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Joint Radio Resource Allocation and Beamforming
Optimization for Industrial IoT in SDN-based

Virtual Fog-RAN 5G-and-Beyond Wireless
Environments

Payam Rahimi, Chrysostomos Chrysostomou, Haris Pervaiz, Vasos Vassiliou and Qiang Ni

Abstract—Fog computing based radio access network (Fog-
RAN) leveraging the software-defined networking (SDN) and
network function virtualization (NFV) is the most promising
solution to offer real-time support for the massive number of
connected devices in the industrial internet of things (IIoT)
networks. However, designing an optimal dynamic radio resource
allocation to handle the fluctuating traffic loads is critical. In
this paper, a novel architectural design of an SDN based virtual
Fog-RAN is proposed, in which we jointly study radio resource
allocation and transmit beamforming to improve resource uti-
lization and IIoT users’ satisfaction, by minimizing the network
power consumption (NPC) and maximizing the achievable sum-
rate (ASR), simultaneously. To this end, we first formulate
a mixed-integer nonlinear problem (MINLP) to optimize the
physical resource block (PRB) allocation, the assignment of
user equipments (UEs) and radio unit (RU), and the downlink
transmit beamforming, by considering imperfect channel state
information (CSI). To solve the intractable MINLP, we exploit
the successive convex approximation (SCA) approach. Then, we
formulate a multiple knapsack problem (MKP) to optimize the
assignment between RUs and virtual baseband units (vBBUs),
by exploiting the set of active RUs minimized in the previous
problem. We solve the formulated MKP by decomposing the
dual problems and solving them through the dual descent (DD)
method. Through performance analysis, we show the proposed
approach provides a high users’ satisfaction rate, maximizes the
ASR and minimizes the NPC, and provides better savings, in
terms of the number of radio and baseband resources utilized,
than its counterparts.

Index Terms—Radio resource allocation, Beamforming, Virtual
fog computing based radio access network, Industrial internet
of things, Network function virtualization, Software-defined net-
working.

I. INTRODUCTION

W ITH the rapid growth in the number of connected
devices, data traffic is increasing enormously in the

Internet of Things (IoT) networks. It is projected that future
IoT networks have to enhance the network capacity 1000-fold
in the following decade to meet the ever-increasingly traffic
demand [1]. To address this issue, integration of industrial IoT
(IIoT) in 5G and beyond networks is a key solution [2].

The cloud computing based radio access network (C-RAN)
is a potential architecture to cope with the massive number
of IIoT devices by applying cloud computing for handling the
huge traffic loads [3]. In conventional C-RAN architecture, the
baseband units (BBUs) are decomposed from base stations
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(BSs) and aggregated into the BBU pool at the cloud for
providing the centralized signal processing, whereas the radio
units (RUs) only deal with transferring and receiving signals.
Through this way, the RUs are effectively installed closer to
IIoT devices with an affordable operational cost [4]. However,
C-RAN performance strictly relies on the fronthaul capacity
[5].

Taking the advantages of both C-RAN and fog computing
[6] that expand the cloud resources and services to the network
edge, fog computing-based RAN (Fog-RAN) has been pro-
posed to alleviate the challenges of the conventional C-RAN
architecture by migrating some BBU processing functions to
the edge of the network [6]. This allows the IIoT devices to
utilize the BBU resources at the edge nodes, which dramat-
ically increases the traffic delivery rate and energy-efficiency
[7]. Fog-RAN can be deployed centralized by exploiting the
software-defined networking (SDN) technology and network
function virtualization (NFV). The SDN technology offers
significant flexibility, abstraction, and programmability for the
network communication by decoupling the control plane and
data plane [8]. Moreover, the NFV orchestrator located in the
SDN controller instantiates the virtual BBUs (vBBUs) on-
demand to flexibly manage the BBU resources [9]. Through
this way, Fog-RAN offers better adaptation for the dynamic
traffic and radio environment.

However, Fog-RAN requires a dynamic radio resource
allocation to support the massive number of IIoT devices
due to the huge traffic loads and the environment dynamicity.
Minimizing the required vBBUs and RUs to handle the traffic
loads significantly improves network capacity and energy ef-
ficiency [10]. To realize the dynamic resource allocation, RUs
should be allocated optimally to user equipments (UEs) and
selectively switched off/on based on the traffic loads, which
dramatically reduces the power consumption and overhead
in the fronthaul transport network. Moreover, vBBUs should
be dynamically instantiated on-demand due to the shortage
of computational resources [5]. Furthermore, it is critical to
improve radio resource utilization by increasing the number
of UEs receiving high-quality service [11]. To meet these ob-
jectives, the joint optimization of the radio resource allocation
and the transmit beamforming [12] is pivotal to design an
optimal dynamic radio resource allocation.

This paper proposes a novel architectural design of an SDN-
based virtual Fog-RAN in 5G-and-beyond wireless environ-
ments to significantly improve the radio resource utilization
and the IIoT users’ satisfaction, exploiting the flexibility
offered by SDN and NFV to manage the radio and baseband
resources, and the processing of the baseband signals by fog
computing at the network edge.

To meet these objectives, we consider the downlink fre-
quency division duplex (FDD) transmission in the proposed
architecture, where we investigate the joint radio resource
allocation and the transmit beamforming optimization problem
to minimize the network power consumption (NPC) and max-
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imize the achievable sum-rate (ASR) by optimizing the phys-
ical resource block (PRB) allocation, the UE-RU assignment,
and the downlink transmit beamforming. Then, by exploiting
the minimized number of active RUs, we optimize the RU-
vBBU assignment.
The main contributions of this work are summarised as:

• A novel architectural design to utilize the SDN and NFV
principles for a virtual Fog-RAN in 5G-and-beyond wire-
less environment. In this architecture, fog computing and
NFV together provide the cloud computing functionalities
at the network edge. The SDN controller is in charge of
controlling the RAN functionalities, in which the NFV
orchestrator deals with BBU instantiation and the radio
resource controller handles the radio resource allocation and
beamforming.

• A dynamic radio and baseband resource allocation in the
proposed architecture to improve radio resource utilization
and IIoT users’ satisfaction, by jointly optimizing the radio
and baseband resource allocation, and the transmit beam-
forming, simultaneously.

