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Abstract—Double auctions play a pivotal role in stimulating
active participation of a large number of users comprising both
task requesters and workers in mobile crowdsourcing. However,
most existing studies have concentrated on designing offline two-
sided auction mechanisms and supporting single-type tasks and
fixed auction service models. Such works ignore the need of dy-
namic services and are unsuitable for large-scale crowdsourcing
markets with extremely diverse demands (i.e., types and urgency
degrees of tasks required by different requesters) and supplies
(i.e., task skills and online durations of different workers). In this
paper, we consider a practical crowdsourcing application with an
on-demand service strategy. Especially, we innovatively design
three online service models, namely online single-bid single-task
(OSS), online single-bid multiple-task (OSM) and online multiple-
bid multiple-task (OMM) models to accommodate diversified
tasks and bidding demands for different users. Furthermore,
to effectively allocate tasks and facilitate bidding, we propose
a truthful online double auction mechanism for each service
model based on the McAfee double auction. By doing so, each
user can flexibly select auction service models and corresponding
auction mechanisms according to their current interested tasks
and online duration. To illustrate this, we present a three-demand
example to explain the effectiveness of our on-demand service
strategy in realistic crowdsourcing applications. Moreover, we
theoretically prove that our mechanisms satisfy truthfulness,
individual rationality, budget balance and consumer sovereignty.
Through extensive simulations, we show that our mechanisms
can accommodate the various demands of different users and
improve social utility including platform utility and average user
utility.

Index Terms—Mobile crowdsourcing, online double auction,
truthful mechanism design, on-demand service.

I. INTRODUCTION

CROWDSOURCING is an efficient problem-solving
paradigm, which integrates public efforts to solve large-

scale complex tasks that are challenging for an individual or
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business [1]. Due to the emergence of the Internet of Things
(IoT) and the popularity of wireless smart devices, mobile
crowdsourcing is attracting significant interests from research
and industry to develop innovative applications. For example,
mobile crowdsourcing can be harnessed to achieve large-scale
wireless network coverage with low cost [2], provide high-
quality training data for artificial intelligence [3] and build
excellent location-based services for mobile users [4], [5].

Mobile crowdsourcing consists of two main roles, namely
crowdsourcing platform and users including task requesters
and workers. The platform provides an interface for task re-
questers to outsource complex tasks that need to be completed
by workers with specific task skills [6]. One critical issue
in practical mobile crowdsourcing is how to stimulate users
to participate in the applications [7], [8], and auction-based
incentive mechanisms are proven successful approaches to
address this [9]. In a real-world crowdsourcing application,
both crowdsourcing platform and users are self-interested
and want to maximize their own benefits strategically. An
untruthful auction is vulnerable to price manipulation and
users may choose not to participate in fear of unfair treatment
[10]. As such, a truthful auction-based incentive mechanism
will encourage fair decisions and promote user participation
in crowdsourcing [11].

More importantly, most auction-based incentive mechanisms
for mobile crowdsourcing mainly aim to recruit enough work-
ers and ignore the need to attract a sufficient number of
task requesters [12], [13]. It is typically assumed that the
task requesters will voluntarily issue their tasks to crowd-
sourcing platforms [14]. In [12]-[14], the authors default to
a large amount of requesters’ involvement, and then present a
game-theoretic mechanism to incentivize the competitive and
selfish workers to provide high-quality solutions. In reality,
requesters may be unwilling to participate in crowdsourcing
platforms due to various reasons such as unsatisfactory service
experiences or communication security and privacy concerns
[15]-[17]. Clearly, offering sufficient tasks is a fundamental
requirement for recruiting more workers and determining the
sustainability of a crowdsourcing application [14]. This moti-
vates the need to further develop a two-sided incentive market
that attracts both task requesters and workers for mobile
crowdsourcing, which is more practical and fundamentally
different from the traditional one-sided incentive mechanisms.

Some recent works have proposed two-sided incentive
mechanisms for mobile crowdsourcing [18]-[24]. Amongst
them, double auctions [19]-[21] are widely considered in a
two-sided market with multiple buyers (task requesters) and
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sellers (workers), where the McAfee double auction [18] is
a proven successful paradigm for balancing market demands
due to its essentially truthful property. Most existing works
on double auctions in mobile crowdsourcing focus on offline
scenarios, and only a few works consider online scenarios.
Specifically, offline two-sided incentive mechanisms assume
that the interest tasks and service strategies of users are fully
known and do not change over time [25]. For instance, the
authors in [19]-[23] consider an offline crowdsourcing scenario
where the task requesters and workers arrive at the system in
advance, and then study two-sided incentive mechanisms for
crowdsourcing applications. We note that the offline solutions
are more suitable to non-mobile crowdsourcing applications,
where the task demands and number of workers do not change
significantly over time [26]. However, users in realistic mobile
crowdsourcing applications should arrive online in a random
order, and their interests and status may frequently change
over time [27].

To this end, only a few online two-sided solutions have been
proposed for crowdsourcing applications. For each user arrival
in practical online mechanisms, the platform must make an
irrevocable decision about whether to select the user without
knowledge of future user information. In [24], an online
two-sided task allocation problem was designed for spatial
crowdsourcing, but the authors did not consider the diversity of
users’ requirements in realistic crowdsourcing markets. More
importantly, this solution ignored the selfishness of users, and
thus did not satisfy the time and cost truthfulness. In [18], a
truthful online double auction mechanism was proposed for
dynamic mobile crowdsourcing. The authors in [18] assumed
that the requested tasks of the same requester are identical,
and a task is allocated only to a single worker, and completed
in a time solt. The above two-sided solutions assume that the
system has only a single type of task in a fixed auction service
model and do not consider the various task requirements of
different users. In other words, this auction mechanism can
only serve users with fixed tasks and task skills. Moreover,
some complex tasks may require multiple workers to perform
or request many task results for further task analysis. As such,
we highlight that there are significant gaps in applying existing
solutions to practical mobile crowdsourcing scenarios.

We consider that an effective and practical crowdsourcing
application must support multiple types of tasks simultane-
ously. Besides, in realistic mobile crowdsourcing markets, the
demands and supplies are extremely diverse, where demands
refer to the type and number of tasks required by different
requesters and supplies are the task skills and online durations
of different workers. Here, the demands of requesters and the
supplies of workers can be regarded as the users’ interests.
As multiple requesters (or workers) with different interests
may compete for potential capacities (or tasks), it is unsuitable
to regard all interests as a whole and apply a single auction
model for various user interests in a monopolistic way. This
is because the users’ interests are diverse, and each user’s
bidding requirement is unique. Therefore, a monopolistic
approach cannot effectively match the demands and supplies
of crowdsourcing markets, and thus reduces the efficiency of
task allocation and the probability of successful bidding. For

example, a requester with different types of tasks and urgency
degree, and a worker with multiple task skills and relatively
long online duration will prefer to choose a heterogeneous
auction model to characterize and satisfy their interests in more
detail. Unfortunately, the fixed auction model considered in
existing online two-sided solutions [18]-[24] cannot support
such on-demand services. As such, no existing online double
auction mechanisms can satisfy the multiple-interest and on-
demand auction situations.

In this paper, motivated by limitations of the state-of-art
online double auction mechanisms for mobile crowdsourcing,
we consider a practical case where multiple requesters de-
mand different workforce and multiple workers supply various
capacities in each time slot. Both requesters and workers
participate in the crowdsourcing applications in a random
pattern, and their interests and status change over time. We
aim to provide an on-demand service strategy for different
crowdsourcing users. Specifically, we design three online
service models to accommodate the diversity of crowdsourcing
demands and the variability of users’ interests. Furthermore,
we propose a truthful online incentive mechanism based on the
McAfee double auction [28] for each service model, in which
task pricing and winner selection are determined by market
supply and demand. To the best of our knowledge, we are the
first to consider a crowdsourcing application with multi-type
tasks and design an on-demand online double auction strategy
for mobile crowdsourcing according to the various interests
of users. The joint consideration of various demands among
users and spatio-temporal heterogeneity in the crowdsourcing
market are significant challenges we address in our design.
The main contributions of this paper are as follows:

• We design three requirement-based online auction ser-
vice models, namely online single-bid single-task (OSS)
model, online single-bid multiple-task (OSM) model and
online multiple-bid multiple-task (OMM) model to meet
various crowdsourcing bidding and task demands includ-
ing different types and urgency degrees.

• Based on the McAfee double auction, we propose three
truthful online double auction mechanisms for the above
service models, which can effectively facilitate bidding
and price tasks according to the demands and supplies of
crowdsourcing markets.

• We present an application example to explain the practi-
cability of our on-demand service strategy. We specifical-
ly consider three demand scenarios in Internet of Vehicles
(IoV) environments, namely, single-task demand, single-
type multiple-task demand and multiple-type multiple-
task demand. The example clearly highlights the effec-
tiveness of our solutions.

• We prove that our proposed incentive mechanisms satisfy
time-truthfulness, cost-truthfulness, individual-rationality,
budget-balance and consumer sovereignty. We further
show that our solutions can support various demands
of different users and improve social utility including
platform utility and average user utility.

The rest of this paper is organized as follows. In Section
II, we introduce the online incentive model and economic
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properties. In Section III, we design three online double
auction models. Based on these models, we propose three
truthful online double auction mechanisms in Section IV and
present specific algorithms for each mechanism. In Section V,
we introduce an application example to explain our practica-
bility in real world. In Section VI, we provide simulations of
the proposed mechanisms highlighting their advantages. The
conclusion is given in Section VII.

II. ONLINE DOUBLE AUCTION MODEL AND ECONOMIC
PROPERTIES

In this section, we introduce our McAfee-based online
double auction model for mobile crowdsourcing, and desirable
properties of truthful online auction mechanisms.

