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Thesis abstract 

How do people know what categories objects belong to? Traditional accounts of 

categorisation typically assume that concepts comprise perceptual or functional features. By 

contrast, recent accounts of conceptual structure emphasise the dual role of sensorimotor (i.e., 

perception-action experience of the world) and linguistic distributional information (i.e., 

statistical distribution of words in language).  

This thesis contains a literature review and four empirical papers describing pre-

registered experiments, which explore how the degree of sensorimotor-linguistic 

representational overlap between category- and member-concepts may drive object 

categorisation.  

Chapter 1 presents a review of the literature, covering relevant theories of 

categorisation, as well as sensorimotor-linguistic theories of conceptual processing. Chapter 2 

presents a study which explored the role of sensorimotor and linguistic distributional 

information in processing advantages. This study found that overlap in sensorimotor and 

linguistic distributional representations between category (e.g., dog) and member (e.g., 

Labrador) concepts reliably predicted performance (accuracy, RT) in a speeded picture 

category verification task. Chapter 3 reports a study that contrasted the traditional prediction 

of a basic-level advantage with the sensorimotor-linguistic prediction that representational 

overlap, not taxonomic level, is more important to categorisation. In a forced-choice 

categorisation task using labels only, participants decided between a basic- (e.g., dog) and 

superordinate-level label (e.g., animal) for a target object label (e.g., Labrador). While basic-

level labels were overall chosen faster and more frequently, an exploratory analysis suggested 

that basic-level categorisation was slowed down when sensorimotor-linguistic overlap was 

greater between the target object label and the superordinate label. Chapter 4 describes the 

collection of a normed set of 800 photographs of 200 natural objects and artefacts, and their 

most frequent names. An exploratory analysis of the object recognition latencies associated 

with each photograph found that word frequency and length averaged over all names given to 
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an image predicted object recognition time better than the word frequency and length of the 

most frequent response. Chapter 5 reports a study that used the images and names collected in 

the study reported in Chapter 4, and examined the role of sensorimotor and linguistic 

distributional information in an ultra-rapid object categorisation paradigm with backwards 

masking. This study found evidence for the effect of linguistic distributional on sensorimotor 

information on categorisation accuracy, but not RT, nor was there a systematic relationship 

between perceptual processing time and sensorimotor-linguistic information.  

In summary, the findings presented in this thesis provide support for a novel account 

of object categorisation based on sensorimotor and linguistic distributional representational 

overlap between category and member concepts.  
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Chapter 1: A Review of the Categorisation Literature 

Categorisation is fundamental to human perception, cognition, and language (Lakoff, 1987). 

Without categories, every object or event would be unique to us (E. E. Smith & Medin, 

1981), leaving us overwhelmed by their sheer number and diversity. Instead, our ability to 

categorise greatly reduces the complexity of the world we perceive (Rosch, 1978), by 

grouping together and labelling those objects that we consider to be similar (e.g., both of 

those furry, four-legged objects are dogs) or distinguishing between objects that we think are 

not (e.g., the object on the left is a dog, but the object on the right is a sheep). Object 

categorisation allows us to infer information about previously unseen objects (the dog is a 

pet, the sheep is livestock), as well as allow us to evaluate possible interactions with them 

(e.g., if I throw a ball, the dog might fetch it; the sheep will not) and communicate about them 

to others (e.g., ‘look, it’s a dog’).  

Theories of object categorisation aim to answer a number of key questions. For 

example, by what mechanism do we group together some objects but not others? How do we 

determine that something (e.g., a Labrador) is like something else (e.g., a spaniel)? How do 

we judge that ducks and Labradors are sufficiently alike to both be animals, but not 

sufficiently alike to both be dogs? How is information about groups of objects (e.g., dogs) 

and their relationships with other groups of objects (e.g., birds) stored in semantic memory? 

Is there a relationship between the way we perceive objects and the way we represent them as 

concepts? If so, what are the building blocks that underpin both object-object and object-

concept similarity?  

These questions illustrate the close relationship between explanations of object 

categorisation and assumptions about conceptual representation. To explain one 

(categorisation) you need an idea about the other (conceptual representation); to explain that 

both Labradors and spaniels are dogs, one would need to account for the way dogs, 

Labradors and spaniels are represented in semantic memory. Therefore, to discuss theories of 

categorisation is to discuss theories of conceptual representation and the organisation of 
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semantic memory. However, recent theories of conceptual representation have not 

explicitly addressed categorisation behaviour.  

Traditional accounts of categorisation assume that instances and concepts may be 

deconstructed into perceptual and functional features1 (e.g., has wings, can fly, lays eggs, 

etc.), and that categorisation of a given instance (e.g., a furry four-legged creature that barks) 

involves a comparison between features that are observed in the instance (e.g., has fur, has 

four legs, barks) to those stored in semantic memory with a given concept (e.g., dog or bird). 

However, traditional accounts differ in the way they believe categories are represented in 

semantic memory, and consequently, by what mechanism a feature-comparison results in a 

category decision. The definitional or classic view suggests that categories are represented in 

semantic memory as a collection of features that are necessary and jointly sufficient to 

describe it. By contrast, prototype theory assumes that categories are represented by the 

central tendency of their features; a summary of features common to a category (Posner & 

Keele, 1968; Rosch, 1973; Rosch & Mervis, 1975). Alternatively, exemplar theory suggests 

that categories are represented as a set of previously encountered instances of a category. 

According to traditional accounts then, categorisation is the process of verifying that an 

instance possesses either all of a category’s necessary and sufficient features (definitional 

view), possesses a sufficient degree of features common to the category (prototype theory), or 

matches the features of previously observed category exemplars (exemplar theory).  

Feature-based theories make assumptions about the manner in which concepts are 

represented in our minds, which are, by definition, impossible to test directly. Therefore, a 

key focus of traditional categorisation research has been to explain human categorisation 

behaviour. Two key effects have drawn a significant portion of attention: taxonomic effects 

and (proto-) typicality effects (hereafter, described as ‘typicality’). Taxonomic effects concern 

the apparent variation in preference people have for categorisation at various levels of 

 
1 For the purpose of this work, the definition of feature is that of E.E. Smith and Medin 

(1981), and encompasses sets of binary and discrete features as well as dimensions, which may be 
perceptual (e.g., has wings) and functional (e.g., can fly) in nature.  
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abstraction (e.g., categorisation of a particular furry, four-legged animal as Labrador, dog 

and animal), referred to as the vertical dimension of category structure (Rosch, 1978).The 

most prominent of these effects is the basic-level advantage (Rosch, Mervis, et al., 1976), 

which refers to an increased ease of categorisation for categories of an intermediate level of 

abstraction (e.g., dog, fish, car). Typicality effects meanwhile pertain to a varying ease of 

categorisation for different members of the same category (e.g., robin, and ostrich as 

members of the category bird), depending on their degree of exemplariness (e.g., robin is 

judged as a better example of a bird than an ostrich, which affects categorisation speed and 

accuracy; Rips et al., 1973). Typicality effects have been argued to reflect the graded 

structure categories may have, and are referred to as the horizontal dimension of categories 

(Rosch, 1978). 

  However, in contrast to feature-based theories, more recent accounts on conceptual 

processing argue that concepts do not consist of discrete and binary features, but rather 

comprise a combination of sensorimotor information (i.e., perception-action and affective 

experience of the world) and linguistic distributional information (i.e., information about the 

statistical distribution of words in language; (Barsalou et al., 2008; Connell & Lynott, 2014; 

Louwerse, 2011). Crucially, although some influential accounts (e.g., Rosch, 1978) argued 

against the notion that categorisation effects reflect conceptual structure, all theories of 

categorisation make assumptions about underlying conceptual structure in some shape or 

form. The inverse cannot be said for recent theories of conceptual processing. That is, while 

these theories make explicit assumptions about the organisation and nature of conceptual 

representations in semantic memory, they have largely not yet addressed what these 

assumptions mean for long-standing accounts of behavioural effects in object categorisation, 

such as taxonomic effects (e.g., basic-level advantage) and object typicality.  

The aim of this thesis is therefore to critically evaluate the core tenets of traditional 

feature-based accounts of object categorisation, but also to propose and test a theory of object 

categorisation that is in line with modern sensorimotor-linguistic accounts of conceptual 
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processing. In particular, the aim is to test whether categorisation behaviour – specifically, 

observable effects of taxonomic level and typicality – can be explained by measuring the 

degree of overlap in sensorimotor experience and linguistic distributional knowledge that is 

activated by a given instance in visual or verbal format (e.g., a photograph of a Labrador or 

the label Labrador) and a given category name (e.g., dog, animal or Labrador) across a range 

of categorisation tasks. The studies presented in this thesis are, to my knowledge, the first to 

explore this hypothesis, and make use of state-of-the-art measures of sensorimotor (e.g., 

Lynott et al., 2020) and linguistic distributional information (Wingfield & Connell, 2019).  

 

1.1. Key effects in object categorisation: effects of taxonomic level and typicality 

The mechanisms that are assumed to underly object categorisation and the 

representation of categories in semantic memory are hard or even impossible to observe. As a 

consequence, hypotheses about their nature must be tested by observing human categorisation 

behaviour. Of the various behaviours that research has associated with feature-based object 

categorisation, none have received more attention than  taxonomic (e.g., Corter & Gluck, 

1992; Jolicoeur et al., 1984; Markman & Wisniewski, 1997; Mervis & Crisafi, 1982; Murphy 

& Brownell, 1985; Murphy & Smith, 1982; Rogers & Patterson, 2007; Rosch et al., 1976; 

Tanaka & Taylor, 1991) and typicality effects (Armstrong et al., 1983; Hampton, 1998; 

Murphy & Ross, 2005; Rips et al., 1973; Rosch, Simpson, et al., 1976; Rosch & Mervis, 

1975). Because of this, these effects form a robust basis to contrast feature-based 

explanations of categorisation with a sensorimotor-linguistic account.  

The taxonomic effect follows from the notion that any given object may be 

categorised at multiple levels of abstraction (cf. Rosch, 1978). For example, a furry, four-

legged object may simultaneously be a member of the categories Labrador, dog, animal, and 

living thing. These categories may be organised taxonomically: placed vertically along an 

axis of abstraction and inclusiveness (see figure 1), whereby members of each category are 

included in all categories that are more abstract (e.g., Labradors are dogs which are animals). 
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Crucially, while categorisation at any of these levels of abstraction is perfectly possible, 

researchers have observed that people generally prefer to categorise objects at an intermediate 

level of abstraction referred to as the basic level (e.g., dog) compared to more specific (i.e., 

subordinate) or abstract levels (i.e., superordinate). In an extensive series of experiments, 

Rosch et al. (1976) demonstrated that categorisation at the basic-level yields faster and more 

accurate responses in category-verification tasks, but also that basic-level categories are more 

frequently named in category production tasks, and that members of basic-level categories 

have the most similar shapes. Rosch et al. (1976) also argued that members of basic-level 

categories are learned and recognised earliest by children, although this particular finding has 

been contended (Mandler & Bauer, 1988; Mandler & McDonough, 2000).  

 

Figure 1.  

Example of the vertical dimension: categorisation of Labrador at three inclusive levels of 

abstraction.  

  

 

Crucially, however, research has also uncovered a range of circumstances under 

which people seem to favour categorisation at taxonomic levels other than the basic level. For 

example, object typicality has been shown to interact with taxonomic level in predicting 

response times and accuracy in category-verification tasks (Jolicoeur et al., 1984; Murphy & 
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Brownell, 1985). That is, atypical items are categorised faster and more accurately at the 

specific subordinate level, whereas typical items display the basic-level advantage. Similarly, 

categoriser-expertise has been shown to reduce the advantage of the basic level over the 

subordinate level (K. E. Johnson & Mervis, 1997; Tanaka & Taylor, 1991). For example, 

Tanaka and Taylor (1991) found bird and dog experts are roughly equally as good at 

categorising objects from their area of expertise at the specific subordinate level (e.g., robin, 

jay, cardinal) as they are at categorising them at the basic level (e.g., bird). By contrast, 

research has found that a superordinate-level advantage occurs when people have limited 

time to perceive an object (Bacon-Macé et al., 2005; Mack et al., 2008; Mack & Palmeri, 

2015). That is, people are faster and more accurate to decide that a rapidly flashed image 

contains an animal than they are to decide that it contains a dog or bird. Similarly, 

superordinate-level categorisation performance approaches basic-level performance when 

categorisation takes place in context (Murphy & Wisniewski, 1989).  Finally, research into 

the effects of semantic impairment on categorisation show that superordinate-level 

categorisation is typically affected less than basic-level or subordinate-level categorisation 

(Rogers & Patterson, 2007). As a consequence, for the purpose of this thesis, the term 

‘taxonomic effects’ is used to refer to a range of behavioural effects linked to classification at 

various levels of abstraction, of which the basic-level advantage is the most prominent 

example.  

If taxonomic effects refer to the vertical dimension of categories, typicality effects 

pertain to a horizontal dimension of categories (Rosch, 1978). That is, where taxonomic 

effects concern performance differences for the categorisation of the same object at various 

levels of abstraction, prototypicality effects concern performance differences for the 

categorisation of different objects within the same category (Rips et al., 1973; Rosch, 

Simpson, et al., 1976) For example, while robins, toucans, ostriches, and penguins can all be 

categorised as birds, people may, when queried, judge some of these objects as more typical 

of that category (e.g., robin) than others (e.g., ostrich). Typicality is not equal to degree of 
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membership. While emus are less typical birds, they are nonetheless considered to be birds 

(Hampton & Jönsson, 2012). As for the effects of taxonomic level, typicality effects are 

expressed in faster response times and higher accuracy in object categorisation tasks for 

objects with higher subjective typicality ratings (Armstrong et al., 1983; Rips et al., 1973; 

Rosch, 1973; Rosch, Simpson, et al., 1976; Rosch & Mervis, 1975; E. E. Smith et al., 1974) 

(Armstrong et al., 1983; Rips et al., 1973; Rosch, 1973; Rosch et al., 1976b; Rosch & Mervis, 

1975; E.E. Smith et al., 1974). For example, Rips et al. (1973) found that the time people 

took to verify category membership depended on the rated semantic distance between a given 

object and the category. 

Figure 2.  

Object typicality in prototype theory, showing differences in exemplariness for typical and 

atypical members of the category bird. Atypical members share fewer features with the 

category as a whole, represented by the prototype.  

 

 

Taxonomic and typicality effects are well-documented behavioural effects in object 

categorisation, that have proved to be a valuable testbed for broader theories of categorisation 

and conceptual representation. However, the most influential explanations of these effects are 

rooted in feature- and/or network-based accounts of conceptual representation and semantic 

structure, which will be outlined below. However, views on conceptual representation have 

changed considerably, and therefore existing explanations of categorisation and its most 

prominent behaviours (e.g., taxonomic and typicality effects) may require re-evaluation.  
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1.2. Traditional accounts of categorisation 

Traditional explanations of key behavioural effects in object categorisation are closely 

tied to accounts of categorisation and conceptual representation. These accounts include the 

classical or definitional view, network accounts (e.g., Collins & Loftus, 1975; Collins & 

Quillian, 1969) and feature-similarity accounts such as prototype (Posner & Keele, 1968; 

Rosch & Mervis, 1975) exemplar theory (Brooks, 1978; Medin & Schaffer, 1978; Nosofsky, 

1986; Nosofsky & Palmeri, 1997) and theory-theory (Medin, 1989; Murphy & Medin, 1985; 

Murphy & Spalding, 1995; Wisniewski & Medin, 1994) which are briefly reviewed here. 

These theories are united by the assumption that objects and representative concepts comprise 

features, which serve as the basis for computation and comparison of the similarity between 

objects and concepts. A short overview of each theory, followed by an examination of the 

extent to which it can explain taxonomic and typicality effects, is provided below. 

 

1.2.1. The definitional view 

Thinking about categorisation and concepts can be viewed as an iterative process, 

which starts from a straightforward idea and gradually grows more complex as attempts are 

made to account for a wider range of human behaviour. This iterative process begins with the 

classical or definitional view of categories and their representation in semantic memory (see 

Komatsu, 1992; Laurence & Margolis, 1999; Murphy, 2002; E.E. Smith & Medin, 1981; for 

reviews). The definitional view is not an explicit theory, but rather refers to the scientific and 

philosophical consensus at the time alternative views such as prototype and exemplar theory 

were developed.  

Before addressing the definitional view’s perspectives on taxonomic and typicality 

effects (or lack thereof), it is important to outline its key assumptions. E.E. Smith and Medin 

(1981) describe these as follows:  

1. Concepts are represented through an abstracted feature summary, which does not 

need to correspond to a specific instance. E.E. Smith and Medin argue that one of 
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the key functions of a concept is to summarise knowledge about the features 

that it is typically associated with (e.g., the concept dog is associated with the 

features has four legs, has a tail, barks), which is then used to categorise 

previously unseen entities (e.g., if has four legs, has a tail and barks, then it is a 

dog), or conversely to infer information about an entity which we cannot perceive 

(e.g., if it is a dog then it must have four legs, have a tail and bark).  

2. The features that represent a concept are ‘singly necessary and jointly sufficient’ 

to define a concept.  

3. In subset relations between concepts (e.g., dog may be regarded as a subset of 

animal) defining features of the more abstract concept are nested in those of the 

more specific concept (e.g., the features of animal are nested in those of dog).  

Rey (1983) adds an implicit fourth assumption: having a concept means knowing its 

defining features, while Murphy (2002)  also notes that the definitional view does not 

differentiate between members of the same category.  

The definitional view held strong appeal as a theory of categorisation and concept 

acquisition and representation. For example, on this account, concepts are acquired by storing 

features which have been observed to correlate in the environment (Laurence & Margolis, 

1999) - a notion that was in fact carried forward to later influential feature-based accounts 

(e.g., Rosch, 1978). Categorisation then is thought to be a matter of verifying that an object 

satisfies the features stored under the concept; category members are grouped together 

because they share a particular set of features with one another, but not with objects outside 

of the category. As such, in the definitional view, concept membership is clearly defined and 

discrete (Komatsu, 1992). This means that only if a concept possesses all a category’s 

necessary and sufficient features it is a member, otherwise it is not (e.g., if an object has four 

legs, has a tail but does not bark, then it cannot be a dog). These clear definitions for a 

concept, that fall apart into separate, discrete features, are extremely valuable for logical 

reasoning about concepts. For example, as Armstrong et al. (1983) illustrate, it explains 



 21 
compositional meaning, or how the meaning of a phrase and a word can be synonymous 

(e.g., “A barking, four-legged creature with a wagging tail” and dog), as the linguistic 

components of the sentence map directly onto the feature list stored in semantic memory 

under the concept dog. Furthermore, the definitional view offers a potential explanation for 

complex concepts, whereby the meaning of a complex concept (e.g., guard dog) is derived 

from the definitions of the simpler sub concepts (e.g., guard and dog). While the definitional 

view is compelling in its simplicity, it has several issues that make it difficult to accept as a 

plausible model of conceptual processing and categorisation.  

1.2.1.1 Can the definitional view explain taxonomic effects? 

The definitional view does not have an explicit explanation for taxonomic effects. 

This is partially for historical reasons; the basic-level advantage was first extensively 

documented in the mid-seventies (e.g., Rosch, Mervis, et al., 1976) by which point alternative 

theories of object categorisation were being developed (e.g., Posner & Keele, 1968; Rosch, 

1973). When looking at the core principles of the definitional view as outlined in E.E. Smith 

and Medin (1981), one might conclude that the definitional view does not predict a basic-

level advantage at all, although it might predict an advantage of near-superordinates over far 

superordinates (Medin & Smith, 1984) . That is, on the definitional view, a given subset 

category (e.g., Labrador) comprises the defining features of Labrador plus the defining 

features of its near superordinate (e.g., dog) as well as those of superordinates that are further 

removed (e.g., mammal, animal). As a result, Labrador shares more of its features with its 

nearer superordinates (e.g., dog) than it does with its far superordinate (e.g., animal; see table 

1). From this follows the prediction that individuals should be better at judging whether a 

Labrador is a dog than whether a Labrador is an animal. In this example, that would result in 

some form of processing advantage of the basic dog over the superordinate mammal and 

animal. However, following this logic means it is not a particular taxonomic level that is at an 

advantage, i.e., that there is always an advantage of the nearer over the further category. In 

other words, people should also be faster to judging that a dog is a mammal than judging it is 
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an animal. However, research has shown that people are not consistently better at judging 

membership of near compared to far superordinates. For example, Roth and Mervis (1983) 

showed that participant ratings of goodness of example for various animal exemplars were 

not consistently higher for their near superordinates than for their far superordinates (e.g., 

chicken was rated as a worse example of bird than of animal). In summary, no explicit 

definitional account of the basic-level advantage exists. Furthermore, the taxonomic effects 

that a definitional view might predict are not mirrored in the behaviour of subjects in 

goodness-of-example tasks (Roth & Mervis, 1983; E.E. Smith et al., 1974) .  

Table 1. Illustration of defining features shared between near and far superordinates 

according to a definitional account.  

Concept Defining features Features in common with 
near superordinate 

Features in common with far 
superordinate 

Animal A, B - - 
Mammal A, B, C, D 2 - 
Dog A, B, C, D, E, F 4 2 (animal) 
Labrador A, B, C, D, E, F, G, H 6 2 (animal) 4 (mammal) 

 

1.2.1.2 Can the definitional view explain effects of typicality? 

The definitional view offers no explanation for the graded structure of categories 

(Hampton, 1993; Komatsu, 1992) as expressed by typicality effects. An implicit assumption 

of the definitional view is that because membership is discrete, identified members are all 

equal within their category. However, this assumption is contrasted by the fact that when 

queried, participants are readily prepared to rate category members as better (typical) or 

worse examples of their respective category. As described above, previous research regarding 

object typicality (Rips et al., 1973; Rosch, 1973; Rosch & Mervis, 1975) revealed distinct 

asymmetries in the representativeness of category members of their categories (e.g., ostriches 

and penguins are judged to be less representative of bird than robins or sparrows). Vitally, 

typicality ratings predict object categorisation speed and accuracy, with a processing 

advantage for typical over atypical items (Jolicoeur et al., 1984; Murphy & Brownell, 1985; 

Rosch, Simpson, et al., 1976). While Rosch (1978) stresses that such prototype effects do not 
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necessarily reflect category structure, they have been taken to reflect a fundamental 

weakness in the definitional view, because it cannot readily explain performance differences 

within a category.  

Moreover, the finding that categories have a graded structures has led some 

researchers to question what that would mean for its boundaries (McCloskey & Glucksberg, 

1978). In the definitional view, a category’s boundaries are discrete. Objects either do, or do 

not belong to the category. However, if the structure of a category can be expressed as a 

typicality spectrum, it is possible that category members on the lower end of that spectrum 

are less strongly linked to the category, for example because they share features with multiple 

categories (e.g., certain amphibian cars straddle the line between car and boat). Indeed, 

research has shown that judgments of category-membership differ not only between 

participants, but also within the same participant when asked to categorise an object at 

different points in time (McCloskey & Glucksberg, 1978), suggesting that the boundaries 

between categories may be fuzzy rather than clearly defined, as the definitional view would 

argue. 

1.2.1.3 Other limitations of the definitional view 

As Wittgenstein (1958) highlighted, for many instances of a concept, it can be hard or 

even impossible to produce a set of defining features for a given category. For instance, both 

chess and Pacman are members of the category games, but it is not clear what set of features 

sufficiently describes both these instances. This is supported by research which has shown 

that people do not consistently generate a set of defining and sufficient features for every 

concept (Hampton, 1979, 1981). Crucially, this not only conflicts with Rey’s (1983) 

assumption that to have a concept means to know its defining features, but also begs the 

question why, if all concepts are defined by a set of necessary and sufficient features, do 

people fail to reliably produce such a set? By contrast, E.E. Smith and Medin (1981) note that 

the notion that a set of necessary and sufficient features cannot be determined for every 

concept does not mean such a set does not exist, simply that we have not yet determined it, or 
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are looking for the wrong kind of features (e.g., perceptual rather than functional features). 

Furthermore, during tasks that require feature listing, participants may suppress features that 

could be defining, but are redundant (e.g., living thing, physical object, or cross between two 

dogs for dog), in favour of naming those they believe to be more characteristic (e.g., barks; 

Armstrong et al., 1983). As such, feature listing tasks may not reflect the full scope of 

features associated with a concept, falsely giving the impression that defining features do not 

exist. 

In summary, the definitional view offers straightforward explanations for concept 

acquisition (i.e., concepts are constructed by observing features that co-occur naturally), 

representation (i.e., concepts are represented by a set of features that are necessary and jointly 

sufficient to define it), and categorisation (i.e., categorisation is the process of verifying that 

an object possesses all necessary and sufficient features defined within a concept). 

Nevertheless, the definitional view is unable to account for certain aspects of human 

behaviour – crucially, there is inconsistency in goodness of example at various taxonomic 

levels) and no explicit explanation for taxonomic processing advantages (i.e., the basic-level 

advantage) nor for typicality effects, or the lack of consistency in categorisation between 

people and at different time points. The discovery of these effects contradicts the assumption 

that clearly defined categories exist, which is further supported by the difficulty in 

determining necessary and sufficient features. As a result, the definitional view is too 

constrained to serve as an adequate theory of concepts and categories. 

The failure of the definitional view to account for typicality (e.g., Rips, Shoben & 

Smith, 1973; Rosch & Mervis, 1975) and taxonomic effects ((Jolicoeur et al., 1984; Murphy 

& Brownell, 1985; Rosch, Mervis, et al., 1976) led researchers to develop alternatives that 

subsequently formed the main tenets of traditional accounts of object categorisation such as 

prototype, exemplar, and related theories such as theory-theory. However, much of the core 

principles of the definitional view have been carried forward to these subsequent theories.  
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1.2.2. Associative network models 

The definitional view supposes that semantic memory is like a dictionary, where each 

concept is paired with a feature-definition. However, in addition to the issues outlined above, 

it is not immediately clear how such a system could support the enormous amount of 

variation in concepts in a conceptual system with limited resources. For example, while the 

definitional view allows for nested categories (i.e., in subset relations, features of the more 

abstract concept are nested in that of the more concrete concept), there are quite a few 

exceptions to this (e.g., the feature can fly could be associated with the concept bird, and 

should therefore generalise to all of its subset categories – but what about penguins and 

ostriches?). Moreover, what about concepts that are not simple noun concepts (e.g., the birds 

in my garden, things I would take from my house in case of a fire)? How are all these 

concepts stored?  

One possible answer to this question comes in the form of spreading activation theory 

(Collins & Loftus, 1975; Collins & Quillian, 1969), which argues concepts and their 

properties may be represented in semantic memory as a network of nodes, with links (edges) 

of varying strength depending on the frequency with which they are accessed. Network 

models testing spreading activation theory aimed to account for differences in processing 

speed, such as the finding that people take longer to verify statements such as robin is an 

animal than statements such as robin is a bird. Crucially, the concept of cognitive economy is 

introduced, whereby properties of related concepts are generally (but not always; Collins & 

Loftus, 1975) stored at the highest possible level of abstraction, and may be generalised to 

subordinate categories. Importantly, subordinate concepts may modify inherited properties, if 

they are linked to a modifying property (e.g., bird may be linked to the properties has wings 

and can fly, which are inherited by robin, adding red breast and sings, but modified by 

ostrich, which is associated with a modifying property: cannot fly).  That is, in learning 

category concepts with subset relations (e.g., learning that robin is a bird) properties of bird 

are generally not stored again with robin, except if they are highly indicative of a concept 
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(e.g., according to Collins & Quillian, has leaves may be stored with tree, but some aspects 

of has leaves may also be stored at the subordinate maple tree, as its leaves are characteristic 

of this tree).   

In network models, similarity between concepts is determined by the property links 

they share. Activation of a given concept (e.g., vehicle) spreads to other concepts via 

connected nodes. For example, activation of vehicle results in the activation of taxi and fire 

engine via property links (e.g., has wheels, has combustion engine, can be driven).  The 

strength of their association depends on the number of links they have in common, as well as 

on what Collins and Loftus (1975) name the criteriality of the link (i.e., how essential a 

linked property is to a given concept). In categorisation, the decision whether a concept 

matches another concept involves a search of semantic memory, checking whether there exist 

connections either between the concepts themselves (i.e., superordinate ISA connections such 

as robin-bird) or between the features they possess, where shared features with higher 

criteriality for one of the concepts constitutes stronger evidence for their similarity (e.g., can 

fly could be considered highly essential for birds, if a concept possess the feature can fly, this 

constitutes strong evidence that it is a bird). Evidence may also be negative (i.e., bat is not a 

bird). Because of the way they link concepts to a specific set of properties, network models 

could be considered to be definitional. However, in also allowing direct links between 

concepts (i.e., superordinate ISA links, such as Labrador is a dog), network models allow 

categorisation to be possible even when defining properties are not known (e.g., sponge is 

linked to animal through a superordinate link, for example because we are taught that 

sponges are animals, even if it is hard to determine what properties of sponge make it an 

animal). As such, network-models may circumvent some of the issues with the definitional 

view.   

1.2.2.1 Can network models explain taxonomic effects? 

The best-known explicit interpretation of spreading activation theory and its role in 

taxonomic effects assumes that the time it takes to categorise an object (e.g., is a Labrador an 
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animal) is proportional to the time it takes for activation to spread from the Labrador node 

to the animal node in semantic memory (Jolicoeur et al., 1984). On this account, basic-level 

concepts correspond to the most common entry-points into a taxonomically structured 

semantic memory. The delays in categorising objects at the superordinate and subordinate 

compared to the basic level stem from the time it takes activation to spread through the 

network from the initial basic-level node. The interaction between typicality and taxonomic 

level (i.e., subordinate-level advantage for atypical items) is subsequently explained as an 

entry-level shift, whereby for atypical items, the network is entered at the subordinate level 

(e.g., Labrador) as opposed to the standard basic-level (e.g., dog).  

However, this account is seemingly contradicted by findings in patients with semantic 

dementia (Hodges & Patterson, 2007; Rogers & Patterson, 2007; Warrington, 1975). 

Semantic dementia patients exhibit gradual deterioration of semantic memory secondary to 

the destruction of anterior temporal lobes (Patterson et al., 2007). Rogers and Patterson 

(2007) showed that patients with semantic dementia show a reversal of the expected effect 

described previously. Although healthy individuals categorise fastest at the basic level as 

opposed to the superordinate, semantic dementia patients appear to have lost the ability to 

categorise objects at the specific subordinate and basic-levels, but have retained the ability to 

categorise at the abstract superordinate level. If the basic-level is the standard entry-point into 

a hierarchically organised network, and superordinate-level categorisation is impossible 

without the basic level, these findings cannot be explained. Moreover, the basic-level as 

entry-point only works if semantic memory is assumed to be organised hierarchically, and if 

semantic search only spreads in one direction (i.e., from the entry point upwards or 

downwards). However, even early network accounts have argued that in a typical 

categorisation paradigm (e.g., determining whether Labrador is a dog), activation runs in 

parallel from both the member and the category, with the only difference being that Labrador 

is activated slightly earlier than dog (Collins & Loftus, 1975), and that semantic memory is 
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not rigidly hierarchical. As such, explanations based on network-models must ignore the 

way in which network-models themselves argued conceptual processing would occur.  

1.2.2.2 Can network models explain typicality effects? 

Object typicality effects (i.e., faster categorisation for objects that are rated as better 

examples of their respective categories) could be explained from network models by referring 

to the manner in which evidence accumulates in the model. That is, when determining 

whether a concept is similar to another concept, which is argued to be the basis for 

categorisation, the links between those concepts and their properties are investigated. For 

example, concepts may have superordinate links (e.g., robin is a bird) as well as property 

links (e.g., robins have wings). For concepts that have a superordinate link, distinguishing 

features may slow down the process of categorisation (Collins & Loftus, 1975). For example, 

when determining whether an ostrich is a bird, the evidence from the superordinate link 

between ostriches and birds is countered by the distinguishing feature cannot fly, which is 

atypical of birds, thus slowing down decision-making.  

While network models have remained relevant to research into cognitive 

representations (see Kumar, 2021; Siew et al., 2019; for reviews), they have not been applied 

extensively to the categorisation behaviours discussed here, and their recent developments 

fall largely outside of the scope of this work. Crucially, network-models were a notable 

attempt at operationalising assumptions about categorisation that are broadly in line with the 

definitional view on categorisation, as well as a mechanistic account of some behavioural 

effects in categorisation. Moreover, the work by Collins and Quillian formed a springboard 

for later connectionist models of categorisation and semantic memory(e.g., McClelland & 

Rogers, 2003; Rogers & McClelland, 2004; Rumelhart & Norman, 1988), a number of which 

are relevant to the current work, and will be discussed in section 1.3.1. 
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1.2.2.3 Early responses to network and definitional accounts 

A weakness of the definitional view is that it is hard to produce a set of necessary and 

defining features for every concept (cf. Wittgenstein, 1958). Network models circumvented 

this issue by allowing for superordinate links (e.g., learning that Labradors are dogs). 

However, where network models expressed the likeness of concepts as evidence summed 

over their various connections, a second influential group of theories chose a different 

measure: feature similarity. Like the definitional view, feature similarity accounts argue that 

concepts comprise values on a large set of binary features (e.g., has wings, can fly) and 

dimensions (e.g., size, weight). However, where feature-similarity accounts deviate is the idea 

that all of a concepts’ features and dimensions must be jointly sufficient and necessary.  

An early iteration of this view draws a clear distinction between defining and 

necessary features (E.E. Smith & Medin, 1974). On this account, categorisation is a multi-

stage process, whereby first all features of a given instance (e.g., robin) and category (e.g., 

bird) are extracted and compared, to determine the number of features that are shared (e.g., 

has wings, can fly), and the similarity of the values for each feature (e.g., comparable size). If 

the resulting similarity surpasses a predetermined threshold, an instance may be rejected or 

accepted as a member of the category (e.g., accepting the statement a robin is a bird). When 

similarity cannot be clearly determined in this first stage, a second comparison between the 

instance and category is required, this time focusing only on their defining features (e.g., the 

characteristic-defining model retains the core of the definitional view, with discrete category 

boundaries and a (partial) reliance on features that are jointly sufficient and necessary – 

defining – to determine category membership). However, as Hampton (1979) illustrates, it 

also inherits some of the definitional view’s flaws, in that for some categories, defining 

features cannot be specified, and that the defining-characteristic distinction contrasts with 

McCloskey and Gluckberg’s (1978) finding that category boundaries may not be discrete. 

Consequently, Hampton argues that features should not be treated as dichotomous (defining 

vs. characteristic), and that category membership might be defined as the degree to which an 
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object shares features with the category of features an object, without making the 

possession of one or more features an absolute requirement for category membership. It is 

this very notion that also forms the basis of one of the most influential feature-similarity 

theories of object categorisation: prototype theory. 

 

1.2.4. Prototype theory 

Prototype theory was devised as an answer to the definitional view’s apparent 

inability to explain categories with graded structure, whereby category membership was not 

an all or nothing process. Evidence for this graded structure came from behavioural studies 

showing typicality effects (Rips et al., 1973; Rosch, Simpson, et al., 1976) and mathematical 

work (Zadeh, 1996) suggesting categories may have fuzzy boundaries (i.e., have members 

that share features with more than one category in equal measure; McCloskey & Glucksberg, 

1978). While different versions of prototype theory exist – making prototype theory a 

prototypical concept (Geeraerts, 2016) - a key aspect of any iteration of prototype theory is 

the notion that category members need not share all their characteristics. It is important to 

note that while prototype theory departs from the definitional view, it retains many of its key 

components, such as the idea that categorisation is the process of matching observed features 

to an internally stored feature summary, as well as the idea that categories may be related to 

one another taxonomically. In leaving definitions behind, however, prototype theory needs to 

account for what holds categories together. If objects within a category are allowed not to 

share every feature, then how are they related?  

To allow for category members to be related but not defined by a single set of 

necessary and sufficient features, prototype theory adapts Wittgenstein’s idea (1958) that 

concepts may be related to one another by means of family resemblance. This is the idea that 

feature characteristics are distributed unevenly among category members, and some members 

share more of the characteristics typical of the category than others. Contrasting the necessary 

and sufficient features of the definitional view, prototype theory requires only that a feature 
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occurs more than once within a given category (Komatsu, 1992). Family resemblance, as a 

measure of category membership, may be defined either as an object’s similarity to all other 

category members (e.g., how many features a Labrador shares with other dogs), or as an 

object’s similarity to the central tendency or summary of the features that usually occur 

within the category (Hampton, 1979; Posner & Keele, 1968; Reed, 1972; Rosch & Mervis, 

1975) 

 While these interpretations functionally yield the same outcome (Barsalou, 1985; 

Komatsu, 1992), the latter emphasises the relationship between a conceptual representation 

(e.g., the feature summary of the category dog) and observed object (e.g., the Labrador), and 

is the central assumption of prototype theory. As a result, according to prototype theory, 

categorisation is the process of determining an instance’s similarity to the prototype, and of 

comparing the features observed in the instance to the prototype feature summary stored in 

semantic memory (e.g., has wings, bipedal, has a beak), until a sufficient degree of evidence 

has been gathered to either accept the instance as a member or to reject it as a non-member.  

In prototype theory, similarity to the prototype is defined as the number of 

prototypical features (weighted by their importance; Tversky, 1977) an object possesses 

(Hampton, 1993; Rosch, Simpson, et al., 1976; Rosch & Mervis, 1975). The more 

prototypical features an object possesses, the more similar it is to the prototype and the more 

likely it is that it is a member of the category. Crucially, this begs the question of what 

determines feature importance. On one influential account (Rosch & Mervis, 1975), feature 

importance may be derived from the proportion of category members that possess a given 

feature (i.e., cue validity). If the combined weight of features an object possess exceeds a 

particular threshold (i.e., the membership threshold; Komatsu, 1992), an object may be 

considered to be a member of the category. However, later work suggested cue-validity was 

an imperfect measure of similarity-based membership (e.g., Murphy, 1982), in particular 

because it did not accurately predict a basic-level advantage.  
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Prototype theory has remained relevant as a theory in categorisation. Its alternatives 

(outlined below) are either too complex (in the case of exemplar theory) or vague (in the case 

of theory-theory) and are therefore not as widely used as an explanation of categorisation. As 

such, prototype theory is still the topic of research, either in its own right or as the baseline 

against which alternatives (e.g., exemplar models) are compared (e.g., Minda & Smith, 2001; 

Nosofsky & Stanton, 2005; J. D. Smith, 2014; J. D. Smith & Minda, 2000). It has been 

adapted in broader theories of conceptual processing, which focus on modelling reliance on 

prototype theory and its competitors in one conceptual system (Aerts et al., 2016; Voorspoels 

et al., 2008), and been referenced in various parallel fields such as cognitive linguistics (e.g., 

(Geeraerts, 2016), and healthcare psychology (Hofmann, 2017).  

1.2.4.1 Can prototype similarity explain taxonomic effects? 

Like the definitional view before it, prototype theory comes from a family of closely 

related ideas on the nature of conceptual representations, the process of determining 

similarity between objects and concepts, and various behavioural effects that confounded 

existing beliefs on the nature of categories. Prototype theory was closely tied to the discovery 

that categories varied along a horizontal dimension of typicality, and the effects this had on 

categorisation behaviour, although the relationship between explanations of taxonomic effects 

and prototype theory is less explicit. However, many influential explanations of varying 

categorisation as a result of taxonomic levels (Murphy & Brownell, 1985; Murphy & Smith, 

1982; Rosch, 1978; Rosch, Mervis, et al., 1976) are also deeply rooted in prototype theory’s 

underlying assumption that abstract feature summaries form the basis of conceptual 

representation. 

On influential explanation of the basic-level advantage assumes that features that may 

be perceived in the world are not distributed at random (Rosch, 1978), but rather that they can 

be perceived to occur more frequently in certain combinations than in others (e.g., has wings 

is more likely to co-occur with lays eggs than with has gills), forming a complex structure of 

related and unrelated features. On this view, categorisation at different taxonomic levels 
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refers to applying different ways of dividing up this ‘perceived world structure’ into 

representative and information-rich bundles, with the aim of being maximally informative 

and cognitively economical. Crucially, this account, also referred to as the differentiation 

account (Murphy & Brownell, 1985) assumes that categories differ in terms of the degree to 

which they maximise within-category feature similarity and minimise between-category 

feature overlap (e.g., within-category feature similarity is greater for dog than for animal, 

while between category-dissimilarity is greater between dog and bird than between Labrador 

and Golden Retriever). The basic-level, named for being the taxonomic level at which Rosch 

argued the most ‘basic’ cuts in the perceived world structure, is argued to be generally 

preferred not because it occupies a particular position in a hierarchically structured semantic 

memory, but because it is maximally differentiated from other categories at the same 

taxonomic level (Markman & Wisniewski, 1997; Murphy & Brownell, 1985; Murphy & 

Smith, 1982; Rosch, 1978; Rosch, Mervis, et al., 1976). That is, basic-level categories 

describe instances that are maximally similar within-category (e.g., instances of dog share 

many features with other dogs) while being maximally distinct between-category (e.g., dogs 

share few features with fish). By contrast, categories superordinate to the basic level are more 

abstract, and describe instances that are less similar within-category (e.g., animal describes 

dogs and fish), and between-category (e.g., instances of animal differ considerably from 

instances of vehicle). Meanwhile, categories subordinate to the basic level are more specific, 

and describe instances that are highly similar within-category (e.g., Labrador describes only 

a subset of four-legged, furry, medium-sized animals with wagging tails), but not very 

distinct between-category (e.g., Labradors share many features with golden retrievers).  

Another, related explanation of in particular basic-level advantages in category verification is 

Murphy and Smith’s (1982) preparation model. This is a process model of in particular label-

image verification, which assumes that a given category label may activate a particular 

feature-representation. This representation is subsequently verified upon seeing an image of 

an object. If the object is a clear match or mismatch, a decision is made. If the object is not a 
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clear match or mismatch, additional processing is required. Importantly, the preparation 

model assumes that superordinate-level categorisation is generally slower because there is no 

single perceptual representation of concepts at this level of abstraction (e.g., no single 

perceptual representation of animal), and requires more information to be active at the same 

time. The advantage over the subordinate model then is thought to stem from a higher 

membership threshold because of greater between-category similarity (e.g., the threshold for 

determining that something is a bird or a dog is lower than for determining whether 

something is a sparrow or a finch). 

As such, influential explanations of the basic-level advantage build on the same 

assumptions that underly prototype theory: categories map onto feature-clusters, not feature-

definitions, and similarity between objects and concepts may be determined by examining the 

features they share. As such, they inherit the same problem as all other feature-based 

accounts: they are increasingly contradicted by accounts of conceptual representation that 

argue concepts do not comprise discrete binary features and dimensions, but rather a 

combination of sensorimotor experience and linguistic distributional knowledge. However, 

mechanisms such as the ones proposed by preparation and differentiation accounts (Murphy 

& Smith, 1982; Murphy & Brownell, 1985) provide valuable insights and may still explain 

categorisation behaviour when feature-based representations are exchanged for sensorimotor-

linguistic representations.  

 

1.2.4.2 Can prototype theory explain typicality effects? 

Prototype theory was developed with a graded structure of categories in mind. As 

such, it is uniquely positioned to explain object typicality effects. The crucial point prototype 

theory makes about categorisation is that what binds category members is not a set of 

defining features, but rather the degree to which they resemble one another. Allowing 

category members to possess a varying number of the features common to their category 

neatly fixes the issues with the definitional view. Moreover, in this way it could be argued 
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that not only do categories map onto particular clusters of features, within those categories, 

members map onto further subdivisions within those clusters. That is, following on from 

Rosch’s (1978) explanation of taxonomic effects, object typicality may be explained as an 

extension of the same process: prototypes are abstractions of or members of categories that 

are maximally similar to other category members (i.e., maximise family resemblance) while 

also being maximally distinct from contrasting category members (e.g., within the category 

bird, robins share more features with other birds than ostriches, and share fewer features with 

contrasting categories). Furthermore, the more similar a given instance is to the prototype, the 

more typical it is of its category, and the easier it is to categorise it as a member of said 

category. Evidence for this explanation comes from studies showing people are better at 

learning patterns that are closer to a target prototype, as well as better at classifying typical 

compared to atypical category members (Rosch et al., 1975).  

However, several critical accounts have argued that prototype theory unjustly assumes 

that superficial typicality effects (e.g., Murphy & Brownell, 1985; Rips et al., 1973; Rips & 

Collins, 1993; Rosch, 1973; Rosch & Mervis, 1975) reflect a deeper category structure 

(Lakoff, 1987; Rosch, 1978). Prototype theory was conceived as a relaxation of the 

constraints from the definitional view, primarily based on the finding of typicality effects that 

affected categorisation performance and has taken similarity to the prototype to equal degree 

of membership. However, some researchers suggest that graded structure may not reflect a 

degree of membership (e.g., Lakoff, 1987). That is, while ostriches and penguins are rated as 

atypical birds, they are still considered to belong to the category bird, and therefore typicality 

cannot reflect the underlying categorical structure. While this example of a clearly defined 

category may be criticised2, it is supported by other work (Armstrong et al., 1983), which 

showed that participants were perfectly willing and able to assign typicality ratings to 

 
2 Lakoff’s example seems to imply that the biological category bird is in fact discrete, and 

membership of this category is constant. However, while this may currently be the case, the principles 
of evolution dictate that at some point, there may have been a bipedal, winged and feathered creature 
that straddled the boundaries between biological categories (e.g., bird and reptile, in the case of 
feathered dinosaurs). 
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instances of categories that have a clear definition (e.g., rating 7 as a more typical instance 

of the category odd number than 57). Armstrong et al. took this to mean that prototypicality, 

or ‘exemplariness’ is separate from category membership and indeed structure. Nevertheless, 

Hampton (1998) demonstrated a clear relationship between typicality ratings and the 

predicted probability of category membership, showing that participants in McCloskey and 

Glucksberg (1978) were more likely to decide an object belonged to a given category when it 

was rated as more typical.  