– A joint optimization of the PRB allocation, the RU-UE
assignment, and the downlink transmit beamforming to
minimize the NPC and maximize the ASR by employing
the multi-objective optimization approach, under the
proposed architecture. The reason for joint optimiza-
tion is to consider user satisfaction when optimizing
the resource allocation, which can be accomplished by
minimizing NPC and maximizing ASR, simultaneously.
The FDD channel estimation approach is used for im-
perfect channel state information (CSI) estimation to
optimize the downlink transmit beamforming. The joint
optimization problem is formulated as a non-convex
and mixed-integer nonlinear problem (MINLP), which is
NP-hard to solve. To solve the MINLP, we first relax the
binary variables to obtain a continuous problem. Then,
the obtained continuous problem is effectively solved by
the successive convex approximation (SCA) approach.

– A real-time RU-vBBU assignment to provide the re-
quired baseband resources so to handle the fluctuating
traffic loads, under the proposed architecture. By ex-
ploiting the set of the active RUs obtained by the RU-
UE assignment optimization, the number of vBBUs that
need to be allocated to the active RUs is minimized. To
this end, the MKP formulation is employed assuming
the RUs as the objects and the vBBUs as the knapsacks
capacity. The formulated MKP is solved, by decompos-
ing the dual problems into sub-problems that are solved
via the dual descent (DD) method.

• An extensive performance analysis to compare the proposed
solution with its counterparts, in terms of the number of
utilized radio and baseband resources, thereby highlighting
the performance gains achieved through the proposed joint
optimization of the radio and baseband resource allocation,
and the transmit beamforming, simultaneously, as the solu-
tion to improve radio resource utilization as well as IIoT
users’ satisfaction.

The rest of the paper is organized as follows. In Section II, we
discuss the related work. In Section III, we provide the sys-
tem model. The problem formulation is presented in Section
IV followed by the optimization solutions. The performance
analysis and conclusions are presented in Sections V and VI,
respectively.

Notation: (.)H denotes the Hermitan operator, CN(0, x)
represents the Gaussian distribution with zero mean and unit
variance, and C is the complex set.

II. RELATED WORK

In the current literature, the radio resource allocation in the
C-RAN is mostly focused on cloud computing techniques.
In [13], the authors proposed a dynamic resource allocation
for C-RAN architecture exploiting the artificial intelligence.
A prediction model based on the long short term memory
(LSTM) is utilized for predicting the remote radio head (RRH)
transmission. Finally, exploiting the predicted RRHs through-
put, a genetic algorithm is used for resource allocation, aiming
to improve resource utilization. In [14], the authors proposed
a resource allocation for a virtual wireless network (VWN)
in multiple-input multiple-output (MIMO)-aided C-RAN. The
impact of pilot contamination error and pilot duration as the
resource allocation optimization variable on the performance
of VWN is studied. A two-step iterative algorithm is utilized,
first, to adjust RRH, BBU, and backhaul parameters, then,
to allocate the power to UEs. In [2], the authors proposed a
resource management for IoT RAN with multicloud. A joint
allocation of user, resource block, BS, cloud is studied. A
heuristic scheduling algorithm is presented to optimize the
resource allocation. In [15], a joint optimization of fronthaul
and beamforming transmission in C-RAN architecture is pro-
posed. The perfect and imperfect CSI scenarios are studied.
The digital and analog beamforming are jointly optimized,
since the precoding matrices affect the quantization noise. A
block coordinate descent method is considered for the perfect
CSI scenario and an iterative algorithm is utilized to obtain the
efficient solution under imperfect CSI. In [16], a robust radio
resource allocation for C-RAN architecture is proposed. The
multiple-input and single-output (MISO) transmission mode
with uncertain CSI is studied. An optimization problem is
formulated for resource allocation, aiming to maximize the
ASR.

In [17], a user selection and power minimization for C-
RAN architecture is proposed. The signal-to-interference-and-
noise ratio (SINR) required by user, RRH and user power con-
straints, and fronthaul capacity are considered to optimize the
C-RAN performance. To this end, firstly, an algorithm based
on the minimum-mean-square-error (MMSE) is proposed for
user selection. Then, a reweighted-L1 norm algorithm is
employed for the NPC minimization. In [18], a coalition game
method is proposed for minimizing the radio remote units
(RRHs) transmission power while satisfying the target SINR
in the C-RAN architecture. The beamformer is developed for a
specific coalition structure in which RRHs greedily minimize
the transmit power in the coalition without taking into account
the interference to users in the other coalitions. In [19], the
authors proposed an intelligent resource allocation based on
Deep Q-Learning (DQL) in C-RAN architecture. A two-step
solution is presented, first, to maximize the communication
quality with the minimum number of the base stations, then,
to maximize the resource utilization. The proposed DQL-based
algorithm allocates the network resources in real-time depend-
ing on the decision-making structure obtained by slicing the
existing channel conditions. In [20], the authors proposed an
edge computing optimization for RRH-BBU assignment in
cloud radio access network. A constrained resource allocation
is modeled by the integer linear programming (ILP) formu-
lation. They proposed two modified heuristic matroid based
and Bi-Matching algorithms with low complexity to solve the
formulated problem for the RRH-BBU assignment, aiming to
reduce the fronthaul latency and the resource consumption.
However, there is no investigation of the transmission signal
to measure the achieved data rate by UEs.

Different from the existing efforts and motivated by max-
imizing resource utilization as well as satisfying users’ sat-
isfaction, we propose a joint optimization of the radio re-
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Fig. 1: An illustration of SDN based virtual Fog-RAN with
10 RUs.

source allocation and the transmit beamforming in SDN-
based virtual Fog-RAN architecture for 5G-and-beyond wire-
less environments. To the best of our knowledge, this is the
first work trying to optimize radio and baseband resource
allocation, and the transmit beamforming, simultaneously, as
the solution to improve radio resource utilization as well
as users’ satisfaction. Moreover, there is no solid effort in
the literature to provide dynamic resource allocation in an
SDN-based virtual Fog-RAN framework. The proposed SDN-
based framework enables the Fog-RAN scalability by the NFV
orchestrator and the radio resource controller, situated in the
SDN edge controller, dealing with the baseband and radio
resource allocation, respectively.

