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Abstract

In numerous industrial applications, organizations wish to monitor time series data

to better understand the past and make predictions for the future. To achieve this,

appropriate analysis and modelling of time series data needs to be performed. How-

ever, it is common for time series to undergo abrupt structural changes, known as

changepoints, which can cause major challenges during model fitting. Identifying

changepoints is crucial to appropriately understand, analyze and model time series

data in a wide range of applications including finance, genomics and countless oth-

ers. In this thesis, we introduce new methodologies and frameworks for detecting

changepoints in two scenarios; when there are multiple series to analyze simultane-

ously (multivariate setting) and when we receive time points sequentially and aim to

detect changes as soon as possible (sequential setting). These methodologies provide

novel and innovative ways to detect different types of changepoints in a wide range

of data structures. Firstly, we introduce a novel bivariate test statistic for detecting

changes in mean and variance simultaneously in multivariate data. Our attention

then turns to changes in covariance, specifically, we introduce a cost function and

changepoint framework for identifying changes in subspace. Finally, we switch to the
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sequential changepoint setting and provide a framework for quickly identifying mean

and variance changes in more complex data structures using forecast models. For all

the methods we demonstrate their strong empirical performance in both simulated

examples and industrial applications.
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Chapter 1

Introduction

The volume of data being collected within industry is rapidly increasing. Naturally,

organizations want to utilize and learn from this data to make informed decisions

across all areas of the business. This drive towards data-driven decision making

leads to countless opportunities to develop new statistical methodologies to better

understand, analyze and model the ever-increasing volumes of data.

A common data structure encountered in industrial problems are time series. Here

data is collected at discrete time intervals, usually equally spaced, and we aim to

determine patterns that develop over time. This allows us to better understand the

past and make predictions for the future. To appropriately model time series data it

is often assumed that the data, or a transformation of the data, is stable over time.

This usually means the data follows a predictable pattern and has, for example, a

common mean and variance. However, in many industrial problems, time series can

often exhibit abrupt structural changes where the properties of the time series change

1
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in some way; we call these changepoints.

In Layman’s terms, changepoints are points in time when the expected behavior of

a system changes abruptly. A common example is an individuals heart rate and a

simulated example can be seen in Figure 1.0.1. From 09:00 to 11:00 the individual is

resting and their heart rate is low. Then, the individual starts exercising and we see

their heart rate abruptly changes - it becomes much higher and more variable. The

time point when the individual starts exercising, and their heart rate changes (here

11:00), is what we call a changepoint.

60

90

120

150

09:00 10:00 11:00 12:00
Time

H
ea

rt
 R

at
e

Figure 1.0.1: Simulated heart rate of an individual before and during exercise

Changepoints can cause a number of problems when aiming to model time series.

Firstly, if we don’t take a changepoint into account then we are likely trying to fit a

model to data that is generated from a mixture of models and therefore we will struggle

to capture the key properties of the time series adequately. Furthermore, when we

make forecasts using time series, we want to be forecasting based on the current state
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of the model. Hence, using data prior to a changepoint can add unwanted noise to

a model decreasing forecast accuracy. Thus, it is crucial to identify changepoints to

allow organizations to improve their understanding and analysis of their data and fit

more appropriate models for improved decision making.

There are a number of well-known examples of changepoints that have affected many

different industrial areas. Most topically, the outbreak of COVID-19 is a prime exam-

ple. Many industries, from the retail to the hospitality sectors, saw a major change-

point in March 2020. Intuitively, it makes little sense to use data from before this

pandemic to try and make predictions during the pandemic; this is an obvious ex-

ample of accounting for changepoints in data. Moreover, changepoint detection has

been used to assess interventions aimed at reducing the spread of COVID-19 (Dehn-

ing et al., 2020). Changepoints aren’t always so obvious or widespread and can be

more industry-specific. There have been various works on changepoint analysis in a

wide range of industrial applications including Epidemiology (Carroll et al., 2019),

finance and economics (Bai and Perron, 1998; Modisett and Maboudou-Tchao, 2010),

genetics (Bleakley and Vert, 2011), internet security (Peng et al., 2004), oceanography

(Killick et al., 2010) and countless other domains

Here, we have defined changepoints as points of abrupt change in a system. How-

ever, systems can also vary slowly over time. Consider Figure 1.0.1, we have already

identified the abrupt change when the individual starts exercising, however, we can

also see more subtle slowly evolving changes. For example, after the individual starts

exercising their heart rate is slowly increasing - this could be seen as a slowly evolv-
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ing system and we may wish to keep updating the estimate of the mean heart rate,

despite there being no clear changepoints. This thesis only concerns abrupt changes,

for more details on slowly evolving systems see Ljung and Söderström (1983).

The study of changepoints in a single time series, also known as univariate change-

point analysis, has a long history dating back to Page (1954). Yet, as more data is

being collected there has become a need for multiple related time series to be ana-

lyzed simultaneously, hereby known as multivariate changepoint analysis. This raises

additional challenges as we can have dependence between the time series as well as

across time or changepoints only occurring in a subset of the series. On top of this, we

need to consider the additional computational cost of analyzing more and more data

especially as the number of time points and series grows large. Chapter 2 gives a more

in-depth review of the changepoint literature in both the univariate and multivariate

settings. Addressing some of these issues when moving from the univariate to the

multivariate setting is the focus of Chapters 3 and 4.

In some industrial problems, we want to identify changepoints in a sequential manner

as more data points become available. Here we do not have all the data available to

us prior to analysis as is often assumed. Thus, the focus switches from accurately

locating changepoints to detecting changepoints as soon as possible after they have

occurred. This alternative changepoint paradigm is the focus of Chapter 5.

This thesis contains three main contributions to the changepoint literature, two in

the multivariate setting and one from the sequential changepoint setting. In all these

works, we produce novel methodology and apply this to varying industrial problems
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to demonstrate the impact they can have in a wide range of applications.

In Chapter 3, we propose a new method, named GeomCP, for detecting mean and

variance changes in high-dimensional time series via a bivariate test statistic. We

perform dimension reduction via two novel geometric projections. These projections

preserve the changepoint locations and allow us to use univariate changepoint tech-

niques upon them to detect changepoints in mean and variance simultaneously in a

computationally efficient manner.

In Chapter 4, we introduce subspace changepoints. It is common for high-dimensional

data to exhibit some low-dimensional structure, such as lying in a linear subspace. At

some time point, this subspace could abruptly change, resulting in a subspace change-

point. We propose an appropriate cost function and adapt this into a changepoint

framework to detect these changes.

In Chapter 5, we move from the multivariate setting to the sequential changepoint set-

ting. We propose a framework for sequentially monitoring forecast models to quickly

identify if they become inaccurate. We show how changepoints in the time series

being forecast will manifest in forecast errors and propose a sequential changepoint

method for detecting these changes. This framework allows us to detect mean and

variance changes in more complex data structures and quickly identify if forecasting

models need re-evaluating.

Finally, Chapter 6 gives concluding remarks, highlighting the key findings in each

Chapter along with open problems and future work.



Chapter 2

Overview of Changepoint

Detection

Within this chapter, we give an overview of changepoint detection including historical

approaches to the classical problem, recent advancements and open areas of research,

of which some are explored in this thesis.

Univariate changepoint analysis is a well-studied research area since its introduction

back in Page (1954). The univariate problem forms the basis for the literature and

the extensions to more complex problems discussed in the thesis. Hence, Section 2.1

is dedicated to summarizing the univariate changepoint literature. For a general dis-

cussion of likelihood and Bayesian approaches to the univariate changepoint problem

see Eckley et al. (2011); for a non-parametric overview see Brodsky and Darkhovsky

(2013), and for theoretical contributions see Csörgö and Horváth (1997). Truong et al.

(2020) provide a more recent review that covers both the univariate and multivariate

6
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settings. Note throughout this thesis we only consider the frequentist paradigm with

a very brief discussion of some popular Bayesian methods given in Section 2.1.4.

In recent years, the focus has shifted to the multivariate setting where we detect

changes in multiple streams of data simultaneously. This raises new questions and

challenges such as the number of streams the change occurs in, also known as the

sparsity of the change, along with the computational challenge of analyzing addi-

tional data steams. Section 2.2 outlines these challenges in more detail and gives an

overview of the current methodology developed to solve these challenges. This leads

on to Chapters 3 and 4 where we present work to solve two different problems in the

multivariate changepoint framework. Firstly, we present the GeomCP algorithm for

the simultaneous detection of mean and variance changes and secondly a method for

detecting subspace changepoints we can be seen as a covariance change with additional

constraints on the covariance structure.

2.1 Univariate Changepoint Detection

Here we introduce the changepoint setup, splitting this Section into three main prop-

erties present in the majority of changepoint methods. We conclude this section with

a summary of some methods which lie outside of this framework yet still warrant a

mention.

The generic univariate changepoint problem is as follows. Let y1:n = (y1, . . . , yn) with

yi ∈ R for 1 ≤ i ≤ n be a sequence of data which contains m < n changepoints
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located at time points 0 = τ0 < τ1 < . . . < τm < τm+1 = n. We define the set of

changepoints as T = {τ1, . . . , τm} and these m changepoints split the data into m+ 1

segments where

yi ∼



G1 for τ0 < i ≤ τ1 ,

G2 for τ1 < i ≤ τ2 ,

...
...

Gm+1 for τm < i ≤ τm+1 .

(2.1.1)

Here G1 . . . Gm+1 are the data generating processes associated with each segment such

that Gk � Gk+1 for k ∈ {1, . . . ,m}. Note T = ∅ represents the case where there are

no changepoints in the data and the whole sequence y1:n is stationary and follows the

same data generating process, G1.

The goal of changepoint detection is to identify the best possible segmentation of

the data, T . The best segmentation will split the data into stationary segments that

follow the same data generating process. Hence, we can define a criterion function,

V (T ), as

V (T ) = C (y1:n|T ) , (2.1.2)

where C(·|T ) is a measure of the homogeneity of the data given the changepoint

locations. Changepoint methods aim to minimize V (T ) as much as possible, subject

to constraints on m. The formulation of V (T ) in (2.1.2) leads to the three main

properties that make up the majority of changepoint methods:

1. Cost Function/Test Statistic: There are two main ways of defining this

property. Firstly, there are model-based methods that use cost functions where
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we assume that the total cost of the data is the sum of the cost of the individual

segments. We define this as

V ′(T ) = C(y1:n|T ) =
m∑
k=0

C(y(τk+1):τk+1
) (2.1.3)

and here we assume independence between the segments. In this setting, the

cost function measures the homogeneity of the data within the segment - the

lower the cost of a subset of data, the less likely it is to contain a change-

point. This method is usually used when fitting a model to the data; a common

cost function is the negative maximum log-likelihood. Note throughout V ′(T )

represents the minimization where we assume the total cost is the sum of the

individual segments and V (T ) is the more general minimization of the cost with

respect to the changepoints.

Secondly, many methods assume there is At Most One Changepoint (AMOC)

in a set of data and they use a test statistic based method to determine whether

the data contains a change or not. Hence, they seek to minimize V (T ) by finding

the location of a single change that minimizes the cost function/test statistic.

Note in some methods the aim is to maximize the test statistic, however, this

can easily be re-framed as a minimization problem by taking the negative of the

test statistic.

2. Search Method: Search methods tell us how to locate the changepoints given

C(·). For the model-based methods, we could search all 2n−1 possible segmen-

tations to find the one that minimizes (2.1.3). However, this is rarely feasible

and, hence, more efficient search methods are required. For the test statistic
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based methods, where we assume AMOC, then the location of the change is

usually the point that minimizes the test statistic. We then require a method

for extending these methods to detect multiple changepoints but note these will

only give an approximate solution to (2.1.2).

3. Penalization: The number of changepoints, m, is rarely known in practice.

Hence, to avoid over-fitting we need to penalize the number of changepoints (or

other aspects of the model) in some way. This is often viewed as a model selec-

tion problem where we need to choose the model with an appropriate number

of changes.

We explore each of these three properties in more detail before giving a short overview

of some methods that fall outside of this framework.

2.1.1 Cost Function/Test Statistic

First, we examine the cost functions and test statistics that are common in the univari-

ate changepoint literature. We start by looking at model-based methods and different

cost functions that are used within (2.1.3) before looking at different test statistics

that are used to identify single changes in test statistic based methods.

Model Based Methods

If we can assume some knowledge of the data generating process then a common

choice of the cost function is the negative of the maximum log-likelihood of the data.
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Here it is common for the data generating process, Gk, to follow the same distribution

and just its parameters can undergo a change. Common examples of these models

range from mean and/or variance changes in Gaussian data (Page and E. S., 1955;

Krishnaiah and Miao, 1988; Lavielle and Moulines, 2000; Pein et al., 2017) to rate

changes in Poisson distributed data (Ko et al., 2015). These models generally assume

the data y1:n are i.i.d given the m changepoints.

For a family of distributions with density g(·|θ) where θ are the parameters that can

undergo changes, we define the cost function for a subset of the data ys:e as

C(ys:e) = −2 max
θ

e∑
i=s

log g(yi|θ) .

Despite the likelihood-based cost function covering a wide range of models, knowl-

edge of the underlying data model is required and misspecifications can lead to poor

performance of methods that employ this cost function.

Several alternative cost functions fall into the model-based methods category but don’t

use a classical likelihood function. These include cost functions for piece-wise linear

models (Bai, 1994, 1996); data that exhibits temporal dependence (Bai, 2000; Chakar

et al., 2017); and non-parametric maximum likelihood (Zou et al., 2014; Haynes et al.,

2017b).

Test Statistic Based Methods

An alternative class of changepoint methods utilize a test statistic to determine the

presence of a changepoint or not. Here the principle is similar to the model-based
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methods, however, the data isn’t explicitly modelled using the cost function. Instead,

the cost function acts as a test statistic for determining if the data contains a change or

not. These test statistics are usually designed for detecting certain types of changes,

such as mean changes, however, usually have weaker modelling assumptions compared

to model-based methods.

The most common type of change to detect is a mean change and in this setting the

most common choice of test statistic is the CUSUM statistic, which we define

C(ys:e|t) =

√
e− t

(e− s+ 1)(t− s+ 1)

t∑
i=s

yi −

√
t− s+ 1

(e− s+ 1)(e− t)

e∑
i=t+1

yi . (2.1.4)

The maximum of this test statistic across potential changepoint locations, s < t <

e, will yield the most likely changepoint position and the size of the test statistic

determines how likely it is that the maximum point is a changepoint.

The CUSUM test statistic has been used since at least Hinkley (1971) for mean

changes in Gaussian data and builds upon the similar procedure given in Page (1954).

The CUSUM statistic has been adapted to other settings such as for changes in

variance (Inclan and Tiao, 1994); non-parametric i.i.d setting (Csörgö and Horváth,

1988); and temporally dependent data (Robbins et al., 2011).

Although the CUSUM statistic is a popular choice within changepoint detection it

does have some drawbacks. Firstly, it assumes there is AMOC in the data, this

can cause issues (specifically masking) when data contains multiple changepoints,

something that the model-based cost functions avoid. Masking is discussed further

in Section 2.1.2. Secondly, the CUSUM statistic is known to perform poorly at the
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boundaries of the data (Csörgö and Horváth, 1997) where it can yield high test statis-

tic values simply due to the sample size on the relevant side of the change. However,

this issue is also present when using cost-based methods and a general solution is to

set minimum segments length between changepoints (including the boundaries of the

data).

Besides the model-based methods and test statistic based methods there are a few

other examples of cost functions. Lévy-Leduc and Roueff (2009) and Lung-Yut-Fong

et al. (2011) use U-statistic based cost functions which are based on the ranks of the

data. These methods don’t make modelling assumptions on the data but can have

poor power for detecting changepoints. Harchaoui and Cappe (2007) introduced a

kernel-based cost function and this idea was developed further in Celisse et al. (2018).

Kernel-based cost functions can work well for detecting changes when the data gen-

erating processes have more complex and non-linear changes such as the half-moon

data example given in Harchaoui and Cappe (2007). Finally, Matteson and James

(2014) proposed two non-parametric methods, E-Divisive and ecp3o, that use a di-

vergence measure to identify changepoints. They implement this cost function using

both a model (ecp30) and a test statistic (E-Divisive) style approach. These meth-

ods have the advantage of detecting distributional changes rather than parameters

specific changes, however, these cost functions can be computationally expensive to

calculate.

In general, model-based methods work well in scenarios where the data generating

process is known and we are looking for a change in a subset of parameters. In partic-
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ular, if we are looking for changes in multiple parameters, such as a mean and variance

change, then model-based cost functions incorporate this whereas test statistic based

cost functions tend to focus on a single specific change type. If we are only interested

in a specific type of change and we are less sure about the modelling assumptions of

the data then test statistic based methods are typically more robust to model mis-

specifications or don’t require a specified model at all. Moreover, these methods are

generally better suited to data that exhibits temporal dependence, especially if we

don’t model this dependence in the model-based cost functions. Finally, if we are

unsure of the type of change and data generating process then a method such as in

Matteson and James (2014) makes much milder assumptions on the change and the

data may be the most appropriate.

2.1.2 Search Methods

In Section 2.1.1, we presented a range of different cost functions for measuring how

likely a subset of data is to contain a change. Now we examine how to search for

multiple changes given these cost functions. Search methods can generally be split

into two categories. Firstly, there are optimal methods (otherwise known as exact

methods) where we aim to minimize V ′(T ) exactly given some penalization on the

number of changes or a known number of changes. These optimal search methods

are usually used alongside the model-based cost functions introduced in Section 2.1.1.

Secondly, there are approximate approaches. These generally detect changes one at a

time and keep adding changes (dependent on the previously identified changepoints)
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until the required number of changes is reached or the penalization deems no more

changes should be added. These approximate methods typically partner with the test

statistic based cost functions.

Optimal Search Methods

The most naive approach to finding the exact solution to V ′(T ), would be to search

all possible segmentations. However, with m known this would yield
(
n−1
m−1

)
possible

segmentations while with m unknown this would yield
∑n−1

m=1

(
n−1
m−1

)
segmentations. In

both settings, unless m and n are small, searching over all these segmentations is im-

practical. Hence, more efficient ways of finding the exact solutions are required.

Firstly, for these search methods to work, we need to penalize, otherwise, the majority

of methods would keep adding changepoints up to m = n− 1. Hence, we seek to find

a solution to the optimization problem

min
T
V ′(T ) + βf(m) (2.1.5)

where βf(m) is a penalty to guard against over-fitting changepoints. Note that m =

|T |, hence βf(m) is relevant to the optimization. The choice of penalization is explored

more thoroughly in Section 2.1.3.

If an upper limit of the number of changepoints, say M , can be set, then Auger

and Lawrence (1989) proposed the Segment Neighborhood (SN) approach for solving

(2.1.5). This approach utilizes dynamic programming to search the entire segmenta-

tion space and return the global minimum. However, this method still has a signifi-
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cant computational cost, O(Mn2) and if the number of changepoints increases linearly

with the number of data points this results in computational complexity of O(n3). To

help reduce this computational cost, Maidstone et al. (2017) applied inequality based

pruning to the Segment Neighborhood method. However, pruning is not guaranteed

to reduce the computational complexity especially in situations where the number

of time points increases but the number of changepoints stays constant. Hence, in

many situations Segment Neighborhood approaches with or without pruning are still

computationally intractable for large time series.

To reduce this computational cost, further assumptions are required on the penalty

term. If f(m) = m, then Jackson et al. (2005) proposed a search method to mini-

mize (2.1.5) called the Optimal Partitioning (OP) method. This method sequentially

moves through the data and works by conditioning on the last point of change. More

formally, for t′ < t, let F (t′) be the minimization of (2.1.5) up to time point t′. If

F (0) = −β, then

F (t) = min
t′<t

[
F (t′) + C(y(t′+1):t) + β

]
. (2.1.6)

This recursion says, at time point t consider all previous time points t′, which of these

is the optimal most recent changepoint i.e. F (t′) +C(y(t′+1):t) +β is smaller than any

other t′ < t.

Consider Figure 2.1.1, if we are at time t then we need to look back at all previous time

points to find t′ that minimizes (2.1.6). If we look at time point t′1, then C(yt′1+1):t) will

be large as it contains a changepoint, hence this is unlikely to minimize (2.1.6). Next,

consider time point t′2, here C(yt′2+1:t) will be small as it contains no changepoints.
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So t′2 would be a good candidate to minimize (2.1.6). Finally, consider t′3, again

C(yt′3+1:t) will be small, however, the optimal segmentation F (t′3) will likely contain

the changepoint at t′2, hence will contain an extra penalty term β in the overall cost.

Thus F (t′3) +C(yt′3+1:t) + β will be likely be larger than F (t′2) +C(yt′2+1:t) + β as the

difference between C(yt′3+1:t) and C(yt′2+1:t) will be smaller than the cost of additional

penalty term included in F (t′3).

t'1 t'2 t'3 t

Time

Figure 2.1.1: Candidate changepoints for the explanation of OP and PELT

More recently, efforts have been made to further decrease the computational com-

plexity of optimal search methods via pruning. Using OP, at each time point every

previous time point is checked to see if it is the optimal most recent changepoint.

Pruning aims to reduce the number of time points that need to be checked in the

minimization of (2.1.6) by removing those that can’t be the optimal most recent

changepoint. Using Figure 2.1.1, the aim of pruning would be to remove time point

t′1 from the list of time points being checked since it is clearly not the optimal most



CHAPTER 2. OVERVIEW OF CHANGEPOINT DETECTION 18

recent change.

Killick et al. (2012) proposed the Pruned Exact Linear Time (PELT) method which

applies inequality based pruning to the OP method and utilizes the observation that

introducing a changepoint reduces the cost of the sequence. If for t′2 > t′1,

F (t′1) + C(y(t′1+1):t′2
) + β ≥ F (t′2), (2.1.7)

then for any t > t′2, t
′
1 can’t be the most recent changepoint as t′2 is a more optimal

candidate. Consider F (t′2) + C(yt′2+1:t) + β, this will always be smaller than F (t′1) +

C(yt′1+1:t) + β due to the inequality in (2.1.7) and the assumption,

C(y(t′1+1):t′2
) + C(y(t′2+1):t) + β ≤ C(y(t′1+1):t) .

Hence, t′1 can never be the optimal solution to the minimization in (2.1.6) for the

current time point t or any future time points. Hence, PELT will prune this time point

and it will no longer be a candidate for the optimal most recent changepoint. This

results in substantial computational gains over OP and when the number of changes

grows linearly with n the computational cost of PELT is O(n). However, pruning is

not guaranteed especially if the number of changes remains fixed as n → ∞, hence

the method has a worst-case computational cost of O(n2). Despite this PELT has

become one of the main methods used for univariate changepoint detection in a wide

range of applications.

Functional pruning has also been used to improve the speed of optimal search meth-

ods. Maidstone et al. (2017) proposed the Functional Pruning Optimal Partitioning

(FPOP) method which can drastically improve the computational speed of the OP
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method even further than PELT. Despite the vastly improved computational time

achieved with functional pruning, these methods require many functions to be stored

as the method runs. This means that only one parameter can feasibly be checked

for a change at any given time. Hence, when searching for changes in two or more

parameters inequality based pruning would likely be faster.

In summary, for detecting changes in more than one parameter then the PELT method

would likely be the most appropriate. If you are only looking for a change in one

parameter then using the FPOP method would likely give an improved computational

saving. However, if you wish to use a more complex penalty than f(m) = m then SN

based methods may be more appropriate. More details on the choice of penalties are

given in Section 2.1.3.

Approximate Search Methods

Using optimal search methods can be computationally expensive depending on the

problem setup and therefore approximate search methods are commonly used. Ap-

proximate search methods usually involve searching for a single changepoint in a

subset of data (commonly using test statistic based cost functions) and if a change-

point is found then further individual changepoints are identified dependent on the

detected changes.

In Section 2.1.1, we saw how test statistic based cost functions aim to determine if a

changepoint is present in a subset of data or not. Approximate search methods are

commonly used to extend these methods to detect multiple changes. To determine
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if a test statistic is significant or not we can compare it to a threshold (or penalty),

β. These thresholds/penalties will be discussed further in Section 2.1.3. If the test

statistic exceeds the threshold then we deem a changepoint to have occurred and we

place it at the time point which maximizes the test statistic. Different approximate

search methods can then be used to identify additional changepoint locations if m >

1. Alternatively, the approximate search method can detect up to a pre-defined

maximum number of changepoints, M , and then model selection style penalties can

be used to choose the most appropriate number of changepoints. More details on this

are given in Section 2.1.3.

Binary Segmentation (BS) is ‘arguably the most established search method used

within the changepoint literature’ (Killick et al., 2012). This method dates back

to Scott and Knott (1974) and is the basis of the majority of approximate search

methods. BS works by using the chosen test statistic to identify a single change-

point (if present). If a changepoint is present the data is split at the position of the

change and the two segments on either side of the change are searched for a single

changepoint using the given test statistic. This process is repeated until all segments

separated by the detected changes are deemed to not contain a change or M has been

reached.

BS, usually in combination with the CUSUM test statistic, has been a popular method

for many years. This is likely due to its ease of implementation and strong theoretical

results (Venkatraman, 1992; Chen et al., 2011; Cho and Fryzlewicz, 2012; Fryzlewicz,

2014). Despite this, BS does have some drawbacks. The main issue is masking
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(Padmore, 1993), where the presence of multiple changepoints causes the failure of

the test statistic to detect any changes or can cause a changepoint to be placed in an

incorrect location. This becomes a serious consideration in situations where there is

an abundance of changepoints as the chance of masking increases.

In an attempt to overcome the issue of masking, alternative variations of BS have

been suggested. The most well-known example is Wild Binary Segmentation (WBS)

created by Fryzlewicz (2014). This method works by randomly drawing I intervals

across the data and performing the tests solely on these intervals. The premise behind

this approach is that the probability that there is an interval with exactly one change-

point is high and therefore masking won’t occur in this interval. While this method

does help overcome the issue of masking, many intervals are usually required in prac-

tice which can make the method computationally intensive. Moreover, when used in

practice this method is known to over-fit the number of changepoints due to testing

across many intervals - this issue can be overcome by selecting a more appropriate

penalty.