By contrast, Rips and Collins (1993) found that, as expected, typicality ratings 

correlated with distance to the category’s central tendency, but that membership rating 

correlated with frequency of instantiation (i.e., the number of times a given instance occurred 

in the distribution). Related to this, Barsalou (1983, 1985) found that the mechanisms for 

determining typicality in ad-hoc categories (i.e., goal-derived categories, constructed to 

achieve a goal, for example things to take on a holiday) differed from that in taxonomic (e.g., 

bird) categories. In taxonomic categories, similarity to the central tendency and frequency of 

instantiation proved to be the best measure of typicality, whereas in ad-hoc categories 

similarity to the ideal (i.e., the features an instance should have to serve a particular goal, 

such as fits in a suitcase for the ad-hoc category things to bring on holiday) proved to affect 

typicality judgments most. The finding that typicality and category ratings differ is a problem 

for prototype theory, which is built around the notion that category membership is determined 

by verifying similarity to the prototype (central tendency). Furthermore, it is not clear how 

this view can account for the typicality effects found in non-taxonomic categories. Finally, it 

is not immediately evident how the dimensional ideals (e.g., how happy people are to receive 

it as an ideal of birthday present; Barsalou, 1985) relate to the discrete features of prototype 

theory.  

1.2.4.3 Other limitations of prototype theory 

In addition to the questions regarding prototypicality as the basis of category 

membership, some accounts have criticised the way prototype theory has defined similarity 
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as a measure of categorical structure. In a criticism that may be extended to all feature-

based accounts of categorisation, Murphy and Medin (1985) argue that similarity (e.g., to a 

central tendency, to other category members) by itself is not enough to determine category 

membership, and that similarity requires constraints, or rules, to be meaningful and not 

circular (e.g., category members are similar, hence they belong to the same category).  

However, in theory, feature-based accounts of categorisation do constrain similarity 

relationships. For example, the definitional view would argue that all members of a category 

are similar because they share the necessary features, and not similar when they do not. In 

prototype theory, similarity to the central tendency is defined as the sum of the features shared 

between the object (e.g., Labrador) and the category (e.g., dog; Hampton, 1979, 1995; Rosch 

& Mervis, 1975). When this number crosses a specific threshold, the object is a member of the 

category. Crucially, features are assumed to vary in their relative weight depending on the task 

at hand, their relative frequency in the category as well as familiarity (A. Tversky, 1977), so 

that possession of certain features may point more strongly towards category membership. For 

example, features such as has two legs, or has two eyes might be weighted as less important 

than has wings in determining membership of the category bird. This weighting might differ 

further depending on sentential context (Roth & Shoben, 1983; A. Tversky, 1977) for example, 

the sentence context: The pet shop was full of animals, constrains the relative important of 

features of animal, such that domesticated is weighted as more important than has wings. Taken 

together, this suggests that prototype theory does place some constraints on similarity: objects 

are similar to the central tendency if they share enough key features.  

Alternatively, the problem with similarity in prototype theory may not be that it does 

not offer rules for its application, but rather, that the rules are vague. For example, as previously 

determined (e.g., McCloskey and Glucksberg, 1978), category boundaries may be fuzzy, and 

membership judgments may vary from person to person and even time to time. In terms of 

prototype theory, that would imply that the threshold for category membership (i.e., the number 

of shared features) shifts. What is enough feature-overlap in one context or person, is 
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insufficient in the next. While some have embraced this variability as a strength of prototype 

theory (i.e., a shifting membership threshold accommodates fuzzy categories; (Hampton, 

1995), the mechanism underlying this threshold shift is not readily explained within the 

framework of prototype theory. If feature-similarity to the prototype (or in fact other category 

members) determines category membership, how can this change within the same category 

(e.g., animals)?  

One possibility is that the threshold for category membership depends on the selection 

of features for the similarity comparison. This leads to the criticism of prototype theory’s 

specification of feature determination: the question of what counts as a feature in determining 

similarity between objects and prototypes to begin with, as objects may have a sheer infinite 

list of features that are technically true (Murphy & Medin, 1985). For example, it is technically 

a feature of Labradors that they are not blue, have more than two hairs, weigh less than a grand 

piano etc. It is unlikely that participants take all possible features an object may possess into 

account when making similarity judgments. And indeed, this is not what prototype theory 

proposes. Tversky (1977) suggests that similarity judgments, or in fact identification of an 

object, require the extraction of a limited list which allows for the completion of the task at 

hand. As Armstrong et al., (1983) point out, participants omit obvious features when listing 

features, focusing on only those features they deem relevant to the task at hand. Considering 

this, it is possible that, as Barsalou (1983, 1985) argues, the conceptual system is flexible. 

People may form multiple concept representations (e.g., prototypes) of the same category, 

allowing them to tailor representations to the context and the task at hand. The problem for 

prototype theory is that this does seem to relax its constraints to a degree that the theory fits 

any categorisation task. 

In summary, prototype theory circumvents the issues with the definitional view by 

arguing concepts do not need a set of necessary and sufficient features but argues that concepts 

are represented by a summary of the features common to the category. Categorisation then 

becomes the process of summing the features observed in an instance and comparing them to 
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the feature summary. Out of the three main theories of object categorisation discussed here, 

prototype theory has come closest to explaining taxonomic and typicality behavioural effects. 

It was designed to account for the typicality effects that reflect graded category structure, and 

influential accounts of the basic-level advantage share prototype theory’s assumption of 

categorisation via feature-similarity and conceptual representation through feature clustering. 

Crucially however, features and prototypes are not sufficiently specified, that it is not clear 

what exactly determines what may count as a feature. Moreover, it has been suggested that 

prototype effects may not reflect conceptual structure. Consequently, much research has gone 

into developing alternative or complementary theories of conceptual representation and 

categorisation, most notably exemplar and theory-theory, but has also moved to develop 

(computational) models of conceptual processing, with a smaller focus on categorisation. 

 

1.2.5. Exemplar theory 

Prototype theory and other feature-similarity accounts assume that categories are 

represented through an abstracted summary of the features that are common to that category. 

Crucially, the prototype itself may form and change through exposure to category exemplars. 

For example, a given person’s prototype representation for the category dog is likely 

dependent on their experience with various dog breeds. If they have only encountered 

Labradors, their prototype is likely to contain all features of Labrador. However, if they then 

encounter a mix of different dog breeds (e.g., dachshund, spaniel, poodle), their prototype 

will contain features that are common to all these dog breeds, and shed any idiosyncratic 

features. When this person is then faced with a categorisation task (e.g., is x a dog?) they 

presumably compare the features of x only to the dog-prototype. In this manner, prototype 

theory is an example of early computation (Estes, 1986) – only the result of category learning 

(i.e., the prototype) is called upon during categorisation.  

A contrasting theory is exemplar theory (Brooks, 1978; Medin & Schaffer, 1978), 

which argues that concepts may be represented not through an abstracted feature summary, 
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but rather through knowledge of specific instance or subset (e.g., the concept dog is 

represented either by a memory of a particular dog, or a subset of dogs such as guard dogs; 

Murphy, 2002; E. E. Smith & Medin, 1981). Exemplar representations may allow for more 

flexibility in categorisation – in contrast to prototype theory, idiosyncratic information about 

exemplars is retained, and are an example of late computation (Estes, 1986). On this notion, 

exemplars stored in semantic memory may be categorised differently depending on 

environmental and task contingencies. For example, a conceptual representation of dog that 

consists of a wide range of encountered dog-exemplars can be used to flexibly represent dogs 

in various scenarios, whereby task-dependent constraints determine which features are 

relevant (e.g., “watch out for the dog" invokes another set of exemplars than “that dog is 

cute”, depending on stored experience with various dogs).  

Exemplar theory predicts that when deciding whether a given object or instance 

belongs to a particular category, people rely on experience with known exemplars (Brooks, 

1978; Murphy, 2002). For example, when trying to identify a previously unseen animal, one 

might search their memory for exemplars that might match it (e.g., dogs, horses, lions). To 

determine which of the possible categories the unknown animal belongs to, you rank all 

possibilities by the degree of similarity to the animal you are observing. It may bear a few 

similarities to a horse, a few more similarities to a lion, and be most similar to a dog. 

According to Murphy (2002), this mechanism also allows exemplar theory to account for the 

prototypicality effects that led to prototype theory. Typical category members (e.g., robins) 

are similar to other bird exemplars, but not so similar to other animal exemplars (e.g., fish). 

Atypical members (e.g., penguins) are less similar to other bird exemplars, and more similar 

to other animals (e.g., fish), although this particular explanation is contested (see below; (J. 

D. Smith, 2002). 

Different models of exemplar theory include Medin and Schaffer’s context model, 

(1978) Nosofsky’s (1986) generalised context model (GCM) and exemplar-based random walk 

model (EBRW; Nosofsky & Palmeri, 1997). The context-model involves a feature-comparison 
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between all exemplars of competing categories. That is, the evidence for an instance’s (e.g., 

Labrador) membership of a particular category (e.g., dog) is equal to the combination of the 

similarities of the instance to all dog exemplars divided by its similarity to all stored exemplars 

(Medin & Schaffer, 1978). A theoretical challenge for the context model is the lack of 

constraints on the features relevant to the task, as it compares all members for contrasting 

categories. While this predicts performance in small categorisation tasks with few competing 

categories, such as the one Medin and Schaffer tested, it is hard to see how this would 

extrapolate to a full-scale theory of conceptual processing. Some researchers have extended the 

basic exemplar model with additional parameters (e.g., to account for guessing; J. D. Smith & 

Minda, 2000) 

As a possible way of constraining the number of retrieved exemplars, the GCM 

(Nosofsky, 1986) builds on the context model by transforming its simple similarity measure 

into a measure of distance in multidimensional space, which may vary in structure (i.e., 

minimising problem-solving space, for example by restricting attention to relevant dimensions, 

expressed as attention weights).  

The EBRW model (Nosofsky & Palmeri, 1997) expands the generalised context model. 

It represents exemplars as points in a similarity space, which may be altered in structure by 

selective attention processes. Categorisation is the process of matching an object to the stored 

exemplars. For example, the categorisation of an instance (e.g., Labrador), in one of two 

categories (e.g., dog or bird) enters all exemplars stored in semantic memory in a ‘race’, where 

the probability of them completing the race within a given time is determined by their semantic 

distance to the instance. The random walk counter - which expresses evidence for either 

category - starts at zero, and changes positively when evidence in favour of dog is acquired, 

and negatively when evidence in favour of bird is acquired. Consequently, if the ‘winning’ 

exemplar belongs to the dog category, the counter increases, conversely, if the ‘winning’ 

exemplar belongs to the ‘bird’ category, the counter decreases. If the counter exceeds a given 
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threshold, a category decision is made, otherwise a new race is started. Nosofsky and Palmeri 

found that this model fit response time data in a set of classification tasks well.  

1.2.5.1 Can exemplar theory explain taxonomic effects? 

There seems to be no explicit exemplar-theory account of taxonomic effects in object 

categorisation. It is unclear how once an individual has identified a group of objects as a 

category member (e.g., dogs) they can infer that dog exemplars are also mammals. Murphy 

(2016) argues that it is unlikely a person would encode every instance of dog as both a 

member of the categories dog and mammal, as this would take up too much of a person's 

cognitive resources. However, note that this is only true if exemplars are explicitly stored 

with each taxonomic category during learning. If, by contrast, the assignment of exemplars to 

various categories is considered to be a flexible process that may draw upon exemplar 

memory to accommodate various categorisation tasks (i.e., late computation; Estes, 1986) 

exemplar-based categorisation at various taxonomic levels may be possible. That is, 

computations for the categorisation of a given instance of dog (e.g., Labrador) as dog, 

mammal and animal involve similarity computations on the same set of exemplars. 

Moreover, it may be the case that not every exemplar is retrieved every time (Estes, 1986; 

Heit & Barsalou, 1996). In fact, some research on exemplar-based explanations of object 

typicality (see also below) suggests that correlations between exemplar-based predictors and 

various categorisation performance measures (e.g., category naming frequency, response time 

and typicality) for various categories (e.g., fruits, birds, vehicles etc.) increase in strength 

when these predictors are calculated based on up to 10 of the most frequent exemplars (Smits 

et al., 2002). As such, an exemplar-based explanation for taxonomic categorisation could be 

that it draws on a limited set of frequent exemplars which are flexibly selected from semantic 

memory depending on the categorisation task at hand.  

However, this leaves two questions. Firstly, by what mechanism are relevant 

exemplars retrieved if they are not a priori stored in semantic memory at various taxonomic 

levels? Secondly, how could exemplar-based categorisation account for taxonomic effects 
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(e.g., basic-level advantage)?  In some ways, the former question is similar to that aimed at 

prototype theory: by what mechanism are relevant features extracted to form the prototype? 

Both questions concern a mechanism that is hard or even impossible to observe. In the case 

of prototype theory, the likelihood that a given feature is associated with the prototype 

representation of a given category is measured through feature generation tasks (Hampton, 

1979; Rosch and Mervis, 1975), based on the assumption that features that are named more 

often are more salient because they are more common to a category. In the case of exemplar 

theory, the likelihood that a given exemplar is activated in response to a given category label 

may be measured through exemplar-generation tasks (Smits et al., 2002; Storms et al., 

2000)based on the assumption that exemplars that are generated more frequently in response 

to a given category have a stronger association with said category, and are more likely to be 

activated in the exemplar representation. Both frequency-based measures of prototype-

features and exemplars are highly related with various measures of categorisation 

performance (e.g., production frequency, response time; Smits et al., 2002). However, in the 

case of exemplar-models, it is still unclear how it is that exemplars become associated with a 

given category in the first place. 

1.2.5.2 Can exemplar theory explain typicality effects? 

Theoretically, exemplar theory could explain object typicality in a similar fashion to 

prototype theory. That is, prototype theory assumes that greater typicality means greater 

similarity to the prototype, which means to have more features common to the category. As a 

result, highly typical items are not only closer to the prototype, but also bear greater family 

resemblance to other members. It is therefore possible that degree of similarity to stored 

exemplars reflects object typicality just as well as similarity to the prototype might (Murphy, 

2002). 

Traditional exemplar models (e.g., Medin & Schaffer, 1978; Nosofsky, 1986) are not  

well positioned to test this hypothesis, because they typically use binary categories which 

contain a limited number of members and do not have a clearly defined graded structure 
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(Minda & Smith, 2001). The evidence that does exist is inconclusive. One the one hand, 

there is evidence from modelling work on the categorisation of dot-patterns (J. D. Smith, 

2002) which suggests that similarity to the prototype (i.e., the prototypical dot-pattern) is a 

better way of determining object typicality than similarity to exemplars (i.e., individual dot-

patterns), simply because a given instance will always be similar to some exemplars, and 

dissimilar to others. By contrast, similarity to the prototype, which collapses members in to a 

singular point, may be easily determined and reliable as a predictor of object typicality. 

However, Storms et al. (2000) found evidence that exemplar-based similarity ratings 

correlated more strongly with ratings of object typicality, as well as with response times, 

exemplar generation and category naming frequencies than prototype similarity calculated 

from Hampton (1979). Similarly, Smits et al. (2002) showed that exemplar-based GCM’s 

predicted categorisation of both well-known and novel fruits and vegetables better than 

prototype-based multiplicative similarity models, and that categorisation of familiar but 

atypical fruits and vegetables was predicted worse by their feature-similarity to the prototype, 

and suggest that supplementing prototype models with exemplar knowledge as Minda and 

Smith (2001), might improve model performance. This would be in line with the earlier 

finding that atypical items are categorised faster and more accurately at the subordinate (i.e., 

more specific) level (e.g., (Jolicoeur et al., 1984; Murphy & Brownell, 1985). At the 

subordinate level, category exemplars (e.g., Labradors) are less likely to vary within-

category than they are at the basic (e.g., dog) or superordinate (e.g., animal) level, thus stored 

experience with exemplars is a better predictor of subordinate category membership (also 

evidenced by the fact that experts are equally good at categorising at the subordinate and 

basic level, for categories that fall within their expertise). It may still be the case that 

exemplar experience is abstracted into a prototype-like representation (Hampton & Jönsson, 

2008), however at more specific taxonomic levels exemplar knowledge and prototypes are 

harder to distinguish. That is, a prototype representation of golden retriever is necessarily 

more similar to golden retriever exemplars than the prototype of dog is to dog exemplars, 
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which vary more within-category (e.g., chihuahuas and Danish mastiffs). As a 

consequence, similarity to the prototype may be more important for basic-level categories, 

whereas exemplar similarity may be more important for subordinate-level categories.  

 

1.2.5.2 Other limitations of exemplar theory 

The key criticism levelled at exemplar accounts is that their evidence comes primarily 

from computational models, where model predictions are compared to human classification 

behaviour. Moreover, the category sets that these models are typically trained and tested on 

have a number of limitations. Firstly, much of the most influential work on exemplar models 

centres around the classification of training and transfer instances into a binary set of 

contrasting categories (e.g., (Medin & Schaffer, 1978; Nosofsky, 1986). Secondly, these sets 

contain very few members, participants and models are often trained on 5 instances of one 

category and 4 of the other (i.e., 5-4 category structure; see J. D. Smith & Minda, 2000; for 

an extensive evaluation of this paradigm) and tested on a total of 16 instances (including 9 

that were learned during training). Thirdly, the members of each category are only marginally 

more similar to one another than to members of the contrasting category (Minda & Smith, 

2001; J. D. Smith & Minda, 2000). Note that all of this is a deliberate design choice in most 

exemplar studies; it allows control over prototypes and diagnostic information. Nevertheless, 

using a limited number of category members for each category, that are moreover relatively 

distinct could inadvertently cause participants to rely more heavily on the memorisation of 

particular exemplars (Murphy, 2016), and favour exemplar models over alternatives. Indeed, 

J.D. Smith and Minda found that when testing on data from a number of studies with a 

typical 5-4 category structure, exemplar models were generally favoured over additive and 

multiplicative prototype models in predicting categorisation outcomes, unless prototype 

models were allowed to retain exemplar knowledge. Nososfsky (2000) argues that enhancing 

prototype models in this manner is unlikely to work when training instances are not included 

in the test phase. While this may be correct, it is unclear whether exemplar models would 

work much better in a similar scenario.  
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On a more theoretical note, Murphy (2016) argues that exemplar theory is heavily 

focused on the classification aspect of categorisation, and not so much on inferring general 

knowledge from these categories (i.e., the knowledge that members of a given category 

possess a given feature). While prototype representations are a generalisation of features 

across all category members, exemplar theory does not store such knowledge directly. Rather, 

category-feature relationships are inferred from exemplars. For example, the dog exemplars I 

know all have fur, hence I might infer that dog have fur. A novel instance that has fur is then 

more likely to be categorised as a dog. Murphy argues that this mechanism is problematic 

because it does not allow for representing knowledge about a category may not be directly 

tied to experience with an exemplar (e.g., the knowledge that birds evolved from dinosaurs, 

or the fact that mammals have a diaphragm). In a strict exemplar view this may indeed be 

problematic, although it hinges on the kind of information one thinks may be stored in an 

exemplar, and whether exemplar knowledge can only be acquired through direct perceptual 

experience.  

Furthermore, exemplars do not represent knowledge about causal relationships 

between features (such as has wings, can fly) that have been suggested to bias categorisation 

(Ahn, 1998). How do exemplars represent knowledge about the relationship between wings 

and flight? Whereas some (e.g., Rosch, 1978) suggest that features are not randomly 

distributed randomly, but correlate (exemplars which possess the feature has wings typically 

can fly, thus capturing the idea that wings are necessary for flight), others (Murphy, 2016) 

argue that not every correlating feature has the same causal relationship (e.g., has a beak 

frequently co-occurs with feathers, yet few people would argue having a beak is essential for 

having feathers). A potential counterargument is that while Murphy’s (2016) examples work 

within the category bird, where has a beak and has feathers may co-occur about as much as 

has wings and can fly, the co-occurrence between wings and flight extends throughout the 

animal kingdom and beyond (e.g., various mammals, insects, fish, airplanes all use wings to 

fly) to the point that wingless flight may be rare, whereas featherless exemplars with beaks 
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are not (e.g., squid, fish, turtles). Moreover, Murphy seems to suggest that prototype theory 

would be better suited for representing causal relationships, simply by allowing for generic 

features (e.g., wings usually enable flying). If prototypes may possess such generic features, 

why are they off-limits to exemplars?  

In summary, exemplar theory argues that concepts are represented through their most 

salient exemplars. Evidence for exemplar theory comes from models that successfully predict 

category learning and response times in identification tasks. The strongest criticisms of 

exemplar theory are that its predictions are limited to models of classification, which often 

rely on small binary sets that favour memorisation of exemplars. If exemplar theory is to be a 

full-fledged theory of conceptual representation, it needs to account for a wider range of 

behaviour on more varied concepts. Furthermore, it is not clear how exemplar theory extends 

to knowledge inferring and displays the same lack of specification of the constraints on 

similarity that plagued prototype theory. In particular, the lack of constraints of what 

exemplars constitute a concept. At present, exemplar theory by itself has not been sufficiently 

extended to fit human behaviour, as pure-exemplar theory has been tested in models 

(Murphy, 2016). However, some researchers have argued that knowledge of exemplars as 

well as prototype knowledge might be relevant to categorisation (Hampton, 2007; Minda & 

Smith, 2001).   

1.2.6. Summary of traditional theories of object categorisation 

The definitional view, prototype theory, and exemplar theory share a number of 

assumptions. Firstly, they assume to some extent that the smallest representational unit is an 

abstract, binary perceptual or functional feature (e.g., has wings, can fly). That is, traditional 

accounts of categorisation assume concepts and objects are componential (Palmer, 1977). In 

other words, concepts and objects are the sum of their parts (e.g., the concept bird is 

represented as a combination of its features, such as has wings, has feathers, bipedal, can fly 

etc.). These accounts typically assume that features are static and transferrable, such that 

category membership may be dependent on the possession (or lack) of a particular feature, 
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rather than variation within features themselves (perhaps with the exception of dimensions 

such as size and weight). A second crucial assumption of feature-based theories of 

categorisation is that features are the indivisible building blocks of concepts (Schyns et al., 

1998), whose relationship to perceptual information is symbolic. That is, features encode 

perceptual and functional information, which can then be used in conceptual processing such 

as conceptual combination and categorisation. This notion is important. For practical reasons, 

studies on categorisation have frequently relied on participant-generated feature lists. A 

critical assumption was that the features listed by participants have been taken to be 

sufficiently grounded in the real world. That is, as Rosch (1978) illustrates when discussing 

her work on basic-level categories (see chapter 2), the idea was that the correlational structure 

of features in the perceived world (e.g., has wings frequently co-occurs with has feathers) 

would constrain participant feature listings to the extent that, while they might not know all 

features or even their internal relationships, they would not provide correlational structure 

where there was none (e.g., has wings and lives underground). As such, the features listed by 

participants were taken to be sufficiently reflective of perceptual information.3 

However, as Rosch (1978) also notes, the features participants listed were not always 

uniformly interpretable away from their category. For example, features related to size (e.g., 

large) varied in meaning depending on the category they were assigned to. Moreover, some 

features had no clear meaning unless paired with their category (e.g., for example the feature 

has a seat requires functional knowledge of chairs to be meaningful). Rosch (1978) 

interpreted this to suggest that the analysis of objects into their features was a complicated 

process, that might only be possible after categories have already been established. At the 

very least, it suggests that some features are not useful for categorisation, as they only 

become informative once the category is known, although this leads us down back down the 

path we just came from (i.e., defining, and sufficient features).  

 
3 This refers to the view of features that was prevalent when the traditional accounts of 

categorisation discussed here were conceived. More recently, some have explicitly stressed that 
feature lists are not meant to be taken as a literal reflection of conceptual structure (McRae et al., 
2005). 
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Another consequence of Rosch’s (1978) notion is that features may not always be 

the static indivisible and independent building blocks that they are made out to be. Indeed, 

research has suggested that features may be interpreted differentially depending on context, 

as with the example of seat. For example, Medin and Shoben (1988) found that the relative 

importance of features in object categorisation changes depending on other features of the 

object that is categorised (e.g., large as a feature of metal spoons compared to wooden 

spoons). If features are the building blocks of concepts, how is it that they may change so 

freely? How can a feature such as large mean something else from one concept to the next? 

One answer is that the linguistic label large does not refer to something indivisible, but that it 

refers to a set of smaller properties that for reasons of cognitive economy cannot easily be 

listed but is grouped under a property that is flexible depending on context. Another 

explanation is that features are not the actual currency of semantic representation.  

An additional question regards the lowest-level status of features. That is, feature-

based theories typically do not address what makes up a feature. This begs the question what 

the lowest level of a feature is. What defines it? If bird, chicken, and robin all have the feature 

has_wings, then what features does wing have? If we do not allow wing to have features, why 

not? On the other hand, if we do allow wing to have features, what would these features be? 

Would they include part of a bird? If they do, that will result in a circular definition which is 

obviously problematic (e.g., Chinese Room argument, Searle, 1980)). If wing does not have 

features, then why not? Is it not a concept (e.g., like robin)? E.E. Smith and Medin (1981) 

seem to suggest that features are indeed concepts, but sidestep this question by arguing that 

the division between feature and concepts needs to be made on empirical grounds: in 

categorising an object, it is more useful to assign wing a feature-status, as it helps explain the 

difference between specific objects (e.g., bird and mouse), whereas the features of wing may 

be less suitable for this purpose.  

Finally, the predictions from feature-similarity accounts of taxonomic effects are at 

odds with findings from research into the development and deterioration of conceptual 
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knowledge. That is, feature-based accounts assume that basic-level categories are 

privileged, for example because they map onto feature-clusters that are highly informative 

and highly distinct (Murphy & Brownell, 1985) or because are the most likely entry point 

into a taxonomically structured semantic memory (Jolicoeur et al., 1984). However, research 

has shown that children may be earlier to differentiate between objects at the superordinate 

level than at more specific levels of abstraction (Mandler & Bauer, 1988; Mandler & 

McDonough, 2000). This broad-to-narrow pattern is mirrored by findings in research on the 

deterioration of semantic memory, which reports patients with semantic dementia (SD) 

generally lose the ability to categorise at specific levels of abstraction before the ability to 

categorise at broad abstract levels (Hodges et al., 1994; Hodges & Patterson, 2007; 

Warrington, 1975). However, the inverse effect has been observed in patients suffering from 

aphasic stroke (i.e., left hemispheric strokes), which showed a marked advantage for 

categorisation at the specific subordinate level compared to the more general basic level 

(Crutch & Warrington, 2008). Moreover, other work reports a case whereby a patient with 

damage across multiple areas of the brain (i.e., superior and middle frontal gyri, superior 

middle and temporal gyri, and lateral occipital gyri) lost the ability to categorise at the 

superordinate but not the basic level (Forde & Humphreys, 2002; Humphreys & Forde, 

2005).    

Research on effects of semantic impairments on taxonomic categorisation is a subset 

of a much broader area of work on category-specific impairments (see Clarke & Tyler, 2015; 

Mahon & Caramazza, 2009). However, the finding that SD patients are disproportionally 

restricted in their ability to categorise at specific taxonomic levels in particular has been 

explained as having profound implications for the structure of semantic memory, as well as 

traditional explanations of taxonomic and typicality effects in object categorisation (e.g., 

Ralph et al., 2017; Rogers & Patterson, 2007). With regards to taxonomic effects in 

categorisation, the finding that patients with aphasic stroke or semantic dementia retain only 

the ability to categorise either at the subordinate or superordinate level contrasts strong 
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network accounts which argue that increased processing time for subordinate-level items 

can be explained by the time it takes to progress through a semantic network from a basic-

level entry point.  

In the following section, I will explore views that are alternatives to feature and 

network-based theories of conceptual representation. First, I outline theory-theory, which 

expands prototype theory with contextual knowledge. While it is a feature-based account, it 

bridges some of the gaps to more recent accounts. I then discuss linguistic distributional 

accounts, simulated accounts and finally integrated simulated-linguistic accounts. Finally, I 

outline a potential explanation of both taxonomic and typicality effects that builds on recent 

advances in our understanding of conceptual representation (i.e., sensorimotor-linguistic 

representations) that may be a viable alternative to the traditional feature-based accounts with 

which they are so strongly associated.  

1.2.6.1 Adaptations of feature-based accounts: theory-theory 

One theme that returns throughout the categorisation literature is the idea that a theory 

of categorisation must balance between allowing for exceptions while maintaining 

constraints. Categorical representations must simultaneously flexible enough to allow 

ostriches to be categorised as birds, but must also be constrained enough to allow people to 

use categories effectively in daily life. For prototype theory, this flexibility comes from 

allowing category instances to vary in the degree to which they share features common to 

said category. Constraints come in the form of feature importance. Not all features are 

assumed to be equally informative (e.g., when identifying an unknown animal, it may be 

more informative to verify that it barks than that it has fur). However, what features are more 

informative depends on the context in which a particular classification takes place (Minda & 

Smith, 2001), and prototype accounts generally do not elaborate on the mechanism that 

underlies the process of selecting features depending on context.   

Theory-theory (Medin, 1989; Murphy & Medin, 1985; Murphy & Spalding, 1995; 

Wisniewski & Medin, 1994) builds on the criticisms of prototype theory, and is an attempt to 
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address the crucial deficiency of all traditional accounts of concepts and categorisation; 

their reliance on feature-based similarity computations (see Goldstone, 1994; for a review on 

the role of similarity in categorisation). Theory-theory accounts argue that feature-based 

similarity judgments may not be based solely on perceptual input (Goldstone, 1994). Indeed, 

it has been suggested that similarity judgments are affected by information about the 

categoriser’s expertise, intentions, and goals (Barsalou, 1982, 1983) as well as the context in 

which the judgment takes place (Roth & Shoben, 1983).Therefore, theory-theory accounts 

argue that for the feature-matching seen in prototype and exemplar theory to work, the notion 

of a feature may need to be expanded to include a theory about relations to other features and 

concepts and the processes that operate on it (Murphy & Medin, 1985). Consequently, theory-

theory is an attempt to include knowledge about the world around us into the conceptual 

representation. In theory, this neatly solves the problem of unconstrained feature selection; 

we may select features for a concept based on our prior world knowledge. For example, 

features such as has four legs, flat surface are more relevant to the concept table than can 

float, even though upon inspection we may determine that a table indeed floats. However, 

because of the knowledge that furniture is rarely used in a context where floating is required, 

a feature summary for table is unlikely to include can float.  

Evidence supporting theory-theory comes from category-learning experiments, which 

show that participants rely on prior knowledge to constrain which features are relevant for a 

given concept within a given context (Bridges et al., 2020; Murphy & Allopenna, 1994; 

Wisniewski & Medin, 1994). However, modelling work has shown that such prior knowledge 

may naturally arise from the available data. For example, Rogers and McClelland (2008) 

describe a neural network that was with a set of instances that either did or did not possess a 

given set of properties (e.g., has roots, can move). Crucially, they artificially assigned the 

properties (is big, is small, is bright and is dull) so that they were only indicative of one 

concept (e.g., all trees were big, all flowers were small, but both could be either bright or 

dull. By contrast, all birds were bright and all fish were dull, but both could be big or small). 
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Crucially, Rogers and McClelland found that the model selectively weighted size as more 

important in the categorisation of plants as trees or flowers, and brightness as more important 

in the categorisation of animals as birds or fish. This suggests that when learning to 

categorise objects based on their properties, if the model has learned that an object that has 

roots is a plant, size is more informative than brightness to determine whether it is a tree or a 

flower. This is not because the model has an a priori notion of the importance of size, but 

rather because it has learned that size distinguishes trees from flowers.  

 

1.3. Alternative views of conceptual representation 

1.3.1. Distributional models 

The model employed by Rogers and McClelland (2008) is an example of a 

connectionist model of semantic memory (Rumelhart, McClelland, et al., 1986). Such models 

are part of a larger family of distributional semantic models (DSMs; see Günther et al., 2019; 

Kumar, 2021; Wingfield & Connell, 2019; for recent reviews). Distributional models assume 

that the meaning of a concept is not represented in semantic memory as a definition, 

summary or through exemplars, but rather as a distributed pattern across many dimensions 

(Kumar, 2021), most notably the manner in which concept-labels co-occur with other words 

in language. Connectionist models are part of a subclass of DSMs referred to as error-driven 

models. Models in this class are characterised by an architecture consisting of nodes in input, 

hidden and output layers. Activation from a cue spreads from the input to hidden layer(s), 

where nodes are activated depending on predetermined bias or weight, and propagates from 

these nodes to the output layer where an answer is generated. Crucially, most connectionist 

models are trained (e.g., on large bodies of text or feature sets) and receive feedback about 

their performance (e.g., through error backpropagation; D. E. Rumelhart, Hinton, et al., 1986) 

that is used to adjust the weights in their hidden layers, making it more or less likely that a 

node will activate or be suppressed. Recent incarnations, referred to as predict models, which 

are typically trained on very large text corpora (Winfield & Connell, 2019) include the highly 
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influential Word2Vec (Mikolov et al., 2013) which is trained to predict a given linguistic 

cue following a given context (CBOW) or vice versa (skipgram), and improves its predictions 

gradually over many training examples using stochastic gradient descent to minimise 

computational load.   

Connectionist models have been applied successfully to approach and even surpass 

human behaviour on a range of semantic tasks (e.g., see Baroni et al., 2014). In object 

categorisation, connectionist models have been used to successfully model the effects of 

semantic impairments on performance object categorisation, showing narrow-to-broad 

deterioration similar to that observed in patients with SD (Rogers & McClelland, 2004; 

Rogers & Patterson, 2007). The performance of these models, as well as their similar 

response to ‘lesioning’ has lent further support to claims of a semantic ‘hub’ that represents 

concepts as patterns of activation, much like a neural network might. The anterior temporal 

lobes, which are disproportionally affected in SD patients, have subsequently been earmarked 

as the possible location of such a semantic hub in the brain, although other brain regions have 

been suggested, as well as a system of multiple, specialised hubs (Jefferies et al., 2020).  

While connectionist models have offered valuable insights into semantic 

representation, there are a number of aspects to their application that been argued to limit 

their cognitive plausibility. Some researchers have argued that major developments in neural 

network architectures were driven by a mathematical search for optimisation rather than a 

search for biologically plausible systems. An example is their reliance on methods of 

backpropagation and to inform the model where to adjust weights in the hidden layers, which 

seems to have no neurobiological correlate (Crick, 1989), although  a number of biologically 

plausible alternatives have been suggested (see Lillicrap et al., 2020; Marblestone et al., 

2016). Moreover, it is not consistently clear what connectionist models argue conceptual 

knowledge comprises. For example, Rogers and Patterson (2007) argue that conceptual 

representation is not feature-based, but rather consists of patterns of activation across 

multiple sensory, motor and linguistic modalities. However, models are typically trained on 
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hand-picked sets of features (e.g., Hoffman et al., 2018) or network-like propositions (e.g., 

Rogers & McClelland, 2008), and/or argued to preferentially activate output nodes that 

correspond to properties (e.g., has wings) that may be used to differentiate between concepts 

(e.g., has wings allows the model to differentiate between birds and fish). Of course, it is 

likely that connectionist models use features as a convenient methodological and narrative 

shorthand (e.g., it is clearer to describe the differences between concepts in terms of differing 

features than it is to describe patterns of activation), but it necessarily restricts model 

predictions to those concepts for which comprehensive feature sets exist.   

Alternatives to connectionist models include error-free or count-vector DSMs. These 

models may compute the representation of a given concept (e.g., Labrador) as a vector of 

word co-occurrences, which can be used to determine similarity to other words. That is, in a 

simplified example, the words Labrador and spaniel may co-occur with similar words (e.g., 

leash, bowl, walk, bark), and are therefore more similar than Labrador and soup, which co-

occur with relatively fewer similar words (e.g., bowl). Examples of such models include 

Hyperspace Analogue to Language (HAL; Lund & Burgess, 1996) Latent Semantic Analysis 

(LSA; Landauer & Dumais, 1997) and Bound Encoding of the Aggregate Language 

Environment (BEAGLE; Jones & Mewhort, 2007) These models vary in their complexity 

and applicability. For example, HAL relies on relatively straightforward co-occurrence 

vectors, whereas LSA involves weighted log-transformation as well as dimensionality 

reduction steps, and BEAGLE accumulates information through repeated exposure.  

Crucially, count-vector and predict DSMs have been highly successful in a range of 

semantic tasks. Relevant to this work is the finding that LSA predicted typicality ratings 

across a set of studies (Connell & Ramscar, 2001), and LSA-derived semantic associations 

between category names and features allowed for the correct categorisation of birds, fish, 

flowers and trees (Louwerse, 2011), as are other examples of successful semantic clustering 

based on word co-occurrence vectors (e.g.,. Bullinaria & Levy, 2007; Burgess, 1998).  
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Therefore, while recent accounts have argued connectionist predict models are preferable 

to count-vector models (e.g., Baroni et al., 2014; but see: Wingfield & Connell, 2019), it is 

the success of in particular early count-vector models such as LSA and HAL that led 

cognitive researchers to suggest that in conceptual representation, much (if not all) of the 

heavy lifting can be done by language. Indeed, throughout our lives, we are continuously 

exposed to staggering amounts of language (adults are exposed to around 100 000 words a 

day; Bohn & Short, 2009). Research has shown that people are sensitive to its statistical 

regularities, for example the fact that words are not distributed randomly, but cluster together 

(Wingfield & Connell, 2019). For example, words with the same meaning occur more 

frequently in the same context (e.g., poodle and Labrador may both frequently occur with 

words such as bowl, walk, bone and pet). As a consequence, the strongest of these accounts 

have argued that linguistic distributional information is an alternative type of mental 

representation (Burgess & Lund, 1997; Landauer & Dumais, 1997; Lund & Burgess, 1996).  

 

1.3.2. Simulated accounts of concepts 

The question of semantic content, or what it is that features are ‘made of’, has not 

received much attention in traditional feature-based accounts of categorisation (Meteyard et 

al., 2012). By contrast, simulated (or grounded, embodied) accounts of conceptual 

representation have focused specifically on the nature of semantic representations, and have 

argued against the division between semantic representations and perceptual experience. That 

is, simulated accounts have argued that concepts comprise direct information about our 

perceptual experience, bodily state and action (Barsalou, 1999; Glenberg & Robertson, 2000; 

Wilson, 2002; Zwaan, 1999). In doing so, they depart from amodal theories of cognition, 

which argue that perceptual experience is represented symbolically (Fodor, 2008; Fodor & 

Pylyshyn, 1988; Pylyshyn, 1984). The crucial difference is that where amodal accounts 

would argue that perceptual information about a given object (e.g., dog) is translated 

(transduced) into new representational units which allow for computation (e.g., features such 
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as has four legs, has a tail, barks etc. may be combined into the concept dog, and 

compared to other concepts), simulated accounts argue that a concept is represented offline 

(i.e., in absence of the referent) through the (partial) reactivation of the brain areas involved 

in processing online perceptual experience with its referent. For example, the representation 

of dog might consist of the reactivation of visual (e.g., the colour of its coat) auditory (e.g., 

the sound of its bark), haptic (e.g., the touch of its wet nose), as well as action (e.g., playing 

fetch) experience.  

Evidence for a simulated view of cognition comes from behavioural experiments that 

show a strong relationship between perceptual and conceptual processing across various 

domains, such as the effects of incongruent perceptual information on sentence and word 

processing or motor action, and vice versa. Zwaan and Taylor (2006) found that participants 

were faster to perform a motor action (e.g., turning a dial left or right to indicate the colour 

change of a rotating cross) when that action was congruent with visual information (i.e., 

rotation direction of the stimulus) and with sentences describing an action. Similarly, Zwaan et 

al. (2002) found that participants were faster to verify a pictured object (e.g., eagle) was 

mentioned in a preceding sentence (e.g., the ranger saw the eagle in the sky) when the shape 

of that object matched the state described in the sentence (e.g., eagle with closed or outstretched 

wings). Other research has shown that descriptions of motion (upwards or downwards) affect 

how objects in ambiguous images are perceived (Dils & Boroditsky, 2010). 

In addition to visual information, research has also explored other sensory modalities. 

For example, Connell and Lynott (2010) found that the perceptual disadvantage people have in 

processing of tactile information (e.g., people are slower to detect vibrations than flashing 

lights or noise; (Spence et al., 2001) extends to conceptual processing, participants were slower 

to judge whether rapidly flashed words corresponding to the various sensory modalities 

(auditory, gustatory, tactile, olfactory, haptic and visual) when those words belonged to the 

tactile modality (e.g., itchy, stinging). Moreover, Pecher et al. (2003, 2004) found that verifying 

modality-specific sentences incurs a processing cost when switching from one modality to 
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another (e.g., verifying the auditory sentence leaves are rustling followed by the gustatory 

sentence lemons are tart). Additional evidence comes from neuroimaging studies, which show 

shared activation between areas involved in processing perceptual experience and conceptual 

processing (Aziz-Zadeh et al., 2006; Carota et al., 2012; Goldberg et al., 2006; Hauk et al., 

2004). Further evidence comes from patient studies (e.g., Boulenger et al., 2008; Fernandino 

et al., 2013), showing selective impairment of action-verb processing in patients with motor 

disorders (Parkinson’s disease). Taken together, these findings suggest a strong link between 

conceptual and sensorimotor processing.  

Meteyard et al. (2012) describe the varying views on (simulated) conceptual 

processing as a continuum, ranging from unembodied, to secondary, weak and strong 

embodiment. The simulated accounts described above fall mostly in the category of weak or 

strong embodiment. They hold that sensorimotor information may (partially) represent 

concepts in semantic memory, and that sensorimotor activation as observed in neuroimaging 

studies is meaningful. By contrast, the accounts that Meteyard et al. categorise under 

secondary embodiment argue that concepts may draw upon, but are not directly represented 

by, sensorimotor information. These accounts argue concepts are amodal, and bear only an 

indirect relation to perceptual and motor information, for example, because they form the 

basis from which abstracted amodal concepts are formed (e.g., Rogers & Patterson, 2007).  

Some secondary embodiment accounts have dismissed the neuroimaging evidence 

that weak and strong embodiment accounts take to prove concepts may partially be 

represented through sensorimotor information. They have argued that motor resonance (e.g., 

the activation of motor areas involved in performing actions when reading sentences 

involving those actions) does not exclude the activation of amodal representations (Mahon & 

Caramazza, 2008). Mahon and Caramazza argue that the fact that fast, automatic and 

somatotopic activation is observed does not conclusively rule out alternative forms of 

conceptual representation. Instead, much like the cascading information activation of 
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phonological information in object naming, sensorimotor information may be activated 

following the activation of an amodal concept.  

Neuroimaging studies typically offer correlational rather than causal evidence and 

may as such not be able to rule out the explanation that sensorimotor activation is 

downstream activation, cascading from the activation of an amodal representation. However, 

there is more evidence that contradicts the criticism from secondary embodiment accounts. 

For example, patient studies (Boulenger et al., 2008), which do show a causal link between 

impairment of the motor system and the processing of action verbs (but not control items). 

Mahon and Caramazza (2008) note that Boulenger et al. (2008) did not test any other verbs. 

However, further evidence for the link between sensorimotor information and conceptual 

processing comes from studies on aphasia patients with reduced grey matter density, affecting 

the auditory cortex, which showed a selective impairment in processing sound-related words 

only (Bonner & Grossman, 2012). If conceptual processing is amodal, and activation of 

sensorimotor information is epiphenomenal, what explains these selective impairments? In 

addition to evidence from patient studies, there is also behavioural evidence which 

contradicts the epiphenomenal view. Connell et al. (2012) performed an experiment in which 

participants judged the size of manipulable objects (e.g., wallet, key) while tactile stimulation 

was applied to their hands or feet. When participants’ hands were stimulated, their ability to 

judge the size of the objects improved. However, this effect did not occur to the same extent 

when participants received stimulation of the feet, nor did it occur for non-manipulable 

objects. Connell et al. argue that this effect cannot be explained by referring to the prior 

activation of an amodal symbol.  

In summary, simulated accounts of cognition argue that concepts are inherently 

grounded in perceptual and action experience of the world. They contrast with their amodal 

predecessors in that they do not assume an arbitrary relationship between concepts and the 

perceptual information on which they are based. While there is considerable empirical 

evidence for a simulated account of cognition, that does not mean this view is without 
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criticism. One apparent weakness of strong accounts of sensorimotor simulation is that 

some of the effects typically associated with simulated conceptual processing may also be 

explained by language.  

1.3.3. Sensorimotor-linguistic accounts of concepts  

Strong simulated accounts contrast with linguistic distributional accounts of 

conceptual processing. This is not surprising, as a crucial aspect of simulated accounts was 

the need to break away from symbols that bear no relationship to perceptual experience as the 

basis for conceptual representations. As Glenberg and Robertson (2000) argue by referring to 

the Chinese Room argument (Searle, 1981), models such as LSA are not actually representing 

knowledge: they are translating Chinese into Chinese without ever knowing what it is they 

are translating. Instead, Glenberg and Robertson argue that words are inherently mapped onto 

perceptual simulations, derived from interaction with the environment. To illustrate this, they 

demonstrated that LSA did not match participant’s performance in judging sensibility of 

various sentences containing substitutes for everyday objects (e.g., filling up an old sweater 

with leaves vs. filling it with water to replace a pillow).  