III. SYSTEM MODEL

As shown in Fig. 1, we consider the downlink FDD
transmission of an SDN-based virtual Fog-RAN containing
I RUs denoted by the set I = {1, ..., I}, where each RU
is equipped with M antenna, and K UEs denoted by the
set K = {1, ...,K}. The Poisson process is utilized for
scheduling the UEs’ arrival with arrival rate λ and departure
rate µ. We assume that UE k requests ζk PRB, which is the
smallest unit of baseband resources that can be allocated to
UEs for processing the baseband signals. Let us denote the set
of D = {1, ..., D} the available PRBs, and γki,d = 1 means
that the PRB d is allocated to the UE k on the RU i. Assuming
user-centric clustering, a cluster of RUs, containing nearby
RUs, is formed for each UE. To mitigate the computational
complexity each UE can only be served by the RUs of its
respective cluster. The clusters created may overlap since each
RU can serve several UEs, concurrently. This overlap reduces
the effect of interference on the UEs located at the cluster
edge. Let Ik ⊆ I denotes the specific set of RUs serving
the UE k, and the UEs covered by the RU i are represented
by Ki ⊆ K. Assuming coherent transmission of the signal
to each UE by the RUs grouped in its respective cluster, the
received baseband signal at UE k can be expressed as follows.

yk =
∑

i∈Ik

hHi,kwi,ksk +
∑

l∈K,l 6=k

∑

i∈Il

hHi,kwi,lsl + zk (1)

where hi,k ∈ C
M∗1 and wi,k ∈ C

M∗1 are the channel vector
and the beamforming vector intended for UE k from RU i,

respectively, sk represents the signal with unit power intended
for UE k, and zk ∼ CN(0, σ2) denotes the noise with power
of σ2.

A. Imperfect Channel Estimation

To obtain the imperfect CSI for UE k, we only estimate the
CSI from ∀i, i ∈ Ik because collecting the whole network’s
CSI is impractical in an ultra-dense RAN, while the large-
scale fading coefficient is considered from ∀i, i ∈ I, i /∈ Ik.
To this end, we exploit τ time slots from the available T time
slots for estimating the channel state, while the remaining
T − τ time slots are considered for data transmissions. Let
Q = [q1, q2, ..., qτ ] ∈ C

τ×τ be the matrix of available pilot
sequences with orthogonal column vectors. According to the
FDD channel estimation approach, each RU i transmits the
pilot sequences to all UEs ∀k, k ∈ Ki. Then, each UE
estimates its channel based on the received signal and fed back
to the RU for setting up the beamforming vector intended for
the UE. Let us define the received pilot signal at UE k denoted
by Yk, which is calculated as follows.

Yk =
∑

i∈Ik

√
pthi,kQ

H
i +

∑

l∈I,l/∈Ik

√
pthl,kQ

H
i +Nk (2)

where QH
i = {q1πi

, ..., qMπi
} denotes the transmitted pilot

sequences by RU i, pt represents the pilot transmit power,
and Nk is the Gaussian noise vector. To facilitate channel
estimation in ultra-dense RAN, the pilots should be reused
among RUs as the number of RUs is much higher than the
available pilot sequences. For reusing the pilots effectively, it
is assumed the orthogonal pilot sequences must be allocated
to the RUs within the same cluster, which is described by the
constraint as follows.

qπi
6= qπ

i′
, ∀i, i′ ∈ I, i 6= i′,Ki ∩Ki′ 6= 0 (3)

To satisfy constraint (3), we construct an undirected graph
A, where any two RUs i, i′ ∈ I that i 6= i′,Ki ∩ Ki′ 6= 0
are linked together. Moreover, we limit the number of times
each pilot can be reused to nmax to prevent the high training
overhead. By taking into account the maximum number of
reuse for each color nmax, the pilot allocation problem can
be effectively solved as the coloring of the constructed graph
A by Dsatur algorithm [21], since it offers low complexity and
memory consumption. Let the set of RUs that reuse the same
pilot as RU i does be denoted by Iπi

. By using the MMSE
channel estimation [22], the estimate of channel hi,k can be
expressed as follows.

ĥi,k =

√
ptαi,k∑

l∈Iπi

ptαi,l+N0

YkQ
H
i (4)

where αi,k, ∀i ∈ I, i /∈ Ik represents the large-scale fading co-
efficient for RUs outside the cluster of UE k, and N0 = σ2/pt.
According to the channel estimate vector ĥi,k, the true channel

vector hi,k is expressed as hi,k = ĥi,k + h̃i,k, where the error

vector h̃i,k demonstrates the CSI instability. Now, considering
the imperfect channel estimation, the received baseband signal
expressed in (1) can be rewritten as follows.

yk = (ĝHk,k + g̃Hk,k)wksk +
∑

l 6=k,l∈K

gHl,kwlsl + zk (5)

where wk =
[
wH

i,k, ∀i ∈ Ik
]H

∈ C
|Ik|M∗1 denotes the

transmit beamforming vectors from all RUs in Ik, gl,k =[
hHi,k, ∀i ∈ Il

]
∈ C

|Il|M∗1 represents the aggregated channel
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vector of all RUs in Il to UE k, ĝHk,k =
[
ĥHi,k, ∀i ∈ Ik

]H
∈

C
|Ik|M×1 represents the aggregated channel estimation vectors

from all RUs in Ik to UE k, and g̃Hk,k =
[
h̃Hi,k, ∀i ∈ Ik

]H
∈

C
|Ik|M×1 is the the aggregated error vector from all RUs in

Ik to UE k. According to [14], the achievable data rate Rk
considering the imperfect CSI can be expressed as follows.

Rk =
T − τ
T

log2

(
1 + ΓImperfect

k

)
(6)

ΓImperfect
k =

∣∣∣ĝHk,kwk

∣∣∣
2

∣∣∣g̃Hk,kwk

∣∣∣
2

+
∑

l 6=k,l∈K

∣∣∣gHl,kwl

∣∣∣
2

+ σ2

(7)

where T denotes the total number of time slots in a coherence
interval. Now, we define the ASR as the sum of the achievable
data rate for all K UEs, which can be expressed as follows.

Rtotal(w) =
∑

k∈K

Rk(wk) (8)

where w = [wH
1 , w

H
2 , ..., w

H
k ]H ∈ C

KM×1.

B. Power Consumption

According to [23], the relation between the transmit power
and the power consumption of the RU is nearly linear. Conse-
quently, a linear approximation of the RU transmission power
is justified to measure the power consumption of the RU.
Therefore, the power consumption of RU i can be expressed
as follows.

Eru
i =

{
pti(w) +

∑
k∈Ik

pt + Eactive
i , if bi = 1

Esleep
i , if bi = 0

(9)

where pti(w) =
∑

k∈K
pti,k(w) =

∑
k∈K

||wi,k||2 represents

the total transmit power at RU i, bi ∈ {0, 1}, i ∈ I is a binary
variable to indicate the operational status of RU for which
bi = 0 implies the RU i is in the sleep state and bi = 1
implies the RU i is in the active state, and Eactive

i and Esleep
i

represent the amount of consuming power of RU i in active

and sleep states, respectively. We denote by Ef
i,k the power

consumption for transferring the digital data from RU i to UE
k. Let us define the association status between RU i and UE
k by vi,k ∈ {0, 1}, ∀i ∈ Ik and k ∈ k, which vi,k = 1 states
that the UE k is served by the RU i and vi,k = 0, otherwise.
Therefore, the NPC can be expressed as follows.