Further alternative extensions to BS include Circular Binary Segmentation (Olshen

et al., 2004; Venkatraman and Olshen, 2007) where the data is assumed to go through

regimes and usually returns to a common null level. More recently the Narrowest-

Over-Threshold approach of Baranowski et al. (2019) was proposed which aims to

improve upon WBS by selecting the change from the smallest interval I subject to

it exceeding the threshold. This further reduces the effect masking and multiple

changepoints within an interval, however, the choice of the intervals I is still an issue.
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These recent additions indicate that developing extensions to BS is still an active

research area.

Windowed methods are an alternative to BS and can be categorized as approximate

search methods. Here a rolling window is passed over the data and the test statistic

is calculated within each window to detect the presence of a change. The main

windowed procedure in the literature is based on MOSUM statistics (Hušková and

Slaby, 2001; Eichinger and Kirch, 2018). The main drawback with these methods is

their dependence on a user-specified bandwidth parameter for the size of the window.

Cho and Kirch (2021) suggested using different bandwidths for detecting different

change sizes, however, this can result in a computationally expensive method if many

bandwidths are required along with multiple testing issues for detecting changepoints

across the different bandwidths.

The choice of using an approximate search method or an exact search method usu-

ally is dependent upon the choice of the cost function. Typically, model-based cost

functions will use an exact search method unless the series is extremely long in which

case the faster approximate methods may be more appropriate. However, FPOP has

been shown to have a computational time that is similar, if not faster, than many

approximate methods especially when there are many changes in the data. When

using a test statistic based cost function then the approximate methods are generally

the only way to extend these for detecting multiple changepoints.
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2.1.3 Penalization

So far we have considered choosing an appropriate cost function/test statistic and

how to search for changepoints using either optimal or approximate search methods.

Within the optimal search methods, we noted that a penalty term, βf(m) needs

to be included with minimization of V ′(T ) to control the number of changepoints.

Moreover, for the approximate search methods either a threshold β is needed to

deem a changepoint significant or a model selection style penalization is required to

determine the appropriate number of changes. Here we explore the choice of penalty

in more detail.

The main aim of penalization is to control the false-positive rate of detecting changes

when none are present in the data. Within optimal search methods the choice of

βf(m) in (2.1.5) is usually based on information criteria. For approximate techniques,

the choice of the threshold, β, for determining if a change is significant is commonly

based on the limiting distribution of the test statistic either theoretically or evaluated

through simulating many repetitions of null data. Here we explore these three methods

for choosing an appropriate penalty in more detail.

Information Criterion Based Penalization

We saw in Section 2.1.2, that for some search methods the choice of penalty has to be

set as f(m) = m, such as in Optimal Partitioning (Jackson et al., 2005) and PELT

(Killick et al., 2012). This assumption is stricter than necessary but is a common

choice. In reality, as long as βf(m) = mβ + f(y) then Optimal Partitioning and
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subsequent pruning can be used.

One common choice of penalization is to set f(m) = m and use the Bayesian Informa-

tion Criterion (BIC), also known as Schwarz Information Criterion (SIC), introduced

by Schwarz (1978). In the setting where a single parameter is allowed to change then,

the BIC penalty is β = 2 log n. Note that we have at least two new parameters upon

adding a changepoint; the estimated change location and a new parameter estimate.

Dependent on the number of parameters allowed to change and that are estimated,

the BIC penalty is adjusted accordingly. In the Gaussian mean change setting, Yao

(1988) developed a theoretical justification for using the BIC penalty.

Despite its popularity, the BIC penalty can have difficulties in the large sample, many

changepoints and non-Gaussian settings, hence Zhang and Siegmund (2007) developed

a Modified Bayesian Information Criterion (MBIC) to overcome these issues. This

penalty is defined as

βf(m) = (2m− 1) log n+
m+1∑
k=1

log (τk/n− τk−1/n) ,

and can be written in the form βf(m) = mβ+f(y), hence can be used within Optimal

Partitioning. This penalty has gained increasing popularity as it is less sensitive to

model misspecification which is common when using model-based cost functions.

Alternative, information criteria such as the Akaike Information Criterion (AIC) pro-

posed by Akaike (1974) are rarely used in practice due to poor performance (Haynes

et al., 2017a; Jones and Dey, 1995; Reeves et al., 2007) and as it is not asymptotically

consistent (Yao, 1988).
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Other forms of penalties have been suggested for model-based approaches. Lebarbier

(2005) suggested a penalty of the form

βf(m) =
m

n
σ2
(
c1 log

n

m
+ c2

)
,

for the Gaussian mean change setting. However, this penalty requires the tuning

of c1 and c2 and is limited to the Gaussian mean change setting. Tibshirani and

Wang (2008) have examined penalties based on the Least Absolute Shrinkage Selection

Operator (LASSO) and Harchaoui and Lévy-Leduc (2010) note the similarity between

the LASSO and detecting changes in mean in the Gaussian setting. However, recently

it has been noted that such penalties typically struggle to detect the true number of

changes (Ng et al., 2018).

Information Criterion can also be used within the approximate search methods. If

we set a maximum number of changepoints then we can produce a segmentation for

each number of changepoints m = 1, . . . ,M sequentially. Then, choosing the appro-

priate number of changepoints becomes a model selection problem and we can use

Information Criterion. In this setting, Fryzlewicz (2014) introduced the Strength-

ened Schwarz Information Criterion (sSIC) for choosing the appropriate number of

changepoints after using Wild Binary Segmentation for detecting mean changes. This

criterion has also been used in Baranowski et al. (2019) and works by defining a

maximum likelihood estimator of the residual variance,

σ̂2
m = n−1

m∑
k=1

τk∑
i=τk−1+1

(yi − ȳk)2 ,
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where ȳk is the mean estimate in segment k. The sSIC is then defined as

sSIC(m) =
n

2
log σ̂2

m +m logα n .

Note if α = 1 this corresponds to the standard BIC penalty. The downside to this

penalty is that the arbitrary choice of α and this penalty can suffer similarly to the

related BIC penalty with frequent changes.

A similar idea for optimal search methods was developed by Haynes et al. (2017a).

They proposed the CROPS algorithm which produces a solution path for all choices

of penalties across a continuous range. This allows for multiple segmentations to be

evaluated and therefore a suitable penalty to be chosen by considering a scree plot

of the total cost V ′(T ). The aim is to find the elbow of the scree plot such that

introducing a change does not drastically decrease the total cost of the segmentation.

An example of using the CROPS algorithm can be seen in Appendix A.9.

Limiting Distribution Based Penalization

For detecting single changepoints it is common to use the limiting distribution of the

test statistic under the null hypothesis of no change to set an appropriate threshold

penalty. The threshold is then chosen to control the false alarm rate under the scenario

of no change. Here the difficult task is to determine the limiting distribution of the

test statistic.

For an overview of calculating the limit distributions for some common AMOC change-

point methods see Csörgö and Horváth (1997). Generally, the convergence of these
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test statistics to their limit distributions is slow especially if the data is non-Gaussian.

Furthermore, even when the limiting distribution has been established it often does

not have an analytical form and hence sampling from the distribution is required. In

practice, thresholds based on limiting distributions are often overly conservative in

finite sample settings and simulation-based penalization is used instead.

Multiple changepoints also cause a problem when using limiting distributions. When

testing for a single change we can use the (1− α)-percentile of the limiting distribu-

tion as the threshold (where α is the user-defined false alarm rate). However, if we

are searching for more changes this raises the issue of multiple testing. If we keep

testing for multiple changepoints it becomes more likely that we incorrectly identify a

changepoint where one does not exist. This makes controlling the overall false alarm

rate a challenging task as if we increase the threshold to account for multiple change-

points and control the overall false alarm rate then we are more likely to miss true

changepoints.

Simulation Based Penalization

To overcome the overly conservative thresholds based upon limiting distributions, we

can instead use a simulated threshold. To do this, we simulate from many repetitions

of the null model, run the test statistic on these null data examples and this will give

us samples from the distribution of the test statistic under the no-change scenario.

We use these samples to set a threshold that controls the false positive rate at the

desired level, however, the issue here is the required knowledge of the null model.
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Moreover, these penalties have the same issues with multiple changepoints as seen

with the thresholds based on limiting distributions. Despite this, simulated thresholds

are commonly used in the implementation of methods even if a theoretical threshold

based on the limiting distribution of the test statistic has been found, see Gallagher

et al. (2013), Wang and Samworth (2018) and more.

Instead of simulating from the null model, we could instead utilize the fact that

under the scenario of no change the ordering of the data is not important, assuming

independence between time points. Hence, we could permute the data points multiple

times and by running the test statistic on these permuted data sets we would get

approximate samples from the distribution of the test statistic under the null model.

Note if a change was present in the data then the points from either side of the change

would become mixed therefore removing the change from the data and hence the test

statistic would not be as high as with the original data with the changepoint present.

This idea of using a permutation test was used in Matteson and James (2014) where

it was used in conjunction with BS.

The choice of penalty is one of the most challenging aspects of changepoint analy-

sis. For model-based cost functions, the use of information criteria is very common

with the MBIC and BIC being the most popular. Despite their popularity, theoreti-

cal guarantees (on the number of changes and their location) are less common with

model-based cost functions and generally strong assumptions are placed on the data

generating process and change type. Moreover only recently have these theoretical

guarantees been extended to pruning methods such as PELT (Tickle et al., 2020). On
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the other hand, the theoretical properties of the test statistic methods and subsequent

approximate approaches have been well studied. Here the issue lies in the practicality

and despite theoretical guarantees being presented for many of the methods, they

usually come with the caveat that using a data generated or simulation-based penalty

would work better in practice.

In examining different cost functions, search methods and penalties, we have presented

a wide range of methods for solving univariate changepoint problems. In Section 2.1.4,

we briefly highlight a few methods that do not readily fit into this framework or come

from a frequentist viewpoint.

2.1.4 Alternative Methods

A major contribution to the univariate changepoint literature is the SMUCE method

of Frick et al. (2014). This method utilizes a multi-scale test statistic to search

over the entire space of discrete step functions in exponential-family generated data.

This method along with extensions including H-SMUCE (Pein et al., 2017) have

the advantage of providing natural confidence intervals for the changepoint estimates,

something that is rare in the frequentist literature. Despite this, these methods require

the choice of several tuning parameters which can have drastic effects on the analysis

and the power of these methods is sub-par in comparison to other state-of-the-art

methods.

Throughout this thesis we focus on the frequentist setting, however, there has been

some popularity within Bayesian methods for changepoint detection. Fearnhead
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(2006) introduced the perfect simulation procedure which updates its posterior simi-

larly to PELT. Another popular concept is to use hidden Markov models, where the

hidden states represent the different segments. This idea has seen numerous works

including Chib (1998), Luong et al. (2013), Ko et al. (2015). These models can also

be referred to as jump models (Bemporad et al., 2018; Nystrup et al., 2020, 2021).

These models can be particularly useful when there are a set number of regimes and at

changepoints, the model switches to one regime or another. Moreover, Bayesian meth-

ods can naturally provide credible intervals for the changepoint locations something

which is still ongoing research in the frequentist setting.

2.2 Multivariate Changepoints

Historically, changepoint detection focused on the univariate setting, however, recently

the multivariate setting has received substantially more attention. If we let the number

of data streams/variates be p, we have data y1:n,1:p = (y1,1:p, y2,1:p, . . . , yn,1:p) where

yi,1:p ∈ Rp for 1 ≤ i ≤ n. Similarly, to (2.1.1), we now have

yi,j ∼



G1,j for τ0 < i ≤ τ1 ,

G2,j for τ1 < i ≤ τ2 ,

...
...

Gm+1,j for τm < i ≤ τm+1 .

(2.2.1)

Again, G1,j, . . . , Gm+1,j are the data generating processes associated with each seg-

ment for a given variate j. Note that the Gk,j need not be the same distributional
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form for all j. In the multivariate setting, not all the data generating processes across

the different variates need to change for a changepoint to be present. Hence, we define

Sk ⊆ {1, . . . , p} as the non-empty set of variates that undergo a change at τk. This

means that at a changepoint, Gk,j � Gk+1,j if and only if j ∈ Sk.

Changepoints only occurring in a subset of the variates is one of the key challenges

associated with multivariate changepoint detection. We refer to the number of variates

that undergo a change as the sparsity of the changepoint and we use this as a way

to divide this Section. Firstly, we will consider the fully multivariate changepoint

setting where we assume Sk = {1, . . . , p} i.e, the changepoint occurs in all variates.

Here we consider extensions of univariate methods to the multivariate paradigm along

with a thorough review of covariance changepoints where the dependence structure

between the data generating processes can change. This leads to Chapter 4 where a

special type of covariance change, a subspace changepoint, is considered. Secondly, we

consider the sparse changepoint setting where just a subset of the variates may change.

Here dimension reduction or aggregation techniques are commonly used to account for

the sparsity of the changepoints. We use our own dimension reduction technique in

Chapter 3 albeit to solve an open problem in the fully multivariate setting. Note that

we divide fully multivariate and sparse changepoints based upon the cost function

used and not the search method. For example, many methods that use AMOC test

statistics for detecting sparse changes, extend to multiple changepoints by assuming

the change occurred in all series and hence still use a BS style approach despite not

all the variates changing.
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The main differences between univariate and multivariate methods revolve around

the cost function or test statistic. Many of the search methods and penalization

methods intuitively carry forward from the univariate to the multivariate setting. For

example, with test statistic based methods, BS is still a popular way to detect multiple

changepoints and using the limit distribution of these test statistics is a common way

to obtain a threshold. Hence, this Section puts increased focus on the different cost

functions used in the multivariate setting and for a thorough critique of different

search methods and penalization see Sections 2.1.2 and 2.1.3.

2.2.1 Fully Multivariate Changepoints

The fully multivariate changepoint setting was first seen in Srivastava and Worsley

(1986) who proposed a multivariate likelihood ratio test for detecting mean changes

in multivariate Gaussian data. Since then, the extension of different univariate cost

functions to the multivariate domain has occurred, along with the introduction of

changes in the covariance structure between variates. We first examine extensions of

model-based cost functions to the fully multivariate domain before examining how

test statistic style cost functions (mainly based on the CUSUM statistic) have been

extended to detect fully multivariate mean changes. Then we discuss some recent

methods for detecting covariance changepoints and highlight the open research area

discussed in Chapter 4. Finally, we mention a few alternative non-parametric and

Bayesian methods for completeness.
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Model Based Cost Functions

The extension of model-based cost functions to the fully multivariate domain is intu-

itively a simple task. Instead of modelling the data from a univariate data generating

process and using the negative log-likelihood, we can simply model the data from a

multivariate data generating process. Our cost function can remain as the negative

log-likelihood of the multivariate data and changes can be detected accordingly us-

ing an appropriate univariate search method (e.g. SN, OP or PELT). As we have

additional parameters to estimate, the commonly used information criterion for pe-

nalization has to be adjusted slightly so that it scales with n, p and the number of

changepoints.

Although this extension of model-based cost functions is intuitively simple, it has

many issues. Firstly, we saw in Section 2.1.1 that these approaches, when paired with

an optimal search method, can have a large computational cost; this issue persists in

the multivariate domain. Lavielle and Teyssière (2006) and Maboudou and Hawkins

(2009) propose methods that are based on the SN approach and in the multivariate

domain this has computational cost O(Mpn2) so even for a small number of variates

this can quickly become intractable to compute. Moreover, in the multivariate do-

main, the minimum segment length between changepoints can grow much larger for

certain change types i.e, if a covariance matrix needs to be estimated this makes the

minimum segment length at least p when using a traditional covariance estimator.

Hence, if p > n/2 then we can not fit any changepoints to the data. Hallac et al.

(2019) propose a method to overcome this issue, they use a regularization parameter
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to aid in the estimation of the covariance matrix when p is large and look for changes

in the mean and covariance of Gaussian data. This method can be used with optimal

search methods (which is computationally inefficient) or they recommend using an

approximate approach by estimating changepoints using a BS style search method.

This is one of the few methods that can detect multiple changes while remaining

computationally efficient, however, the method does not come with any theoretical

guarantees regarding the detection of changepoints or their locations.

Model-based approaches excel when there is potential for multiple parameters to

change at once and the data generating process is known. However, due to the large

computational cost of model-based methods in the multivariate domain, there is a lack

of suitable methods for detecting changes in multiple parameters in a potentially high-

dimensional setting. Hence, in Chapter 3, we propose a method that uses a dimension

reduction technique to detect changes in mean and covariance simultaneously in a

computationally efficient manner.

Test Statistic Based Methods

As model-based cost functions have a high computational cost, test statistic based

approaches have become increasingly popular in the multivariate domain, in particular

multivariate extensions of the CUSUM statistic (Zamba and Hawkins, 2006, 2009;

Wang and Reynolds, 2013; Tartakovsky et al., 2014; Enikeeva and Harchaoui, 2019).

These methods work by applying the CUSUM statistic defined in (2.1.4) to each

variate and then aggregating these CUSUM statistics in some way.
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Let St,j be the CUSUM statistic from (2.1.4) for variate j at time point t, so

St,j =

√
e− t

(e− s+ 1)(t− s+ 1)

t∑
i=s

yi,j −

√
t− s+ 1

(e− s+ 1)(e− t)

e∑
i=t+1

yi,j , (2.2.2)

based on an interval s ≤ t ≤ e. An obvious test statistic for detecting a fully

multivariate change would involve the l2−norm of the test statistics, St,1:p, at each

potential changepoint location t. Here we examine test statistics where the CUSUM

statistic from each variate is used in the final test statistic, note there are different

aggregations designed for sparse changepoints but these are discussed in Section 2.2.2.

Zhang et al. (2010) introduced a test statistic that uses the sum of squared CUSUM

statistics across all the variates, with

C(y1:n,1:p) = max
1≤t≤n

p∑
j=1

(St,j)
2 . (2.2.3)

They derived the test criterion for a theoretical threshold under the i.i.d Gaussian

setting and implement this in a circular BS framework (Olshen et al., 2004). Hence,

this is suited to data that returns to a known base level sometime after a change

has occurred. Furthermore, Horváth and Hušková (2012) proposed a similar test

statistic

C(y1:n,1:p) = max
1≤t≤n

1
√
p

t(n− t)
n2

p∑
j=1

[(St,j)− 1]

and the limit distribution derived for independent variates. Whilst these methods

have well studied theoretical properties and perform well in the Gaussian change

in mean setting, the issues from the univariate setting remain. Namely, the con-

vergence of these test statistics to their limiting distributions is slow especially for

non-Gaussian and dependent data, thus setting a threshold for the test statistics is
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challenging. Moreover, these methods are typically used within a BS or WBS setup

to detect multiple changepoints. This raises the multiple testing issue when using

limiting distribution based thresholds. On the plus side, these methods are more

computationally efficient and easier to implement than the model-based cost func-

tion approaches. Moreover, issues regarding thresholds can be overcome by using

simulated or data-driven thresholds.

Covariance Changepoints

Covariance changepoints arise when the covariance between the data generating pro-

cesses Gi,1:p changes at the unknown changepoints τk. Lavielle and Teyssière (2006)

introduce a model-based cost function for detecting covariance changepoints but this

has issues regarding the estimation of the covariance within the cost function, particu-

larly in the case where p is large. Hence, Aue et al. (2009a) propose a CUSUM statistic

based method to detect covariance changes. This method detects mean changes in the

stacked covariance vector. Define vech(·) to be the operator that stacks the columns

below the diagonal of a symmetric matrix as a vector with p(p + 1)/2 entries. Using

this they define St as

St =
1√
n

(
t∑
i=1

vech
(
yi,1:py

T
i,1:p

)
− t

n

n∑
i=1

vech
(
yi,1:py

T
i,1:p

))
,
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for t = 1, . . . , n where yT is the transpose of the vector y. Two test statistics are

proposed for detecting changes,

C1(y1:n,1:p) = max
1≤t≤n

STt Σ̂−1n St , (2.2.4)

C2(y1:n,1:p) =
1

n

n∑
t=1

STt Σ̂−1n St , (2.2.5)

where Σ̂−1n is a long-run covariance estimator of the vectors, vech(yi,1:py
T
i,1:p). Aue et al.

(2009a) show that using (2.2.5) has more power for detecting changepoints and the

limit distribution of this test statistic is well established with reasonable convergence.

However, this test statistic does not identify the location of the changepoint since the

cost function is made up of evidence for a changepoint at every time point, hence

(2.2.4) is needed to identify the changepoint location. This method is non-parametric

and has been shown to work well in a number of economic models including Mul-

tivariate ARMA and linear processes as well as many GARCH models. However,

the estimation of the long-run covariance is non-trivial and these test statistics are

sensitive to its estimation. Furthermore, as this method stacks the covariance ma-

trix estimates this method does not scale well with increasing p, hence it is only

recommended for a small number of variates.

To extend this method to high-dimensional problems, Dette et al. (2020) have recently

proposed an alternative version of St. This method is technically a sparse change-

point method, however, we include it here for completeness of the covering covariance

changepoints. They propose only including the variates in the stacked covariance vec-

tor where the difference between pre and post-change values is large. A similar idea is

shown in (2.2.8) in Section 2.2.2. This reduction in the number of variates allows the
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method to work well in higher-dimensional data provided the thresholding substan-

tially reduces the number of entries in the stacked covariance matrix. Moreover, they

propose a bootstrap approach for threshold selection to get around the difficulties of

estimating the limiting distribution of (2.2.4). However, the issue of estimating the

long-run covariance matrix remains.

To address the covariance changepoint problem in high-dimensional data where p can

be larger than n, Avanesov and Buzun (2018) propose an approach based on the

comparison of precision matrices. They use a rolling window approach, where they

search for changes by comparing estimates of high-dimensional precision matrices.

Similarly, to Cho and Kirch (2021) they propose using different sized windows to

obtain a multi-scale approach. For shorter windows, the estimation of the high-

dimensional precision matrices may be poor and hence larger changes are needed to

be detected. Whereas for larger windows, we gain a better estimation of the precision

matrices at the cost of the minimum segment length between changes being larger.

To determine which changes across the different windows are significant, a bootstrap

calibration approach is used to set appropriate thresholds. Although this method

can be used in a high-dimensional setting, the method lacks power for detecting

smaller changes and usually requires large windows to detect changes. Thus the

method is inappropriate for data sets with many changes that could be reasonably

close together.

Recently, Wang et al. (2021) proposed an approach based on the leading singular
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vector of the operator norm of the covariance CUSUM statistic defined as

St =

√
e− t

(e− s)(t− s)

t∑
i=s+1

yi,1:py
T
i,1:p −

√
t− s

(e− s)(e− t)

e∑
i=t+1

yi,1:py
T
i,1:p .

They provide a thorough theoretical investigation of this test statistic and provide

guarantees on the size of changes that can be detected and on the localization of

the changepoints for a range of thresholds. However, less information is given about

the implementation of this method such as how to generate an appropriate thresh-

old. Moreover, the method requires a large minimum segment length, 2p log n, to

accommodate the theoretical results. Hence, despite its strong theoretical results,

implementation of the method is challenging and it cannot be applied to series with

several changes.

A common property of the covariance methods mentioned so far is they compare

the difference of the covariance matrices to detect changes. This means their test

statistics require an estimate of the underlying covariance matrix which is impractical

when unknown changepoints are present. Hence, Ryan and Killick (2021) propose

a test statistic that is based on the multivariate ratio matrix to alleviate this issue.

This method is shown to have superior performance to other covariance methods for

detecting and locating changepoints, however it can be computationally intensive for

larger data sets due to the need to calculate the inverse of a matrix at each time

point. Moreover, the method has a minimum segment length of p, thus the method

is intractable for high-dimensional data sets or those with short segments.

The methods above aim to detect changes in a general covariance structure. However,

in many applications, there is some underlying structure to this covariance matrix that
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can be exploited to yield better detection rates. One such structure is to assume the

data lie in a lower-dimensional subspace which enforces restrictions on the eigenvalues

of the covariance matrix. Detecting changepoints in covariance matrices with this

structure hasn’t been explored in the offline multivariate changepoint setting and

hence in Chapter 4 we propose a method for detecting changes in subspace. We show

that when this restriction on the eigenvalues of the covariance matrix holds, we gain

better power for detecting changes than using the general covariance changepoint

methods mentioned above.

Alternative Methods

In Section 2.1.1, we introduced the non-parametric E-Divisive approach of Matteson

and James (2014). This can also be used in a multivariate setting to detect changes

in multivariate distributions and has become popular in the fully multivariate setting

due to its strong performance at detecting mean and other types of changes. Another

recent non-parametric approach is the MultiRank procedure of Cabrieto et al. (2017).

They propose a test statistic designed to detect changes in correlation structure and

interestingly use an SN approach to detect multiple changes rather than BS. This

test statistic can struggle under more challenging data generating models and the use

of SN to detect multiple changes raises issues regarding the computational efficiency.

Finally, we mention that there are several popular Bayesian approaches for detecting

fully multivariate changepoints such as Peluso et al. (2019) and many methods based

on the popular reversible jump MCMC (Steward et al., 2016; Bolton and Heard,
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2018).

2.2.2 Sparse Changepoints

Since multivariate changepoint analysis has started receiving more attention, a key

question is how to deal with the sparsity of changepoints. In the fully multivariate

setting, it is intuitive how to extend univariate methods to the multivariate setting,

however, if we also assume that we do not know how many or which variates will

change, the problem becomes substantially harder. For model-based cost function

methods, the additional requirement of checking each combination of variates for a

change, in addition to searching for an optimal segmentation across time, means the

problem quickly becomes computationally infeasible. However, some methods have

been presented in this area and we discuss these in this Section.

For test statistic based methods, the most common type of change to detect is a mean

change and this extends naturally to sparsity - which of the variates have undergone a

mean change and which have not. Here it is common to perform dimension reduction

on the data, or some test statistic, to obtain better power for detecting changes.

Eliminating the variates which do not change, reduces the noise in the test statistic

making the change easier to detect in the variates containing a change. However,

these methods do not give inference on which variates change nor have any theoretical

results on this. Their aim is simply computational efficiency, and they embed their

AMOC statistics within a search strategy that assumes a changepoint has occurred in

all the series. The second part of this Section is a summary of the main test statistic
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based methods for detecting sparse changes.