A. Online Double Auction Model for Mobile Crowdsourcing

In a crowdsourcing application, participating users include
task requesters and workers, and any crowdsourcing applica-
tions require not only adequate tasks but also sufficient worker-
s to complete the tasks. We therefore focus on the two-sided
incentive of task requesters and workers by using McAfee
double auction. McAfee double auction can accommodate
market demand and ensure the truthfulness of auction markets.
Specifically, we model the interactive procedure between task
requesters, workers and crowdsourcing platform as a double
auction, where task requesters are buyers and workers are
sellers, and the platform is the auctioneer. Fig. 1 shows
our McAfee-based online double auction model for mobile
crowdsourcing with the dynamic arrival of users over time.

Submit task and bid

Pay the reward

Crowdsourcing platformRequesters WorkersRequesterR t wdsourcing pl

Receive task

Issue task

Select task & Submit bid

Eliminate worker

Refuse task

Pay the fee

Charge proceeds

Return results
Return results

Charge proceeds

Auction task according 

to bidding information

Submit task and bid
Receive task

Issue task

Select task & Submit bid

Select worker

Accept task

Auction task according 

to bidding information

Worker 1

Worker i

Requester 1

Requester i

Time Line Time Line Time Line

Fig. 1: Online double auction model for mobile crowdsourcing

In Fig. 1, the interactive process between the platform
and the participating users (i.e., task requesters and workers)
follows an online auction. Specifically, the McAfee double

auction [29] is used to motivate task requesters and workers in
an online fashion. In this case, both requesters and workers are
randomly joining the platform anytime. Once a requester or a
worker arrives, the platform has to make irrevocable decisions
based on the current situation on whether to select the user as
a winner and how much the user should pay or receive. The
critical parts of McAfee double auction are as follows.

(1) Bids sorting: Sort the bids Bb of buyers in non-
increasing order, and sort the bids Bs of sellers in non-
decreasing order:

Bb
1 ≥ Bb

2 ≥ ... ≥ Bb
h ≥ ... ≥ Bb

M , (1)

Bs
1 ≤ Bs

2 ≤ ... ≤ Bs
h ≤ ... ≤ Bs

N . (2)

(2) Winners selection: Find the index of the least profitable
transaction, h = argmax

(
Bb

h ≥ Bs
h

)
. The first h − 1 buyers

and sellers are the auction winners. Specifically, in the sorted
lists of buyers and sellers, we need to ensure that the bid of
the ith winning buyer is higher than that of the ith winning
seller. Here, h is the maximum value of i. As such, the first
h − 1 buyers in (1) will be the winning buyers, and the first
h− 1 sellers in (2) will be the winning sellers.

(3) Pricing: Charge all the winning buyers equally according
to the bid of the hth buyer Bb

h. Pay all winning sellers equally
with the bid of the hth seller Bs

h.
For task requesters, each requester can submit tasks and

tasks’ bids (i.e., fees for obtaining the results of tasks) on
the platform at any time. When a task requester arrives, the
crowdsourcing platform must immediately decide whether to
accept the requester’s tasks at this time, and if so, which
workers will be assigned to perform the tasks. For workers,
each worker expects a payment in return for completing tasks.
When a worker arrives, he/she can select the tasks he/she is
good at and submits the corresponding bids (i.e., rewards for
completing the tasks) to the platform. Then, the crowdsourcing
platform must immediately decide whether to select the worker
according to the current worker information, and if so, at what
price.

For both the task requesters and the workers, the winners
of each auction are selected based on comparing users’ bids
with the dynamically updated bidding thresholds. Specifically,
if a requester’s unit bid for his/her submitted task is higher
than the bidding threshold set for task requesters, the task
is selected. Similarly, if a worker’s bid for his/her interested
task is lower than the bidding threshold set for workers,
the worker is selected to complete the task. The setting and
updating of the bidding thresholds are particularly important to
ensure the truthfulness of the online incentive mechanism for
crowdsourcing. It is necessary to analyze bids of all existing
users to obtain reasonable thresholds for task requesters and
workers.

To determine the bidding thresholds according to the market
changes and demands, we consider a multi-stage sampling-
accepting and threshold-updating model, which is widely used
in existing works on online auction [30], and shown in Fig. 2.

As commonly adopted in previous online auction solutions
for crowdsourcing [18], [30], to better describe the user



4

Threshold  Winner selection

Update user samples

Stage t Stage t+1

··· ···

Update threshold based 

on user samples

Threshold  Winner selection

Update user samples

Fig. 2: Multiple-stage sampling-accepting and threshold-updating
process

requests, our considered online incentive model is assumed
to operate in a slotted structure and its timeline is discretized
into time slots T = {1, 2, 3, ...., t, ...}. At each discrete time
slot, each participating crowdsourcing user sends an interested
task bidding request to the platform, then the platform will
gather all bids information and determine the winners for each
involved task based on the current global system information.
The multiple-stage model dynamically updates the user sam-
ples including requester samples and worker samples, and then
updates the bidding thresholds used for future decisions. In
our online model, “slot” is equivalent to “stage”. In each slot,
the platform firstly selects winners including task requesters
and workers according to the current bidding thresholds. Then,
the platform updates the user samples by adding all winners
of the slot to the existing user sample. After that, the bidding
thresholds are updated according to the bids information of
current winners, and used to select winners in the next slot. We
use McAfee double auction to set and update the thresholds,
and the specific technical details are provided in Section IV.

B. Objective of Economic Properties

The objective of our truthful online double auction mech-
anisms is to satisfy time truthfulness, cost truthfulness, indi-
vidual rationality, budget balance and consumer sovereignty.
The five economic properties are critical to design economic-
robust and market-truthful online mechanism. We now define
the properties.

(1) Time truthfulness: An online auction mechanism is time-
truthful if any user’s utility is maximized when providing
his/her real arrival and departure time.

(2) Cost truthfulness: An online auction mechanism is cost-
truthful if any user’s utility is maximized when their bids are
equal to the true values or costs of tasks. In other words, each
requester’s bid is equal to the true value of his/her task, and
each worker’s bid is equal to the true cost for completing
the task. In this case, no user can improve his/her utility by
submitting a false bid.

(3) Individual rationality: An online auction mechanism is
individually rational if each user has a non-negative utility
when bidding its true bid. That is, each requester’s payment
is not more than his/her bid, and each worker’s reward is not
less than his/her bid.

(4) Budget balance: An online auction mechanism is budget-
balance if the utility of the platform is non-negative.

(5) Consumer sovereignty: An online auction mechanism
guarantees consumer sovereignty if the mechanism cannot
arbitrarily exclude a user. Hence, a requester’s task must be
accepted by the platform if his/her bid is high enough. Also, a

TABLE I: List of Key Variables

Notations Definitions
Br

m,Bw
n Bidding information of requester rm and worker wn

brm,vrm Bid and true value of rm for the submitted task(s)
bwn ,cwn Bid and true cost of wn for the interested task(s)
atrm,dtrm Submitted arrival and departure time of requester rm
atnw,dtnw Submitted arrival and departure time of wn

at,bt True arrival and departure time
µ Urgency degree of submitted task(s) by requesters
Rt,Wt Sets of participating requesters and workers in slot t
RW,t,WW,t Sets of wining requesters and winning workers
qm,pn Pricing of requester rm and worker wn

ur,m,uw,n Utilities of requester rm and worker wn

up Utility of the crowdsourcing platform
Uk
t Budget of task τk for recruiting workers in slot t

δkR Bidding threshold for requesters to task τk
δkW Bidding threshold for workers to task τk
λk
R Task demand threshold of task τk

λk
W Worker demand threshold of task τk

worker must be selected by the platform and obtain a payment
if his/her bid is low enough.

Among these properties, truthfulness is the most crucial
property in auction theory [11].

III. REQUIREMENT-BASED ONLINE AUCTION SERVICE
MODELS

In this section, we design three requirement-based online
crowdsourcing models to meet the different bidding demand-
s of users, which are the basis for online double auction
mechanisms discussed in the next section. Our first model
is the OSS model which allows each user to submit a bid
containing a task. The OSS model is a common model in
existing crowdsourcing services. Our second model is the
OSM model which allows each user to submit a bid containing
multiple tasks. It can achieve the multi-task requirements of
users in a biding process, and improve the service efficiency of
crowdsourcing. Our third model is the OMM model. It allows
each user to submit multiple bids at a time, with each bid
containing multiple tasks.

We assume that there is a set of task requesters
R = {r1, r2, ..., rm, ..., rM} and a set of workers W =
{w1, w2, ..., wn, ...wN} in each slot, where M and N are the
number of requesters and workers, respectively. Each requester
rm in each slot has a set of tasks Jm =

{
j1m, j2m, ...

}
that need

to be completed, and each worker wn in each slot has a set
of interested tasks Γn =

{
t1n, t

2
n, ...

}
. Next we will introduce

our three online crowdsourcing models in details. For ease of
reference, we list important notations in Table 1.

A. The OSS Model: Online Single-bid Single-task

First, we introduce the relevant application scenarios of the
OSS model according to the users’ demands. For requesters,
they have only one current request task. For workers, they
only have a single task skill, and their online duration is short.



5

To quickly achieve task allocation and auction bidding, these
users adopt the OSS model to submit their interested tasks and
corresponding bids. In the OSS model, each requester rm or
worker wn can only submit one bid to the platform, and task
set Jm = {jm} or Γn = {tn} in the bid contains only one
task. The bidding information Br

m and Bw
n of each requester

rm and each worker wn in the OSS model are shown in Fig.
3.

r

mB , , [ ( , )],r r r

m m m m mat dt J j bl m w

nB , , [ ],w w w

n n n n nat dt t bG

The bid of requester mr The bid of worker nw

Fig. 3: The bidding information in the OSS model

Based on the bidding information of the OSS model, we
next detail the workflow and the utility of each crowdsourcing
entity in the OSS model.

