with probability 1% each).

In Scenarios 6-7, all AM recommend T1 over T2 when T2 is unarguably worse (similarly they all
recommend T2 over T1 when T1 is unarguably worse). Along the diagonal, the SLoS model recommends
T1 over T2 more often than the other AM when T2 has either extreme low benefit and extreme low risk, or
extreme high benefit and extreme high risk, compared to T1 (although the product model recommends T1
only a slightly smaller proportion of times than the SLoS model). Again, this is the result of the penalisation
of extremely low benefit or extremely high risk criteria. Similarly, the multi-linear model recommends T1
over T2 more often than the linear model in the same circumstances. For example, in Scenario 6, when T2
has criteria values θ2,1 = 0.2, θ2,2 = 0.2 (lower benefit and lower risk), T1 is recommended with probability
21% under the linear model, 59% under the product model, 28% under the multi-linear model and 68%
under the SLoS model. This shows how the different levels of penalisation affect the recommendations,
where the stronger the penalisation of the undesirable low benefit criterion value, the more likely an AM
is to recommend T1, and is the reason why there is such a large difference between the linear and SLoS
models recommendations.

Overall, the simulation study has shown that, for the two criteria having an equal relative importance,
SLoS penalises extremely low benefit and extremely high risk criteria the most, whilst the product model
penalises these moderately, acting as a sort of middle ground between the linear and SLoS models. The
multi-linear model offers a small amount of penalisation (less than the product model), but due to the added
complexity of this model when more criteria are added, it should not be recommended over either the
SLoS model or the product model. The linear and multi-linear models both recommend treatments with no
benefit/high risk over other viable alternatives, which contradicts conditions set out by Saint-Hilary et al.14.
Therefore we can provisionally conclude that the two models that appeal most at this point are the product
and SLoS models.
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4.4 Sensitivity Analysis: Correlated criteria

The results above concerned the case with the two criteria being uncorrelated. However, it might be
reasonable to assume that the criteria for one treatment might be correlated. In this section, we study
how robust the recommendation by each of the four models are to the correlation between the benefit
and risk criteria. We consider two cases of the correlation: a strong positive correlation (ρ = 0.8) and a
strong negative correlation (ρ = −0.8) between the criteria. The correlated outcomes were generated using
a procedure laid out in Mozgunov et al. 26

We study how likely the correlated outcomes are to change the final recommendation of one of the
treatments. Specifically, we study the proportion of cases under each of the scenarios in which the difference
in the probability of recommending treatment T1, P

(
P1,2
X > 0.8

)
, changes by more than 2.5% and by 5%.

Table 5 show the number of cases (out of 81) under each of nine scenarios, in which the differences in the
probabilities to recommend T1 over T2 changes by at least 2.5% and 5% comparing the positively correlated
and uncorrelated criteria. The case investigating the effects of negative correlation shows similar results to
those presented here, and is included in the Supplementary Material. For example, the first entry in Table 5
shows that in 37% cases under Scenario 1, the probability to recommend T1 changes by at least 2.5% if the
linear model is used.

Linear Model Product Model Multi-Linear Model SLoS Model

Scenario 1
≥2.5%
≥5%

30/81 (37.0%)
22/81 (27.2%)

24/81 (29.6%)
15/81 (18.5%)

29/81 (35.8%)
21/81 (25.9%)

22/81 (27.2%)
12/81 (14.8%)

Scenario 2
≥2.5%
≥5%

10/81 (12.3%)
5/81 (6.2%)

15/81 (18.5%)
3/81 (3.7%)

15/81 (18.5%)
5/81 (6.2%)

12/81 (14.8%)
3/81 (3.7%)

Scenario 3
≥2.5%
≥5%

16/81 (19.8%)
6/81 (7.4%)

13/81 (16.0%)
5/81 (6.2%)

17/81 (21.0%)
4/81 (4.9%)

14/81 (17.3%)
4/81 (4.9%)

Scenario 4
≥2.5%
≥5%

22/81 (27.2%)
17/81 (21.0%)

3/81 (3.7%)
0/81 (0%)

22/81 (27.2%)
15/81 (18.5%)

0/81 (0%)
0/81 (0%)

Scenario 5
≥2.5%
≥5%

23/81 (28.4%)
17/81 (21.0%)

4/81 (4.9%)
0/81 (0%)

22/81 (27.2%)
15/81 (18.5%)

