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Abstract—An algorithm to investigate nonlinear systems with
time delay variability is proposed. It automatically cycles through
segments of an open loop experiment, capturing the directional
change in the output via a pair of regression equations, and
estimates the time delay accordingly. The method is a black-
box, statistical approach that does not require a dynamic model
nor any knowledge of the systematic causes of the time de-
lay variability. It is designed for systems with approximately
integrating behaviour, hence it is used in this article for the
analysis of hydraulically actuated robotic manipulators with this
characteristic and time-varying delays. In the context of control,
the new algorithm provides insight into the variable time delay
behaviour and hence can guide control design decisions e.g. by
uncovering state dependencies.

Index Terms—uncertain time delay, time-varying delay, dead-
band, hydraulic manipulators

I. INTRODUCTION

Many physical systems have time delays and these are
most typically observed and subsequently modelled as time-
invariant delays [1, 2]. Delays are sometimes referred to as an
after-effect or a dead-time, and the system itself can be referred
to as a hereditary system. Time delays typically manifest as a
mixture of communication delays [3], calculation delays, and
delays that occur due to mechanical or other dynamics. These
include systems with, for example, actuators, sensors, field
networks involved in feed-back loops, and networked control
systems [4]. Well-known identification and control methods for
time delay systems include functional differential equations,
fractional derivation equations, transport equations, the Smith
Predictor, among many others.

Particular difficulty is introduced, however, by systems with
time delays that are relatively long, unknown and potentially
time-variable. As discussed by [5], there are a number of
methods for modelling time-varying delays e.g. [6–9]. Ex-
amples of such systems can be found across science and
engineering, from e.g. insulin delivery control in medicine [10]
to hydraulically actuated robotic manipulators. With regard
to the latter, in some scenarios the time-delay (in seconds)
between implementing a change in the applied voltage and
observing the associated angular velocity response, can change
over time. Such variations in the delay may be caused by
the internal dynamics of the system and other nonlinear
characteristics, such as fluid compressibility, varying pressure
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dynamics, dead-band of the pump, valve flow properties and
friction characteristics [5]. These variable time-delays greatly
complicate the process of system identification. Indeed, with-
out knowledge of the delay, many methods can become wildly
inaccurate. Furthermore, the presence of variable time delays
in control systems can lead to instability, reduced robustness,
a sluggish response and, in general, detuned control [11].

The present article develops an algorithm to help investigate
the behaviour of a system with a variable time delay. The
method is a black-box, statistical estimation approach that
does not require a dynamic model nor any knowledge of
the systematic causes of the time delay variability. In the
context of control, the algorithm can provide insight into the
time delay behaviour and hence guide design decisions. For
instance, the algorithm provides information to help decipher
whether the time delay is state dependent, in which case it
can be predicted and used for state-dependent control [12],
or whether it is dependent on multiple conditions such that it
appears stochastic, in which case, it might be estimated online
using existing methods e.g. via neural networks [6] or model
comparison [7].

The algorithm has been developed and initially evaluated for
the analysis of hydraulically actuated robotic manipulators, for
which prior work has tended to utilise an integrating model
with time delays [12–14]. In such cases, the Refined Instru-
mental Variable (RIV) algorithm and associated statistical cri-
teria, were used to estimate linear models with time-invariant
delays for a range of operating conditions. Alternatively,
nonlinear models were obtained by directly estimating the state
dependent parameters from experimental data [15]. Both these
approaches are limited to time–invariant delays. However,
recent research by the present authors has investigated how
to obtain improved manipulator control performance [16], and
this has motivated a re-examination of the experimental data
to highlight the scenarios in which the time–delay varies.

Graphs of how the delay varies with operating condition can
potentially be used to develop new improved state-dependent
models. However, the RIV based approach alluded to above
is necessarily used in conjunction with classical step experi-
ments with steady state initial conditions, and does not fully
capture the nonlinear dynamic behaviour manifested in longer
experiments with multiple input magnitudes. By contrast,
the new algorithm automatically cycles through segments of
experimental data, capturing the directional changes in the



output associated with each input change, and updating the
time delay accordingly.