• Crowdsourcing workflow in the OSS model
In the OSS crowdsourcing model, users arrive and de-

part dynamically. When task requester rm arrives, he/she
submits the bidding information Br

m to the platform, as
shown in Fig. 3. In the bidding information Br

m =
(atrm, dtrm, Jm[jm(λ)], brm) of requester rm, atrm ∈ T and
dtrm ∈ T represent the submitted arrival and departure time
of task requester rm, respectively. The online duration of
requester rm is from atrm to dtrm. Jm needs to be completed
before the departure time of rm, and λ is the specific demand
of task jm, such as the number of required results (i.e.,
the specific number of workers required for the task). µ is
the urgency degree of task jm, and can be represented by
the average tolerance delay of the task. brm is the bid of
requester rm for task jm. The true value of the submitted
task by requester rm is denoted by vrm and is considered
to be private information of requester rm. The relationship
between brm and vrm is brm ≤ vrm. In bidding information
Bw

n = (atwn , dt
w
n ,Γn[tn], b

w
n ) of worker wn, atwn ∈ T and

dtwn ∈ T represent the submitted arrival and departure time
of worker wn, respectively. The active duration of worker wn

is from atrm to dtrm. tn is the interested task of worker wn

and bwn is the bid of worker wn for task tn. cwn is the true
cost for completing the task submitted by worker wn and
is considered to be private information of worker wn. The
relationship between bwn and cwn is bwn ≥ cwn .

The platform determines a bidding threshold δR for task
requesters, and rm with a bid brm ≥ δR is selected as a winner.
For each discrete time slot t ∈ T , the platform selects a set of
winners RW ⊆ R. Then, the platform decides the fee qm ≤ brm
for each requester rm ∈ RW and returns the task’s result
before they depart. Similarly, the platform learns a bidding
threshold δW for workers, and worker wn with a bid bwn ≤ δW
is selected as a winner. For each discrete time t ∈ T , the
platform selects a set of winner WW ⊆W . Then, the platform
decides reward pn ≥ bwn for each worker wn ∈ WW and
receives the task’s result before they depart.

• Crowdsourcing utility in the OSS model
We calculate the utility of each participating crowdsourcing

entity in the OSS model. To facilitate the discussion, we
introduce the following definitions.

ym is the request indicator of requester rm for bid Br
m. If

requester rm’s task Jm is accepted by the platform, ym = 1,
otherwise, ym = 0. xn is the completion indicator of worker
wn for bid Bw

n . If task Γn is completed by worker wn, xn = 1,
otherwise, xn = 0. qm is the pricing for requester rm ∈ RW ,
i.e., the fee that the platform collects from requester rm, and
if rm /∈ RW , qm = 0. pn is the pricing for worker wn ∈WW ,
i.e., the reward that the platform pays worker wn, and if wn /∈
WW , pn = 0.

Based on the above parameter definitions, in each time slot,
the utility uSS

r,m of requester rm in the OSS model is

uSS
r,m = ymvrm − qm. (3)

The utility uSS
w,n of worker wn in each time slot is

uSS
w,n = pn − xnc

w
n . (4)

The utility uSS
p of the platform in each time slot is

uSS
p =

∑M

m=1
qm −

∑N

n=1
pn. (5)

B. The OSM Model: Online Single-bid Multiple-task

First, we detail the relevant application scenarios of the
OSM model according to the users’ demands. For requesters,
they have multiple current tasks with the same type and
urgency degree. For workers, they only have a single task skill,
and their online duration is relatively long. To quickly achieve
task allocation and auction bidding, these users choose the
OSM model to submit their interested tasks and corresponding
bids. In the OSM model, each requester rm or worker wn

can only submit one bid to the platform, and task sets
Jm =

{
j1m, j2m, ...

}
or Γn =

{
t1n, t

2
n, ...

}
in the bidding

information contain multiple tasks. In Fig. 4, we show the
bidding information Br

m and Bw
n of rm and wn in the OSM

model, assuming that the submitted bid contains four tasks. µ
is the urgency degree of these tasks.

r

mB

w

nB

The bid of requester mr

The bid of worker nw

1 2 3 4

1 2 3 4, , [ ( ), ( ), ( ), ( ), ],r r r

m m m m m m m mat dt J j j j j bl l l l m

1 2 3 4, , [ , , , ],w w w

n n n n n n n nat dt t t t t bG

Fig. 4: The bidding information in the OSM model

Unlike the OSS model, the OSM model can achieve the
multi-task requirements of each user in a biding process, which
improves the efficiency of crowdsourcing. Since both the OSS
and OSM models can submit only one bid, the workflow of
crowdsourcing and the utility of each entity in crowdsourcing
in the OSM model are the same as those in the OSS model
defined in the previous subsection.

C. The OMM Model: Online Multiple-bid Multiple-task

First, we discuss the relevant application scenarios of the
OMM model according to the users’ demands. For requesters,
they currently have multiple types of tasks, with the same
urgency degrees for each type of tasks. For workers, they
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have multiple task skills, and their online duration is relatively
long. To characterize their interests in more detail, these users
choose the OMM model to submit their interested tasks and
corresponding bids. Therefore, rather than submitting a single
bid as in the OSS and OSM models, in the OMM model, each
requester rm or worker wn can submit multiple bids to the
platform at a time, and each bid can contain one or multiple
tasks. In Fig. 5, we show the bidding information Br

m and Bw
n

of rm and wn in the OMM model, and we assume that there
are three bids per time.

The bid of requester mr The bid of worker nw

(2)r

mB

(3)r

mB

(1)r

mB (1)w

nB

(2)w

nB

(3)w

nB

(1) 1 2, , [ , ], (1)w w w

n n n n n nat dt t t bG

(2) 2 3, , [ , ], (2)w w w

n n n n n nat dt t t bG

(3) 1 2 3, , [ , , ], (3)w w w

n n n n n n nat dt t t t bG

(1) 1 2

1 2 1, , [ ( ), ( ), ], (1)r r r

m m m m m mat dt J j j bl l m

(2) 3 4

3 4 2, , [ ( ), ( ), ], (2)r r r

m m m m m mat dt J j j bl l m

(3) 5 6

5 6 3, , [ ( ), ( ), ], (3)r r r

m m m m m mat dt J j j bl l m

Fig. 5: The bidding information in the OMM model

• Crowdsourcing workflow in the OMM model
Based on the bidding information of the OMM model, we

next detail the workflow and the utility of each crowdsourcing
entity in the OMM model.

In the OMM crowdsourcing model, users arrive and de-
part platform dynamically. When task requester rm arrives,
he/she submits multiple (i.e., three in our example) bid-
s Br

m = {Br
m(1), Br

m(2), Br
m(3)} to the platform, where

Br
m(i) = (atrm, dtrm, J

(i)
m , brm) represents ith bid submitted by

rm. J (i)
m is the corresponding task set that contains multiple

tasks, brm(i) is the bid of requester rm for task J
(i)
m , and

vrm(i) is the true value of J
(i)
m . The relationship between

brm(i) and vrm(i) is brm(i) ≤ vrm(i). µi is the urgency
degree of different types of tasks. Similarly, when worker wn

arrives, he/she submits multiple (i.e., three in our example)
bids Bw

n = {Bw
n (1), B

w
n (2), B

w
n (3)} to the platform, where

Bw
n (i) = (atwn , dt

w
n ,Γ

(i)
n , bwn (i)) represents ith bid submitted

by worker wn. Γ(i)
n is the corresponding task set that contains

multiple tasks, and bwn (i) is the bid of worker wn for task Γ
(i)
n .

cwn (i) is the true cost of Γ(i)
n . The relationship between bwn (i)

and cwn (i) is bwn (i) ≥ cwn (i).
Note that the winner selection and pricing (i.e., determining

fee for requesters and reward for workers) for each bid in the
OMM model is the same as the OSS model.

• Crowdsourcing utility in the OMM model
Next, we calculate the utility of each crowdspurcing entity

in the OMM model. To facilitate the discussion, we introduce
the following definitions where Irm is the number of bids
submitted by requester rm at each time and Iwn is the number
of bids submitted by worker wn at each time:

y
(i)
m is the request indicator of requester rm for bid Br

m(i).
If requester rm’s task J

(i)
m in bid Br

m(i) is accepted by the
platform, y(i)m = 1, otherwise, y(i)m = 0. x(i)

n is the completion
indicator of worker wn for bid Bw

n (i). If task Γ
(i)
n is completed

by worker wn, x(i)
n = 1, otherwise, x(i)

n = 0. q(i)m is the fee
that the platform collects from rm ∈ RW for bid Br

m(i). If

bid Br
m(i) is not accepted by the platform, q(i)m = 0. qm is the

total fees that the platform collects from rm ∈ RW for total
bids Br

m at a time, i.e., qm =
∑Ir

m
i=1 q

(i)
m . p(i)n is the reward

that the platform pays worker wn ∈WW for bid Bw
n (i). If bid

Bn
i is not selected by the platform, p(i)n = 0. pn is the total

fees that the platform pays worker wi ∈WW for the total bids
Bw

n at a time, i.e., pn =
∑Iw

n
i=1 p

(i)
n .

Based on the above parameter definitions, in each time slot,
the utility uMM

r,m of requester rm in the OMM model is

uMM
r,m =

∑Ir
m

i=1
y(i)m vrm(i)− qm. (6)

The utility uMM
w,n of worker wn in each time slot is

uMM
w,n = pn −

∑Iw
n

i=1
x(i)
n cwn (i). (7)

The utility uMM
p of the platform in each time slot is

uMM
p =

∑M

m=1
qm −

∑N

n=1
pn. (8)

Based on the above, each task requester or worker can
flexibly select auction service models according to the current
interested type of tasks, number of tasks, urgency degrees of
tasks, and online durations. As such, a requester with an urgent
task or a worker with a single task skill and short online
duration will choose the OSS model. A requester with multiple
tasks of the same (different) type(s) and urgency degree or a
worker with a single (multiple) task skill(s) and relatively long
online time will choose the OSM (OMM) model.