Model Based Methods

The sparsity of a changepoint can be extremely challenging especially if we are unsure

how many of our variates will change. Maboudou-Tchao and Hawkins (2013) propose

overcoming this issue by performing a fully multivariate approach for a change in

a multivariate Gaussian distribution and then performing a hypothesis test on each

variate to determine if it contained a change or not. This method is able to give

some indication to which variates change but has some drawbacks. Firstly, if the

change is very sparse then it will be difficult for the method to detect any changes

in the first place as the noise from the constant variates will mask the changepoint.

Furthermore, there is a multiple testing issue when considering the hypothesis test

of each change in each variate. This could lead to either variates that change being

missed if the multiple testing is dealt with appropriately, or many false alarms if each

hypothesis test has a fixed false alarm rate which doesn’t take into account multiple

testing. Performing a hypothesis test on each variate is similar to using a univariate

changepoint method on each variate and hence if there was a small change in all the

variates the fully multivariate changepoint detection could detect a change in the first

stage but then the hypothesis tests may not detect a change in any of the variates.

Finally, performing a hypothesis test on each variate can be time-consuming especially

as n and p grow large.

This issue of computational complexity is common with model-based cost functions
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and optimal search methods. Pickering (2016) formulated a cost function that al-

lows for any number of variates to change at each changepoint and they presented a

pruned dynamic programming approach, similar to PELT, to solve this. The method,

named Subset Multivariate Optimal Partitioning (SMOP), is able to solve the min-

imization of the global cost function exactly, however, has a computational cost of

O(pn2p) making it infeasible unless both the number of time points and variates is

small. Hence, it has become common to no longer use optimal search methods and

instead uses an approximate search method for minimizing the global cost function

(Bardwell et al., 2019; Fisch et al., 2019). In particular, Tickle et al. (2021) use a

penalized cost approach but solve this approximately by assuming AMOC and using

WBS to detect multiple changepoints. As this is a likelihood-based approach, it has

the advantage of being able to detect different types of changes, however, a major

limitation is the assumption of independence across time and variates. Violations

of these independence assumptions can be dealt with by modifying the penalty, yet

choosing how to do this is non-trivial.

Model-based cost functions typically have the advantage that they recover not only

the changepoint locations but the variates that changed. Yet, combining these cost

functions with optimal search methods appears to be an impractical way of dealing

with sparse changes as their computational complexity is too high for even moderately

sized data sets. Using model-based cost functions with approximate search methods

improves the computational time of these methods and has lead to some promising

work in this area. However, these methods then gain the challenges associated with
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approximate search methods, such as masking. Striking a balance between these

approaches is still an open area of research.

Test Statistic Based Methods

The main challenge with sparse changepoints is the lack of knowledge regarding the

set Sk and which or how many of the variates will change. Siegmund et al. (2011)

simplify this assumption by assuming a known fraction of the variates will change.

They then use a statistic similar to (2.2.3) from Zhang et al. (2010) yet only apply it to

the known fraction of the largest test statistics across the variates. This method has

the advantage of being able to eliminate the noisy test statistics that don’t exhibit a

change but the assumption that there are a known fraction of the variates that change

is limiting.

To overcome this assumption, Groen et al. (2013), proposes using two test statistics,

one for the setting where lots of the variants undergo a change and one for when very

few variates change. The first of these test statistics is based on the mean of the

CUSUM statistics defined in (2.2.2),

C(y1:n,1:p) = max
1≤t≤n

1

p

p∑
j=1

St,j . (2.2.6)

This could be seen as a fully multivariate test statistic and is similar to that presented

in Horváth and Hušková (2012). The second is based on the maximum of the CUSUM

statistics across the variates at each time point,

C(y1:n,1:p) = max
1≤t≤n

max
1≤j≤p

St,j . (2.2.7)
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By selecting the largest CUSUM statistic from all variates this test statistic is best

suited for changes that occur in very few (ideally one) variate(s). Considering both of

these statistics at once allows for the detection of changes with varying sizes of the set

Sk. However, using these test statistics gives no indication of which variates change,

simply that a change has occurred. A post-processing step such as that in Maboudou-

Tchao and Hawkins (2013) could be used to determine which variates change but this

is cumbersome compared to model-based methods where the variates that change are

recovered for free.

The maximum of the CUSUM statistics, as defined in (2.2.7), was also considered in

Jirak (2015) in the high dimensional setting. They showed the asymptotic distribution

of the test statistic as both n, p → ∞, thus allowing for an appropriate choice of

penalty in the high-dimensional setting. However, this method is only suited to very

sparse changes and the variates that change are unknown.

To strike a balance between using all or just one of the CUSUM statistics in the

test statistic, Cho and Fryzlewicz (2015) proposed a threshold approach. Here the

CUSUM statistic contributes to the test statistic only if it exceeds a certain threshold,

say γ. This leads to a test statistic of the form

C(y1:n,1:p) = max
1≤t≤n

d∑
j=1

St,j1 [St,j > γ] , (2.2.8)

where 1[·] is the indicator function. This test statistic is able to recover which variates

change by storing which variates have a test statistic greater than γ but this is not the-

oretically justified so in practice you can’t make inference on those selected. Choosing

this threshold γ is not an easy task and is one of the downfalls of using a threshold
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approach such as this one. Moreover, the authors note that a post-processing step

is required to trim down the changepoints as the method is prone to over-fitting

changes.

To help with the choice of γ in the above approach, Cho (2016) proposed using a

Double CUSUM statistic. Here the St,k are ordered at each time point and a CUSUM

statistic is used on the variates at each time location. Identifying the most likely

changepoint across the ordered St,k aids the choice of threshold γ. We can simply

choose γ such that those after the changepoint where the St,k are small are not in-

cluded. This method provided a great way of choosing the threshold γ but in turn

requires us to choose another penalty for the CUSUM across the St,1:p. The authors

suggest using a bootstrap approach to pick these thresholds eliminating the need for

convergence to a limiting distribution. Again however, there is no theoretical guar-

antees for the selection so we can’t perform inference on the selected variates.

Another method that aims to aggregate only certain variates from the CUSUM statis-

tics is the Inspect method of Wang and Samworth (2018). Here the authors aim to

compute the oracle projection direction of the CUSUM statistics to maximize the

change size. The oracle projection direction is the normalized difference of the mean

vectors on either side of the change however estimating this projection direction is

difficult. To do this, the authors aim to find the k-sparse leading left singular vector

of the CUSUM statistics, however, this is an NP-hard problem and hence instead

a convex relaxation of the problem is solved. This method is designed for sparse

changepoints and struggles in settings where many variates change. Furthermore,
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the method is prone to over-fitting changepoints which is likely due to the tuning of

the required hyper-parameters in the estimation of the projection direction and the

implementation of the WBS algorithm, which is known to over-fit changepoints.

We have seen some different ways of overcoming the issue of sparsity within test

statistic based methods, mainly based on the CUSUM statistic. The main issue is

the unknown number of variates that undergo a change and whether to use a method

that looks at all of the CUSUM statistics as in (2.2.6) or just the maximum as in

(2.2.7). In recent work, Enikeeva and Harchaoui (2019) present a thorough theoretical

consideration of the issue of sparsity. They find that for changes that occur in greater

than
√
p of the variates (dense change), then using methods that consider all of the

CUSUM statistics will have more power than those that consider only a subset of

the variates. On the other hand, if the number of changing variates is less than
√
p

(sparse change), then using a subset of the test statistics such as those in (2.2.7) and

(2.2.8) will yield more power for detecting changes. Using these findings, the authors

present two test statistics, one based on the l2−norm of the CUSUM statistics, similar

to that in Horváth and Hušková (2012), and one based on a scan statistic that aims

to find the best subset of CUSUM statistics to use. They then propose combining

these two test statistics to create an overall test statistic that is capable of detecting

changes in the dense and sparse changepoint settings. If the change is in the sparse

regime, then it will be detected by the scan statistic and here we could recover the

variates that change easily. However, in the dense regime, as all variates are used in

the test statistic, it is not possible to determine which variates changed.
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The choice of model-based methods or test statistic based methods for sparse change-

points comes down to the problem at hand. If you require knowledge of the variates

that change then model-based methods accommodate this more easily, and allow in-

ference on the identified variates. However, these methods can be computationally

expensive especially if you wish to solve the global cost function exactly. This compu-

tational expense can be decreased by using an approximate search method, however,

additional issues such as independence between the variates and time points along

with the required knowledge of the data generating process can be inhibiting. If you

are searching for mean changes and only need the changepoint locations then test

statistic based methods may be more appropriate. Moreover, these methods tend to

be more robust to dependence structures across the variates and time, meaning model

misspecification is less of an issue. With all these methods the choice of search method

and penalty presents similar issues to the univariate case as discussed in Section 2.1.2

and 2.1.3.



Chapter 3

High-Dimensional Changepoint

Detection via a Geometrically

Inspired Mapping

3.1 Introduction

Time series data often have abrupt structural changes occurring at certain time points,

known as changepoints. To appropriately analyze, model or forecast time series data

that contain changes we need to be able to accurately detect where changepoints oc-

cur. High-dimensional changepoint analysis aims to accurately and efficiently detect

the location of changepoints as both the number of dimensions and time points in-

crease. High-dimensional changepoint analysis is an ever-growing research area and

has multiple applications including finance and economics (Modisett and Maboudou-

49
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Tchao, 2010); longitudinal studies (Terrera et al., 2011) and genetics (Bleakley and

Vert, 2011).

Changepoint analysis in the univariate setting is a well-studied area of research with

early work by Page (1954) and overviews can be found in Eckley et al. (2011) and

Brodsky and Darkhovsky (2013). The multivariate extension has received less atten-

tion, see Truong et al. (2020) for a recent review. One major challenge with high-

dimensional changepoint analysis is the computational burden of an increasing number

of dimensions. To partially reduce this computational burden, a common assumption

is that changepoints are assumed to occur in all series simultaneously (Maboudou-

Tchao and Hawkins, 2013); a sparse set of series (Wang and Samworth, 2018); or a

dense set of series (Zhang et al., 2010). Within these settings, a common approach is

to first project the time series to a single dimension and then use a univariate change-

point method on the projected time series. For example, Zhang et al. (2010), Horváth

and Hušková (2012) and Enikeeva and Harchaoui (2019) consider an l2-aggregation of

the CUSUM statistic while Jirak (2015) considers an l∞-aggregation that works well

for sparse changepoints. A recent advancement was the Inspect method proposed by

Wang and Samworth (2018) who aim to find an optimal projection direction of the

CUSUM statistic to maximize a change in mean.

Current projection methods are generally limited to detecting changes in a single

parameter, usually the mean. Therefore, these methods cannot be used in many

practical scenarios where multiple features of the time series change. An alternative,

nonparametric approach was taken in Matteson and James (2014) where U -Statistics
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were used to segment the time series. As this is a non-parametric method it can

detect different types of changes in distribution but becomes computationally infea-

sible as the number of time points increases. The methods above almost exclusively

use a Binary Segmentation approach (Scott and Knott, 1974; Vostrikova, 1981), or

derivations thereof (Fryzlewicz, 2014), to detect multiple changepoints. This can lead

to poor detection rates as conditional identification of changes can lead to missing or

poor placement of changepoints due to factors such as masking. This occurs when

a large change is masked by two smaller changes on either side acting in opposite

directions; this idea is explained further in Fryzlewicz (2014).

A key novelty in this paper is to map a given high-dimensional time series onto two

dimensions instead of one. Inspired by a geometric representation of data, we map

each high-dimensional time vector to its distance and angle from a fixed pre-defined

reference vector based upon the standard scalar product. These mappings show shift

and shape changes in the original data corresponding to mean and variance changes.

Given the geometric inspiration, we denote the method GeomCP throughout.

In Section 3.2, we set up the high-dimensional changepoint problem before defining the

geometric mappings used in GeomCP. Also, we discuss an alternative approach to Bi-

nary Segmentation that can be applied to the univariate mapped series. An extensive

simulation study is performed in Section 3.3, which compares GeomCP to competing

available multivariate changepoint methods, Inspect (Wang and Samworth, 2018) and

E-Divisive (Matteson and James, 2014). Section 3.4 presents two applications from

genetics and finance. Section 3.5 gives concluding remarks.
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3.2 Methodology

In this section, we set up the high-dimensional changepoint problem for our scenario.

We define our new method, GeomCP, and discuss how changes in high-dimensional

time series manifest themselves in the mapped time series. We then suggest an appro-

priate univariate changepoint detection method for detecting changes in the mapped

time series - although practically others could be used.

Before proceeding, we define some notation used throughout the paper. We define

the 1p vector as a p-dimensional vector where each entry is 1 and the number of

dimensions, p, is inferred from context. For a vector, y = (y1, . . . , yp)
T , we define

the lq-norm as ‖y‖q :=

(
p∑
j=1

|yj|q
) 1

q

for q ∈ [1,∞). We define 〈·, ·〉 as the standard

scalar product such that for vectors x and y we have 〈x,y〉 =
p∑
j=1

xjyj. Finally, the

terms variables, series and dimensions shall be used interchangeably to indicate the

multivariate nature of the problem.

3.2.1 Problem Setup

We study the time series model where Y1, . . . ,Yn are independent, p-dimensional time

vectors that follow a multivariate Normal distribution where,

Yi ∼ Np(µi,σ
2
i Ip), 1 ≤ i ≤ n .

We assume there are an unknown number of changepoints, m, which occur at locations

τ1:m = (τ1, . . . , τm). These changepoints split the data into m + 1 segments, indexed

k, that contain piecewise constant mean and variance vectors, µk and σ2
k. Note, we
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assume a diagonal covariance matrix so the covariance matrix can be described by the

variance vector and the identity matrix. We define τ0 = 0 and τm+1 = n and assume

the changepoints are ordered so, τ0 = 0 < τ1 < . . . < τm < τm+1 = n.

The following section introduces the geometric intuition and mappings used within

GeomCP. These mappings reduce the dimension of the problem to make the problem

computationally feasible as n and p grow large.

3.2.2 Geometric Mapping

When analyzing multivariate time series from a geometric viewpoint, we seek to ex-

ploit relevant geometric structures defined in the multi-dimensional space. Here we

aim to detect changepoints in the mean and variance vectors of multivariate Normal

random variables; therefore, we wish to utilize geometric properties that capture these

changes.

A change in the mean vector of our data generating process will cause a location

shift of the data points in the multi-dimensional space. Consider a distance between

each data point and some fixed reference point, if the data points are shifted in the

multi-dimensional space then their distance to the reference point would be expected

to change. Hence, we can detect when the mean vector of the data generating process

changes by observing a change in the distances. For a change in distance not to

occur after an underlying mean change, the new mean vector must remain exactly on

the same (p − 1)-sphere (centered in the reference point) that the old mean vector

lay on. Given that the computation of the mean vector is a linear operator on the
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multivariate time series, the requirement to lie on the same sphere (a quadric in Rp)

is highly non-generic from a geometric prospective. As a result, these scenarios are

rare especially in high-dimensions.

A change in the covariance of our data generating process will cause a change in the

shape of the data points. More specifically in our setup, a change in the variance

would cause the shape of the data points to expand or contract. Consider the angle

between each data vector and a reference vector, as the shape of the data points

expands (contracts) the angles will become more (less) varied. Hence, we can detect

changes in the variance of the data generating process by detecting changes in the

angles.

By using distances and angles, we can map a p-dimensional time series to two di-

mensions. To calculate these mappings, we need a pre-specified reference vector to

calculate a distance and angle from. Naturally, one may think to use the mean of the

data points. However, this requires a rolling window to estimate the mean of data

points prior to the point being mapped. Not only does this introduce tuning parame-

ters, such as the size of the rolling window, but will result in spikes in the distance and

angle measures at changepoints. To detect changepoints, we would need a threshold

for these spikes and calculating such a threshold is a non-trivial task, hence, we seek

an alternative.

We propose setting the reference vector to be a fixed vector, y0. We then translate

all the points based upon this fixed reference vector,

y′i,j = yi,j − (min
i
yi,j − y0,j) , i ∈ [1, . . . , n] , j ∈ [1, . . . , p] . (3.2.1)
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This translation works by finding the smallest value in each dimension, j, across all

time points, i, and taking away the reference vector from this. All the points are

then translated in the same way so the new vector of minimum values is equal to the

reference vector. Figure 3.2.1 shows this for a set of points in 2-dimensions with the

reference vector set as y0 = 1.

We choose to set y0 = 1 as this bounds the angle measure between 0 and π/4 meaning

we do not get vectors close to the origin facing in opposite directions causing non-

standard behavior within a segment. Moreover, having a non-zero element in every

entry of y0 ensures changes in the individual series will manifest in the angle measure.

Note due to the translation in (3.2.1), the choice of y0 does not affect the distance

measure. Throughout we assume the reference vector is set as y0 = 1.

For data points in the same segment, we would expect their distances and angles to

the reference vector to have the same distribution. When a mean (variance) change

occurs in the data, this leads to a shift (spread) in the data, hence, the distances

(angles) will change. Therefore, by detecting changes in the distances and angles,

using an appropriate univariate changepoint method, we recover changepoints in the

p-dimensional series.

We define our distance and angle measures based upon the standard scalar product.

To obtain our distance measure, di, we perform a mapping, δ : Rp → R1
>0,

di = δ(yi) =
√
〈(y′

i − 1), (y′
i − 1)〉 , (3.2.2)

which is equivalent to ‖y′
i − 1p‖2.
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Figure 3.2.1: 2-dimensional example of the translation of the data points based upon

a reference vector y0. In the pre-translation, the black circles indicate the points yi

and the red cross is smallest value in each dimension. In the post-translation, the

black circles are the translated points y′i and the red cross is the reference vector y0.

To obtain our angle measure, ai, we perform a mapping α : Rp → [0, π
4
],

ai = α(yi) = cos−1

(
〈y′i,1〉√

〈y′i,y′
i〉
√
〈1,1〉

)
, (3.2.3)

which is the principal angle between y′
i and 1.

By using the standard scalar product we are incorporating information from each

series in the distance and angle measures. As such, we would expect GeomCP to

perform well in scenarios where a dense set of the series change at each changepoint.

This idea will be explored further and verified in Section 3.3.
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3.2.3 Analyzing Mapped Time Series

Understanding the distributional form of the distance and angle mappings will aid

in the choice of univariate changepoint methods. Under our problem setup, Theo-

rem 3.2.1 shows that the distance measure, asymptotically in p, follows a Normal

distribution.

Theorem 3.2.1. Suppose we have independent random variables, Yi ∼ N(µi, σ
2
i ). Let

X =

√
p∑
i=1

Y 2
i , then as p→∞,

X −

√
p∑
i=1

(µ2
i + σ2

i )√√√√√2
p∑
i=1

(µiσi)
2+

p∑
i=1

σ4
i+2ρ

√
2
p∑
i=1

p∑
j=1

µ2i σ
2
i σ

4
j

2
p∑
i=1

(µ2i+σ
2
i )

D−→ N(0, 1) ,

where ρ is an unknown correlation parameter (see proof).

Proof. See Appendix A.2.

Theorem 3.2.1 shows that, asymptotically in p, the distance between each time vector

and a pre-specified fixed vector follows a Normal distribution. Hence, for piecewise

constant time vectors, the resulting distance measure will follow a piecewise constant

Normal distribution. It is common in the literature to assume that angles also follow a

Normal distribution, as in Fearnhead et al. (2018). We found by simulation, for large

enough p, the angle measure defined in (3.2.3) is well approximated by a Normal

distribution with piecewise constant mean and variance.

Whilst any theoretically valid univariate method could be used to detect changepoints

in the mapped series, we use the PELT algorithm of Killick et al. (2012) as this is
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an exact and computationally efficient search. For n → ∞, PELT is consistent in

detecting the number and location of changes in mean and variance (Tickle et al.,

2020; Fisch et al., 2018), hence, using Theorem 3.2.1, we gain consistency of our

distance measure as p → ∞ also. When the Normal approximation of the distance

and angle measures holds, we use the Normal likelihood as our test statistic within

PELT and allow for changes in mean and variance. If p is small, we may not want to

make the Normal assumption. In this case, we recommend using a non-parametric test

statistic, such as the empirical distribution from Zou et al. (2014) (where consistency

has also been shown) as embedded within PELT in Haynes et al. (2017b).

3.2.4 GeomCP Algorithm

Algorithm 1 details the pseudo-code for GeomCP. As changepoints can manifest in

both the distance and angle measure, we post-process the two sets of changepoints to

obtain the final set of changes. We introduce a threshold, ξ, and say that a changepoint

in the distance measure, τ̂ (d), and a changepoint in the angle measure, τ̂ (a), are deemed

the same if
∣∣τ̂ (d) − τ̂ (a)∣∣ ≤ ξ. If we determine two changepoints to be the same we

set the changepoint location to be the one given by the angle measure as Section

3.3.2 demonstrates, this results in more accurate changepoint locations. The choice

of ξ should be set based upon the minimum distance expected between changepoints.

Alternatively, ξ could be set to zero and then an alternative post-processing step

would be required to determine whether similar changepoint estimates correspond to

the same change.
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Algorithm 1 GeomCP

Input: Y ∈ Rn×p, threshold = ξ, Univariate Cpt Method.

Step 1: Centralize data by y′i,j = yi,j −
(

min
i
yi,j − 1

)
.

Step 2: Perform distance mapping: yi
δ−→ di, ∀i.

Step 3: Perform Univariate Cpt Method on d to recover cpts, τ̂ (d).

Step 4: Perform angle mapping: yi
α−→ ai, ∀i.

Step 5: Perform Univariate Cpt Method on a to recover cpts, τ̂ (a).

Step 6: ∀k, if min
∣∣∣τ̂ (a) − τ̂ (d)k

∣∣∣ < ξ then remove τ̂
(d)
k from τ̂ (d).

Return: τ̂ = sort(τ̂ (a), τ̂ (d))

One of the major downfalls of many multivariate changepoint methods is they are

computationally infeasible for large n and p. Within GeomCP, the computational

cost to calculate both the distance and angle measures in (3.2.2) and (3.2.3) is O(np).

If we implement the PELT algorithm for our univariate changepoint detection, this

has expected computational cost O(n) under certain conditions. The main condition

requires the number of changepoints to increase linearly with the number of time

points, further details are given in Killick et al. (2012). If these conditions are not

satisfied, PELT has an at worst computational cost of O(n2). Hence, the expected

computational cost of GeomCP is O(np+n) = O(np) (under the conditions in Killick

et al. (2012)) and has at worst computational cost O (np+ n2)) = O (n(p+ n)).
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3.2.5 Non-Normal and Dependent Data

The current problem setup assumes multivariate Normal distributed data with a di-

agonal covariance matrix. These assumptions are made to facilitate our theoretical

analysis and result in the Normality of the mapped series. If these assumptions are

broken, the geometric intuition described in Section 3.2.2 still holds, but we can say

less about the theoretical properties of the mapped series.

Firstly, if we allow for an arbitrary covariance matrix, this describes the shape and

spread of the data points. Suppose our data undergoes a change from Xpre ∼ N(0,Σ)

to Xpost ∼ (0,σΣ) this will cause the data points to spread out in the directions

of the principle components. Hence, we would still expect the angles between the

time vectors and the reference vector to change, revealing the change in covariance.

We investigate this further in Section 3.3.5. In fact, a Normal distributed data set

with a known covariance matrix could be transformed into a Normal distributed data

set with a diagonal covariance matrix (satisfying our initial problem setup) by an

orthogonal transformation that aligns the axes with the principle components. Such

a transformation would preserve the distances and angles by definition but requires

knowledge of the true covariance structure.

Alternatively, we could consider other inner products in our distance and angle map-

pings defined in (3.2.2) and (3.2.3); here the geometric motivation of the method

would remain valid. In this case, for an underlying mean change to occur without the

distance measure changing, the new mean vector must remain exactly on the more

general (p − 1)-quadric in Rp. This is still a highly non-generic requirement from a
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geometric prospective. In particular, we could use scalar products directly derived

from the covariance matrix, such as the Mahalanobis Distance (Mahalanobis, 1936).

In such cases, the direct relation between angles and the correlation coefficients is

well known (Wickens, 1995). However, such inner products require an estimate of the

covariance in each segment, which is non-trivial and therefore left as future work.

If we allow the data to be distributed from a non-Normal distribution then we would

expect changes to the first and second moment of these distributions to still manifest in

the distance and angle mappings. However, being able to understand the distribution

of the mapped series would be more challenging. In practice, the empirical cost

function could be used within PELT (Haynes et al., 2017b) yet this would lead to less

power in the detection of changes in the univariate series.

Finally, if we allowed temporal dependence between the time points this would lead

to temporal dependence in the mapped series and an appropriate, cost function for

PELT could be used. Understanding how the temporal dependence in the multivariate

series manifests in the mapped series is non-trivial and is left as further work.

In the next section, we provide an extensive simulation study exploring the effective-

ness of GeomCP at detecting multivariate changes in mean and variance and demon-

strate an improved detection rate on current state-of-the-art multivariate changepoint

methods. Furthermore, we illustrate the improved computational speed of GeomCP

over current methods, especially as n and p grow large.
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3.3 Simulation Study

In this section, we provide a comparison of GeomCP; the Inspect method of Wang and

Samworth (2018); and the E-Divisive method of Matteson and James (2014) using

the statistical software R (R Core Team, 2019). First, we investigate how changes

in mean and variance of time series manifest themselves in the distance and angle

measures within GeomCP. We then compare GeomCP to Inspect and E-Divisive in a

wide range of scenarios including dense changepoints, where the change occurs in all

or a large number of dimensions, and sparse changepoints, where the change occurs

in a small number of dimensions. Changes in both mean, variance and a combination

of the two will be considered.

Inspect is only designed for detecting changes in mean, therefore, it will only be in-

cluded in such scenarios. In addition, Inspect is designed for detecting sparse change-

points, however, Inspect ‘can be applied in non-sparse settings as well’ (Wang and

Samworth, 2018) so we also include it in the dense change in mean scenarios. Like

GeomCP, E-Divisive is designed for dense changepoints, but, we will also include it

in the sparse changepoint scenarios to assess performance.

For GeomCP we perform the mappings in (3.2.2) and (3.2.3) before applying the

PELT algorithm using the changepoint package (Killick and Eckley, 2014). Unless

otherwise stated, we use the default settings; namely, the MBIC penalty (Zhang and

Siegmund, 2007), Normal distribution and allow for changes in mean and variance.