Etotal(w) = η
∑

i∈I

∑

k∈k

||wi,k||2+
∑

i∈I

∑

i∈Ik

bipt+
∑

i∈I

biE
active
i

+
∑

i∈I

(1− bi)Esleep
i +

∑

i∈I

∑

k∈k

vi,kE
f
i,k (10)

where η > 1 is a constant for the efficiency of the power
amplifier of RU.

IV. PROBLEM FORMULATION AND SOLUTION

With the above analytic system modeling, we jointly opti-
mize the radio resource allocation, and the downlink transmit
beamforming. To this end, we split the joint optimization
problem into two sub-problems and then solve both of them in-
dependently. The problem P1 is a multi-objective optimization
problem to optimize PRB allocation, UE-RU assignment, and
transmit beamforming, aiming to minimize NPC and maximize
ASR, simultaneously. The problem P2 is a single objective
optimization of RU-vBBU assignment.

A. Joint NPC and ASR Optimization Problem P1

Motivated by [24], the optimization problem P1 can be
written as follows.

P1 : min
w,b,v,γ

Φ
Etotal(w)

ERe.
− (1− Φ)

Rtotal(w)

RRe.
(11)

s.t. :
∑

i∈I

∑

d∈D

vi,kγ
k
i,d 6 ζk, ∀k ∈K (11a)

∀(k, k′) ∈K, γki,d + γk
′

i,d 6 1, ∀i ∈ I, ∀d ∈D (11b)

Γk(w) > Γmin
k , ∀k ∈K, (11c)∑

k∈K

pti,k(w) 6 bip
max
i , ∀i ∈ I, (11d)

vi,k 6 bi, ∀i ∈ I, ∀k ∈K, (11e)∑

i∈I

vi,k ≥ 1, ∀k ∈K, (11f)

||wi,k||2 6 vi,kp
t
i,k, ∀i ∈ I, ∀k ∈K, (11g)

pti,k 6 vi,kp
max
i , ∀i ∈ I, ∀k ∈K, (11h)

∑

k∈K

vi,kRk(wk) 6
Ca.i
ξi

, ∀i ∈ I (11i)

bi ∈ {0, 1}, vi,k ∈ {0, 1}, γki,d ∈ {0, 1}, ξi > 1. (11j)

where Φ ∈ [0, 1] determines the objective’s weight. Note that
if Φ = 1, we obtain the minimization problem of NPC, and if
Φ = 0, we obtain the maximization problem of ASR. Due to
the different magnitudes of the objective, Etotal(w) is divided
by the reference value ERe., and Rtotal(w) is divided by
the reference value RRe. to ensure a consistent comparison.
Constraint (11a) points out the number of PRBs allocated to
each UE can not exceed the number demanded by the UE.
Constraint (11b) stresses each PRB can only be allocated
to one UE. Constraint (11c) emphasizes on the quality of
service (QoS) requirements of UE k, where Γmin

k denotes
the minimum SINR needed for UE k. Constraint (11d) limits
the total transmit power at RU i to the considered maximum
power pmax

i . Constraints (11d) and (11e) ensure no power is
emitted by the RU i, if bi = 0. Constraint (11f) ensures at
least one RU serves the UE k. Constraint (11g) emphasizes
the transmit power to UE i by RU k should be zero, if vi,k = 0.
Constraint (11h) ensures the transmit power from the RU i to
the UE k does not exceed pmax

i . Constraint (11i) enforces the
fronthaul capacity required for a feasible transmission, where
the capacity of the fronthaul link i needs to be ξi times greater
than or equal to the achievable data rate at the RU i, for a
defined fronthaul capacity factor ξ.

1) Solving Problem P1 : Problem P1 expressed in (11) is
a MINLP due to the binary variables b, v, and γ, which is NP-
hard to solve. With continuous relaxation of the variables b, v,
and γ, the problem P1 still remains non-convex, because the
objective function in (11) and constraint (11i) are non-convex.
Therefore, the problem P1 is categorized as an MINLP non-
convex problem that it is difficult to find a globally optimal
solution for this problem. Next, we provide the procedures for
optimally solving the intractable problem P1.

First, we transform the binary variables by a continuous
constraint to call continuous optimization. According to the
well-known relaxation of binary variables given in [25], we
can relax the binary variables as follows.

vi,k ∈ {0, 1}, ∀i, k ⇔
∑

i∈I,k∈K

(v2i,k − vi,k) > 0, vi,k ∈ [0, 1]

(12)
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bi ∈ {0, 1}, ∀i⇔
∑

i∈I

(b2i − bi) > 0, bi ∈ [0, 1] (13)

γki,d ∈ {0, 1}, ∀i, d⇔
∑

i∈I,d∈D

(γki,d
2 − γki,d) > 0, γki,d ∈ [0, 1]

(14)
The relaxation expressed in (12), (13), and (14) are justified
by the fact that v2i,k−vi,k < 0 for vi,k ∈ [0, 1], b2i −bi < 0 for

bi ∈ [0, 1], and γki,d
2 − γki,d < 0 for γki,d ∈ [0, 1], respectively.

Thus, the problem P1 can be rewritten as follows.

min
Ω∈SCo.∩SNCo.

Φ
Etotal(w)

ERe.
− (1− Φ)

Rtotal(w)

RRe.

s.t. : (12), (13), (14). (15)

where Ω = {w, b, v, γ},and SNCo. = {Ω|(11i)} and SCo. =
{Ω|(11a) − (11h)} are the set of convex and non-convex
constraints of (15), respectively. Hence, vi,k’s, bi’s, and γki,d’s
are represented as continuous variables. Thus, the problem in
(15) is a continuous non-convex one that can be solved by the
SCA method [26]. The SCA utilizes an iterative algorithm for
finding a solution of a non-convex problem by computing the
convex approximation of the non-convex term. To determine
an initial point of the iterative process, we apply the penalty
method [27] that results in the regularization of the problem
as follows.

min
Ω∈SCo.∩SNCo.

Φ
Etotal(w)

ERe.
− (1− Φ)

Rtotal(w)

RRe.