IV. THE PROPOSED TRUTHFUL ONLINE DOUBLE
AUCTION MECHANISMS

In this section, based on McAfee double auction, we pro-
pose three truthful online double auction mechanisms (TO-
DAs) for the above three auction service models, namely
TODA-SS, TODA-SM and TODA-MM mechanisms.

As described above, one of the most critical features of our
truthful online double auction mechanisms is to set reasonable
thresholds for task requesters and workers in each time slot.
For task requesters, the thresholds we need to set are the bid-
ding threshold for requesters and task demand threshold (i.e.,
task requesters’ demand for each submitted task). For workers,
the thresholds we need to set are the bidding threshold for
workers and worker demand threshold (i.e, the number of
workers required for completing each task). McAfee double
auction is an excellent mechanism to set and dynamically
update these thresholds over time according to the market
supply and demand.

A. TODA-SS Auction Mechanism

When a user currently has only one interested task and
the online duration is short, he/she adopts the OSS model
and TODA-SS auction mechanism to quickly achieve task
allocation and auction bidding. We firstly introduce the TODA-
SS auction mechanism. The TODA-SS mechanism consists
of three aspects: winner selection, task pricing and threshold
updating. In our online double auction mechanism, the time
is discretized into T = {1, 2, 3, ...., t, ...} slots. At each slot
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t, we perform winner selection. The platform quickly selects
qualified task requesters and workers (i.e., winners) based
on the thresholds mentioned above. More importantly, we
then perform task pricing. The platform determines the fee
for each winning requester and the reward for each winning
worker. Then, we perform threshold updating. The platform
dynamically updates the thresholds by using double auction
to measure market changes and current users’ demands. The
updated thresholds are used to select qualified task requesters
and workers (i.e., winners) in the next slot, i.e., slot t+ 1. In
other words, the updated thresholds in slot t are the prediction
of the users’ demands to each task in slot t+ 1.

For each slot t, Rt and Wt are defined as the currently
participating task requesters and workers in this slot, respec-
tively. Besides, for task τk, Uk

t is the budget of task τk for
recruiting workers in slot t, which is the total amount of fees
collected from task requesters for task τk in slot t − 1. We
define δkR as the bidding threshold for task requesters to task
τk, which is the highest unit bid (i.e., brm

/
λk
m) to task τk

among all winning requesters in the previous slot t − 1. δkW
is the bidding threshold for workers to task τk, which is the
highest bid (i.e., bwn ) to task τk among all winning workers in
the previous slot t− 1. Also, λk

R is the task demand threshold
of task τk, which is the maximum task demand (i.e., λk

m) to
task τk among all winning requesters in the previous slot t−1.
λk
W is the worker demand threshold of task τk, which is the

number of winning workers required for completing task τk
in the previous slot t−1. QR,t = {q1, q2, ...} is the set of fees
for the winning requesters in set RW,t and PW,t = {p1, p2, ...}
is the set of rewards for the winning workers in set WW,t.

• Winner Selection Algorithm in TODA-SS

First, we introduce the winner selection process of our
TODA-SS mechanism, which is shown in Algorithm 1. Steps
1-4 show the winner selection rules for requesters. λk

m is the
specific demands for task τk requested by requester rm. To
avoid wasting workers’ resources due to excessive requests,
we use brm

/
λk
m instead of just bid brm to determine whether

requester rm is selected as a winner for task τk. The winners
among task requesters for task τk are those whose brm

/
λk
m is

not less than δkR. In this case, a task requester is more likely
to become a winner if he/she submits a higher bid and less
demands for a task. Moreover, steps 5-10 show the winner
selection rules for workers. The winners among workers for
task τk are those whose bwn is not more than bidding threshold
δkW . Besides, bidding threshold δkW is within budget constraint
Uk
t of task τk in this slot, and the number of workers required

for completing τk is non-zero. Algorithm 1 outputs winner
sets RW,t and WW,t of requesters and workers in slot t,
respectively.

• Task Pricing Algorithm in TODA-SS

Next, we introduce the task pricing process of our TODA-
SS mechanism, which is shown in Algorithm 2. The pricing
(i.e., fees) for winners among task requesters depends on
bidding threshold δkR and task demand threshold λk

R. If specific
demand λk

m for task τk by requester rm(rm ∈WW,t) is more
than λk

R, the fee of rm is the product of λk
R and δkR. Otherwise,

Algorithm 1 Winner Select-TODA-SS (Rt,Wt,Uk
t )

Input: Rt, Wt, Uk
t , δkR, δkW , λk

R, λk
W

Output: winner sets RW,t and WW,t

1: for each requester rm ∈ Rt do
2: for task τk in Jm do
3: if (brm

/
λk
m) ≥ δkR then

4: RW,t ← RW,t ∪ rm

5: for each task τk do
6: while λk

W > 0 do
7: for all workers in set Wt do
8: wi ← argmin (bwn );
9: if bwn ≤ δkW and δkW ≤ Uk

t then
10: WW,t ←WW,t ∪ wi, Wt ←Wt\wi, Uk

t =
Uk
t − δkW , λk

W = λk
W − 1;

the fee of rm is the product of λk
m and δkR. The pricing (i.e.,

rewards) for each winner wn, (wn ∈ RW,t) to task τk is δkW .

Algorithm 2 Pricing-TODA-SS (RW,t,WW,t)
Input: RW,t,WW,t

Output: pricing sets QR,t and PW,t

1: for each rm ∈ RW,t do
2: if λk

m > λk
R then

3: qkm = λk
R ∗ δkR;

4: else
5: qkm = λk

m ∗ δkR;
6: qm = qkm;
7: for each wn ∈WW,t do
8: pkn = δkW , pn = pkn;

• Threshold Updating Algorithm in TODA-SS
Then, we introduce the threshold updating process of our

TODA-SS mechanism, which is shown in Algorithm 3. We
aim to update four thresholds for each task τk according
to the McAfee double auction, which are bidding threshold
δkR for requesters, bidding threshold δkW for workers, task
demand threshold λk

R and worker demand threshold λk
W .

Using the technical framework of McAfee double auction, for
each task τk, we obtain set Rk

t by sorting brm
/
λk
m for the

requesters in Rt, and set W k
t by sorting bwn for the workers

in Wt as shown in steps 1-3. Rk
t (h) and W k

t (h) represent
hth element in sets Rk

t and W k
t , respectively. Then, we

find max
{
h|Rk

t (h) ≥W k
t (h), h < min {M,N}

}
, as shown

in step 4. Finally, we update the thresholds for task τk, as
shown in steps 5-6. Specifically, at the end of slot t, the bidding
threshold for task requesters is updated as the highest unit bid
among all winning requesters in this slot. Also, the bidding
threshold for workers is updated as the highest bid among all
winning workers in this slot.

• Overall Algorithm of TODA-SS
Finally, based on Algorithms 1, 2 and 3, we introduce the

overall process of our proposed TODA-SS mechanism, which
is shown in Algorithm 4.

We can find that at the beginning of slot t = 0, the
platform integrates tasks submitted by the all participating
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Algorithm 3 Update Threshold-TODA-SS (Rt,Wt)
Input: Rt,Wt

Output: updated thresholds δR, δW , λR, λW

1: for each task τk do
2: Rk

t ← sort {brm
/
λk
m, rm ∈ Rt, τk ∈ Jm} in non-

increasing order;
3: W k

t ← sort {bwn , wm ∈Wt, τk ∈ Γn} in non-
decreasing order;

4: hk ← argmax
{
Rk

t (h) ≥W k
t (h), h < min {M,N}

}
;

5: λk
R←max

{
λk
m, rm ∈ {Rk

t (1), R
k
t (2), ..., R

k
t (hk−1)}

}
;

6: λk
W ← hk − 1, δkR ← Rk

t (hk), δkW ←W k
t (hk);

requesters into a set T0. For each τk ∈ T0, we apply McAfee
double auction mechanism to select winners including winning
requesters and workers, and obtain initial thresholds λk

R, λk
W ,

δkR and δkW as shown in steps 1-17. For each task τk ∈ T0,
we obtain set Rk

0 by sorting brm
/
λk
m for the requesters in

R0, and set W k
0 by sorting the bwn for the workers in W0

as shown in steps 5-7. In steps 8-10, we select winners from
participating requesters and workers. r[Rk

0(i)] is the requester
whose brm

/
λk
m is Rk

0(i) and w[W k
0 (i)] is the worker whose

bid bwn is W k
0 (i). Then, we obtain initial thresholds λk

R, λk
W ,

δkR and δkW as shown in steps 11-12. Moreover, we calculate
budget U0 of the platform, which is used for recruiting workers
in slot t = 1 as shown in steps 13-14. At the end of slot t = 0,
the platform removes the departed requesters and workers from
sets R0 and W0 as shown in steps 15-17. At the beginning of
each slot t > 0, the platform integrates participating requesters
and workers into Rt and Wt, respectively. For each task
τk ∈ Tt, we use WinnerSelect-TODA-SS (Algorithm 1) to
select winners as shown in step 22. Next, we use Pricing-
TODA-SS (Algorithm 2) to price the winners as shown in step
23. Then, we use UpdateThreshold-TODA-SS (Algorithm 3)
to update four thresholds as shown in step 24. We calculate
budget Ut of the platform, which is used for recruiting workers
at the next slot as shown in step 25. At the end of each
slot t > 0, the platform removes the departed requesters and
workers from sets Rt and Wt as shown in steps 26-28.