0/81 (0%)
0/81 (0%)

Scenario 6
≥2.5%
≥5%

29/81 (35.8%)
20/81 (24.7%)

21/81 (25.9%)
12/81 (14.8%)

30/81 (37.0%)
16/81 (19.8%)

17/81 (21.0%)
4/81 (4.9%)

Scenario 7
≥2.5%
≥5%

25/81 (30.9%)
14/81 (17.3%)

19/81 (23.5%)
9/81 (11.1%)

24/81 (29.6%)
15/81 (18.5%)

13/81 (16.0%)
2/81 (2.5%)

Scenario 8
≥2.5%
≥5%

0/81 (0%)
0/81 (0%)

0/81 (0%)
0/81 (0%)

0/81 (0%)
0/81 (0%)

0/81 (0%)
0/81 (0%)

Scenario 9
≥2.5%
≥5%

1/81 (1.2%)
0/81 (0%)

1/81 (1.2%)
0/81 (0%)

1/81 (1.2%)
0/81 (0%)

1/81 (1.2%)
0/81 (0%)

Total
≥2.5%
≥5%

156/729 (21.4%)
101/729 (13.9%)

100/729 (13.7%)
44/729 (6.0%)

160/729 (21.9%)
91/729 (12.5%)

79/729 (10.88%)
25/729 (3.4%)

Table 5. Number of times (%) when the difference in recommending T1 changes by at least 2.5% or 5% between the positively
correlated criteria and the non-correlated criteria

Table 5 shows that all four models are the most affected by correlation under Scenario 1 with the
characteristics of T1 being in the middle of the unit interval. This effect is, however, less prominent for
the Product and SLoS Models. At the same time, under Scenarios 2-7, the correlation has a larger effect on
the linear and multi-linear models than on the other two models. Scenarios 8-9 are hardly affected by any
correlation, and the effect is similar across all four models.
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Overall, the SLoS model is the least affected by correlation between the criteria, the product model is
the second least affected whereas the multi-linear (for the threshold 2.5%) and the linear model (for the
threshold 5%) are the most affected ones.

5 Discussion

In this article, four potential AM are investigated for use in benefit-risk analyses: The linear model, product
model, multi-linear model and the SLoS model. The differences of these models were highlighted in a
case-study and a simulation study.

In most clear cases (i.e. when one treatment has more benefit and less risk than the competitor), all AM
gave similar recommendations. However, in cases where one treatment had either no benefit or extreme risk,
the models which penalised undesirable values more (the product and SLoS models) gave more desirable
recommendations: non-effective or extremely unsafe treatments are never recommended. Furthermore, with
these models, more risk is accepted in order to increase benefit when the amount of benefit is small than
when it is high (or less benefit is desirable to reduce risk when the amount of risk is high than when it is
small), which is consistent with the well established assumption of non-linearity of human preferences20.
It should be noted that these models hardly discriminate two treatments that slightly differ but have both
extremely undesirable properties. However, in this case, none of the treatments should be recommended
anyway.

The effects of correlations between criteria was also investigated in this study. The overall effect of
correlations was small to negligible in the product and SLoS models, showing these AM are not much
affected by correlations between the criteria. However, the linear and multi-linear models were more likely
to see a 2.5% or 5% change in the probability of recommending one treatment over another, showing that
they are more affected by correlations between the criteria.

Overall, the two models to recommend from this investigation are the product model and the SLoS
model, depending on how severely the decision-maker whish to penalise treatments with either no benefit
or extreme risk (moderate penalisation: product model, strong penalisation: SLoS model). The multi-linear
model, whilst acting as a middle ground between the linear model and the product and SLoS models
in the simulation study, involves an increased complexity behind the model. These include the increased
complexity involved with adding additional terms and increased difficulty in weight mapping. This model
also struggled to truly reflect the weightings given in the case study, especially in scenario 2. Because of this,
we do not recommend this AM over the product or SLoS models. Additionally, the linear and multi-linear
models should not be recommended as both of these models do not contain the two desirable properties
outlined in Saint-Hilary et al.14: That treatments with no benefit/extreme risk should not be recommended,
and that a larger increase in risk is accepted in order to increase the benefit if the benefit is small compared
to if the benefit is high – both of which are present in the product and SLoS models.
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1 Additional simulation results

Figure S1. Results of the six pairwise comparisons of the four AM, for scenarios 8 and 9