The work by Glenberg and Robertson illustrates the way early simulated accounts 

regarded the role of language in conceptual processing. However, language has not been fully 

discounted as a source of information underpinning concepts. Recently, researchers have 

suggested that while concepts are principally grounded in sensorimotor experience, they may 

not need to be fully engaged every time (Barsalou et al., 2008; Connell, 2018; Connell & 

Lynott, 2014; Louwerse, 2011). Indeed, a number of studies have illustrated that the linguistic 

distributional relations between words help to explain behaviour that was previously thought 

to be exclusively indicative of simulated conceptual representations. For example, Louwerse 

and Connell (2011) showed that modality switching effects, or the delays in verifying a 

sentence that has an incongruent perceptual modality compared to the one that preceded it 

(Pecher et al., 2003), may also be predicted from language statistics. Crucially, Louwerse and 

Connell noted that linguistic distributional information best explained the shorter RTs, 
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whereas simulated information accounted mostly for the longer RTs. Furthermore, Connell 

and Lynott (2013) found that linguistic distributional information may inform rapid/shallow 

sensibility judgments of novel conceptual combinations better than interpretation judgments 

(which require slower and deeper processing). Other research has shown linguistic 

distributional information may inform semantic relatedness and spatial iconicity judgments 

(Louwerse & Hutchinson, 2012; Louwerse & Jeuniaux, 2010). as well as SNARC effects 

(Hutchinson & Louwerse, 2014).  

Overall, sensorimotor-linguistic accounts that argue the conceptual system comprises 

both simulated and linguistic information. Several sensorimotor linguistic accounts exist and 

are differentiated by the levels of relative importance that they assign to each type of 

information. For example, language as situated simulation (LASS; Barsalou et al., 2008) 

assigns language a superficial role compared to simulations. They argue that linguistic 

processing may precede simulations in time depending on task constraints (e.g., when 

processing linguistic stimuli), and that linguistic processing may support superficial 

conceptual tasks (e.g., lexical decision making), but that deeper processing relies more 

heavily on simulation (deviating from previous two-system accounts such as Dual Coding 

Theory; Paivio, 1971). Throughout conceptual processing simulated, and linguistic 

information interact. A simulated concept may activate its associated label, which activates 

other linguistic forms, which in turn activate simulations. Vigliocco et al. (2009) expand on 

this and argue that once language has been grounded in sensorimotor and affective 

experience, as well as experience of our inner states, it may serve as a rich source from which 

meaning can be learned, especially for abstract concepts. 

By contrast, the Symbol Interdependency Hypothesis (SIH; Louwerse, 2011) assigns 

a much stronger role to language. Louwerse argues that the idea that language meaning is 

always represented through the activation of perceptual information is unrealistic. In his view, 

the communicative function of language would be impossible to fulfil if every word were to 

activate a perceptual representation. Instead, SIH holds that the meaning of words may be 
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represented through sensorimotor simulations but may also be bootstrapped from the 

relationships between words in language, which is thought to encode sensorimotor 

information. For example, Louwerse (2008) showed that word-order frequency predicted 

participants’ response times in a spatial iconicity judgment task (e.g., judging whether the 

word attic positioned above the word basement is more iconic than the word basement 

positioned above the word attic). In this example, word-order encodes the perceptual 

information that attics appear above basements, with attic-basement being more frequent in 

language than basement-attic. Consequently, the SIH suggests that the relationships between 

words in language (e.g., word-order frequency) can provide meaning, without the need for 

simulated representations to be activated every time. 

The Linguistic Shortcut Hypothesis (LSH; Connell, 2018; Connell & Lynott, 2014) 

builds on these theories. Like LASS, it assumes that sensorimotor and linguistic distributional 

information are part of a dynamic system. Furthermore, like SIH, it assumes that conceptual 

processing does not always require sensorimotor simulation. However, where both LASS and 

SIH work from the implicit assumption that sensorimotor and linguistic information are two 

sides of the same coin (i.e., they are multiple ways of representing the same information 

about the world around us), LSH assumes that the statistical distribution of words in language 

allows for the extraction of associative information that goes beyond mirroring the relative 

distribution of objects in the real world. That is, where simulations are limited to reflect 

perceptual, motor and affective experience, linguistic distributional information might 

consider the larger linguistic context in which a concept appears. Language may describe 

things that have no sensorimotor correlate. For example, when thinking of complex relations 

between abstract concepts such as democracy and human rights, linguistic distributional 

information may be a richer information source (see also Andrews et al., 2009). Crucially, 

where LASS and SIH assign a dominant role to either sensorimotor (LASS) or linguistic 

(SIH) information, LSH does not a priori favour one information type over the other. Rather, 

it holds that the relative importance of linguistic distributional versus sensorimotor simulation 
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in each task response depends on a variety of factors (e.g., task goals, available resources, 

participant motivations, etcetera).  

Central to LSH is the notion of different processing speeds for linguistic distributional 

information and sensorimotor information. Connell argues that while linguistic distributional 

information is typically argued to peak in activation prior to simulation information (Barsalou 

et al., 2008; Louwerse & Hutchinson, 2012), the real advantage lies in the relative importance 

of linguistic information at the point of response to a stimulus. For certain tasks, linguistic 

associations can serve as a shorthand to conceptual decision making, whereby it is not simply 

the fastest in terms of activation, but the fastest in terms of producing a usable outcome, for 

example in property verification. Moreover, in addition to being faster to produce a usable 

outcome, linguistic distributional information can also aid in determining whether a given 

conceptual task is worth spending additional cognitive resources. For example, when judging 

sensibility of novel compound nouns, linguistic distributional information may help to flag up 

when a stimulus (e.g., onion bus) is nonsensical and processing should stop, pending more 

information (Connell & Lynott, 2013). 

Efforts to model semantic memory, which have run in parallel to the development of 

sensorimotor-linguistic theories of conceptual representation, have also stressed the 

multimodal nature of concepts (e.g., Rogers & McClelland, 2004). Therefore, some 

researchers have made attempts to expand existing connectionist models of semantic memory 

with linguistic distributional knowledge (e.g., Hoffman et al., 2018) or to develop 

distributional models that incorporate both sensorimotor and linguistic distributional count-

vector information (Andrews et al., 2009). Such models provide a useful illustration of how a 

conceptual system based on sensorimotor and linguistic distributional information might 

process and store semantic content. However, both approaches rely on discrete and binary 

features as a substitute for sensorimotor knowledge, which may be derived from feature 

norms. Such norms do not yield grounded (i.e., perceptual or action) features for every 

concept, and tend to describe a limited set of concepts (Banks, et al., 2021) which necessarily 
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limits feature-based models in their application. Similarly, in the case of recent 

connectionist approaches, the linguistic distributional component consisted of a limited set of 

verbal descriptors, which may provide a plausible process model, but may not fully capture 

linguistic distributional knowledge.  

 

1.4. A sensorimotor-linguistic account of taxonomic and typicality effects/processes 

Crucially, traditional explanations for behavioural effects in object categorisation 

(e.g., taxonomic, typicality) are closely tied to the development of (feature-based) accounts of 

conceptual representation. Network-models, which became a significant attempt at 

determining the structure of semantic memory, were initially framed as an explanation for the 

finding that participants are faster at categorising instances as members of a near-

superordinate than a far-superordinate category (e.g., faster at categorising Labradors as dogs 

than as animals). Prototype theory was a response to a range of findings that showed distinct 

asymmetries in the way participants rated exemplariness, or how typical a given instance is of 

its category, and the fact that existing views (i.e., definitional accounts) could not explain 

such behaviour. Exemplar theory relied on behavioural and modelling work that showed that 

for specific categorisation tasks, remembering the idiosyncratic characteristics of exemplars 

was a viable strategy for categorising new objects that in some contexts outperformed 

abstract summary representation. In doing so, each of these theories developed distinct ideas 

about the underlying structure and nature of concepts.  

By contrast, current views on conceptual processing have largely developed away 

from explanations of object categorisation behaviour, and as such have yet to develop a 

formal explanation for key behavioural effects in categorisation. It is the aim of this thesis to 

explore such an explanation. That is, if concepts indeed comprise sensorimotor and linguistic 

distributional information, where does that leave categories? By what mechanism are objects 

grouped together? What represents these categories in semantic memory? As outlined above, 
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these mechanisms are typically observed indirectly, by attempting to predict categorisation 

behaviour, for example by accounting for taxonomic and typicality effects.  

 To my knowledge, no comprehensive simulated-linguistic account of categorisation 

behaviour exists, However, Barsalou (1999) outlines how simulated information might 

underpin categorisation. He argues that categorisation might be based around comparing a 

perceived instance (e.g., dog) to a simulated representation comprised of perceptual symbol 

systems. Barsalou argues this system is dynamic, as it may be updated when novel instances 

are successfully categorised. Expanding on this, Barsalou (2003a) argues that people may use 

perceptual simulations abstracted from experience with members to represent category 

concepts. He argues that such abstractions might contain simulations of features and their 

relationships. For example, for the category tables, people might form perceptual simulations 

of legs, which might comprise information of their experience with tables and their legs on all 

sensory modalities. In addition to this, people might represent relationships, such as spatial 

relationships between features (e.g., a table’s legs are usually below the tabletop). Such 

features are not represented in isolation, but in the company of others, or even as part of a 

whole. Crucially, Barsalou argues, simulated information is used to generalise across 

category members on the fly and is not stored in a static summary representation (although 

abstractions may be reactivated over time).  

Similarly, Connell and Lynott (2014) argue that a concept (e.g., dog) may arise 

through multiple experiences with instances of dog and may change over time because of 

repeated experience with dogs. As Barsalou illustrates, categorical inferring may build on the 

wide range of multimodal information available to the simulated representation, for example 

our sensorimotor experience with dogs allows us to approach a previously unseen instance of 

dog in a particular way (careful, he may bite!), guiding our actions based on our existing 

knowledge of dogs. Unlike traditional feature-based accounts, the smallest unit of 

representation is not an amodal feature (e.g., has wings), but multimodal perceptual 

experience with previous instances belonging to a concept. As such, it circumvents the issues 
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faced by definitional (necessary features), prototype (constraints on similarity, constraints 

on what counts as a feature), exemplar (constraints on similarity within and between 

exemplars), and theory-theory (constraints on what constitutes a theory).  

The role of linguistic distributional information in categorisation has also not 

extensively been documented. In a recent study, Banks et al. (2021) showed that the overlap 

in sensorimotor experience and the linguistic context in which category and member words 

appear independently affected the frequency and mean rank with which members are named 

for a given category. The more a given member label appeared in the same context as the 

category label (measured in a large corpus of subtitles), the more likely it was that people 

listed it, and the earlier they did so. Moreover, a computational model based on this theory 

was an excellent fit to human response patterns. Banks et al., took this as evidence for the 

linguistic shortcut hypothesis (see above). Other evidence for the role of linguistic 

distributional information in categorisation comes from Connell and Ramscar (2001), who 

illustrated that the LSA model of language co-occurrence successfully predicted object 

typicality. Since object typicality forms the basis of prototype theory, this finding lends 

further support for the notion that distributional relationships between words in language may 

aid categorisation.  

A simulated-linguistic account might build on the role of sensorimotor simulations in 

categorisation as outlined by Barsalou (1999, 2003a) and Connell and Lynott (2014) and 

integrate them with linguistic distributional information, following recent views on 

conceptual processing. On this view, both category and member concepts comprise 

sensorimotor and linguistic distributional information, and their relationship may be 

expressed in terms of the degree of overlap between representational information of the 

member and category, as illustrated by Banks et al. (2021). Crucially, task demands may 

dictate the extent to which people rely on one form of information over the other. For 

example, when categorising an object under time constraints, participants may rely more on 

the computationally cheap and fast linguistic distributional information (i.e., the Linguistic 
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Shortcut Hypothesis; Connell, 2018). The goal of the present thesis is to determine the 

extent to which a simulated-linguistic account of categorisation is possible, and the degree to 

which the relative reliance on simulated and linguistic distributional information may vary 

depending on task constraints.  

 

1.5. Thesis roadmap 

Traditional explanations of behavioural effects in object categorisation (e.g., 

taxonomic and typicality effects) assume that categories are represented in semantic memory 

as feature-summaries or lists of exemplars, and that categorisation is the process of deriving 

feature-similarity between an instance and either of these representations (Murphy & 

Brownell, 1985; Rosch, 1978). By contrast, recent accounts of conceptual processing argue 

that concepts comprise (partial) reactivations of sensorimotor experience (i.e., perception-

action and affective experience of the world) as well as linguistic distributional knowledge 

(Barsalou et al., 2008; Louwerse, 2011; Connell & Lynott, 2014). Crucially, however, where 

feature-based accounts of conceptual representation were heavily tied to behavioural effects 

in object categorisation, no explicit sensorimotor-linguistic account of categorisation has been 

formulated. Therefore, the aim of this thesis is to investigate key effects in object 

categorisation, most notably the effects of taxonomic (i.e., basic-level advantage) and to a 

lesser degree object typicality on performance in category verification from a sensorimotor-

linguistic perspective on conceptual representation.  

To this end, Chapter 2 describes results from a label-picture category-verification 

experiment, whereby response times (RT) and accuracy were recorded and modelled using 

predictors of overlap in sensorimotor (i.e., perception-action experience of the world) and 

linguistic distributional (i.e., knowledge about the statistical distribution of words in 

language) information between category and member concepts. This chapter also includes 

additional analyses of RT and accuracy data using adjusted measures of sensorimotor and 

linguistic distributional overlap, intended to capture the interaction between taxonomic level 
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and object typicality (e.g., Murphy & Brownell, 1985; Jolicoeur et al., 1984), and their 

comparison to traditional measures of object typicality.  Chapter 3 describes results from a 

forced-choice label-label categorisation task, whereby participants chose between two correct 

alternatives for a given category label. This study primarily aimed to contrast predictions 

from traditional accounts which attribute a special status to the basic level with predictions 

from a sensorimotor-linguistic account of categorisation, which holds that categorisation 

performance is improved for concepts that are closer in sensorimotor experience and 

linguistic distributional knowledge. Chapter 4 addresses a weakness of the experiments 

described in Chapter 2, namely the fact that the implicit name participants gave to an image 

had to be assumed. Therefore, Chapter 4 describes the collection and validation of a large 

normed set of photographs and their associated names. Finally, Chapter 5 describes a rapid-

categorisation study, which aimed to expand on the findings of Chapter 2, using the normed 

dataset from Chapter 4, by testing the task-dependent reliance on either linguistic-

distributional or sensorimotor information that sensorimotor-linguistic accounts of conceptual 

representation have argued for. To this end, the study reported in Chapter 5 limited the 

amount of perceptual processing available to participants by rapidly displaying an image 

followed by a perceptual mask at various intervals (ultra-rapid categorisation), with the aim 

of testing whether the effect of overlap in sensorimotor experience between category and 

member concepts would be reduced relative to the effect of overlap in linguistic distributional 

overlap when less time was available for perceptual processing. Together, these Chapters 

report a series of novel experiments that test whether modern sensorimotor-linguistic models 

can explain traditional categorisation behavioural effects, and to what extent. 
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Chapter 2: The Effects of Sensorimotor and Linguistic information on the Basic-

Level Advantage 

2.1. Chapter introduction 

The basic-level advantage, the general preference and processing advantages for 

categorisation at an intermediate level of abstraction (e.g., dog) is one of the best-known 

effects in categorisation research. Traditional accounts of categorisation have argued that the 

basic-level advantage arises because basic-level categories offer a maximally distinct and 

informative match to an object’s features. In the series of studies described in this chapter, I 

tested whether measures of sensorimotor and linguistic overlap between a category- and 

member-concept explained differences in categorisation performance (accuracy and response 

time), to test the hypothesis that overlap in sensorimotor experience and linguistic 

distributional knowledge form the basis for categorisation. Moreover, I investigated whether 

taxonomic level interacted with object typicality, such that subordinate-level categorisation 

was preferred for atypical items, and tested whether sensorimotor and linguistic distributional 

information capture the graded structure of categories (i.e., typicality gradients).  
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2.2. Abstract 

The basic-level advantage is one of the best-known effects in human categorisation. 

Traditional accounts argue that basic- level categories present a maximally informative or 

entry-level into a taxonomic organisation of concepts in semantic memory. However, these 

explanations are not fully compatible with most recent views on the structure of the 

conceptual system such as linguistic-simulation accounts, which emphasise the dual role of 

sensorimotor (i.e., perception- action experience of the world) and linguistic information (i.e., 

statistical distribution of words in language) in conceptual processing. In three pre-registered 

word→ picture categorisation studies, we hypothesised that our novel measures of 

sensorimotor and linguistic distance would contribute to categorical decision making, would 

map onto the graded structure of categories and would outperform traditional taxonomic 

levels (i.e., subordinate, basic, superordinate) in predicting the basic-level advantage. Results 

showed that, overall, our measures predicted the basic-level advantage at least as well as 

taxonomic level. Sensorimotor information best explained processing speed, whereas 

taxonomic level best explained participant’s choices.  
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2.3. Introduction 

Categorisation is critical to our everyday cognitive functioning. Representative categories and 

concepts4 allow us to adequately perceive, think about, perform actions with and speak about 

our day-to-day experience (Lakoff, 1987). Without categories, we would have to treat every 

object, action or event as a unique instance, rendering us overwhelmed and low on cognitive 

resources (E. E. Smith & Medin, 1981). Instead, the use of categories allows us to organise 

the environment and the objects encountered within it into groups we judge to be 

meaningfully similar, thus enabling us to infer knowledge and potential actions, even if we 

have never encountered a particular instance before. While the fundamental importance of 

categorisation to our cognitive abilities is evident, the precise definition of categories and 

how categorical information is cognitively structured remains under debate. 

In traditional, feature-based accounts of categorisation and conceptual structure, 

natural categories are classes that group entities together according to their shared features or 

properties. While feature-based theories differ in their details, they generally agree that 

concepts comprise discrete, binary features (e.g., a concept either has, or has not, the feature 

can fly), and that categorisation is possible because certain features occur together more 

frequently than others (e.g., if it has wings, lays eggs and can fly, it is likely a member of the 

category bird; (Cree & McRae, 2003; Hampton, 1993; Malt & Smith, 1984; Posner & Keele, 

1968; Rogers & Patterson, 2007; Rosch, 1973; E.E. Smith et al., 1974; Tyler et al., 2000). In 

one popular view, categories are stored in semantic memory through an abstracted summary 

of how features are shared by category members (Posner & Keele, 1968; Rogers & Patterson, 

2007; Rosch & Mervis, 1975).  

 
4 In the present paper, we use the term concept to refer to an aggregated, canonical aspect of experience that can 
be mentally represented offline (i.e., in the absence of its referent: Connell & Lynott, 2014), and the term 
category to refer to a class that groups entities together. 
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Any given concept may be categorised at multiple, inclusive levels of abstraction 

(e.g., that small brown creature may simultaneously be categorised as house sparrow, 

sparrow, bird, and animal), reflecting a taxonomy-like hierarchy from very specific lower 

levels to very abstract higher levels. Crucially, while any given concept may be categorised at 

any taxonomic level, the basic level (e.g., bird) is generally privileged (Rosch, 1978; Rosch, 

Mervis, et al., 1976). First demonstrated in an extensive series of experiments by Rosch et al. 

(1976), objects are categorised faster and more accurately when they are preceded by their 

name at the basic level (e.g., dog; bird), compared to superordinate (e.g., animal) or 

subordinate (e.g., Labrador, sparrow) level names. This basic-level advantage is one of the 

most fundamental effects in categorisation research, and has repeatedly been replicated in 

later work on potential moderating factors, such as object typicality (Jolicoeur et al., 1984; 

Murphy & Brownell, 1985), context (Murphy & Wisniewski, 1989), subject expertise (K. E. 

Johnson & Mervis, 1997; Tanaka & Taylor, 1991) and neurological disorders (Rogers & 

Patterson, 2007). 

While the basic-level advantage is a robust effect, the mechanisms underlying it have 

not been conclusively explained. Traditional hierarchical accounts argue that taxonomic 

structure is integral to how categorical knowledge is represented in semantic memory, where 

feature information is stored only once, at the highest possible level, and generalised to all 

subordinate levels (Collins & Loftus, 1975), thus avoiding redundancy. Jolicoeur et al. (1984) 

argue that objects are most easily categorised at the basic level because it is the usual level at 

which the taxonomic structure is entered, and so categorisation at a level different to the entry 

level incurs a cost in response time and/ or accuracy. Other feature-based accounts do not 

assume that semantic memory is structured hierarchically, but rather that a taxonomy is 

implicit in how features are interrelated. The differentiation account (Markman & 

Wisniewski, 1997; Murphy & Brownell, 1985; Murphy & Lassaline, 1997; Murphy & Smith, 
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1982), argues that basic-level categories are quite distinct from contrasting categories, (e.g., 

dogs and birds share few features) while also being quite informative in how they group 

concepts together (e.g., Labradors and collies share many features). An object can therefore 

be categorised most quickly and accurately at the basic level because it provides the 

maximally distinctive and informative match to the object’s features, whereas other 

taxonomic levels are disadvantaged because they match few features of the object (i.e., 

superordinate categories are distinctive without being informative) or there are several 

competitors that match some of the object’s features (i.e., subordinate categories are 

informative without being distinct). That is, the basic level is implicitly advantaged in how it 

best matches features of the object to be categorised (see also Rogers & Patterson, 2007).  

Since the advent of traditional, feature-based views of concepts and categorisation, an 

alternative view of the conceptual system has emerged that may offer a different explanation 

for the processing advantages in categorisation. Linguistic-simulation accounts of the 

conceptual system emphasise the importance of both sensorimotor and language experience 

in conceptual processing (Barsalou et al., 2008; Connell, 2018; Connell & Lynott, 2014; 

Louwerse, 2011). Both simulated and linguistic distributional information are essential to the 

operation of the conceptual system, but they interact flexibly to allow reliance on one form of 

information over another, depending on the exact context or cognitive task (Connell, 2018). 

Simulated representations emerge from sensorimotor experience with our environment, 

whereby the neural activations across brain areas involved in processing this experience are 

represented as partial replays upon retrieval (Barsalou, 1999). These comprise perceptual, 

motor, affective and other information in direct and vicarious experience (e.g., the concept 

dog might be represented by its smell, the sound it makes when it barks, the touch of its fur 

etc.). Evidence for the role of simulated representations comes from neuroimaging studies, 

showing shared activation between areas involved in perceptual experience and their 
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equivalent in conceptual processing (Aziz-Zadeh et al., 2006; Carota et al., 2012; Goldberg et 

al., 2006; Hauk et al., 2004), as well as from behavioural studies that reveal intricate 

relationships between perceptual and conceptual processing (Connell & Lynott, 2010; Dils & 

Boroditsky, 2010; Zwaan & Taylor, 2006). Linguistic distributional knowledge, meanwhile, 

reflects our vast experience with language, where our sensitivity to statistical properties 

(Aslin & Newport, 2012; Landauer & Dumais, 1997; Lund & Burgess, 1996) has allowed us 

to develop knowledge of how words and phrases have specific patterns in their distribution 

relative to each other (see Wingfield & Connell, 2019, for a review). Certain words occur in 

the same or similar contexts more often than others (e.g., the contexts in which people 

mention dog and animal are more alike than those of dog and cup), and such linguistic 

distributional information has been shown to be powerful enough to predict conceptual 

processing in a wide range of tasks (Connell, 2018; Connell & Lynott, 2013; Goodhew et al., 

2014; Louwerse, 2011).  

If concepts are indeed represented as a combination of sensorimotor simulation and 

linguistic distributional knowledge, it follows that such sensorimotor and/or linguistic 

information may also underlie categorisation. Category membership may be a product of 

representational similarity between a category concept (e.g., dog) and a potential member 

concept (e.g., Labrador), based on sensorimotor experience of the referent concepts and 

linguistic experience of the concept labels across language. In sensorimotor terms, many 

feature-based theories emphasise that categorical distinctions emerge at least in part from 

commonalities in the way we perceive and interact with the word around us (Cree & McRae, 

2003; Tyler et al., 2000). However, sensorimotor experience may also be considered as the 

extent to which a concept is experienced via each perceptual modality or action effector (i.e., 

sensorimotor strength: Lynott et al., 2020), where the overlap in sensorimotor experience 

between a category concept (e.g., dog) and a member concept (e.g., Labrador) predicts how 
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readily people name the member as an example of that category (Banks et al., 2021). In 

linguistic distributional terms, the relationship between member-concept labels and category-

concept labels in corpus-derived linguistic space is also an effective predictor of category 

membership (Connell & Ramscar, 2001; Riordan & Jones, 2011; Wingfield & Connell, 

2019). When a category label (e.g., dog) appears in very similar context to a member concept 

label (e.g., Labrador), people tend to judge the member concept as an excellent example of 

its category (i.e., graded structure of concepts, Connell & Ramscar, 2001). 

Compared to traditional accounts of categories and concepts that rely on discrete 

features to compute and explain advantage effects in categorisation, linguistic-simulation 

theories take a very different approach in some key respects. Firstly, while traditional 

hierarchical views assume that semantic memory is structured into discrete taxonomic levels, 

with the basic level accorded a preferential status (e.g., Jolicoeur et al., 1984), linguistic-

simulation accounts do not share that assumption. Rather, although linguistic-simulation 

accounts have not yet addressed the basic-level advantage directly, they treat all category 

concepts (i.e., Labrador, dog and animal) with equal status, with no assumption of hierarchy 

nor preference for the basic level, and assume that task goals and available resources will 

determine which concept is activated first (Connell & Lynott, 2014). In lack of an explicit a 

priori basic-level preference, linguistic-simulation views are similar to feature-based 

differentiation accounts (e.g., Murphy & Brownell, 1985; Rogers & Patterson, 2007) but 

differ in that they do not assume the basic level is implicitly advantaged by optimally distinct 

and informative binary features. Secondly, where feature-based views draw a distinction 

between concepts and features, linguistic-simulation views do not. In these views, there is no 

a priori difference between tail, barks and dog. They may be related, in that a sensorimotor 

simulation of dog involves the activation of the concepts tail and barks, or that the word label 

dog occurs frequently in the same or similar linguistic contexts as tail and barks (which 
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enables the extraction of semantic relations; Wingfield & Connell, 2019), but feature-

concepts are not qualitatively different or subsidiary representations to object-concepts. 

Whether overlaps in sensorimotor and linguistic distributional experience between member 

concepts and category concepts can contribute to the basic-level advantage – without a fixed 

taxonomy or subsidiary features – is the subject of the present paper.  

The current study 

 In this paper, we report three pre-registered experiments, one exploratory study and 

two exploratory analyses. All three studies use a label → picture categorisation task similar to 

that used by Rosch et al. (1976), where participants judged (yes/no) whether the pictured item 

belonged to the category named in the preceding label. We investigated whether 

categorisation performance (response time, accuracy) can be predicted by sensorimotor (i.e., 

perception-action experience of the world) and linguistic distributional information (i.e., 

statistical distribution of words in language). Critically, we used a novel measure of 

sensorimotor information that was fully grounded in perceptual and action experience alone 

(i.e., without the use of abstracted features), based on multidimensional ratings of 

sensorimotor strength from Lynott and colleagues (2020).5 Our measure of linguistic 

distributional information was derived from co-occurrence frequencies in a large corpus of 

English. Together, these measures allowed us to distinguish whether representational 

similarity between a category and member concept was due to overlap in sensorimotor 

information (e.g., the concepts animal and dog both involve similar perception and action 

experience) or linguistic distributional information (e.g., the words animal and dog both 

appear in similar contexts across language).  

 
5 The present experiments were developed in parallel with a separate investigation using the same 
measure of sensorimotor overlap between concepts (Banks et al., 2021); since both studies used this 
new measure at the same time, both reports can legitimately describe its use as novel. 
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We expected that sensorimotor and linguistic information would contribute to 

categorical decision making, and that the latter in particular would contribute to the basic 

level advantage in categorisation. That is, we expected people to categorise pictured objects 

more quickly and accurately when the member concept (e.g., dog) was close to the category 

concept (e.g., animal) in both sensorimotor experience and linguistic distributional 

knowledge.  

2.4. Experiment 1: The Basic-Level Advantage 

In our first study (pre-registration, data, analysis code and results available at 

https://osf.io/vdka2/?view_only=ac6c78793a354a1f95da6c36b5ac6163), we examined the 

basic-level advantage in a classic label → picture category verification task. Participants first 

saw a category name at one of various levels of specificity (e.g., general animal, basic dog or 

specific Labrador), followed by a picture (e.g., photograph of a Labrador), and their task was 

to decide yes/no whether the pictured item belonged to the specified category. We expected 

responses to be faster and more accurate for basic-level category labels (i.e., the basic-level 

advantage), and aimed to contrast two competing explanations.  

If traditional accounts of the basic-level advantage are correct, then the effect emerges 

from explicit or implicit levels of categorical representations in a taxonomic hierarchy (i.e., 

subordinate, basic, superordinate). Within this hierarchy, the basic level of dog is either the 

usual point of entry into the taxonomic structure of semantic memory (where accessing other 

levels of Labrador or animal incurs a processing cost: Glass & Holyoak, 1974; Jolicoeur et al., 

1984) or is the category best differentiated by the pictured object’s features (where animal 

matches few features and Labrador has too many competitors that match many features: 

(Markman & Wisniewski, 1997; Murphy & Brownell, 1985; Rogers & Patterson, 2007). As a 

result, categorical decisions are easier to make at the basic level.  
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By contrast, we hypothesised that the basic-level advantage emerges from 

representational overlap of linguistic and sensorimotor information between a category and 

member concept. Extensive research on picture naming has shown that when participants see 

a picture of a dog (e.g., a Labrador, poodle or collie), they label it with the most frequent and 

earliest-acquired name: dog (e.g., Bates et al., 2003; Belke et al., 2005). Since the most 

frequent, earliest-acquired name tends to be the basic-level label (Rosch, Mervis, et al., 1976), 

we therefore expected categorisation performance to be fastest and most accurate when the 

basic-level category label was presented before the picture (e.g., dog → [picture of a dog]). 

That is, the match between the presented category label (dog) and the name automatically 

activated for the pictured object (dog) facilitates fast and accurate category verification. 

Simultaneously, the overlap between the sensorimotor representation of the category referent 

(dog) and the pictured object (dog) also facilitates responding, but likely to a lesser extent 

because linguistic activation tends to operate faster than sensorimotor activation (Barsalou et 

al., 2008; Connell, 2018). The extent of a basic-level advantage would then depend on the 

overlap in sensorimotor and linguistic distributional experience between the alternative 

category labels and the picture name.  

For example, when a category label such as Labrador is presented, it automatically 

activates a sensorimotor simulation of the referent (e.g., perceptual and action experience of a 

Labrador) and linguistic distributional neighbours of the label (e.g., words that appear in 

similar contexts to “Labrador”). Next, the picture is presented and is automatically labelled as 

dog, which activates the linguistic distributional neighbours of dog and a more detailed 

sensorimotor simulation of the pictured dog. The more similar the sensorimotor experience and 

linguistic contexts are between Labrador and dog, the more they facilitate fast and accurate 

category verification, and the closer their response latency and accuracy will be to the basic-

level case (e.g., label dog → [picture of a dog]). On the other hand, the more distant the 



 96 

category label and picture are in sensorimotor and linguistic distributional experience (e.g., 

animal → [picture of a dog]), the slower and more error-prone category verification will be.  

Specifically, we predicted that both sensorimotor and linguistic distributional 

information would inform categorisation, and that linguistic distributional information would 

contribute above and beyond sensorimotor alone. We also predicted that a combination of 

sensorimotor and/or linguistic distributional information would explain categorisation 

performance (RT and accuracy) better than traditional accounts of the basic-level advantage, 

which are based on discrete levels in a taxonomic hierarchy (i.e., subordinate, basic, 

superordinate).  

2.4.1. Method 

Participants. Thirty native speakers of English (23 female; Mage = 22 years, SD = 3.69) 

were recruited from Lancaster University in return for partial course credits or a sum of money 

(£3.50). We determined sample size via sequential hypothesis testing using Bayes Factors 

(Schönbrodt et al., 2017), which allows evidence for/against the hypothesis to accumulate until 

a pre-specified threshold of evidence is reached, and thus enables flexible sampling without 

increasing Type 1 error. We stopped sampling at the minimum bound of Nmin = 30, when 

analysis A for RT (see Data Analysis) cleared the specified grade of evidence BF10 ≥ 3 (actual 

BF10 = 1998.20). This threshold indicated that a basic-level advantage could be detected in our 

data (i.e., categorical decisions were made faster when the displayed word label was at the 

basic level compared to the superordinate and subordinate levels).  

The pre-registered accuracy threshold of 80% correct answers on fillers we established 

based on pilot testing proved to be too strict, and would have led to the exclusion of 12 

participants. As a result, we decided to deviate from the pre-registration and lower this 

threshold to 70%; one participant did not pass this new threshold and was replaced.  
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Materials. Test items consisted of 216 label → picture items, comprising 72 target 

pictures (depicting natural objects and artefacts), each of which was paired with three labels 

that correctly described it at the subordinate, basic and superordinate level (e.g., the picture of 

a Labrador was pared with labels animal, dog and Labrador respectively). We sourced all 

pictures through online image search, ensuring they were labelled for reuse with modification 

and had a minimum size of 1024x768 pixels. We then edited all pictures to display only target 

objects on a white background. All 72 subordinate labels were uniquely paired with pictures 

(e.g., label Labrador → picture Labrador), and 24 basic-level categories were paired with three 

different images (e.g., label dog → pictures Labrador, collie, and poodle). Finally, these 24 

basic-level categories were grouped into superordinate categories at 2-7 members apiece, 

meaning that nine superordinate labels were paired with each between 6-21 different pictures 

(e.g., label animal → pictures Labrador, collie, poodle, chimpanzee, gorilla, orangutan, etc.). 

We ensured that all labels were present in Lynott et al.’s (2020) sensorimotor norms to allow 

for the calculation of sensorimotor distances (see Design and Analysis). Finally, we divided all 

216 test items into three stimulus lists of 72 items, where each list featuring 24 subordinate, 24 

basic and 24 superordinate labels and included each picture only once.  

Filler items consisted of 116 label → picture pairs, containing similar object pictures 

and labels to test items. Of these, 71 false fillers were seen by all participants, and featured 23 

superordinate (e.g., label “publication” → picture eggplant), 24 basic-level (e.g., label “horse” 

→ picture zebra) and 24 subordinate (e.g., label “anchovy” → picture sunglasses) labels. 

Forty-one of these fillers were easily recognisable as false (i.e., pictured object clearly 

unrelated to the label e.g., label “frog” → picture shamrock) and thirty were more challenging 

(i.e., pictured object belonged to the same superordinate category as the label, e.g., label “cow” 

→ picture buffalo). A further 11 unique filler items were added to each stimulus list, featuring 

labels that appeared once among the items of that list, in order to ensure that repeated labels 
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amongst test items could not cue participants to respond “yes” to category membership (e.g., 

the label “animal” appears in multiple true test items). Of these fillers, five were superordinate 

(3 true; 2 false) and six were basic-level (3 true; 3 false). Finally, to balance the true/false 

proportion per category type, we added 12 fillers that were the same for all lists, with unique 

subordinate labels (6 true; 6 false). As a result, the final stimulus lists each contained 166 label 

→ picture pairs, divided evenly between true and false (72 true test items, 11 true fillers and 

83 false fillers).  

Procedure. Trials were presented on a white background, using PsychoPy (version 

1.84.1; Peirce, 2007). Each trial began with a blank screen displayed for 200 ms followed by 

a fixation cross for 300 ms, the label (centred, black lowercase Arial, 52 px) for 1000 ms, 

another blank screen for 200 ms, a fixation cross for 300 ms, and finally the picture which 

remained onscreen until a response key was pressed. Participants sat in front of a computer 

with a keyboard. They were told they would see a series of word-picture pairs where the word 

represented a category and the picture a potential member of that category. They were asked 

to press YES (z-key on the keyboard) when the picture showed a valid category member and 

NO (m-key) when it did not. Response times were measured from the onset of the picture to 

the onset of a valid keypress, and accuracy of each decision was also recorded. Participants 

were randomly assigned to a stimulus list. Test and filler items appeared in random order with 

a self-paced break every 60 trials. Testing took approximately 20 minutes, including informed 

consent and debriefing.  

Ethics and consent. The study received ethical approval from the Lancaster 

University Faculty of Science and Technology Research Ethics Committee. All participants 

read information detailing the purpose and expectations of the study before giving informed 

consent to take part. Consent included agreement to share publicly all alphanumeric data in 

anonymised form.  
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Critical predictors. As well as a specified taxonomic level (subordinate, basic, 

superordinate), each label → picture test item had an associated value in two critical 

predictors that captured the overlap in sensorimotor and linguistic distributional experience 

between category concept and member concept.  

Linguistic distance. Using a subtitle corpus consisting of 200 million words in British 

English (see van Heuven et al., 2014), we calculated log co-occurrence frequencies around 

each word with a context radius of five. Each word in the corpus was represented as a vector 

of log co-occurrence frequencies, allowing us to compare two words by calculating the cosine 

distance between their vectors (i.e., 1 – cos (θ (u,v)). For example, the words dog and animal 

generally appear in relatively similar contexts across language, therefore distance between 

their vectors in linguistic space is smaller than the distance between two words that appear in 

very different contexts, such as dog and spaghetti (.23 for the former compared to .46 for the 

latter example).  

Previous research suggests that pictures tend to be implicitly named with the most 

frequent, earliest-acquired word (e.g., Bates et al., 2003; Belke et al., 2005), which is usually 

the basic level (Rosch, Mervis, et al., 1976). We based our calculations on this assumption 

(i.e., we used the basic label dog as the name for all three pictures of dogs, regardless of 

whether it contained a Labrador, collie or poodle). As a result, the corresponding linguistic 

distance for basic-level label → picture items was always zero (e.g., dog → dog distance = 

0), and the ability of linguistic distance to predict categorisation performance depended on 

the presence of a systematic relationship between our dependent variables (i.e., RT, accuracy) 

and the linguistic distances of superordinate (e.g., animal → dog) and subordinate items (e.g., 

Labrador → dog). While this approach assumes which word label will be implicitly activated 

by a picture, it ensured fair comparison with the taxonomic category predictors, in which the 

basic-level category took the reference level of 0 in the dummy coding of sub- and 
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superordinate categories (see data analysis). The final linguistic distance measure for each 

label → picture pair ranged in theory from -1 to +1 (actual range = [.00, .83], M = .25, SD 

= .21), with higher values indicating greater distance in linguistic space (i.e., less overlap in 

the linguistic distributional experience of each word).  

Sensorimotor distance. To compare how two concepts overlapped in terms of 

sensorimotor experience, we took the novel approach of calculating sensorimotor distance 

based on multidimensional ratings of sensorimotor strength. We used Lynott et al.’s (2020) 

sensorimotor norms for 40,000 concepts, in which people rated the extent to which they 

experienced a particular concept via six perceptual modalities (auditory, gustatory, haptic, 

interoceptive, olfactory, visual) and by performing an action with five action effectors (foot, 

hand, head, mouth, torso), where each dimension was separately rated on a scale from 0 (not 

at all) to 5 (greatly). Each concept was therefore represented by an 11-dimensional vector of 

grounded sensorimotor experience, allowing us to compare two words by calculating the 

cosine distance between their vectors (as for linguistic distance).  

The final sensorimotor distance measure for each label → picture pair ranged in 

theory from -1 to +1 (actual range [.00, .29], M = .03, SD = .05), with higher values 

indicating greater distance in sensorimotor space (i.e., less overlap in the sensorimotor 

experience of each concept). Linguistic and sensorimotor distance measures were moderately 

correlated, r = .38, BF10=903110.10 (14.44% shared variance). 

Data analysis. We planned three sets of analyses to test our hypotheses. Analysis A 

tested whether a classic basic-level advantage could be distinguished in the data. We ran a 

mixed effects linear regression of RT (correct trials only) with crossed random effects of 

participants and items, and fixed effects of taxonomic level (dummy-coded as superordinate 

and subordinate variables with basic as the reference level). We also ran a mixed effects 

logistic regression (binomial, logit link) of accuracy (incorrect = 0, correct =1; all trials 
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included), with crossed random effects of participants and items, and fixed effects of 

taxonomic level (coded as above). For both analyses, we used Bayesian model comparisons 

(Bayes Factors calculated from BIC; Wagenmakers, 2007) to test whether the data favoured a 

model containing the above fixed effects over a null model containing only random effects. 

Analysis B tested whether variance in RT and accuracy could be explained by 

sensorimotor and linguistic distance. Model comparisons tested whether the data favoured a 

model containing both sensorimotor and linguistic fixed effects over a model containing only 

a sensorimotor fixed effect. Although not specified in the pre-registered analysis plan due to 

an error of omission, we also tested whether the data favoured a model with only 

sensorimotor distance over a null model containing only random effects (i.e., reflecting our 

pre-registered hypothesis that sensorimotor distance contributes to categorical decision 

making).  

Finally, Analysis C tested whether RT and accuracy were best explained by traditional 

taxonomic levels or by sensorimotor-linguistic information. Model comparisons tested 

whether the data favoured the best-fitting sensorimotor-linguistic model from Analysis B 

over the taxonomic model from Analysis A. Linear models of RT and logistic models of 

accuracy were compared separately. 

For each analysis, we report the coefficients and NHST statistics of fixed effects in 

the best-fitting model. 

2.3.2. Results and Discussion  

We removed as outliers 55 trials from the RT analysis (2.81 % of 1960 correct 

responses) and 63 trials from the accuracy analysis (2.92% of 2160 responses) that had RTs 

more than 2.5SD from the participant’s mean. Table 1 shows results of all model 

comparisons. 
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Table 1 

Model comparisons for linear mixed effect regressions of RT and logistic mixed effects 

regressions of accuracy in Experiment 1 showing change in R2 for nested comparisons and 

Bayes Factors for all comparisons. 

Analysis Model comparison RT Accuracy 

ΔR2 BF10 ΔR2 BF10 

 Null model (random effects) .264 - .270 - 

A Taxonomic levels vs. null .012 1998.19 .065 49020.80 

B Sensorimotor distance vs. null .011 9414.44 .016 12.81 

 Sensorimotor + Linguistic distance vs. null .012 383.75 .041 298.87 

 Sensorimotor + Linguistic distance vs. Sensorimotor-
only 

.001 0.04 .025 21.11 

C Best Sensorimotor-Linguistic model vs. taxonomic 
levels.  

- 4.71 - 0.01 

 

Relationship between dependent variables. An exploratory Bayesian correlation 

analysis using JASP (v.0.14.0.0, with default beta prior width =1) between a per-item average 

RT and percentage of correct answers provided moderate evidence against a correlation (BF01 

= 3.72), suggesting that accuracy and response time were not meaningfully related (see OSF 

for analysis code and results).  

Taxonomic levels. Bayesian model comparisons in Analysis A showed very strong 

evidence for models containing taxonomic levels over a null model containing only random 

effects of participant and item on participant’s RT (BF10 = 1998.20) and accuracy (BF10 = 

49020.80). In RT, categorisation decisions made at the subordinate level were 37 ms slower 

than at the basic level [unstandardized β = 36.99, 95% CI = ±29.41, t(1822.17) = 2.46, p 

= .014]. Furthermore, categorisation decisions at the superordinate level were 84 ms slower 

than at the basic level [β = 83.81, 95% CI = ±29.68, t(1828.05) = 5.53, p <.001]. Accuracy 

was overall high. Participants were most likely to answer correctly when an image was 



 103 

preceded by a label at the basic level (predicted probability of a correct answer = 97.7%). 

Compared to the basic level, participants were 2.74 times more likely to respond incorrectly 

when an image was labelled at the subordinate level, [β =-1.01, 95% CI = ±0.45, z = -4.37, p 

< .001] (predicted probability of a correct answer = 93.9%). Finally, participants were up to 

3.71 times more likely to respond incorrectly at the superordinate level [β = -1.31, 95% CI = 

±0.44, z = -5.83, p < .001] (predicted probability of a correct answer = 91.8%). Our data thus 

replicates the classic basic-level advantage in categorisation. 

Sensorimotor-linguistic predictors. In RT, Analysis B model comparisons showed 

very strong evidence for the effect of sensorimotor distance over a null model containing only 

random effects (BF10 = 9414.44). While a model containing both sensorimotor and linguistic 

distance was also better than the null (BF10 = 383.75), model comparisons indicated strong 

evidence against the inclusion of linguistic distance in RT models (i.e., the data were BF10 = 

24.53 times more likely under a model containing only sensorimotor distance compared to a 

model containing both sensorimotor and linguistic distances). Hence, the best sensorimotor-

linguistic model of RT was sensorimotor distance alone, where RT increased with 

sensorimotor distance (β = 722.97, 95% CI = ±277.49, t (1690.37) = 5.11, p <.001), by up to 

210 ms.6 

In accuracy, there was positive evidence for the effect of sensorimotor distance alone 

(BF10 = 12.81), but very strong evidence for the inclusion of linguistic distance alongside 

sensorimotor distance (BF10 = 289.87). Hence, the best sensorimotor-linguistic model of 

accuracy included both sensorimotor and linguistic distance. Coefficients showed that 

participants were more likely to respond incorrectly as sensorimotor distance increased (β = -

3.51, 95% CI = ±3.21, z =-2.15, p = .030) and as linguistic distance increased (β = -1.63, 95% 

 
6 This value reflects the change in the dependent variable at the maximum sensorimotor (.29) or linguistic (.83) 
distance between categories and members in our dataset, calculated as a proportion of the beta-coefficient 
(e.g., .29*722.97 = 209.66).  



 104 

CI = ±0.82, z = -3.87, p <.001) between categories and member concepts. That is, participants 

were 2.77 times6 more prone to error for items at the greatest sensorimotor distance (.29) than 

for items at the smallest sensorimotor distance (zero). Simultaneously, for items at the 

greatest linguistic distance (0.83) participants were 4.66 times6 more prone to error than for 

items at the smallest linguistic distance (zero).  

As predicted, sensorimotor and linguistic distributional information contribute to 

categorical decision making. Overlap in sensorimotor experience between category concept 

and member concept (e.g., between animal and Labrador) facilitates categorisation RT and 

accuracy. Similarly, overlap in linguistic experience between the distributional patterns of 

category and member label also facilitates categorisation accuracy; however, categorisation 

RT was not influenced by linguistic distance.  