+ ϕ1

∑

i∈I,k∈K

(v2i,k − vi,k) + ϕ2

∑

i∈I

(b2i − bi)

+ ϕ3

∑

i∈I,k∈K,d∈D

(γki,d
2 − γki,d)

(16)

where ϕ1 > 0, ϕ2 > 0, and ϕ3 > 0 are the penalty parameters.
According to [26], the appropriate convex approximations

of the objective function and the constraint (11i) are obtained
as follows. Let us denote the non-convex objective function
of problem P1 by F = Rtotal(w) =

∑
k∈K

Rk(wk), and by

F̃ (wk, wk(ν)) the convex approximation of the non-convex
objective function F in the current iteration ν of the SCA
algorithm around the feasible solution wk(ν). The convex
approximation of F can be obtained as follows.

F̃ (wk, wk(ν)) =
∑

k∈K

F̃k(wk, wk(ν)) + F̄ (wk, wk(ν)) (17)

where F̃k(wk, wk(ν)) = Rk(wk(ν)) (18)

In addition,

F̄ (wk, wk(ν)) =
ψwk

2
‖wk − wk(ν)‖2 (19)

where ψwk
is an arbitrary positive constant. In (17),

F̃k(wk, wk(ν)) is considered for the convexity of objective
function and F̄ (wk, wk(ν)) provides the strong convexity.

To compute the convex upper bound for the constraint (11i),
we first rewrite the constraint (11i) as follows.

g =
∑

k∈K

vi,kRk(wk)−
Ca.i
ξi

6 0, ∀i ∈ I (20)

The constraint g is a non-convex constraint with a difference
convex (DC) structure. Let g̃(wk, wk(ν)) be the convex upper
approximation of constraint g in the current iteration ν of the
SCA algorithm around the feasible solution wk(ν). By making

the concave part of g linear and leaving the convex part of g
unchanged, we can obtain g̃(wk, wk(ν)) as follows.

g̃(wk, wk(ν)) = −
Ca.i
ξi

+
∑

k∈K

vi,kRk(wk)

− vi,k∇wk
Rk(wk(ν))(wk − wk(ν)) > g (21)

where ∇wk
Rk(wk(ν)) denotes the gradient of Rk with respect

to the feasible solution wk(ν).
Having the convex approximation of the objective function

(11) and the constraint (11i), instead of solving P1, we solve
the given problem by the SCA algorithm, as follows.

min
Ω∈SCo.

Φ
Etotal(w)

ERe.
− (1− Φ)

F̃ (wk, wk(ν))

RRe.

+ ϕ1

∑

i∈I,k∈K

(v2i,k − vi,k) + ϕ2

∑

i∈I

(b2i − bi)

+ ϕ3

∑

i∈I,k∈K,d∈D

(γki,d
2 − γki,d)

s.t. :(20). (22)

The SCA based algorithm for solving the problem P1 is
described in algorithm 1. The idea is to use convex problems
iteratively to approximate the original non-convex problem.
In this algorithm, ν denotes the iteration parameter and
w(0), b(0), v(0), γ(0) denote the initial points chosen from
the feasible region. We solve the convex approximate prob-
lem of (22) in each iteration of algorithm 1. The iterative
procedure is repeated until the stopping criteria is satisfied,
where |w∗(ν + 1) − w∗(ν)| < δ1, |b∗(ν + 1) − b∗(ν)| < δ2,
|v∗(ν + 1) − v∗(ν)| < δ3, and |γ∗(ν + 1) − γ∗(ν)| < δ4.
The values of δ1, δ2, δ3 and δ4 are the differences between
two successive iterations of the respective objective function
values.

Algorithm 1: The SCA-based algorithm

ν ← 0;Choose initial values:w(ν), b(ν), v(ν), γ(ν);
repeat

Compute problem in (22) with
w(ν), b(ν), v(ν), γ(ν)
to obtain w∗, b∗, v∗, γ∗;

Update w(ν + 1)← w∗, b(ν + 1)← b∗,
v(ν + 1)← v∗γ(ν + 1)← γ∗;

ν ← ν + 1;
until stopping criteria is satisfied;
Return Ω∗ = {w∗, b∗, v∗, γ∗}

B. RU-vBBU Assignment Problem P2

In the conventional C-RAN architecture, one vBBU is
assigned to one particular RU for handling its traffic loads.
This RU-vBBU assignment can not efficiently utilize the
resources, because the traffic loads of the RUs are not equal.
The problem P2 aims to minimize the number of vBBUs
assigned to the active RUs obtained in the problem P1. To
achieve this objective, we employ the MKP [29], where the
RUs are considered as the objects and the vBBUs as the
knapsacks. In each epoch of time, an RU-vBBU assignment is
dynamically performed considering the traffic load fluctuation.
Let N denotes the optimal number of vBBUs required to
handle the set of active RUs, which can be calculated as
follows.

N =

⌈∑
i∈I

∑
k∈K

∑
d∈D

bivi,kγ
k
i,d

D

⌉
(23)
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where D represents the total number of PRBs. We introduce
a binary variable rj,i ∈ {0, 1} to indicate whether the RU
i is assigned to the vBBU j or not. We define the profit of
assigning the RU i and the vBBU j as the satisfaction ratio
of the RU i denoted by ρj,i, which is calculated by

ρj,i =
cj,i∑

k∈Ki
ζk

(24)

where cj,i denotes the number of the PRBs resources offered
by the vBBU j and consumed by the RU i that is calculated
by

cj,i =
∑

k∈Ki

∑

d∈D

rj,ibivi,kγ
k
i,d (25)

Assuming each vBBU can entirely handle a fully loaded RU,
we formulate the MKP for RU-vBBU assignment as follows.

P2 : max
r

N∑

j=1

I∑

i=1

ρj,irj,i (26)

s.t. :

N∑

j=1

I∑

i=1

cj,irj,i 6 D, (26a)

∑

i∈Z

rj,i 6 1, ∀j ∈ {1, ..., N}, Z ⊆ {1, ..., I} (26b)

rj,i ∈ {0, 1}, i ∈ {1, ..., I}, j ∈ {1, ..., N}. (26c)

Constraint (26a) ensures the vBBU j can provide the required
resources of the assigned RUs, and constraint (26b) limits the
vBBU resource consumption per RU.

1) Solving Problem P2 : The MKP formulated in (26)
is an integer linear problem (ILP), which can be solved
by decomposing the dual problems into sub-problems and
exploiting the DD method to solve them. Let us define by
λj , j ∈ {1, ..., N} the Lagrangian multipliers for the global
constraints. Then, the problem P2 in (26) can be written as

max
r

N∑

j=1

I∑

i=1

ρj,irj,i −
N∑

j=1

λj(

N∑

j=1

I∑

i=1

cj,irj,i −D) (27)

s.t.:
∑

i∈Z

rj,i 6 1, ∀j ∈ {1, ..., N}, Z ⊆ {1, ..., I} (27a)

rj,i ∈ {0, 1}, i ∈ {1, ..., I}, j ∈ {1, ..., N}. (27b)

satisfying the optimality conditions given below.