We implement the Inspect method using the InspectChangepoint package (Wang and
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Samworth, 2016). The thresholds used to identify significant changepoints are cal-

culated before timing the simulations using the data-driven approach suggested in

Wang and Samworth (2018). For the remaining user-defined parameters, we use the

default settings with Q = 0. Setting Q = 0 implements a Binary Segmentation

approach (Scott and Knott, 1974; Vostrikova, 1981) for identifying multiple change-

points. When using Q = 1000, as suggested in Wang and Samworth (2018), a Wild

Binary Segmentation (Fryzlewicz, 2014) approach is implemented to detect multiple

changes. However, this becomes computational infeasible even at moderate levels of n

and p while only resulting in minor improvements in detection rate at the expense of

higher false discovery rates. For p > 1000, the data-driven calculation of the thresh-

olds was computationally infeasible, hence, the theoretical threshold derived in Wang

and Samworth (2018) was originally implemented. However, this led to an excessive

number of false positives and, as such, is not included. For the implementation of the

E-Divisive method, we use the ecp package (James and Matteson, 2014) with α = 1;

minimum segment size of 30; a significance level of 0.05; and R = 499 as suggested

by Matteson and James (2014).

Unless indicated otherwise, we simulate data from a Normal distribution with changes

in mean and variance given in each scenario. Additionally, the number of changepoints

is set as m =
⌈
n
200

⌉
and we distribute the changepoints uniformly at random through-

out the time series with the condition that they are at least 30 time points apart.

Where computationally feasible, we perform 500 repetitions of each scenario and dis-
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play the true detection rate (TDR) and false detection rate (FDR) along with their

confidence intervals given by two standard errors. For scenarios with n ≥ 1000, E-

Divisive was only run on 30 replications due to the high computational cost. Change-

point estimates are deemed correct if they are the closest to, and within 10 time

points of, the true changepoint and contribute to the TDR. Changepoint estimates

more than 10 time points from the true changepoints or where another estimated

changepoint is closer to the true changepoint are deemed false and contribute to the

FDR. We seek a TDR as close to 1 as possible and an FDR as close to 0 as possible.

As GeomCP estimates changepoints in both the distance and angle measures we ap-

ply the reconciling method from Section 3.2.4 with the threshold, ξ = 10. Then we

apply the same TDR/FDR method to the reconciled changes.

3.3.1 Size of Changepoints

As we are interested in multivariate changepoints, we need to decide upon the size

of a change in each series. If we fixed a specific change size in each series, then as

p increases, the change becomes easier to identify due to multivariate power. If we

fixed a total change size across all series, then as p increases, the change becomes

considerably harder to detect. Hence, we set our simulated change sizes so that

GeomCP has an approximately constant performance across p, in terms of TDR and

FDR.

To achieve a constant performance in the change in mean scenario, we require the

difference in the expected distance measure pre- and post-change to be constant across
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p. If we assume unit variance and a set mean across all series before the change, µ̃pre

and after the change, µ̃post, using Theorem 3.2.1 the expected difference in the distance

measure before and after a changepoint is,

E(dpost − dpre) =
√
p
(√

µ̃2
post + 1−

√
µ̃2
pre + 1

)
.

If we set the total mean change size in our simulated data as,

p∑
j=1

µj,post − µj,pre =
√
pΘ , (3.3.1)

for some constant Θ and, again, assume the mean of each series is the same, we

gain,

Θ =
√
p (µ̃post − µ̃pre)

≈ √p
(√

µ̃2
post + 1−

√
µ̃2
pre + 1

)
= E(dpost − dpre) .

Hence, for a constant Θ, using a total mean change size scaling as in (3.3.1) will

result in the expected difference of the distance pre- and post-change, and therefore

the performance of GeomCP, being approximately constant across p. As we re-scale

our data before applying our two mappings, the pre- and post-change means will be

large enough that this approximation is reasonable.

Similarly, to gain an approximately constant performance of GeomCP across p for

a change in variance, we set the total variance change size in our simulated data

as,
p∏
j=1

σj,post
σj,pre

= Φ
√
p , (3.3.2)
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for some constant Φ. When comparing methods, we shall use (3.3.1) and (3.3.2) to

define the total change size for each scenario, with the change size being the same in

all series that undergo a change.

3.3.2 GeomCP Investigation

First, we investigate how changes in mean, variance and a combination of the two,

manifest themselves in the distance and angle measure within GeomCP. We set

n = 1000 and p = 200 and simulate data with changepoints τ = (250, 500, 750).

At τ1 we have a mean change of +0.1 in all series; at τ2 we have a variance change of

×1.2 in all series; and at τ3 we have a mean change of −0.1 and a variance changes of

×1.2−1 in all series. Figure 3.3.1 shows 4 of the 200 series and shows the changepoints

are undetectable by eye in the individual series. Applying the mappings within Ge-

omCP results in the mapped series seen in Figure 3.3.1 where the changes are clearly

identifiable in at least one of the distance or angle measure.

Figure 3.3.1: 4 series from the simulated data set with the distance (d) and angle (a)

mappings showing 3 changepoints that are not obvious in the individual series

Figure 3.2(a) and 3.2(b) shows the position of identified changepoints in the distance

and angle measure in 1000 replications of the current scenario using PELT. The



CHAPTER 3. GEOMCP 67

relatively small change in mean at time point 250 is only reliably picked up by the

distance measure. The change in variance is picked up by the angle measure in almost

all cases and is also seen in the distance measure, however, with less accuracy and

less often. The change in mean and variance at time point 750 is reliably detected in

both the distance and angle measures. These findings were similar for varying mean

and variance changes. As such, this justifies setting the location of changepoints that

occur in both series to be given by the angle changepoint location as stated in Section

3.2.4.

(a) Distance Changepoints (b) Angle Changepoints

Figure 3.3.2: Locations of detected changepoints in 1000 repetitions of simulated data

set with changepoints at 250, 500 and 750, in mean, variance and, mean and variance,

respectively

3.3.3 Dense Changepoints

Now we compare GeomCP’s performance with E-Divisive and Inspect. We investigate

dense variance changes here, with mean, and mean and variance changes given in the
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Appendix A.3 and A.4.

We simulate data with variance changes that occur in all series for a wide range of n

and p and show a subset of the results here. We keep the mean vector constant and

we split the total change size defined in (3.3.2) evenly across all series. We display

results with Φ = 3 as this is shown to give a high TDR while maintaining a low FDR

in Eckley et al. (2011) for p = 1. Similar findings occur with varying values of Φ; see

Appendix A.8. We apply the GeomCP and E-Divisive methods to these simulated

data sets and the TDR and FDR are shown in Figure 3.3.3.

Figure 3.3(a) shows the TDR across different numbers of dimensions and time points.

It is clear that GeomCP outperforms E-Divisive in terms of TDR and the gap between

the methods widens as the number of dimensions increases. Figure 3.3(b) shows that

the improved TDR of GeomCP does not come at the expense of a higher FDR, which

has similar rates across n and p.

(a) TDR (b) FDR

Figure 3.3.3: TDR and FDR for GeomCP and E-Divisive for simulated data sets

containing variance changes that occur in all series for multiple n and p
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In the mean, and mean and variance change scenarios, GeomCP similarly outperforms

both E-Divisive and Inspect in terms of TDR whilst maintaining a low-level FDR

across n and p. Results can be found in Appendix A.3 and A.4.

3.3.4 Sparsity Investigation

Thus far we assumed that all series undergo a change at each changepoint. We now

explore the effect of the sparsity of the changepoint. We define κ ∈ (0, 1] to be the

probability that a series undergoes a change. We explore sparse mean changes here,

with sparse variance changes included in Appendix A.5.

For the sparse changepoint scenarios, we set n = 500, p = 200 and vary κ; we note

that there were similar findings for different n and p. We keep the variance vector

constant and the change size in each series that undergoes a change, is the total

change size defined in (3.3.1), split between the expected number of series to undergo

a change. This means the expected total change size is the same as when all series

undergo a change. We display results with Θ = 1.2 and similar findings occur with

varying values of Θ; see Appendix A.8. We apply the GeomCP, Inspect and E-Divisive

methods to these scenarios and the TDR and FDR are shown in Figure 3.3.4.

Figure 3.4(a) shows that GeomCP maintains a constant TDR across κ as expected.

This reflects the set up of the scenario where the expected total change size is con-

stant across κ. For dense changepoints, GeomCP compares well as we might expect.

Interestingly, E-Divisive also assumes dense changepoints but performs poorly in this

scenario. Inspect is designed for sparse changes and as expected, for very sparse
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changes the method performs the best. For sparse changepoints, the improved per-

formance of Inspect and E-Divisive may be due to the size of change in each affected

series increasing as κ decreases.

(a) TDR (b) FDR

Figure 3.3.4: TDR and FDR for GeomCP, Inspect and E-Divisive for simulated data

sets with sparse mean changes for n = 500 and p = 200

3.3.5 Between-series Dependence

Now we will relax the assumption of a diagonal covariance matrix and investigate

how this affects the performance of GeomCP. We will investigate how two different

covariance matrix structures compare to the independent, diagonal covariance case.

Here we will investigate variance changes in these covariance structures with mean

changes explored in the supplementary material.

For these scenarios, we set n = 200, p = 100 and have one changepoint at τ =

100. The pre-changepoint data will be distributed from a N(0,Σ) while the post-
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changepoint data distributed from a N(0,σΣ). We will vary the change size, σ,

while each entry of σ will be identical for each change size. We will compare three

structures for Σ:

1. Independent case: Σ = I.

2. Block-diagonal case: Here Σ will be a block-diagonal matrix with block size of

2. The off-diagonal entries will be randomly sampled from a U(−0.6,−0.3) ∪

U(0.3, 0.6) distribution with the diagonal entries equal to 1.

3. Random case: Here we let Σ = PDP ′ where P is an orthogonalized matrix

of standard Normal random variables and D is a diagonal matrix with entries

decreasing from 30 to 1.

As we no longer have independence between series we cannot assume Normality of

the distance and angle measures within GeomCP. Hence, we use the empirical cost

function (Haynes et al., 2017b) within PELT to detect changes in the distance and

angle measures. We similarly use the empirical cost function in the independent case

for comparability.

Figure 3.5(a) shows the TDR of GeomCP and E-Divisive for varying change sizes,

σ, and the different covariance structures. GeomCP clearly has a greater TDR than

E-Divisive for smaller change sizes. However, Figure 3.5(b) shows this comes at the

expense of a higher FDR. This is to be expected when using the empirical cost function

within PELT as this generally produces a higher FDR. By altering the penalty used

within PELT this FDR could be reduced at the cost of some power in detecting
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changes. Yet for σ ≥ 1.3 GeomCP has a competitive FDR with E-Divisive while

having a superior TDR. Interestingly, the covariance structure has very little impact

on the performance of GeomCP, this follows our intuition from Section 3.2.5.

(a) TDR (b) FDR

Figure 3.3.5: TDR and FDR for GeomCP and E-Divisive for simulated data with a

change in covariance for n = 200 and p = 100

3.3.6 Computational Speed

A major issue with high-dimensional changepoint detection is, as n and p grow large,

many multivariate changepoint methods become computationally infeasible. Here, we

compare the computational speeds of GeomCP, Inspect and E-Divisive for a range of

n, p and m. We will compare the speeds in three scenarios:

1. n increasing while p = 200 and m =
⌈
n
200

⌉
.

2. n increasing while p = 200 and m = 2.

3. p increasing while n = 500 and m =
⌈
n
200

⌉
= 3.
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The second scenario breaks PELT’s assumption of a linearly increasing number of

changepoints as the number of time points increases. This means the speed of de-

tecting changepoints using GeomCP will no longer be linear in time. We performed

simulations using the three scenarios defined above and only included mean changes

so we can compare with Inspect. We set the mean change size to be θj = 0.8 in all

series so that the changes are obvious. For scenario 1 and 2, E-Divisive was com-

putationally infeasible for n ≥ 1000. For scenario 3, Inspect’s speed is only shown

for p < 1000 due to the excessive computational time of generating a data-driven

threshold. Note that the data-driven thresholds needed for Inspect were calculated

outside of the recorded times. In practice, if a threshold was required, then Inspect

would take considerably longer to run especially as p increases. Within GeomCP we

run the algorithm in serial, performing the mapping and changepoint identification

for the distance and then for the angle. These could be processed in parallel, leading

to a further reduction in computational time.

Figure 3.3.6 shows the computational speed of each method in the three scenarios.

We can see from Figure 3.6(a) that, in scenario 1, GeomCP is the fastest of the three

methods for all n. As n increases the difference between the speeds of GeomCP and

Inspect increases (note the log scale on both axes). We can also see, E-Divisive is

substantially slower than GeomCP and Inspect for all n and its run time increases

rapidly as n gets large. Scenario 1 supports our claim that GeomCP has linear run

time in n when the required assumptions of PELT are met.

In scenario 2, shown in Figure 3.6(b), we break the assumption within PELT that the
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number of changepoints is increasing linearly in time. This results in a comparatively

slower performance of GeomCP, although, it remains computationally faster than

Inspect for all n shown. Similarly to scenario 1, E-Divisive has a much longer run

time than both GeomCP and Inspect.

Finally, for scenario 3 Figure 3.6(c) shows that, for small p, Inspect is the fastest of

the methods but as p increases above 50 GeomCP is computationally faster. Whilst

Inspect is faster for p < 50, recall that this does not include the time for the calculation

of the threshold. Interestingly, the run time of E-Divisive appears unaffected by p until

p ≥ 1000. This is likely due to it’s computational cost being mainly affected by the

number of changepoints and time points, which remain constant. Scenario 3 also

supports our claim that GeomCP has linear run time as p increases, note the log scale

that distorts the linearity of the plot.

3.4 Applications

3.4.1 Comparative Genomic Hybridization

We study the comparative genomic hybridization microarray data set from Bleakley

and Vert (2011). Comparative genomic hybridization allows the detection of copy

number abnormalities in chromosomes by comparing the fluorescent intensity lev-

els of DNA fragments between a test and reference sample. The data set contains

log-intensity-ratio measurements from 43 individuals with bladder tumors with mea-

surements taken at 2215 different positions on the genome. This data set is available
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(a) (b)

(c)

Figure 3.3.6: Average run time for each method when: (a) n is increasing, p = 200 and

m is increasing; (b) n is increasing, p = 200 and m = 1; (c) n = 500, p is increasing

and m = 3 by default

in the ecp R package (James and Matteson, 2014).

Copy number abnormalities come in regions on the genome and can either be spe-

cific to the individual or can be shared across several individuals. It is the latter

that are of more interest as these are more likely to be disease-related. E-Divisive

and Inspect have both been used to segment this data set with their results shown

in Matteson and James (2014) and Wang and Samworth (2018) respectively. Under
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the default settings, these two methods fitted a large number of changepoints, 93

and 254 respectively, which may not be representative of changes occurring across

multiple individuals. Wang and Samworth (2018) suggest selecting the 30 most sig-

nificant changepoints to counter this, however, the justification for choosing 30 is

unknown.

To perform our analysis we first scale each series, similarly to Inspect, using the median

absolute deviation to allow a better comparison. We then use the two mappings

within GeomCP and apply the PELT algorithm, using the R package changepoint.np

(Haynes and Killick, 2021), to the resulting mapped series. The mappings do not

appear Normal for this application, hence, we use the empirical cost function and set

the number of quantiles as 4 log(n), as suggested in Haynes et al. (2017b). We use the

CROPS algorithm of Haynes et al. (2017a) to identify an appropriate penalty value

with diagnostic plots shown in Appendix A.9. This lead to 37 changepoints being

identified and these are shown in Figure 3.4.1 with the signal for 8 individuals from the

study and the distance and angle mappings. Approximately 67.5% of the changepoints

identified by GeomCP corresponded to those identified by E-Divisive (within 3 time

points), with the majority of the rest corresponding to where E-Divisive fitted two

changepoints. Also, the changepoints identified seem to be common across multiple

individuals while changes specific to a series are not detected. It is promising that our

proposed segmentation identifies similar changepoints as other methods, while only

identifying those that seem common across multiple individuals. Other GeomCP

segmentations, using different potential penalty values identified in CROPS, resulted
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in more or less of the individual features from specific series being detected.

Figure 3.4.1: Log-intensity-ratio measurements of microarray data from 6 out of 43

individuals and distance (d) and angle (a) mappings with vertical lines showing the

identified changepoints

3.4.2 SP500 Stock Prices

We now investigate the daily log-returns of the closing stock prices for 447 companies

included in the S&P500 from January 2015 through to December 2016. This data set

was created by Nugent (2018) and was loaded using the R package SP500R (Foret,

2019). The aim is to identify changes in log-returns that affect a large number of

companies rather than changes that are specific to individual companies. First we

scale each series using the median absolute deviation. Next we apply the mappings

within GeomCP, before using the PELT algorithm from the changepoint package

(Killick et al., 2016) to both mapped series using the Normal cost function. We used

the CROPS algorithm of Haynes et al. (2017a) to identify an appropriate penalty
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value for both series with diagnostic plots shown in Appendix A.9.

Using GeomCP, we identified 10 changepoints. These are shown in Figure 3.4.2 along

with the log-returns of the first 10 companies from the S&P500 list and the mapped

distance and angle measures. These changepoints correspond to key events that we

would expect to impact the stocks of a large number of companies. For example,

the changepoints in August 2015 correspond to large falls in the Chinese stock mar-

kets with the Dow Jones industrial average falling by 1300 points over 3 days. The

changepoints in February and late June 2016 likely correspond to the announcement

and subsequent result of the British referendum to leave the European Union. Apply-

ing the E-Divisive method, (with the minimum segment length set to 2 and the rest

of the user defined parameters set as in Section 3.3) resulted in only 2 changepoints,

both occurring in August 2015 similar to those detected in GeomCP.

Figure 3.4.2: Log-returns of 10 out of 447 companies within the S&P500 and the

distance (d) and angle (a) mappings with vertical lines showing the identified change-

points
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3.5 Conclusion

We have presented a new high-dimensional changepoint detection method that can

detect mean and variance changes in multivariate time series. This is achieved by

implementing a univariate changepoint detection method on two related geometric

mappings of the time series. We have shown that looking at the high-dimensional

changepoint problem from a geometric viewpoint allows us to utilize relevant geomet-

ric structures to detect changepoints. We have displayed an improved performance in

detecting and identifying the location of multiple changepoints over current state-of-

the-art methods. Furthermore, we have shown an improved computational speed over

competing methods when using the univariate changepoint method PELT. Finally, we

have shown the effectiveness of GeomCP at detecting changepoints when applied to

applications.

We have discussed how to extend this methodology to non-Gaussian data along with

temporal and between-series dependence. However, a thorough investigation of how

changes manifest in the distance and angle measure in the presence of these structures

is left as future work.

The GeomCP method is implemented in the R package changepoint.geo available on

CRAN https://CRAN.R-project.org/package=changepoint.geo.

https://CRAN.R-project.org/package=changepoint.geo


Chapter 4

Subspace Changepoint Detection

in Multivariate Time Series

4.1 Introduction

It is common for time series data to have abrupt structural changes that occur at

certain time points, known as changepoints. Changepoint analysis is crucial to ap-

propriately model, forecast or label time series data that contain structural changes.

In the multivariate setting, the aim is to detect changes in multiple series simulta-

neously; this could be, but not limited to, changes in the mean vector or a change

in the covariance structure. Multivariate changepoint analysis is a growing research

area and has multiple applications including finance and economics (Maboudou-Tchao

and Hawkins, 2013); genetics (Zhang et al., 2010); and internet security (Peng et al.,

2004).

80
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Until recently, the majority of changepoint research considered univariate time series

with early work by Page (1954) and overviews in Eckley et al. (2011) and Brodsky

and Darkhovsky (2013). Increasing attention is now being given to the multivariate

extension, see Truong et al. (2020) for a recent review. In the multivariate setting, the

vast majority of work focuses on the change in mean problem (Jirak, 2015; Wang and

Samworth, 2018; Enikeeva and Harchaoui, 2019) while Grundy et al. (2020) allows

for mean and variance changes simultaneously, assuming a fixed covariance structure

between the series. There has been some work on identifying changes in covariance.

Aue et al. (2009a) propose a version of the traditional CUSUM statistic to detect

covariance changes, while Avanesov and Buzun (2018) and Wang et al. (2021) propose

methods that allow for the high-dimensional setting, where the number of series can

grow large.

Multivariate data often exhibits some low-dimensional structure, for example lying

in a low-dimensional subspace. There is substantial literature aiming to exploit low-

dimensional structures within multivariate data. Principal component analysis (PCA)

(Pearson, 1901; Hotelling, 1933; Jolliffe, 2002) is a classic method for reducing the

dimensionality of a data set to a low-dimensional subspace such that the variance

within the subspace is maximized. Subspace clustering is another vast area of research

where data points are assumed to lie in a union of low-dimensional subspaces and the

aim is to cluster the points based on the subspace they lie in, see Parsons et al. (2004)

for a review.

Despite the substantial literature in the clustering setting, there has been limited
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work on exploiting low-dimensional subspace structures in the changepoint literature.

Blythe et al. (2012) consider feature extraction to improve the detection of three

current changepoint methods but do not consider subspace changepoints themselves,

while Kawahara et al. (2007) present an algorithm based upon subspace identification

using an observability matrix. The closest work to our setup is that of Jiao et al.

(2018) who considered the subspace changepoint problem in an online setting where

the aim is to identify a change in subspace as quickly as possible as additional data is

collected. In this setting, historical data is used to estimate the current subspace and

then a CUSUM style approach is used to identify changes to this underlying subspace.

Xie et al. (2020) also present an online subspace changepoint method, however, their

focus is on detecting the emergence of a subspace within the data. In contrast, our

contribution is to the offline setting where all the data is known a priori and we aim

to detect a change from one subspace to another prioritizing accuracy of the location

of the change.

Time series data that lie in a subspace can also be viewed as exhibiting a spiked

covariance structure, as introduced in Johnstone (2001). Thus, a subspace change is

a special type of covariance change with additional assumptions on the eigenvalues of

the covariance matrix. Detecting covariance changepoints is a challenging task, hence

if the data is assumed to lie in a subspace we can exploit this additional information

within the subspace changepoint framework; allowing for improved performance in

changepoint detection. Applications for subspace changepoint detection are numerous

including analysis of Motion Capture data (Jiao et al., 2018); seismic event detection
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(Xie et al., 2020); and video segmentation (Vidal et al., 2005).

This paper proposes a novel method for detecting subspace changepoints in multivari-

ate time series data. In Section 4.2, we formalize the subspace changepoint problem

and propose a method for consistent subspace estimation which is used in our test

statistic for detecting subspace changepoints. We also provide a method for calculat-

ing a data-driven threshold for determining the significance of potential changepoints.

In Section 4.3, we perform an extensive simulation study and compare our method

to existing state-of-the-art covariance changepoint methods. In Section 4.4 we sug-

gest an extension of our method to allow for multiple changepoints and illustrate its

effectiveness in an additional simulation experiment. Finally, Section 4.5 presents an

application to Motion Capture data before Section 4.6 gives concluding remarks.

Note that during the peer-review process of this Chapter a link to factor models, in

particular identifying changes in factor loadings was discovered. This is discussed in

more detail in Section 6.2.

4.1.1 Notation

Before proceeding we first define some notation used throughout the paper. All matri-

ces will be in capitalised bold font, M ∈ Ri×j. Vectors will be in lower-case bold font,

v ∈ Rj, while scalars will be in lower-case font, s ∈ R. I will represent the identity

matrix with dimension inferred from context. ‖M‖F represents the Frobenius norm

of the matrix M , while ‖v‖2 represents the Euclidean norm of the vector v.
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4.2 Methodology

Let {yt}nt=1 be a multivariate time series with yt ∈ Rp for t = 1, . . . , n. We assume

these data lie in a latent low-dimensional linear subspace, S, of known dimension

q < p. Hence, our data at a single time point, t, takes the form,

yt = xt + εt ,

where xt ∈ S and εt ∈ Rp is independent additive noise. We can re-write xt = Zst

where Z ∈ Rp×q is an orthonormal basis of the subspace S and st ∈ Rq are inde-

pendent, mean-zero representations of the signal within the subspace. Furthermore,

we assume the elements st,j within st are independent with E[st,j] = 0, E[s2t,j] = σ2
s,j

and E[s4t,j] < ∞. We assume εt is distributed similarly to st albeit with a common

variance within εt, E[εt,j] = σ2
ε for all j = 1, . . . , p. Finally, we define ρ = min

j∈[1,q]

σ2
s,j

σ2
ε

as

the signal-to-noise ratio within the subspace and assume ρ > 1.

At an unknown time point, τ ∈ [1, n], we allow the latent subspace to potentially

change (the changepoint), however we assume the subspace dimension, q, remains

fixed. Denote the pre- and post-change subspace as S1 and S2 respectively with their

bases represented by Z1 and Z2. This leads to the changepoint formulation,

yt =


Z1st + εt, if t ≤ τ

Z2st + εt, if t > τ .

(4.2.1)

Our changepoint analysis aims to identify the most likely changepoint position τ and

provide estimates of the two subspaces Z1 and Z2. Note the case of τ = n represents

the scenario where no change has occurred in the data and we would only obtain
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an estimate of Z1. We focus on the at most one change (AMOC) setting described

in (4.2.1) but provide an extension to detecting multiple changepoints in Section

4.4.

For a changepoint to be present in the data, there must be a difference between the

pre- and post-change subspaces. Following Jiao et al. (2018), we define a metric space

for the distance between two subspaces using the projection Frobenius norm distance

(F-distance). The F-distance between two subspaces S1 and S2 with orthonormal

bases Z1 and Z2 is defined as

d(S1,S2) :=
∥∥Z1(Z1)

T −Z2(Z2)
T
∥∥
F
. (4.2.2)

4.2.1 Subspace Estimation

The pre- and post-change subspace bases Z are unknown. Hence, we need a way to

estimate Z based on some given data. Define the matrix Yb:e to be a matrix with

rows yb:e corresponding to the time points we wish to estimate the subspace of. To

gain an estimate of Z we use PCA. Specifically, we perform an eigendecomposition

of the covariance matrix of Y yielding

1

n
Y TY = [Ẑ, Ẑ⊥]D[Ẑ, Ẑ⊥]T . (4.2.3)

Here Ẑ ∈ Rp×q is a matrix whose columns are the first q eigenvectors of the covariance

matrix of Y and is an estimator for an orthonormal basis of the subspace. The

estimator, Ẑ, achieves the minimum squared distance of the data points, Y , to a
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q-dimensional subspace (Jolliffe, 2002);

∥∥∥(I − ẐẐT
)
Y
∥∥∥2
2

= min
U∈Rp×q , UTU=I

∥∥(I −UUT
)
Y
∥∥2
2

; . (4.2.4)

Additionally, Ẑ⊥ ∈ Rp×(p−q) is a matrix whose columns are the remaining p − q

eigenvectors of the covariance matrix of Y and this is an orthonormal basis for the

orthogonal compliment of the latent subspace. Finally, D is a diagonal matrix whose

entries are the ordered eigenvalues, λj for j = 1, . . . , p, of the covariance matrix of

Y .