The method is applicable to open-loop experiments in which
the input signal switches between different magnitudes at
random intervals in time, and the response of the nonlinear
system possesses integrator-like properties (see laboratory
example below). In contrast to non-integrator systems, the
integrator-like response is a particularly unique case for time
delay analysis in that it has no steady state. Thus, while the
RIV based approach is suitable for non-integrator systems, it
yields unsatisfactory results for the integrator-like response.
The proposed algorithm, hence, provides a unique solution to
the given problem. Finally, in contrast to some of the neural
network based approaches alluded to above, the proposed
algorithm has a low computational cost, is straightforward to
implement and is not linked to a specific dynamic model or
control method.

The algorithm is introduced in the following Section II. The
laboratory example is described in Section III. This is followed
by the discussion and conclusions in Sections IV and V.

II. TIME DELAY ESTIMATION METHODOLOGY

To illustrate the concept of a varying time delay, consider
the following generic model for manipulator angle yk,

yk = fn {uk−τk} (1)

where fn represents a discrete-time dynamic model, linear or
otherwise, uk is the input and τk is the pure time delay at
sample k. For the manipulator, uk is an applied voltage, scaled
so that the sign represents the direction of joint movement.

The proposed algorithm assumes τk is the number of
samples between each input change and the beginning of
the associated directional (or velocity) change in the output
response. It is estimated using discrete-time open-loop ex-
perimental data. An illustrative experiment for one joint of a
HYDROLEK–7W manipulator in the laboratory [14] is shown
in Fig. 1. Here, the pseudo-random input signal was designed
to encompass various step changes in magnitude, activated at
random intervals in time, some close to the manipulator dead-
band limits of ≈ ±1.2, in addition to some larger magnitude
step changes up to the saturation limits of ≈ ±2.

The proposed algorithm estimates the time delay τk directly
from the input and output signals without reference to equa-
tion (1). An outline of the approach is given by Algorithm 1.
It operates on the input–output data set, u = [u1, u2, . . . , uN ]
and y = [y1, y2, . . . , yN ], where N is the total number of
samples in the experiment.

A. Identification of Input Step Indices

The first stage of Algorithm 1 is to determine the subset of
sample numbers pi (i = 1, . . . , n) at which the input changes,
where n is the total number of input changes that occur within
an experiment. This is illustrated by Fig. 2 where, for example,
the second and third step changes in the input occur at samples
p2 = 89 and p3 = 116, respectively. In practice, the elements

Algorithm 1: Estimation of time-varying delay τk

Input: u = [u1, u2, . . . , uN ],y = [y1, y2, . . . , yN ]
Identification of Input Step Indices
i = 1
for k ← 2 to N do

if uk ̸= uk−1 then
pi = k
i = i+ 1

end
end
Result: p = [p1, p2, . . . , pn]
Output Data Pre-Processing
Result: ys = low-pass filter (y, ωpb)
Estimation of Time Delays
for i← 1 to n do

if qi−1 is known then
Estimate pairs of regression lines within
segment ϕ̄i = [qi−1, qi−1 + 1, . . . , pi+1 + α],
where user coefficient α ≤ τmin

else
Estimate pairs of regression lines within
segment
ϕ̄i = [pi − α, pi − α+ 1, . . . , pi+1 + α]

end
end
Reduce data resolution in such a way that pairs of
distributed data points remain to estimate
candidate regression lines. The resolution is
defined by user coefficient β and is achieved by
the β ×Mi matrix Φi in equation (4).

for f ← 1 to Mi − 1 do
Calculate candidate pairs of regression lines of
the form γi,f,1 = mi,f,1ϕ̄i,1 + bi,f,1 and
γi,f,2 = mi,f,2ϕ̄i,2 + bi,f,2, where
ϕ̄i,1 = [ϕi,1, ϕi,2, . . . , ϕi,fβ ] and
ϕ̄i,2 = [ϕi,fβ+1, ϕi,fβ+2, . . . , ϕi,Miβ ]

The pairs of lines are concatenated to produce
γi,f = [γi,f,1, γi,f,2]

Find the Sum of Squared Errors (SSE) of each
set of lines.

end
Find best fit pair of regression lines i.e. fopt is the
value of f that yields the lowest SSE.