λj(

N∑

j=1

I∑

i=1

cj,irj,i −D) = 0, λj > 0 (28)

N∑

j=1

I∑

i=1

cj,irj,i −D 6 0 (29)

The problem in (27) is then decomposed into a set of sub-
problems in each epoch of time, one for each vBBU j, j ∈
{1, ..., N}, as follows.

max
r

I∑

i=1

ρj,irj,i − λj
I∑

i=1

cj,irj,i (30)

s.t. :
∑

i∈Z

rj,i 6 1, Z ⊆ {1, ..., I} (30a)

rj,i ∈ {0, 1}, i ∈ {1, ..., I}. (30b)

The dual decomposition in (30) offers a distributed approach to
solve the formulated MKP by alternating between concurrently

solving the independent sub-problems for each given λj and
updating j , while getting converged to the solution r. Let us
construct a directed acyclic graph (DAG) G for {Z|Z ⊆ I},
where a directed edge is formed between (z, z′) for all z, z′ ∈
Z if Kz ∩ Kz′ 6= 0 and ρ̃j,z < ρ̃j,z′ . The adjusted profit of
the RU z ∈ Z, assigned to vBBU j, is calculated as follows.

ρ̃j,z = ρj,z −
cj,i
D

(31)

Algorithm 2: Distributed Dual Descent Method

input : ρj,i, cj,i, G

Function Map(ρj,i, cj,i):
for each (Z ⊆ I in topological order of G) do

l← |Z|; ∀i : rj,i = 0; cj = 0;
repeat

if (cj + cj,l ≤ D) then
rj,l← 1;
cj← cj + cj,l;

l ← l-1;
until (cj ≥ D);

for each (j in the set {1, ..., N} ) do

ςj,i←
∑I

i=1
cj,irj,i

Return(j, ςj,i)

Function Reduce(j,ςj,i):

return
∑N

j=1
ςj,i

Function Main:
Initialize λ0;
for t← 1 to t− 1 do

for each (j ∈ {1, ..., N} ) in parallel do
Map(ρj,i, cj,i)

for each (j ∈ {1, ..., N} ) in parallel do
Wj←Reduce(j,ςj,i)

for each (j ∈ {1, ..., N} ) do

λt+1
j ← max

(
λtj + ψ(Wj −D), 0

)

if (λt has converged) then
return λt

return λ{0,..,t−1,t}

The MKP can then be solved by the distributed DD method,
introduced in algorithm 2, according to the MapReduce model
[30]. In each epoch of times, the solutions rj,i for the sub-
problems are firstly computed independently for each vBBU,
by traversing the constructed graph G in a topological order
via mappers. The RUs are sorted in a non-decreasing order
based on the adjusted profit. Thus, none RU has less adjusted
profit than its preceding one. In this way, the RUs that serve the
same UE can be assigned to the same vBBU. Starting from
the lowest level of the DAG, the algorithm selects the RUs
with the highest adjusted profit until the sum of the consuming
PRBs reaches D. The rj,i for the chosen RUs is assigned with
the value of 1, and for the rest of the RUs members of Z is
assigned with the value of 0. Then, each mapper returns N
values {ςj,i =

∑I
i=1

cj,irj,i|j ∈ {1, ..., N}} corresponding to
each vBBU. Next, the reducers sum all the values returned
for a particular vBBU, Wj =

∑N
j=1

ςj,i. In the end, a master
node updates the multipliers λj as follows.

λt+1
j = max

(
λtj + ψ(

N∑

j=1

I∑

i=1

cj,irj,i −D), 0

)
(32)

where ψ is the step size.
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Proposition 1: Algorithm 2 optimally solves the sub-
problem in (30).

Proof: Let rj,i be an alternative of r∗j,i that satisfies the
constraints (30a) and (30b). Then, the first node may also be
identified with distinct chosen RUs in the topological order of
the DAG. Therefore, there is a pair of RUs i and i′, where the
adjusted profit of i is not less than i′, while r∗j,i = 1, r∗j,i′ = 0
and rj,i = 0, rj,i′ = 1. The constraints (30a) and (30b) are still
satisfied when we set rj,i = 1, rj,i′ = 0, since the objective
value of (30) remains unchanged and both RUs i and i′ exist
later in the topological order.

C. Running Time Analysis

The overall running time of the proposed solution mainly
depends on solving the problems P1 and P2. According to
the 2I+IK+ID combination of binary variables bi, vi,k, and

γki,d and 3IK + 2I + 3K + ID constraints in (11a):(11j), the
worst-case running time of our algorithm for P1 is evaluated as
O
(
2IK+K(K2I2D)

)
. However, in order to obtain a practical

running time, with the expected massive number of UEs in
IIoT wireless environments, several low-complexity methods
are proposed to find the feasible solution to P1. To this
end, the running time is remarkably reduced by applying
a continuous relaxation on the binary variables. Moreover,
an SCA method is employed to relax the non-convexity of
problem P1. Furthermore, the RU i is not selected if it does not
serve any UE (i.e., Ki is zero) to involve the sparsity method
for the RUs selection. Thus, the worst-case running time of
our algorithm for P1 is reduced to O

(
K2I2D

)
, by using

continuous relaxation, convexification, and sparsity methods,
resulting in the proposed solution converging rapidly. Fig.
2 indicates the convergence behaviour of the proposed SCA
solution for different number of UEs. It can be observed that
the proposed solution provides fast convergence to the optimal
solution. Also, this convergence time does not increase with
the number of UEs. Moreover, the worst-case running time of
our algorithm for P2 is evaluated as O(N2I).
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Fig. 2: Convergence behaviour of the proposed SCA solution
for different number of UEs.

V. PERFORMANCE ANALYSIS

In this Section, we present the simulation results, using the
Matlab tool, for evaluating the performance of the proposed
joint optimization, where the simulation parameters are listed
in Table I. Moreover, we assume the Rayleigh fading channel
model with zero mean and unit variance and the path loss
148.1+37.6log10dis., where dis. is the distance (km) between
a particular RU and UE. Furthermore, We use the Poisson
model with a fixed arrival rate of λ = 5 and departure rate
of µ = 0.1 for UEs, where the demand of UEs follow the
uniform distribution u = (1, 10).