Under the assumption that st and εt are Normally distributed, Anderson (1963)

showed that PCA results in a consistent estimator of Z (and Z⊥). If the error

structure in the data is only present in the orthogonal directions to the subspace,

then Shen et al. (2016) shows the consistency of the estimators Ẑ and Ẑ⊥.

Throughout, Ẑ(b:e) and Ẑ
(b:e)
⊥ will represent the estimate of the orthonormal basis

of the subspace and orthogonal subspace, respectively based on the time points yb:e

with 1 ≤ b < e ≤ n. Additionally, λ
(b:e)
j will represent the jth-largest eigenvalue

of the covariance of the specified time points. For (4.2.4) to hold, the number of

time points we are estimating the subspace of must be greater than the dimension of

the data (e − b > p). Hence, we require a minimum segment length (msl) between

changepoints and the boundaries of the data, of at least p. Setting a larger msl based

upon prior knowledge of the problem at hand would be advisable for consistency of

estimation.
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4.2.2 Test Statistic

Section 4.2.1 demonstrated how we can estimate the subspace for a segment of data.

We use this to define a cost function for a set of time points that describes the

goodness-of-fit of the data to it’s estimated subspace. A lower cost indicates a better

fit and that the data truly lie in the estimated subspace. We use these costs to test

for the presence of a changepoint such that at the true changepoint location,

C(y1:n) ≥ C(y1:τ ) + C(y(τ+1):n) + γ , (4.2.5)

where γ is a penalty to guard against over-fitting.

A natural cost function is the sum of the orthogonal distance of each time point to

its estimated subspace. Specifically, we define the cost of time points b : e as

C(yb:e) =
e∑
i=s

∥∥∥∥(I − Ẑ(b:e)
(
Ẑ(b:e)

)T)
yt

∥∥∥∥2
2

=
e∑
i=s

∥∥∥∥(Ẑ(b:e)
⊥

)T
yt

∥∥∥∥2
2

, (4.2.6)

where Ẑ(b:e) and Ẑ
(b:e)
⊥ are calculated using (4.2.3). If the time points i = b, . . . , e

all lie in the same subspace then Ẑ
(b:e)
⊥ will be a good estimator and the projection

of the points onto the subspace will be small. On the other hand, if the time points

i = b, . . . , e belong to a union of subspaces (a changepoint is present) then the esti-

mation of the subspace will be poor meaning the projections onto the subspace will

be large.

To test for a change in subspace, we follow the traditional changepoint approach,

comparing the cost of the whole data with the cost of adding a changepoint at any

time point τ . This leads to the following test statistic,

T = C(y1:n)− min
τ∈[msl,n−msl]

{
C(y1:τ ) + C(y(τ+1):n)

}
(4.2.7)
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with the cost, C(·) defined in (4.2.6). A large test statistic indicates the presence of a

changepoint while a small test statistic indicates no changepoint is present. We deem

the test statistic to be significant if it exceeds some threshold γ which we can see from

(4.2.5) guards against over-fitting changepoints.

In the no-change scenario, the latent subspace will be the same for the whole data,

hence, Ẑ
(b:e)
⊥ should be similar for any 1 ≤ b < e ≤ n. This means the test statistic

should be close to zero and should not exceed the threshold γ. If a change is present,

the estimator Ẑ
(1:n)
⊥ will be poor as we are estimating a single subspace based on data

that lie in a union of subspaces. This will make the cost of the whole data, C(y1:n)

large. In comparison, by allowing a changepoint at some time point τ , the estimators

Ẑ
(1:τ)
⊥ and Ẑ

(τ+1:n)
⊥ will be improved, meaning the cost of the two segments either side

of the change will be small. This will result in a large test statistic which, if the change

is large enough, should exceed the threshold γ. We determine that a changepoint has

occurred if the test statistic exceeds the threshold, γ, and the estimated changepoint

location is the value of τ which maximizes the test statistic, T , in (4.2.7).

4.2.3 Threshold Choice

Once the test statistic in (4.2.7) has been calculated we need to compare it to some

threshold to determine if the estimated changepoint is significant. Traditionally, we

compare the test statistic to its true distribution under the scenario of no change.

The type-1 error can be set to a pre-determined level, α ∈ [0, 1], and the test statistic

is deemed significant if it exceeds the (1 − α)-quantile of the true distribution. In
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reality, the true distribution of the test statistic is unknown so there are two ways to

proceed. Firstly, we could consider the asymptotic distribution of the test statistic

with unknown subspaces. However, this is non-trivial and unlikely to maintain the

type-1 error rate for small segments. The second approach, which we use in this paper,

is to estimate the threshold using a data-driven approach. There are several advan-

tages to using a data-driven threshold over a theoretical threshold. Most theoretical

thresholds rely on asymptotics and can perform poorly in finite sample size examples.

Moreover, theoretical thresholds often require strict distributional assumptions on the

data generating process.

We propose using a permutation test to determine a suitable threshold, similar to

that in Matteson and James (2014). Under the scenario of no change, the order

of the time points is irrelevant as all time points lie in the same subspace and we

assume the points are independent. We permute the time points, y1:n, creating a

new time series, ỹ1:n. We then calculate the test statistic in (4.2.7) using ỹ1:n and

repeat this process for all possible permutations. We define the threshold, γ, based

on a pre-specified α, by taking the (1 − α)-quantile of the permuted test statistics.

If all possible permutations of the data are considered then the threshold would be

exact in the sense that P(T > γ) < α if the data truly contained no changepoints.

In reality, calculating all possible permutations is not computationally feasible and as

such we gain an approximate threshold by performing P random permutations. The

number of random permutations required to obtain an appropriate threshold that

maintains the type-1 error rate, α, depends upon many factors including the length of
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the data; the signal-to-noise ratio, ρ; and the subspace bases. The effectiveness of this

permutation test, along with an exploration of the number of random permutations,

P , required for an appropriate threshold is explored in Section 4.3.3.

4.2.4 Alternative Formulation of Cost Function

The calculation of the cost function defined in (4.2.6) requires the full eigendecompo-

sition of the sample covariance matrix. This can be computationally intensive making

the cost function infeasible to calculate for large data sets or when we come to consider

multiple changepoints in Section 4.4. By considering the orthogonal distance from an

alternative viewpoint, we find an algebraically equivalent cost function to (4.2.6) that

is substantially faster to calculate at the expense of not recovering estimates of the

subspace bases.

When calculating the orthogonal distance of each point to its estimated subspace we

are effectively estimating the variance of the points in the directions of the orthog-

onal complement of the subspace. These variances are equivalent to the last p − q

eigenvalues of the sample covariance matrix. It can be shown that

C(yb:e) =
e∑
i=b

∥∥∥∥(Ẑ(b:e)
⊥

)T
yt

∥∥∥∥2
2

= (e− b)
p∑

j=q+1

λ̂
(b:e)
j , (4.2.8)

where both Ẑ⊥ and λ̂j are calculated using the eigendecomposition in (4.2.3).

By using this equivalent definition of the cost function, we can calculate the test

statistic in (4.2.7) substantially faster as we no longer need to estimate the eigenvec-

tors of the covariance matrix, nor calculate the orthogonal distance for each point.
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We do not get estimates of the bases of the underlying subspaces, however, these

can be calculated post analysis, for a much smaller number of segments, if required.

Simulations (not shown) verify the equivalence of these two formulations.

4.3 Simulation

In this section, we evaluate the performance of our test statistic on simulated datasets.

First, we demonstrate the statistical power of our test statistic using ROC curves and

show that changepoints estimated by our test statistic are tightly distributed around

the true changepoint location. We then explore the performance of the permutation

test proposed in Section 4.2.3 to provide an appropriate threshold for controlling the

type-1 error while still maintaining strong statistical power. Next, we compare our test

statistic to three state-of-the-art covariance changepoint methods to demonstrate that

standard covariance methods are not always appropriate for subspace changepoints

and a more problem-specific test statistic, such as ours, is required. Finally, we test

the sensitivity of the test statistic to the assumed known subspace dimension q.

4.3.1 Data Generation

In order to generate data that contain subspace changepoints, we take the same ap-

proach as in Jiao et al. (2018). First, we generate the pre- and post-change subspaces

the data are assumed to lie in. If q ≤ p
2
, we generate a random matrix, W̃ ∈ Rp×2q

with i.i.d standard Gaussian entries. Upon orthonormalization, we gain a matrix
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W = [W1,W
′] where W1 and W ′ are the first and last q columns of W respectively.

W1 is taken as the orthonormal basis of the pre-change subspace S1, while W ′ is an

orthonormal basis of some subspace orthogonal to S1. In order to generate a basis for

the post change subspace, S2, we take the scenario specific change size, ∆ ∈ [0,
√
q],

and generate an orthonormal basis, W2, by

W2 =

√
1− ∆2

q
W1 +

∆
√
q
W ′ . (4.3.1)

It can be verified that the distance between subspaces S1 and S2 is ∆, assuming the

distance metric defined in (4.2.2). Intuitively, for ∆ = 0 then W1 = W2, hence

d(S1,S2) = 0. Furthermore, for the maximum change size of ∆ =
√
q, then W2 = W ′

meaning W1 and W2 are orthogonal implying a maximum distance between them. If

q > p
2
, we first generate the orthogonal complement spaces of W1 and W2, as shown

above, before transforming these to gain W1 and W2.

The simulated dataset is then created by generating i.i.d st ∼ Nq(0, σ
2
sI) and i.i.d

εt ∼ Np(0, σ
2
εI). Then each time point i is defined as

yt =


W1st + εt, if t ≤ τ

W2st + εt, if t > τ .

(4.3.2)

Note, for simplicity we assume each entry of st is i.i.d with common variance σ2
s .

Throughout all subspace bases, W , will be generated randomly as described above.

Moreover, all change sizes will be given as a function of the maximum change size in

each scenario with ∆ = Θ
√
q where Θ ∈ [0, 1].
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4.3.2 Power of Test Statistic

First, we use ROC curves to demonstrate the power of our proposed test statistic

when detecting changes in subspace. We show one scenario here, with additional

scenarios comparing different parameter setups given in Appendix B.1. ROC curves

plot the true positive rate (TPR) for detecting a change against different false-positive

rates (FPR). The aim is to achieve a curve as close to the top left corner as possible

indicating a high TPR while maintaining a low FPR.

The ROC curves are generated by calculating our test statistic on 5000 repetitions

of data with no changepoints (n = 200, p = 20, q = 5, σ2
s = 1, σ2

ε = 0.05). These

test statistics are used to obtain many different thresholds that correspond to different

FPRs. Finally, we calculate our test statistic on 5000 equivalent data sets that contain

a changepoint at τ = 100 for different change sizes, Θ. For each threshold, the TPR

is the number of repetitions where the test statistic exceeds the threshold. Note, as

we are generating thresholds based on known null data we are assuming the full data

generating process’ for st and εt are known.

Figure 4.3.1 shows the ROC curve for our specified scenario over different change

sizes. For change sizes Θ > 0.1 we have a detection rate above 75% while maintaining

an FPR of only 0.05. This shows our test statistic has impressive power even for

relatively small changes size. For comparison, Jiao et al. (2018) only consider change

sizes Θ ≥ 0.25, although this is in the online changepoint setting.

Figure 4.3.1 shows our test statistic has substantial power to detect a change in
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Figure 4.3.1: ROC curve showing the true positive rate for different false positive

rates under varying change sizes

subspace, however, it only specifies whether a change is detected and not it’s location.

Figure 4.3.2 shows the locations of the significant changepoints in the above scenario

assuming a FPR of 0.05. As expected, as the change size increases, the changepoint

locations become increasingly concentrated around the true changepoint location,

τ = 100. For smaller change sizes the distribution of the changepoint locations is

more widely spread and there are fewer changepoint estimates - this is to be expected

as the TPR was lower in the ROC curves for the smaller change sizes.

The additional scenarios given in Appendix B.1 have some interesting conclusions.

Firstly, if we keep the signal-to-noise ratio, ρ = σ2
s

σ2
ε
, constant we get similar ROC

curves, indicating it is the ratio, ρ, and not the individual variances which affect the

power of the test statistic. As expected, if we increase ρ we gain power and vice versa

if we reduce ρ we lose power. Secondly, for fixed p increasing the subspace dimension
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Figure 4.3.2: Histogram of changepoint positions for varying change sizes

q results in the test statistic having additional power. This is likely due to the change

size ∆ being a function of q and as such is larger as q increases. However, even with

the difference or ratio between q and p being constant does not result in equal ROC

curves. A thorough theoretical investigation into the power obtained for varying p

and q would be interesting but is beyond the scope of this paper.

4.3.3 Permutation Test

In Section 4.3.2 we assumed the full data generating process’ st and εt are known in

order to generate multiple thresholds. Here we use the data-driven permutation test

described in Section 4.2.3 for determining a threshold. As this threshold is data-driven

we don’t require knowledge of the full data generating process’ st and εt, however, this

does mean we require larger change sizes Θ to take account of this extra uncertainty.

First, we investigate the performance of the permutation test in controlling the FPR
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under the scenario of no change, before demonstrating the method maintains a high

TPR. Additionally, we explore the effects of the number of random permutations, P ,

on the performance of the test. Again, we show one parameter setup here (p = 20

and q = 5) with alternative values of p and q given in Appendix B.2.

First, we investigate the ability of the permutation test to control the FPR for different

lengths of data sets, n, and a varying number of permutations, P . We generate 1000

repetitions of data with varying lengths n with no changepoints (p = 20, q = 5,

σ2
s = 1 and σ2

ε = 0.05). We calculate our test statistic and then generate a threshold

for each repetition of data using the permutation test with α = 0.05 and record if the

test statistic exceeded the threshold, i.e. corresponds to a false positive. Figure 4.3.3

shows the FPR across all the repetitions for various n and P . This plot shows that

even for a small number of permutations, P , the permutation test is controlling the

FPR close to the desired level of 0.05.

As well as controlling the FPR, we also want our threshold to retain as much power

as possible for correctly identifying changes. We simulated 200 repetitions of data

with varying n and change sizes with a changepoint located at τ = d0.4ne (p = 20,

q = 5, σ2
s = 1, σ2

ε = 0.05, P = 200, α = 0.05). We deem a changepoint estimate to be

correct if it is within a window of 20 on either side of the true changepoint. Figure

4.3.4 shows the TPR for the different scenarios.

Figure 4.3.4 shows that as n gets larger our test statistic gains power to detect changes,

however even for smaller n if the change size is large enough we still obtain a good

TPR. The change sizes Θ used here may seem much larger than those in Section 4.3.2,
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permutations (P )

however, this is due to us now using the data-driven threshold rather than assuming

σ2
s and σ2

ε are known which would be unlikely in practice. Note that for n = 500 we

obtain a TPR of over 0.8 for Θ = 0.2 and this change size is still smaller than any

used in Jiao et al. (2018).

4.3.4 Method Comparison

We are not aware of any implementation of offline subspace changepoint detection

which we can compare our method to. Hence, we compare our method to state-of-

the-art covariance changepoint methods noting that subspace changepoints can be

viewed as covariance changepoints where we impose conditions on the eigenvalues of

the covariance matrix. As our method assumes the subspace dimension is known

we would expect to outperform the covariance methods. Therefore, we will present
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3 scenarios: one generic example and then two additional examples which are more

suited to the covariance changepoint methods and show our method outperforms or

is at least competitive.

We will compare our subspace changepoint method to that of Aue et al. (2009a),

Avanesov and Buzun (2018) and Wang et al. (2021) and these methods will be re-

ferred to as Aue, Av-Buz and Wang throughout, while our method will be referred to

as Subspace. The simulation studies performed in Aue et al. (2009a), Avanesov and

Buzun (2018) and Wang et al. (2021) are limited meaning appropriate thresholds to

determine significant changepoints are not obvious for each method. Furthermore, the

choice of threshold for each method can drastically affect its perceived performance,

therefore, to perform a fair comparison we will only consider the estimated change-

point locations assuming the data contains one changepoint. Hence, we don’t need

to choose appropriate thresholds for each method, we simply select the most likely
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changepoint location for all regardless of significance.

We set the msl allowed for each method to 2p log(n) as this is the msl allowed in Wang

and is the largest among the methods. For the Aue method an estimate of the long-

run covariance matrix is needed and we use the Bartlett estimator (Andrews, 1991) as

suggested in Aue et al. (2009a). For the Av-Buz method a window size is needed and

we use the minimum segment length 2p log(n) as this is the minimum segment length

in our simulation but is larger than the required minimum segment length for the

method - we note similar results with varying window lengths. Additionally, Av-Buz

requires a hyperparameter for the graphical lasso used in the method. We follow the

advice given in Avanesov and Buzun (2018) and set this as
√

log(p)
n

.

Scenario 1: For the first scenario, we simulate 1000 data sets for each of Θ ∈

{0.2, 0.3, 0.4} with a single changepoint at τ = 0.4n (n = 1000, p = 20, q = 5, σ2
s = 1,

σ2
ε = 0.05). Figure 4.5(a) shows the estimated changepoint locations in each of the

methods over varying change sizes. Clearly, the Subspace method outperforms the

other methods in terms of estimated changepoint location. The covariance change-

point methods only start to show slight peaks around the true changepoint for the

largest change size.

Scenario 2: In the next scenario, we set the subspace dimension as q = 1 and

keep the rest of the parameters the same as in Scenario 1, apart from the changepoint

location which is now τ = 0.6n. This setup should suit the Wang method as their test

statistic uses the operator norm and therefore focuses on the first eigenvalue. Figure

4.5(b) shows the Wang method does perform much better in this scenario, however it
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is still not as accurate as the Subspace method in detecting the changepoint location.

Interestingly, the Aue method, which was right-skewed in Figure 4.5(a), is now left-

skewed showing the method appears to be biased towards equal segment lengths if

the changepoint location is not in the centre. Again the Av-Buz method only starts

getting a slight peak around the true changepoint location for Θ = 0.4.

Scenario 3: In the final scenario, we reduce the dimension of the data so that p = 10,

q = 5 and τ = 0.6n - the rest of the parameters are the same as in Scenario 1. The

Aue method is not designed to perform well in high-dimensional settings unlike the

Av-Buz and Wang methods and as such we would expect it to perform better in

this lower-dimensional setting. Figure 4.5(c) shows that the Aue method performs

extremely well in this scenario and is comparable to the Subspace method. However,

the Aue method cannot be used in higher-dimensional settings, which are becoming

increasingly common in practice, as will be seen in Section 4.5.

It is no surprise that Figure 4.3.5 shows our method outperforms the covariance

changepoint methods as we assume we know the subspace dimension size q and our

test statistic is specifically designed for this covariance structure. Yet, this does show

a need for a subspace changepoint method to detect these types of changes as generic

change in covariance methods are unable to locate the changes accurately across

scenarios.
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(a) Scenario 1
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(b) Scenario 2
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(c) Scenario 3

Figure 4.3.5: Estimated changepoint locations of the four methods for 3 different

change sizes (0.2, 0.3, 0.4) in the three scenarios described.
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4.3.5 Sensitivity to Subspace Dimension

Throughout, we have assumed that the dimension of the subspace, q, is known. In

certain applications we may not know the true subspace dimension, hence we explore

the sensitivity of our test statistic to the assumed subspace dimension. We will gen-

erate data with a true subspace size and create ROC curves, similar to Section 4.3.2,

assuming different subspace sizes. Let q be the true subspace dimension and q̂ be

the assumed subspace dimension. Figure 4.3.6 shows the ROC curves for varying q̂

(n = 200, p = 20, q = 5, τ = 100, σ2
s = 1 and σ2

ε = 0.05).

Figure 4.3.6 clearly shows if we overestimate the subspace dimension this has a far less

drastic effect on the power than if we underestimate the subspace dimension. This

can be explained from our test statistic using the cost defined in (4.2.8). In the cost

of a segment, we sum the last p − q eigenvalues which correspond to the variance in

the orthogonal complement of the subspace. Now if we underestimate q, there will be

eigenvalues contributing to the cost that are large as they correspond to the variance

in one or more directions within the subspace. Hence, the cost of the segment will

be large. Now, even if we add a changepoint to get a better estimation of the true

underlying subspaces the inflated costs, due to the large eigenvalues, will mean the

test statistic still has minimal power. On the other hand, if we overestimate the true

subspace then we have less of the eigenvalues that correspond to the variance in the

orthogonal complement to the subspace, meaning when we add a change then the

cost of the correct segmentations will still be low but the estimation of the union of

the subspaces in the cost of the whole data will be improved meaning we have slightly
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Figure 4.3.6: ROC curves for data with different assumed subspace dimensions. The

true subspace dimension for all plots is 5 and each facet shows the ROC for different

assumed subspace dimensions.

less power.

In applications, the separation of the eigenvalues corresponding to the subspace and

it’s orthogonal complement will likely be less explicit than in simulated examples.

Therefore, the drop in power by underestimating the subspace dimension would be

less dramatic. However, if the true underlying subspace is unknown then we would

advise being cautious and overestimate the subspace dimension.
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4.4 Extension: Multiple Changepoints

So far we have considered the AMOC scenario where we assume a maximum of one

changepoint in a data set. In many situations, it is possible for data sets to contain

multiple changepoints and hence we need a way to handle this. In the changepoint

literature, there are two main approaches for handling multiple changepoints. One so-

lution is to take a dynamic programming style approach (Auger and Lawrence, 1989;

Jackson et al., 2005; Killick et al., 2012) where a cost function is defined for a segment

and these algorithms find an exact minimization of the total cost of the data, given

some penalty for adding a change. Choosing an appropriate penalty can be chal-

lenging and usually requires some strict assumptions placed on the cost function and

data generating process. The alternative approach is to use a Binary Segmentation

procedure (Scott and Knott, 1974; Vostrikova, 1981), which is a heuristic approach.

Here a single changepoint is proposed in the data set, if this changepoint is significant

we split the data and look for a changepoint on either side of the detected change.

This approach makes it easy to extend our AMOC scenario to allow for multiple

changepoints.

If the true number of changepoints, m, is known we can run the Binary Segmentation

algorithm with our test statistic to gain the first m most significant changepoints.

If m is unknown, we can perform the permutation test described in Section 4.2.3

to provide a stopping criterion. First, we find the most likely changepoint position

in the data and perform the permutation test on the data to determine if the test

statistic for this changepoint is significant. If significant, we then search for the
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most likely changepoint position in the two segments on either side of the detected

changepoint. We then perform a permutation test on the segment containing the

most likely changepoint position. This process of splitting the data is repeated until

the permutation test deems a changepoint insignificant in which case we stop and

return all detected changepoints. Note that recent variations to Binary Segmentation

(Fryzlewicz, 2014; Kovács et al., 2020) could equally be used but produce a larger

FPR especially when the Binary Segmentation assumptions are satisfied (Shi et al.,

2021).

4.4.1 Simulation

Here we explore how our method performs when detecting multiple changepoints

using the Binary Segmentation approach. In order to generate multiple subspaces

we generate W1 and W2, as described in Section 4.3.1. Next, we find a basis that is

orthogonal toW2 and use this in (4.3.1) to generate the next subspace. This process is

iterated until the required number of subspaces is reached. The change sizes between

each subspace are set by ∆ = Θ
√
q. The data is then generated similarly to (4.3.2)

for all segments.

We simulate a data set with n = 1000, p = 20, q = 5, σ2
s = 1, σ2

ε = 0.05 and τ =

(100, 400, 700, 800, 900) with corresponding change sizes Θ = (0.25, 0.15, 0.25, 0.25, 0.25).

The number of changepoints was not known to our algorithm, hence, the permu-

tation test stopping criteria detailed above was used to determine the number of

changepoints. We used P = 200 random permutations and set α = 0.05. We per-
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Figure 4.4.1: (a) Histogram of estimated changepoint locations with dashed lines

showing the true changepoint locations. (b) Number of estimated changepoints in

each repetition, the true number is 5.

formed 500 repetitions of this scenario and Figure 4.4.1 shows a histogram of the

estimated changepoint locations and the number of estimated changepoints in each

repetition.

Figure 4.1(a) shows that the detected changepoints are distributed around the true

changepoint locations. The changepoint at τ = 400 is detected with less accuracy due

to the change being smaller despite the larger gap between the changepoints. Even

the three changepoints that are close together still have three distinct peaks around

the true changepoint locations which implies the Binary Segmentation implementa-

tion is working well. Additionally, Figure 4.1(b) shows the majority of repetitions

returned either the correct number of changepoints or one fewer. This shows using

the permutation test as a stopping criterion for the method performs well.



CHAPTER 4. SUBSPACE CHANGEPOINT DETECTION 107

4.5 Application: Motion Capture Data

In this section, we aim to detect changepoints in the Carnegie Mellon Motion Capture

dataset available at http://mocap.cs.cmu.edu. The data set was created by tracking

multiple sensors placed on the human body while subjects performed different activ-

ities. The aim is to detect time points at which subjects change from one activity to

another. We examine 56 of these sensors and focus on trial 1 for subject 86 which

consists of activities including walking, jumping, punching and kicking. It is assumed

that during the same activity the 56 series will lie in a subspace and when this activity

changes we observe a change in subspace.

Before running our algorithm we standardised each series by subtracting the median

and dividing by the median absolute deviation. We assume a subspace dimension of

q = 9 and stored the 30 most significant changepoints. The raw permutation test

is not appropriate to derive a threshold as the data contains temporal dependence.

Hence, we examined the total cost of the data,
m+1∑
k=1

C(yτk−1+1:τk) including each change-

point sequentially in terms of their significance. To find an appropriate number of

changepoints we find the total cost whereby adding another changepoint results in

only a minimal decrease in total cost - this implies that adding more changes does

not significantly improve the model fit. Using this method we found m = 6 to be

the most appropriate number of changepoints. Justification for this, and choosing the

subspace dimension q = 9, is given in Appendix B.3.