Linear Model Product Model Multi-Linear Model Product Model

Scenario 1
≥2.5%
≥5%

24/81
12/81

18/81
8/81

25/81
9/81

18/81
5/81

Scenario 2
≥2.5%
≥5%

13/81
3/81

18/81
1/81

16/81
3/81

16/81
1/81

Scenario 3
≥2.5%
≥5%

19/81
2/81

13/81
2/81

19/81
2/81

13/81
0/81

Scenario 4
≥2.5%
≥5%

11/81
2/81

0/81
0/81

9/81
2/81

0/81
0/81

Scenario 5
≥2.5%
≥5%

13/81
2/81

3/81
0/81

14/81
0/81

0/81
0/81

Scenario 6
≥2.5%
≥5%

20/81
3/81

13/81
0/81

17/81
3/81

8/81
0/81

Scenario 7
≥2.5%
≥5%

22/81
3/81

14/81
2/81

23/81
3/81

11/81
0/81

Scenario 8
≥2.5%
≥5%

1/81
1/81

2/81
1/81

1/81
1/81

3/81
1/81

Scenario 9
≥2.5%
≥5%

3/81
1/81

3/81
1/81

3/81
1/81

3/81
1/81

Total
≥2.5%
≥5%

126/729
29/729

84/729
15/729

127/729
24/729

72/729
8/729

Table S1. Number of times when the difference in recommending T1 changes by at least 2.5% or 5% between the negatively correlated
criteria and the non-correlated criteria
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2 Weight derivations

Product Model Firstly, note that under the product model, the resultant utility score for the two criteria
example is given by:

zP = uP (θi1, θi2.w
P ) = u1(θi1)

wp × u2(θi2)
1−wp

This is then used to find the equation of the contour lines:

1− u2(θi2) = 1−
(

zP

u1(θi1)w
p

) 1

1−wP

for u1(θi1)w
p

> (zP )−w
P

The slope of the tangent of the contour at a given u1(θi1) for the utility score zP is:

wP

1− wP

(
1

u1(θi1)

)(
zP

u1(θi1)w
p

) 1

1−wP

Now, the two equations of the slopes for the product and the linear models are set equal to each other at the
point ui,1=ui,2=0.5. This gives the equality:

wP

1− wP
=

wL

1− wL
.

Which further simplifies down to wP =wL , showing that the weight used in the linear model is also the
weight used in the product model.

Multi-Linear Model Firstly, note that under the multi-linear model, the resultant utility score for the two
criteria example is given by:

zML(θi1, θi2, w
ML
1 , wML

2 ) := wML
1 u1(θi1) + (wML

2 )u2(θi2) + (1− wML
1 − wML

2 )(u1(θi1)u2(θi2)).

This is then used to find the equation of the contour lines:

1− u2(θi2) = 1− zML − wML
1 u1(θi1)

wML
2 + u1(θi1)− wML

1 u1(θi1)− wML
2 u1(θi1)

The slope of the tangent of the contour at a given u1(θi1) for the utility score zS is:

wL

1−wL =
wML

1 wML
2 +zML−zML(wML

1 +wML
2 )(

wML
2 −(u1(θi,1))(−1+wML

1 +wML
2 )
)2

Now, we firstly set a constraint 1− wML
1 − wML

2 = c (where c is the total weight given to the interaction
terms). We then set the two equations of the slopes for the multi-linear and the linear models so they are
equal to each other at the point ui,1=ui,2=0.5. This gives the equality:

wML = wL − c

2
.
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SLoS Model Firstly, note that under the SLoS Model, the resultant loss score for the two criteria example
is given by:

zS =

(
1

u1(θi1)

)wS

+

(
1

u2(θi2)

)1−wS

This is then used to find the equation of the contour lines:

1− u2(θi2) = 1− (zS − u1(θi1)
−wS

)
− 1

1−wS for u1(θi1) > z−
1

zS

The slope of the tangent of the contour at a given u1(θi1) for the utility score zS is:

wS

1− wS

(
zS − u1(θi1)

−wS

) ws−2

1−wS
(
u1(θi1)

−(wS+1)

)

Now, the two equations of the slopes for the SLoS and the linear models are set equal to each other at the
point ui,1=ui,2=0.5. This gives the equality:

wS

1− wS

(
22w

s−1

)
=

wL

1− wL
.
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