We study the performance of the proposed SCA solution
under the three scenarios of (1) imperfect intra-CSI, (2) perfect
intra-CSI, and (3) complete CSI. In particular, the imperfect

TABLE I: SIMULATION PARAMETERS.

Parameter Value Parameter Value
I 50 σ2 -174 dBm/Hz

K 40 Ef 1 dBW
M 2 Ca. 500 b/s/Hz
D 100 ξ 10

pmax
i 10 dBW δ1, δ2, δ3, δ4 10−5

T 100 Eactive 11 dBW

pt 10 dBW Esleep 1 dBW

ERe. 1 b/s/Hz RRe. 0 dBW

intra-CSI scenario estimates the imperfect CSI from all the
RUs within the UE’s cluster and considers the long-scale
fading coefficient for RUs outside the cluster, while the perfect
intra-CSI scenario estimates the perfect CSI without the error
estimation. Moreover, the complete CSI scenario estimates the
entire network’s CSI for each UE, so the orthogonal pilot is
needed for each RU, since the pilot can not be reused.

First, we investigate the impact of the cluster size L on the
ASR and the NPC. The user-centric clustering is applied to
limit the number of RUs serving each UE, which reduces the
computational complexity. We consider |Ik| = L, ∀k ∈ K so
to have a fixed cluster for each UE, because the large-scale
fading coefficient shifts slowly. Fig. 3(a) illustrates the ASR
versus the cluster size for the different CSI scenarios. It can
be observed the ASR for the imperfect and perfect intra-CSI
scenarios firstly increases by enhancing the cluster size until
L = 10 with nmax = 3 and until L = 12 with nmax = 6.
The larger cluster size allows more RUs to coherently transmit
the baseband signal to each UE, so the UEs receive a stronger
superposition of signals that increases the ASR. By enhancing
the cluster size beyond 10 with nmax = 3 and beyond 12 with
nmax = 6, the ASR declines. This is because enhancing the
cluster size allows more RUs to be grouped in each cluster
that increases the required orthogonal pilots. Enhancing the
orthogonal pilots reduces the remaining time slots for data
transmission, so the ASR declines. Therefore, the cluster size
and the maximum pilot reuse need to be carefully considered
to avoid complexity and high pilot overhead. To achieve
adequate performance and low complexity, we consider the
cluster size be L = 8 and the maximum pilot reuse be
nmax = 3 for the rest of the simulations. The reason for this
choice is that the improvement of the ASR by nmax = 6 is
negligible. Moreover, the ASR with nmax = 3 after cluster
size L = 8 grows marginally. It can be observed in Fig. 3(a),
the ASR for the complete CSI scenario increases along with
the cluster size, unlike the imperfect and perfect intra-CSI
scenarios. This is because the number of required orthogonal
pilots in the complete CSI scenario is equal to the number
of RUs and is independent of the cluster size; thus, a larger
nmax cannot affect the ASR. Also, as shown in Fig. 3(a),
the imperfect intra-CSI scenario offers better ASR compared
to the perfect intra-CSI scenario, because it measures the
imperfect CSI by considering the error estimation. Fig. 4(a)
shows the NPC versus the cluster size L with maximum
pilot reuse nmax = 3. It can be observed the NPC increases
along with the cluster size. The reason is that more RUs can
transmit power to each UE with larger cluster size, so the
NPC grows. It is observed the growth slope of NPC for the
imperfect and perfect intra-CSI scenarios is slightly reduced
beyond L = 10. The reason for the reduction in growth
slope is that more orthogonal pilots are required when the
cluster size is beyond 10. Thus, the number of remaining
slots for data transmission is reduced, resulted in lower power
consumption. However, transmitting more orthogonal pilots
still slightly raises the power consumption. It can be observed
the perfect intra-CSI scenario consumes lower power than the
imperfect intra-CSI scenario. The reason is the imperfect intra-
CSI scenario feds back imperfect CSI by considering the error
estimation. Thus, RUs transmit more power to provide the
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requested demands. The imperfect intra-CSI offers much lower
power consumption than the complete CSI scenario, since the
complete CSI scenario needs to obtain the entire network’s
CSI by transmitting the orthogonal pilots per RU.

Furthermore, we study the impact of the minimum SINR
Γmin on the ASR and the NPC. Fig. 3(b) presents the ASR
versus the minimum SINR Γmin for the imperfect intra-
CSI, perfect intra-CSI, and complete CSI scenarios. The ASR
increases along with the minimum SINR Γmin. Also, the ASR
increases as pmax is increased, because RUs can provide a
stronger signal to UEs. Moreover, the impact of the error
estimation on the ASR is also verified by comparing the
curves of the imperfect and perfect intra-CSI scenarios when
the minimum SINR is large. It is obvious that the RUs need
to transmit more power to meet the higher minimum SINR
required by the UEs, so this increases the interference. Thus,
employing the error estimation in the imperfect intra-CSI
scenario causes better channel estimation resulted in better
ASR, and consequently larger NPC. Fig. 4(b) presents the
NPC versus the minimum SINR Γmin for the imperfect intra-
CSI, perfect intra-CSI, and complete CSI scenarios. It can
be observed the NPC increases as the minimum SINR Γmin

increases, because the RUs transmit more power to meet the
minimum SINR. The NPC increases sharply for low Γmin,
while it slightly increases beyond Γmin = 4. This is because
fewer transmitters need to be activated to provide a minimum
SINR of more than 4, since the active RUs can provide
the required SINR. As expected, the NPC increases as the
maximum RU transmit power pmax increases, because the RUs
can transmit higher power. Fig. 3(c) demonstrates the ASR
versus the number of UEs for the imperfect intra-CSI, perfect
intra-CSI, and complete CSI scenarios. As expected, the ASR
increases along with the number of UEs. It is observed the
error estimation has a higher impact on ASR with a higher
number of UEs and a larger pmax, because the interference
grows by increasing the number of UEs and pmax, so the
error estimation causes better channel estimation. Moreover,
Fig. 4(c) illustrates the NPC versus the number of UEs for
the imperfect intra-CSI, perfect intra-CSI, and complete SCI
scenarios. As expected, the NPC increases along with the
number of UEs, since more RUs need to be activated to serve
the UEs. Moreover, it can be observed the NPC increases as
the maximum RU transmit power pmax increases, because the
RUs can transmit higher power.