Determine jopt = foptβ
Identify qi = ri + jopt and hence δi = qi − pi.
Evaluate result against conditions.

end
Result: q = [q1, q2, . . . , qn], δ = [δ1, δ2, . . . , δn],

m = [m1,m2, . . . ,mn]
Variable time delay: [τ1, τ2, . . . , τN ] for samples
k = 1→ N are obtained by expansion of δ using p.



Fig. 1. HYDROLEK–7W experimental data, showing the joint angle (upper
subplot) and open loop input (lower) plotted against sample number (0.01 s).

of p = [p1, p2, . . . , pn] are found via a straightforward for-
loop over the data set e.g. using MATLAB. In the pseudo-code
shown by Algorithm 1, a counter i is used as an index to save
a given sample number to the array.

B. Output Data Pre-Processing

The output data are pre-processed to reduce noise. This is
achieved by applying a low-pass filter to the response y, with
user defined passband frequency ωpb obtained via trial and
error experimentation. The smoothed response is denoted ys.

C. Estimation of Time Delays: Overview

The next and main part of Algorithm 1 is a loop for i =
1→ n to estimate the time delays. The first stage of this loop
is to extract a segment of data from which to estimate the
delay associated with the input change that occurred at sample
pi. Each segment of the response is approximated by a pair
of linear regression lines, illustrated by the thick solid traces
in Fig. 2. Each segment is defined so as to encompass the
delayed output response associated with a particular change
in the input, whilst avoiding the inclusion of any directional
output changes associated with the previous, or the following,
input change. In Fig. 2, the vertical dashed lines at samples
79 and 126 define the borders of one such segment (details
explained in the following II-D). For each segment, a set of
candidate regression line pairs are fitted, and the pair with
the best fit in terms of the Sum of Squared Errors (SSE) is
identified.

The sample number associated with the switch from the
first to the second of the pair of optimised regression lines
(the pair with the lowest SSE) is denoted qi. This is assumed
to be the sample at which the output starts to respond to the
input change. For example, in Fig. 2, the input signal drops
to a value close to zero at sample p2 = 89 and, following
successful application of the algorithm, sample q2 = 104
is identified as the moment when the output has started to
respond to this change. Hence, the time delay associated with
this part of the experiment is δ2 = 15 samples.

Fig. 2. Diagram showing how a pair of regression lines is fitted to one segment
of data. The square-wave-like signal is the input, uk , whilst the response, yk ,
is represented by the red trace. The two black lines overlaying the response
are illustrative regression lines estimated in the range ϕ̄2. Here, p1 to p4
represent sample numbers at which the input signal changes. For the case
of p1 and p2, the estimated sample numbers at which the output starts to
respond are denoted q1 and q2.

To summarise, pi and qi represent the known sample
number for a step change in the input and the estimated sample
number when the output starts to respond, respectively. Hence,
δi = qi − pi (i = 1, . . . n) is the time delay associated with
that particular input change.

D. Estimation of Time Delays: Segments

As shown by Algorithm 1, the time delay estimation loop
starts by defining a list of sample numbers spanning the
segment associated with the i-th change in the input, i.e.

ϕ̄i = [ri, ri + 1, ri + 2, . . . , pi+1, pi+1 + 1, . . . , pi+1 + α]
(2)

where ri and pi+1+α are the first and final sample numbers of
the i–th segment of data over which a pair of regression lines
will be fitted, respectively, and α is a user defined coefficient.
There are two options for the first element, ri, expressed using
an if statement in Algorithm 1, as follows.

If the previous estimate of time delay is known, qi−1 is
recorded and can be used to define the start of the segment i.e.
ri = qi−1. In other words, ri is defined as the moment (sample
number) that the time delay associated with the previous
segment has worked its way through the system. In the case
of Fig. 2, q1 = 71 and so choice of r2 = 71 would ensure that
the time delay estimate for the second segment is not effected
by the response of the first, whilst maximising the quantity of
data used to estimate the associated regression line.