Figure 4.5.1 shows the location of the 6 identified changepoints on a range of se-

http://mocap.cs.cmu.edu
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Figure 4.5.1: Selection of series relating to different sensors with identified change-

points shown by red solid vertical lines and transition windows shown by dashed

vertical lines.

ries relating to sensors from different parts of the subject. Additionally, one-second

windows are shown which correspond to the subject transitioning between activities,

these were independently identified by eye before analysis. As can be seen, the 6

identified changepoints fall within these one-second windows showing the method has

successfully segmented the data into the different activities.

4.6 Conclusion

A novel method for detecting changepoints in potentially high-dimensional time series

that are assumed to lie in low-dimensional subspaces has been presented. We have

provided a consistent way to estimate the latent subspaces, determine if a subspace
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changepoint has occurred in the data and find its most likely position. A data-

driven threshold for determining the significance of a potential changepoint is pro-

vided and we discussed an extension of the methodology to the multiple changepoint

scenario. Additionally, an extensive simulation study in the AMOC and multiple

changepoint scenarios is presented that displays the effectiveness of our method in

both settings. Moreover, we have shown the need for a subspace changepoint method

through comparison to current state-of-the-art covariance changepoint methods. Fi-

nally, we demonstrated our approach can detect activity changes in Motion Capture

data.

The current methodology has some limitations which could provide future research

opportunities. Firstly, a thorough theoretical exploration may discover a theoretical

threshold that could be used as an alternative to the data-driven threshold. The

major assumption in the paper is the knowledge of the underlying subspace dimension;

finding a way to automate the identification of the subspace dimension would be of

interest in addition to allowing the subspace dimension to vary between changepoint

segments.

The methodology presented in this Chapter is implemented in the R package change-

point.cov available on GitHub https://github.com/grundy95/changepoint.cov.

https://github.com/grundy95/changepoint.cov


Chapter 5

Identifying Sequential Changes in

Mean and Variance Within More

Complex Model Structures

5.1 Introduction

Accurate forecasting is crucial for planning and marketing decisions for many com-

panies. For example, within inventory management, the optimization of stock levels

crucially depends upon accurate supply and demand forecasts (see, for example re-

views by Fildes, 1985; Fildes et al., 2008; Syntetos et al., 2016). In hospitals, accurate

forecasts are crucial for bed management (Jones et al., 2002) and ensuring adequate

numbers of clinicians, nurses and equipment in A&E departments (Ordu et al., 2020).

In general, with accurate forecasts, informed decisions can be made but what happens

110
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if over time these forecasts become poor? If forecasts (or prediction intervals based

upon them) start performing poorly this can have severe consequences, starting from

product shortages in the retail sector, to a shortage of medical supplies in hospitals.

Hence, it is crucial to quickly identify when forecasting models start deteriorating in

performance, in order to react and make necessary adjustments.

A common cause of forecasts becoming inaccurate is due to a changepoint (also known

as a structural break) occurring in the underlying process. Throughout we call the

data generated from the underlying process the raw data. After a changepoint in

the raw data, the current forecasting model may become inappropriate and the model

needs rebuilding. Without the knowledge of changepoints, it is disputed how long fore-

casting models can be used before updating (Krasheninnikov et al., 2018). If a model

is created and left to run for long periods of time without regular checks, practitioners

could be making key decisions based upon inaccurate information. Alternatively, if

parameters are frequently updated then changepoints that affect the choice of fore-

casting model would be missed. Furthermore, the updated parameters may be based

on data containing a changepoint and therefore the estimation will be contaminated

by the pre-change data thus damaging the resulting forecasts (Chapman and Killick,

2020).

A common approach to identify changes is to add a changepoint component to the

modelling paradigm; this is easier in some paradigms than others. Even when it is

clear how to add changes to our modelling paradigm, if our model is complex (for

example containing seasonality, temporal dependence and/or trends) then our ability
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to identify a change quickly deteriorates with increasing complexity. In this paper,

we propose a framework for sequential changepoint detection within forecast errors

to detect if a model becomes inaccurate. As mentioned, the most likely cause for

forecasts becoming inaccurate is a change in the raw data being forecast. A change in

the mean of the raw data could result in bias in the forecast and this would show as

a mean change in the forecast errors. A change in the variance of the raw data, may

not cause bias in the forecasts but could lead to miss-calibrated prediction intervals.

This change would be reflected by a variance change in the forecast errors. Hence,

by detecting changes in the forecast errors, we can automatically identify when the

forecasting model needs to be reconstructed and/or re-estimated. This eliminates the

need for manual checks of the forecasting models and allows practitioners to focus on

other tasks.

Sequential changepoint analysis aims to detect changes in a data generating process in

an online manner. As more data becomes available, they are sequentially checked to

determine if the distribution of the data has changed. Sequential changepoint analysis

dates back to Page (1954) and traditionally aims to identify changes in the mean of

the data generating process under the assumption of independent observations and

constant variance, see Basseville and Nikiforov (1993), Csörgö and Horváth (1997)

and Tartakovsky et al. (2014) for overviews. Our approach to sequential changepoint

detection stems from the work of Chu et al. (1996), where sequential changepoint

procedures are considered in two phases. In phase 1, we assume a fixed amount of

data is readily available and is generated from the same distribution; we call this
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the training data. The training data is used to estimate the data generating process.

Sequential monitoring begins in phase 2; i.e, when the forecasting model goes live.

As more data becomes available we make a decision, based upon some rule, checking

whether the new data is still being generated from the same distribution as Phase 1. If

the new data significantly differs from the data in Phase 1, then we deem a changepoint

to have occurred and stop monitoring. Hence, here our model is trained once using the

fixed amount of training data and is not re-trained; either a changepoint is detected

and the monitoring stops or the monitoring continues indefinitely. Note that the

proposed approach can be complimentary to the existing forecasting techniques in

practice: while the main model used for decision making can be re-estimated as soon

as the new data arrives, the secondary model used for changepoint detection would

need to be estimated only once (initially), and its output can be tracked independently

of the first model.

The work of Chu et al. (1996) has been extended in various ways including sequential

monitoring of linear models (Horváth et al., 2004); autoregressive processes (Gombay

and Serban, 2009); and financial time series (Aue et al., 2009b). Here we utilize

sequential changepoint methods to detect changes in forecast errors to quickly identify

when forecasts become inaccurate. In particular, we examine one-step-ahead forecast

errors, which, within models with an additive error structure, are the model residuals.

There has been previous work utilizing the residuals of a model to detect changepoints.

In particular, Horváth et al. (2004) use the residuals from estimated linear models

to detect changes in regression co-efficients. Furthermore, Aue et al. (2015) use the
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residuals from estimated ARMA processes to detect changes in mean, variance or

regressive parameters. Moreover, within the streaming classification literature there

are numerous methods that use classification errors to detect when changes have

occurred (Gama et al., 2004; Ross et al., 2012). In the offline changepoint setting

where all data is available a priori, Robbins et al. (2011) proposed using residuals

within the CUSUM procedure and showed that this gave an improved performance

over using the raw data when temporal dependence was present in the data. All

the methods mentioned above, assume a specified, known forecasting model. Our

framework is far more general as any forecasting approach could be used, including

model-based, machine learning and expert judgement forecasts - we only require the

forecast errors.

The novelty in our work is two-fold. From a forecasting viewpoint, by combining

forecasts and sequential changepoint detection we create a novel framework for au-

tomatically identifying when a forecasting model needs re-evaluating. Moreover, we

show theoretically how some common changes in raw data (which are a likely cause

of inaccurate forecasts) manifest in the forecast errors and therefore can be detected

within our framework. From a sequential changepoint viewpoint, this methodology

can provide an improved performance over model-based sequential changepoint tech-

niques. If the data generating process is complex, then large amounts of data are

needed to get an adequate model. Hence, after a change has occurred, we would

expect a longer detection delay before signalling a change as more data is required to

model the post change distribution. In contrast, performing sequential changepoint
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detection on the forecast errors is a much simpler task as the complex modelling issues

are eradicated by the forecasting model.

The paper proceeds as follows. In Section 5.2, we introduce the sequential changepoint

detection framework and significant results from the literature that are used in this

paper. Building on this, in Section 5.3 we introduce our framework for monitoring

forecast errors and show theoretically how different changes in potentially complex

data models manifest in these forecast errors. Section 5.4, shows how two common

forecasting models fit into our framework before Section 5.5, demonstrates the im-

proved performance of monitoring the forecast errors over monitoring the raw data

in a number of simulated examples. Finally, Section 5.6 shows the effectiveness of

our method in two applications, one from NHS A&E admissions data and the other

from Royal Mail delivery volumes, before Section 5.7 gives concluding remarks and

suggests some future research directions.

5.2 Sequential Changepoint Detection

Before proceeding with our framework, we first introduce the sequential changepoint

detection paradigm used in this paper for identifying a mean change in a generic

sequence of data {Yt : t = 1, 2, . . .}. We present the general setup introduced in Chu

et al. (1996), along with the detector used for detecting changes; Page’s CUSUM

detector (Page, 1954). Moreover, we highlight the key large-sample results from the

literature which we utilize within our framework.
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Let {Yt : t = 1, 2, . . .} be a univariate time series that follows a change in mean

model,

Yt =


λ+ εt, t = 1, . . . ,m+ k∗,

λ+ εt + ∆m, t = m+ k∗ + 1,m+ k∗ + 2, . . . .

(5.2.1)

Here λ ∈ R is the pre-change mean level; ∆m ∈ R is the size of the mean change;

1 ≤ k∗ ≤ ∞ is the time of change after the training period, and {εt : t = 1, 2, . . .} are

zero-mean random variables. Here m ∈ N is the length of the training period, which is

used to estimate model parameters and we assume the data within the training period

have no changepoints and exhibit a stationary structure. All asymptotics considered

are with respect to m→∞ throughout. Note the model is trained once using the m

data points and is not re-trained once the monitoring period has begun.

To be as general as possible, we allow for the random variables {εt : t = 1, 2, . . .}

to exhibit different dependence structures, hence we assume they satisfy some weak

invariance principles.

Assumption 5.2.1.

∣∣∣∣ m∑
t=1

εt

∣∣∣∣ = OP (
√
m) .

Assumption 5.2.2. There exists a sequence of Wiener processes {Wm(i) : i ≥ 0,m ≥

1} and a constant σ ∈ R+ such that

sup
1/m≤i<∞

1

(mi)1/ν

∣∣∣∣∣
m+mi∑
t=m+1

εt − σWm(mi)

∣∣∣∣∣ = OP (1) for some ν > 2 .

Aue and Horváth (2004) give examples of sequences that satisfy Assumptions 5.2.1

and 5.2.2. Importantly for our framework, we show that the random variables will be

i.i.d and therefore will satisfy Assumptions 5.2.1 and 5.2.2.
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To detect a change in mean, we test the hypothesis,

H0 : ∆m = 0 , (5.2.2)

HA : ∆m 6= 0 , (5.2.3)

and define a stopping rule τm such that

lim
m→∞

P (τm <∞) = α under H0 ,

lim
m→∞

P (τm <∞) = 1 under H1 ,

where α is the user-specified false alarm rate. Note here that by assuming that we

have a large number of training samples, we control the false alarm rate indefinitely.

This differs from the traditional, control chart based, sequential changepoint detection

where we generally set a false alarm rate based upon the average run length of the

process (Tartakovsky et al., 2014).

To define Page’s CUSUM detector, D(m, k), we first define the CUSUM detector,

Q(m, k). Let k ∈ N, be the current time point, then

Q(m, k) =
m+k∑
t=m+1

Yt −
k

m

m∑
t=1

Yt .

Using this we gain

D(m, k) = max
0≤i≤k

|Q(m, k)−Q(m, i)| , (5.2.4)

and define the correspond stopping time as

τm = min {k ≥ 1 : D(m, k) ≥ σ̂mcαg(m, k, γ)} .

Here, σ̂m is a weakly consistent estimator for σ in Assumption 5.2.2 and is estimated

using the m training samples. The critical value, cα, is a constant derived from the
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large sample distribution of the stopping time under H0 and g(m, k, γ) is a weight

function defined as

g(m, k, γ) =
√
m

(
1 +

k

m

)(
k

m+ k

)γ
for γ ∈ [0, 1/2) . (5.2.5)

The hyper-parameter γ allows a practitioner to tune the stopping time dependent

upon when the change is likely to take place. If the change is likely to occur early

in the process then increasing γ will lead to a faster detection time, however, if the

change occurs later in the process then having a larger γ will decrease the detection

time. Throughout this paper, we assume γ = 0 for simplicity but for a more detailed

discussion, see Horváth et al. (2004).

The critical constant, cα, can be derived from the limiting distribution of the stopping

time under H0 shown in Fremdt (2015).

Theorem 5.2.3. (Fremdt, 2015)

Let {Yt : t ≥ 1} follow (5.2.1) and Assumptions 5.2.1 and 5.2.2 hold. Then under

H0, for c ∈ R,

lim
m→∞

P
(

1

σ̂m
sup

1≤k<∞

D(m, k)

g(m, k, γ)
≤ c

)
= P

(
sup
0<i<1

sup
0≤j≤i

1

iγ

∣∣∣∣W (i)− 1− i
1− j

W (j)

∣∣∣∣ ≤ c

)
,

where {W (i) : i ∈ [0, 1]} denotes a standard Brownian motion.

Under HA, Fremdt (2014) derived the limiting distribution of the stopping time, τm,

under certain additional assumptions.

Assumption 5.2.4. There exists a θ > 0 such that the changepoint k∗ = bθmβc with

0 ≤ β < 1.

Assumption 5.2.5.
√
m |∆m| → ∞ as m→∞.
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Assumption 5.2.6. ∆m = O(1).

These assumptions ensure the change size is bounded and is large enough relative to

the size of the training data and the time of the changepoint. For a detailed discussion

of these assumptions see Fremdt (2014).

The form of the large sample distribution under HA depends on the asymptotic be-

havior of the sequence |∆m|mγ−1/2k∗1−γ, hence, due to Assumption 5.2.4, depends on

the asymptotic behavior of the term

∆̃m = |∆m|mβ(1−γ)−1/2+γ .

This leads to three scenarios as m→∞:

(I) ∆̃m → 0

(II) ∆̃m → C̃ ∈ (0,∞)

(III) ∆̃m →∞

For scenario (II), from Assumption 5.2.4, we have

|∆m|mγ−1/2k∗1−γ → θ1−γC̃ = C ∈ (0,∞) .

Here, for any real c, we define d = d(c) as the unique solution of

d = 1− c

C
d1−γ .

The large sample distribution of the stopping time depends upon the three scenarios

(I)-(III). To define the limit distribution, the function Ψ̃(x) is introduced for all real



CHAPTER 5. SEQUENTIAL CHANGES IN MEAN AND VARIANCE 120

x,

Ψ̃(x) =



Φ(x) under scenario (I)

P
(

sup
d<i<1

W (i) ≤ x

)
under scenario (II)

P
(

sup
0<i<1

W (i) ≤ x

)
=


0 x < 0

2Φ(x)− 1 x ≥ 0

under scenario (III)

where Φ(x) denotes the standard Normal distribution function.

Theorem 5.2.7. (Fremdt, 2014)

Let {Yt : t = 1, 2, . . .} be a sequence of random variables according to (5.2.1) that

satisfies Assumptions 5.2.1-5.2.6. Then, for all real x under HA and with Ψ(x) =

1− Ψ̄(−x),

lim
m→∞

P
(
τm − am(cα)

bm(cα)
≤ x

)
= Ψ(x) ,

where am(c) is the unique solution of

am(c) =

(
σcm1/2−γ

|∆m|
+

k∗

(am(c))γ

)1/(1−γ)

,

and

bm(c) =
σ
√
am(c)

|∆m|

(
1− γ

(
1− k∗

am(c)

))−1
.

This allows us to quantify the size of changepoints that can be detected within a

certain time frame and shows that given a certain change size, asymptotically in m,

we will always detect certain changes eventually.
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5.3 Monitoring Forecast Errors

The main aim of this paper is to introduce a framework that can quickly identify

if a forecasting model becomes inaccurate. A common cause of inaccurate forecasts

is a change in the potentially complex data structure. For simple data structures,

we can detect mean changes by performing sequential changepoint detection on the

data, namely Page’s CUSUM detector, as described in Section 5.2. We can also adapt

this detector to detect variance changes by monitoring the (centered) squared data

as described in Inclan and Tiao (1994). Yet, it is increasingly common for data to

exhibit more complex patterns than this setting allows. Some common examples

of such structure include seasonality and trend with the data. Moreover, if the data

exhibits temporal dependence then convergence to the limiting distributions in Section

5.2 are slow and the performance of the detector deteriorates. There has been some

work to identify changepoints in some specific complex models such as data exhibiting

trend (Horváth et al., 2004) and ARMA models (Aue et al., 2015), however, our work

is more general and encompasses these models and more by allowing for a generic

forecasting model.

Alternatively, model-based sequential changepoint techniques could be used for more

complex models. These fit a model to the data before and after a potential changepoint

and use a likelihood ratio style approach to determine if a changepoint has occurred.

Even if the model is known this approach has a number of drawbacks. Firstly, we

need to have at least as many observations as parameters in the model. This means if

we have seasonality in the model, we require at least one full season worth of data just
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to fit the post-change model; this can greatly increase the detection delay before a

change is identified. Additionally, as we get more data points, there are more potential

changepoint locations to check for a change, thus increasing the computational time

of the method. Finally, the choice of threshold is non-trivial, so identifying significant

changepoints while controlling the false alarm rate is challenging.

Our framework bypasses the above issues by monitoring forecast errors, instead of the

raw data, for changepoints. We show theoretically that mean and variance changes

in potentially complex data structures will manifest in the forecast errors (under

certain assumptions on the forecasting model) and adapt Page’s CUSUM detector

(Section 5.2) to detect the manifested changes in the forecast errors. The detection

of a mean change in the forecast errors indicates that the forecasting model needs re-

evaluating as it has become biased, while a variance change indicates that prediction

intervals from the forecasting model will no longer be precise and would need to be

re-constructed.

Let {Yt : t = 1, 2, . . .} be a univariate time series following some unknown distribution,

F , with an associated forecasting model, F . Assuming a known forecasting model,

F , we define the point forecast for time point t made h time steps previously as,

ŷt(h) = EF [Yt|yt−h, . . . , y1] . (5.3.1)

Without loss of generality, we focus on one-step-ahead forecasts, hence ŷt(1) is the

forecast for time point t made at time point t−1. Using (5.3.1), we define the forecast

errors, et, as

et = Yt − ŷt(1).
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First, we consider theoretically how mean changes in the potentially complex data

structures manifest in the forecast errors. We highlight the desirable properties of

the forecast errors and describe how we can incorporate them into Page’s CUSUM

detector. Secondly, we consider the more general setting where mean and/or variance

changes in the raw data can occur. Again, we show theoretically how these changes

manifest in the forecast errors and describe an alternative adaption of Page’s CUSUM

detector to detect these changes.

5.3.1 Mean Changes

First, we consider how mean changes in potentially complex data structures manifest

in the forecast errors. Assume there is a changepoint at some unknown location

k∗,

Yt|yt−1, . . . , y1 ∼ F , for t = 1, . . . ,m+ k∗ ,

Yt|yt−1, . . . , y1 ∼ G , for t = m+ k∗ + 1,m+ k∗ + 2, . . . , (5.3.2)

where F and G differ in expectation,

EG [Yt|t > m+ k∗, yt−1, . . . , y1]− EF [Yt|t ≤ m+ k∗yt−1, . . . , y1] = δµ,m 6= 0. (5.3.3)

To ease notation, we write ỹt to represent the whole past upon which Yt is depen-

dent. Moreover, the relevant pre- and post-changepoint times are inferred from the

distribution we are taking expectations with respect to. Note, (5.3.2) encompasses

the mean change model in (5.2.1) from Section 5.2 and additionally allows the raw
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data to have many different properties including, but not limited to, being temporally

dependent, exhibiting trends or containing seasonality.

For the mean change in (5.3.3) to manifest in the forecast errors, we must place the

following assumptions on the forecasting model being used.

Assumption 5.3.1. We have a forecasting model, F , such that

EF [Yt|ỹt]− EF [Yt|ỹt] = bµ for t = 1, . . . ,m+ k∗ ,

where bµ is some unknown (potentially zero) bias in the forecasts.

Assumption 5.3.2. For a forecasting model, F , and data that follows (5.3.2) then,

EG [Yt|ỹt]−EF [Yt|ỹt] = bµ+f(δµ,m) = bµ+∆µ,m for t = m+k∗+1,m+k∗+2, . . . , ,

where ∆µ,m 6= 0 and is some function of the change size in the raw data.

For generality, these assumptions state that, in the pre-change regime, the forecasting

model has a constant bias, bµ, which in practise would ideally be equal to zero. When

a change in the raw data occurs, many forecasting models will adjust in some way to

try and account for this change. For example, in an AR(1) model with autoregressive

parameter, φ, a change size of δµ,m in the raw data would result in a change size of

∆µ,m = δµ,m(1 − φ) in the forecast errors after one time point; assuming a perfectly

specified forecasting model. Assumption 5.3.2 states that, like the AR(1) example

above, the forecasting model cannot fully adjust to the change in the raw data and

some constant change size still exists. This seems intuitive because if the forecasting

model fully adjusts to the changepoint then we would not want to signal a changepoint

as the forecasting model has adapted to the change and is still performing well.
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Under Assumptions 5.3.1 and 5.3.2, the change in mean in (5.3.2) will result in a

change in expectation in the forecast errors that is similar to (5.2.1),

Yt − ŷt(1) = et =


bµ + εµ,t, t = 1, . . . ,m+ k∗,

bµ + εµ,t + ∆µ,m, t = m+ k∗ + 1,m+ k∗ + 2, . . . .

with relevant null and alternative hypothesis defined in (5.2.2) and (5.2.3) with ∆m =

∆µ,m.

As the forecasting model accounts for the dependence in the raw data, the zero-mean

random variables {εµ,t : t = 1, 2, . . .} will be i.i.d. Note, even if the forecasting model

is misspecified, the general assumptions on {εt : t = 1, 2, . . .} given in Assumptions

5.2.1 and 5.2.2 are likely to hold.

To detect the manifested mean change in the forecast errors, we use Page’s CUSUM

detector, defined in (5.2.4), on the forecast errors,

Qµ(m, k) =
m+k∑
t=m+1

et −
k

m

m∑
t=1

et ,

Dµ(m, k) = max
0≤i≤k

|Qµ(m, k)−Qµ(m, i)| ,

with corresponding stopping time,

τµ,m = min {k ≥ 1 : D(m, k) ≥ σ̂µ,mcµ,αg(m, k, γ)} .

As the random variables, {εt : t = 1, 2, . . .}, are i.i.d, σ̂µ,m, can be estimated using

the traditional estimate of the standard deviation of the forecast errors within the

training period. The weight function, g(m, k, γ) is defined as in (5.2.5) and the critical

constant, cµ,α can be derived from the limiting distribution of the stopping time which

is known due to the following corollary.
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Corollary 5.3.3. From Theorem 5.2.3

Let {Yt : t ≥ 1} follow (5.3.2) and F be a forecasting model that satisfies Assump-

tion 5.3.1 and 5.3.2. Under H0, the limit distribution in Theorem 5.2.3 holds for

D(m, k) = Dµ(m, k) and σ̂m = σ̂µ,m.

Furthermore, the limiting distribution of τµ,m under HA is also known from the fol-

lowing corollary.

Corollary 5.3.4. From Theorem 5.2.7

Let {Yt : t ≥ 1} follow (5.3.2) and F be a forecasting model that satisfies Assumption

5.3.1 and 5.3.2. Furthermore, assume ∆µ,m, from Assumption 5.3.2, satisfies As-

sumptions 5.2.4-5.2.6, then under HA, the limit distribution in Theorem 5.2.7 holds

with τm = τµ,m and cα = cµ,α.

These corollaries state that as long as we have a forecasting model that satisfies

the given assumptions, a mean change in potentially complex data structures will

manifest as mean changes in the forecast errors and will be detectable under our

framework.

5.3.2 Mean and Variance Changes

So far we only have considered detecting mean changes using Page’s CUSUM detector.

Inclan and Tiao (1994) extend this to detect variance changes by considering the

CUSUM detector of the (centered) squared data. This can be viewed as searching for

a mean change in the variance estimates of the data. Here we employ a similar idea



CHAPTER 5. SEQUENTIAL CHANGES IN MEAN AND VARIANCE 127

and show that mean and/or variance changes in the raw data will manifest as mean

changes in the (centered) squared forecast errors.

We extend the mean change model in (5.3.2) to allow for mean and variance changes.

Again assume there is a changepoint at some unknown location, k∗,

Yt|yt−1, . . . , y1 ∼ F , for t = 1, . . . ,m+ k∗ ,

Yt|yt−1, . . . , y1 ∼ G′ , for t = m+ k∗1,m+ k∗ + 2, . . . , (5.3.4)

where F and G′ differ in expectation and variance,

EG′ [Yt|t > m+ k∗, yt−1, . . . , y1]− EF [Yt|t ≤ m+ k∗yt−1, . . . , y1] = δµ,m ,

VarG′ [Yt|t > m+ k∗, yt−1, . . . , y1]− VarF [Yt|t ≤ m+ k∗yt−1, . . . , y1] = δξ,m.

Under Assumption 5.3.1, the change in mean and/or variance will result in a mean

change in the squared forecast errors,

(Yt − ŷt(1)− bµ)2 = (et − bµ)2 =


bξ + εξ,t, t = 1, . . . ,m+ k∗,

bξ + εξ,t + ∆ξ,m, t = m+ k∗ + 1,m+ k∗ + 2, . . . .

where bξ = E[ε2µ,t] and {εξ,t : t = 1, 2, . . .} are zero-mean random variables. Again, due

the forecasting model accounting for the potentially complex dependence structure in

the raw data, {εξ,t : t = 1, 2, . . .}, will be i.i.d.

The change size in the (centered) squared forecast errors, ∆ξ,m, can be shown to be a

combination of the mean and/or variance change in the raw data.