Best model. Analysis C showed mixed results as to whether the taxonomic or 

sensorimotor-linguistic model best explained the data. As predicted, Bayesian model 

comparisons found positive evidence that sensorimotor distance was BF10 = 4.71 times better 

than taxonomic levels in predicting RT. By contrast, and contrary to predictions, there was 

strong evidence that taxonomic levels were BF01= 164.02 times better than sensorimotor and 

linguistic distance at predicting accuracy.  

Summary. Overall, while both sensorimotor and linguistic distributional information 

contribute to categorical decision making, they did not systematically do better than a 

taxonomic hierarchy of subordinate, basic, and superordinate levels. That is, sensorimotor 

information predicted response times best, while taxonomic level predicted accuracy best. We 

address a possible cause in experiment 2 below.  

2.4.2. Exploratory analysis: Psycholinguistic characteristics 

Research has shown compelling evidence for the influence of a number of 

psycholinguistic characteristics of objects and their names on a range of tasks which involve 
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lexical and semantic processing. For example, various researchers have found an effect of the 

age at which objects and their names are typically learned (age of acquisition, AoA) on 

performance in object recognition (Catling et al., 2008; Dent et al., 2007; Urooj et al., 2014), 

word recognition, picture naming (Belke et al., 2005; Morrison et al., 2003) and object 

classification (Catling & Johnston, 2006). However, research has also uncovered effects of 

the frequency of words in written and spoken language, the degree to which people are 

familiar with these words as well as their length. 

In the present work, we have thus far not addressed the effects psycholinguistic 

characteristics of in particular the category label may have had on performance in our task. 

However, it may be of interest to do so for two reasons: firstly, the wealth of evidence from 

psycholinguistic research which suggests in particular age of acquisition and word frequency 

affect performance in word recognition as well as object recognition, which may carry over to 

a semantic decision-making process. In other words, it may be the case that the delay that is 

observed for recognising words and objects with names that are less frequent and are 

acquired later in life also causes a delay in the category verification process. Secondly, 

previous categorisation research has suggested that the basic-level advantage may extend to 

their frequency in everyday language, as well as to the order in which category labels are 

learned. For example, early categorisation research suggests that that children acquire more 

differentiated categories (i.e., categories that maximise within-category similarity and 

between category-distinction, typically basic-level categories) before less differentiated 

categories (Mervis & Crisafi, 1982b; Mervis & Rosch, 1981). More recently, some have 

nuanced this by arguing that children follow a broad-to-narrow pattern, displaying 

appropriate distinguishing behaviour between animals and non-animals before displaying 

appropriate distinguishing behaviour between rabbits and birds (Mandler & McDonough, 

2000). While these accounts ultimately find each other in the belief that adults display a 
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basic-level advantage, they make seemingly different predictions for the relationship between 

the age at which basic-level labels are acquired and later performance differences. This in 

turn might result in different predictions for the effects a measure of AoA might have on 

categorisation performance in our task. Early categorisation researchers might argue that 

since basic-level labels are most differentiated, they are learned earlier and therefore AoA 

effects should mirror the classic basic-level advantage. If, by contrast, basic-level labels are 

learned after superordinate-level label, AoA effects should not match the classic basic-level 

advantage.  

In this exploratory analysis, our aim was twofold. Firstly, we aimed to test whether 

the psycholinguistic characteristics of the category label indeed affect categorisation 

performance, and if so in which direction. Where an effect would be observed, we expected 

that RT would increase with age of acquisition and word length, and decrease as word 

frequency and familiarity increased. On the other hand, we expected accuracy to decrease as 

age of acquisition and word length increased, and to increase with word frequency and 

familiarity. Secondly, we aimed to test whether the previously observed effects of taxonomic 

level, sensorimotor and linguistic distributional information could still be observed after the 

inclusion of psycholinguistic characteristics of the category label. Specifically, we 

investigated whether psycholinguistic characteristics (i.e., AoA, word frequency, familiarity 

and word length) of the category labels used in our task were better predictors of 

categorisation performance (accuracy, RT) than taxonomic level. Furthermore, we tested 

whether the inclusion of psycholinguistic characteristics changed the previously observed 

effects of sensorimotor and linguistic distributional information on RT and accuracy. 

To test this, we carried out a set of additional mixed effects regressions of RT and 

accuracy. Analysis D tested whether the taxonomic level of the category predicted RT and 

accuracy above and beyond the psycholinguistic characteristics of the category label. To this 
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end we ran two linear mixed effects regressions of RT, with random effects as per analysis A. 

The first regression included fixed effects of subjective estimates of AoA (retrieved from: 

Kuperman et al., 2012), Zipf log word frequency (retrieved from: van Heuven et al., 2014), 

subjective familiarity ratings (retrieved from: Scott et al., 2019; Stadthagen-Gonzalez & 

Davis, 2006; and the MRC Psycholinguistic database) and word length in characters 

excluding spaces where available for all category labels (calculated in R). All 

psycholinguistic characteristics were centred around their respective means. A second 

regression included the additional fixed effects of taxonomic level (dummy-coded as outlined 

in analysis A). Furthermore, we ran two mixed effects logistic regressions of accuracy 

(binomial, link = logit), with the same fixed and random effects structure as for the analysis 

of RT. We used Bayesian model comparisons to test whether the data favoured a 

psycholinguistic-only model over a model containing only random effects, and whether the 

data favoured models including taxonomic levels over those including only psycholinguistic 

variables (i.e., whether taxonomic information predicted additional variance to 

psycholinguistic information).  

Analysis E tested whether sensorimotor and or linguistic distributional information 

predicted RT and accuracy above and beyond the psycholinguistic characteristics of the 

category label. To this end, we ran three linear mixed effects regressions of RT with random 

effects as per analysis B. The first regression included fixed effects of AoA, Zipf log word 

frequency, average familiarity rating and word length in characters excluding spaces. A 

second regression added a fixed effect of sensorimotor distance between the category label 

and implicit image name, while a third regression added a fixed effect of linguistic 

distributional distance between a category label and implicit image name. We also ran three 

mixed effects logistic regressions of accuracy (binomial, link = logit) with the same fixed and 

random effects structure as for the analysis of RT. Bayesian model comparisons tested 
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whether the data favoured a model including sensorimotor and/or linguistic distributional 

information over that including only psycholinguistic characteristics of the category label.  

Exploratory results 

We could not retrieve information on all category labels used in our task for all 

psycholinguistic variables. As a consequence, we limited the dataset for this analysis to 

complete cases only. In the analysis of accuracy, we included 1687 out of 2097 trials 

(excluding 19.55 % of trials). In the analysis of RT, we included 1531 out of 1905 correct 

trials (excluding 19.63 % of trials). Because of this, these exploratory results should be 

interpreted with care. We also note here that we found evidence of moderate to strong 

correlations between psycholinguistic predictors (see supplementals on OSF) which is in line 

with previous research (e.g., Brysbaert & Ghyselinck, 2006). Nevertheless, we found no 

evidence of multicollinearity (i.e., VIF < 10) for any of the models tested (see supplemental 

materials on OSF).  

Psycholinguistic characteristics vs. taxonomic level. In analysis D of RT, we found 

evidence that a model including psycholinguistic effects fit the data worse than a model 

containing only random effects, with Bayesian model comparisons suggesting the data was 

BF01 = 16.73 times more likely under a random effects model. Interestingly, we found 

evidence against the inclusion of dummy-coded predictors of taxonomic level (i.e., BF01 = 

2.25), even when a taxonomic-only model was supported by the data far better than a 

psycholinguistic-only model (BF10 = 14568.12). Consequently, the psycholinguistic-

taxonomic model did also not outperform a random-effects model (BF01 = 37.66).  

In analysis D of accuracy, in contrast to the analysis of RT, we found evidence that a 

model containing psycholinguistic characteristics of the category label outperformed a model 

containing only random effects, with Bayesian model comparisons suggesting the data were 

BF10 = 126076.40 times more likely under the psycholinguistic model. Furthermore, in 
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contrast to the analysis of RT, we found evidence that a model including taxonomic levels 

outperformed a psycholinguistic-only model (BF10 = 15.37) in predicting accuracy. Inspection 

of the coefficients of the psycholinguistic-taxonomic model showed that increasing age of 

acquisition associated with the category label reduced the likelihood that participants 

categorised an image correctly by up to 19.25 times6 [β = -.46, 95% CI = ±.25, z = -3.58, p 

<.001]. In contrast to our confirmatory analyses (see analysis A above), we observed only a 

partial basic-level advantage. That is, in line with our confirmatory analyses, compared to the 

basic level, participants were less likely to correctly categorise an image when it followed a 

superordinate-level label [β = -1.29, 95% CI = ±.61, z = -4.12, p <.001]. However, accuracy 

was not significantly worse at the subordinate compared to the basic level [β = .13, 95% CI = 

±.95, z = -.28, p =.78]. Here too, we note that a model we ran on the same truncated dataset 

including only taxonomic predictors outperformed the psycholinguistic model (BF10 = 32.35). 

Interestingly, inspection of this model showed the classic basic-level advantage over both 

subordinate and superordinate-level labels. 

Psycholinguistic characteristics vs. sensorimotor-linguistic information. In 

analysis E of RT, we found evidence for the inclusion of sensorimotor distance to a model 

containing random effects and psycholinguistic characteristics (BF10= 140.04). This model 

outperformed a model containing only random effects (BF10 = 8.39). In line with 

confirmatory analysis B, we found evidence against the inclusion of linguistic distributional 

information to the sensorimotor-psycholinguistic model (BF01=13.21). Participants were up to 

219.95 ms slower to categorise objects with the largest sensorimotor distance (.29) between 

the category label and basic-level image name. We note here that the truncated dataset 

strongly supported a sensorimotor-only model over a sensorimotor-psycholinguistic model 

(BF01 = 802.76). 
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In analysis E of accuracy, we found equivocal evidence for the inclusion of 

sensorimotor distance to a model containing random effects and psycholinguistic 

characteristics (BF10= 1.37). Contrasting the results from confirmatory analysis B, we found 

equivocal evidence for the inclusion of linguistic distributional information to a 

sensorimotor-psycholinguistic model (BF10 = 1.79). Here, we note that a non-psycholinguistic 

sensorimotor-linguistic model of the truncated data greatly outperformed both a non-

psycholinguistic sensorimotor model (BF10 = 65657.21) as well as a psycholinguistic-

sensorimotor-linguistic model (BF10 = 41.07), suggesting that the reduced effect of linguistic 

distributional information may have been a consequence of the inclusion of psycholinguistic 

predictors and not truncating the dataset.  

In analysis F of RT, Bayesian model comparisons showed that the data were BF10 = 

14.04 times more likely under the best-performing psycholinguistic model from analysis E 

(psycholinguistic + sensorimotor information) than under the best-performing 

psycholinguistic model from analysis D (psycholinguistic information only). By contrast, 

analysis F of accuracy showed that the data were more BF10 = 6.30 times more likely under 

the best-performing analysis E model (psycholinguistic + taxonomic level) than under the 

best-performing analysis D model (psycholinguistic + sensorimotor + linguistic information).  

These results are exploratory, and must be interpreted with caution. When taken at 

face value, the fact that a model including psycholinguistic characteristics of the label did not 

predict RT above and beyond random effects suggests that the current data do not support a 

psycholinguistic interpretation of the time course in object categorisation. As such, they are in 

line with previous categorisation research (e.g., Murphy & Medin, 1982) that suggests little 

effect of order of learning and frequency. The fact that the inclusion of taxonomic level to a 

psycholinguistic model did not improve model fit, while a taxonomic-only model greatly 

outperformed both a psycholinguistic and random effects model is puzzling, but possibly 
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speaks to the highly exploratory nature of these analyses. This is particularly likely as in the 

case of RT, truncation of the data as a result of limited availability of psycholinguistic 

measures, led to a reduction of the basic-level advantage over subordinate-level labels. Future 

research may address this particular problem by ensuring the use of only items for which 

psycholinguistic characteristics are available.   

The accuracy results suggest a psycholinguistic interpretation is possible, yet not most 

likely. While the inclusion of psycholinguistic characteristics improved model fit over 

random effects, the best-fitting psycholinguistic model included taxonomic levels. Interesting 

are the fact that models including psycholinguistic characteristics reduced both the advantage 

of basic-level labels over subordinate-level labels, and the ability of linguistic distributional 

information to predict accuracy over sensorimotor information. It is possible that the 

inclusion of psycholinguistic characteristics resulted in net suppression effects in our model.  

However, overall, our exploratory analyses seem to indicate that simpler, non-

psycholinguistic models still outperform their psycholinguistic counterparts when tested on a 

similarly truncated dataset.  

Finally, we need to be cautious in interpreting results from models in which predictors 

are strongly related. This is a well-documented problem in psycholinguistic research, and is 

typically addressed during study design (e.g., by using orthogonal designs). These 

exploratory results illustrate this difficulty, and suggest that any future studies that aim to 

explore a combination of psycholinguistic effects and sensorimotor-linguistic effects would 

need to take care to ensure an orthogonal design, and might use positive pointwise mutual 

information (PPMI; Bullinaria & Levy, 2007) rather than log co-occurrence to minimise the 

relationship between linguistic distributional information measures and psycholinguistic 

characteristics such as word frequency. Investigating psycholinguistic characteristics alone 

may ultimately not bring us closer to understanding why certain category labels have a 
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performance advantage over others, particularly given fact that the previously observed effect 

of sensorimotor information is largely unaffected. That is, if the basic-level advantage is 

indeed explained by word frequency and age of acquisition (i.e., basic-level labels are learned 

earlier and are more frequent in language), then why are these category labels more frequent, 

and why are they learned earlier?  

2.5. Experiment 2: Typicality and the Basic-Level advantage 

In experiment 1, we assumed all pictures to be implicitly named at the basic level. 

However, categories can be graded in terms of the “goodness” of membership: that is, how 

members range in typicality of their respective categories, which affects category processing 

and production (Armstrong et al., 1983; Rips et al., 1973; Rosch, 1973; Rosch, Mervis, et al., 

1976; Rosch, Simpson, et al., 1976; Rosch & Mervis, 1975; E.E. Smith et al., 1974). That is, 

categorising typical items (e.g., sparrow, for the category bird) tends to be faster than 

categorising atypical items (e.g., penguin). However, unusual, atypical members tend to be 

named at the specific, subordinate level rather than at the more general basic level (e.g., a 

picture of a penguin is more likely to be named as a penguin rather than a bird: (Rosch, 

Mervis, et al., 1976; Snodgrass & Vanderwart, 1980). Jolicoeur et al. (1984) interpreted this 

finding to mean that the subordinate level, rather than the basic level, acts as the entry point 

into the taxonomic hierarchy of semantic memory for atypical category members. 

Alternatively, differentiation accounts proposed that a picture of an atypical bird like a 

penguin is more easily categorised at the subordinate level of penguin because its features are 

better matched at this specific level (i.e., the subordinate level is maximally informative and 

distinctive) compared to more general levels like bird or animal (Murphy & Brownell, 1985). 

In both accounts, categorisation of typical category members would therefore show the 

traditional basic-level advantage (i.e., basic level faster and more accurate than subordinate 

and superordinate levels), but categorisation of atypical members would show a different 
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pattern (i.e., subordinate level faster and more accurate than basic level, followed by 

superordinate level).  

If it is indeed the case that unusual category members are implicitly named at the 

specific, subordinate level, then it also affects how sensorimotor and linguistic information 

should be operationalized. In the previous experiment, we calculated sensorimotor and 

linguistic distance from the category name to the basic-level label of the pictured object. For 

example, in the item animal → picture of poodle, we assumed the picture would be implicitly 

labelled as the basic-level dog, hence sensorimotor and linguistic distance was calculated 

from animal → dog. However, for unusual category members, sensorimotor and linguistic 

distance should instead be calculated from the category name to the subordinate label. If a 

poodle is an unusual dog, then its picture would be implicitly labelled as poodle, and the item 

animal → picture of poodle should have its sensorimotor and linguistic distance calculated 

from animal → poodle. Since previous work has shown a close relationship between 

typicality and overlap of linguistic distributional experience (e.g., Connell & Ramscar, 2001), 

we opted to implement an internally-consistent adjustment for categorical gradedness by 

using linguistic distance to determine whether a member concept should be considered a 

good or poor example of its category. Member concepts that were close to their category 

concept (e.g., salmon and fish appear in very similar linguistic contexts, and have a cosine 

distance of .28) were considered good category members whose pictures would activate 

basic-level labels and corresponding sensorimotor information, whereas member concepts 

that were distant from their category concept (e.g., sailfish and fish appear in rather different 

linguistic contexts, with a cosine distance of .67) were considered poor/unusual members that 

would activate subordinate labels and corresponding sensorimotor information. With this 

adjustment for categorical gradedness in place, we could characterise as before the 
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representational overlap of linguistic and sensorimotor information between a category and 

member concept.  

Hence, in this study (data, analysis code, results, and preregistration available at 

https://osf.io/vdka2/?view_only=ac6c78793a354a1f95da6c36b5ac6163), we collected 

typicality ratings for each of our subordinate-level stimuli as a member of its basic-level 

category (e.g., typicality of sailfish as a fish) and examined its influence on categorical 

decision making using the dataset of Experiment 1. In line with previous research on the role 

of object typicality in categorisation (e.g., Jolicoeur et al., 1984; Murphy & Brownell, 1985), 

we expected typicality to enhance the ability of traditional taxonomic accounts to explain the 

basic-level advantage in categorisation, and to interact with subordinate taxonomic level so 

that typical items would show a basic-level advantage but atypical items would show a 

subordinate-level advantage. From the sensorimotor-linguistic perspective, we also 

hypothesised that linguistic distributional information would capture the graded structure of 

categories, whereby linguistic distance would correlate negatively with typicality ratings (i.e., 

less typical = greater linguistic distance between category and member concept). Using 

gradedness-adjusted measures of sensorimotor and linguistic distance, we predicted – as 

before – that linguistic distance would predict categorisation performance above and beyond 

sensorimotor distance (i.e., greater category-member distance results in slower RT and poorer 

accuracy in categorical decision) and that the best sensorimotor/linguistic model would 

outperform the taxonomic-typicality model.  

2.5.1. Method 

Materials & dependent measures. We used the categorical decision dataset from 

Experiment 1, with new predictors as outlined below. 

Critical predictors. As well as a specified taxonomic level (subordinate, basic, 

superordinate), each label → picture test item had an associated typicality rating of the 
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pictured object as a member of its basic-level category. In addition, each label → picture test 

item had a gradedness-adjusted measure that captured the overlap in sensorimotor and 

linguistic distributional experience between category concept and member concept.  

Typicality ratings. We collected typicality ratings from 12 naïve participants (all 

native speakers of English) for each of the 72 test items that comprised a basic-subordinate 

concept pair (e.g., fish-salmon). These ratings were collected as part of a larger study 

collecting typicality ratings for 2280 category-member items, where items were divided into 

lists of 120 items each (Banks & Connell, 2021); the present 72 category-member items were 

randomly spread across lists. Participants were asked to rate how good an example of the 

basic-level category (e.g., fish) they thought each subordinate category member (e.g., salmon) 

to be, on a scale from 1 (very poor) to 5 (very good); alternatively, they could select a “don’t 

know” option if they were not familiar with the category or member concept in question. 

Data collection stopped when every item had 12 valid ratings. We then calculated the average 

typicality rating per category member, and used this typicality rating on every label → picture 

trial where it was presented (e.g., all trials with a salmon picture used the typicality rating for 

salmon as a kind of fish). Mean typicality rating across all items was 4.53 (SD = .36, range = 

[3.42, 5.00]). 

 Gradedness-adjusted linguistic and sensorimotor distance. For our original 

calculation of linguistic distance in Experiment 1, we assumed that all pictured objects were 

implicitly named at the basic level (i.e., we used the basic label fish as the name for all three 

pictures of fish). In order to incorporate categorical gradedness into linguistic and 

sensorimotor distance, where pictures of unusual category members would instead be 

implicitly named at the subordinate level (e.g., using the specific label sailfish as the name for 

the picture of a sailfish), we used the data to determine the tipping point of linguistic distance 

that distinguished good from unusual category members. We first examined the distribution 
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of linguistic distance between all 72 subordinate member concepts and their basic-level 

category concept (e.g., fish → sailfish, fish → salmon) and visually established 10 potential 

thresholds beyond which we assumed member concepts to be unusual for their category. We 

then replaced the linguistic distances of all items that fell beyond each threshold with those 

calculated using the subordinate name as the picture label. For instance, if the linguistic 

distance for fish → sailfish exceeded the threshold, we replaced all linguistic distances of 

sailfish trials (originally calculated as animal → fish, fish → fish, sailfish → fish) with their 

gradedness-adjusted linguistic distances (i.e., animal → sailfish, fish → sailfish, sailfish → 

sailfish). For these same items, we likewise replaced the original sensorimotor distances with 

their gradedness-adjusted sensorimotor distance.  

Finally, we examined which threshold was best supposed by the data by running 

mixed effect regression of RT per candidate threshold, with random effects of participant and 

item and fixed effects of gradedness-adjusted sensorimotor and linguistic distance. Model 

comparisons showed that the best-fitting model was based on a gradedness-adjusted linguistic 

distance threshold of .33, and that the data favoured this model BF10 = 1908.20 times more 

strongly than the original model used in Experiment 1. In short, a linguistic distance of .33 

acted as a tipping point between good category members (N = 23) that were implicitly named 

at the basic level and unusual category members (N = 49) that were implicitly named as the 

specific, subordinate level. We therefore used these optimal gradedness-adjusted linguistic 

and sensorimotor distances in subsequent analyses. Gradedness-adjusted linguistic distance 

(M = .30, SD = .25, range = [0, .83]) and sensorimotor distance (M = .04, SD = .05, range = 

[0, .29]) were moderately correlated at r = .53 (i.e., 28.30% shared variance).  

Data analysis. Five sets of analyses were planned to test our hypotheses: two to test 

the predictions of traditional taxonomic accounts of the basic-level advantage, and three to 

test our sensorimotor-linguistic account. Analysis A tested whether including item typicality 
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would predict categorical decision RT and accuracy better than taxonomic information alone. 

RT (correct trials only) and Accuracy (all trials) were analysed using the model specifications 

of Analysis A in Experiment 1, with an additional fixed effect of typicality (variable centred). 

Bayesian model comparisons tested whether the data favoured random effects only, 

taxonomic level, or taxonomic level and typicality. Analysis B tested whether categorisation 

at the subordinate versus basic level differed for typical and atypical category members. RT 

and accuracy were analysed as per Analysis A, with the additional fixed effect of interaction 

between typicality and subordinate taxonomic level (i.e., where basic level is coded as the 

reference level). Model comparisons tested whether the data favoured this interaction model 

over the final model of Analysis A.  

In order to test our sensorimotor-linguistic predictions, Analysis C investigated if 

linguistic distance and typicality were correlated, using a Bayesian correlation analysis in 

JASP (version 0.9.2: JASP Team, 2019) with default beta prior width =1 and a directional 

hypothesis of negative correlation (i.e., higher distance = less typical). Analysis D examined 

whether variance in RT and accuracy could be explained by gradedness-adjusted 

sensorimotor and linguistic distance. Model comparisons tested whether the data favoured a 

model containing sensorimotor distance alone, or a model containing the additional fixed 

effect of linguistic distance. Finally, in Analysis E, we investigated whether RT and accuracy 

were best explained by traditional taxonomic-typicality information or by sensorimotor-

linguistic information. Therefore, in analysis E, Bayesian model comparisons determined 

whether our data favoured the best-performing taxonomic-typicality model from analysis B 

or the best-performing sensorimotor-linguistic model from analysis D. 

2.5.2. Results and discussion 

Outlier trials were removed from the dataset in Experiment 1. In addition, we 

removed one item (gavel) from both the RT (21 out of 1905 trials, 1.10%) and accuracy (28 
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out of 2097 trials, 1.33%) data because it had an exceptionally low typicality rating (2.2 on a 

1-5 scale) that made it an outlier more than five standard deviations below the mean item 

typicality (M = 4.53, SD =.45). While removing this item deviated from the pre-registered 

analysis plan, we felt it was necessary to avoid compromising the robustness of our analyses. 

The classic basic-level advantage remained intact with this item excluded: there was very 

strong evidence for including taxonomic levels in analysis of both RT (BF10 = 10938.02) and 

accuracy (BF10 = 84965.45). Categorisation at the basic level was faster than at subordinate 

[unstandardized β = 42.11, 95% CI = ±29.32, t (1803.90) = 2.81, p = .005] and superordinate 

levels [β = 88.15, 95% CI = ±29.61, t (1809.75) = 5.83, p <.001]. Similarly, accuracy was 

greatest at the basic level, followed by subordinate [β =-1.06, 95% CI = ±0.47, z = -4.44, p 

< .001] and superordinate [β = -1.36, 95% CI = ±0.45, z = -5.84, p < .001] levels7. 

Table 2 shows model comparisons for analyses A, B, D and E. 

  

 
7 Full coefficient statistics for all models including and excluding the gavel item are included in supplementals. 
In brief, analysis including this outlier item did not affect inferences based on Bayesian model comparisons, but 
in did create a weak but significant coefficient effect of typicality in Analysis B that disappeared when the item 
was excluded, which suggested we were correct to remove it. 
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Table 2 

Model comparisons for linear mixed effect regressions of RT and logistic mixed effects 

regressions of accuracy in Experiment 2 showing change in R2 for nested comparisons and 

Bayes Factors for all comparisons. 

Analysis Model comparison RT Accuracy 

ΔR2 BF10 ΔR2 BF10 

 Null model (random effects) .262 - .261 - 

A Taxonomic levels vs. null .013 10938.02 .070 84965.45 

 Taxonomic levels + Typicality vs. null .013 270.43 .079 7331.97 

 Taxonomic levels + Typicality vs. Taxonomic levels <.001 0.02 <.001 0.09 

B Taxonomic levels + Typicality + Interaction vs. null .014 12.81 .079 190.57 

 Taxonomic levels + Typicality + Interaction vs. 
Taxonomic levels + Typicality  

<.001 0.05 <.001 0.02 

D Graded Sensorimotor distance vs. null .018 32605775.72 .027 772.78 

 Graded-Sensorimotor + Graded-Linguistic distance 
vs. null 

.017 380788.74 .033 134.29 

 Graded-Sensorimotor + Graded-Linguistic distance 
vs. Graded-Sensorimotor only 

<.001 0.02 .005 0.17 

E Best Graded Sensorimotor-Linguistic model vs. best 
Taxonomic-Typicality model  

- 120571.71 - 0.10 

 

Taxonomic levels and typicality. In Analysis A, model comparisons showed evidence 

against adding typicality to a model containing taxonomic levels. In RT analysis, the data 

strongly favoured the taxonomic-only model (BF01 = 40.45) and typicality had very little 

effect [β = 9.48, 95% CI = ±47.36, t (75.05) = 0.39, p = .700]. In accuracy analysis, the data 

again favoured the taxonomic-only model (BF01 = 11.59), with typicality weakly trending in 

the predicted direction [β =0.59, 95% CI = ±0.66, z = 1.76, p = .080]. In short, typicality 

ratings did not affect overall categorisation performance in our data, contrary to predictions 

of some traditional accounts (e.g., Rosch, 1973; Rosch, Simpson, et al., 1976; Rosch & 

Mervis, 1975).  
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Interaction of typicality with taxonomic level. Analysis B model comparisons 

showed strong evidence against an interaction between typicality and subordinate taxonomic 

level. In analysis of RT, the interaction had little effect [β = 46.16, 95% CI = ±75.71, 

t(1812.60) = 1.19, p = .230], and data were BF01 = 21.11 times more likely under the model 

without an interaction. In analysis of accuracy, we also found strong evidence against adding 

the interaction between subordinate taxonomic level and typicality (BF01 = 38.47), where it 

had little effect on categorical decision [β =0.25, 95% CI = ±0.88, z = 0.56, p = .570]. The 

best taxonomic-typicality model in this analysis therefore contained taxonomic levels and 

typicality ratings, but no interaction. Contrary to taxonomic accounts that hold typicality 

affects the basic-level advantage (Jolicoeur et al., 1984; Murphy & Brownell, 1985), we 

found no evidence that atypical items were preferentially categorised at the specific, 

subordinate level. Rather, all category members showed the traditional basic-level advantage 

where the basic level was faster and more accurate than subordinate and superordinate levels 

(but see general discussion). 

Linguistic distance and typicality. Analysis C found equivocal evidence for a 

negative correlation between our original measure of linguistic distance between subordinate 

items and their basic-level label, and average typicality rating [r =-.176, BF10= 0.79]. That is, 

linguistic distance did not decisively capture the graded structure of categories, where more 

unusual, atypical examples of a category were associated with greater linguistic distance (i.e., 

less overlap in linguistic contexts) between category and member concept. 

Gradedness-adjusted sensorimotor and linguistic distance. In RT, Analysis D model 

comparisons showed very strong evidence for the effect of gradedness-adjusted sensorimotor 

distance over a null model of random effects, BF10 = 32605775.72. However, we found 

strong evidence against adding gradedness-adjusted linguistic distance to a model containing 

sensorimotor distance alone. That is, as we found for unadjusted distance measures in 
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Experiment 1, the data were BF01 = 15.64 times more likely under a model containing only 

sensorimotor distance compared to a model containing both linguistic and sensorimotor 

distance. In the best-fitting sensorimotor-only model, categorisation took up to 244.38 ms 

longer at the greatest gradedness-adjusted sensorimotor distance (0.29, reflecting the least 

overlap in sensorimotor experience) than for items at the smallest sensorimotor distance 

(zero), [β = 842.68, 95% CI = ±235.21, t(1532.40) = 6.52, p <.001]. 

In accuracy analysis, we again found very strong evidence for the effect of 

gradedness-adjusted sensorimotor distance over a null model, BF10 = 772.78. However – and 

unlike Experiment 1 – we also found evidence against the inclusion of gradedness-adjusted 

linguistic distance, whereby the data favoured the model containing sensorimotor distance 

alone (BF01 = 5.75). Hence, as for RT, the best gradedness-adjusted sensorimotor-linguistic 

model of accuracy was sensorimotor distance alone, where the greatest distance made errors 

up to 6.90 times6 more likely than the shortest distance [β =-6.66, 95% CI = ±2.70, z = -4.82, 

p <.001].  

Best model. In analysis E, results followed the mixed pattern of Experiment 1 

regarding whether the data were more likely under a model using traditional taxonomic levels 

or sensorimotor/linguistic distance. As predicted, Bayesian model comparisons between the 

best-performing models from analyses B and D found very strong evidence that gradedness-

adjusted sensorimotor distance was BF10 = 120571.71 times better at predicting RT than a 

model containing taxonomic levels and typicality. However, against predictions but 

consistent with Experiment 1, there was evidence that the taxonomic-typicality model was 

BF01 = 9.49 times better (i.e., BF10 = 0.10) at predicting accuracy than a model containing 

gradedness-adjusted sensorimotor distance.  

Summary. In this study, we examined whether accounting for categorical gradedness 

affected the ability of sensorimotor and linguistic distributional information to contribute to 
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categorical decision making, relative to traditional taxonomic levels. In contrast to our 

predictions, linguistic distributional information did not decisively capture the graded 

structure of categories: unusual member concepts were not more linguistically distant from 

their category concept (e.g., sweatpants and trousers overlap little in linguistic experience) 

than member concepts that were good examples of their category (e.g., jeans and trousers 

overlap a lot in linguistic experience).  

Nevertheless, adjusting for categorical gradedness improved the predictive ability of 

sensorimotor and linguistic distance measures compared to the unadjusted measures of 

Experiment 1. Gradedness-adjusted sensorimotor information contributed to categorical 

decision making, and outperformed traditional predictors of taxonomic levels and typicality 

in fitting RT (but not accuracy). Against our predictions, however, gradedness-adjusted 

linguistic distributional information was not an effective predictor of either RT or accuracy. 

That is, even though linguistic distance formed the basis for adjusting categorical gradedness, 

when these gradedness-adjusted measures are used, it appears that sensorimotor distance 

between the category and member concepts is more relevant to the time course and decision 

outcome than the linguistic distributional relationship between the category and member 

labels. 

Nonetheless, the analysis with typicality produced some unexpected results. Contrary 

to previous findings in the literature (Rosch, Simpson, et al., 1976; Rosch & Mervis, 1975), 

typicality did not affect categorical decisions, nor did it impact on the basic-level advantage 

as predicted by the entry-level (Jolicoeur et al., 1984) and differentiation (Murphy & 

Brownell, 1985) accounts. That is, the least typical items in our dataset tended to be 

categorised at the basic rather than subordinate level (e.g., a picture of a sailfish was 

categorised as a fish more quickly and accurately than as a sailfish), the same as the most 

typicality items (e.g., a Labrador as a dog). One possible explanation for the absence of 



 123 

typicality effects is that our items did not span a wide enough range of typicality ratings (i.e., 

range [3.42, 5.00] on a 1-5 scale), and hence were not sufficiently atypical to trigger the 

mechanisms that should cause unusual category members to be categorised at the subordinate 

rather than basic level. However, this explanation cannot account for the fact that categorical 

gradedness did affect categorisation when it was modelled via linguistic distance: 

gradedness-adjusted measures of sensorimotor and linguistic distributional information 

outperformed the unadjusted measures used in Experiment 1, and gradedness-adjusted 

sensorimotor distance outperformed taxonomic-typical models in predicting RT. Such a 

pattern of findings suggests that typicality may not be the best measure of the graded 

structure of categories, and that the goodness-of-membership may be better captured by an 

implicit measure derived from distributional patterns in language use. In the next 

experiments, we examine this possibility, and the robustness of our reported findings, via 

replication studies. 

2.5.3. Exploratory analysis: Psycholinguistic characteristics 

As for experiment 1, we ran a set of exploratory analyses to verify that the effects we 

observed would not be subject to significant change when introducing psycholinguistic 

characteristics of the category label into the regression models. To this end, we carried out a 

set of additional mixed effects regressions of RT and accuracy. Analysis F tested whether 

object typicality predicted RT and accuracy above and beyond the taxonomic level and 

psycholinguistic characteristics of the category label. To this end we ran two linear mixed 

effects regressions of RT, with random effects as per analysis A. The first regression included 

fixed effects of AoA ratings, Zipf log word, familiarity rating, word length in characters 

excluding spaces (as per exploratory analyses of experiment 1), as well as taxonomic level 

(dummy-coded as per experiment 1, analysis A). All psycholinguistic characteristics were 

centred around their respective means. The second regression included an additional fixed 
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effect of mean typicality. Furthermore, we ran two mixed effects logistic regressions of 

accuracy (binomial, link = logit), with the same fixed and random effects structure as for the 

analysis of RT. A third regression included the interaction between the subordinate taxonomic 

level and object typicality. We used Bayesian model comparisons to test whether the data 

favoured a psycholinguistic-taxonomic-typicality model over a psycholinguistic-taxonomic 

model.   

Analysis G tested whether categorisation at the subordinate versus basic level differed 

for typical and atypical category members, when controlling for psycholinguistic 

characteristics of the category label. RT and accuracy were analysed as per Analysis F, with 

the additional fixed effect of interaction between typicality and subordinate taxonomic level 

(i.e., where basic level is coded as the reference level). We used Bayesian model comparisons 

to test whether the data favoured this interaction model over the final model of Analysis F.  

Analysis H tested whether gradedness-adjusted sensorimotor and or linguistic 

distributional information predicted RT and accuracy above and beyond the psycholinguistic 

characteristics of the category label. To this end, we ran three linear mixed effects regressions 

of RT with random effects as per analysis A. The first regression included fixed effects of 

AoA-rating, Zipf log word frequency, average familiarity rating and word length in characters 

excluding spaces. A second regression added a fixed effect of gradedness-adjusted 

sensorimotor distance between the category label and implicit image name, while a third 

regression added a fixed effect of gradedness-adjusted linguistic distributional distance 

between a category label and implicit image name. We also ran three mixed effects logistic 

regressions of accuracy (binomial, link = logit) with the same fixed and random effects 

structure as for the analysis of RT. Bayesian model comparisons tested whether the data 

favoured a model including sensorimotor and/or linguistic distributional information over that 

including only psycholinguistic characteristics of the category label. 
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Finally, in analysis I, we used Bayesian model comparisons to test which model from 

analysis G and H fit RT and accuracy data best. As in the exploratory analysis for Experiment 

1, the data was limited to complete cases only. As in the confirmatory analyses, all trials 

concerning the item gavel were removed. The final RT dataset consisted of 1510 

observations; the final accuracy dataset consisted of 1659 observations. 

Psycholinguistic vs. taxonomic level and average typicality. In Analysis F of RT, as 

in the exploratory analyses of Experiment 1, neither a psycholinguistic (BF01 = 20.99) nor a 

psycholinguistic-taxonomic model (BF01 = 9.52) outperformed a model containing only 

random effects of participant and item. Furthermore, model comparisons showed evidence 

against adding typicality to a model containing taxonomic levels and psycholinguistic 

characteristics of the category label (BF01 = 38.45). In the analysis of accuracy, the data did 

favour both a psycholinguistic (BF10 = 346717.70) and a psycholinguistic-taxonomic model 

(BF10 = 2445518.00) over a model containing only random effects. As in or confirmatory 

analyses, the inclusion of average typicality ratings did not improve model fit over a 

psycholinguistic-taxonomic model (BF01 = 24.96). Inspection of the coefficients showed that 

accuracy decreased with age of acquisition [β = -0.48, 95% CI = ±0.26, z = -3.66, p <.001] 

and was lower for superordinate [β = -1.35, 95% CI = ±0.66, z = -4.01, p <.001] but not 

subordinate [β = -.08, 95% CI = ±0.98, z = -.17, p = .86] compared to basic-level category 

labels, matching exploratory analyses of Experiment 1.  

Interaction between typicality and subordinate level labels. In analysis G of RT, 

we found evidence against the hypothesis that the addition of an interaction between 

subordinate category labels and average typicality improved model fit over a 

psycholinguistic-taxonomic-typicality model (BF01 = 34.64). Similarly, in the analysis of 

accuracy, we found evidence against the addition of the interaction between subordinate 
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category labels and average typicality (BF01 = 39.30). These results mirrored the 

confirmatory findings from experiment 2.  

Psycholinguistic characteristics vs. gradedness adjusted distances. In analysis H 

of RT, we found strong evidence for the inclusion of gradedness-adjusted sensorimotor 

information to a model containing fixed effects of psycholinguistic characteristics (BF10 = 

2718619.62). In line with confirmatory analyses, we found evidence against the inclusion of 

gradedness-adjusted linguistic distributional information to a psycholinguistic-sensorimotor 

model (BF01 = 35.55). Inspection of the coefficients of the psycholinguistic-sensorimotor 

model once showed that RT increased with age of acquisition [β =28.71, 95% CI = ±17.03, t 

(292.65) = 3.30, p = .001], word frequency [β =44.89, 95% CI = ±35.79, t(335.66) = 2.46 , p 

= .014] and gradedness-adjusted sensorimotor distance [β =1021.91, 95% CI = ±324.43, 

t(478.21) = 6.17 , p < .001]. We note here that a non-psycholinguistic model including only 

random effects and gradedness-adjusted sensorimotor distance was strongly supported over a 

psycholinguistic-sensorimotor model (BF10 = 783.96).  

In analysis H of accuracy meanwhile, we found strong evidence for the inclusion of 

gradedness-adjusted sensorimotor distance (BF10 = 545.55). Moreover, we found decisive 

evidence against the inclusion of gradedness-adjusted linguistic distributional information 

(BF01 = 18.31). Inspection of the coefficients of the psycholinguistic-sensorimotor model 

showed that participants’ accuracy decreased as age of acquisition [β = -.50, 95% CI = ±.24, z 

= -4.09, p <.001], word frequency [β = -.64, 95% CI = ±0.58, z = -2.16, p =.031] and 

gradedness-adjusted sensorimotor distance increased [β = -10.22, 95% CI = ±4.25, z = -4.71, 

p <.001]. Crucially, this model outperformed a non-psycholinguistic model (BF10 = 

102944.80).  

Best model. In analysis I of RT, Bayesian model comparisons showed that the data 

were BF10 = 47441150.00 times more likely under the best-fitting model from analysis H 
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(sensorimotor-psycholinguistic) than under the best-fitting model from analysis G 

(taxonomic-typicality- psycholinguistic). In analysis I of accuracy meanwhile, model 

comparisons showed that the data were BF10 = 1913.99 times more likely under the best-

fitting model from analysis H (sensorimotor-psycholinguistic) than under the best-fitting 

typicality model from analysis G (taxonomic-typicality psycholinguistic).   

Taken together, these exploratory findings are broadly in line with the confirmatory 

analysis of experiment 2, as well as the exploratory analyses of experiment 1, with two 

exceptions. Firstly, we found equivocal evidence that a taxonomic-only model predicted 

accuracy better than a taxonomic-psycholinguistic model, secondly, we found overwhelming 

evidence that a sensorimotor-psycholinguistic model outperformed a non-psycholinguistic 

model in predicting accuracy. This suggested that for this data, the best-fitting model included 

both a measure of gradedness-adjusted sensorimotor distance and psycholinguistic 

characteristics, in particular age of acquisition and word frequency. Together with the 

exploratory results in Experiment 1, this strengthens the evidence that age of acquisition may 

indeed affect categorical decision making.  

 

2.6. Experiment 3a: Replication of Experiment 1 

In an attempt to replicate the effects found in Experiment 1 (i.e., sensorimotor and 

linguistic distance predicted the basic level advantage in categorisation, and outperformed 

taxonomic level as a predictor in RT but not accuracy), we set out to investigate the same 

hypotheses in a replication study run online (i.e., via a web-based experimental platform) 

rather than in the lab. Our predictions remained the same (pre-registration, data, analysis 

code, and results available at 

https://osf.io/vdka2/?view_only=ac6c78793a354a1f95da6c36b5ac6163 ). 
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2.6.1. Method 

The method was identical to Experiment 1 with the following exceptions.  

Participants. 25 participants (21 female, Mage, 37.76, SD = 10.86) were recruited 

through Prolific.co (formerly Prolific.ac), an online crowdsourcing platform. Through 

Prolific’s recruitment filter settings, we ensured that all participants were native speakers of 

English, had no dyslexia, and had a minimum number of 10 submissions with a Prolific 

approval rating of >95%. Participants were required to achieve an accuracy threshold of 70% 

accuracy on filler items; no participants were removed for failing to reach this threshold.  

Sample size was determined through sequential hypothesis testing of analysis A as per 

Experiment 1. Since we stopped sampling at our lower bound of N = 30 in Experiment 1, we 

used sequential analysis to determine the number of lab-based participants at which evidence 

for the basic-level advantage in RT began to consistently exceed our evidence threshold of BF10 

≥ 3, which occurred at N = 14 (BF10 = 71.88). Recent studies (Crump et al., 2013; Hilbig, 

2016; Semmelmann & Weigelt, 2017) suggest web-based data collection yields comparable 

results to lab-based testing, but may still be subject to noise. In order to allow for a higher 

level of noise in our dataset, we therefore set our present lower bound to be 50% higher at 

Nmin = 21, and also raised our threshold of evidence to a more conservative BF10 ≥ 10. Due 

to technical error, an additional 4 participants above Nmin were tested before online 

recruitment automatically closed; we opted to include all tested participants in data analysis 

rather than arbitrarily exclude the final four. At 25 participants, the specified grade of 

evidence for the presence of a basic-level advantage in our data was comfortably cleared at 

BF10 = 14650719.43.  

Procedure. The experiment ran on web-based platform Gorilla.sc (Anwyl-Irvine et 

al., 2020), which handled both collection of informed consent and experimental data 

collection. Trial presentation was identical to Experiment 1, except the font used to display 
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labels was lowercase Open Sans. Furthermore, in contrast to Experiment 1, we specified a 

more conservative Bayes Factor threshold at BF ≥ 10, as we expected web-based data to be 

noisier than lab-based data.  

Ethics and consent. The study received ethical approval from the Lancaster 

University Faculty of Science and Technology Research Ethics Committee. As well as the 

terms specified in Experiment 1, participants consented to take part on condition that they 

passed a series of attention checks (i.e., 70% accuracy on filler items as per Experiment 1). 

Data analysis. We repeated confirmatory analyses A through C, as well as exploratory 

analyses D through F as specified in Experiment 1. 

2.6.2. Results and discussion 

One participant had a very long tail of slow RTs, which indicated inattention but were not 

otherwise excluded by the pre-registered criteria for outlier removal. As a result, we decided 

to remove all trials with RT > 10000 ms. We removed 7 trials from the accuracy analysis and 

2 trials from the RT analysis. We removed an additional 49 trials from the RT analysis and 57 

trials from the accuracy analysis for having RTs that were more than 2.5 SD from the 

participant’s mean. No responses were removed due to motor error. In total we thus removed 

51 outliers from the RT analysis (3.07% of 1663 correct responses) and 64 outliers from the 

accuracy analysis (3.55% of all 1800 responses). Table 3 shows model comparisons for all 

analyses.  
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Table 3 

Model comparisons for linear mixed effect regressions of RT and logistic mixed effects 

regressions of accuracy in Experiment 3a showing change in R2 for nested comparisons and 

Bayes Factors for all comparisons. 

Analysis Model comparison RT Accuracy 

ΔR2 BF10 ΔR2 BF10 

 Null model (random effects) .197 - .262 - 

A Taxonomic levels vs. null .024 14650719.43 .129 9.72x1010 

B Sensorimotor distance vs. null .022 93175931.44 .048 12088.39 

 Sensorimotor + Linguistic distance vs. null .024 26695351.30 .049 314.19 

 Sensorimotor + Linguistic distance vs. Sensorimotor-
only 

.002 0.28 .001 0.03 

C Best Sensorimotor-Linguistic model vs. taxonomic 
levels.  

- 6.36 - <0.01 

 

Relationship between dependent variables. An exploratory Bayesian correlation 

analysis using JASP (v.0.14.0.0, with default beta prior width =1) between a per-item average 

RT and percentage of correct answers provided anecdotal evidence against their correlation 

(BF01 = 2.01), suggesting that accuracy and response time were not meaningfully associated.  