However, if the previous estimate of the time delay does
not exist, either because it is the first segment of the series,
or because the algorithm failed to converge to a satisfactory
solution, then qi−1 is not available and ri = pi−α is used as
the first element of ϕ̄i instead. Fig. 2 illustrates the concept
for the case that p2 = 89 and user defined α = 10. Hence,



r2 = p2 − α = 79 is identified as the start of the segment, as
indicated by the vertical dotted line over sample number 79.

For both the above options, the final sample number of
ϕ̄i in equation (2) is defined as pi+1 + α. Again, α is the
user-defined variable chosen to ensure that any previous or
subsequent directional output changes are not included in the
current segment. In Fig. 2, p3 = 116 and user chosen α = 10,
hence the final element of ϕ̄2 is sample number p3+α = 126,
as indicated by the vertical dotted line over sample number
126. The second segment is, therefore, defined as follows,

ϕ̄2 = [79, 80, . . . , 116, 117, . . . , 126] (3)

Normally, α ≤ τmin where τmin is an assumed minimum time
delay for the system. Hence, if the minimum time delay takes
a very low value, the associated small value of α will ensure
relatively few samples of data within the segment and may
yield poor estimates of δi.

E. Estimation of Time Delays: Regression Lines

Candidate pairs of regression lines are fitted to the output
response associated with each segment, i.e. yk for k = ϕ̄i.
Referring to equation (2), the first and second regression lines
of each pair are fitted to yk over samples ri → ri + j − 1
and ri + j → pi+1 + α, respectively. Here, j > 1 represents
the switch from one of the regression lines to the other and
its optimised value will be used to determine the time delay.
If the regression lines provide a satisfactory fit to the output
data, then qi = ri + j is the sample at which the output has
started to change direction or velocity.

Operating at its highest resolution, the algorithm estimates
pairs of regression lines in a loop for j = 2, 4, 6, . . . , pi+1 +
α−ri−1. Again referring to the second segment ϕ̄2 of Fig. 2,
equation (3) shows that the first pair of lines would be for
samples 79−80 and 81−126, the second 79−82 and 83−126,
and so on through to 79 − 124 and 125 − 126, i.e. 23 pairs
in total. In practice, promising results are obtained using the
algorithm with a reduced resolution and hence reduced com-
putational time. Another user coefficient β ≥ 2, representing
the number of data points in the shortest regression line under
consideration, is introduced to define the new resolution.

For coding purposes, and to identify the data points for
which to calculate the regression lines, the first Miβ elements
of ϕ̄i = [ϕi,1, ϕi,2, . . . , ϕi,pi+1+α−ri+1] from equation (2) are
earranged into a matrix, Φi, of dimensions β ×Mi,

Φi =


ϕi,1 ϕi,2 ... ϕi,β

ϕi,β+1 ϕi,β+2 ... ϕi,2β

ϕi,2β+1 ϕi,2β+2 ... ϕi,3β

...
...

. . .
...

ϕi,(Mi−1)β+1 ϕi,(Mi−1)β+2 ... ϕi,Miβ

 (4)

where,

Mi = floor
{
pi+1 + α− ri + 1

β

}
(5)

Here, pi+1 +α− ri +1 represents the number of elements in
ϕ̄i from equation (2). Floor is used to ensure an integer value,
with the omitted data at the end of the segment generally found
to have a negligible impact on the results.