Proposition 5.3.5. Let {Yt : t = 1, 2, . . .} follow (5.3.4) with δµ,m = 0 and F be a

forecasting model that satisfies Assumption 5.3.1. Then,

∆ξ,m = VarG′ [Yt|ỹt]− VarF [Yt|ỹt] . (5.3.5)
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Moreover, if δµ,m 6= 0 and Assumption 5.3.2 holds, then

∆ξ,m = VarG′ [Yt|ỹt]− VarF [Yt|ỹt] + ∆2
µ,m . (5.3.6)

Proof. We start by noting that the change size, ∆ξ,m, is the difference between the

expectation of the squared forecast errors assuming the post change distribution G′

and the pre-change distribution F . From this, we can show the equivalences given in

Proposition 5.3.5 by substituting relevant definitions of the forecast errors and using

Assumption 5.3.1.

To detect the manifested changes in the centered squared forecast errors, we can again

adapt Page’s CUSUM detector,

Qξ(m, k) =
m+k∑
t=m+1

(
et − b̂µ,m

)2
− k

m

m∑
t=1

(
et − b̂µ,m

)
,

Dξ(m, k) = max
0≤i≤k

|Qξ(m, k)−Qξ(m, i)| ,

with corresponding stopping time,

τξ,m = min {k ≥ 1 : Dξ(m, k) ≥ σ̂ξ,mcξ,αg(m, k, γ)} .

Here b̂µ,m is the mean estimate of the forecast errors in the m training samples and σ̂ξ,m

is the traditional estimate of the standard deviation of the centered squared forecast

errors within the training period. Again, g(m, k, γ) is defined as in (5.2.5) and the

critical constant cξ,α can be derived from the limiting distribution of the stopping

time under H0, which is known due to the following corollary.

Corollary 5.3.6. From Theorem 5.2.3
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Let {Yt : t = 1, 2, . . .} follow (5.3.4) and F be a forecasting model that satisfies As-

sumption 5.3.1. Under H0, the limit distribution in Theorem 5.2.3 holds for D(m, k) =

Dξ(m, k) and σ̂m = σ̂ξ,m.

Using Proposition 5.3.5, we gain the limiting distribution of τξ,m under HA from the

following proposition.

Proposition 5.3.7. Let {Yt : t = 1, 2, . . .} follow (5.3.4) with δµ,m = 0 and F be

a forecasting model that satisfies Assumption 5.3.1. Furthermore, assume ∆ξ,m in

(5.3.5) from Proposition 5.3.5 satisfies Assumptions 5.2.4-5.2.6. Then under HA, the

limit distribution in Theorem 5.2.7 holds with τm = τξ,m and cα = cξ,α. Moreover, the

limit distribution holds if δµ,m 6= 0 and F also satisfies Assumption 5.3.2 with ∆ξ,m

in (5.3.6) from Proposition 5.3.5 satisfying Assumptions 5.2.4-5.2.6.

Proof. From Proposition 5.3.5, given a certain change size in the raw data, we know

the change size in the forecast errors. This, in combination with Theorem 5.2.7, yields

the above result.

Propositions 5.3.5 and 5.3.7 and Corollary 5.3.6 show that provided the mean and

variance changes in the potentially complex data structures are large enough, they

will result in a mean change in the squared forecast errors that is detectable using

our framework.
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5.4 Common Forecasting Models

Here we investigate some common forecasting models and show how these can be used

within our framework to detect different types of changes. We consider ARMA and

ETS forecasting models, showing when they satisfy our forecasting model assumptions

and give two small simulation examples illustrating the effectiveness of their forecast

errors for detecting changepoints. Note a more detailed simulation study is performed

in Section 5.5.

5.4.1 ARMA Models

We denote {Yt : t = 1, 2, . . .} by the ARMA(p, q) process,

φ(B)(Yt − λt) = θ(B)εt, t = 1, 2, . . . , (5.4.1)

where λt are the mean parameters, φ(B) = 1 − φ1B − . . . − φpBp and θ(B) = 1 +

θ1B + . . .+ θqB
q are the autoregressive and moving average polynomials respectively

and B is the back-shift operator. The error terms, εt, are assumed to be independent

zero-mean random variables with variance, σ2
t . We assume the ARMA process is

causal and invertible meaning,

φ(x) 6= 0 and θ(x) 6= 0 for all |x| ≤ 1 .

Interest lies in testing whether the time-dependent parameters (specifically λt and

σt) remain constant or change at some time point. A change in λt corresponds to a

mean change in the data while a change in σt corresponds to a variance change. Here



CHAPTER 5. SEQUENTIAL CHANGES IN MEAN AND VARIANCE 131

we investigate how an ARMA forecasting model would react to changes in λt and

σt.

First, we present a small simulated example to display the effectiveness of using fore-

cast errors to detect a mean change in an ARMA(1,1) model. For details on how

the data was generated and the creation of the forecasting model see Section 5.5.

Figure 5.4.1 shows some raw data generated from an ARMA(1,1) model with λ = 0,

φ = −0.8, θ = 0.2 and a change in mean at time point 400. Using an ARMA forecast-

ing model and sequentially producing one-step-ahead forecasts we obtain the forecast

errors shown. These forecast errors appear i.i.d and clearly display the changepoint

in the raw data. Moreover, the detector (here Dµ(m, k) with m = 300) rises sharply

after the changepoint and hits the required threshold (the dashed line) to detect the

change just 19 time points after it has occurred. Figure 5.4.1 demonstrates that mean

changes in ARMA models will manifest in the forecast errors. Additionally, as the

forecast errors are i.i.d this makes detecting the changepoint easier using Dµ(m, k)

than using D(m, k) on the raw data. This is demonstrated further in Section 5.5.

Detecting changes in ARMA model parameters was also considered in Aue et al.

(2015). They proposed monitoring εt and ε2t as changes in the ARMA model pa-

rameters would manifest in εt and ε2t . This approach is similar to ours, as under a

perfectly estimated ARMA model the residuals and forecast errors would be identi-

cal. Note, the method in Aue et al. (2015) is exclusively for ARMA models where

as our framework is more general and can be used with many different forecasting

models.
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Figure 5.4.1: Data generated from an ARMA(1,1) model with a change in mean

at time point 400; the resulting forecasting errors when using an ARMA forecast-

ing model; and the detector, Dµ(m, k), where the dashed line shows the associated

threshold for detecting a change. The vertical dotted line represents the start of the

monitoring period.
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In the mean change scenario, Aue et al. (2015) showed that a change size of δµ,m in

the mean parameter λ would manifest in εt (and therefore our forecast errors) as

∆µ,m = δµ,m

(
1−

p∑
j=1

φj

)
∞∑
l=0

ψl(θ) ,

where

1

θ(z)
=
∞∑
l=0

ψl(θ) .

Therefore, Assumptions 5.3.1 and 5.3.2 are satisfied and assuming ∆µ,m satisfies As-

sumptions 5.2.4-5.2.6 then Corollaries 5.3.3 and 5.3.4 hold, giving us the limit distri-

bution of the stopping times under H0 and HA.

Similarly, for a change in variance in the data of size δξ,m, Aue et al. (2015) showed

this would produce a change size in ε2t (and therefore our squared forecasting errors)

as ∆ξ,m = δξ,m. Note, as expected this matches with Proposition 5.3.5.

Again, if ∆ξ,m satisfies the Assumptions 5.2.4-5.2.6 and ∆µ,m = 0 then Corollary 5.3.6

and Proposition 5.3.7 hold.

5.4.2 ETS Models

ETS models cover a wide range of model structures. Here we show that generally ETS

forecasting models do not satisfy Assumption 5.3.2 when detecting mean changes,

however our methodology will still allow for the detection of variance changes. For

demonstration purposes, for the mean change setting, we consider the local level

model, ETS(A,N,N), with an additive error structure, no trend and no seasonality. We

can produce one-step-ahead forecasts using the ETS(A,N,N) model by the recursive
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relation,

ŷt(1) = ŷt−1(1) + αet−1 , (5.4.2)

where et−1 is the forecast error at time point t − 1 and 0 < α < 1 is the smoothing

parameter. A larger value of α will cause the model to adapt to the new data more

quickly, while a smaller value will place more weight on historical values making the

model less sensitive to recent values.

ETS models adapt well to mean changes in raw data and in the majority of scenarios

return to being unbiased after a few time steps as shown in the following proposi-

tion.

Proposition 5.4.1. Let {Yt : t = 1, 2, . . .} follow the change in mean model in

(5.3.2) and F be a forecasting model that follows (5.4.2). Assuming EF [Yt|ỹt] = λ,

the expectation of the forecast errors, after the changepoint, is

E [ek∗+s] =


δµ,m for s = 1

(λ+ δµ,m)

(
1−

s−2∑
i=0

α(1− α)i
)
− λ (α(1− α)s−1 − (1− α)s) for s = 2, 3, . . . .

Proof. This follows from the repeated substitution of the previous forecast errors into

(5.4.2) until the pre-change regime is reached.

Proposition 5.4.1 shows that as s increases the forecast errors will return to zero

assuming α > 0. Hence, Assumption 5.3.2 is not satisfied unless α = 0. Moreover, we

can see for larger α this convergence to zero will occur faster.

Thus mean changes in the raw data will only manifest in the forecast errors if α is

small. However, our framework can still be used to detect variance changes in the
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raw data. These variance changes will affect the prediction interval resulting from

the ETS model. Here we show a small example illustrating how a variance change in

raw data can make prediction interval poor and how this can be detected using the

squared forecast errors from an ETS model.

Figure 5.4.2 shows raw data that exhibits a trend and a variance change at time

point 400. We use an ETS(A,A,N) model to forecast this data and the prediction

interval (based on ±2 standard errors) are shown by the dashed lines. Clearly, after

the changepoint there are many data points lying outside the prediction interval and

hence we need to detect the change in variance so the prediction interval can be re-

calibrated. The squared forecast errors show a clear mean change after the variance

change in the data has occurred and the detector (here Dξ(m, k) with m = 300)

reaches the threshold, shown by the dashed line, just 7 time points after the change

has occurred.

This mean change in the squared forecast errors is to be expected due to Proposition

5.3.5. Hence, assuming the variance change size in the raw data, δξ,m, satisfies As-

sumptions 5.2.4-5.2.6 then the limit distribution of the stopping time under H0 and

HA is given in Corollary 5.3.6 and Proposition 5.3.7.

5.5 Simulation

We now examine the performance of our framework in a selection of simulation ex-

amples. First, we examine the use of forecast errors when a mean change occurs in
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Figure 5.4.2: Data with a variance change at time point 400, with dashed lines showing

prediction intervals from an ETS forecasting model. The squared forecast errors are

shown along with the Detector with the dashed line being the threshold. The vertical

dotted line shows the start of the monitoring period.
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the underlying data generating process before exploring the effectiveness of using the

squared forecast errors for detecting variance changes in the data generating process.

We then examine multiple scenarios where we generate more complex data with sea-

sonality and aim to detect changes in: 1) mean; 2) when a trend develops in the data

generating process; and 3) the temporal dependence structure of the data generating

process. For the later two scenarios, Assumptions 5.3.1 and 5.3.2 required for the

theoretical validity of the stopping rule are not necessarily satisfied, however, we still

show satisfactory performance.

For all changes in first-order structure (mean changes and trend change) we compare

the detector Dµ(m, k) with forecast errors generated from an appropriate 1) ARMA

model against 2) using the detector D(m, k) with the raw data. For all other changes,

we compare the detector Dξ(m, k) with the squared forecast errors from an appropri-

ate 1) ARMA and 2) ETS model against 3) the detector D(m, k) with the (centered)

squared raw data as in Inclan and Tiao (1994). Note we do not include the ETS

model in the first-order changes as we showed in Proposition 5.4.1 that Assumption

5.3.2 is not satisfied meaning we would not expect to see a changepoint in the fore-

cast errors. Throughout we will refer to D(m, k) based upon the raw data as Raw

CUSUM ; D·(m, k) based upon the ARMA forecast errors as ARMA Forecast Errors ;

and D·(m, k) based upon the ETS model forecast errors as ETS Forecast Errors with

the choice of Dµ(m, k) or Dξ(m, k) dependent on the type of change.

The forecasting models are trained on an initial proportion of the data of length ntrain.

Then the forecasting models sequentially produce one-step-ahead forecasts yielding
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the required forecast errors. To generate the ARMA forecasting models we use the

Arima function within the forecast R package (Hyndman et al., 2021) and for the ETS

forecasting model we use the es function within the smooth R package (Svetunkov,

2021). To determine when a change has occurred we use the theoretical thresholds

from Theorem 5.2.3 and Corollaries 5.3.3 and 5.3.6 with γ = 0 and false alarm rate

set at 0.05. For the Raw CUSUM, to estimate σ̂m within in the threshold we use the

Bartlett long run variance estimator (Andrews, 1991) from the sandwich R package

(Zeileis et al., 2020). For the ARMA Forecast Errors and ETS Forecast Errors, we

assume the forecast errors are i.i.d so the traditional standard deviation estimator

is used. Throughout, we repeat each scenario 1000 times and report the average

detection delay (ADD) with error bars showing 2 empirical standard errors either

side of the mean; detection probability (DP) and false detection probability (FDP).

The ADD is the mean of the detection delays given a change was signalled within

the length of the data. The DP is the proportion of simulations where a change was

detected within the length of the monitoring data. Finally, the FDP is the proportion

of simulations where a change was detected before the true change had occurred.

Hence, we seek a ADD as close to 0 as possible; a DP close to 1 and a FDP close to 0.

Unless otherwise specified, we assume the random errors (innovations) are Normally

distributed but note our framework does not require this assumption.

Throughout, we generate data with an ARMA error structure introduced in (5.4.1).

In practice, it is rare to know the exact data generating process and this raises ques-

tions regarding the misspecification of our forecasting model. Clearly, given the data
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generating process is ARMA, the most appropriate forecasting model should be an

ARMA model with the same order. In the first two scenarios, we assume the order is

known and as such we expect the ARMA Forecast Errors to perform best. For the final

more complex scenarios, we use the auto.arima function from the forecast package to

pick the order of the ARMA model as well as estimating the model parameters. This

means the forecasting model used to generate the ARMA Forecast Errors may also be

misspecified. We show that despite these misspecifications, a good forecasting model

generally still produces better detection results than using the Raw CUSUM. Lastly,

we note the data generating process used varies across the scenarios to demonstrate

our method works well on a wide variety of processes.

5.5.1 Mean Change

First, we explore mean changes in the underlying data generating process. We gener-

ate two scenarios where the data is generated from:

1. An AR(2) process with φ = (0.5,−0.3), λ = 0 and σ2 = 1.

2. An ARMA(1,1) process with φ = 0.6, θ = 0.3, λ = 0 and σ2 = 1.

For both scenarios we generate data of length n = 1000, with ntrain = 200. We set

m = 200 as the training period for the detectors and once monitoring begins, we

introduce a changepoint of size δµ to the process at k∗ = 100. This leaves 500 time

points for the methods to identify if a change has occurred. Note as Raw CUSUM does

not require any training of the model the first ntrain = 200 time points are not used
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by this method. For clarity, to generate the data we used the arima.sim function

from the stats package with an extra 50 time points for burn-in that is removed

before analysis begins. For ARMA Forecast Errors, we assume the order of the data

generating process is known and the parameters are estimated within the training

period.

Figure 5.5.1 shows the DP, FDP and ADD of the 2 methods. For both models, we

can clearly see the ADD when using the ARMA Forecast Errors is much lower than

using the Raw CUSUM across all change sizes. Additionally, the DP for the ARMA

Forecast Errors is at least as big as for the Raw CUSUM while both have comparable

FDP. These metrics show that for the mean changes presented here using ARMA

Forecast Errors has a distinct advantage over the Raw CUSUM.

5.5.2 Variance Change

Now we examine variance changes in the underlying data generating process. Again

we generate two scenarios, where the data is generated from

1. An AR(1) process with φ = 0.9, λ = 0 and σ2 = 1.

2. An ARMA(2,1) process with φ = (0.5,−0.3), θ = 0.6, λ = 0 and σ2 = 1.

Here n, ntrain, m and k∗ are the same as in Section 5.5.1 (n = 1000, ntrain = 200,

m = 200, k∗ = 100). Again, for the ARMA Forecast Errors, we assume the order of

the ARMA process is known but the parameters need to be estimated. For the ETS

Forecast Errors, we assume an ETS(A,N,N) model and the smoothing parameter is
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Figure 5.5.1: Detection Probability (DP), False Detection Probability (FDP) and

Average Detection Delay (ADD), with error bars showing 2 standard errors either

side of the mean, for two scenarios with mean changes of varying sizes.
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to be estimated. The change size, δξ, represents the new variance in the underlying

data process after the change has occurred.

Figure 5.5.2 shows that in both scenarios the ADD is nearly always smaller when

using ARMA Forecast Errors or ETS Forecast Errors than the Raw CUSUM. The

reason the ADD for the Raw CUSUM is lower in the AR(1) scenario with change

size δ = 1.5 is probably due to the small DP. This is also evidenced by the standard

error bars overlapping with those from ARMA Forecast Errors. The Raw CUSUM

also has a much higher FDP in the AR(1) scenario while in the ARMA(2,1) scenario

ETS Forecast Errors has a higher FDP; both are still conservative (< 0.05).

Again these scenarios show the benefit of using forecast errors rather than the raw

data to detect changepoints in the underlying data.

5.5.3 Mean and Trend Changes in Seasonal Data

Next, we examine two different scenarios, one where a mean shift occurs and one

where a trend emerges in the underlying data that includes a seasonal component,

to mimic applications. For the mean change scenario, we generate errors that follow

an ARMA(2,1) model with φ = (−0.6, 0.3), θ = −0.3, λ = 0 and σ2 = 1. We add

a changepoint of size δµ at time point k∗ = 100. We add a seasonal component to

the data with frequency 12, mimicking monthly data. Within each season the data

follows the curve y = 10 sin(x) with x ∈ [0, π] so the mean of each seasonal component

is taken from 12 equally spaced points along this curve.
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Figure 5.5.2: Detection Probability (DP), False Detection Probability (FDP) and

Average Detection Delay (ADD), with error bars showing 2 standard errors either

side of the mean, for two scenarios with variance changes of varying sizes.



CHAPTER 5. SEQUENTIAL CHANGES IN MEAN AND VARIANCE 144

For the trend change scenario, we simulate errors, εt, following an ARMA(1,1) model

with φ = 0.2, θ = 0.2, λ = 0 and σ2 = 1. We simulate the data with the form

yt = 1[t > m+ k∗]βt+ εt for varying gradients β. Hence, the pre-change data has no

trend and the post-change data has a trend with specified gradient, β. Moreover, we

add a seasonal component to the data with frequency 7, mimicking daily data with

day of the week effects. Each 7 time point cycle follows the curve y = 10 cos(x) with

x ∈ [0, 2π], so the mean of each seasonal component is taken from 7 equally spaced

point along this curve.

Due to the added seasonal component, we can no longer specify the exact models

for the ARMA Forecast Errors, without using dummy regressors. Hence, we use

the auto.arima function from the forecast package for the ARMA Forecast Errors to

estimate the seasonal ARMA forecasting model and specify the model should have

no differencing. This function estimates the most appropriate seasonal ARMA model

using AIC.

Figure 5.5.3 shows some interesting results. For the mean change scenario, ARMA

Forecast Errors has a high DP and extremely low ADD across all scenarios and outper-

forms the Raw CUSUM. In the change in trend scenario, both ARMA Forecast Errors

and Raw CUSUM have extremely high DP, however, the ARMA Forecast Errors has

a lower ADD across all change sizes. The FDP is low across all scenarios.
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Figure 5.5.3: Detection Probability (DP), False Detection Probability (FDP) and

Average Detection Delay (ADD), with error bars showing 2 standard errors either

side of the mean, for two scenarios; a change in mean and a change in trend within

seasonal data.
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5.5.4 Change in Autoregressive Parameter in Seasonal Data

We now examine scenarios where we have data with AR(1) generated errors which

undergoes a change in its autoregressive parameter at the specified changepoint. For

this section, we include seasonality with a frequency of 4 mimicking quarterly data.

The length of the data, training sizes etc remain the same as in the previous scenarios

and we test two scenarios:

1. The pre-change data has AR(1) errors with φpre = 0.2 and λ = 0. The post-

change errors remain AR(1) but with varying parameters, φpost.

2. The pre-change data has AR(1) errors with φpre = 0.8 and λ = 0. The post-

change errors remain AR(1) but with varying parameters, φpost.

The seasonality is created by adding dummy variables making the mean of each quar-

ter (−2, 5, 7,−10) respectively. We use the auto.arima function from the forecast

package to fit a seasonal ARMA model and we specify the model should have no dif-

ferencing. For the ETS Forecast Errors we use an ETS(A,N,A) model with smoothing

parameters to be estimated.

Figure 5.5.4 shows that the DP and ADD is better for all methods when the depen-

dence increases after the change. In all scenarios, using forecast errors gives better

results than the Raw CUSUM - this is to be expected as the Raw CUSUM does

not take the seasonality into account and therefore overestimates the variance in the

training period making changes much harder to detect. The FDP is conservative for

all methods (< 0.075).
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Figure 5.5.4: Detection Probability (DP), False Detection Probability (FDP) and

Average Detection Delay (ADD), with error bars showing 2 standard errors either

side of the mean, for two scenarios with a change in autoregressive parameter of

different sizes
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5.6 Application

We now apply this approach to two different applications. Firstly, we seek to de-

termine a change in mail volumes indicating the start of the Christmas peak season

within a Royal Mail delivery office by examining the forecast errors of the number of

parcels being delivered each day. This is an example where only the forecast errors

are known and the underlying data and forecasts are unknown to us. Secondly, we

monitor NHS A&E admissions for Gallstone related pathology (GRP) and seek to

identify any changepoints by fitting an appropriate ARMA forecasting models.

5.6.1 Parcel Delivery Volumes

Each day Royal Mail forecast the number of parcels that need to be delivered from each

delivery office across the UK. With accurate forecasts, the Delivery Office managers

can make informed decisions for each day such as ensuring there are enough staff on

a shift to meet demand. Each year the number of parcels being delivered increases

around the Christmas period, however the exact date can differ from year to year and

between different delivery offices. Hence, to maintain accurate staffing levels Royal

Mail needs to quickly identify when the Christmas peak season begins.

Here we aim to identify the start of the Christmas peak season in one specific delivery

office. We take the forecast errors received from Royal Mail, which date from the

1st July 2020 through to 31st December 2020. We perform our analysis assuming

we receive the data in a sequential fashion and aim to identify the changepoint as
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soon as possible. The Christmas peak season can start anytime from the start of

November, hence we will use the data from July to October as our training sample and

begin monitoring the forecast errors from 1st November. We will use both detectors

Dµ(m, k) and Dξ(m, k) with the theoretical thresholds from Corollaries 5.3.3 and 5.3.6

to determine when a change has occurred.

Figure 5.6.1 shows the forecast errors along with the detectors Dµ(m, k) and Dξ(m, k).

Both the detectors identify a changepoint on the 2nd of December and looking at the

forecast errors this corresponds to a rise in the mean and variance, indicating the

start of the Christmas peak season. Upon examination of the raw volumes (not

shown due to confidentiality) this identified changepoint corresponds to a jump in the

mean and variance of the number of parcels being delivered from this specific delivery

office.

Using this information Royal Mail would be able to adjust their forecasting model to

account for the increase in parcels being delivered around the Christmas period in the

knowledge that the Christmas peak season has begun.

5.6.2 GRP Admissions

We examine the proportion of A&E admissions related to GRP from a number of par-

ticipating hospitals across England. This dataset is based on NHS Hospital Episode

statistics and was initially analyzed in Taib et al. (2021). The data consists of the

monthly proportion of GRP A&E admissions and is shown in the top panel of Figure

5.6.2. There is a clear changepoint in the trend that we wish to identify that is marked



CHAPTER 5. SEQUENTIAL CHANGES IN MEAN AND VARIANCE 150

cpt=2020−12−02

cpt=2020−12−02

e
t

D
µ (m

,k)
D

ξ (m
,k)

Sep Oct Nov Dec Jan
Delivery Date

Figure 5.6.1: Forecast errors for the number of parcels to be delivered from a specific

Royal Mail delivery office in 2020; the detctors Dµ(m, k) and Dξ(m, k) with associated

thresholds shown by the dashed lines.
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by the vertical dashed line. The analysis of this data set in Taib et al. (2021) was

performed retrospectively after all the data from 2010-2020 was available, however

to allow for accurate forecasting, using a sequential changepoint method could detect

this changepoint in a much shorter time frame.

Taib et al. (2021) found that an SARMA(1, 0, 0)(1, 0, 0)12 model was appropriate for

the data with a time regressor to account for the trend. To identify a change in a

sequential manner, using a model-based approach, would require at least two years

worth of data to account for the yearly seasonality - this could be far too long and

result in poor forecasts of GRP admissions.

We demonstrate the effectiveness of our method by fitting a SARMA(1, 0, 0)(1, 0, 0)12

on the data up to 2013 and use this as our forecasting model. We used this forecasting

model to generate one-step-ahead forecasts for the remaining data up to 2020. We

used the data from 2013-2016 as our training data of size m = 36 and performed our

analysis using both detectors Dµ(m, k) and Dξ(m, k) with monitoring beginning in

2016.

Figure 5.6.2 shows the forecast errors and the detectors along with the associated

theoretical thresholds from Corollaries 5.3.3 and 5.3.6. We can see that the change-

point is identified in Dµ(m, k) just four data points after a changepoint identified in

Taib et al. (2021) (marked by the dashed line). Additionally, Dξ(m, k) identified the

changepoint just 2 time points after the change occurred. Both of these detectors

have a much shorter detection delay than using a model-based sequential changepoint

algorithm which has a minimum possible detection delay of 24 months due to the
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yearly seasonality in the data.
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Figure 5.6.2: Data showing the proportion of GRP A&E admissions; the forecast er-

rors from a SARIMA(1, 0, 0)(1, 0, 0)12 model; and the detectorsDµ(m, k) andDξ(m, k)

with associated thresholds shown by the horizontal dashed lines. The dotted line rep-

resents the start of the monitoring period and the vertical dashed line indicates a

changepoint identified in the retrospective analysis.