Taxonomic levels. Bayesian model comparisons for Analysis A showed very strong 

evidence for models containing taxonomic levels over models containing only random 

effects. In RT, categorisation at the subordinate [unstandardized β = 35.91, 95% CI = ±28.94, 

t(1528.67) = 2.43, p = .015] and superordinate [β = 105.85, 95% CI = ±30.09, t(1538.60) = 

6.89, p <.001] levels was slower than at the basic level. In contrast to the findings from 

Experiment 1, the basic-level advantage did not appear in accuracy: compared to the basic 

level, participants were 4.57 times more likely to respond incorrectly at the superordinate 

level [β = -1.52, 95% CI = ±.53, z = -5.67, p < .001]. However, people were 1.49 times more 

likely to respond correctly at the subordinate level than at the basic level (i.e., in the opposite 
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direction to the predicted basic-level advantage), but with a small effect that in NHST terms 

was not significant [β = 0.41, 95% CI = ±.69, z = 1.16, p = .245]. Predicted probabilities of a 

correct answer were highest at the subordinate-level at 98.6%, followed by basic-level 

(97.9%) and finally the superordinate-level (91.2%). In other words, accuracy was 

approximately equal at the subordinate and basic levels, and worse at the superordinate level. 

The present study therefore largely but not completely replicates the classic basic level 

advantage.  

Sensorimotor-linguistic predictors. In RT, Analysis B model comparisons showed 

very strong evidence for the effect of sensorimotor distance over the null model (BF10 = 

93175931.44), where RT increased with up to 271 ms6 for the largest sensorimotor distance 

compared to the smallest one [β = 935.20, 95% CI = ±272.66, t (1461.16) = 6.72, p <.001]. 

However, model comparisons did not support an effect of linguistic distance above and 

beyond sensorimotor distance. Evidence for the sensorimotor-only model was BF01 = 3.49 

times stronger than for the model including linguistic distance, which was below the specified 

threshold for this experiment (BF ≥ 10), and hence constitutes equivocal evidence against the 

inclusion of linguistic distance. We therefore conclude that the best sensorimotor-linguistic 

model of RT was most likely sensorimotor distance alone (replicating Experiment 1), but 

acknowledge an additional effect of linguistic distance may still be possible. In accuracy, 

there was positive evidence for the effect of sensorimotor distance alone, but this time – 

unlike Experiment 1 – there was strong evidence against the inclusion of linguistic distance 

alongside sensorimotor distance (BF01 = 38.47). That is, the best sensorimotor-linguistic 

model of accuracy was sensorimotor distance alone. People were up to 15.47 times6 more 

likely to respond incorrectly as sensorimotor distance increased [β = -9.44, 95% CI = ±3.58, z 

=-5.17, p <.001].  
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As predicted, and replicating Experiment 1, sensorimotor information contributes to 

categorical decision making. Overlap in sensorimotor experience between category and 

member concept facilitates categorisation RT and accuracy. However, contrary to what we 

predicted, and not replicating the results from lab-based testing, we found no positive 

evidence for the effect of linguistic distributional information. 

Best model. Analysis C again showed mixed results as to which model best explained 

the data. Unlike Experiment 1, where sensorimotor distance outperformed taxonomic levels 

in explaining RT, model comparisons in the present analysis showed they performed 

approximately equivalently. The data favoured the model with sensorimotor distance BF10 = 

6.35 times more than the model including taxonomic levels, which was below the specified 

threshold for this experiment (BF ≥ 10), and thus constitutes equivocal evidence. Model 

comparisons for accuracy showed overwhelming evidence that taxonomic levels were BF01 = 

8040485.30 times better at fitting the data than sensorimotor distance, against predictions but 

replicating Experiment 1. 

Summary. These results are similar but not identical to the findings of Experiment 1. 

Nevertheless, they provide further evidence for the effects (or lack thereof) of sensorimotor 

and linguistic distributional information on picture categorisation. When it comes to the time 

course of categorical decision making, the overlap in sensorimotor experience between the 

category and member concepts was at least as good as discrete taxonomic levels (i.e., 

subordinate vs. basic vs. superordinate) in predicting performance. Linguistic distributional 

information might have a small effect on RT but the evidence is equivocal. When it comes to 

the accuracy of categorical decisions, however, taxonomic levels outperform the ability of 

sensorimotor information to predict performance. Crucially, the datasets for Experiments 1 

and 3a yielded slightly different results, to gain a more complete understanding of the effects 

of sensorimotor and linguistic distance on categorisation performance across both our 
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experiments, we repeat the analyses described here for a combined lab- and web-based 

dataset further on in this paper (see Experiment 4a).  

2.6.3. Exploratory results 

As per the exploratory analyses of experiment 1, we could not retrieve information on 

all category labels used in our task for all psycholinguistic variables. As a consequence, we 

opted to limited this analysis to complete cases only. In the analysis of accuracy, we included 

1392 out of 1736 trials (excluding 19.81 %). In the analysis of RT, we included 1277 out of 

1612 correct trials (excluding 20.78 %). Because of this, these exploratory results should be 

interpreted with care.  

Psycholinguistic characteristics vs. taxonomic level. In analysis D of RT, we found 

strong evidence that a model including psycholinguistic characteristics of the label did not fit 

the data better than a model including only random effects (BF01 = 263.79). However, 

contrasting the exploratory analysis of lab-based Experiment 1, we found strong evidence 

that a model including taxonomic information fit the data better than a model containing only 

psycholinguistic characteristics of the label (BF10 = 28849.18). Inspection of the coefficients 

confirmed no significant effect of AoA, word frequency, familiarity or word length. As in our 

confirmatory analysis (A) participants were up to 87.74 ms slower to categorise objects 

following subordinate level labels [β = 87.74, 95% CI = ±57.06, t (842.09) = 3.01, p =.003], 

and up to 89.30 ms slower to categorise objects following a superordinate-level label [β = 

111.04, 95% CI = ±38.20, t (1197.77) = 5.70, p < .001] compared to a basic-level label, 

showing the classic basic-level advantage. As in our previous exploratory analyses, we found 

evidence that a taxonomic-only model greatly outperformed a psycholinguistic-only model 

(BF10 = 3864454127.00) 

In analysis D of accuracy, we found evidence that a model including psycholinguistic 

characteristics of the category label outperformed a model containing only random effects 
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(BF10 = 58.40). Furthermore, we found evidence that a model including taxonomic levels 

outperformed a psycholinguistic model (BF10 = 196.87). Inspection of the coefficients 

showed that increasing age of acquisition associated with the category label reduced the 

likelihood that participants categorised an image correctly by up to 11.94 times6 [β = -.39, 

95% CI = ±.37, z = -2.04, p = .041]. In line with our confirmatory analyses (see analysis A 

above) and the exploratory analysis of Experiment 1, we observed only a partial basic-level 

advantage. That is, compared to the basic level, participants were less likely to correctly 

categorise an image when it followed a superordinate-level label [β = -1.48, 95% CI = ±.68, z 

= -4.23, p <.001]. However, accuracy was non-significantly better at the subordinate 

compared to the basic level [β = .72, 95% CI = ±1.35, z = 1.05, p =.29]. Unlike our 

exploratory analyses however, this effect was also observed in a non-psycholinguistic 

taxonomic model of the truncated dataset.  

Psycholinguistic characteristics vs. sensorimotor-linguistic information. In 

analysis E of RT, we found evidence for the inclusion of sensorimotor distance to a model 

containing random effects and psycholinguistic characteristics (BF10= 80000.29). However, in 

contrast to our confirmatory analysis B, we also found strong evidence for the inclusion of 

linguistic distributional information (BF10 = 74.65). Inspection of the coefficients for this 

model confirmed no significant effects of any of the psycholinguistic variables. Participants 

were up to 180.99 ms slower to categorise an object with a greater sensorimotor [β = 624.12, 

95% CI = ±392.24, t(543.38) = 3.12, p =.002] distance and up to 138.52 ms slower with 

greater linguistic distributional distance [β = .72, 95% CI = ±99.42, t(1038.63) = 4.02, p 

<.001] between the category label and implicit image name.  

In analysis E of accuracy, we found equivocal evidence for the inclusion of 

sensorimotor distance to a model containing random effects and psycholinguistic 

characteristics (BF10= 2.27). Furthermore, we found equivocal evidence for the inclusion of 
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linguistic distributional information to a sensorimotor-psycholinguistic model (BF10 = 1.26). 

This contrasted our confirmatory analyses, where evidence suggested the data strongly 

favoured a sensorimotor model.  

In analysis F of RT, Bayesian model comparisons showed that the data were BF10 = 

207.03 times more likely under the best-performing model from analysis E (psycholinguistic-

sensorimotor-linguistic) than under the best-performing model from analysis D 

(psycholinguistic-taxonomic). By contrast, analysis F of accuracy showed that the data were 

more BF10 = 69.02 times more likely under the best-performing analysis D model 

(psycholinguistic-taxonomic) than under the best-performing analysis E model 

(psycholinguistic-sensorimotor-linguistic). 

These findings showed no significant effects of psycholinguistic characteristics on the 

time course in object categorisation, but like our previous exploratory analyses, we observed 

a small effect of age of acquisition on the likelihood that participants correctly categorised an 

object. Unlike the exploratory analyses of our lab-based data, the inclusion of 

psycholinguistic characteristics did not reduce the effect of linguistic distributional 

information relative to that of sensorimotor-linguistic information. In fact, unlike our 

confirmatory analyses, the inclusion of linguistic distributional information to a 

psycholinguistic-sensorimotor model of RT improved model fit. However, given the fact that 

this effect was also observed in non-psycholinguistic models, this may have been the result of 

truncation of the dataset.  

 

2.7. Experiment 3b: Exploratory Replication of Experiment 2.  

In Experiment 2, we found that adjusting measures of sensorimotor and linguistic 

distance to reflect the graded structure of categories considerably increased their ability to 

predict categorisation performance. Unexpectedly, however, typicality ratings (i.e., the 
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traditional measure of categorical gradedness) did not alter the ability of taxonomic levels to 

predict categorisation. That is, while there was no evidence that atypical member concepts 

(e.g., relatively poor examples of their category) were categorised at the subordinate (rather 

than basic) level, there was indeed evidence that unusual category members (i.e., that appear 

in quite dissimilar linguistic contexts to their category concept) were categorised at the 

specific, subordinate level.  

We therefore opted to run an exploratory (i.e., not pre-registered)8 replication of 

Experiment 2, using the new dataset collected in Experiment 3a. That is, we investigated the 

same hypotheses as Experiment 2, based on analysis of the RT and accuracy data collected as 

part of Experiment 3a. 

2.7.1. Method 

All materials, critical predictors, and data analysis, including exploratory analyses, 

were identical to Experiment 2. Dependent measures of RT and accuracy were taken from 

Experiment 3a, as well as its threshold for inferring of BF≥10.  

2.7.2. Results and discussion 

With outliers already removed in Experiment 3a, we further removed all trials 

corresponding to the item gavel as per Experiment 2, which excluded 24 trials from the 

accuracy dataset (1.38% of 1736 trials) and 17 trials from the RT dataset (1.05% of 1611 

trials).  

With this item excluded, the pattern of basic-level advantage remained the same as in 

Experiment 3a: there was very strong evidence for including taxonomic levels in analysis of 

both RT (BF10 = 13936195.41) and accuracy (BF10 = 4.84x 109). RT showed the classic basic-

level advantage, with categorisation at the basic level faster than at subordinate 

 
8 Since there were no new data to collect to run this analysis, we opted not to pre-register it and instead included 
it as an exploratory analysis.  
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[unstandardized β = 37.28, 95% CI = ±29.23, t(1512.22) = 2.50, p = .012] and superordinate 

levels [β = 106.66, 95% CI = ±30.31, t(1521.65) = 6.90, p <.001]. Accuracy, however, was 

equally good at the basic and subordinate levels [β =0.45, 95% CI = ±0.71, z = 1.24, p = .22], 

but worse at the superordinate level [β = –1.46, 95% CI = ±0.53, z = –5.36, p < .001]. 

Table 4 shows all model comparisons.  

Taxonomic levels and typicality. In RT, Analysis A model comparisons showed strong 

evidence against adding typicality to a model containing taxonomic levels (BF01 = 40.45) as 

typicality had very little effect [β = -1.00, 95% CI = ±46.24, t (71.64) =-.04, p = .97]. In 

accuracy, the data also favoured the taxonomic-only model (BF01 = 21.11), with again very 

little effect of typicality [β =0.49, 95% CI = ±0.79, z = 1.21, p = .22]. These results replicated 

our findings from Experiment 1, and do not support predictions of traditional accounts of 

categorical gradedness based on typicality (e.g., Rosch, Simpson, et al., 1976) .  

 

Table 4 

Model comparisons for linear mixed effects regressions of RT and logistic mixed effects 

regressions of accuracy Experiment 3b, showing change in R2 for nested comparisons and 

Bayes Factors for all comparisons. 

Analysis Model comparison RT Accuracy 

ΔR2 BF10 ΔR2 BF10 

 Null model (random effects) .196 - .257 - 

A Taxonomic levels vs. null .024 13936195.41 .126 4.84x109 

 Taxonomic levels + Typicality vs. null .024 344551.90 .132 2.29x108 

 Taxonomic levels + Typicality vs. Taxonomic levels <.001 0.02 .007 .05 

B Taxonomic levels + Typicality + Interaction vs. null .025 23155.80 .150 14650719.43 

 Taxonomic levels + Typicality + Interaction vs. Taxonomic 
levels + Typicality  .001 .07 .017 0.06 

D Graded-Sensorimotor distance vs. null .018 268337.29 .084 1.87x109 
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 Graded-Sensorimotor + Graded-Linguistic distance vs. null .018 8103.08 .089 59411596.94 

 Graded-Sensorimotor + Graded-Linguistic distance vs. Graded 
Sensorimotor-only <.001 .03 .005 .03 

E Best Graded Sensorimotor-Linguistic model vs. best 
Taxonomic- typicality model.  - .78 - 8.17 

 

Interaction of typicality with taxonomic level. Analysis B model comparisons again 

showed strong evidence against including an interaction between subordinate taxonomic 

level and typicality. In the analysis of RT, the interaction had little effect [β = 52.37, 95% CI 

= ±71.91, t(1521.83) = 1.42, p = .15], and the data were BF01 = 14.88 times more likely under 

the model without an interaction. In the analysis of accuracy, we again found evidence 

against adding the interaction between subordinate taxonomic level and typicality [β =1.03, 

95% CI = ±, z = 1.38, p = .17] to a model including only taxonomic level and typicality (BF01 

= 15.64). The best taxonomic-typicality model in this analysis therefore contained both 

taxonomic levels and typicality, but no interaction. These results replicate the findings from 

Experiment 2, and run contrary to predictions of taxonomic accounts that hold typicality 

affects the basic-level advantage (Jolicoeur et al., 1984; Murphy & Brownell, 1985).We 

therefore found no evidence that atypical items were preferentially categorised at the 

subordinate level. Instead, regardless of typicality, category members tended to show a 

traditional basic-level advantage in terms of processing speed (where the basic level was 

faster than subordinate and superordinate levels), and a partial basic-level advantage in terms 

of accuracy, where the basic-level was more accurate than the superordinate level but not the 

subordinate level.  

Gradedness-adjusted sensorimotor and linguistic distance. In RT, Analysis D model 

comparisons showed very strong evidence for the effect of gradedness-adjusted sensorimotor 

distance over a null model (BF10 = 268337.29). However, as in Experiment 2, we found 

strong evidence against adding gradedness-adjusted linguistic distance to a model containing 
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sensorimotor distance alone: the data were BF01 = 33.11 times more likely under a model 

containing only sensorimotor distance compared to a model containing both linguistic and 

sensorimotor distance. In accuracy analysis, we again found very strong evidence for the 

effect of gradedness-adjusted sensorimotor distance over a null model (BF10 > 1.87 billion), 

and evidence against the inclusion of gradedness-adjusted linguistic distance, whereby the 

data strongly favoured the model containing sensorimotor distance alone (BF01 =31.50). This 

again contrasted our findings with the unadjusted measures of sensorimotor and linguistic 

distance in Experiment 1. Hence, the best gradedness-adjusted sensorimotor-linguistic model 

of both RT and accuracy was one containing the fixed effect of sensorimotor distance alone, 

where higher distance slowed down categorisation by up to 216.80 ms6 [β = 747.58, 95% CI 

= ±255.32, t(1424.47) = 5.74, p <.001] and made errors up to 31.90 times6 more likely [β =-

11.94, 95% CI = ±3.37, z = -6.94, p <.001].  

Best Model. In RT, model comparisons between the best-performing models from 

analyses B and D showed equivalent performance between a taxonomic-typicality model 

(BF01 = 1.28) and a model containing gradedness-adjusted sensorimotor distance, contrasting 

our findings in experiment 2. We note here that since typicality had little effect on 

performance, the data overall favoured a model including only taxonomic levels (i.e., the best 

model from Analysis A): when we explored its performance in comparison to the gradedness-

adjusted sensorimotor model, we found it performed BF01 = 51.93 times better.  

In accuracy, model comparisons between the best-performing models from analyses B 

and D showed a weak reversal of the effects found in experiment 2, with evidence trending in 

favour of gradedness-adjusted sensorimotor distance (BF10 = 8.17). However, this level of 

evidence is below the threshold for this study (BF≥10), and thus constitutes equivocal 

evidence). Again, since typicality had little effect on accuracy, we explored a comparison 
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with the best model from Analysis A (i.e., taxonomic levels only), and found that taxonomic 

levels and gradeness-adjusted sensorimotor distance performed equally well (BF10=0.39) 

Summary. Results of this exploratory replication were similar but not identical to the 

findings of Experiment 2. As predicted, sensorimotor distance contributed to both RT and 

accuracy. However, counter to our predictions, linguistic distance did not. Both findings are 

consistent with Experiment 2. Not consistent with our findings in experiment 2 was the 

finding that sensorimotor distance and taxonomic level performed equally well in explaining 

both accuracy and RT. That is, sensorimotor distance between a category and member 

concept explains the latency and accuracy of picture categorisation at least as well as the 

traditional combination of taxonomic levels and typicality. While this does not support our 

prediction that sensorimotor distance would outperform taxonomic levels and typicality, it 

does also not reject it. Finally, we note that taxonomic level alone outperformed sensorimotor 

distance in explaining RT data. This finding was not related to a specific prediction, and as a 

result cannot be compared to a related finding in Experiment 2.  

2.7.3. Exploratory analysis: Psycholinguistic characteristics 

As for experiment 1, 2 and 3a, we ran a set of exploratory analyses to verify that the 

effects we observed would not be different when controlling for psycholinguistic 

characteristics of the category label. To this end, we carried out analyses F, G, H and I as 

outlined in the exploratory analyses of Experiment 2, on the dataset collected in experiment 

3a. As in previous exploratory analyses, we restricted the data to observations for which 

psycholinguistic characteristics were available, as per the confirmatory analyses in 

experiment 2 and 3b, we removed all trials pertaining to the item gavel. The final RT dataset 

contained 1260 observations, whereas the final accuracy dataset contained 1368 observations. 

Psycholinguistic vs. taxonomic level and average typicality. In Analysis F of RT, 

model comparisons showed that a model containing psycholinguistic characteristics did not 



 141 

fit the data better than a model containing random effects (BF01 = 318.20). As before, the 

inclusion of taxonomic level improved model fit over a psycholinguistic-only (BF10 = 

37307.53). and random-effects model (BF10 = 116.97). Furthermore, we found evidence 

against adding typicality to a model containing taxonomic levels and psycholinguistic 

characteristics of the category label, with comparisons suggesting the data was BF01 = 32.85 

times more likely under the psycholinguistic-taxonomic model.  

In analysis F of accuracy, model comparisons showed that a psycholinguistic model 

did outperform random effects (BF10 = 2228.18). However, we again found evidence against 

the inclusion of object typicality to a model containing psycholinguistic characteristics and 

taxonomic levels (BF01 = 21.29).  

Interaction between typicality and subordinate level labels. In analysis G of RT, 

we found evidence against the addition of an interaction between subordinate category labels 

and average typicality improved model fit to a psycholinguistic-taxonomic-typicality model 

(BF01 = 21.40). In the analysis of accuracy, we found that the data were less likely under a 

model including the interaction between subordinate category labels and average typicality 

(BF01 = 4.45) than under a non-interaction model, however because this falls below the 

specified threshold of BF10 >= 10, this constitutes equivocal evidence.  

Psycholinguistic characteristics vs. gradedness adjusted distances. In analysis H 

of RT, we found strong evidence for the inclusion of gradedness-adjusted sensorimotor 

information to a model containing fixed effects of psycholinguistic characteristics (BF10 = 

261.37). In line with confirmatory analyses, we found evidence against the inclusion of 

gradedness-adjusted linguistic distributional information to a psycholinguistic-sensorimotor 

model (BF01= 35.16).  

In analysis H of accuracy meanwhile, we found strong evidence for the inclusion of 

gradedness-adjusted sensorimotor distance (BF10 = 157.87). Furthermore, we found evidence 
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against the inclusion of gradedness-adjusted linguistic distributional distance (BF01 = 35.36). 

This matches confirmatory analyses.  

Best model. In analysis I of RT, Bayesian model comparisons showed that the data 

were BF10 = 4.34 times more likely under the best-fitting model from analysis G (taxonomic-

typicality- psycholinguistic) than under the best-fitting model from analysis H (sensorimotor-

psycholinguistic). However, since this falls below the grade of evidence of we specified for 

this experiment (BF10 >= 10), this constitutes equivocal evidence.  

In analysis I of accuracy meanwhile, model comparisons showed that the data were BF10 = 

4707.48 times more likely under the best-fitting model from analysis H (sensorimotor-

psycholinguistic) than under the best-fitting model from analysis G (taxonomic-typicality 

psycholinguistic). This contrasts confirmatory findings, where evidence for the performance 

of a model including gradedness-adjusted sensorimotor distance over a taxonomic-typicality 

model was in the equivocal zone.  

 

2.8. Experiment 4a: Combined Analysis for Experiments 1 and 3a. 

As pre-registered, we combined the datasets of Experiment 1 and 3a in order to 

examine whether the pattern of findings was consistent across experiments. That is, to 

examine the cross-experiment effects of taxonomic level (i.e., basic-level advantage) and 

sensorimotor and linguistic distance on accuracy and RT (i.e., a representational overlap 

advantage).  

2.8.1. Data analysis 

We combined the datasets analysed in Experiments 1 and 3a, resulting in 3517 

responses for analysis of RT, and 3833 responses for analysis of accuracy.  

We then ran Experiment 1’s analyses A through C for the combined dataset, with one 

change: a fixed effect of Experiment was included in all models immediately following the 
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addition of random effects. In addition to this, we ran additional models for the interactions 

between the fixed effects of taxonomic level and sensorimotor and linguistic distance with 

Experiment. The experiment variable was dummy-coded with lab-based Experiment 1 = 0, 

web-based Experiment 3 = 1. All other analyses proceeded as outlined in Experiment 1. 

2.8.2. Results and discussion 

Table 5 shows all model comparisons. 

Experiment effect (web-based versus lab-based). Bayesian model comparisons 

showed strong evidence against an effect of Experiment (i.e., web- vs. lab-based testing 

paradigm) on either RT (BF01 = 28.51, [β = 47.44, 95% CI = ±75.46, t(55.00) =1.23, p =.22] 

or accuracy (BF01 = 28.51, [β = 0.31, 95% CI = ±.49, z = 1.28, p = .20] ).  
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Table 5 

 Model comparisons for linear mixed effect regressions of RT and logistic mixed effects 

regressions of accuracy in Experiment 4a (web- and lab-based taxonomic) and 4b (web- and 

lab-based typicality).  

Analysis Model comparison RT Accuracy 

ΔR2 BF10 ΔR2 BF10 

 Null model (random effects) .244 - .265 - 

 Experiment type vs. null .006 0.03 .005 0.03 

A Taxonomic levels vs. null .022 4.81x1011 .073 9.69 x1011 

 Taxonomic levels + Interaction Experiment type and 
subordinate level vs. Taxonomic levels 

.023 0.02 .104 2440.62 

 Taxonomic levels + Interaction Experiment type and 
subordinate level + Interaction Experiment type and 
superordinate level vs. Taxonomic levels 

.023 <0.01 .105 44.70 

B Sensorimotor distance vs. null .023 7.94x1011 .032 18033.74 

 Sensorimotor + Linguistic distance vs. null .023 1.02x1011 .044 31257.04 

 Sensorimotor + Linguistic distance vs. Sensorimotor-only <.001 0.13 .012 1.73 

 Sensorimotor + Linguistic distance + Interaction 
Sensorimotor and Experiment vs. Sensorimotor + 
Linguistic distance.  

.024 0.02 .003 0.04 

 Sensorimotor + Linguistic distance + Interaction 
Sensorimotor distance and Experiment + Interaction 
Linguistic distance and Experiment vs. Sensorimotor + 
Linguistic distance.  

.024 <0.01 .002 0.01 

C Best Sensorimotor-Linguistic model vs. taxonomic levels.  - 1.65 - <0.01 

  

Taxonomic levels. In RT, Analysis A model comparisons showed very strong evidence 

for models containing taxonomic levels over a model containing only random effects (BF10 = 

4.81x1011). Categorisation at the subordinate [unstandardized β = 36.59, 95% CI = ±20.68, 

t(3399.17) = 3.47, p <.001] and superordinate [β = 94.82, 95% CI = ±21.18, t(3409.42) = 

8.78, p <.001] levels was slower than at the basic level. Likewise, in accuracy, model 

comparisons showed strong evidence for the inclusion of taxonomic levels (BF10 = 
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9.69x1011). However, we also found strong evidence for including the interaction between the 

dummy-coded subordinate taxonomic level and Experiment type over a model including only 

taxonomic levels and Experiment type. Accuracy was high, predicted probabilities of a 

correct answer were highest at the basic level (97.8%), followed by the subordinate (96.2%) 

and the superordinate level (91.5%). Compared to the basic level, participants were 4.05 

times more likely to respond incorrectly at the superordinate level [β = -1.40, 95% CI = ±.33, 

z = -8.28, p < .001]. While experiment type had little effect [β = -0.07, 95% CI = ±.52, z = -

0.27, p =.787], the interaction between Experiment type and subordinate category labels 

meant that participants were up to 2.91 times more likely to respond incorrectly at the 

subordinate level in the lab-based study, [β = -1.07, 95% CI = ±.36, z = -5.32, p <.001], but 

slightly more likely to answer correctly at the subordinate level in the web-based study, [β = 

1.55, 95%CI = ±.64, z = 4.75, p <.001]. In the analysis of RT, combining both datasets yields 

a clear replication of the basic-level advantage. In accuracy, the basic-level has a consistent 

advantage over superordinate but not subordinate categories.  

Sensorimotor-linguistic predictors. In RT, Analysis B model comparisons showed 

very strong evidence for the effect of sensorimotor distance over the null model (BF10 = 

1.02x1011), Model comparisons did not support an effect of linguistic distance above and 

beyond sensorimotor distance, in line with the outcomes from experiment 3a: evidence for 

the sensorimotor-only model was BF01 = 7.76 times stronger than for the model including 

linguistic distance, which was below the specified threshold for this experiment (BF ≥ 10), 

and therefore constitutes equivocal evidence. Neither a model including the interaction 

between sensorimotor distance and Experiment, nor a model including the interaction 

between sensorimotor and linguistic distance and Experiment outperformed the sensorimotor-

linguistic model (see Table 5). RT increased with up to 217 ms for the largest sensorimotor 

distance6, compared to the smallest one [β = 749.93, 95% CI = ±220.28, t(2647.86) = 6.67, p 
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<.001], and with up to 39 ms for the largest linguistic distance compared to the smallest one 

[β = 47.34, 95% CI = ±75.89, t(3143.00) = 1.22, p =.043]. We conclude from this combined 

analysis that while picture categorisation RT is robustly explained by sensorimotor 

information, there is a possibility that linguistic distributional information plays a weaker 

role.   

In accuracy, model comparisons showed strong evidence for the effect of 

sensorimotor distance alone (BF10 =18033.74). However, unlike our findings in Experiment 

1, comparisons showed equivocal evidence for the inclusion of linguistic distance alongside 

sensorimotor distance (BF10 = 1.73). Again, neither a model including the interaction between 

sensorimotor distance and experiment type, nor a model including the interactions between 

sensorimotor and linguistic distance and experiment type outperformed the sensorimotor-

linguistic model (see Table 5). Evidence for the sensorimotor-linguistic model over a 

sensorimotor-only model did not surpass the specified threshold of (BF ≥ 10), making the 

evidence for linguistic distance equivocal. Participants were up to 5.19 times more likely to 

respond incorrectly as sensorimotor distance increased [β = -5.74, 95% CI = ±2.49, z =-4.53, 

p <.001], and up to 2.39 times more likely to respond incorrectly as linguistic distance 

increased [β = -1.07, 95% CI = ±.66, z =-3.16, p <.001]. We conclude from this combined 

analysis that picture categorisation accuracy is robustly predicted by sensorimotor 

information, and predicted somewhat equivocally by linguistic distributional information 

where effects range from very strong (Experiment 1) to non-existent (Experiment 3a).  

Best model. Analysis C showed that sensorimotor distance and taxonomic levels 

predicted RT equally well. The data favoured a model with sensorimotor distance BF10 = 1.65 

times more than a model with taxonomic levels, which constitutes equivocal evidence. In 

accuracy, evidence overwhelmingly showed that taxonomic levels were BF01 = 1982759.26 
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times better at fitting the data than sensorimotor distance, against our predictions but 

consistent with Experiment 1.  

Summary. A combined analysis Experiments 1 and 3a overall partially supported our 

hypotheses that sensorimotor and linguistic information would inform categorisation (see 

figure 1). As predicted, sensorimotor distance between a category- and member-concept 

informed the time course of categorisation, and did so at least as well as taxonomic level 

across two experiments. However, counter to our prediction, linguistic distributional distance 

did not predict RT above and beyond sensorimotor distance. Moreover, while linguistic 

distributional distance predicted accuracy at least as well as sensorimotor distance across two 

experiments, neither distance measure outperformed a simple division into taxonomic levels.   

Finally, we found that web-based participants were more accurate at categorising objects at 

the subordinate compared to the basic level.  
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Figure 1. 

Bayes factors for models of accuracy and RT compared to null (random effects), for 

Experiments 1, 3a and 4a.  

 

Note: best-fitting models are marked with an asterisk. In the case of equivocal performance 

between two models both models are marked. Experiment 4a denotes the analysis of a 

combined web- and lab-based dataset rather than data from a new experiment.  

2.9. Experiment 4b: Combined Analysis for Experiments 2 and 3b 

As an exploratory analysis, we combined the datasets of Experiment 2 and 3b, in 

order to examine whether the pattern of findings was consistent across experiments. That is, 

to explore the cross-experiment effects of object typicality and its interaction with 
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subordinate-level category labels, as well as of gradedness-adjusted sensorimotor and 

linguistic distance on RT and accuracy. 

2.9.1. Data analysis 

 We combined the datasets analysed in Experiments 2 and 3b, resulting in 3479 

responses for analysis of RT, and 3781 responses for the analysis of accuracy. We ran 

Experiment 2’s analyses A, B, D and E this the combined dataset, adding a fixed effect of 

experiment, immediately following the addition of random effects (coded as per Experiment 

4a). In addition to this, we added the interactions between all fixed effects and Experiment 

type. All other analyses proceeded as outlined in experiment 2, except we retained the stricter 

Bayes factor threshold for inferring from Experiment 3b (BF ≥ 10). 

2.9.2. Results and discussion 

Table 6 shows all model comparisons.  

Experiment effect (web-based versus lab-based). As in Experiment 4a, Bayesian 

model comparisons showed strong evidence against an effect of experiment type (i.e., web- 

vs. lab-based testing paradigm) on either RT (BF01 =25.79, [β =50.19, 95% CI = ±75.17, 

t(55.01) =1.31, p =.20]) or accuracy (BF01 =23.33, [β = .35, 95% CI = ±.48, z = 142, p 

= .16]). 
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Table 6.  

Model comparisons for linear mixed effect regressions of RT and logistic mixed effects 

regressions of accuracy in Experiment 4b.  

Analysis Model comparison RT Accuracy 

ΔR2 BF10 ΔR2 BF10 

 Null model (random effects) 24.44 - .256 - 

 Experiment type vs. null .007 0.04 .007 0.04 

A Taxonomic levels vs. null .024 3.56x1012 .075 2.06x1011 

 Taxonomic levels + Typicality vs. null .024 6.20x1010 .081 8.82x109 

 Taxonomic levels + Typicality + Interaction 
subordinate and Experiment type vs. null 

.024 1386432863.11 .114 1.44x1013 

 Taxonomic levels + Typicality + Interaction 
subordinate and Experiment type + Interaction 
superordinate and Experiment type vs. null 

.025 36034955.09 .114 2.39x1011 

 Taxonomic levels + Typicality + Interaction 
subordinate and Experiment type + Interaction 
superordinate and Experiment type + 
Interaction Typicality and Experiment type vs. 
null 

.025 660003.22 .113 4378622438.03 

 Taxonomic levels + Typicality vs. Taxonomic 
levels 

<.001 0.02 .006 0.04 

B Taxonomic levels + Typicality + Interaction 
vs. null 

.025 5.62x109 .082 2.41x108 

 Taxonomic levels + Typicality + Interaction + 
Interaction subordinate and Experiment type + 
Interaction superordinate and Experiment type 
+ Interaction Typicality and Experiment type 
vs. null 

.025 56954.05 .115 139002155.75 

 Taxonomic levels + Typicality + Interaction 
vs. Taxonomic levels + Typicality 

<.001 0.09 <.001 0.03 

D Graded Sensorimotor distance vs. null .019 4.32x1014 .054 1.08x1010 

 Graded Sensorimotor + Linguistic distance vs. 
null 

.020 3.73x1013 .055 3.97x108 

 Graded Sensorimotor + Linguistic distance vs. 
Graded Sensorimotor-only 

.001 0.09 <.001 0.04 

 Graded Sensorimotor + Linguistic distance + 
interaction Graded Sensorimotor and 
Experiment Type vs. Graded Sensorimotor + 
Linguistic Distance 

.027 3.24x1010 .059 <0.01 
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 Graded Sensorimotor + Linguistic distance + 
interaction Graded Sensorimotor and 
Experiment Type + interaction Linguistic 
distance and Experiment Type vs. Graded 
Sensorimotor + Linguistic distance 

.027 840914039.1 .059 <0.01 

E Best graded Sensorimotor Linguistic model 
vs. best Taxonomic- typicality model. 

- 6974.39 - 1.22 

 

Taxonomic levels and typicality. Bayesian model comparisons showed strong 

evidence for including taxonomic levels in analysis of both RT (BF10 = 3.56x1012), and 

accuracy (BF10 = 2.06x1011). However, in accuracy, as in Experiment 4a, we also found 

strong evidence for including the interaction between the dummy-coded subordinate 

taxonomic level and experiment type over a model including only taxonomic levels and 

experiment type. In RT, results matched our findings in Experiments 2 and 3b, and 

categorisation at the basic level was faster than at both the subordinate [unstandardized 

β = 40.14, 95% CI = ±20.71, t(3362.51) = 3.80, p = .00015] and superordinate 

[unstandardized β = 97.49, 95% CI = ±21.18, t(3372.55) = 9.02, p <.001] levels. In accuracy, 

results mirrored the findings in Experiments 2 and 3b. That is, the interaction between 

subordinate-level category labels and experiment type meant that for lab-based data accuracy 

was worse at both the subordinate [β = –.57, 95% CI = ±0.37, z = –3.04 p =.002] and the 

superordinate level [β = –1.41, 95% CI = ±0.34, z = –8.10, p < .001] compared to the basic 

level, whereas for web-based data accuracy was slightly better at the subordinate compared to 

the basic level [β = 1.50, 95% CI = ±0.82, z = 3.57, p < .001]. The effect of superordinate 

level was the same regardless of experiment type. In summary, as for Experiment 4a, 

analyses show a classic basic-level advantage in RT and lab-based, but not web-based, 

accuracy.  

In analysis A, we found strong evidence against adding typicality to a model 

containing taxonomic levels and experiment, with little effect of average typicality ratings on 

either RT (BF01 = 57.80, [β = -3.53, 95% CI = ±41.34, t(72.06) =.17, p = .87]) or accuracy 
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(BF01 =23.34, [β =0.44, 95% CI = ±0.60, z = 1.43, p = .15]). In addition to this, we found no 

evidence for an interaction between typicality and experiment type (see Table 6). These 

results replicate our findings from Experiments 2 and 3b, and provide no support for an 

overall effect of categorical gradedness.  

Interaction of typicality with taxonomic level. In RT, analysis B model comparisons 

showed strong evidence against including an interaction between subordinate taxonomic 

level and typicality, the data were BF01 = 11.59 times more likely under the model without an 

interaction. In the analysis of accuracy, we found further evidence against adding the 

interaction between subordinate taxonomic level and typicality [β =.39, 95% CI = ±.72, z = 

1.05, p = .29] to a model containing taxonomic level and typicality (BF01 = 36.60). The best 

taxonomic-typicality model in this analysis therefore once more contained both taxonomic 

levels and typicality ratings, but no interaction. This replicates the findings from Experiment 

2 and 3b and further contrasts with taxonomic accounts that hold typicality moderates the 

basic-level advantage by shifting to subordinate levels for atypical items (Jolicoeur et al., 

1984).  

Gradedness-adjusted sensorimotor and linguistic distance. In RT, analysis D model 

comparisons for both datasets combined showed very strong evidence for the effect of 

gradedness-adjusted sensorimotor distance over a null model. As in Experiment 2 and 3b, we 

found evidence against adding gradedness-adjusted linguistic distance to a model containing 

sensorimotor distance alone; the data were BF01 = 11.59 times more likely under a model 

containing only sensorimotor distance compared to a model containing both linguistic and 

sensorimotor distance. We found no evidence for an interaction between adjusted 

sensorimotor and or linguistic distance and experiment type (see Table 6). Categorisation 

took up to 237.56 ms longer2 as sensorimotor distance increased [β = 819.17, 95% CI = 

±183.67, t(2926.13) = 8.74, p <.001].  
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In accuracy, we again found strong evidence for the effect of gradedness-adjusted 

sensorimotor distance over a null model (BF10=1.08x1010). As in Experiment 2 and 3b, we 

found evidence against the inclusion of gradedness-adjusted linguistic distance, whereby the 

data strongly favoured the model containing sensorimotor distance alone (BF01 = 27.11). 

Here too, we found no evidence for an interaction between adjusted sensorimotor and or 

linguistic distance and experiment type (see Table 6). As a result, the best gradedness-

adjusted sensorimotor-linguistic model of both RT and accuracy was one containing the fixed 

effect of sensorimotor distance alone. Greater sensorimotor distance reduced accuracy up to 

12.83 times 2 [β =-8.80, 95% CI = ±2.14, z = -8.05, p <.001]. This contrasted with our 

findings regarding unadjusted measures of sensorimotor and linguistic distance in Experiment 

1, where the data favoured a model including both distance measures, and the analysis of 

web- and lab-based data in Experiment 4a, where evidence for both distance measures over 

sensorimotor distance alone was equivocal.  

Best model. In analysis E for RT, model comparisons between the best performing 

models from analyses B and D showed strong evidence in favour of an adjusted sensorimotor 

model (BF10 = 601.84) over a model including taxonomic levels and typicality. We note here 

that the evidence grade for a model of adjusted sensorimotor distance over a model including 

only taxonomic levels was also strong (BF10 = 10.48), contrasting our findings in Experiment 

3b, but matching those in Experiments 1 and 2.  

Finally, in accuracy, model comparisons showed equivocal evidence for a model 

including gradedness-adjusted sensorimotor distance over a model containing taxonomic 

levels and average typicality (BF10 = 1.22). We note here that the data favoured a model 

including taxonomic levels and the interaction between subordinate category labels over 

gradedness adjusted sensorimotor distance (BF01 = 1339.43). 
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Summary. A combined analysis of the data in Experiments 2 and 3b showed that 

across two experiments, there is no evidence for an effect of basic-level typicality on 

categorisation RT or accuracy. Furthermore, while we found a weak effect of the interaction 

between typicality and subordinate-level labels on RT, model comparisons showed that 

contrary to our hypothesis there was no support for a subordinate-level advantage over the 

classic basic-level advantage. Finally, this analysis partially supported our hypotheses 

regarding the effects of linguistic and sensorimotor information, in that sensorimotor but not 

linguistic information did indeed inform categorisation performance. Participants made 

categorical decisions more quickly when sensorimotor experience of the category and 

member concept overlapped to a large degree. These decisions were also made more 

accurately when sensorimotor experience of a category and concept overlapped to a greater 

extent, however this effect was not stronger than that of the classic, basic-level advantage. 
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Figure 2.  

Bayes factors for models of accuracy and RT, compared to null (random effects) for 

experiments 2, 3b, and 4b, showing evidence for models containing taxonomic level only, 

taxonomic level and object typicality, sensorimotor distance only and sensorimotor and 

linguistic distance. 

 

Note: best-fitted models are marked with an asterisk. In the case of equivocal performance 

between two models both models are marked. Experiment 4b denotes the analysis of a 

combined dataset of experiments 2 and 3b, rather than data from a new experiment.  
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2.10. General discussion 

In this paper, we examined the extent to which the basic-level advantage in picture 

categorisation is influenced by the overlap in sensorimotor experience and linguistic 

distributional knowledge between a given category and its member concepts. We found that, 

as expected, sensorimotor and to a lesser extent linguistic distributional information 

contributed to latency and accuracy in speeded picture categorisation. Furthermore, we found 

that adjusting sensorimotor and linguistic distance to accommodate graded structure 

enhanced their ability to predict categorisation performance. Critically, we found that 

sensorimotor distance outperformed taxonomic level as a predictor of response time. This 

finding lends support our hypothesis that overlap in sensorimotor and linguistic distributional 

information predicts categorisation performance, and contrasts the taxonomic prediction of a 

basic-level advantage.  

Nevertheless, in contrast to our predictions, we found that taxonomic level 

consistently outperformed both sensorimotor and linguistic distributional distance in 

predicting the accuracy of the response. That is, we observed a classic, basic-level advantage 

whereby images were categorised more accurately at the basic compared to the superordinate 

and subordinate level. While sensorimotor and linguistic distributional information did affect 

accuracy in the expected direction, taxonomic level was the best predictor overall. This effect 

was stable across experiments, even when we adjusted our measures of sensorimotor and 

linguistic distance to reflect graded category structure, and suggests that sensorimotor and 

linguistic distributional information do not fully capture taxonomic structure. We note here 

that taxonomic level in and of itself is an empty notion, and the variance it accounts for may 

come from for example psycholinguistic characteristics. Indeed, the classic basic-level 

advantage partially disappeared with the inclusion of psycholinguistic variables. The present 

study was not designed to tackle the highly related effects of for example age of acquisition 
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and word frequency, but future work might explore the effect taxonomic levels and 

psycholinguistic characteristics in studies with an orthogonal design.  

Furthermore, contrasting previous findings (Jolicoeur et al., 1984; Murphy & 

Brownell, 1985) we found no effect of object typicality on either accuracy or response time. 

One possible explanation for this finding is that our stimuli were overall highly typical: no 

items received an average typicality rating lower than 3.42 on a scale from 1 to 5, with the 

exception of one item which was excluded as an outlier. The inclusion of a typicality 

predictor to this dataset was pre-registered as a secondary analysis, and as such our stimuli 

were not explicitly selected to range in object typicality. Related to this is that we found little 

evidence for a correlation between linguistic distance, which may have been caused by the 

low variance in typicality. This finding is even more surprising because adjusting 

sensorimotor and linguistic distance to reflect graded structure did improve their ability to 

predict categorisation performance. As such, these findings support the idea that graded 

categorical structure affects categorical judgments, but the lack of an interaction between 

typicality rating and subordinate-level labels suggest that typicality ratings may not be the 

best way to measure categorical gradedness. A future study with a specifically selected wider 

range of items, containing more atypical exemplars would be preferred.  

Our data demonstrate that it is possible to express the relationship between category 

and member-concepts in terms of sensorimotor overlap. Across two experiments (1 and 3), 

categorical judgments were made faster and more accurately when a potential member was 

closer in in sensorimotor experience and knowledge to its category. Crucially the evidence for 

the effect of sensorimotor information on response times was stronger than or equal to the 

evidence for an effect of the taxonomic level of the category label, which also reliably 

predicted categorisation performance. Our findings thus suggest that in this particular task, 
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sensorimotor overlap is able to capture more of the nuances in the time course of 

categorisation than a strict division into three taxonomic levels might.  

As a consequence, the present findings support a sensorimotor-linguistic account of 

object categorisation and contrast traditional accounts of processing advantages in 

categorisation in a number of ways, which we outline below.  

The present findings contrast with network entry-level accounts, which argue that the 

basic-level is the preferred entry-level into a semantic structure with discrete taxonomic 

levels (Collins & Loftus, 1975; Glass & Holyoak, 1974), which may shift depending on 

object typicality (Jolicoeur et al., 1984). With regards to processing advantages in 

categorisation, these accounts argue that moving from the basic entry-point to the abstract 

superordinate or specific subordinate level incurs a processing cost, which results in the 

basic-level advantage. If this were indeed the case, then the discrete division into taxonomic 

levels should have been the strongest predictor of categorisation performance across all our 

experiments. However, results from Experiments 1, 2, and 4b were inconsistent with this 

view. While our data show that taxonomic information indeed was a good predictor of 

categorisation performance, sensorimotor overlap proved a better predictor of response 

latencies than taxonomic level.  