• Economic Properties Analysis of TODA-SS
We now prove that our proposed TODA-SS auction mech-

anism satisfies the economic properties mentioned in Section
II-B.

Theorem 1. TODA-SS achieves time-truthfulness.

Proof. For user i (i.e., a participating requester or worker),
we assume that his/her submitted arrival and departure time in
the submitted bidding information are at and dt, respectively.
Besides, at and dt are his/her true arrival and departure
time, respectively. In our proposed TODA-SS mechanism, the
platform checks the active users and the departing users in
each slot.

If user i deliberately extends his/her actually active time on
the platform, i.e., at < at < dt < dt, his/her utility will not
increase when increasing his/her actually active time. This is
because the platform checks departing users at the end of each
slot according to their submitted bidding information instead

Algorithm 4 TODA-SS (Rt,Wt, t)
Input: Rt,Wt, t
Output: winner sets RW,t and WW,t, pricing sets QR,t and
PW,t, and updated thresholds δR, δW , λR, λW

1: Initialize: (t, Ut, δR, δW , λR, λW ) ← (0, 0, 0,∞, 0, 0),
(PW , QR)← (ϕ, ϕ);

2: while t = 0 do
3: integrate participating requesters at slot t = 0 into R0,
T0 ← ∪rm∈R0Jm;

4: integrate participating workers at slot t = 0 into W0;
5: for each task τk ∈ T0 do
6: Rk

0 ← sort {brm
/
λk
m, rm ∈ R0, τk ∈ Jm} in non-

increasing order;
7: W k

0 ← sort {bwn , wm ∈W0, τk ∈ Γn} in non-
decreasing order;

8: hk←argmax
{
Rk

0(h)≥W k
0 (h), h<min {M,N}

}
;

9: Rk
W,0 ← w[Rk

0(i)], i = 1, 2, ..., hk − 1, RW,0 ←
RW,0 ∪Rk

W,0;
10: W k

W,0 ← r[W k
0 (i)], i = 1, 2, ..., hk − 1, WW,0 ←

WW,0 ∪W k
W,0;

11: λk
R←max

{
λk
m,rm∈{Rk

0(1),R
k
0(2), ..., R

k
0(hk−1)}

}
,

λk
W ← hk − 1;

12: δkR ← Rk
0(hk), δkW ←W k

0 (hk);
13: (PW,0, QR,0)← Pricing-TODA-SS(RW,0,WW,0);
14: U0 =

∑
rm∈RW,0

qm −
∑

wn∈WW,0
pn;

15: integrate departing requesters at the end of slot t =
0 into Rd,0;

16: integrate departing workers at the end of slot t = 0
into Wd,0;

17: R0 ← R0\Rd,0, W0 ←W0\Wd,0, t = t+ 1;
18: while t < T do
19: integrate participating requesters at slot t into Rt,
Tt ← ∪rm∈RtJm;

20: integrate participating workers at slot t into Wt;
21: for each task τk ∈ Tt do
22: (RW,t,WW,t)← Winner Select-TODA-SS;
23: (PW,t, QR,t)← Pricing-TODA-SS;
24: (δR, δW , λR, λW ) ←

Update Threshold-TODA-SS;
25: Ut =

∑
rm∈RW,t

qm;

26: integrate departing requesters at the end of slot t
into Rd,t;

27: integrate departing workers at the end of slot t into
Wd,t;

28: Rt ← Rt\Rd,t, Wt ←Wt\Wd,t;
29: t = t+ 1;

of their actually active time. Even if user i is still active before
submitted arrival time at and after submitted departure time
dt, he/she will not be selected as the winner and his/her utility
is 0 within two periods (at, at) and (dt, dt). Therefore, users
cannot improve their utility by extending the actually active
time on the platform.

If user i deliberately extends his/her submitted active time
on the platform, i.e., at < at < dt < dt, requester i will
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not be able to submit the tasks that needs to be performed
or worker i will not be able to complete the winning tasks
within the period (at, at). Also, requester/worker i will cannot
obtain/return the task results within the period (dt, dt). Then,
his/her utility is 0 in these periods. Therefore, users cannot
improve their utility by extending the submitted active time
on the platform.

In conclusion, users cannot improve their utility by submit-
ting dishonest active time. Therefore, the proposed TODA-SS
auction mechanism satisfies time-truthfulness.

Theorem 2. TODA-SS achieves cost-truthfulness.

Proof. We assume that all participating users cannot increase
their utility by any means other than bidding. To prove TODA-
SS’s truthfulness, we need to prove that for any requester rm
or worker wn, he/she cannot improve his/her utility by bidding
other than the true valuation of the task set. For this, we need to
show that the winner selection is monotonic for both requesters
and workers, and pricing is bid-independent.

Monotonic winner selection
The following two lemmas illustrate the monotonicity of

TODA-SS’s winner selection.
Lemma 1: Given {br1, ..., brm, ..., brM} for requesters and

{bwn }
N
n=1 for workers, if requester rm wins the auction by

bidding brm, then he/she also wins by bidding br′m > brm.
Lemma 2: Given {bw1 , ..., bwn , ...bwN} for workers and

{brm}
M
m=1 from requesters, if worker wn wins the auction by

bidding bwn , then he/she also wins by bidding bw′
n < bwn .

Proof. Lemmas 1 and 2 can be proved by McAfee double
auction, which is detailed in Section II-A.

Bid-independent pricing
We show that pricing is bid-independent for both requesters

and workers by the following two Lemmas.
Lemma 3: Given {br1, ..., brm, ..., brM} for requesters and

{bwn }
N
n=1 for workers, if requester rm wins the auction by

bidding brm or br′m, then fee qm charged to rm is the same for
both.

Lemma 4: Given {bw1 , ..., bwn , ...bwN} for workers and
{brm}

M
m=1 from requesters, if worker wn wins the auction by

bidding bwn or bw′
n , then reward pn to wn is the same for both.

Proof. Lemmas 3 and 4 can be proved by McAfee double
auction, which is detailed in Section II-A.

With the help of the above four Lemmas, we now prove
that TODA-SS achieves cost-truthfulness for both requesters
and workers.

(1) Cost-truthfulness for requesters
We first prove that TODA-SS enforces cost-truthfulness

for requesters, that is, no requesters can obtain higher utility
through bidding br′m ̸= vrm. The discussion can be divided into
the following three cases.

1) CASE 1: br′m = 0. If requester rm abandons bidding or
his/her bid is 0, he/she cannot be selected as a winner
and his/her utility uSS

r,m is 0.
2) CASE 2: br′m < vrm. If requester rm is selected as a

winner by the platform, his/her utility uSS
r,m is vrm − qm

according to equation (3). We know that vrm is a constant
as it is the true value of the task submitted by requester
rm. Also, qm is a constant according to Lemmas 1 and
3. Hence, the utility uSS

r,m of rm is fixed. In addition, if
br′m is too small, requester rm may not be selected as a
winner, and thus his/her utility uSS

r,m is 0. Therefore, the
utility uSS

r,m of rm is not more than that of br′m = vrm.
3) CASE 3: br′m > vrm. If requester rm is selected as a

winner by the platform, his/her utility uSS
r,m is still vrm−

qm. More importantly, the situation of qm > vrm (i.e., the
utility of rm is negative) will not happen as our proposed
TODA-SS mechanism satisfies individual rationality (the
details are shown in Theorem 3). In addition, if requester
rm is not selected as a winner by the platform, his/her
utility uSS

r,m is 0. Therefore, the utility uSS
r,m of rm is not

more than that of br′m = vrm.
In summary, TODA-SS achieves cost-truthfulness for re-

questers.
(2) Cost-truthfulness for workers
Next, we prove that TODA-SS satisfies cost-truthfulness for

workers, that is, no workers can obtain a higher utility through
bidding bw′

n ̸= cwn . The discussion can be divided into the
following three cases.

1) CASE 1: bw′
n = 0. If worker wn abandons bidding or

his/her bid is very large, he/she cannot be selected as a
winner and his/her utility uSS

w,n is 0.
2) CASE 2: bw′

n > cwn . If worker wn is selected as a winner
by the platform, his/her utility uSS

w,n is pn−cwn according
to equation (4). We know that cwn is a constant as it is the
true cost for completing the task submitted by worker
wn. Also, pn is a constant according to Lemmas 2 and
4. Hence, the utility uSS

w,n of wn is fixed. In addition,
if bw′

n is too large, worker wn may not be selected as a
winner, and then his/her utility uSS

w,n is 0. Therefore, the
utility uSS

w,n of wn is not more than that of bw′
n = cwn .

3) CASE 3: bw′
n > cwn . If worker wn is selected as a winner

by the platform, his/her utility uSS
w,n is still pn−cwn . More

importantly, the situation of pn < cwn (i.e., the utility of
wn is negative) will not happen as our proposed TODA-
SS mechanism satisfies individual rationality (the details
are shown in Theorem 3). In addition, if worker wn is
not selected as a winner by the platform, his/her utility
uSS
w,n is 0. Therefore, the utility uSS

w,n of wn is not more
than that of bw′

n = cwn .
In summary, TODA-SS achieves cost-truthfulness for work-

ers.
From the above descriptions, we show that no users can

improve their utility by bidding untruthfully, thus our proposed
TODA-SS mechanism satisfies cost-truthfulness.

Theorem 3. TODA-SS satisfies individual rationality.

