No interface energy barrier and increased surface pinning in low temperature baked niobium

Turner, Dan and Burt, Graeme and Junginger, Tobias (2022) No interface energy barrier and increased surface pinning in low temperature baked niobium. Scientific Reports, 12 (1). ISSN 2045-2322

Full text not available from this repository.


Superconducting Radio-Frequency cavities are currently made out of niobium. Niobium cavities are limited by the magnetic field on the cavity walls due to the entry of vortices at the field of first vortex penetration, Hvp. Low temperature baking in vacuum or low pressure gas atmosphere removes the strong decrease of the quality factor with accelerating gradient (high field Q-slope). Some cavities reach surface magnetic field above the lower critical field Hc1. One hypothesis for this performance increase is that the outer layer affected by the treatments acts as a barrier for vortex penetration (effective bilayer). Using a vibrating sample magnetometer the field of first flux penetration (Hvp) was measured for Nb ellipsoids with various low temperature treatments. All Hvp values were found to be consistent with the lower critical field, Hc1, as predicted for clean niobium. This led to the conclusion that a metastable flux free state above Hc1 cannot be observed in DC magnetometry for low temperature baked niobium unlike for bilayers consisting of two superconductors as previously published. The effect of flux pinning differed significantly between treatments, suggesting that the high field Q-slope mitigation might be related to vortex pinning in the surface of the cavities.

Item Type:
Journal Article
Journal or Publication Title:
Scientific Reports
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
15 Mar 2022 16:50
Last Modified:
15 Sep 2023 01:24