Moreover, we investigate the trade-offs between ASR and
NPC in the proposed SCA algorithm, as well as we provide
the respective comparisons with the reweighted-L1 norm al-
gorithm introduced in [17] and the coalitional game algorithm
introduced in [18]. The maximum ASR is obtained by setting
Φ = 0, while Φ = 1 minimizes the NPC. Moreover, different
trade-offs for ASR maximization and NPC minimization are
obtained by altering Φ. Fig. 5(a) represents the trade-offs
between ASR and NPC. As expected, the ASR increases along
with the NPC. The higher power consumption means more
power is transmitted to UEs leading to an increase of the
ASR. It is observed the ASR improvement is negligible for
a high NPC. This is because the ASR improvement depends
on the number of serving RUs to each UE, which is limited
by the cluster size. Thus, increasing the number of the active
RUs that enhances the NPC does not necessarily improve the
ASR significantly. Also, it can be observed that the proposed
algorithm outperforms the reweighted-L1 norm algorithm and
coalitional game algorithm in terms of ASR and NPC.

To gain further insights into the joint optimization, we
study the impact of the arrival rate λ. Fig. 5(b) illustrates the
UE’s satisfaction ratio, defined as the ratio of the allocated
PRBs to the requested PRBs, versus the UE’s arrival rate λ
for the proposed SCA solution with different maximum RU

transmit power pmax and uniform distribution of UE’s PRB
demand. We further provide the respective comparisons with
the reweighted-L1 norm algorithm [17] and the coalitional
game algorithm [18]. It can be observed the satisfaction
ratio for the proposed SCA solution decreases as λ = 5
increases if more RUs are not activated. The reason is that
the number of requested PRBs increases with increased λ,
so the current number of active RUs can not provide all the
requested PRBs. Moreover, the satisfaction ratio increases by
increasing pmax, because the ASR increases. The proposed
SCA clearly outperforms the reweighted-L1 norm algorithm
and the coalitional game algorithm in terms of satisfaction
ratio, because of its low computational complexity, as clearly
stated in Section IV.C, which can provide a high satisfaction
ratio even at high arrival rates.

Fig. 5(c) demonstrates the number of active RUs and vBBUs
versus the UE’s arrival rate λ. It can be observed the number
of active RUs increases along with λ as a larger number of
PRB resources are needed when the number of UEs increases.
The proposed SCA solution only switches on 40% of the
RUs when the arrival rate λ = 1 and 74% of the RUs
when the arrival rate λ = 10, causing a significant saving in
OPEX, while in the conventional C-RAN the RUs are always
active. Moreover, as it is clearly observed, the proposed SCA
solution provides better radio resources savings, compared
with the reweighted-L1 norm and coalitional game solutions.
The number of vBBU units is independent of the arrival rate
λ for the conventional C-RAN. The number of vBBUs is
equal to 50 at any arrival rate, since the RUs are always
active. We compare our proposed MKP solution for RU-
vBBU assignment with the Matroid based and Bi-Matching
solutions introduced in [20]. It can be observed the proposed
RU-vBBU assignment based on the MKP solution obtains
significant savings in vBBUs compared to the one-to-one,
Matroid based, and Bi-Matching assignments. In the maximum
arrival rate λ = 10, only 30% of the vBBU resources are
allocated by our proposed MKP solution, whereas, the one-
to-one, Matroid based, and Bi-Matching solutions use 74%,
56%, and 38% of the vBBU resources, respectively. As a
conclusion, from Fig.4(c), the proposed SCA solution with
the MKP assignment, when λ = 10, provides 22% and 27%
more saving in radio resources than the reweighted-L1 norm
and coalitional game solutions,respectively, and 46% and 21%
more saving in baseband resources than the Matroid based and
Bi-Matching solutions, respectively.

Fig. 6 illustrates the objective in (11) versus the objective’s
weight Φ. It is observed that the objective first decreases but
then increases as the parameter Φ increases. According to (11),
NPC increases when Φ increases that results in the objective
reduction. After some point, the objective increases when the
first term in (11) dominates the second term. Fig. 6 again
shows that the proposed SCA outperforms the reweighted-
L1 norm and the coalitional game algorithms. Fig. 7 demon-
strates the convergence behaviour for the proposed SCA, the
reweighted-L1 norm and the coalitional game algorithms.
We observe the proposed SCA algorithm only needs few
iterations to be converged, whereas, the reweighted-L1 norm
and coalitional game algorithms requires more iterations to
converge. Moreover, the proposed SCA converges to a smaller
objective compared with its counterparts.

VI. CONCLUSIONS

A joint radio resource allocation and downlink transmit
beamforming optimization in SDN-based virtual Fog-RAN
5G-and-beyond wireless environments is proposed to support
the massive number of devices in future IIoT networks. The
major objective is to improve the radio resource utilization
and the IIoT users’ satisfaction by maximizing the ASR and
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Fig. 3: (a) ASR vs. cluster size L, (b) ASR vs. minimum SINR Γmin, (c) ASR vs. number of UEs, with M=2, I=50
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Fig. 4: (a) NPC vs. cluster size L, (b) NPC vs. minimum SINR Γmin , (c) NPC vs. number of UEs, with M=2, I=50.
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Fig. 5: (a) Trade-offs between ASR and NPC, (b) Satisfaction ratio vs. λ, (c) Number of units vs. λ, with M=2, I=50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Φ

-100

-80

-60

-40

-20

0

20

40

O
b

je
c
ti

v
e
 i
n

 (
1
1
)

Proposed SCA

Reweighted-L
1
 Norm [17]

Coalitional Game [18]

Fig. 6: Objective in (11) versus parameter Φ.

minimizing the NPC. To this end, the PRB resource allocation,
the UE-RU assignment, the transmit beamforming, and the
RU-vBBU assignment are studied within a single framework.
We first formulated a MINLP problem to jointly maximize
the ASR and minimize the NPC that is solved by the SCA
method. Then, exploiting the set of active RUs minimized in
the previous optimization problem, we formulated the RU-
vBBU assignment by the MKP formulation that is solved by
decomposing the dual problems into sub-problems and em-
ploying the DD method to solve them. Through an extensive
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Fig. 7: Convergence behaviour for different algorithms.

performance analysis, we demonstrated that our proposed SCA
solution outperforms its counterparts in terms of the ASR and
the NPC. Moreover, the proposed SCA solution based MKP
assignment offers important savings in baseband and radio
resources, outperforming its counterparts as well. Therefore,
the performance gains achieved validate the usefulness of
the proposed joint optimization as a promising solution for
handling the huge traffic loads arisen from the massive number
of devices in future IIoT networks. As a future direction, the
applicability of the proposed solution for the user centric cell-
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free Fog-RAN can be investigated. Moreover, the impact of
the multiple central units with radio stripes technology can be
studied.
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