Having optionally reduced the data resolution via choice of
β, the next step of Algorithm 1 is the time delay estimation
loop for j = β, 2β, 3β, . . . , (Mi − 1)β. For each segment i,
standard linear least squares is used to estimate a candidate
set of regression line pairs of the form,

γi,f,1 = mi,f,1ϕ̄i,1 + bi,f,1 (6)

and
γi,f,2 = mi,f,2ϕ̄i,2 + bi,f,2 (7)

where f is a counter that increments by unity for each step in
the loop i.e. f = 1, 2, . . . ,Mi − 1, while mi,f,1 and bi,f,1 are
the slope and intercept coefficients of the first line, and mi,f,2

and bi,f,2 are similar for the second line. Here,

ϕ̄i,1 = [ϕi,1, ϕi,2, . . . , ϕi,fβ ] (8)

and
ϕ̄i,2 = [ϕi,fβ+1, ϕi,fβ+2, . . . , ϕi,Miβ ] (9)

For f = 1, the sample numbers over which to estimate the first
line are given by the first row of Φi and the sample numbers
for the second line are formed by a vectorization of the remain-
ing rows i.e. samples ϕi,1, . . . , ϕi,β and ϕi,β+1, . . . , ϕi,Miβ ,
respectively. For f = 2, the first two rows of Φi are the
sample numbers for the first line and a vectorization of the
remaining rows forms the basis of the second line. The loop
proceeds through to f = Mi−1, for which the regression pair
is formed using a vectorization of the first Mi − 1 rows and
the final row of Φi.

Each pair of regression lines are concatenated,

γi,f = [γi,f,1,γi,f,2] (10)

and the SSE is used as the metric to select the best fit, where
the error is based on γi,f and yk for the relevant sample
numbers. Define fopt as the value of f associated with the
regression pair that yields the lowest SSE. This is used to
determine qi = ri+ jopt, where jopt = foptβ and δi = qi−pi
is the time delay associated with the input change pi. Finally,
it is assumed that τk = δi for k = pi through to k = pi+1.

III. LABORATORY EXAMPLE

The laboratory system consists of two HYDROLEK–7W
manipulators, each a 6-degrees-of-freedom (6-DOF) articu-
lated arm, with a seventh actuator for the gripper. The ma-
nipulators show evidence of various types of nonlinearity, but
generally yield an integrating type of response, albeit some-
times poorly damped with oscillations [12–14]. Although such
oscillations complicate the time delay estimation process, they
appear to be satisfactorily handled via the proposed algorithm.
The system has recently been reconfigured, with the latest
hardware framework and control software described by [5].
Photos are available at: http://wp.lancs.ac.uk/cjtaylor/brokk/.

Again illustrating using the second segment ϕ̄2 of Fig. 2,
with p2 = 89, p3 = 116 and α = 10 as before, r2 = 79
and the segment consists of p3 + α − r2 + 1 = 48 samples:
see equation (3). With β = 2, then M2 = 48/2 = 24,



Fig. 3. Example of regression pair sample numbers over one segment,
showing the input signal (black, square wave), the smoothed output (red)
and the key sample numbers for β = 5 (asterisks).

j = 2, 4, . . . , 46 and there are 23 iterations in the loop. If
instead the resolution β = 5, then M2 = floor(48/5) = 9,
j = 5, 10, . . . , 40 and there are 8 iterations. Focusing on the
case with β = 5, equation (4) takes the following form,

Φ2 =


ϕ2,1 ϕ2,2 ϕ2,3 ϕ2,4 ϕ2,5

ϕ2,6 ϕ2,7 ϕ2,8 ϕ2,9 ϕ2,10

...
...

...
...

...
ϕ2,36 ϕ2,37 ϕ2,38 ϕ2,39 ϕ2,40

ϕ2,41 ϕ2,42 ϕ2,43 ϕ2,44 ϕ2,45

 (11)

in which the numerical values are ϕ2,1 = 79 through to
ϕ2,45 = 123. The final three samples of ϕ̄2 are omitted
from the matrix Φ2. As discussed above, this array provides a
convenient framework to estimate the pairs of regression lines.
In the case of Fig. 2, fopt = 5 yields the lowest SSE, hence
jopt = 25, q2 = 104 and δ2 = 15 samples, as previously
noted. Finally, it is assumed that τk = 15 for k = 89 → 116
i.e. the time delay of this segment. Alternatively, a linear (or
other) interpolation could be used to connect the estimates of
time delay for each segment.