Proof. To prove the individual rationality of TODA-SS, we
need to prove that for each requester rm (rm ∈ R), his/her
utility uSS

r,m ≥ 0 and for each worker wn (wn ∈W ), his/her
utility uSS

w,n ≥ 0.
(1) Individual rationality for requesters
For requester rm, the pricing (i.e., fee) for rm in each slot

is the product of task τk’s bidding threshold δkR and specific
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demand λk of task τk. If rm is not selected as a winner by
the platform, his/her utility uSS

r,m is 0. If rm is selected as a
winner by the platform and his/her specific demand of task τk
is not fully completed, i.e., λk

m > λk
R, his/her fee qm is given

by
qm = qkm = λk

R ∗ δkR < λk
m ∗ δkR ≤ brm ≤ vrm. (9)

If rm is selected as a winner by the platform and his/her
specific demand of task τk is fully completed, his/her fee qm
is given by

qm = qkm = λk
m ∗ δkR ≤ brm ≤ vrm. (10)

Then, we have

uSS
r,m = vrm − qm ≥ 0. (11)

(2) Individual rationality for workers
For worker wn, the pricing (i.e., reward) for wn in each slot

is the bidding threshold of task τk. If wn is not selected as
a winner by the platform, his/her utility uSS

w,n is 0, otherwise,
his/her reward pn is given by

pn = pkn = δkW ≥ bwn ≥ cwn . (12)

Then, we have

uSS
r,m = pn − cwn ≥ 0. (13)

In summary, the proposed TODA-SS mechanism satisfies
individual rationality.

Theorem 4. TODA-SS is budget balanced.

Proof. At each slot, TODA-SS collects the fees from re-
questers as the budget for selecting workers at the next slot.
From steps 13-14 in Algorithm 1, it is guaranteed that the
reward for each worker winner does not exceed current slot-
budget Uk

t . Therefore, the total payment to all winners of
workers will not exceed the fees collected from requesters.
In summary, TODA-SS is budget balanced.

Theorem 5. TODA-SS satisfies consumer sovereignty.

Proof. In TODA-SS, users are not automatically rejected and
are selected as winners as long as their bids meet the bidding
thresholds and the slot-budget is not exhausted. Hence, users
compete fairly in TODA-SS. In addition, TODA-SS is an
online mechanism that allows continuous bidding. For a user
who is rejected in a slot, he/she can also participate in the task
auction at the next slot. If his/her bid meets the new thresholds
at the new slot, the platform will select him as a winner. In
summary, TODA-SS satisfies consumer sovereignty.

B. TODA-SM and TODA-MM Auction Mechanisms

When a requester recently has multiple tasks with the same
(different) type(s) and urgency degree or a worker recently
has a single (multiple) task skill(s) and relatively long online
time, the user will adopt the OSM (OMM) model and TODA-
SS (TODA-OMM) auction mechanism to quickly achieve task
allocation and auction bidding.

As discussed in Section III-B, the difference between the
OSM model and the OSS model is the number of tasks in each

bid, and the difference between the OMM model and the OSM
model is the number of submitted bids. Similar to the TODA-
SS mechanism, the TODA-SM and TODA-MM mechanisms
also consist of three aspects: winner selection, task pricing and
threshold updating. Table II shows the most critical indicator
of winner selection and threshold updating in three proposed
online double auction mechanisms. Each element in Table
II is the average bid of each task τk in the corresponding
mechanism. Table III shows the most critical indicator of task
pricing in three proposed online auction mechanisms.

TABLE II: Critical indicators for winner selection and thresh-
old updating

TODA-SS TODA-SM TODA-MM

brm
λk
m

(τk ∈ Jm)
brm∑
k λk

m
(τk ∈ Jm)

brm∑
k λk

m

(
τk ∈ J

(i)
m

)
bkn (τk ∈ Γn)

bkn
|Γn| (τk ∈ Γn)

bkn∣∣∣Γ(i)
n

∣∣∣
(
τk ∈ Γ

(i)
n

)

TABLE III: Critical indicators for task pricing

TODA-SS TODA-SM TODA-MM

qm = qkm qm =
∑

k qkm qm,i =
∑

k qkm,i; qm =
∑
m

qm,i

pn = pkn pn =
∑

k pkn pn,i =
∑

k pkn,i; pn =
∑
n

pn,i

In the proposed TODA-SM mechanism, for requester rm,
the bid of task τk (τk ∈ Jm) is the average bid brm

/∑
k λ

k
m,

and the pricing of rm is the total fees of all tasks in the
submitted bidding information, i.e., qm =

∑
k q

k
m. For worker

wn, the bid of task τk(τk ∈ Γn) is the average bid bkn
/
|Γn|,

where |Γn| is the number of tasks in wn’s task set Γn. The
pricing of wn is the total rewards of all tasks in the submitted
bidding information, i.e., pn =

∑
k p

k
n.

The TODA-MM mechanism is a generalization of the
TODA-SM mechanism. In the proposed TODA-MM mecha-
nism, each user can submit multiple bids to maximize own
benefits, and each bid is independent of each other and
contains multiple tasks. For a requester/worker, the bid of a
task is the average bid of all tasks and the pricing of the
requester/worker is the total fees/rewards of all tasks in the
submitted bidding information, which are detailed in Tables II
and III.

Next, we prove that our proposed TODA-SM and TODA-
MM auction mechanisms satisfy the economic properties
mentioned in Section II-B.

Theorem 6. TODA-SM and TODA-MM satisfy time-
truthfulness.

Proof. The critical difference between TODA-SS and TODA-
SM is the number of tasks in the submitted bidding in-
formation. The critical difference between TODA-SM and
TODA-MM is the number of bids in the submitted bidding
information. As with the TODA-SS mechanism, the submitted
bidding information in the TODA-SM and the TODA-MM
mechanisms also contain arrival and departure time. Therefore,
the time-truthfulness of users in the TODA-SM and the
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TODA-MM mechanisms can be proved similarly to the time-
truthfulness of users in TODA-SS (refer to Theorem 1).

Theorem 7. TODA-SM and TODA-MM satisfy cost-
truthfulness.

Proof. In TODA-SM and TODA-MM, we perform winner
selection, task pricing and threshold updating by using M-
cAfee double auction, which are the same as TODA-SS.
Thus, the cost-truthfulness of users in the TODA-SM and the
TODA-MM mechanisms can be proved similarly to the cost-
truthfulness of users in TODA-SS (refer to Theorem 2).

Theorem 8. TODA-SM and TODA-MM satisfy individual
rationality.

Proof. To prove the individual rationality of TODA-SM, we
need to prove that for each requester rm (rm ∈ R), his/her
utility uSM

r,m ≥ 0 and for each worker wn (wn ∈W ), his/her
utility uSM

w,n ≥ 0.
(1) Individual rationality for requesters
For requester rm, brm is the bid of rm for tasks in Jm and

vrm is the true value of these tasks to rm. The relationship
between brm and vrm is brm ≤ vrm. The fee for rm in each slot
is the pricing of all tasks contained in Jm. Specifically, it is
the sum of the product of each task’s bidding threshold δkR and
task’s specific demand λk. If rm is not selected as a winner
by the platform, his/her utility uSM

r,m is 0. If rm is selected as
a winner by the platform and his/her specific demands of all
tasks are not fully completed, i.e.,

∑
k λ

k
m >

∑
k λ

k
R, his/her

fee qm is given by

qm =
∑

k
qkm =

∑
k

(
λk
R ∗ δkR

)
<

∑
k

(
λk
m ∗ δkR

)
≤ brm ≤vrm.

(14)

If rm is selected as a winner by the platform and his/her
specific demands of all tasks are fully completed, his/her fee
qm is given by

qm =
∑

k
qkm =

∑
k

(
λk
m ∗ δkR

)
≤ brm ≤ vrm. (15)

Based on (14) and (15), we have vrm ≥ qm. Then, the utility
of rm is

uSM
r,m = vrm − qm ≥ 0. (16)

Therefore, uSM
r,m is non-negative, and then TODA-SM satis-

fies individual rationality for requesters.
(2) Individual rationality for workers
For worker wn, bwn is the bid of wn for tasks in Γn and cwn

is his/her true cost for completing these tasks. The relationship
between bwn and cwn is bwn ≥ cwn . the pricing (i.e., reward) for
wn in each slot is the total bidding thresholds of all submitted
tasks. If wn is not selected as a winner by the platform, his/her
utility uSM

w,n is 0, otherwise his/her reward pn is given by

pn =
∑

k
pkn =

∑
k
δkW ≥

∑
k
bwn (t

k
n) = bwn ≥ cwn , (17)

Then, we have pn ≥ cwn . The utility of wn is

uSM
w,n = pn − cwn ≥ 0. (18)

Therefore, uSM
w,n is non-negative, and then TODA-SM satis-

fies individual rationality for workers.

In summary, the proposed TODA-SM mechanism satisfies
individual rationality.

In TODA-MM, each user can submit multiple bids and each
bid is independent of each other. Each bid can be regarded
as an independent bid to auction. Therefore, the individual
rationality of users in the TODA-MM mechanism can be
proved similarly to the individual rationality of users in the
TODA-SM mechanism.

Theorem 9. TODA-SM and TODA-MM are budget balanced.

Proof. Similar to TODA-SS, TODA-SM and TODA-MM
charge the fees from requesters in each slot as the budget
for selecting workers in the next slot. When selecting workers,
they need to judge whether the slot-budget is exhausted, which
is the same as TODA-SS. Therefore, TODA-SM and TODA-
MM are budget balanced.

Theorem 10. TODA-SM and TODA-MM satisfy consumer
sovereignty.

Proof. Similar to TODA-SS, in TODA-SM and TODA-MM,
users are not automatically rejected but are selected as winners
as long as their bids meet the bidding thresholds and the
slot-budget is not exhausted. Also, TODA-SM and TODA-
MM allow continuous bidding. Therefore, our TODA-SM and
TODA-MM mechanisms achieve consumer sovereignty.