In our data, we also found no evidence for an ‘entry-level shift’. That is, some 

hierarchical accounts (Jolicoeur et al., 1984) predict that atypical category members are 

preferentially categorised at the subordinate rather than the basic level, which would result in 

an interaction between the subordinate taxonomic level and object typicality. We found no 

such interaction in Experiments 2, 3b or 4b. A potential explanation for this finding is the 

absence of strongly atypical category members in our stimulus set, meaning that our set 

lacked sufficient gradedness to affect categorisation performance. However, across two 

Experiments (2 and 3b), we found strong evidence that adjusting our measures of 
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sensorimotor experience and linguistic distributional overlap to reflect categorical gradedness 

improved the former’s power to predict categorisation speed, beyond unadjusted measures 

and models including the interaction between the subordinate taxonomic level and average 

typicality.  

It is important to note that the gradedness-adjusted sensorimotor measure incorporated 

the idea that pictures of “good” category members are recognised as their basic category 

concepts (e.g., picture of jeans recognised as trousers) while pictures of unusual category 

members are recognised as the specific, subordinate member concept (e.g., picture of 

sweatpants recognised as sweatpants, and not trousers). As a result, “good” member concepts 

are judged more quickly and accurately when preceded by their basic-level label (e.g., 

trousers → [picture of jeans] processed as trousers → trousers), and all other judgements are 

slower and less accurate according to the sensorimotor distance between the category and 

member concepts (e.g., subordinate jeans → [picture of jeans] processed as jeans → 

trousers; superordinate clothing → [picture of jeans] processed as clothing → trousers). On 

the other hand, unusual member concepts are judged more quickly and accurately when 

preceded by their specific, subordinate label (e.g., sweatpants → [picture of sweatpants] 

processed as sweatpants → sweatpants), and all other judgements are slower and less 

accurate as per above (e.g., basic trousers → [picture of sweatpants] processed as trousers → 

sweatpants; superordinate clothing → [picture of sweatpants] processed as clothing → 

sweatpants). As a measure, the average typicality rating for an item of its basic-level category 

proved ineffective at confirming the predictions made by hierarchical accounts (e.g., 

Jolicoeur et al., 1984). However, given the increased performance of an adjusted measure of 

sensorimotor distance, it may be the case that the notion that unusual items are implicitly 

named at the subordinate rather than the basic level is in fact valid.  
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The present findings also contrast with other feature-based accounts, which hold that 

taxonomic information is implicit in feature relations (e.g., differentiation account Collins & 

Loftus, 1975; Markman & Wisniewski, 1997; Murphy & Brownell, 1985; Murphy & 

Lassaline, 1997). These accounts predict a performance advantage for the basic level, because 

it provides the maximally distinctive and informative match to an object’s features. As a 

consequence, a differentiation account would also predict taxonomic level to be the best 

predictor of categorisation performance overall. However, sensorimotor overlap best 

predicted RT, whereas taxonomic level best predicted accuracy. The fact that both taxonomic 

information and sensorimotor information are strong predictors does not constitute evidence 

against a sensorimotor-linguistic account of categorisation performance. Feature-based 

differentiation accounts of categorisation suggest that taxonomic structure arises from the 

distribution of features, and not vice versa. A potential explanation for the fact that taxonomic 

and sensorimotor information both explain aspects of categorisation performance is therefore 

that taxonomic information emerges from sensorimotor experience and/or linguistic 

distributional knowledge. Indeed, recent research suggests that hierarchical information may 

emerge spontaneously from the latent structure in multidimensional sensorimotor experience, 

without the need for discrete features (Connell et al., 2020). That is, the relative extent to 

which different perceptual modalities and action effectors underlie sensorimotor experience 

of concepts is sufficient to extract hierarchical information. That is, within the latent structure 

in multidimensional sensorimotor experience, sparrows and crows are closer to one another 

than sparrows and hammers, but both are also closer to bird than they are to animal. This 

may indicate that while concepts are represented in semantic memory through sensorimotor 

experience and linguistic distributional knowledge, hierarchical information emerges 

implicitly through similarity relationships between concepts, depending on what concepts are 

compared. As such, semantic memory may not be organised in fixed hierarchies, but the 
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latent structure of multidimensional sensorimotor experience may give the impression of 

taxonomic organisation, depending on what and how concepts are compared.  

Our findings are not straightforward, and did not confirm our hypotheses completely. 

Contrary to our hypothesis, linguistic distributional information did not reliably predict 

categorisation performance above and beyond sensorimotor distance. That is, it predicted 

accuracy better than sensorimotor distance in Experiment 1, but not in Experiment 3a, 

However, the fact that the effect of sensorimotor information was more pronounced in our 

data may have been a result of the nature of the task. In our task, a classic label-picture 

categorisation task, participants verified whether the object described by the label was visible 

in the picture. It has been argued by linguistic-simulation theories (Barsalou et al., 2008; 

Connell, 2018; Connell & Lynott, 2014; Louwerse, 2011) that the systems governing 

linguistic and simulated information are interactive and as such, labels may activate 

sensorimotor representations, which facilitate picture verification (Boutonnet & Lupyan, 

2015; Lupyan & Thompson-Schill, 2012). As such, we suggest the following process model: 

when participants see a label (e.g., dog), this activates a sensorimotor representation. When 

the participant sees the image, they verify whether the image matches this activated 

representation. The greater the overlap between the perceived image and the pre-activated 

perceptual simulation, the less additional activation is required and the faster and more 

accurate the response. Participants may have relied more strongly on perceptual simulations 

than linguistic information in the particular task we used here, as a label was always followed 

by an image. It may have been the case that access to in particular visual experience may 

have weighed heavier than linguistic distributional knowledge. To test this, future work may 

explore whether linguistic distributional information is a stronger predictor of performance in 

categorisation with limited access to visual information. 
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In summary, our results show that a sensorimotor-linguistic approach to concepts and 

categories may explain variations in categorisation performance, and thus provide a viable 

alternative to classic explanations of the basic-level advantage. Firstly, our measures of 

sensorimotor and/or linguistic distributional similarity successfully captured aspects of the 

relationship between categories and their members: we have demonstrated they not only 

predict categorisation performance, but also reflect the graded structure of categories. This 

shows that categories may be represented directly through sensorimotor and/or linguistic 

representations, and provides an alternative explanation to hierarchical accounts of the basic 

level advantage (e.g., Jolicoeur et al., 1984).  

Overall, this study found support for the view that the relationship between category- 

and member-concepts may be expressed in terms of sensorimotor and/or linguistic 

distributional overlap, and therefore that categorisation may be the result of clustering 

concepts in terms of sensorimotor and/or linguistic experience. The limited effect of linguistic 

distributional information in this task is surprising, but is still in line with sensorimotor-

linguistic accounts of conceptual processing, which argue a conceptual system that relies on 

both types of information is dynamic rather than static, and may rely more on one 

information type compared to the other depending on task constraints (Connell & Lynott, 

2014). Our findings are thus largely in line with current sensorimotor-linguistic views on 

conceptual processing. 
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Chapter 3: How Sensorimotor and Linguistic Distributional Information Affect 

Performance in the Categorisation of Concept Labels 

3.1. Chapter introduction 

This Chapter builds on the findings from the previous Chapter, and aims to 

distinguish between the effects of sensorimotor and linguistic distributional information and 

taxonomic level on categorisation. In speeded picture verification, as described in Chapter 2, 

the effects of taxonomic level and sensorimotor-linguistic information may be difficult to 

discern, as their predictions may overlap. Furthermore, the study in Chapter 2 used a classic 

label → picture verification task, which may have inadvertently caused participants to rely 

more on sensorimotor (visual) than linguistic distributional information.  

The study presented in this chapter therefore uses a forced-choice paradigm with only 

labels, where participants decide whether a basic- or superordinate-level label fits a 

subordinate-level cue best (e.g., Labrador → dog or animal). Vitally, sensorimotor and 

linguistic overlap is manipulated so that in half the trials, overlap is greatest between the 

exemplar cue and the basic-level label, and for the other half it is greatest between the 

exemplar clue and the superordinate-level label. As a consequence, for half the trials, 

sensorimotor-linguistic predictions match traditional taxonomic predictions (i.e., a basic-level 

advantage), whereas for the other half they pull in the opposite direction (i.e., a 

superordinate-level advantage).  
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3.2. Abstract 

Previous work has shown that a sensorimotor-linguistic account of categorisation, which is 

based on the overlap in sensorimotor and linguistic distributional information between 

category and member-concepts could predict the basic-level advantage in object picture 

categorization approximately as well as the traditional division into discrete taxonomic levels.  

 In this study, we tested competing hypotheses of the sensorimotor-linguistic and taxonomic 

accounts via a forced-choice response task, in which participants decided between a basic- 

(e.g., dog) and superordinate-level label (e.g., animal) for a subordinate-level cue (e.g., 

Labrador). Crucially, we manipulated our stimuli so that for half the trials, sensorimotor and 

linguistic distributional information overlapped more strongly with the basic-level choice, 

whereas for the other half the overlapped more strongly with the superordinate-level choice. 

We hypothesised that basic-level labels would be chosen less often and responded to more 

slowly in pro-superordinate trials compared to pro-basic trials. While we found that choices 

were indeed less likely to be basic in pro-superordinate trials, we still found an overall basic-

level advantage. Furthermore, in pro-superordinate trials, participants were slower to respond 

to both basic and superordinate-level labels.  
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3.3. Introduction 

When seeing a robin in their garden, people tend to class it as a bird, rather than as a robin or 

animal. This intermediate level of abstraction is generally referred to as the basic level (e.g., 

bird, Rosch, Mervis, et al., 1976). Evidence for the preference for categorising objects at the 

basic level comes from decades of behavioural studies, which show that among other things, 

people are faster and more accurate to identify natural and artificial objects at the basic level 

(K. E. Johnson & Mervis, 1997; Jolicoeur et al., 1984; Murphy & Brownell, 1985; Murphy & 

Lassaline, 1997; Murphy & Smith, 1982; Rogers & Patterson, 2007; Rosch, Mervis, et al., 

1976; Tanaka & Taylor, 1991). Moreover, the most frequent, earliest-acquired category names 

tend to be basic (Mervis & Crisafi, 1982b; Rosch, Mervis, et al., 1976). Together, these 

findings illustrate what is known as the basic-level advantage in categorisation.  

Traditional explanations of the basic-level advantage are firmly rooted in what we 

will commonly refer to as feature-based theories of categorisation. These theories, while 

varied in their accounts of categorical representation, generally assume categories to be 

labelled classes of objects or entities that share discrete perceptual and/ or functional features 

to a sufficient degree to be similar to members from the same class, yet different from non-

members (Hampton, 1981; Rosch, 1973; Rosch, Simpson, et al., 1976; B. Tversky & 

Hemenway, 1984). In one influential view, categories are represented in semantic memory 

through an abstracted summary representation (prototype) of the distribution of features 

within a given category (Posner & Keele, 1968; Rosch, 1975; Rosch & Mervis, 1975). In an 

alternative view, concepts and their features are stored in hierarchical networks, mirroring the 

inclusive relationships between concepts in a taxonomy (Collins & Loftus, 1975; Jolicoeur et 

al., 1984). Crucially, prototype and network accounts provide alternative explanations for the 

processing advantages observed for category labels of intermediate specificity. Hierarchical 

network accounts suggest that the basic-level is the preferred entry-point into the hierarchical 
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organisation of concepts in semantic memory. On this account, categorising an object at more 

specific or abstract levels incurs a perceptual or inferential processing cost (Glass & Holyoak, 

1974; Jolicoeur et al., 1984), that may be mediated by object typicality (i.e., atypical objects 

may be preferentially categorised at the subordinate level). Prototype accounts meanwhile 

argue that the basic level has an advantage due to its feature characteristics, which serve to 

maximise its within-category similarity and between-category differentiation (Cree & 

McRae, 2003; Markman & Wisniewski, 1997; Murphy, 2016; Murphy & Brownell, 1985; 

Murphy & Lassaline, 1997; Tyler et al., 2000). Murphy and Smith (1982) argue that 

differences in categorisation performance arise because verification of superordinate-level 

labels requires the activation of additional perceptual representations, and verification of 

subordinate-level items requires a different set of discriminatory criteria.  

Over the past few decades, views on conceptual processing have shifted in a way that 

brings into question some of the explanations of processing advantages in categorisation as 

put forward by feature-based accounts. These accounts, which we will refer to as linguistic-

simulation accounts of conceptual structure, argue that concepts comprise both sensorimotor 

(i.e., perception-action experience of the world) and linguistic distributional information (i.e., 

our knowledge about the distribution of words in language; (Barsalou et al., 2008; Connell, 

2018; Connell & Lynott, 2014; Louwerse, 2011). Sensorimotor simulation refers to the notion 

that the same systems that are involved in online processing of perceptual experience may be 

re-activated to represent (simulate) this experience upon retrieval (Barsalou, 1999). Simulated 

representations may consist of perceptual, motor, affective and other information in direct or 

indirect experience, and do not need to be the same every time (e.g., the concept dog may be 

represented by the colour and touch of its fur or the sound of its bark). Evidence for simulated 

representations comes from a range of neuroimaging (Aziz-Zadeh et al., 2006; Carota et al., 

2012; Goldberg et al., 2006; Hauk et al., 2004) and behavioural (Connell & Lynott, 2010; 
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Dils & Boroditsky, 2010; Zwaan & Taylor, 2006) studies, which have found strong links 

between perceptual experience and conceptual representation. Linguistic distributional 

information captures our inherent sensitivity to the statistical properties of language (Aslin & 

Newport, 2012; Landauer & Dumais, 1997; Lund & Burgess, 1996), which allows us to 

retrieve information from the specific patterns in the distribution of words relative to one 

another. For example, the fact that certain words (e.g., bird and creature) occur frequently in 

similar contexts may indicate that they are more similar than others (e.g., bird and spaghetti). 

Linguistic distributional information has been shown to predict conceptual processing in a 

range of tasks (Connell & Lynott, 2013; Goodhew et al., 2014; Louwerse & Connell, 2011; 

Louwerse & Jeuniaux, 2010), including categorisation processes such as typicality rating 

(Connell & Ramscar, 2001) and category production (Banks et al., 2021). Various 

sensorimotor-linguistic accounts may weigh the importance of both information types in 

conceptual representation differently. Barsalou et al. (2008), emphasise the importance of 

sensorimotor simulation over linguistic distributional information, whereas Louwerse (2011) 

argues language encodes a sufficient amount of sensorimotor experience to be a viable 

alternative to simulation most of the time. Connell and Lynott (2014, see also Connell, 2019) 

meanwhile argue that neither sensorimotor nor linguistic distributional information is more 

central to conceptual processing as a whole, but each type may become more important than 

the other depending on task demands and other factors.  

If it is indeed the case that concepts comprise both sensorimotor experience and 

linguistic distributional knowledge, it follows that sensorimotor and or linguistic 

distributional information may also capture categorical relations between concepts. Concepts 

may be grouped together according to their similarity in terms of sensorimotor experience 

and or the distribution of their label in language. For example, the sensorimotor profile of our 

experience with poodles may be very similar to our sensorimotor experience with dogs, but 
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quite different to the sensorimotor experience of animals in general. In language, we tend to 

talk about poodles and dogs in similar contexts (e.g., leads, kennels, fur, collar, walks etc.) 

whereas animals do not share many of those contexts (e.g., we may talk about animals in the 

context of zoo, farm, wild or endangered). Indeed, in a previous study (van Hoef et al., 2021), 

we found that overlap in sensorimotor and linguistic distributional information between a 

category- (e.g., dog) and member-concept (e.g., poodle) predicts performance in a classic 

picture categorisation task.  

While (to our knowledge) no explicit account of the role of sensorimotor and or 

linguistic distributional information in categorisation exists, we believe that there are a 

number of ways in which such an account would be different from hierarchical network and 

prototype/differentiation theories of categorisation. Firstly, sensorimotor-linguistic 

distributional account of categorisation does not assume categories to be labelled classes that 

are represented through abstract feature summaries, or by their exemplars. Instead, all natural 

concepts may be represented directly through sensorimotor experience and distributional 

knowledge. That is, the relationship between a member-concept (e.g., dog) and a category-

concept (e.g., animal) may be expressed directly as the degree of overlap in sensorimotor 

experience and or linguistic distributional information between dog and animal, without the 

need for comparison to an abstract prototype or exemplar. Secondly, sensorimotor-linguistic 

views deviate from feature-based accounts of categorisation in that they do not draw a 

distinction between features and concepts. Instead, they are viewed as related but not 

secondary to other concepts (e.g., concepts tail and barks are related to dog). Finally, similar 

to prototype-differentiation accounts but different to hierarchical network accounts, a 

sensorimotor-linguistic account does not assume an a priori division of concepts into 

taxonomic levels. Instead, task goals and available resources may determine which concept is 

activated first (Connell & Lynott, 2014).  
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In previous work (van Hoef et al., 2022a), we suggested that predictions from a 

sensorimotor-linguistic account with regards to object categorisation might be summarised in 

a process model that bears some similarity to the preparation model, which is a precursor of 

the differentiation model (Murphy & Smith, 1982), in that category labels may activate a 

representation that is verified upon seeing a potential member, and that additional processing 

may be required if the representation activated by the label does not match the object. In the 

preparation model, this processing involves the extraction of additional perceptual features 

for categorisation at the superordinate level, and the activation of additional discriminatory 

criteria for categorisation at the subordinate level. A sensorimotor-linguistic variant of the 

preparation model might be similar, in that a category label (e.g., dog) activates sensorimotor 

and linguistic distributional information about a category-concept (e.g., our sensorimotor 

experience with dogs, as well as our knowledge about the words the label dog occurs with). 

However, where the preparation/ differentiation models describe categorisation as a feature-

matching process, the sensorimotor-linguistic model predicts that categorisation performance 

is improved when the activated sensorimotor-linguistic representation overlaps with that 

activated by the image to a greater extent. Consequently, the sensorimotor-linguistic model 

does not make predictions about processing differences at various taxonomic levels, but 

rather predicts that any processing differences arise because representations activated by a 

given label (e.g., dog) might overlap more closely with those activated by the presented 

image (e.g., Labrador) than others (e.g., animal).  

Hierarchical network accounts meanwhile suggest that the basic-level is the preferred 

entry-level into a taxonomically organised semantic memory, and that processing objects at a 

more abstract or concrete taxonomic level incurs an additional processing cost (Collins & 

Loftus, 1975; Glass & Holyoak, 1974; Jolicoeur et al., 1984). By contrast, the sensorimotor-

linguistic model simply holds that different taxonomic labels activate different sensorimotor-
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linguistic representations which overlap with the representation activated by the image to 

varying extents. If the representations overlap, less additional processing is required than if 

the representations do not overlap.  

In summary, the hierarchical network, prototype/differentiation and sensorimotor-

linguistic accounts differ in their views on the mechanisms underpinning categorisation. 

Nevertheless, all three accounts may produce a basic-level advantage effect. It may be the 

case that basic-level labels (e.g., dog) generally overlap more in sensorimotor and linguistic 

distributional information with member concepts (e.g., Labrador) than superordinate-level 

labels (e.g., animal). As a result, observing a basic-level advantage brings us no closer to 

determining whether a sensorimotor-linguistic distributional account of categorisation is 

more plausible than other accounts, particularly when the best-fitting account varies 

according to which measure of the basic-level advantage is being analysed (van Hoef et al., 

2021 – see Chapter 2). In that sense, it may be more informative to look at where predictions 

would diverge. In other words, where traditional accounts might predict a basic-level 

advantage, where sensorimotor-linguistic distributional accounts would not. That is what we 

investigate in this study.  

The current study 

In the present study, we report a pre-registered forced-choice categorisation 

experiment, involving only object and category labels, where participants saw a cue (e.g., 

subordinate Labrador) and then had to decide between two competing category labels at 

different taxonomic levels (e.g., superordinate animal and basic dog). Crucially, we 

manipulated our set of stimuli using measures of sensorimotor and linguistic distributional 

information (see critical predictors below), so that for half the trials the basic-level label was 

closer in sensorimotor-linguistic experience to the cue (e.g., sensorimotor and linguistic 

distance between cue trout and basic-level label fish were .02 and .35 respectively, compared 
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to .20 and .45 between cue trout and superordinate-level label creature), whereas for the 

other half the superordinate-level label was closer (e.g., sensorimotor and linguistic distance 

between cue barracuda and basic-level label fish were .13 and .06 respectively, compared 

to .06 and .52 between cue barracuda and superordinate-level label creature). We aimed to 

investigate whether participants’ choices and decision-making speed could be predicted by 

sensorimotor (i.e., perception-action experience of the world) and linguistic distributional 

information (i.e., statistical distribution of words in language), and whether these effects 

would mediate the effects of taxonomic level, specifically when sensorimotor-linguistic 

information contrasted with the traditional basic-level advantage.  

 We hypothesised that the ease and likelihood of categorisation of a given object (e.g., 

Labrador) at either the basic (e.g., dog) or the superordinate (e.g., animal) would depend on 

the sensorimotor-linguistic representational overlap between the member- and category 

concepts. That is, that category concepts with more representational overlap would be 

preferentially chosen over category concepts with less representational overlap. Specifically, 

we predicted that superordinate categories (e.g., animal) would be chosen faster and more 

frequently than their basic-level counterpart (e.g., dog) if they were closer in sensorimotor 

and linguistic distributional experience to the object label, regardless of their taxonomic level. 

These predictions contrast what traditional accounts would predict, but follow predictions 

from sensorimotor-linguistic accounts. That is, traditional accounts would predict a basic-

level advantage regardless of overlap in sensorimotor and/ or linguistic distributional 

information, whereas sensorimotor-linguistic accounts would predict no basic-level 

advantage for items where sensorimotor-linguistic experience overlaps more with the 

superordinate concept.  

Of particular note, the present study used labels rather than images to represent 

category members. There are two reasons for this decision. Firstly, our test of sensorimotor-
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linguistic explanations of categorisation methodologically thus far relied on comparisons 

between the information activated by a category label, and the information activated by the 

implicit name of the pictured object (van Hoef et al., 2021 – see Chapter 2). This required us 

to make an assumption about what that implicit name would be. In the present study, the use 

of labels rather than images helped us to avoid this assumption altogether. Secondly, in a 

previous study, we observed that sensorimotor but not linguistic distributional information 

affected categorisation response times better than taxonomic information. Louwerse and 

Jeuniaux (2010) suggest that simulated and linguistic information may inform cognitive 

processing differently for pictorial and linguistic stimuli. As such, the use of pictorial stimuli 

may disproportionally highlight the effect of sensorimotor information over linguistic 

distributional information. That is, the lack of an effect of linguistic distributional information 

may be an artefact of using picture stimuli, and does not necessarily mean that linguistic 

distance does not affect categorisation RT. Therefore, we expect that using word stimuli may 

offer a greater opportunity to detect linguistic distance effects. Nevertheless, we expect that 

even when images are absent, an effect of sensorimotor and linguistic distributional 

information on categorisation may be observed.  

3.4. Method 

In this study (https://osf.io/vdka2/?view_only=ac6c78793a354a1f95da6c36b5ac6163) 

we examined the different categorisation performance advantages predicted by traditional 

accounts of categorisation (e.g., basic-level advantage) and sensorimotor-linguistic accounts 

(e.g., representational-overlap advantage) in a forced-choice label categorisation task. 

Participants first saw an object name at the subordinate level (e.g., Labrador). Then, they saw 

two labels: one at the basic level (e.g., dog) and one at the superordinate level (e.g., animal). 

Their task was to decide which of these labels best fit the object that preceded it. Crucially, 

half the trials were pro-basic (i.e., sensorimotor experience and linguistic distributional 
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information of the cue was closer to that of the basic-level option), whereas half the trials 

were pro-superordinate (i.e., sensorimotor experience and linguistic distributional 

information of the cue was closer to that of the superordinate-level option).  We expected that 

the basic-level label would be chosen faster and more frequently when it overlapped with the 

cue in sensorimotor and linguistic distributional information to a greater extent than the 

superordinate-level label, and vice versa. 

Participants. We recruited thirty native speakers of English (24 female, Mage= 37 

years old, SDage = 14.78 years) through online platform Prolific.co, and received £1.75 in 

compensation. Participants were required through Prolific’s screening criteria to have no 

reading impairments (e.g., dyslexia), and have a prolific approval rate of 95% based on their 

previous submissions. As pre-registered, participants were asked to respond to 5 attention 

checks at random intervals throughout testing, in which they completed simple arithmetic 

questions (e.g., 19-9 =?). We replaced 1 participant for answering incorrectly to more than 2 

of these questions (3 incorrect answers). In addition to this, one participant was automatically 

replaced for exceeding the maximum duration of 44 minutes, as automatically calculated by 

Prolific.  

We determined sample size via sequential hypothesis testing (Schönbrodt et al., 

2017), which allows evidence for/against the hypothesis to accumulate until a pre-specified 

grade of evidence is reached. We stopped sampling at the minimum bound of Nmin = 30, 

when analysis 2, stage 2, step 2 (see Design and Analysis) of RT cleared the specified 

threshold of BF10 ≥ 3 for both pro-basic (BF10 = 1.62x109) and pro-superordinate conditions 

(BF10 = 328.17). This showed that a categorical effect was evident for both pro-basic and pro-

superordinate items.  

Materials. We selected 80 object-category triads, consisting of a cue at the 

subordinate level (e.g., Labrador) and two category labels at the basic (e.g., dog) and 
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superordinate (e.g., animal) level respectively. Cues corresponded to a total of 10 unique 

basic and 7 unique superordinate-level categories (see appendix for all test and filler triads). 

Crucially, during stimulus selection, we calculated sensorimotor and linguistic distances 

between potential cues and their basic and superordinate-level categories. To calculate 

linguistic distance. We used a subtitle corpus of 200 million words in British English (e.g., 

van Heuven et al., 2014) to calculate log co-occurrence frequencies around each word with a 

context radius of five. Each word in the corpus was represented as a vector of log-

cooccurrence frequencies, allowing for the comparison of two words by calculating the 

cosine distance between their vectors. For example, our cue Labrador and category dog 

might occur in relatively similar contexts across language, whereas Labrador and the choice 

animal might occur in less similar contexts. As a result, the distance between the vectors for 

Labrador and dog is smaller than that between vectors for Labrador and animal. The 

resulting linguistic distances for each cue → category pair ranged from .25 to .91 (M = .50, 

SD =.13), with higher values denoting a greater distance to the cue (i.e., less overlap) and 

vice versa. To compare the extent to which a cue overlapped with a category in terms of 

sensorimotor experience, we followed the same approach as we did for a prior experiment 

(van Hoef et al., 2021 – see chapter 2), in calculating sensorimotor distance based on 

multidimensional ratings of sensorimotor strength. We used Lynott et al.’s (2020) 

sensorimotor norms for 40,000 concepts, which had people rate the extent to which they 

experienced a given concept through one of the six perceptual modalities (auditory, gustatory, 

haptic, interoceptive, olfactory and visual) and by performing an action with five action 

effectors (foot, hand, head, mouth and torso). Each dimension was rated separately on a scale 

from 0 to 5, allowing for the construction of an 11-dimensional vector of grounded 

sensorimotor experience for each concept. We retrieved sensorimotor vectors for all our cues 

and their associated choices, and calculated a cosine distance between them (i.e., 1 – cos (θ 
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(u,v)). The resulting measure ranged from .01 to .56 (M = .1, SD = .09) with higher values 

reflecting greater distance to the cue (i.e., less overlap) and vice versa. The sensorimotor and 

linguistic distance measures formed the basis of our critical manipulation: we balanced the 

final set of 80 triads so that for half the triads sensorimotor and linguistic distance was biased 

towards the basic-level category (i.e., cue-basic distance was shorter than cue-superordinate 

distance: the pro-basic condition), and for the other half of the triads sensorimotor and 

linguistic distance was biased towards the superordinate-level category (i.e., cue-

superordinate distance was shorter than cue-basic distance: the pro-superordinate condition. 

Finally, we used 36 fillers to balance the number of trials that represented a particular basic 

or superordinate category. That is, due to the limitations on our item selection (i.e., labels had 

to be present in the Lynott et al. sensorimotor norms, had to be have either a pro-

superordinate or pro-basic sensorimotor-linguistic bias), some superordinate-labels only 

occurred in concurrence with one basic-level label (e.g., in test trials, the superordinate 

animal was only paired with dog), and some basic-level labels occurred only a limited 

number of times (e.g., only three bottle-container pairs fit our item requirements). The 

inclusion of fillers balanced this so that specific categories would not be subject to different 

practice effects in two ways. Firstly, we ensured that every superordinate-level label would 

occur with at least two different basic-level labels across the experiment (e.g., adding fillers 

containing the superordinate animal and the basic insect). Secondly, we added fillers to 

ensure that each basic-level label would occur in at least five trials across the experiment 

(e.g., by adding two bottle-container fillers). We ensured that for half of these filler triads 

sensorimotor but not linguistic distances were shortest between the cue and the basic-level, 

whereas for the other half this was reversed. 

In addition to our measures of sensorimotor and linguistic distance, we retrieved Zipf 

log word frequencies for the basic and superordinate-level choice, as well as the presented 
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cue from a large subtitle corpus (e.g., van Heuven et al., 2014). On average, basic-level labels 

were more frequent (M= 4.86, SD= .48) than superordinate-level labels (M=4.46, SD=.33), (U 

= 5277.00, p <.001). However, critically, log frequency averaged over both basic- and 

superordinate-level labels, was similar between the pro-basic (M=4.67, SD=.44), and pro-

superordinate biased trials (M=4.65, SD=.48), (U = 3186.00, p =.963). Furthermore, average 

log word frequency for basic-level labels in pro-basic biased trials (M=4.81, SD =.52) was 

not significantly dissimilar to that of basic-level labels in pro-superordinate trials (M=4.52, 

SD = .29) (U = 604.50, p =.06), and average log word frequency for superordinate-level 

labels in pro-basic biased trials (M=4.90, SD =.45) was not significantly dissimilar that of 

superordinate-level labels in pro-superordinate trials (M=4.40, SD = .37) (W = 958.50, p 

=.12).  

Procedure. We collected both informed consent and experimental data through web-

based platform Gorilla.sc (Anwyl-Irvine et al., 2020). Trials were presented on a white 

background. Each trial began with a blank screen for 200 ms and was followed by a fixation 

cross for 300ms, the subordinate cue for 1100 ms presented centred in the top half of the 

screen (uppercase Open Sans), another blank screen for 200 ms, and finally a screen 

depicting both potential choices at the at the left and right bottom of the screen (uppercase, 

Open Sans), which remained on screen until a participant made a choice or a time-out 

threshold of 5000 ms was reached (see trial diagram, figure 1.).  
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Figure 1.  

Trial design 

 

The presentation order of superordinate and basic choices was counterbalanced across 

participants and trials, half the participants saw the basic-level choice on the left for half the 

trials, while they saw the superordinate-level choice on the left for the other half. For the 

other half of the participants, this presentation order was reversed. Participants were 

instructed to choose the option they believed best fit the cue by pressing the ‘z’ key on their 

keyboard to choose the left option, and the ‘m’ key to choose the right option, as quickly and 

accurately as they could. Fillers and test triads were displayed in random order. Five 

arithmetic questions (e.g., 19-9 =?) were displayed as attention checks at fixed intervals 

throughout the experiment, and halfway through participants were given a self-paced break. 

Testing took approximately 10 minutes, including informed consent and briefing.  

Ethics and consent. The study received ethical approval from the Lancaster 

University Faculty of Science and Technology Research Ethics Committee. All participants 

read information detailing the purpose and expectations of the study before giving informed 

consent to take part. Participants were informed that payment for their participation depended 

on passing at least two of the attention checks, and not timing out on more than 20% of trials. 

Consent included agreement to share publicly all alphanumeric data in anonymised form.  
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Design and analysis.  

For analyses of choice and RT, our critical variables included taxonomic level of the 

choice (basic or superordinate) as well as log-transformed word frequencies for the cue and 

both choices, retrieved from a large subtitle corpus (e.g., van Heuven et al., 2014). Note that 

in the analysis of choice, taxonomic level was the dependent variable (i.e., the choice 

participants made was either a basic- or superordinate-level label), whereas in the analysis of 

RT, taxonomic level was a predictor. In addition to this, we included a binary predictor 

denoting whether a cue overlapped more in sensorimotor and linguistic distributional 

experience with the basic- or the superordinate-level cue (see Materials). Throughout our 

analyses we will refer to this predictor as sensorimotor-linguistic bias. During material 

selection and preparation, we used specific measures (outlined below) to capture the overlap 

in sensorimotor experience and linguistic distributional knowledge between a potential cue 

(e.g., Labrador) and its associated choices (e.g., basic-level dog and superordinate-level 

animal). We balanced our dataset so that for half the cue-choice triads, sensorimotor-

linguistic overlap was greater between the cue and the basic-level choice, whereas for the 

other half, overlap was greater between the cue and the superordinate-level choice. To test 

our hypotheses, we planned two sets of analyses. Prior to each analysis we determined the 

best-fitting random effects structure (i.e., which random effects to include and whether to 

include random slopes) using Bayesian model comparisons, calculating Bayes Factors via 

BIC (Wagenmakers, 2007).  

Analysis 1 tested whether the choice (basic or superordinate) participants selected was 

affected by sensorimotor-linguistic bias (pro-basic or pro-superordinate triad). We ran a 

hierarchical mixed effects logistic regression (binomial, logit link) of choice (basic = 0, 

superordinate = 1). Step 1 entered crossed random effects of participant and cue, and the 

covariate fixed effects of log word frequency of the chosen category, and of the rejected 
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category (i.e., log word frequency of the category that was not chosen). Next, step 2 entered 

fixed effects of sensorimotor-linguistic bias (0 = pro-basic, 1 = pro-superordinate). Bayesian 

model comparisons between step 1 and 2 tested whether the data favoured a model containing 

sensorimotor bias over a null model containing random effects and covariate fixed effects of 

log word-frequency of both the chosen and rejected label. In addition to the pre-registered 

analyses of choice, we added three exploratory steps (3, 4, and 5) to establish whether high-

frequency cues might yield different choices compared to low frequency cues, and to 

establish whether the effect of sensorimotor-linguistic bias was more likely to emerge for 

high- compared to average or low-frequency category labels. Therefore, step 3 added the 

fixed effect of word frequency of the cue, step 4 added the interaction between sensorimotor-

linguistic bias and log word frequency of the chosen label, step 5 added the interaction 

between sensorimotor-linguistic bias and log word frequency of the rejected label. We used 

Bayesian model comparisons to compare each step to the model that preceded it, carrying 

over only those fixed effects that improved model fit.  

Analysis 2 tested whether variance in RT could be explained by the taxonomic level 

of the choice participants selected (basic vs. superordinate) and or the sensorimotor-linguistic 

bias (pro-basic or pro-superordinate triad) in two separate stages. The first stage involved a 

hierarchical regression, where step 1 entered random effects of participant and cue, and 

covariate fixed effects of log word frequency of both the chosen and rejected category label. 

Step 2 entered a fixed effect of response choice (0 = basic, 1 = superordinate). Step 3 entered 

a fixed effect of sensorimotor-linguistic bias (0 = pro-basic, 1 = pro-superordinate), and step 

4 entered the interaction between response choice and sensorimotor-linguistic bias. Bayesian 

model comparisons between step 3 and 4 tested whether response times for basic and 

superordinate categories varied by sensorimotor-linguistic bias, while Bayesian model 

comparisons between 2 and 4 tested whether the data favour the interaction effect over 
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taxonomic information only (i.e., the classic basic-level advantage). We added a further seven 

exploratory steps, to establish whether high-frequency cues might elicit faster responses, and 

whether the effects of choice and sensorimotor-linguistic bias were more likely to emerge for 

high- compared to average and low cue and label frequencies. We used Bayesian model 

comparisons between each step and the previous best-fitting model to determine whether it 

improved model fit, and retained only the fixed effects for steps that did. Step 5 added the 

fixed effect of centred log word frequency of the cue. Step 6 added the interaction between 

word frequency of the chosen label and sensorimotor-linguistic bias. Step 7 added the 

interaction between word frequency of the rejected label and sensorimotor-linguistic bias. 

Step 8 added the interaction between word frequency of the cue and sensorimotor-linguistic 

bias. Step 9 added the interaction between word frequency of the chosen label and choice. 

Step 10 added the interaction between word frequency of the rejected label and choice, and 

step 11 added the interaction between word frequency of the cue and choice.  

In the second stage, to test the direction of the sensorimotor-linguistic distance effects 

more detail, we split the dataset into pro-basic and pro-superordinate items, and ran a linear 

mixed effects regression analysis on each subset of the data. Step 1 entered random effects of 

participant and cue, and the fixed effects of log word frequency of the chosen and rejected 

labels. Next, step 2 entered an additional fixed effect of response choice (0 = basic, 1 = 

superordinate). Bayesian model comparisons between step 1 and 2 tested whether there was a 

difference in speed for categorising at basic versus superordinate level, and the coefficient of 

response choice showed the direction of the effect in each of the pro-basic and pro-

superordinate subsets.  

3.5. Results 

We removed 65 trials (2.71 % of 2397 responses) as outliers from the dataset used in 

analyses 1 and 2, for having RTs more than 2.5SD away from the participant’s mean. 
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Table 1.  

Model comparisons for confirmatory and exploratory logistic mixed effects regressions of 

choice (Analysis 1), showing change in R2 and Bayes Factors for all comparisons. 

Model Variable entered Comparison ΔR2  BF10 
Confirmatory     
Step 1 (null) Random effects, log word frequency of chosen category, log 

word frequency of rejected category 
- .495* - 

Step 2 Sensorimotor-linguistic bias Vs. step 1 .043 12.81 
Exploratory     
Step 3 Log word frequency of the cue Vs. step 2 .002 0.02 
Step 4 Interaction sensorimotor-linguistic bias and log word 

frequency of chosen category 
Vs. step 2 .040 8.28x1014 

Step 5 Interaction sensorimotor-linguistic bias and log word 
frequency of rejected category 

Vs. step 4 .047 8040490.00 

*reflects marginal R2 for random effects and fixed effects of word frequency and word length  
 

Analysis 1: choice. Table 1 shows all model comparisons for analysis 1 of the choice 

participants made (basic or superordinate). Out of all 2332 non-outlier responses, participants 

chose a basic-level choice 1856 times (79.59 %), and a superordinate-level choice 476 times 

(20.41%). Bayesian model comparisons showed that the data favoured the step 2 model 

containing sensorimotor-linguistic bias over the null model containing random effects of 

participant and item, and log word frequency of the chosen and rejected category (BF10 = 

13.06). This model reiterated that participants were on average most likely to choose a basic-

level label, but also showed that they were up to 4.85 times more likely to choose a 

superordinate-level label when sensorimotor-linguistic bias was pro-superordinate compared 

to pro-basic [β =1.58, 95% CI = ±.84, z = 3.69, p <.001]. Furthermore, participants were also 

up to 12.38 times9 more likely to choose a basic-level label when it was of high compared to 

average frequency [β =-3.70, 95% CI = ±.68, z = -10.71, p <.001]. By contrast, participants 

were up to 103.30 times10 more likely to choose a superordinate-level label when the 

 
9 Odds ratio calculated with the highest value for centred log word frequency of the chosen word (.68). 
10 Odds ratio calculated with the highest value for centred log word frequency of the rejected word (.88). 
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alternative label was of high compared to average frequency [β =5.27, 95% CI = ±.84, z = -

12.36, p <.001].  

We carried out a set of exploratory analyses to investigate whether the choice 

participants made varied with the frequency of the cue, and whether the effect of 

sensorimotor-linguistic bias might vary with word frequency of the chosen and rejected 

category labels. Bayesian model comparisons between step 2 and the exploratory (i.e., not 

pre-registered) step 3 revealed evidence against inclusion of log word frequency of the cue 

over the step 2 (BF10= 0.02). As a consequence, cue frequency was not carried forward to 

subsequent models. Further model comparisons between steps 2 and 4, and 4 and 5 revealed 

strong evidence for the inclusion of both the interaction between sensorimotor-linguistic bias 

and log word frequency of the chosen category and the interaction between sensorimotor-

linguistic bias and word frequency of the rejected label see Table 2 for step 5 model 

coefficients. This model suggests that sensorimotor-linguistic bias by itself had little effect, 

but rather interacted with both the word frequency of the chosen and the rejected category in 

predicting which choice participants made (see Figure 1). 

Table 2. 

Estimates and standard errors of choice for sensorimotor-linguistic bias (0 = pro-basic), Log 

word frequency of the chosen and rejected label, and the interaction between sensorimotor-

linguistic bias and word frequencies. Derived from the exploratory step 5 model. 

 β SE 
(Intercept) -3.10 .36 
Sensorimotor-linguistic bias (0 = pro-basic) .38 .54 
Log word frequency of the chosen label -2.09 .53 
Log word frequency of the rejected label 2.36 .65 
Sensorimotor-linguistic bias x Log word frequency of the chosen label -4.80 .83 
Sensorimotor-linguistic bias x Log word frequency of the rejected label 6.26 1.05 
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Figure 2.  

Predicted probabilities of choosing basic-level categories by sensorimotor-linguistic bias for 

high (.5) average (0) and low (-.5) values of centred log word frequency of the chosen and 

rejected label (with 95% confidence intervals). Dotted line indicates chance threshold.  

 

As shown in Figure 2, Panel 1, our exploratory analyses suggest that the basic-level 

advantage was stronger when the rejected superordinate-label was low-frequency, with little 

effect of the sensorimotor-linguistic bias or the frequency of the basic-level label itself (see 

panel 1). As shown in Figure 2, Panel 2, the basic-level advantage was present, but weaker 

when the rejected superordinate label was of average frequency with a relatively small effect 

of sensorimotor-linguistic bias. That is, in the pro-basic condition we observed a weaker 

basic-level advantage, when a low-frequency basic-level label was chosen over an average-

frequency superordinate-level label. However, this advantage disappeared in the pro-

superordinate condition, where sensorimotor-linguistic bias pushed participants to choose a 

low-frequency superordinate-level label over an average-frequency basic-label at least half 

the time (i.e., the predicted-probability of choosing basic of was .47). Finally, as shown in 

Figure 2, Panel 3, we observed strong effects of sensorimotor-linguistic bias when the 

rejected label was high-frequency. When sensorimotor-linguistic information was biased 

towards the basic-level label, the basic-level advantage appeared (albeit in weakened form) 
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when a basic-label was of average to high frequency was chosen over a high-frequency 

superordinate alternative. The basic-level advantage also appeared in the pro-superordinate 

condition when both the basic and superordinate-level labels were high-frequency (i.e., 

predicted probability of choosing basic = .70). However, the basic-level advantage virtually 

disappeared in the pro-basic condition, where participants were reluctant to choose a low-

frequency basic-level label over a high-frequency superordinate label (i.e., predicted 

probability of choosing basic = .54), and critically the basic-level advantage was reversed 

into a superordinate-level advantage in the pro-superordinate condition, where sensorimotor-

linguistic bias pushed participants to choose a low- to average-frequency superordinate label 

over a high-frequency basic-label.  

In summary, our confirmatory analysis confirmed our hypothesis that sensorimotor-

linguistic overlap between the cue and the label affects categorisation performance. On 

average, participants were most likely to choose a basic-level label, showing a classic basic-

level advantage. However, the likelihood that participants chose a basic-level label was lower 

in the pro-superordinate compared to the pro-basic condition. In addition to this, word 

frequency of both the chosen and rejected label affected participants’ choices. Higher 

frequency of the chosen label resulted in more basic-level choices. This is perhaps 

unsurprising, as basic-level labels are generally of higher frequency. By contrast, when the 

rejected label was of higher frequency, the choice was more likely to be superordinate. This is 

the inverse of the effect we observed for frequency of the chosen label (i.e., because high-

frequency words are more likely to be basic, a rejection of a high-frequency word is more 

likely to result in a superordinate choice). These results illustrate that sensorimotor and 

linguistic distributional information affect categorisation separately from taxonomic 

information.  
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Our additional analysis revealed an interesting pattern, where we noted that a pro-

superordinate sensorimotor-linguistic bias was enough to make participants select a low- (or 

average-) frequency superordinate-level label, even when the basic-level option was high-

frequency. However, given the exploratory nature of these analyses must be interpreted with 

care, and may require further research to determine their robustness. 

Analysis 2: Response times (full dataset). Table 3 shows all model comparisons for 

stage one of analysis 2. On average, participants took 811.90 ms (SD = 423.37 ms) from the 

onset of the screen displaying both category labels to make a decision.  

Table 3.  

Model comparisons for confirmatory and exploratory linear mixed effects regressions of RT 

(full dataset), showing change in R2 and Bayes Factors for all comparisons. 

Model Variable entered Comparison ΔR2  BF10 
Confirmatory     
Step 1 Random effects, word frequency of the chosen label 

and word frequency of the rejected label 
- .356* - 

Step 2 Choice  Vs. step 1 .062 4.80x1014 
Step 3 Sensorimotor-linguistic bias Vs. step 2 .023 0.52 
Step 4 Interaction choice and sensorimotor-linguistic bias Vs. step 2 .024 0.07 
  Vs. step 3 .001 0.04 
Exploratory     
Step 9 Interaction log word frequency of chosen category and 

choice 
Vs. step 3 .009 7.55 

* Denotes conditional R2, variance explained by both fixed and random effects. 
Note. Only step 9 outperformed the best-performing confirmatory model (step 3), full model comparisons in 
supplementals on OSF.  
 
 

 Bayesian model comparisons between step 2 and 4 revealed that the data did not 

support the inclusion of the interaction between taxonomic level of the choice (basic or 

superordinate) and sensorimotor-linguistic bias (pro-basic, pro-superordinate) over a model 

including only log word frequency of the chosen and rejected label and taxonomic level of 

the choice (step 2). Evidence suggested that the data were BF01 = 13.66 times more likely 

under the step 2 model. Similarly, Bayesian model comparisons showed that the data did not 

support the step 4 interaction model over the step 3 model including all predictors from step 2 
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plus a fixed effect of sensorimotor-linguistic bias. Here, evidence suggested that the data 

were BF10 = 26.03 times more likely under the step 3 model. Taken together, these findings 

suggest that the effects of taxonomic level were robust across sensorimotor-linguistic bias 

conditions, thus not support our hypotheses regarding the effect of sensorimotor-linguistic 

bias.  