5.7 Conclusion

This paper presents a new framework for monitoring forecasting models through the

use of sequential changepoint detection. We have shown that common changepoints

in underlying, potentially complex, data generating processes manifest in the one-

step-ahead forecast errors under certain assumptions and can therefore be detected

using sequential changepoint analysis. Moreover, we have shown by monitoring the

forecast errors rather than the raw data for changepoints, we can greatly reduce the
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detection delay of changepoints while maintaining a low false positive rate. When

using ARMA forecasting models, we have shown that changes in mean and variance

in the underlying data can be detected. ETS models often adapt to mean changes,

but can still be used to detect variance changes, which can cause prediction intervals

to become miscalibrated. Applying our framework to delivery volume forecast errors

from a Royal Mail delivery office allowed for the rapid detection of the Christmas

peak season thus allowing future forecasts and staffing to be appropriately adjusted.

Furthermore, we showed using a forecasting model on NHS A&E admission data

allowed us to detect a changepoint in the proportion of GRP admissions related in

a shorter time frame than would be possible using retrospective analysis or a model-

based sequential changepoint approach.

There are a number of extensions that could be made to this framework. Firstly, it

is becoming increasingly common for multivariate forecasts to be made where many

variables/products are forecasted at once. Incorporating a multivariate sequential

changepoint algorithm on the resulting vector of forecast errors would be an interesting

extension but raises additional questions such as the sparsity of the change and is

therefore left as future work. Additionally, here we focused on one-step-ahead forecast

errors but the framework is general, for h-steps ahead, and combining information

from multiple forecast horizons would be an interesting extension.



Chapter 6

Conclusion

In this thesis, we have presented novel methods and frameworks for identifying change-

points in time series. Here we summarize the key findings within this thesis, as well as

highlighting some of the limitations, open problems and future work associated with

the proposed methodologies.

6.1 Key Findings

In Chapter 3, we presented a novel, computationally efficient, method for detecting

mean and variance changes in high-dimensional time series, GeomCP. There are a

limited number of methods for detecting different types of changes simultaneously in

the fully multivariate changepoint setting. We have shown empirically that GeomCP

provides a viable solution in this setting and furthermore, we have shown the con-

sistency of GeomCP for detecting changes in mean using our distance projection. In

154
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the fully multivariate changepoint setting our methodology outperforms the current

state-of-the-art methods and remains competitive in the sparse changepoint setting.

In two industry examples, we showed that GeomCP detected multiple changepoints

from S&P500 stock data that can be incorporated in future modelling. Secondly,

GeomCP identified numerous changepoints in genomic data that highlights potential

mutations along the genome that could be related to bladder tumours.

Chapter 4 proposed a new cost function and a changepoint framework for detecting

changes in subspace. We demonstrated how high-dimensional data can often lie in a

low-dimensional linear subspace and by exploiting this structure we can provide more

accurate changepoint estimates. We highlighted that subspace changepoints can be

seen as covariance changes with conditions on the eigenvalues of the covariance matrix.

By comparing our methodology to generic covariance methods we showed, when the

condition on the eigenvalues is satisfied, using our method gives an improved perfor-

mance at detecting changes. One industry example where data lie in a low-dimensional

subspace is based on Motion Capture data. We showed how our methodology can

be used to identifying changes in human activity based on the movement of different

parts of their body. This analysis can be used to automate the process of someone

manually watching multiple videos and identifying the changepoints.

Finally, Chapter 5 introduced a novel framework for monitoring forecast models. We

showed, when using an appropriate forecast model, changes in potentially complex

data structures manifest in the forecast errors and can be detected using sequential

changepoint techniques. This framework provides a way to automatically monitor the
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accuracy of a forecasting model and identify if it starts performing poorly. Moreover,

from a sequential changepoint detection viewpoint, if an appropriate forecasting model

can be created for the data, this can be used to detect changes in potentially complex

data structures in a more timely manner than current methods.

6.2 Open Problems and Future Work

Despite the effectiveness of the GeomCP method presented in Chapter 3 for detecting

fully multivariate changepoints, there are a few open questions that remain. Firstly,

the theoretical guarantees for the distance projection were given in the Gaussian set-

ting while assuming temporal independence and a diagonal covariance matrix. This is

a limited setting and these assumptions are often violated in industrial applications.

Therefore, extending the theoretical results to other distributions and incorporating

temporal dependence would be desirable. Moreover, a thorough theoretical under-

standing of the angle projection and how it preserves changes in covariance would

give practitioners added confidence for using GeomCP in a wider range of data sce-

narios. Aside from theoretical extensions, exploring the geometry of other types of

distributional changepoints could lead to other geometrically inspired mappings. We

have shown a first step in utilizing geometry in a changepoint setting and believe this

could be extended further into a more general framework.

During the peer-review process of the change in subspace methodology presented in

Chapter 4, the connection of our work to factor models was highlighted. Factor mod-
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els arose from the economics literature and recently interest has grown in detecting

changes in the factor loadings which correspond to our subspace changepoints. The

cost function we proposed was independently developed Chen (2015) for the local-

ization of a single change in factor loadings. Recently, there have been other papers

examining changes in factor loadings (Barigozzi et al., 2018; Duan et al., 2021; Jiao

et al., 2021), however, there are some key differences between this and our work.

Firstly, many of these methods assume a single changepoint is present in the data

and aim to identify its location. This is subtly different from our framework where we

first identify if a change is present, and if so, then we locate the change. Moreover, we

provide an extension to multiple changepoints and provide an alternative formulation

of the cost function, which in practice leads to significant computational savings. The-

oretical guarantees are missing from our proposed method, however, Bai et al. (2020)

details key theoretical results regarding the cost function we use in the factor model

setting. Extending these results to the multiple changepoint setting could provide

theoretical results for our method and back up the strong empirical results shown in

Chapter 4.

Finally, our framework for monitoring forecasting models only considered one-step-

ahead forecasts, however, the framework is general for h-steps-ahead. Despite this,

combining information from multiple forecast horizons could lead to an extension of

our work which may produce faster detection rates for identifying changepoints. More-

over, the framework is limited to univariate forecasts but the extension to multivariate

forecasts would be feasible with additional considerations. Using a multivariate se-



CHAPTER 6. CONCLUSION 158

quential changepoint detection technique on the multivariate forecasts would be a

sensible starting point. However, this raises many of the issues regarding multivariate

changepoints discussed in Chapter 2.2.

Multivariate changepoint analysis and sequential changepoint analysis are ever-growing

research areas with a vast amount of open problems. The methodologies and frame-

works presented here aim to provide some initial solutions to a few of these problems,

yet further development is needed to truly solve the problems at hand. The open prob-

lems and suggest extensions to our methods will help further in our understanding of

multivariate and sequential changepoint problems along with further investigation of

open problems not tackled in this thesis.



Appendix A

High-Dimensional Changepoint

Detection via a Geometrically

Inspired Mapping

A.1 Preliminary Lemmas

Lemma A.1.1. Suppose we have independent random variables, Yi ∼ Γ(α, βi), with

a common shape parameter, α > 0 ∀i, and varying scale parameters, βi > 0 ∀i. Let

E(Yi) = µi, Var(Yi) = σ2
i and s2n =

n∑
i=1

σ2
i . Then, ∃δ > 0 such that,

lim
n→∞

1

s2+δn

n∑
i=1

E
[
|Yi − µi|2+δ

]
= 0 .
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Proof. Consider the moment generating function of Yi − µi,

MYi−µi(t) = E
[
et(Yi−µi)

]
= e−tµiE

[
etYi
]

=
e−tµi

(1− tβi)α
.

By considering the 4th derivative of MYi−µi(t) we gain,

n∑
i=1

E
[
|Yi − µi|4

]
=

n∑
i=1

M
(IV)
Yi−µi(0)

=
n∑
i=1

(α + 3)(α + 2)(α + 1)αβ4
i − 4(α + 2)(α + 1)αβ3

i µi

+ 6(α + 1)αβ2
i µ

2
i − 4αβiµ

3
i + µ4

i

=c1

n∑
i=1

(β4
i )− c2

n∑
i=1

(β3
i µi) + c3

n∑
i=1

(β2
i µ

2
i )− c4

n∑
i=1

(µ3
iβi) +

n∑
i=1

µ4
i

≤c1nβ4
max − c2nβ3

minµmin + c3nβ
2
maxµ

2
max − c4nβminµ

3
min + nµ4

max

=nc5 ,

where c1, c2, c3, c4 ∈ R+ and c5 ∈ R.

Now,

s4n =

(
n∑
i=1

σ2
i

)2

≥ n2σ4
min .

Hence, for δ = 2,

0 ≤ lim
n→∞

1

s2+δn

n∑
i=1

E
[
|Yi − µi|2+δ

]
≤ lim

n→∞

nc5
n2α2β4

min

= 0 ,

as required.
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Lemma A.1.2. Suppose we have independent random variables, Yi ∼ N(0, σ2
i ), and

X =
n∑
i=1

Y 2
i . Then, as n→∞,

X −
n∑
i=1

σ2
i√

2
n∑
i=1

σ4
i

D−→ N(0, 1) .

Proof. Let Yi = σiZi, where Zi are independent standard normal random variables.

Then, (
Yi
σi

)2

= Z2
i ,

and Z2
i ∼ χ2(1) ∼ Γ(1

2
, 2). Hence,

Y 2
i ∼ Γ(

1

2
, 2σ2

i ) .

Using Lemma A.1.1 with α = 1
2
, βi = 2σ2

i and s2n = 2
n∑
i=1

σ4
i , we have,

lim
n→∞

1

s4n

n∑
i=1

E
[
|Y 2
i − σ2

i |4
]

= 0 ,

satisfying Lyapunov’s condition for the Lyapunov Central Limit Theorem (Lyapunov,

1901) for δ = 2. Applying Lyapunov’s Central Limit Theorem gains the required

result.

A.2 Proof of Theorem 1

Proof. We can re-write X as,

X =

√√√√ p∑
i=1

µ2
i + 2

p∑
i=1

µiσiZi +

p∑
i=1

σ2
iZ

2
i ,
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where Zi are independent standard normal random variables. Let Z∗ and Z∗∗ be

dependent standard normal random variables with unknown correlation ρ. Using

Lemma A.1.2 and the binomial expansion, as p→∞,

X
D−→

 p∑
i=1

(
µ2
i + σ2

i

)
+ 2

√√√√ p∑
i=1

(µiσi)2Z
∗ +

√√√√2

p∑
i=1

σ4
iZ
∗∗


1
2

=

(
p∑
i=1

(
µ2
i + σ2

i

)) 1
2

1 +

2

√
p∑
i=1

(µiσi)2Z
∗ +

√
2

p∑
i=1

σ4
iZ
∗∗

p∑
i=1

(µ2
i + σ2

i )


1
2

=

(
p∑
i=1

(
µ2
i + σ2

i

)) 1
2

1 +

2

√
p∑
i=1

(µiσi)2Z
∗ +

√
2

p∑
i=1

σ4
iZ
∗∗

2
p∑
i=1

(µ2
i + σ2

i )

+O
(

1

p

)
=

(
p∑
i=1

(
µ2
i + σ2

i

)) 1
2

+

√√√√√√√√√
2

p∑
i=1

(µiσi)
2 +

p∑
i=1

σ4
i + 2ρ

(
2

p∑
i=1

p∑
j=1

µ2
iσ

2
i σ

4
j

) 1
2

2
p∑
i=1

(µ2
i + σ2

i )

Z∗∗∗ +O
(

1
√
p

)
,

where Z∗∗∗ is a standard normal random variable, thus giving the required result.

A.3 Dense Mean Changepoints

We simulate data with changes in mean that occur in all series for a wide range of n

and p and show a subset of the results. We keep the variance vector constant and the

total mean change size is,

p∑
j=1

µj,post − µj,pre =
√
pΘ . (A.3.1)
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We split the total change size evenly across all series and display results with Θ = 1.2.

Similar findings occur with varying values of Θ. As we assume changepoints are dense,

the change size in each series violates the minimum change size assumption in Inspect;

we include the results for interest. We apply the GeomCP, Inspect and E-Divisive

methods to these scenarios and the true detection rate (TDR) and false detection

rate (FDR) are shown in Table A.3.1. For p ≥ 1000, we are unable to calculate

an appropriate stopping threshold for Inspect and, therefore, exclude it from such

scenarios.

Table A.3.1 clearly shows GeomCP has a greater TDR than both Inspect and E-

Divisive in all scenarios. As p increases, the performance of Inspect and E-Divisive

drastically decreases, whereas GeomCP maintains a similar TDR. The FDRs shown

in Table A.3.1 indicate GeomCP is either better or competitive with Inspect and

E-Divisive. Taking both TDR and FDR into account it is clear that GeomCP outper-

forms both Inspect and E-Divisive in detecting mean changes that occur in all series.

A.4 Dense Mean and Variance Changepoints

We simulate data with changes in mean and variance that occur in all series for

multiple n and p and show a subset of the results. We set the total mean change size

as in (A.3.1) and the total variance change size to be,

p∏
j=1

σj,post
σj,pre

= Φ
√
p , (A.4.1)
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Table A.3.1: TDR and FDR for GeomCP, Inspect and E-Divisive for simulated data

sets containing mean changes that occur in all series

GeomCP Inspect E-Divisive

n p TDR FDR TDR FDR TDR FDR

2
0
0

50 0.956 0.086 0.484 0.163 0.812 0.095

100 0.928 0.101 0.304 0.150 0.614 0.159

500 0.952 0.080 0.018 0.026 0.160 0.118

1000 0.922 0.088 - - 0.076 0.094

2000 0.952 0.086 - - 0.046 0.065

5
0
0

50 0.877 0.189 0.613 0.191 0.790 0.119

100 0.913 0.168 0.470 0.247 0.689 0.138

500 0.891 0.189 0.203 0.462 0.389 0.211

1000 0.891 0.172 - - 0.304 0.285

2000 0.896 0.172 - - 0.230 0.380

1
0
0
0

50 0.904 0.188 0.637 0.203 0.807 0.125

100 0.900 0.184 0.419 0.280 0.713 0.154

500 0.900 0.188 0.318 0.446 0.507 0.200

1000 0.906 0.184 - - 0.367 0.311

2000 0.908 0.175 - - 0.333 0.292

2
0
0
0

50 0.880 0.200 0.634 0.213 0.747 0.131

100 0.894 0.187 0.561 0.262 0.730 0.127

500 0.892 0.190 0.343 0.392 0.463 0.284

1000 0.887 0.200 - - 0.447 0.253

2000 0.889 0.197 - - 0.360 0.281

and split the total change sizes evenly across the series. As we have a change in both

mean and variance, we would expect a smaller change in both to still be detectable.

Here we set Θ = 1 and Φ = 2 and note similar finding occurred for different Θ and

Φ. We apply the GeomCP and E-Divisive to these data sets and the TDR and FDR

are shown in Figure A.4.1.

Figure A.1(a) shows that for all scenarios GeomCP has a better TDR than E-Divisive

and the gap between the methods widens as p increases. Additionally, the FDR,

shown in Figure A.1(b), shows that GeomCP has an improved or competitive FDR

with E-Divisive across all scenarios. Considering this, it is clear that for detecting
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changes that occur in mean and variance simultaneously, GeomCP is to be preferred

over E-Divisive.

(a) TDR (b) FDR

Figure A.4.1: (a) TDR and (b) FDR for GeomCP and E-Divisive for simulated data

sets containing mean and variance changes that occur in all series for multiple n and

p

A.5 Sparse Variance Changepoints

To investigate sparse variance changes we set n = 500, p = 200 and varied κ. We

keep the mean vector constant and the variance change in each series that undergoes a

change, is the total variance change size defined in (A.4.1), split between the expected

number number of series to undergo a change. We display results with Φ = 3 and

note similar findings occur with varying values of Φ. We apply the GeomCP and

E-Divisive methods to these scenarios and the TDR and FDR are shown in Figure

A.5.1.
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Figure A.1(a) shows that for all levels of sparsity, GeomCP has a far greater TDR

than E-Divisive. Figure A.1(b) shows that GeomCP has a competitive, if not lower,

FDR than E-Divisive across all sparsity levels. This shows that for sparse variance

changes GeomCP has an improved performance over E-Divisive.

(a) TDR (b) FDR

Figure A.5.1: (a) TDR and (b) FDR for GeomCP and E-Divisive for simulated data

sets with sparse variance changes with n = 500 and p = 200

A.6 Between-series Dependence: Mean Change

We now investigate the performance of GeomCP in scenarios where there is underlying

covariance structure and a mean change occurs. For these scenarios, we set n =

200, p = 100 and have one changepoint at τ = 100. The pre-changepoint data will

be distributed from a N(0,Σ) while the post-changepoint data distributed from a

N(µ,Σ). We will vary the change size, µ, while the entries of µ will be identical for

each change size. We will compare three structures for Σ:
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1. Independent case: Σ = I.

2. Block-diagonal case: Here Σ will be a block-diagonal matrix with block size of

2. The off-diagonal entries will be randomly sampled from a U(−0.6,−0.3) ∪

U(0.3, 0.6) distribution with the diagonal entries equal to 1.

3. Random case: Here we let Σ = PDP ′ where P is an orthogonalized matrix

of standard Normal random variables and D is a diagonal matrix with entries

decreasing from 30 to 1.

As we no longer have independence between series we cannot assume Normality of

the distance and angle measures within GeomCP. Hence, we use the empirical cost

function (Haynes et al., 2017b) within PELT to detect changes in the distance and

angles measures. We similarly use the empirical cost function in the independent case

for comparability.

Figure A.1(a) shows GeomCP has a superior TDR over E-divisive for smaller change

sizes µ. Interestingly, the TDR for the random covariance structure is poor for both

methods. Similarly, to the case of a variance change, Figure A.1(b) shows by using

the empirical cost function within PELT we get a worse FDR for smaller change

sizes. However, this trade-off between TDR and FDR could be improved by tuning

the penalty used within PELT.

A.7 Performance under the Null
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(a) TDR (b) FDR

Figure A.6.1: TDR and FDR for GeomCP (using the empirical cost function) and

E-Divisive for simulated data with an underlying covariance structure and a change

in mean for n = 200 and p = 100

Here we investigate the performance of GeomCP on null data. The aim is to keep

the number of false positive as low as possible. We simulated Normal data with no

changepoints for varying n and p and ran the GeomCP method using the Normal

cost function within PELT. We calculated the false positive rate (FPR) by taking the

total number of detected changepoints across all replications and dividing by the total

number of replications.

Figure A.7.1 shows that for the majority of scenarios the FPR stays below 0.05 indi-

cating a conservative performance in terms of the type 1 error.

A.8 Dense Change Size Investigation

Now we investigate how the performance of GeomCP, and the competing methods,

vary as we alter Θ and Φ for the dense change in mean and change in variance
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Figure A.7.1: FPR for GeomCP (using the Normal cost function) for simulated data

sets with no changepoints for varying n and p

scenarios. Table A.8.1 shows the TDR and FDR of GeomCP, Inspect and E-Divisive

for multiple n and p for different change size values. GeomCP’s performance remains

an improvement upon the competing methods for all change sizes. Table A.8.2 shows

similar finding for the change in variance scenarios.

A.9 CROPS diagnostics plots

Here we show the CROPS diagnostic plots used to find the optimal number of change-

points in both our applications, the CGH data set and the S&P500 data set. The

circled points indicates the elbow of the plot and the number of changepoints we used.
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Table A.8.1: TDR and FDR for GeomCP, Inspect and E-Divisive for simulated data

sets containing mean changes that occur in all series. Θ relates to the size of the

change.

GeomCP Inspect E-Divisive

n p Θ TDR FDR TDR FDR TDR FDR

20
0

10
0

1 0.794 0.092 0.130 0.092 0.384 0.181

1.2 0.928 0.101 0.304 0.150 0.614 0.159

1.5 0.988 0.073 0.610 0.180 0.908 0.076

50
0

1 0.758 0.144 0.010 0.014 0.078 0.111

1.2 0.952 0.080 0.018 0.026 0.160 0.118

1.5 0.986 0.072 0.088 0.049 0.372 0.153

10
00

10
0

1 0.764 0.252 0.329 0.362 0.567 0.184

1.2 0.900 0.184 0.419 0.280 0.713 0.154

1.5 0.983 0.146 0.581 0.167 0.820 0.092

50
0

1 0.751 0.263 0.228 0.538 0.327 0.369

1.2 0.900 0.188 0.318 0.446 0.507 0.200

1.5 0.976 0.144 0.393 0.412 0.667 0.136
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Table A.8.2: TDR and FDR for GeomCP and E-Divisive for simulated data sets

containing variance changes that occur in all series. Φ relates to the size of the

change.

GeomCP E-Divisive

n p Φ TDR FDR TDR FDR

20
0

10
0

2.5 0.844 0.113 0.054 0.064

3 0.960 0.076 0.086 0.100

3.5 0.966 0.072 0.188 0.148

50
0

2.5 0.882 0.100 0.016 0.070

3 0.948 0.090 0.030 0.063

3.5 0.976 0.061 0.044 0.079

10
00

10
0

2.5 0.804 0.225 0.373 0.247

3 0.915 0.177 0.433 0.239

3.5 0.962 0.166 0.500 0.156

50
0

2.5 0.844 0.204 0.173 0.506

3 0.944 0.169 0.280 0.331

3.5 0.982 0.157 0.367 0.267



APPENDIX A. GEOMCP 172

(a) Distance (b) Angle

Figure A.9.1: CROPS diagnostics plots for distance and angle measure of comparative

genomic hybridization data where the vertical line and circled point indicates the

elbow of the plot we use for the number of changepoints

(a) Distance (b) Angle

Figure A.9.2: CROPS diagnostics plots for distance and angle measure of S&P500

log-returns data where the vertical line and circled point indicates the elbow of the

plot we use for the number of changepoints



Appendix B

Subspace Changepoint Detection

in Multivariate Time Series

B.1 Additional Simulation Results: ROC Curves

In this appendix we show additional ROC curves, accompanying those in Section

4.3.2.

First, we show the ROC curves for varying values of σ2
s and σ2

ε . The variation of

σ2
s and σ2

ε makes the estimation of the subspace easier or harder. If we increase the

signal-to-noise ratio, ρ = σ2
s

σ2
ε

the estimation of the subspace will be easier as the signal-

to-noise ratio within the subspace is greater. We kept the remaining parameters the

same as in Section 4.3.2 (n = 200, p = 20, q = 5). Figure B.1.1 shows that along the

diagonals, where ρ is constant, the ROC curves are similar indicating that as long as

173
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Figure B.1.1: ROC curves for varying signal to noise ratios within each subspace.

the ratio is the same we obtain similar power. Furthermore, as ρ increases (figures

going from left to right or bottom to top) then the test statistic has more power as

expected.

Next, we show the ROC curves for varying p and q. As the change size, ∆, is dependent

upon the size of q it is harder to compare these scenarios. The remaining parameters

are the same as in Section 4.3.2 (n = 200, σ2
s = 1, σ2

ε = 0.05). Figure B.1.2 shows

that if q is constant then we marginally lose power as p increases. On the other hand,

if p is kept constant, as q increases we gain power, however, this could be linked to

the increasing change size as q increases. A thorough theoretical investigation of the

effect of p and q on the test statistic may recover an underlying relationship between

the two, however, this is beyond the scope of this paper.
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Figure B.1.2: ROC curves for scenarios with varying p and q.

B.2 Additional Simulation Results: Permutation

Test

In this appendix we show extra simulation scenarios, accompanying those in Section

4.3.3, illustrating the effectiveness of the permutation test for determining significant

changepoints.

First, we consider the effectiveness of the permutation test at controlling the FPR

for different scenario setups. We vary p and q and show the FPR for varying n and

number of permutations P , with the rest of the parameters the same as in Section

4.3.3 (σ2
s = 1, σ2

ε = 0.05). Figure B.2.1 shows that for all the scenarios the FPR is

being controlled close to the desired FPR of 0.05.

Next, we show the permutation test still maintains substantial power for detecting
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Figure B.2.1: FPR for data containing no changes under multiple different scenarios

changes when they exist. Again we vary p and q while allowing n to vary and set

the number of permutations as P = 200 as Section 4.3.3 and Figure B.2.1 indicate

is appropriate. The rest of the parameters are the same as in Section 4.3.3 (σ2
s = 1,

σ2
ε = 0.05, α = 0.05). Again we deem a changepoint to be correct if it is within 20

time points on either side of the true change location. Figure B.2.2 shows that as q

increases up to p/2 then the power for detecting a change decreases, however, looking

at the scenario where p = 10 and q = 9, it seems that the power then increases as q

goes from p/2 to p. This was verified in other scenarios as well. In all scenarios for

Θ ≥ 0.3 the method has substantial power.

B.3 Application: Justification of Parameter Choices

In this appendix, we justify the parameter choices made in Section 4.5.
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Figure B.2.2: TPR for data containing a changepoint under multiple scenarios.

In Section 4.5, we set the subspace dimension as q = 9 and concluded that m = 6

was an appropriate number of changepoints; here we justify these choices. First, we

explore the choice of setting q = 9. To determine an appropriate subspace dimension

we want to find the last ‘large’ eigenvalue, where afterwards all the remaining are

‘small’, and the number of ‘large’ eigenvalues is used as our subspace dimension q. To

do this we made the assumption there was no changepoint within the first 400 time

points and estimated the covariance of this data. Figure B.1(a) shows a scree plot

of the ordered eigenvalues of this covariance matrix. There are a few points on this

plot where we could argue the remaining eigenvalues are small, however, based upon

our findings in Section 4.3.5 we prefer a larger subspace dimension. Hence, we choose

the subspace dimension as q = 9 as the remaining eigenvalues are similar and small.

We note Jiao et al. (2018) set the subspace size as q = 5, however, based upon our

analysis this doesn’t seem appropriate for this trial.
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Figure B.3.1: (a) Scree plot showing the eigenvalues of the covariance matrix of the

first 400 time points. (b) Total cost for an increasing number of changepoints.

To find an appropriate number of changepoints, we examined the total cost for the

data defined as
m+1∑
k=1

C(yτk−1+1:τk) for varying number of changepoints, m. We started

with the most significant changepoint; calculated the total cost; split the data at

this changepoint, and then kept adding the next most significant changepoint and

repeating the process. Figure B.1(b) shows the total cost as extra changepoints are

added. After adding 6 changepoints, the addition of more resulted in a marginal

reduction in total cost. This indicates the most appropriate number of changepoints

is m = 6.
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