V. APPLICATION EXAMPLE

In this section, we introduce an example to show how our
proposed TODAs work in realistic crowdsourcing applications.
Specifically, we consider a crowdsourcing application in IoV
environments that can serve three types of tasks: sensing
tasks, computational tasks, and survey tasks. Users including
task requesters and workers can flexibly select auction service
models and corresponding auction mechanisms according to
the current interested tasks and online duration. To illustrate
this, we present the following three-demand example:

• Single-task Demand
We first consider the single-task demand of users. We take

the sensing task as an example, because the sensing tasks are
common in IoV. For example, some internet map service (e.g.,
Baidu Map or High Moral Map) needs to obtain real-time
road scenes and traffic information. To illustrate the single-
task demands of requesters and workers, we introduce the
following two users.

1) Requester 1 has a sensing task, specifically an image
capture task τk with a specified region size. His/her
task demand λk

1 is abstracted as the number of required
task results, that is, the specific number of workers
who need to complete the task. The demand is gen-
erally greater than one due to individual differences.
The urgency degree µk

1 corresponds to the tolerance
delay of completing the image capture task. To quickly
achieve task allocation and auction bidding, requester
1 adopts the OSS model to submit his/her task and
corresponding bid. In general, requesters who currently
have a task, especially an urgent one, prefer the OSS
model rather than the OSM and OMM models. This is
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because the OSM and OMM models give priority to
matching workers with multi-task demands, which will
increase the allocation time of a single task and reduce
the allocation efficiency;

2) Worker 2 has a short online duration, and he/she only
has a single task skill during the recent online period,
specifically the image capture skill for task τk. To quick-
ly achieve task allocation and auction bidding, worker 2
adopts the OSS model to submit his/her interested task
and corresponding bid. In general, workers with only a
single task skill, especially those who have a short online
duration, prefer the OSS model rather than the OSM and
OMM models. The detailed reason is the same as that
of requester 1.

Given the above demand background, at each slot t, we
assume that there are multiple requesters like requester 1,
and multiple workers like worker 1. δkR, δ

k
W , λk

R, λ
k
W are the

thresholds for image capture task τk updated at the end of
the previous slot t−1 using Algorithm 3 of TODA-SS, and
also the prediction of the users’ demands to task τk in the
current slot t. δkR and δkW are the bidding thresholds for task
requesters and workers to image capture task τk, respectively.
Also, λk

R is the task demand threshold of image capture task
τk, which is the maximum number of required results among
all winning requesters in the previous slot t − 1. λk

W is the
worker demand threshold of image capture task τk, which
is the number of winning workers required for capturing all
image regions of task τk in the previous slot t − 1. Based
on the above thresholds, we select the winners of requesters
and workers in this slot t using Algorithm 1 of TODA-SS,
and obtain the fees for winning requesters and the rewards for
winning workers using Algorithm 2 of TODA-SS.

• Single-type Multiple-task Demand

To illustrate the single-type multiple-task demands of re-
questers and workers, we introduce the following two users.

1) Requester 3 has multiple sensing tasks, specifically
multiple image capture tasks with different locations and
area sizes. These tasks are of similar urgency degree.
To quickly achieve task allocation and auction bidding,
requester 3 adopts the OSM model instead of OSS and
OMM models to submit his/her tasks and corresponding
bids. This is because the workers using the OSS model
generally have a short online duration, and it is difficult
for them to complete multiple tasks during this online
period. Also, the OMM model gives priority to matching
workers with multi-type rather than single-type task
skills. Moreover, if these tasks contain one or more tasks
with a higher urgency degree, requester 5 can submit
more urgent tasks to the OSS model;

2) Worker 4 has a single task skill during the recent online
period, and his/her online duration is relatively long.
Specifically, he/she has the image capture skill for task
τk. To earn more rewards, worker 4 adopts the OSM
model instead of OSS and OMM models to submit
his/her multiple interested tasks with same type and
corresponding bids.

The winner selection, task pricing and threshold updating
processes are given by our TODA-SM auction mechanism.

• Multiple-type Multiple-task Demand
We then consider the multiple-type multiple-task demand

of users. We take the sensing tasks, computational tasks,
and survey tasks as the examples. In realistic IoV environ-
ment, computational tasks can be the image processing after
capturing the environment images, and survey tasks may be
the the survey demands initiated by businesses to investigate
the driving preference of different IoV users. To illustrate
the multiple-type multiple-task demands of requesters and
workers, we introduce the following two users.

1) Requester 5 has multiple tasks with multiple types. In
addition, these tasks are of similar urgency degree. To
clearly describe each task demands and quickly achieve
task allocation, requester 5 adopts the OMM model
instead of OSS and OSM models to submit his/her tasks
and corresponding bids. This is because the workers who
select OSS and OSM model generally have a single
task skill, and cannot complete multiple-type tasks.
Moreover, if these multi-type tasks contain some tasks
with a higher urgency degree, requester 5 can submit
the more urgent tasks to the OSS or OSM models;

2) Worker 6 has multiple task skills during the recent online
period, and his/her online duration is relatively long. To
clearly describe the task skills and earn more rewards,
worker 6 adopts the OMM model to submit his/her
interested tasks and corresponding bids.

The winner selection, task pricing and threshold updating
processes are given by our TODA-MM auction mechanism.

VI. SIMULATION RESULTS AND PERFORMANCE
EVALUATION

In this section, we evaluate the advantages of our TODAs
compared to the auction mechanism in [18]. We specifically
implement these mechanisms and run extensive tests on a
Windows PC with Intel Core I5 and 8GB memory. In [18], the
authors investigated online two-sided auction among single-
type task requesters and workers by adopting McAfee double
auction with a fixed auction service model. To verify our
advantages of online two-sided auctions in practical crowd-
sourcing applications, we thus compare our proposed TODAs
with the auction mechanism in [18].

A. Performance Metrics and Simulation Setup

We study the utility of the platform and the average utility
of users (i.e., task requesters and workers). Specifically, we
evaluate each metric by varying the number of requesters
M and the number of workers N from 50 to 1000 with an
increment 50, respectively. To evaluate the impact of M , we
fix N = 500. Similarly, to evaluate the impact of N , we fix
M = 500. We set the deadline as 10s and consider 10 slots
(i.e., each time slot is 1s). We set the number of types of tasks
as 10. The valuation of each task for requesters is uniformly
distributed over (0, 200] and the cost of each task for workers
is uniformly distributed over (0, 50]. In TODA-SS, each user
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(i.e, requester or worker) can submit one bid containing one
task. In TODA-SM, each user can submit one bid containing
multiple tasks and the number of tasks does not exceed 5. In
TODA-MM, each user can submit up to 5 bids and the number
of tasks in each bid does not exceed 5.

B. Utility Analysis Based on Simulation Results

In this subsection, we show the utility performances in
our proposed TODA-SS, TODA-SM and TODA-MM auction
mechanisms. Moreover, we compare their utility performances
with the auction mechanism in [18]. The user utility and plat-
form utility are calculated by equations (3)-(8). Specifically,
for each winning requester, the utility is the difference between
the true value of the submitted task(s) and the fee charged
by the platform. For each winning worker, the utility is the
difference between the reward from the platform and the true
cost of completing the submitted task(s). For the platform,
the utility is the difference between fees from requesters and
the rewards to workers. In our TODAs, requesters can select
the appropriate auction service model and auction mechanism
according to their number of tasks, number of task types,
and urgency degree of tasks. Similarly, workers can select
the corresponding auction model and mechanism according
to their task skills and online time. In the auction mechanism
in [18], only requesters requesting simple tasks of a certain
type and workers with the corresponding task skill can achieve
successful bids during the auction process.

• Utility of the crowdsourcing platform
Figs. 6 (a) and (b) show the utility of the crowdsourcing

platform with different auction mechanisms versus the number
of requesters and the number of workers, respectively.
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Fig. 6: The utility of crowdsourcing platform in our proposed TODA-
SS, TODA-SM and TODA-MM mechanisms: (a) Platform utility with
500 workers versus the number of requesters, (b) Platform utility with
500 requesters versus the number of workers.

In Fig. 6 (a), we find that the utility of crowdsourcing
platform in TODA-SM is higher than that of TODA-SS
and less than that of TODA-MM. This is because the users
(i.e., requesters and workers) in TODA-SM can submit and
complete more tasks than that of TODA-SS, and users in
TODA-MM can submit and complete more tasks than that
of TODA-SM. More completed tasks lead to higher platform
utility. Moreover, in Fig. 6 (a), the platform utility in each
auction mechanism increases with the increase of the number
of requesters (i.e., M ), because the workers can complete
more tasks when M increases. However, due to the need to

allocate multiple tasks with multiple types, TODA-MM has a
lower task allocation efficiency and longer task execution time
than TODA-SS and TODA-SM. As such, it is not suitable for
users with a short online duration. In contrast, for TODA-SS
and TODA-SM, although the platform utility of each service
process is lower than TODA-MM, they provide higher task
allocation efficiency and are more suitable for users with short
online durations or a single task type. Moreover, requesters
with urgent tasks can quickly allocate tasks and obtain task
results by selecting TODA-SS. Therefore, compared with
TODA-MM, TODA-SS and TODA-SM can meet users’ rapid
response requirements.

In Fig. 6 (b), we can find that the platform utility rises
and then remains steady (slight decrease) with the increasing
number of workers. We next analyze the reasons from two
stages. The number of maximum completed tasks is constant
due to the fixed number of requesters. Under this setup, in
the first stage, more workers lead to more completed tasks,
resulting in the increasing platform utility. In the second stage,
when the market is saturated with workers, the platform utility
almost remains steady. This is because the execution cost of
each task is almost constant for workers, and therefore the
workers will not continually lower their bids for each task.
Moreover, when the x-axis values in Figs. 6 (a) and (b) are
less than 500, the platform utility in Fig. 6 (b) is higher than
that in Fig. 6 (a) due to more tasks. In contrast, the platform
utility in Fig. 6 (b) is lower than that in Fig. 6 (a) due to fewer
tasks when the x-axis values are higher than 500.