An exploratory (not-preregistered) comparison between step 2 and 3 provided 

equivocal evidence for the inclusion of sensorimotor-linguistic bias over a model that 

included only word frequency and taxonomic level (BF10 = 1.90). Inspection of the 

coefficients for the step 3 model revealed that participants were faster in choosing high-

frequency labels compared to labels of average and low frequency [β =-61.17, 95% CI = 

±55.38, t(136.69) = -2.16, p =.032] as well as faster to make a response when the rejected 

label was high- compared to average and low-frequency labels [β =-116.94, 95% CI = 

±64.45, t(224.23) = -3.56, p <.001]. Furthermore, participants were overall slower to choose 

superordinate-level labels [β =219.87, 95% CI = ±50.27, t(2204.79) = 8.57, p <.001], but also 

slower to choose both basic and superordinate-level labels in pro-superordinate biased trials 

compared to pro-basic trials [β =100.75, 95% CI = ±64.03, t(78.19) = 3.08, p =.002], see 

figure 3.  
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Figure 3.  

Predicted response times (step 3 model) by taxonomic level and sensorimotor-linguistic bias 

with 95% confidence intervals.  

 

 

As before in the analysis of choice, we carried out a set of exploratory analyses to 

investigate whether response times varied as a function of the frequency of the cue, as well as 

to see whether the effects of choice and sensorimotor-linguistic bias interacted with each of 

the various word frequencies. Bayesian model comparisons revealed that step 5 (adding word 

frequency of the cue) did not improved model fit over the confirmatory step 3 (BF10= 0.02). 

As a consequence, cue frequency was not carried forward to subsequent steps. Only step 9 

(adding the interaction between centred log word frequency of the chosen label and the 

taxonomic level of the choice) further improved model fit over step 3 (BF10= 7.55), making it 

the best-fitting model overall. This model suggests that participants were faster to choose 

high-frequency over low- and average-frequency labels. However, the significant interaction 
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between frequency and taxonomic level of the chosen label suggests that the speed-difference 

between basic and superordinate-level labels was higher for high-frequency compared to 

average and low frequency level labels (see Figure 4, and Table 4). That is, the basic-level 

advantage in RT was much larger when high-frequency labels were chosen compared to low-

frequency labels. As before, this model suggests that participants were also faster in pro-basic 

compared to pro-superordinate biased trials, and when the alternative was a high-frequency 

compared to a low-frequency label.  

 

Figure 4. 

Predicted RT (step 9 model), for high (.5) average (0) and low (-.5) values (values chosen for 

illustrative purposes) of centred log word frequency by choice for pro-basic trials with a non-

chosen label of average frequency, with 95% confidence intervals. 
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Table 4.  

Estimates and standard errors of RT for choice (0 = basic, 1 = superordinate), sensorimotor-

linguistic bias (0 = pro-basic), log word frequency of the chosen and rejected label, and the 

interaction between choice and word frequencies. Derived from the exploratory step 9 model. 

 β SE 
(Intercept) 721.13 39.44 
Choice (1 = superordinate) 295.56 30.58 
Sensorimotor-linguistic bias (1 = pro-superordinate) 107.59 31.71 
Log word frequency of the chosen label -100.73 28.98 
Log word frequency of the rejected label -109.42 32.29 
Choice x word frequency of the chosen label.  256.47 57.89 

 

Table 5.  

Model comparisons for confirmatory and exploratory linear mixed effects regressions of RT 

(dataset split by sensorimotor-linguistic bias condition), showing change in R2 and Bayes 

Factors for all comparisons. 

Pro-basic     

 Model Variable entered Comparison ΔR2  BF10 

 Confirmatory     

 Step 1 (null) Random effects + log word frequency of chosen 
category + log word frequency of rejected category 

- .334* - 

 Step 2 Choice (basic or superordinate) Vs. step 1 .086 1.62x109 

      

Pro-superordinate     

 Model Variable entered Comparison ΔR2  BF10 

 Confirmatory     

 Step 1 (null) Random effects + log word frequency of chosen 
category + log word frequency of rejected category 

- .335* - 

 Step 2 Choice (basic or superordinate) Vs. step 1 .014 328.17 

 Exploratory     

 Step 5 Interaction between choice and word frequency of the 
chosen category 

Vs. step 3 .022 76.25 

 Step 6 Interaction between choice and word frequency of the 
rejected category 

Vs. step 5 <.001 0.03 

* Denotes conditional R2, variance explained by both fixed and random effects. 
Note: Only exploratory models that improved model fit over the previous best-fitting model were included in this table. 
None of the exploratory models outperformed the step 2 model for a pro-basic dataset (full comparisons in 
supplementals on OSF).  
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Response times (split by sensorimotor-linguistic condition). In the second stage of 

analysis 2, we split the RT dataset by sensorimotor-linguistic bias (pro-basic and pro-

superordinate). In the pro-basic dataset, Bayesian model comparisons (see Table 5) provided 

strong evidence for the step 2 model including taxonomic level of the chosen category over 

the step 1 null model including random effects and covariate fixed effects of log word 

frequency of the chosen and rejected label (BF10= 1.62x109), where participants were faster to 

choose basic-level categories than they were to choose superordinate-level categories [β 

=240.09, 95% CI = ±65.21, t(1152.80) = 7.22, p <.001]. As for the full dataset, higher word 

frequency for the chosen [β =-98.47, 95% CI = ±70.59, t(56.84) = -2.73, p =.008] and 

rejected word [β =-153.63, 95% CI = ±85.78, t(108.25) = -3.51, p <.001] reduced response 

times.  

In the pro-superordinate dataset, Bayesian model comparisons also provided strong 

evidence for the step 2 model including taxonomic level over the step 1 null model (BF10= 

328.65). Again, participants were faster to choose basic-level categories than they were to 

choose superordinate-level categories, although the difference was smaller [β =190.84, 95% 

CI = ±85.80, t(972.14) = 4.36, p <.001], but neither word frequency of the chosen and 

rejected label affected RT significantly. 

We explored whether RT was affected by the word frequency of the cue, as well as the 

interaction between choice and centred log word frequency of the chosen label, rejected label 

and cue in 4 additional exploratory steps. In step 3, we added the fixed effect of centred log 

word frequency of the cue to the step 2 model. In step 4, we added a fixed effect of the 

interaction between choice and cue word frequency. In step 5, we added the fixed effect of 

the interaction between choice and chosen label word frequency, and in step 6 we added the 

interaction between choice and rejected label word frequency.  
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Bayesian model comparisons between successive steps 2, 3, 4 5 and 6 for a pro-basic 

dataset revealed that the original step 2 model, which included only centred log word 

frequency for the chosen and rejected label and taxonomic level of the choice fit the data best 

(see full details in supplementals), showing evidence against the inclusion of word-frequency 

of the cue (BF01=34.06), and the interaction between choice and word frequency of the cue 

(BF01=83.98), chosen label (BF01=2620.73) or rejected label (BF01=85146.03).  

Bayesian model comparisons between steps 2, 3, 4 5 and 6 for a pro-superordinate 

dataset revealed evidence against step 3 (inclusion of word frequency of the cue) and step 4 

(inclusion of the interaction between word frequency of the cue and choice), but for the 

inclusion of step 5 (including the interaction of word frequency of the chosen label with 

choice) over step 2. Step 6 did not improve model fit over step 5, providing evidence against 

the inclusion of the interaction between word frequency of the rejected label and choice.  

Inspection of the step 5 model coefficients (see Table 6) showed that the taxonomic 

level of the chosen concept affected RT as previously observed, where superordinate-level 

choices were slower than basic-level choices. Increasing word frequency of the chosen and 

rejected labels resulted in faster RT. However, word frequency of the chosen concept 

differentially affected how quickly participants chose basic- versus superordinate category 

labels. That is, when people chose the basic-level label, higher word-frequency resulted in 

faster responses, but when people chose the superordinate-level label, higher word frequency 

resulted in slower responses (see Figure 5).  
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Figure 5.  

Predicted response times for pro-superordinate and pro-basic datasets, by taxonomic level 

chosen, and non-chosen word frequency. With 95% confidence intervals.  
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Table 6.  

Model coefficients for the exploratory step 5 model of RT in a pro-superordinate dataset.  

 Β SE 
(Intercept) 839.87 45.97 
Choice (1 = superordinate) 273.24 47.43 
Centred log word frequency of the chosen label -109.79 50.33 
Centred log word frequency of the rejected label -59.81 48.01 
Centred word frequency of the chosen label x Choice  295.55 74.17 

 

In summary, our confirmatory analyses suggested equivocal evidence for the effect of 

sensorimotor-linguistic bias, and no evidence of a variable effect of sensorimotor-linguistic 

bias with taxonomic level on RT. Our simple effects analysis of the data split by 

sensorimotor-linguistic bias condition revealed no additional information for pro-basic trials, 

but an exploratory analysis revealed that word frequency of the chosen and rejected label 

only affected RT in the pro-superordinate dataset for basic compared to superordinate items. 

 

Additional exploratory analyses: psycholinguistic characteristics. In the 

confirmatory section of our study, we limited our investigation of the effects of 

psycholinguistic characteristics of our stimuli to word frequency. However, research has 

shown that other psycholinguistic variables may also affect performance in tasks using 

linguistic stimuli. For example, it has been shown that the age at which a word is typically 

learned (age of acquisition; AoA) affects how quickly participants recognise and classify 

words (). Similar, albeit less consistent, effects have been found for familiarity (i.e., how well 

participants know a given object) and word length. It is therefore possible that these variables 

explain variance in RT and choice in our study. In this exploratory analysis, we aimed to 

investigate whether AoA, familiarity ratings and word length of both the cue and choice 

labels indeed affected the choice participants made and the speed with which they did so.  
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In this exploratory analysis, we ran logistic mixed effects models of choice (0 = basic-

level label, 1 = superordinate-level label) as per confirmatory analysis 1 and linear mixed 

effects models of RT as per confirmatory analysis 2. In the analysis of accuracy, we followed 

the procedure outlined in confirmatory analysis 1, but included additional psycholinguistic 

characteristics of age of acquisition, familiarity and word length of chosen and not chosen 

label to steps 1 and 2. As a consequence, in step 1, we entered all new psycholinguistic 

variables as well as word frequency of the chosen and not chosen label. In step 2, we entered 

sensorimotor-linguistic bias.  

In the analysis of RT, we followed the procedure outlined for analysis 2, stage one. 

The only change we made to this procedure was the inclusion of fixed effects of age of 

acquisition, familiarity and word length of the chosen and not chosen category label to the 

null model at step 1, and to all subsequent models (steps 2,3 and 4, as outlined in 

confirmatory analysis 2). We used Bayesian model comparisons between steps 1 and 2 to test 

whether the inclusion of response choice (0 = basic, 1 = superordinate) improved model fit 

over a psycholinguistic-only model. Similarly, we used Bayesian model comparisons to test 

whether the inclusion of sensorimotor-linguistic bias in step 3 improved model fit over step 2, 

and whether the inclusion of an interaction between sensorimotor-linguistic bias and choice 

in step 4 improved model fit over step 3.  Because of missing values in the familiarity dataset, 

we restricted our analyses to complete cases only, which resulted in a final dataset of 2167 

trials (removing 7.07% from 2332 trials).  

Choice: Non-convergence. Attempting to fit the step 1 model as described resulted in 

severe convergence issues. We first assured all variables were centred around their mean, and 

scaled them so that they all had a standard deviation of 1. Next, an inspection of the variance 

inflation factor revealed severe multicollinearity. As a consequence, we removed all fixed 

effects with a variance inflation factor (VIF) over 10: word length of the chosen label (VIF = 
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28.13), AoA of the label not chosen (VIF = 10.47) and word frequency of the chosen label 

(VIF = 13.56). While this reduced the collinearity issues, we still observed that our model fit 

was singular, with random effects estimates and standard errors dropping to near zero with 

the inclusion of psycholinguistic characteristics of the chosen and not chosen labels. One 

potential reason for this is that for each cue, only two potential values of age of acquisition, 

familiarity, word length and word frequency existed; one for each potential choice. For 13 of 

the 74 triads for which we had psycholinguistic data, participants always chose the basic-

level option. As a result, for all these triads, there was no variance in any of the 

psycholinguistic characteristics of the label that was chosen and the label that was not chosen. 

Limiting the data to include only triads for which more than one choice was made (n = 1781 

observations) did not resolve the issue. A further exploration of the remaining data revealed 

that the median number of times a superordinate-level label was 5, compared to a median of 

25 times for basic-level labels. As such, it is possible that there was simply not enough data 

available to include psycholinguistic characteristics of the label that was not chosen. 

Therefore, we ran the model again, this time retaining only the two remaining 

psycholinguistic characteristics of the chosen label that were left (age of acquisition and 

familiarity), which improved matters, but nonetheless did not result in a converging model. 

Of particular interest was that the variance explained by the random effect of participant was 

near-zero. However, on theoretical grounds, we decided not to attempt dropping any random 

effects, and concluded that in its current form, the data is too sparse to support a complex 

psycholinguistic model. We note here that our study was designed to balance items based on 

their sensorimotor-linguistic bias, and may as such not have provided the optimal grounds for 

testing the effects of highly related variables. A future study might be designed to disentangle 

the interrelated effects of psycholinguistic characteristics such as frequency and age of 

acquisition.  
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RT.  In step 1, our initial psycholinguistic model included all psycholinguistic 

characteristics of chosen and not chosen labels. However, inspection of the variance inflation 

factors for this model again revealed severe multicollinearity. As a consequence, we opted to 

remove the fixed effect with the highest variance inflation factor (word length of the chosen 

label, VIF = 23.13). An inspection of the updated model still showed evidence of 

multicollinearity, leading us to drop a second fixed effect (AoA of the label not chosen, VIF = 

10.91). The final psycholinguistic model thus contained random effects of cue and 

participant, as well as fixed effects of word frequency and average familiarity ratings of the 

chosen and not chosen label, AoA of the chosen label and word length of the not chosen 

label, we carried these fixed and random effects forwards to steps 2 through 4.  

Bayesian model comparisons showed evidence that the data favoured the step 2 model 

including the taxonomic level of the choice over the final step 1 model (BF10 = 16.82). 

Moreover, model comparisons showed strong evidence that the data favoured a step 3 model 

including sensorimotor-linguistic bias over the step 2 model (BF10 = 41.90). However, as we 

observed in our confirmatory analysis 2, we found strong evidence against the interaction 

between choice and sensorimotor-linguistic bias over a non-interaction step 3 model (BF01 = 

33.17).  

The coefficients of the best-fitting model (step 3) suggest that participants were 

slower to choose a label with higher-than-average age of acquisition [β =56.06, 95% CI = 

±39.55, t(395.90) = -2.78, p =.006]. Furthermore, the degree of familiarity of either the 

chosen [β =-16.20, 95% CI = ±125.04, t(196.33) = 0.25, p =.254] or not chosen label had 

little effect [β =-23.73, 95% CI = ±97.13 t(122.91) = -0.48, p =.632]. Interestingly, 

participants were faster to make a decision when the word length of the label they did not 

choose was longer than average [β =-55.17, 95% CI = ±37.43, t(84.53) = -2.89, p =.005]. As 

in our confirmatory analyses, participants were faster to make a decision when the chosen 
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label was of high compared to average frequency [β =-80.10, 95% CI = ±65.38, t(76.83) = -

2.40, p =.019], as well as when the not chosen label was of high compared to average 

frequency [β =-176.28, 95% CI = ±87.62, t(226.77) = -3.94, p < .001]. Finally, as before, 

participants were overall slower to choose superordinate compared to basic level labels [β 

=161.68, 95% CI = ±90.75, t(1349.38) = -3.49, p <.001], and were slower to choose either 

basic or superordinate in a pro-superordinate compared to a pro-basic condition [β = 130.68, 

95% CI = ±62.04, t(68.50) = -4.13, p <.001]. We note here that a model of the truncated data 

that did not include any psycholinguistic fixed effects fit the data better than the step 3 

psycholinguistic model (BF10 = 150196.00). 

In summary, our efforts to test the effects of various psycholinguistic variables on 

choice and RT in a forced-choice categorisation task proved only partially successful. In RT, 

results deepened our understanding, by showing that in particular age of acquisition and word 

length affected the time participants took to make a decision. Nevertheless, we still observed 

strong effects of taxonomic level (i.e., the basic-level advantage) as well as of our critical 

manipulation (sensorimotor-linguistic bias), suggesting that psycholinguistic characteristic 

and sensorimotor-linguistic bias explain distinct variance in our data.  

The convergence issues in our analysis of choice do not allow us to draw any 

meaningful conclusions about the effects of age of acquisition, familiarity and word length on 

the decision participants made. One thing that may be taken away from this analysis is that 

future studies investigating psycholinguistic effects in this particular paradigm will have to 

take special care to balance their stimuli on the psycholinguistic characteristics of interest, as 

well as to ensure sufficient observations are available for all levels of analysis.  
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3.6. General discussion 

In this experiment, we aimed to investigate the effects of sensorimotor and linguistic 

distributional information on the categorisation of labels referring to natural objects. 

Specifically, we aimed to distinguish between previously observed effects of sensorimotor 

and linguistic information and taxonomic level in object categorisation, by selecting items for 

which traditional and sensorimotor-linguistic accounts would predict contrasting outcomes. 

Traditional accounts would predict a basic-level advantage over the superordinate level in 

most cases, whereas sensorimotor-linguistic accounts might predict that a greater overlap in 

sensorimotor experience and linguistic distributional knowledge would yield faster and more 

accurate categorisation regardless of taxonomic level. We anticipated that word frequency 

would also be likely to affect speed and accuracy of processing the category labels, so they 

were included as covariates in the null model. We consequently included log frequencies of 

the chosen and rejected labels as covariate fixed effects in all our analyses.  

In our analysis of the choice participants made (analysis 1), we found that on average, 

participants were more likely to choose a basic-level label. As predicted, the likelihood that 

participants chose a basic-level label was affected by sensorimotor-linguistic bias, such that 

participants were less likely to choose a basic-level label when the overlap between the cue 

and superordinate level category label was greater than that between the cue and the basic-

level label. Moreover, we found that word frequency, as anticipated, also affected the 

likelihood of a basic-level choice. Exploratory analyses revealed furthermore that the effect 

of word frequency on choice was more extreme when sensorimotor-linguistic bias was pro-

superordinate. This suggests that sensorimotor-linguistic bias may induce a superordinate-

level advantage (i.e., make it more likely to choose a superordinate over a basic-level label), 

but only in those specific circumstances where the chosen superordinate label was of low- or 

average frequency and the rejected basic-level label was of high frequency (see Figure 1, 
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panel 3). As this is an exploratory result, future studies which specifically aim to replicate 

these effects are necessary before any strong conclusions may be drawn.  

In our analysis of the full RT dataset (analysis 2, stage one), we found that the time it 

took for participants to make a decision depended on the taxonomic level of the label, the 

frequency of the label and its overlap in sensorimotor and linguistic distributional 

information with the cue. Overall, we found a classic basic-level advantage. Participants were 

faster to choose a basic-level label compared to a superordinate-level label, and faster to 

choose any label in the pro-basic compared to the pro-superordinate condition. That is, while 

participants were slower to choose a basic-level label in the pro-superordinate sensorimotor-

linguistic condition relative to the pro-basic condition, they were also slower to choose a 

superordinate-level label.  

To gain a clearer insight into the relative effect of sensorimotor-linguistic bias on the 

basic-level advantage, we split our dataset of RT into two sets by sensorimotor-linguistic bias. 

As expected, for the dataset that had a sensorimotor-linguistic bias towards the basic level, 

we observed a clear basic-level advantage. However, in the dataset that was biased towards 

the superordinate level, we saw that participants were slightly less slow when selecting 

superordinate-level labels, but still faster at the basic-level overall.  

Contrary to our hypotheses, sensorimotor-linguistic distance condition did not 

decisively predict categorisation speed or choice better than taxonomic level. Instead, our 

data showed a strong basic-level advantage in speed and choice. While categorisation was 

overall faster when sensorimotor-linguistic and taxonomic information pulled in the same 

direction (i.e., in the pro-basic condition) and slower when they pulled in different directions 

(i.e., pro-superordinate), basic-level categorisation was faster than superordinate-level 

categorisation in both conditions. Furthermore, while sensorimotor-linguistic bias predicted 
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choice over word frequency for the chosen and rejected labels, the basic-level choice was 

overall still more likely.  

At a glance, these results might indicate support for hierarchical accounts of 

categorisation, which argue the basic-level is the preferred entry-level into a taxonomically 

organised semantic memory (Jolicoeur et al., 1984). However, this would not explain directly 

why basic-level categorisation was slower in the pro-superordinate condition, as this suggests 

that participants were in fact sensitive to the experimental manipulation of overlap in 

sensorimotor-linguistic experience. That is, when the cue appeared to be biased towards the 

superordinate category label, it delayed participants in choosing the basic-level category. A 

limitation of our study is that we did not control for typicality of the cues in both conditions. 

It is therefore theoretically possible that our pro-superordinate condition contained more 

items that were atypical of their respective basic and superordinate categories than the pro-

basic condition. However, while this could explain why basic-level labels were chosen more 

slowly in the pro-superordinate condition, it would not explain why superordinate-level labels 

were chosen more slowly, as typicality effects do not seem to extend to the superordinate 

level (Murphy & Brownell, 1985). A follow-up study might investigate whether typicality for 

the cue of its basic and superordinate-level label would predict performance over 

sensorimotor-linguistic information.  

Since our study involved only category labels, it is possible that participants simply 

chose the more frequent label, and were faster to do so than choosing infrequent labels. Since 

basic-level labels tend to be more frequent (Rosch, Mervis, et al., 1976), it is not always clear 

whether what we observe is the basic-level advantage, or a simple frequency effect. In our 

analysis of choice, we observed an interesting effect of choice. When the chosen word was of 

high frequency, it was more likely to be basic. Conversely, when the rejected word was of 

high frequency, it was more likely to be superordinate. Given the fact that basic-level labels 
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are generally of higher frequency, this effect is not entirely unsurprising, as both measures are 

two sides of the same coin. Our exploratory analysis of RT, including the effects of a range of 

psycholinguistic characteristics of the chosen and rejected labels, showed distinct effects of 

age of acquisition and word length, while confirming the previously observed effects of 

taxonomic level of the choice, sensorimotor-linguistic bias and word frequency.  

In summary, our study shows that sensorimotor and linguistic information do affect 

both the decision making and decision-making speed in categorisation. While they do not 

decisively overturn the basic-level advantage, when overlap with the superordinate 

alternative is greater, categorisation is nevertheless slowed down when taxonomic and 

sensorimotor-linguistic information pull in opposite directions. Furthermore, our findings 

suggest that word frequency may mediate the effects of sensorimotor-linguistic overlap 

between category and member concepts, opening up potential avenues for future research.  
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Chapter 4: Timed Picture Naming Norms for 800 Photographs of 200 Objects in English 

4.1. Chapter introduction 

This Chapter presents a set of picture naming norms. These norms serve as the basis 

for the study described in Chapter 5, but also stand on their own as a resource for future 

research. Research that uses visual stimuli largely relies either on ad-hoc collected materials, 

or normed picture sets. While there are clear advantages to using normed sets (e.g., they 

allow for controlling stimuli for multiple psycholinguistic variables) the dominant picture 

naming norms rely on abstracted, black and white line drawings. Moreover, these norms 

typically feature low-resolution images which limits their utility on modern high-resolution 

screens, and/or comprise relatively small item sets (which limits their use to researchers 

running large-scale experiments). Given the enormous availability of photographic material, 

and the fact that research suggests photographs offer additional layers of information 

compared to line drawings, it is surprising that named picture sets containing high-quality 

photographs are still a rarity. The aim of this paper therefore was to create a comprehensive 

set of picture naming norms containing high resolution photographs for dissemination to 

other researchers, and for use in subsequent experiments, as shown by their use in Chapter 5.  
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4.2. Abstract 

The present study presents a large set of 800 high-quality photographs of 200 natural objects 

and artefacts spanning a range of categories, with four unique images per object. Participants 

provided names for each image. We provided recognition latencies for each image, and 

several normed variables for the provided names: name agreement, h-statistic (i.e., level of 

naming uncertainty), Zipf log-word frequency and word length. Rather than simply focusing 

on a single name per image (i.e., the modal, most common, name), analysis of recognition 

latencies showed that it is important to take into account the diversity of labels that 

participants may ascribe to each image. The norms therefore provide weighted measures of 

word length and frequency per image, that incorporate all provided names, as well as modal 

measures based on the most common name only.  
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4.3. Introduction 

Pictures and photographs of objects are widely used as stimuli in many fields of research, 

such as perception, memory, cognition and language processing. However, pictures may vary 

in terms of visual characteristics (e.g., colour, texture), as well as (e.g., concept familiarity) 

characteristics and of the lexical characteristics associated with the labels they elicit (e.g., 

word frequency, name agreement (see Alario et al., 2004; Perret & Bonin, 2019 for a review). 

This variability has prompted researchers to create standardised sets of images, which 

describe their visual and semantic characteristics, as well as the lexical characteristics of their 

associated names. Picture naming norms have been used in psycholinguistic (Ostarek & 

Vigliocco, 2016; Vinson et al., 2015), object recognition (Bramão et al., 2011; Catling et al., 

2008; Rossion & Pourtois, 2004) and neuroimaging research (Gerlach, 2009; Thompson-

Schill et al., 1997).   

To date, the majority of picture naming norms comprise line drawings. Arguably. the 

most influential set of picture naming norms is the one compiled by Snodgrass and 

Vanderwart (1980). This set consists of a standardised database of 260 black and white line 

drawings depicting natural objects and artefacts from a range of categories, and their 

associated values for image agreement, familiarity and complexity as well as name agreement 

for their given names in English. This set has since been extended by other researchers, who 

have included more images and/or collected their names across multiple languages (e.g., 

Bates et al., 2003; Sanfeliu & Fernandez, 1996; Severens et al., 2005), investigated further 

psycholinguistic variables (e.g., age of acquisition, Barry et al., 1997) and added naming 

times (Snodgrass & Yuditsky, 1996). The pervasiveness of black and white line drawings 

rests on the assumption that they are processed similarly to more realistic depictions (Salmon 

et al., 2014), while being easier to control. However, as Brodie et al. (1991) note, the 

adequacy of this approach is rarely addressed in norming studies. Early support for the use of 
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use of black and white over colourised drawings comes from edge-based accounts of object 

recognition, which argue that object recognition relies primarily on object shape (Biederman, 

1987), and that colourised images hold no advantage over grayscale images (Biederman & 

Ju, 1988). More recently however, research suggests that colour information may in fact 

improve object recognition for objects for which colour is diagnostic (Bramão et al., 2011; 

Tanaka et al., 2001; for review and meta-analysis), showing improved recognition accuracy 

for objects that are associated with a specific colour when they are depicted in that colour 

(e.g., a banana in yellow, a fire engine in red; Martínez-Cuitiño & Vivas, 2019; Tanaka & 

Presnell, 1999). Moreover, Rossion and Pourtois (2004) found that colourised and texturized 

versions of the Snodgrass and Vanderwart (1980) items were processed faster and more 

accurately than their non-shaded black and white counterparts, a finding that was replicated 

by Bonin et al. (2019).  

If the addition of colour and texture to black-and-white line drawings improves how 

quickly and accurately they are processed, it may be the case that photographs, which 

typically contain colour and texture information as well as luminance and 3D visual cues 

(e.g., shade), offer a further processing advantage over black-and-white line drawings (Heuer, 

2016). Edge-based accounts (e.g., Biederman & Ju, 1988; Ostergaard & Davidoff, 1985), 

argue objects colour is merely a cue that points towards the more relevant diagnostic aspect 

of object shape. Indeed, Humphrey et al. (1994) found that participants were faster at naming 

objects when they were depicted in full-colour rather than grayscale (see also Brodie et al., 

1991), and found that this advantage was particularly strong for natural objects, which have 

stronger shape-colour correlations (e.g., a daffodil is always yellow, whereas a cup may have 

any number of colours; see also Therriault et al., 2009), although Humphrey et al. note that 

colour may still facilitate recognition of familiar objects (e.g., my favourite coffee cup is red). 

However, other research suggest that colour is more than a simple cue pointing towards 
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shape, and has shown that object recognition is significantly worse for images that contain 

only edges compared to full-colour images (Heuer, 2016; Sanocki et al., 1998). Further 

evidence for the advantage of full-colour photographs over line drawings comes from eye-

tracking work (Heuer, 2016) which shows that language-normal participants fixate 

significantly more on photographs compared to line drawings, suggesting enhanced 

recognition for photographic stimuli.  

Further evidence for the usefulness of photographs compared to line drawings comes 

from simulated (or grounded, embodied) accounts of conceptual processing. On these 

accounts, concepts are represented in semantic memory as partial simulations of 

sensorimotor, affective and other experience with our environment (Barsalou, 1999; Wilson, 

2002). Indeed, there is evidence that photographs tap into such simulated information. 

(Salmon et al., 2014) show that grayscale photographs of manipulable objects are processed 

faster than black and white line drawings of the same object, although the effect size was 

small. Taken together, these results suggest that the additional detail present in photographs 

may indeed facilitate object recognition. While the evidence in favour of photographs does 

not discount the use of line drawings completely (e.g., line drawings may abstract over 

features of multiple exemplars whereas photographs can by definition only show one 

exemplar, Heuer, 2016) it shows that the present skew in picture norms towards line drawings 

may need to be corrected, especially given the ever-increasing amount of available 

photographic material.  

Previous work has found strong evidence for the effects of uncertainty (as expressed 

by the h-statistic; Lachman, 1973) and name agreement or codability on response times in 

picture naming and recognition (e.g., Székely et al., 2003). Other variables typically included 

in picture naming norms are word frequency (written, spoken) and word length of the modal 

(most commonly given) name. However, evidence for the effect of these variables on naming 
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latencies is not consistent. For example, while researchers previously found evidence for the 

effects of written (Snodgrass & Yuditsky, 1996) and spoken word frequency (Ellis & 

Morrison, 1998) and of word length (D’Amico et al., 2001; Székely et al., 2003) on response 

latencies in object naming, a recent meta-study (Perret & Bonin, 2019) of 18 normative 

studies containing black-and-white line drawings found that evidence for the effects of word 

frequency and length was inconclusive.  

One explanation for the lack of a clear effect of word frequency is the fact that the 

methods used to collect word frequency vary considerably across different studies. Brysbaert 

et al. (2018) suggest that corpus selection tailored to the language participants are most 

frequency exposed to allows for better predictions. Of the studies used in Perret and Bonin 

(2019), five tested undergraduate populations using frequency ratings based on written texts 

(e.g., novels, essays, poems, dramatic works, non-fiction books, newspaper articles and 

magazines), which were collected years (e.g., Nishimoto et al., 2005; Pind & Tryggvadóttir, 

2002) and sometimes even multiple decades (e.g., Bonin et al., 2002; Perret & Laganaro, 

2013) prior to testing, and may not have reflected the language their participants were 

exposed to. As a consequence, the present study, retrieved names in English from British 

participants, and used frequencies obtained from a large corpus of British English subtitles 

(see van Heuven et al., 2014). 

Another possibility is that restricting analyses to the effects of the word frequency of 

only the modal name is too narrow. Since the effects of name agreement and uncertainty 

indicate that the number of competing names strongly affects performance, it is possible that 

including the frequency and length of competing names may bolster the predictive power of 

word frequency and length. As a consequence, the present study includes variables for 

average word frequency and length per image, weighted by the frequency of each name given 

to each image.  
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The present study aims to create a large set of photographic picture naming norms for 

images divided across a range of artefactual and natural categories at the basic level (see OSF 

for norms, images and attribution: https://osf.io/vdka2/?view_only= 

ac6c78793a354a1f95da6c36b5ac6163). In this article, we report the h-statistic (measure of 

uncertainty in labelling an object; Lachman, 1973), name agreement (percentage of 

participants that gave the modal name), word length in characters and Zipf log word 

frequency for every image our set. These variables are consistent with previous picture 

naming norms, and are linked to the name and response activation stages of picture naming as 

outlined by Johnson et al., (1996) and Alario et al. (2004). We compare these norms against 

previous picture naming norms. Furthermore, we explore whether the average word 

frequency and length of all responses given to an image explain response latencies better than 

word frequency and length of the modal name only.  

4.4. Norming Method 

 Participants. 31 participants (20 female; Mage = 33.61 years old, SD = 11.77) were 

recruited trough online recruiting platform Prolific (www.prolific.co). Using Prolific’s custom 

pre-screening, we selected participants to be native speakers of English, have normal or 

corrected-to-normal vision, and no reading impairments (e.g., dyslexia). Participants were 

paid per completed list (see procedure), starting at £2.50 for submitting one list and £1.00 for 

every additional submitted list, with submitting the maximum of 16 lists yielding a payment 

of £17.50. Participants could complete as many lists as they wanted. On average, participants 

completed 10.7 lists (SD = 5.2). Data collection was approved by the Lancaster University 

Faculty of Science and Technology Research Ethics Committee. All participants read 

information detailing the purpose of and expectations of the study, and gave informed consent 

which included the acknowledgement they would be paid for each completed (but not 
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partially completed) list, and the permission to share all anonymised alphanumeric data 

publicly.  

Materials. The stimulus set consisted of 800 full colour images of 200 objects (100 

natural objects, 100 artefacts, see supplementals on OSF for the full set of photographs), 

which depicted only the target object on a white background. The 100 natural objects 

belonged to 23 basic-level categories (e.g., dog, cat, bird, lizard, fish, insect, tree, vegetable, 

fruit etc.). The 100 artefact objects belonged to 26 basic-level categories (e.g., boat, box, car, 

cup, aircraft, watercraft, snowcraft, case, bag, ball, truck, tool, etc.).  

We intended these norms to be compatible with Lynott et al.’s (2020) norms of 

sensorimotor strength. Therefore, we only selected objects whose target name was present in 

the Lynott et al. set. For each object, we sourced 4 photographs through Google image search. 

We selected photographs to be free for use with modification (please see norms files on OSF 

for attribution information for all images), to depict the target object clearly and without 

obstructions that rendered it unidentifiable, and to have a minimal size of 1024x768 pixels.  

We edited the photographs with Adobe Photoshop 2020 (version 21.2.3). Specifically, 

we cut each target object from the original photograph and placed it central on a white 

background sized 1920x1080px, with a minimal margin of 200 pixels on every side (see 

Figure 1, and supplemental materials on OSF). In addition to this, we removed any visible 

text and distracting objects (e.g., humans on a steamboat).  
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Figure 1.  

Example of processed images for the category dog 

 

 

Procedure. We designed and hosted the experiment on Gorilla.sc (Anwyl-Irvine et 

al., 2020). We randomly divided all photographs over 16 lists of 50 trials each. Lists were 

rotated across participants, where participants were randomly assigned to one of four starting 

lists (list 1, 5, 9 and 13). If a participant opted to complete more than one list, they were 

presented with the next list in sequence (e.g., participants who started with list one saw list 2, 

3, 4 and so on), until a participant decided they did not want to complete more lists or they 

had completed all 16 lists.  
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Participants were instructed that they would be shown a series of photographs, and 

that each photograph depicted one object. They were asked to press spacebar as soon as they 

recognised the depicted object, and to enter the most appropriate name they could think of in 

the text box that followed each photograph, and to enter DK for ‘don’t know’ if they did not 

know what an object was. Trials were presented in a randomised order. Each trial was 

presented centred on a white background in the participant’s browser window, and started 

with a fixation cross for 200ms, followed by the photograph, which remained on screen until 

participants indicated they recognised and could name it by pressing the spacebar. Once a 

participant pressed the spacebar, the photograph disappeared and was replaced by a textbox 

in which they could enter a name.  

Our choice to use keyboard responses was largely a consequence of the fact that, at 

the time of testing, recording of vocal responses – typically used in object naming- was not 

yet available on the online testing platform we used. In one of the few other picture naming 

studies that used keyboard responses, Torrance et al., (2018) recorded RT from the onset of 

the image to the first keypress, as well as mean interkeypress intervals. However, they also 

noted they had to remove a significant number of trials (15% on average) for being non-fluent 

(e.g., participants used backspace to edit their submissions) which Torrance et al. argued 

made it hard to associate initial keypress RT with the preparation of the final response. At the 

time of testing, the online testing platform we used did not allow for the recording of fine-

grained keypress responses, including whether participants pressed backspace to edit their 

responses, which meant we could not test this. As a consequence, we opted to specifically ask 

participants to press spacebar once they had recognised and could name it. We recorded 

recognition RT, measured from the onset of the photograph until the participant pressed the 

spacebar. Furthermore, we recorded the name participants entered.  
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A brief practice session with 4 items (monkey wrench, screwdriver, skirt and 

armadillo) that were not present in the experimental stimuli set nor belonged to the same 

basic-level category as any of the experimental stimuli, familiarised participants with the 

experiment procedure. In this section, participants received reminder instructions at each step 

of the trial (e.g., “Press spacebar as soon as you know what an object is” and “enter the best 

and/or shortest name that describes the object in the previous picture and press enter to 

submit”). These instructions were absent in the main testing session. At the end of each main 

testing session, participants were presented with the number of lists they had completed up to 

that point, and had the option to stop or to complete another list. Testing took approximately 

10 minutes including participant information, informed consent and debrief for completing 

one list, and took an approximate 3 further minutes for each additional list completed.  

Coding. We coded responses in three steps. Firstly, we coded response validity, 

coding all non-name responses as invalid. This included all instances where participants 

entered ‘dk’ or a variant thereof (e.g., na, d/k, unsure? etc.), as well as missing or non-word 

responses (e.g., lkjlk). Out of 16500 responses, we coded 350 responses (i.e., 2.1%) as 

invalid. Following the procedure outlined in Snodgrass and Vanderwart (1980) these 

responses were included in the total count of responses for the calculation of % naming 

agreement (see measures), but excluded for the calculation of the h-statistic. Secondly, 

following Torrance et al., (2018) we grouped together different spellings of a valid name, and 

coded them as instances of a correctly spelled group name (e.g., for an image of a chihuahua, 

responses chiwawa, chiuaua and chihuahua were all grouped and coded as instances of the 

name chihuahua). This resulted in a total of 3147 unique picture/name combinations.  

Next, we coded responses as idiosyncratic if they occurred only once per item. In 

contrast to previous studies, which sought to validate pre-existing picture sets (e.g., Bates et 

al., 2003; Rossion & Pourtois, 2004), our study included only images for which (to our 
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knowledge) no previous naming distributions had been determined. As such, we could not 

discount responses for not matching a predetermined target answer (Snodgrass & Vanderwart, 

1980). Instead, we adopted a strategy more akin to the lenient correctness scoring variant in 

(Snodgrass & Yuditsky, 1996) and included all non-idiosyncratic responses, even if they were 

clearly erroneous (e.g., helmet in response to an image of a computer mouse). Out of 16150 

valid responses, 14803 responses occurred more than once, corresponding to 1800 unique 

image/name combinations. 86 of these responses were not present in the frequency database. 

These responses were included in the calculation of name agreement and the h-statistic, but 

not in the calculation of weighted average word frequency, weighted average word length and 

the analysis of response latencies. For the analysis of recognition RT only, we removed 

outliers for the calculation of average recognition and naming RT, and the analysis of 

response latencies. Out of 14717 valid, non-idiosyncratic responses that were present in the 

frequency database, we removed 28 responses with recognition RTs longer than 10 seconds 

outright. Furthermore, we removed 11 responses with recognition RTs below 200ms (motor 

error). All participants had a mean recognition RT within 2.5SD of the overall mean, so it was 

not necessary to remove anyone on that criterion. Finally, we removed 443 recognition RTs 

for being further than 2.5SD away from the participant mean. The final trial-level dataset 

consisted of 14235 responses, corresponding to 1777 unique image/name combinations (see 

figure 2).  
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Figure 2.  

Breakdown of removal of trial-level response data and corresponding image/name 

combinations.  

 

4.4.5. Variables in the norms. The norms contain the following variables for each 

image:  

Names. We included the most common name produced for each image (i.e., the modal 

name), as well as all alternative names 1-k (i.e., non-modal names listed in descending order 

of production frequency).  

Agreement. We calculated the percentage of participants that gave the modal name for 

every image, based on all responses. In the norms, we reported one name agreement 

percentage per image.  

H-statistic. We calculated the h-statistic for every image, based on only valid 

responses. The h-statistic is a measure of uncertainty in labelling an object (Lachman, 1973). 

This measure is frequently used in image naming studies to reflect naming agreement across 
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participants, and shown to be a stronger predictor of naming latencies (Bates et al., 2003; 

Severens et al., 2005; Snodgrass & Vanderwart, 1980; Székely et al., 2003; Torrance et al., 

2018). Low values of h represent low uncertainty (i.e., strong agreement) between 

participants, whereas high scores of h represent high uncertainty (e.g., a h-statistic of 0 means 

only one name was given for an image). In the norms, we reported one h-value per image.  

Latencies. We recorded Recognition RT, measured from the onset of the image to the 

onset of a valid keypress indicating a participant had recognised the object. In the image-level 

norms, we included the overall Recognition RT per image, averaged over all responses after 

outlier removal (see coding, above).  

Word frequencies. We retrieved Zipf log word frequency for all spelling-corrected, 

valid non-idiosyncratic unigram names from a large database of word frequencies derived 

from a corpus of subtitles in British English (e.g., van Heuven et al., 2014). The Zipf scale is 

a logarithmic scale, ranging from 1 to 7, with 1 corresponding to a frequency of 1 per 100 

million words (very low frequency, e.g., antifungal), and 7 corresponding to a frequency of 1 

million per 100 million words (very high frequency, e.g., and). For bigram names, we 

calculated Zipf log frequencies from the raw frequency counts for two-word phrases in the 

bigram-frequency database derived from the same large subtitle corpus. The average Zipf 

Log frequency across all unique, non-idiosyncratic responses was 3.92 (SD = .94), with Zipf 

log frequencies ranging from 1.00 (money tin) to 6.56 (drum). In the norms, we reported Zipf 

log word frequency for the modal name (Modal word frequency), as well as the average Zipf 

log word frequency of all names produced for an image, weighted by their relative production 

frequency (weighted word frequency). In addition to this, we included Zipf log word 

frequencies for each non-idiosyncratic non-modal name (alternative name word frequency).  

Word lengths. We calculated word length as the number of letters a participant 

entered, excluding the single space in the middle of bigram responses (e.g., palm tree had a 
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length of 8 letters). In the norms, we reported response length for all non-idiosyncratic modal 

and non-modal names for every image, as well as the average name length of all names 

produced for an image, weighted by their relative production frequency (Weighted word 

length). In addition to this, we included word lengths for each non-idiosyncratic non-modal 

name.  

4.4.6. Summary of variable characteristics. 

The median number of valid, non-idiosyncratic responses per image was 19 (min = 3, 

max = 22). The median number of unique names per image was 2, (min = 1, max = 6). We 

calculated summary descriptive statistics for all variables, per image and per name (see 

supplementals). Table 1 shows examples of images with high, average and low agreement, 

divided by natural items and artefacts. Table 2 shows overall descriptive statistics for 

each %variable (naming agreement, h-statistic, word length, word frequency and response 

time) for all responses, and for modal responses in particular.  
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Table 1.  

Examples of the listed names for artefacts and natural objects, ranging from low to high 

name agreement and h-statistic. 

 Image name Listed names a Name 
agreement 

H-statistic b 

 

Bobsled_4 Ski, bobsled, jet ski, sled, sledge, bobsleigh, ski 
car, skiddo, snow ski, snowmobile 

18.20 % 3.21 

 

Sponge_2 Coral, plant, urchin, anemone, fruit, sea animal, 
sea urchin, vegetable, sea plant 

38.09 % 3.08 

 

Mantis_3 Insect, cricket, grasshopper, mantis, bug, fly, 
praying mantis, stick insect 

33.33% 2.58 

 

Minivan_2 Car, van, minibus, MPV, SUV, campervan, 
minivan, people carrier, people wagon 

35.00% 2.56 

 

Chicken_4 Chicken, hen, bird 52.38% 1.22 

 

Briefcase_3 Briefcase, case, suitcase 61.90 1.21 

 

Gecko_4 Lizard, gecko, reptile, iguana 75.00 %  1.19 

 

Wineglass_4 Glass, wine glass, cup  65.00 % 1.14 

 

Stapler_2 Stapler, staple  85.71 0.28 

 

Spaniel_3 Dog, spaniel 95.45 0.27 

 

Clock_1 Clock 95.23 0.00 

 

Sycamore_1 Tree 100.00 0.00 

a Names listed in order of production frequency; first listed name is the modal name; idiosyncratic responses are 
italicised.  
b Note that h-statistic is calculated from only valid responses, whereas name agreement is calculated from all 
responses.  

 



 238 

Table 2. Image-level summary statistics: average name agreement, h-statistic, modal word 

frequency, modal word length, weighted word frequency, weighted word length and modal 

production frequency. 

      
Variable Mean Median SD Min Max 
Name agreement 65.20 65.00 22.17 15 100 
H-statistic 1.22 1.19 0.77 0.00 3.62 
Recognition RT 1074.38 1020.47 252.32 690.23 2403.34 
Naming RT 95.37 94.90 7.41 75.98 198.68 
Modal name word frequency 4.19 4.27 0.80 1.60 5.44 
Weighted average word frequency 4.10 4.073 0.63 2.03 5.44 
Modal name word length 5.50 5.00 2.18 2.00 12.00 
Weighted average word length 5.62 5.38 1.75 2.94 12.27 
Modal name production frequency 13.82 14.00 4.61 2.00 22.00 

 

4.5. Comparison with previous norms 

Table 3 contains a comparison between recent and relevant other norming studies and 

the present study for all variables present in this work. We chose to compare our study to six 

recent norms. Of these norms, four used photographic stimuli (Adlington et al., 2009; 

Brodeur et al., 2010; Moreno-Martínez & Montoro, 2012; Navarrete et al., 2019), and two 

used line drawings (Székely et al., 2003; Torrance et al., 2018). Of the studies using 

photographic stimuli, two were English-language norms, and two were other languages 

(Spanish, Italian). Both studies using line-drawings were multi-language projects, however 

for the sake of comparison we only report values for their English-language components here.  