For the same segment, the beginning and end points of the
candidate regression pairs for β = 5 are plotted in Fig. 3.
while Fig. 4 exemplifies a regression pair fitted to part of
an experiment in which the input signal moves across the
dead-band. Here, the manipulator is moving during the first
part of the experiment but slows almost to a stop once the
input is close to the dead-band. Finally, although illustrative
results have been omitted for brevity, Algorithm 1 has been
successfully applied to data such as Fig. 1, in order to provide a
series of time delay estimates over longer experimental series.

IV. DISCUSSION

Previous research has investigated a state dependant param-
eter (SDP) dynamic model for joint angle, which is based on
the relationship between angular velocity and voltage [12–14].
In this regard, Fig. 5 shows how the estimated time delay
can be plotted against, for example, the manipulator angular

Fig. 4. Example of the Algorithm 1 applied to part of an experiment in
which the input changes to a value close to the dead-band, showing the input
signal (thick black trace), experimental data (grey), smoothed output (red) and
optimised regression line pairs (black traces overlaying the output signal).

velocity, in order to highlight potential state-dependencies.
Unfortunately, the example given by Fig. 5 is inconclusive.
However, upon accruing more data via further experimental
work, the present authors aim to identify the dependency of
the time delay on measured variables or combinations of these
e.g. angular velocity and hydraulic pressure.

In this context, the new algorithm helps to clarify the types
of experiments that will be needed. These should be imple-
mented with a predefined, finite array of randomly chosen
input values, which are repeatedly used within one experiment,
allowing for deeper analysis into the system’s time delay in-
consistencies. Identifying a correlation between the delay and
other variables will give insight into whether the time delay
can be predicted, or whether an online identification method
is required for control. For example, [7] develop a multi-
model controller, which uses multiple partial models to predict
a range of responses for a range of possible time delays.
The time delay is subsequently estimated by comparing the
predictions to the current measured response. Reference [16]
builds on this idea in the context of time delay variations.

Fig. 5 also demonstrates the significant range of time delays
for the manipulators under consideration here. The estimated
time delay varies from 1 sample to 80 samples, equivalently
0.01 s to 0.8 s, a comparatively very large range that is
ignored by the existing SDP models based on time-invariant
delays. Although beyond the scope of the present article,
which focuses on the new time delay estimation routine per
se, the authors are investigating the development of improved
SDP models and control systems to account for these results.

Finally, analysis of the laboratory results reported above
have facilitated development of several algorithmic conditions
for which the delay might not be recorded (in which case a
NaN variable is used in MATLAB):

1) The input being considered must not be the first or last in
the experiment. The first and last input changes generally
result in a comparatively poor evaluation of the response.

2) The time delay will not be recorded if any portion of the



Fig. 5. Estimated time delay plotted against average angular velocity θ̇.

output data in the segment surpasses or reaches system
limits, such as joint angle hardware limits.

3) The time delay will not be recorded if it is estimated as
a sample that exists prior to pi, i.e. if qi < pi.

4) There must be a qualitatively sufficient minimum differ-
ence in slope for the optimised pair of regression lines.

5) A time delay value may not be recorded if the number
of samples between pi and pi+1 is shorter than τmin.

6) Amongst the SSE values calculated for a set of candidate
regression lines, the lowest SSE must be less than a
threshold value.

V. CONCLUSIONS

An algorithm to investigate nonlinear systems with time
delay variability has been developed. It automatically cycles
through segments of an open loop experiment, capturing the
directional change in the output via a pair of regression equa-
tions, and estimates the time delay accordingly. In this manner,
the proposed algorithm is used to uncover the time delay range,
potential state-dependencies, and to identify what methods
are most appropriate for subsequent system identification and
control. The new approach is not limited by a requirement for
steady state initial conditions and linear dynamics, nor for the
assumed fixed delay implicit in previously identified nonlinear
SDP models. However, its development has been motivated by
systems with approximately integrating behaviour, such as for
hydraulically actuated robotic manipulators, as discussed in the
laboratory example. The method has been successfully used to
estimate the wide range of delays observed in the experimental
data, and is providing insight into the variable time delay
behaviour. In future work, the authors are developing new SDP
models and control systems to exploit these results [16].
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