Figs. 7 (a) and (b) show the utility of the platform in our
TODAs and the auction mechanism in [18] changing with the
number of requesters and workers, respectively.
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Fig. 7: The utility of crowdsourcing platform in TODAs and the
auction mechanism in [18]: (a) Platform utility with 500 workers
versus the number of requesters, (b) Platform utility with 500
requesters versus the number of workers.

We observe from Fig. 7 that TODAs always have higher
platform utility than the auction mechanism in [18] regardless
of the number of task requesters and workers. The reason for
this improvement comes from two aspects. First, our TODAs
provide an on-demand service strategy, while the auction
mechanism in [18] only provides a fixed auction model for
servicing a single type of task. Second, TODAs can effectively
select workers with the appropriate skills for different tasks,
while the auction mechanism in [18] makes an unreasonable
assumption that each task can be completed by a single
worker. Clearly, the auction mechanism in [18] is impractical
since the auction requirements and interested tasks in realistic
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crowdsourcing applications are extremely diverse, and some
complex or urgent tasks may require multiple workers. In
contrast, our TODAs can provide specific auction service
models for different users with various task requirements and
effectively match the demands and supplies of crowdsourcing
markets. Through the above analysis, we conclude that the task
execution efficiency and quantity of our proposed TODAs are
higher than [18], which contribute to the higher platform utility
in Fig. 7.

• Average utility of requesters
The size relationships of the requester utilities in TODA-

SS, TODA-SM and TODA-MM are the same as the platform
utilities in Fig. 6. Figs. 8 (a) and (b) show the average utility
of requesters in TODAs and the mechanism in [18] changing
with the number of requesters and workers, respectively.
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Fig. 8: The average utility of requesters in TODAs and the auction
mechanism in [18]: (a) Requester average utility with 500 workers
versus the number of requesters, (b) Requester average utility with
500 requesters versus the number of workers.

In Fig. 8 (a), with the increase of the number of requesters
(i.e., M ), the average utilities of requesters in TODAs and the
auction mechanism in [18] descend slowly. This is because
with more requesters, the competition among requesters be-
comes more fierce due to the constant number of workers.
Then, the platform generally selects requesters with higher
bids as the auction winners. This leads to an average increase
in the fees charged to requesters. In Fig. 8 (b), with the
increase of the number of workers (i.e., N ), the average
utilities of requesters in our proposed TODAs mechanisms
and the auction mechanism in [18] increase and then gradually
tend to be stable. The reason is that the number of requesters
is constant and more workers lead to more completed tasks.
This then creases the average utility of requesters to increase.
When the market stabilizes, the average utility of requesters
will remain steady. Another observation from Fig. 8 is that
TODAs perform better than the auction mechanism in [18]
regardless of the number of task requesters and workers. This
is because the auction mechanism in [18] can only serve a
single type of simple task, and thus requesters with other
types of tasks or complex tasks cannot successfully bid. Here,
complex tasks refer to tasks that require multiple workers to
complete together. In contrast, our proposed TODAs provide
three requirement-based online auction service models and
corresponding auction mechanisms, which can accommodate
diversified tasks and bidding demands for different requesters.

• Average utility of workers

The size relationships of the worker utilities in TODA-
SS, TODA-SM and TODA-MM are the same as the platform
utilities in Fig. 6. Figs. 9 (a) and (b) show the average utility
of workers in TODAs and the mechanism in [18] changing
with the number of requesters and workers, respectively.
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Fig. 9: The average utility of workers in TODAs and the auction
mechanism in [18]: (a) Worker average utility with 500 workers
versus the number of requesters, (b) Worker average utility with 500
requesters versus the number of workers.

In Fig. 9 (a), with the increase of M , the average utilities
of workers in TODAs and the auction mechanism in [18]
increase. This is because with more requesters, the workers
can complete more tasks and earn more rewards. In Fig. 9
(b), with the increase of N , the average utilities of workers
drop dramatically in both TODAs and the auction mechanism
in [18]. The reason is that the number of tasks is constant, and
with more workers, the competition among workers becomes
more fierce and it leads to a decrement in payments for
workers. Moreover, we find from Fig. 9 that TODAs perform
better than the auction mechanism in [18] regardless of the
number of task requesters and workers. The detailed reason is
the same as that of the requester average utility in Fig. 8.

C. Truthfulness Analysis Based on Simulation Results

Next, we evaluate the truthfulness of our proposed TODA-
SS, TODA-SM and TODA-MM auction mechanisms in terms
of time-truthfulness and cost-truthfulness. Since the proposed
TODAs are similar in terms of winner selecting, task pricing
and threshold updating, we only prove the truthfulness of
TODA-SS to save space (once TODA-SS is proven, TODA-
SM and TODA-MM are also proven).

• Time-truthfulness
For each user, the submitted arrival and departure time in

the submitted bidding information are at and dt, respectively.
Besides, at and dt are respectively his/her true arrival and
departure time. We first verify the time-truthfulness of TODA-
SS by randomly picking a requester and a worker and allowing
them to submit their arrival/departure time that are different
from their true arrival/departure time. We illustrate the results
in Fig. 10.

In Figs. 10 (a) and (b), we can see that the requester and
the worker achieve their optimal utility if they submit the
true arrival time (i.e., at = at = 30). We next analyze
the simulation results from two stages. In the first stage, the
arrival time submitted by the requester or the worker is lower
than his/her actual arrival time, which is obviously untruthful
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Fig. 10: The true arrival and departure time of the user are at = 30 and bt = 70, respectively: (a) The utility of the selected requester with
bt = 70 versus his/her submitted arrival time at, (b) The utility of selected worker with bt = 70 versus his/her submitted arrival time at, (c)
The utility of selected requester with at = 30 versus his/her submitted departure time dt, (d) The utility of selected worker with at = 30
versus his/her submitted departure time dt.

behavior. Their utilities in this stage are zero because they
are offline and cannot send/receive tasks to/from the platform.
When at = at = 30, they submit the true arrival time in the
biding information and obtain the optimal utility due to being
chosen to be the winners. After that, in the second stage, their
submitted arrival time is higher than the actual arrival time.
In fact, a typical user will not choose this behavior because
it is not conducive to improving his/her utility. Specifically,
submitting a delayed arrival time may cause the platform to
determine that the user cannot complete the task or wait for
the task to complete because his/her online time is short. As
such, he/she will not be selected as a winner. This is why
the user utility in Figs. 10 (a) and (b) drops to 0 when the
submitted arrival time is about 60 instead of 70.

In Figs. 10 (c) and (d), we see that the requester and the
worker achieve their optimal utility if they submit the true
departure time (i.e., dt = dt = 70). The explanation for this is
similar to Figs. 10 (a) and (b). Through the above analysis, we
conclude that submitting any untruthful arrival and departure
time does not improve the utility of the requester and worker.
Therefore, our proposed TODA-SS mechanism achieves time-
truthfulness.

• Cost-truthfulness
Next, we verify the cost-truthfulness of TODA-SS by ran-

domly picking a requester and a worker and allowing them to
submit bids that are different from their true value and cost
for the submitted tasks. We illustrate the results in Fig. 11.

In Fig. 11 (a), we can see that the requester achieves his/her
optimal utility if he/she bids truthfully (i.e., bm = vm = 150).
We next analyze the simulation results. Due to the individual
rationality for task requesters, the submitted bid for the task is
not higher than the true value of the task. When the bid is lower
than the bid threshold (current market value) for requesters,
this requester will not be selected as the winner, and then
his/her utility is zero. Otherwise, he/she will become a winner,
and the utility is constant as the difference between the true
value and the bidding threshold for requesters.

In Fig. 11 (b), it can be found that the worker achieves
his/her optimal utility if he/she bids truthfully (i.e., bn = cn =
50). The explanation for this is similar to Fig. 11 (a). This
shows that submitting any untruthful bids does not improve
the utility of the requester and worker, and thus our proposed

TODA-SS achieves cost-truthfulness.

0 30 60 90 120 150

The submitted bid for the task

0

10

20

30

40

50

60

70

80

90

T
he

 u
til

ity
 o

f 
th

e 
re

qu
es

te
r

(a)

50 60 70 80 90 100 110 120 130 140 150

The submitted bid for the task

0

5

10

15

20

25

30

35

40

T
he

 u
til

ity
 o

f 
th

e 
w

or
ke

r

(b)

Fig. 11: (a) The utility of selected requester versus his/her submitted
bid for the task (the true value of the task is 150), (b) The utility
of selected worker versus his/her submitted bid of the task (the true
cost of the task is 50).

VII. CONCLUSION

An effective crowdsourcing application requires the par-
ticipation of a large number of users comprising both task
requesters and workers. Meanwhile, it must provide various
task requirements for different users. Online double auctions
are proven paradigms to stimulate and serve users in mo-
bile crowdsourcing. Unfortunately, the related works mainly
concentrate on designing two-sided auction mechanisms for
single-type tasks using fixed auction service models, which
are impractical because the demands and supplies in realistic
crowdsourcing markets are extremely diverse. To this end,
we focus on an on-demand service strategy, and then design
three online service models called OSS, OSM and OMM
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models. Furthermore, by adopting McAfee double auction,
we propose three truthful online double auction mechanisms
for three service models, namely TODA-SS, TODA-SM and
TODA-MM mechanisms. Based on these, users can selec-
t the appropriate auction service model and corresponding
auction mechanism according to diversified tasks and bidding
demands. Finally, we conduct extensive theoretical proofs and
simulation experiments, and it is verified that our proposed
three TODAs satisfy time-truthfulness, cost-truthfulness, indi-
vidual rationality, budget balance and consumer sovereignty.
Moreover, we show that our TODAs mechanisms can ensure
the various demands of different users and improve platform
utility and average user utility.
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