The picture naming agreement in the present norms is generally on par with existing 

photographic picture naming norms with regards to % agreement and the h-statistic. At 

65.20 % name agreement and a h-statistic of 1.14, the present study has slightly better name 

agreement than the BOSS set of normed stimuli by Brodeur et al., (2010, 2014), and the 

Italian normed set by Navarrete et al. (2019). By contrast, naming agreement in the present 

study was slightly lower (i.e., lower name agreement and higher h-statistic), compared to a 

few other normative studies using photographs (e.g., (Adlington et al., 2009; Moreno-
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Martínez & Montoro, 2012). This might be due to the larger number of images in the present 

study, as well as the inclusion of hard to identify objects such as sea urchin and snowmobile. 

As for all studies using photographs, the present study had lower naming agreement than 

studies using line drawings.  

A number of variables recorded in the present study have no counterpart in previous 

norms, and thus cannot be compared. For example, other studies did not consistently report 

word frequency of the modal (or non-modal) names. Moreover, where they did, the 

methodologies for retrieving frequencies varied. For example, Adlington et al., (2009) and 

Moreno-Martínez and Montoro (2012), used the log-transformed number of hits for their 

names (in English and Spanish respectively) in a popular search engine as their estimate, 

whereas and Navarrete et al. (2019) report a traditional corpus-derived on the natural log 

scale. By contrast, the present study used Zipf log word frequencies, derived from a large 

corpus of British subtitles (see van Heuven et al., 2014). Although word length of the modal 

name can be easily extracted post-hoc, the present study also reports word length of the 

competing non-modal names, as well as the average length weighted over all responses per 

image, which are not consistently reported in other studies. Furthermore, in contrast to other 

studies, which use voice recordings or a combination of first keypress and interkey intervals 

(e.g., Torrance et al., 2018), the present study recorded RT from the moment a picture 

appeared on screen to the moment they pressed a key to indicate they had recognised it and 

could start naming it (recognition RT).  
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Table 3.  

Comparison of summary statistics with other norming studies 

 N Name 
agreement 

H-statistic Language Stimulus type 

Present study 800 65.20(22.17) 1.22(.77) English Photographs 
Adlington et al., (2009) 147 67.61(26.99) 1.11(.89) English Photographs 
Brodeur et al. (2010, 2014) 1469 59.00(25.00) 1.86(1.08) English Photographs 
Moreno-Martínez & Montoro (2012) 360 72.00(28.00) .94(.87) Spanish Photographs 
Navarrete et al. (2019) 357 56.20(35.45) 1.49(1.01) Italian Photographs 
Torrance et al. (2018) 260 85.00(19.00) .66(.75)a English b Line drawings 
Szekely et al. (2003) 520 89.00 .67(.61) English b Line drawings 
Notes: Table reports average values and standard deviations (in parentheses).  
a Torrance et al. (2018) report median H-statistic rather than mean.  
b Results from English language components in multi-language picture naming studies.  

 

4.6. Recognition latencies 

In this study, we recorded the time it took participants to indicate they had recognised 

an image and could name it (recognition RT). While this measure deviated from previous 

work (e.g., Barry et al., 1997; Snodgrass & Yuditsky, 1996; Székely et al., 2003), which 

relied on voice recordings, it is comparable to the first-keypress measure used in Torrance et 

al. (2018). Torrance et al., (2018) found that first-keypress RT decreased as uncertainty (h-

statistic) decreased. This finding mirrored previous work done using voice recordings (e.g., 

Barry et al., 1997; Székely et al., 2003). Here, we investigated whether uncertainty similarly 

affected the recognition RT collected in our study; with a higher h-statistic resulting in slower 

recognition RT.  

In addition to this, previous work has found variable evidence for the effects of word 

frequency and length. This may partially be explained by the variability in the measures used 

to record word frequency. However, it may also be the case that the usual practice of 

predicting picture naming latencies through psycholinguistic properties of the modal name 

only can be improved by using weighted measures of all names produced in response to a 

given image. As a consequence, we also investigated whether recognition RT was better 

predicted by the Zipf log word frequency and word length of the modal response (modal 
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word frequency/ modal word length) or by the weighted average word frequency and length 

of all responses (weighted word frequency / weighted word length).  

4.6.1. Method 

Materials. For this analysis, we used the image-level norms. Recognition RT was 

retrieved for every image, by averaging over the recognition RT for all its associated 

responses (M = 1074.38, SD = 252.32), Previously, we retrieved Zipf log word frequency and 

word length in letters for both modal and nonmodal names for each image (see norming 

method). For three images (flytrap_1, flytrap_3 and flytrap_4), frequency information was 

not available for the modal name. As a consequence, these images were excluded from this 

analysis. Non-modal responses for which frequency information was not available were also 

excluded from this analysis.  

In this analysis, we included h-statistic (M = 1.22, SD = .77), modal word frequency 

(M = 4.19, SD = .80) and modal word length (M = 5.47, SD = 2.15). Furthermore, we 

included the weighted average word frequency (M = 4.11, SD = .62) and weighted average 

word length (M = 5.61, SD =1.74), calculated across all non-idiosyncratic responses given to 

each image. The final image-level dataset used in this analysis thus consisted of 797 images 

and their associated variables. All independent variables except name agreement and h-

statistic were centred around their mean.  

Analyses.  

In order to determine whether increasing name agreement and decreasing h-statistic 

reduced recognition RT, we ran a linear regression with recognition RT as the dependent 

variable, and h-statistic as the independent variable.  

Furthermore, in order to determine whether production frequency weighted word 

frequency and length were better predictors of recognition RT than modal word frequency 

and length, we ran two separate linear regressions, both with recognition RT as dependent 
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variable. In the first regression, we included independent variables of modal word frequency 

(range = -2.59, 1.25), and modal word length (range = -3.50, 5.50). We inspected the 

coefficients for the direction and strength of the effects, to determine whether greater word 

length and lower word frequency resulted in longer recognition RT. In the second regression, 

we included the independent variables of weighted word frequency (range = -1.90, 1.34), and 

weighted word length (range = -2.68, 6.64), here too, we inspected the coefficients for 

direction and strength of the effects. Finally, we used Bayesian model comparisons with 

Bayes Factors calculated from the BIC (see Wagenmakers, 2007) to test whether the data was 

predicted best by the best-fitting model from set one, or the best-fitting model from set two. 

4.6.2. Results 

Average recognition RTs were calculated per image. Outlier RTs were removed as 

detailed in above (see norming method).  

H-statistic. A regression model of Recognition RT including the independent variable 

of h-statistic was significant (F (1, 795) = 372.60, p <.001), with an adjusted R2 of .32. 

Participants were up to 667.32 ms slower to press spacebar in response to images with the 

highest h-statistic (3.62), see Table 4 for coefficients.  

Modal versus weighted word frequency and length. A multiple regression of 

recognition RT including modal word frequency and word length was significant (F (2, 794) 

=38.13, p <.001), with an adjusted R2 of .085. Participants were up to 118.87 ms faster to 

press spacebar in response to images that for which the modal name was a high-frequency 

compared to average-frequency word, but also up to 17.95 ms faster to recognise objects in 

images when the modal name was longer than average (see Table 4 for model coefficients.  

A second multiple regression of recognition RT, including weighted mean word 

frequency and length was also significant (F (2, 794) =57.52, p <.001), with an adjusted R2 

of .124. Participants were up to 167.39 ms faster to press spacebar in response to images that 
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on average received higher-frequency compared to average frequency Furthermore, 

participants were again also slightly faster to recognise objects in images that on average 

received longer compared to average names  

Table 4. 

Linear regression coefficients of recognition RT for modal and weighted word frequency and 

length.  

 Unstandardized β SE t  p 
H-statistic 184.50 9.56 I19.30 <.001 
     
Modal word frequency -118.87 14.46 -8.22 <.001 
Modal word length 17.95 5.37 -3.34 <.001 
     
Weighted word frequency -168.54 17.62 -9.56 <.001 
Weighted word length -16.07 6.25 -2.57 .010 

 

Bayesian model comparisons showed that the model based on the weighted means of 

all picture names per image was over one million times better (BF10 = 10799400) than the 

model based only in the modal (i.e., most common) picture name.  

In summary, word frequency and length of the modal response predicted how quickly 

participants recognise an object, but not as well as the weighted average of word frequency 

and length of all responses given to an image. Moreover, this suggests that the weighted 

variables provided in our norms may be more useful to researchers than merely focusing on 

the modal name.  

4.7. Conclusions 

The description of the norming methods and our analyses of response latencies in this 

work illustrate the potential value of our picture-naming norms as stimuli in behavioural 

experiments. In contrast to other influential norms sets such as the Snodgrass and Vanderwart 

set, as well as the extended set presented by Szekely et al. (2003), the present study contains 

high-resolution photographs rather than line drawings. Furthermore, in contrast to other 
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norms which have used photographic stimuli (Brodeur et al., 2010, 2014) the present norms 

contain measures of word frequency and length for the modal name, as well as their average 

per image weighted by the frequency with which a name was given. Summary statistics 

indicate that our study is comparable to similar naming studies, with the added benefit that 

our set contains norms for multiple images of the same object. Our analysis of the effects of 

word frequency and length of the modal name, as well as the average word frequency and 

length of all names per image, shows that word frequency and length affect the speed with 

which participants recognise an image. Furthermore, our analysis shows that incorporating 

the average word frequency and length of all names given to an image weighted by their 

naming frequency improves their predictive power, suggesting that restricting analyses to the 

modal names may be too limited.  

The present work is compatible with a number of pre-existing norms on word 

characteristics as well as further conceptual processing, and may thus be used in concurrence 

with other datasets. Firstly, our work is largely compatible with the frequency database from 

which we retrieved Zipf log word frequencies, and which contains a range of other word 

characteristics that may be used in concurrence with the stimuli presented here. Furthermore, 

out of 164 unique modal responses, 158 responses (96.34 %) were present in the Lancaster 

sensorimotor strength norms (Lynott et al., 2020), as well as the concreteness norms by 

Brysbaert et al., (2014). As such, our set may be a valuable resource for studies aiming to 

investigate aspects of sensorimotor grounding using photographical stimuli in concurrence 

with norms of sensorimotor and or linguistic distributional experience.  

We believe the norms presented here are a useful resource for researchers interested 

any aspect of object recognition and naming, and will allow researchers more choice and 

control over the selection of their stimuli.  
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Chapter 5: The Role of Sensorimotor and Linguistic Distributional Information in 

Ultra-Rapid Categorisation 

5.1. Chapter introduction 

In previous Chapters, I explored the effects of sensorimotor and linguistic distributional 

information on categorisation performance. In Chapter 2, I found that overlap in sensorimotor 

and linguistic distributional information between category and member concepts explains 

processing advantages in speeded picture categorisation. Nevertheless, sensorimotor 

information was the strongest predictor out of the two.  

Of note is that sensorimotor-linguistic accounts argue that the conceptual system 

dynamically adapts to task demands (i.e., in its reliance on sensorimotor vs. linguistic 

information). A possible explanation for the findings of Chapter 1 lies in the notion that 

speeded picture categorisation may have allowed participants to rely on visual aspects of 

simulations activated by the category label. The task allowed enough time for a sensorimotor 

simulation to form in full, and so participants had little need to rely on a linguistic shortcut of 

“good-enough” distributional representations. In the study reported in Chapter 5, I therefore 

identify what happens when the time for visual processing is cut short, by testing this using 

backwards masking following ultra-rapid image display.  
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5.2. Abstract 

When given unrestricted time to process an image, people are faster and more accurate at 

making categorical decisions about a depicted object (e.g., Labrador) if it is close in 

sensorimotor and linguistic distributional experience to its target category concept (e.g., dog). 

In this preregistered study, we examined whether sensorimotor and linguistic distributional 

information affect object categorisation differently as a function of time available for 

perceptual processing. Using an ultrarapid categorisation paradigm with backwards masking, 

we systematically varied onset timing (SOA) of a post-stimulus mask (17 – 133ms) following 

a briefly displayed (17ms) object. Results suggest that linguistic distributional distance 

between concept and category (e.g., Labrador → dog), affects categorisation accuracy and 

RT even in rapid categorization. While sensorimotor distance also affected accuracy, it did 

not do so above and beyond linguistic distance. Finally, these effects do not vary 

systematically by SOA. These findings support the role of a linguistic shortcut (i.e., using 

linguistic distributional instead of sensorimotor information) in rapid object categorisation. 

  



 252 

5.3. Introduction 

Imagine yourself walking in a forest. From the corner of your eye, you suddenly spot 

something: a scurry of movement, a glimpse of speckled brown. Was that fur? Were there 

feathers? Your mind races through different options to determine what is hiding in the bushes, 

matching perceptual cues to conceptual representations. But which representation is activated 

first?  

Traditional accounts of object categorisation predict that on average, people are most 

likely to class objects at an intermediate level of abstraction, i.e., bird, dog, or rabbit, known 

as the basic-level advantage (Rosch et al., 1976). The basic-level advantage is one of the most 

reliable effects in object categorisation research, supported by evidence from decades of 

behavioural research showing that people are faster and more accurate at categorising objects 

at this intermediate level of abstraction (e.g., bird) than they are at categorising objects at 

more abstract (e.g., animal) or more specific (e.g., robin: K. E. Johnson & Mervis, 1997; 

Jolicoeur et al., 1984; Murphy & Lassaline, 1997, 1997; Murphy & Smith, 1982; Rogers & 

Patterson, 2007; Rosch, Mervis, et al., 1976; Tanaka & Taylor, 1991).  

A considerable portion of the empirical evidence for the basic-level advantage comes 

from speeded category verification tasks, in which participants are given relatively long or 

unlimited time to verify whether an object photograph matches to a previously displayed 

category name. However, there is some evidence that the classic advantage the basic level has 

over categorisation at a more abstract (i.e., superordinate) level may be reversed as a function 

of the time available for perceptual processing. When perceptual processing is limited, 

superordinate-level categorisation is faster and more accurate than categorisation at the basic 

level (e.g., participants are faster and more accurate to identify a specific object as an animal 

than they are to identify it as a dog). Researchers observed that participants are able to 

correctly distinguish between rapidly flashed photographs (20ms) of animals and non-animals 
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as fast as 250ms (manual response: VanRullen & Thorpe, 2001), which is close to the fastest 

possible manual response. At that rate, Mack and Palmeri (2011) argue, it is unlikely a basic-

level response would be significantly faster. However, it appears that the classic basic-level 

advantage not only disappears but may even give way to a superordinate-level processing 

advantage when objects are presented briefly, followed by a perceptual mask, or when given 

limited time to respond (Macé et al., 2009; Mack et al., 2008; Mack & Palmeri, 2011, 2015).  

The superordinate-level advantage observed in ultra-rapid categorisation is not readily 

explained by traditional, feature-based accounts of categorisation, such as network (e.g., 

Collins & Loftus, 1975; Jolicoeur et al., 1984) and differentiation accounts (Cree & McRae, 

2003; Markman & Wisniewski, 1997; Murphy & Brownell, 1985; Murphy & Lassaline, 

1997; Murphy & Smith, 1982). For example, hierarchical accounts argue that the basic-level 

may be viewed as the most common ‘entry-point’ into semantic memory. While this account 

supports the notion that the entry-level may shift downwards (i.e., to the more specific, 

subordinate level) depending on object characteristics (e.g., typicality: Jolicoeur et al., 1984) 

or subject expertise (K. E. Johnson & Mervis, 1997; Tanaka & Taylor, 1991), the possibility 

of an upwards shift (i.e., to the more abstract superordinate level) is dismissed. Rather, it is 

argued, basic-level identification is a necessary part of the two-step process required to 

identify an object at the superordinate level (i.e., you first identify an object as dog, after 

which you infer that it must also be an animal: Anderson & Reder, 1974), making a 

superordinate-level advantage all but impossible. differentiation accounts of categorisation 

meanwhile argue that people are unlikely to have a single, holistic perceptual representation 

or prototype of a superordinate concept, such as animal (Murphy & Brownell, 1985; Murphy 

& Smith, 1982). Instead, according to this account, superordinate concepts are represented in 

semantic memory through multiple perceptual representations. For example, the 

superordinate-level category animal contains whales and mice. As a result, Murphy and 
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Smith (1982) argue, the category label animal cannot activate a unitary representation that 

prepares participants for object categorisation. Finally, in contrast to hierarchical accounts, 

differentiation accounts do not require the activation of a basic-level prior to a superordinate-

level concept, but rather require the activation of more perceptual representations, since 

people are unlikely to have a single perceptual representation for more abstract categories 

(e.g., animal; Murphy & Smith, 1982).  

Previously (van Hoef et al., 2022a - see Chapter 2) we have proposed an account of 

categorisation that contrasts with hierarchical and prototype accounts, based on linguistic-

simulated accounts of conceptual representation. These accounts argue that concepts 

generally comprise both sensorimotor (perception-action experience of the world) and 

linguistic distributional information (i.e., our knowledge of the relative distribution of words 

in language: Barsalou, 2008; Connell, 2019; Connell & Lynott, 2014; Louwerse, 2011). 

Sensorimotor simulation may be defined as (partial) reactivation of systems involved in 

online processing of perceptual and motor experience during offline retrieval (Barsalou, 

1999). As such, a sensorimotor representation for a given concept (e.g., dog) may consist of 

perceptual (e.g., colour of the dog’s fur, sound of its bark), motor (e.g., throwing a ball for the 

dog to fetch), affective (e.g., fondness of dogs) or other information. Evidence for simulated 

representations spans neuroimaging (Aziz-Zadeh et al., 2006; Carota et al., 2012; Goldberg et 

al., 2006; Hauk et al., 2004) and behavioural studies (Connell & Lynott, 2010; Dils & 

Boroditsky, 2010; Zwaan & Taylor, 2006), citing strong links between perceptual experience 

and conceptual representations. Linguistic distributional information meanwhile stems from 

people’s inherent sensitivity to the statistical properties of language, which allows them to 

automatically infer meaning from the distributional characteristics of a word, for example by 

repeated exposure to its context. Linguistic distributional information has been shown to 

reliably predict conceptual processing (Connell & Lynott, 2013; Goodhew et al., 2014; 
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Louwerse, 2011; Louwerse & Jeuniaux, 2010). While linguistic-simulated accounts agree on 

the importance of both linguistic and sensorimotor information to conceptual processing, they 

vary in the relative importance they attribute to either information type. Broadly speaking, 

Barsalou (2008) emphasises sensorimotor simulation over linguistic distributional 

information, whereas Louwerse (2011) argues that in many cases, only minimal sensorimotor 

grounding is required, with linguistic distributional information doing most of the heavy 

lifting in conceptual processing. Finally, Connell and Lynott (2014) argue that neither 

sensorimotor nor linguistic distributional information is absolutely more important to 

conceptual processing than the other. Rather, they argue that both information types are part 

of an adaptive conceptual system, and that the relative importance of sensorimotor and 

linguistic distributional information may change depending on task constraints.  

In a previous study (van Hoef et al., 2022a - see Chapter 2), we found evidence for the 

hypothesis that sensorimotor and linguistic distributional information affect categorisation 

performance in a speeded category verification task. We found that when given unrestricted 

time to process an object photograph (e.g., a photograph of a Labrador), participants are 

faster and more accurate to categorise it when it overlaps in sensorimotor and linguistic 

distributional information with its category label (e.g., dog or animal) to a greater extent. As a 

result, we proposed a sensorimotor-linguistic model of object categorisation that is 

reminiscent of the feature-based preparation model from prototype theory (Murphy & Smith, 

1982), in that category labels may activate semantic representations, which are verified upon 

seeing a potential category member. When the representation activated by a category label 

does not match the displayed object, additional processing is required. Crucially, where the 

preparation model proposes different strategies for categorising objects at the superordinate 

(i.e., requiring the extraction of additional perceptual features) or subordinate level (i.e., 

activating additional discriminatory criteria), the sensorimotor-linguistic model does not 
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make a priori assumptions about the processing of concepts at various taxonomic levels. 

Rather, the sensorimotor-linguistic model assumes that superordinate concepts like animal 

are representations in their own right, and holds that different taxonomic category labels (e.g., 

dog, animal, or Labrador) may activate different sensorimotor and linguistic distributional 

representations which overlap with representations activated by a member photograph or 

label (e.g., Labrador). The more the representations overlap, the less additional 

representational processing is required.  

The sensorimotor-linguistic model of object categorisation does not necessarily 

predict that one taxonomic level is preferred over the other (although it may be the case that a 

latent taxonomic structure may arise spontaneously from sensorimotor information (Connell 

et al., 2021). The sensorimotor-linguistic model does not directly predict a basic-level 

advantage in speeded category verification, nor a superordinate-level advantage in ultra-rapid 

categorisation. It simply predicts an advantage for concepts that are more similar in 

sensorimotor experience and linguistic distributional knowledge to their categories. However, 

as Connell and Lynott argue (2014), the relative importance of either information type may 

depend on task demands, such as the amount of time available for perceptual processing. As 

such, a sensorimotor-linguistic model of rapid object categorisation might predict that as 

more perceptual information becomes available (e.g., through longer display times), the 

verification of the sensorimotor representation activated by a category label becomes more 

effective. This effect would be mirrored for linguistic distributional information, as more 

perceptual information would make an object easier to recognise and therefore to retrieve a 

label for it. However, since previous work on speeded category verification (i.e., with 

unlimited time to recognise and respond to an image) suggests that linguistic distributional 

information is not as strong a predictor of categorisation performance as sensorimotor 

information, linguistic distance effect may also be reduced here.  
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The current study 

The present study (https://osf.io/vdka2/?view_only=ac6c78793a354a1f95da 

6c36b5ac6163) aims to determine the role of sensorimotor and linguistic distributional 

information in the categorisation of briefly displayed objects with backwards masking, where 

every stimulus is followed by a visual mask after a predetermined amount of time (stimulus 

onset asynchrony, SOA, which has been shown to reduce the amount of information available 

from neurons in the visual system; (Rolls et al., 1999). Based on the results from similar 

ultra-rapid categorisation studies (e.g., Bacon-Macé et al., 2005, 2007; Mack & Palmeri, 

2011, 2015), we expect that categorisation performance (accuracy; response times) will 

improve and then level off as the time for accumulating perceptual information increases. 

That is, we expect accuracy to increase, and response times to decrease, as more time is 

allowed to pass between the presentation of a photograph and the onset of a perceptual mask 

(i.e., by increasing SOA). Furthermore, in line with simulated-linguistic accounts of 

conceptual processing (Barsalou et al., 2008; Connell & Lynott, 2014; Louwerse, 2011) and 

our previous findings (van Hoef et al., 2022a), we expect that sensorimotor and linguistic 

distributional information will affect categorisation performance, such that a greater overlap 

in both information types between a category and member-concept will result in lower RT, 

and higher accuracy. Crucially, we expect that the relative impact of sensorimotor compared 

to linguistic distributional information will vary with the amount of time available for 

perceptual processing. We expect that the effect of both information types will increase as 

more time for perceptual processing becomes available, but that the effect of linguistic 

distributional information will require longer SOA to manifest than the effect of sensorimotor 

experience, as implicit activation of an object label may be less likely until there is sufficient 

time to process an object visually. Specifically, we expect to observe an effect on accuracy 
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and RT of sensorimotor but not linguistic distributional information at shorter SOA, but an 

effect of both information types at longer SOA.  

5.4. Method 

Participants. We recruited 128 participants (65 female, Mage = 37 years, SD = 11.76) 

through online recruitment platform Prolific (www.prolific.co). Participants received £4.25 in 

compensation for their time. Using Prolific’s screening tool, we selected participants who 

were native speakers of UK English, had normal, or corrected-to-normal vision, had not 

completed any other of our studies, and had a Prolific approval rate of over 95%. In addition 

to this, due to the nature of our experiment requiring rapid visual displays, participants with a 

history of photosensitive epilepsy or a related neurological condition which might cause 

seizures in reaction to rapidly flashing imagery were not allowed to take part. Participants 

were explicitly asked to confirm they did have no such condition as part of the informed 

consent form, and were informed of the potential risks in the study advert, a warning screen 

which loaded once the experiment commenced, as well as the participant information sheet.  

As pre-registered, we established sample size through sequential hypothesis testing 

using Bayes Factors (Schönbrodt et al., 2017). We set the lower boundary at 48 participants, 

and continued testing until a maximal upper boundary of 128 participants was reached or the 

critical BF10 of >3 was achieved. We calculated Bayes factors for analysis B steps 4 through 

10 (see analysis) explaining variance in RT and accuracy from the interaction between 

stimulus onset asynchrony and sensorimotor and/or linguistic distance. At 48 participants, we 

found strong evidence against the inclusion of sensorimotor and linguistic distance, however 

a number of the interaction models did not converge. As a result, we deviated from our pre-

registration, and tested up to our upper boundary to see if increasing sample size would 

counter these issues. At 128 participants, some models still had convergence issues, which we 
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will highlight in the results section below. None of the best-fitting models for which we 

reported coefficients failed to converge.  

Prior to each sequential hypothesis test we had to replace a number of participants, for 

various reasons. Firstly, we replaced 17 participants due to technical malfunctions (e.g., 

issues with trial display, extreme delays in presentation etc.) Secondly, we pre-registered 

several replacement criteria. To ensure participants would be able to see the rapidly flashed 

photographs, we included a (pre-registered) screening task prior to the main experiment. We 

presented participants with ten geometric shapes in various colours, paired with a binary 

choice of shape and colour (e.g., a red circle followed by the question ‘did you see a CIRCLE 

or a SQUARE’). Each shape was displayed for 17 ms, which was equal to the display 

duration in the main experiment, and corresponded to one screen refresh at 60 Hz, the most 

common LCD refresh rate. We replaced 12 participants for answering more than the pre-

registered two questions incorrectly. Third, we pre-registered that we would replace all 

participants who responded incorrectly to more than 30 % of the trials, or reached trial 

timeout (> 1500 ms) on more than 20% of trials. We replaced 50 participants on this basis.  

Ethics and consent. The study received ethical approval from the Lancaster 

University Faculty of Science and Technology Research Ethics Committee. All participants 

received information detailing the purpose and expectations and potential risks of the study 

before giving informed consent to take part. Consent included agreement to share publicly all 

alphanumeric data in anonymised form, as well as the explicit confirmation that the 

participant did not have a history of photosensitive epilepsy or any related neurological 

conditions that could cause seizures in response to flashing imagery. Participants were 

informed that they could leave the experiment at any point without consequences.  

Materials. Test items consisted of 320 full-colour photographs of 80 specific object 

concepts, where each object concept was represented by four different instances (e.g., 
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photographs of four different Labradors represented the object concept Labrador). Half of 

these objects were natural objects, half were artefacts. Object concepts were evenly divided 

over 8 basic-level categories (dog, bird, flower, tree, car, boat, box and cup) and 4 

superordinate-level categories (animal, plant, vehicle and container). Photographs for each 

object concept were retrieved from a set of picture naming norms generated in a previous 

study (van Hoef et al., 2022b - see Chapter 4). Each photograph depicted the target object 

central on a white background, without any visible labels, sized 1920x1080 pixels, with a 

minimal margin of 200 pixels on each side. Pilot testing revealed that high resolution paired 

with the large number of photographs caused display issues (e.g., photographs did not display 

consistently), so we reduced the resolution to 800x450 pixels, in order to reduce file size (see 

supplemental materials for all stimuli used in this study).  

For each basic and superordinate category, we selected an additional 40 photographs 

of 10 objects – four per object, for a total of 480 distractor photographs retrieved from the 

same picture naming norms set (van Hoef et al., 2022b – Chapter 4). We selected basic-level 

distractors to be part of the same superordinate (e.g., animal) but different basic-level 

category, and to match some of the visual features of the test objects (e.g., we selected gecko 

as a distractor for bird because it belongs to the superordinate category animal and is small 

and brightly coloured). We selected superordinate-level distractors to be part of the same 

global (e.g., artefact) but different superordinate category (e.g., household appliances as 

distractors for vehicle), but to match visual features of the test objects (e.g., we selected 

vacuum cleaner as a distractor for vehicle because it has wheels and has an asymmetric 

oblong shape and or metallic colour). Crucially, because our critical predictors included a 

measure of sensorimotor experience (see critical predictors) we selected both target- and 

distractor-objects to have names specified in the picture naming norms (van Hoef et al., 
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2022b – Chapter 4) which were present in the Lancaster Sensorimotor norms (Lynott et al., 

2020).  

We created 16 perceptual masks from 6 additional images, none of which were 

present in either the test or filler set. We used Adobe Photoshop’s (version 21.1.2) cut-out 

filter and liquify forward warp tool to distort these images until no recognisable shapes were 

visible (see Figure 1). All mask images can be found in the supplementals on OSF.  

Figure 1.  

Mask creation process, showing an example of an original image, an image to which a cut-

out filter was applied, and the final mask after using the forward warp tool.  

   

 

Blocked design. We divided 320 target images into 8 blocks according to their basic-

level category (e.g., 40 images of dogs constituted the dog block, and 40 distractor images 

specially selected for dog). These basic-level blocks were dog, bird, flower, tree, car, boat, 

box and cup. We then paired these 8 basic-level blocks to form 4 superordinate categories 

(animal, plant, vehicle and container), and split each category in half to form 8 

superordinate-level blocks that were the same size as the basic-level blocks (i.e., 40 target 

items). There were therefore two different blocks for each superordinate category, featuring 

the same object concepts via different images (e.g., both animal blocks comprised 20 images 

of dogs and 20 images of birds, but different sets of images in each block.  

We used eight different durations for the stimulus onset asynchrony between picture 

and mask (SOA, see procedure). Within each block, we varied SOA from trial to trial, so that 
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each SOA was featured equally across all target images (i.e., 5 trials at 8 SOA per block), and 

presented in a random order. To ensure that all block-image combinations (e.g., animal – 

Labrador [image 1]) would be seen paired all SOA throughout the experiment, we created 16 

lists of 12 blocks (i.e., all 16 lists contained all 800 items divided over all eight basic-level 

blocks, each half of the lists contained a different version of the superordinate-level blocks), 

which we counterbalanced so that across all lists, every target image appeared paired with 

every SOA three times, twice in a basic-level block and once in a superordinate-level block.  

Each participant only saw 12 blocks (i.e., all basic blocks and one version of each 

superordinate block). Every participant saw every target image, with some images repeated 

across blocks (e.g., they saw Labrador [image 1] once in the dog and once in the animal 

block). Finally, every participant was randomly assigned to one of the 16 lists, so that across 

every 8 participants, every image was seen at least once at every SOA following a basic-level 

label (e.g., in the dog block, participant one saw Labrador [image 1] followed by a 17ms 

SOA, whereas participant two saw the same image followed by a 33ms SOA), and across 

every 16 lists, all images were seen at least once at every SOA following a superordinate-

level label.  
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Figure 2.  

Trial diagram, showing the variable SOA (blank screen) between the rapidly-displayed target 

image and the perceptual mask. The block label (e.g., bird) was only displayed once per 

block.  

Procedure. We used online testing platform Gorilla.sc (Anwyl-Irvine et al., 2020) to 

run the experiment. Each block of trials started with a brief reiteration of the task instructions,  

in which we informed participants that they would see a category label followed by a series 

of rapidly displayed photographs of objects that might be members of that category. We 

instructed them to press ‘z’ on their keyboard if they believed the object was a category 

member, or ‘m’ if they believed that it was not. These instructions were followed by a 

fixation cross for 250 ms and the block label for 3000 ms, and then by all trials. Each trial 

began with a fixation cross (250ms), directly followed by the stimuli, centred on a white 

background for 17 ms, followed by a blank screen with a variable duration (SOA) and a mask 

which was presented until a participant made a decision or the until the trial duration 

excluding fixation cross exceeded 1500 ms (see trial diagram in Figure 2). 

Crucially, we systematically varied the onset timing of a perceptual mask (stimulus 

onset asynchrony: SOA) following an object photograph (i.e., the duration of the blank screen 

between photograph and mask) to manipulate the amount of time available for perceptual 
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processing. Because our study relied on web-based testing, we selected SOA based on the 

assumption that most people would have their monitor set to 60Hz, a common refresh rate on 

LCD screens. As a result, we selected eight SOA corresponding to screen refreshes at 60Hz, 

starting at 17 ms (the approximate duration of one screen refresh at 60Hz) and incrementally 

increasing up to 133 ms in steps of 17 ms (17, 33, 50, 67, 83, 100, 117, 133). 

We measured accuracy, as well as response times from the onset of the mask to the 

onset of a valid keypress. Target and distractor items appeared in random order, with a self-

paced break after each block of 80 trials. The order in which blocks were presented was 

automatically randomised within Gorilla. On average, testing took 35 minutes, including 

participant information and consent, screening, practice and debriefing. 

Critical predictors. In addition to the taxonomic level of the block category label, 

within each block, each photograph was assigned to a specific mask SOA condition. 

Furthermore, each photograph had a corresponding value in two critical predictors which 

represent the overlap in sensorimotor experience and linguistic distributional knowledge 

between the category name and its potential members.  

Helmert-coded SOA. Previous research showed a performance curve that rapidly 

improved and then levelled off with increasing SOA (Bacon-Macé et al., 2005; Mack & 

Palmeri, 2015). Therefore, we used Helmert-coding of SOA (i.e., comparing a given SOA to 

the mean of subsequent, longer SOAs) in order to determine the point where overall 

performance levelled off and, via interactions, the points where effects of linguistic and/or 

sensorimotor distance first appeared. This resulted in seven Helmert-coded SOA (e.g., SOA 1 

= 17ms vs. the average of all subsequent SOA, SOA 2 = 33ms vs. the average of all 

subsequent SOA etc.). Note that Helmert coding was chosen over simple adjacent 

comparisons because it is better suited to capture non-linear monotonic relationships such as 

the rise-and-plateau relationship we expected here.  
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Linguistic distance between block label and photograph name(s). To compare the 

degree to which category and member concepts overlapped in linguistic distributional 

knowledge, we used a large subtitle corpus (e.g., van Heuven et al., 2014) which consists of 

200 million words in British English, to calculate log co-occurrences frequencies for the 

block label and the names given to an image in a context radius of five. Each word in the 

corpus was represented as a vector of log co-occurrence frequencies, allowing us to compare 

two words by calculating the cosine distance between their vectors (i.e., 1 – cos (θ (u,v)). For 

example, the words dog and animal generally appear in relatively similar contexts across 

language. As a result, the distance between their vectors in linguistic space is smaller (cosine 

distance = .23) than between words that appear in different contexts, such as jet ski and 

animal (cosine distance = .82).  

In a previous study (van Hoef et al., 2022a – Chapter 2, Experiment 1), we calculated 

cosine distances between a category label (e.g., dog) and the basic-level name of the picture. 

However, while research has shown that images of objects are indeed most frequently named 

at the basic level (Rosch, Mervis, et al., 1976), evidence from picture-naming norms suggest 

that images tend to be named by a variety of labels (e.g., Snodgrass & Vanderwart, 1980). In 

van Hoef et al. (2022b – Chapter 4), we found that measures of word frequency and length 

that are weighted by production frequency are better at predicting object recognition times 

than measures based on the most common object. As a result, we incorporated all non-

idiosyncratic names for each photograph from van Hoef et al., weighted by production 

frequency, into the calculation of linguistic distance. For each photograph of each object 

concept within a given block (e.g., the photograph of a Labrador in the block dog) we 

calculated cosine distances between the co-occurrence vectors of the category label (e.g., 

dog), and that of all non-idiosyncratic names for that particular photograph (e.g., Labrador, 

dog, animal). We then calculated the weighted average by production frequency. For 



 266 

example, if the naming proportions for the Labrador image were 70% dog, 20% Labrador 

and 10% animal, the weighted linguistic distance associated with that image in the dog block 

would comprise: distance dog → dog*0.7 + distance dog → Labrador*0.2 + distance dog → 

animal *0.1. The final measure of weighted linguistic distance for each block label → 

photograph label pair theoretically ranged from -1 to +1 (actual range = [0, .77], M = .26, SD 

= .14). In all models, weighted linguistic distance was centred.  

Sensorimotor distance between block label and photograph name. To compare how 

category and member concepts overlapped in terms of sensorimotor experience, we followed 

our previous approach (van Hoef et al., 2022a – Chapter 2) in calculating sensorimotor 

distance based on multidimensional ratings of sensorimotor strength. For both the category 

and all photograph names, we retrieved 11-dimension rating vectors from Lynott et al.’s 

(2020) sensorimotor norms for 40,000 concepts, which express the degree to which people 

experience a given concept via six perceptual modalities (auditory, gustatory, haptic, 

interoceptive, olfactory and visual), and by performing actions with five action effectors 

(foot, hand, head, mouth and torso). We compared vectors for category names and 

photograph names for their potential members by calculating their weighted average cosine 

distances, based on the assumption that participants will retrieve a different conceptual 

representation of an object depending on how they have identified the object in the picture. 

That is, participants who identify a given object as Labrador will have a slightly different 

representation to those that identify it merely as a dog, and so on. The calculation of 

sensorimotor distance therefore followed the same approach as for linguistic distance, 

incorporating all possible identifications of an object weighted by their production frequency 

in the van Hoef et al. (2022b - See Chapter 4) picture naming norms. The final measure 

weighted sensorimotor distance measure for each block label → photograph pair ranged in 

theory from -1 to +1 (actual range = [0, .15], M = .03, SD = .03). In all models, weighted 
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sensorimotor distance was centred. We note here that weighted sensorimotor and linguistic 

distance were moderately correlated (Pearson’s r = .57, BF10 = 9.55x1053). 

Relationships between dependent variables 

Bayesian correlation analyses (JASP, v.0.14.0.0, with default beta prior width =1) of 

the full dataset revealed evidence (BF10 = 3.20) for a weak negative (r = -.230) relationship 

between participant accuracy and average RT. This suggested that overall, accuracy went 

down as RT increased. A by SOA analysis revealed that evidence for a correlation was 

strongest at SOA of 17, 33 and 67 ms, but disappeared at longer SOA (see table 1).  

Table 1.  

Bayesian correlations between participant accuracy and average RT 

SOA Pearson’s r BF10  
Overall -.230 3.202 
17 -.239 4.286 
33 -.259 8.286 
50 -.190 1.073 
67 -.268 11.239 
83 -.130 0.317 
100 -.212 1.901 
117 -.166 0.620 
133 -.197 1.274 
   

 

Data analysis. We pre-registered three sets of analyses. In analysis A, we investigated 

whether mask SOA affected categorisation performance (response time, accuracy), and tested 

the hypothesis (1) that performance would improve and then level off as SOA increased. That 

is, accuracy would increase, and RT would decrease, and then level off. To this end, we ran a 

series of hierarchical mixed effects regression models of RT (linear models, on correct trials) 

and accuracy (logistic models), with crossed random effects of participant and nested concept 

and photograph, and fixed effects of Helmert-coded SOA. In addition to this, we ran a series 

of mixed effects logistic regression model of accuracy (incorrect = 0, correct = 1), with 

crossed random effects of participant and nested concept and image and fixed effects of 
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Helmert-coded SOA. For both RT and accuracy analyses, step 0 (null model) entered the 

random effects. Step 1 entered SOA 1 (i.e., 17 ms vs. the mean of 33 to 133 ms), step 2 

entered SOA 2 (i.e., 33 ms vs. the mean of 50-133 ms) and so on up to step 7, which entered 

SOA 7 (i.e., 117 vs the mean of 133 ms). We used Bayesian model comparisons (calculating 

Bayes Factors based on BIC; Wagenmakers, 2007) between each step and the previous one to 

determine at which step performance no longer improved with longer SOA. Furthermore, we 

examined coefficients for each Helmert-coded SOA to ascertain their direction was as 

expected. Specifically, in the analysis of RT, we expected that coefficients would be positive, 

reflecting longer RT at each mask SOA compared to subsequent ones. By contrast, in the 

analysis of accuracy, we expected that coefficients would be negative, reflecting worse 

accuracy at each mask SOA compared to subsequent ones.  

In analysis B, we investigated whether sensorimotor and linguistic distance affected 

RT and accuracy, and whether they interacted with SOA. To test our hypothesis (2) that RT 

increases and accuracy decreases as weighted average sensorimotor and linguistic distance 

between the category label and image name(s) increase, we ran a set of hierarchical mixed 

effects regressions as per analysis A. Step 0 (null model) entered random effects of 

participant and concept/photograph. Step 1 entered all Helmert-coded SOA; step 2 entered 

weighted sensorimotor distance; and step 3 entered weighted linguistic distance. We used 

Bayesian model comparisons between steps 1, 2, and 3 to determine whether sensorimotor 

and/or linguistic distance affected categorisation performance, and inspected model 

coefficients to ascertain that the effects had the hypothesised direction (greater distance = 

longer RT, lower accuracy).  

To test our hypothesis (3) that the effect of sensorimotor and linguistic distance on 

accuracy and RT increases with SOA, we tested for interactions at each SOA to determine the 

point at which effect size started to change. Step 4 tested candidate models for interactions 
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with SOA1: Step 4a comprised the interaction between SOA 1 and sensorimotor distance; 

Step 4b comprised the interaction between SOA1 and linguistic distance; and Step 4c 

comprised both interactions together. We used Bayesian model comparisons to select the 

best-fitting model between the candidate interactions and the preceding model (i.e., step 3), 

and carried it forward to the subsequent step. Next, Steps 5a-c examined candidate 

interactions with SOA2, Steps 6a-c examined candidate interactions with SOA3, and so on 

until Step 10 (SOA7), carrying forward the best-fitting model at each step. In the event that 

the best model was only equivocally better (i.e., BF < 3) than the next-best, we carried 

forward the model with fewer parameters. Where we observed an interaction effect, we 

examined whether the direction of the coefficients was as expected.  

Finally, in analysis C, we tested the hypothesis (4) that linguistic distance would 

require longer SOA to take effect than sensorimotor distance, and investigated at which mask 

SOA the respective effects of sensorimotor and linguistic distributional information first 

appeared. To this end, we split the dataset by all eight SOA durations (e.g., 17, 33, 50, 67, 83, 

100, 117 and 133 ms), and ran hierarchical mixed effects regressions of RT (linear models) 

and accuracy (logistic models). For both RT and accuracy at each SOA duration, step 0 

entered random effects of participants and concept/image; step 1 entered a fixed effect of 

sensorimotor distance; and step 3 entered a fixed effect of linguistic distance.11  

5.5. Results 

For the analysis of accuracy, we removed 625 (1.02%) out of 61444 correct and 

incorrect responses to target trials, for having RT below 200ms (motor error). The resulting 

dataset contained 60819 responses. For the analysis of RT, we selected 49061 correct target 

trials, and removed 412 trials (0.84%) for having RT below 200 ms. We replaced no 

 
11 To address convergence issues in models including sensorimotor and linguistic distance, we 
explored a model with an alternative linguistic distance measure: PPMI-ngram, which did not 
meaningfully improve performance. Full analyses and results are available on OSF.  
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participants for having an average RT further than 3 SD away from the overall mean. Finally, 

we removed as outliers 1298 trials for having an RT further than 2.5 SD away from the 

participant’s mean RT (2.67%), bringing the final dataset used for the analysis of RT to 47351 

responses. Full dataset and code available at https://osf.io/vdka2/? 

view_only=ac6c78793a354a1f95da6c36b5ac6163. 

Analysis A: SOA. In RT, Bayesian model comparisons for analysis A showed that 

every additional Helmert-coded SOA improved model fit over the previous one (see Table 1 

for model comparisons). The best-fitting model included all seven Helmert-coded SOA (BF10 

compared to next-best model = 9.49x1010), and showed that RTs were faster at every mask 

SOA compared to the average of all subsequent SOA. These results show that, as predicted, 

RT became faster as SOA increased. However, against our predictions, performance did not 

level off: rather, participants responded more quickly at each mask SOA from 17 to 133 ms 

(see Figure 3). 

In the analysis of accuracy, Bayesian model comparisons provided moderate evidence 

for steps one and two over their predecessors (i.e., favouring the inclusion of Helmert-coded 

SOA 1 and 2), meaning that accuracy was worse at a mask SOA of 17 [unstandardized β = 

-.32, 95% CI = ±0.06, z = -9.96, p < .001] and 33 ms [β = -.20, 95% CI = ±0.06, z = -5.94, p 

< .001] compared to all longer SOA. No subsequent step (3 to 7) was better than its 

predecessor, indicating consistent accuracy performance across SOA 50, 83, 100, 117 and 

133 ms (see Figure 2). Overall, following predictions, accuracy improved steadily as SOA 

increased from 17 to 50 ms, and started to level off from that point onwards.  

 

Figure 3.  
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Coefficient plots for analysis A step 7 models of accuracy and RT, displaying estimated 

change in log odds of answering correct and RT in ms per Helmert-coded SOA (with error 

bars showing ±1SE). 
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Table 2. 

Analysis A: Model comparisons for linear mixed effects regressions of RT and logistic mixed 

effects regressions of accuracy, showing change in R2 for nested comparisons and Bayes 

Factors for the comparison of each step against the preceding one. 

Step Model comparison RT Accuracy 

%ΔR2 BF10 %ΔR2 BF10 

0 Null model (random effects) 32.610 - 27.770 - 

1 SOA1 vs. null 2.992 6.38x10463 .242 1.64x1018 

2 SOA2 vs. step 1 2.060 2.56x10323 .093 115266.26 

3 SOA3 vs. step 2 1.547 1.36x10257 .025 0.33* 

4 SOA4 vs. step 3 .880 4.65x10148 .016 0.07 

5 SOA5 vs. step 4 .610 2.28x10103 .008 0.01 

6 SOA6 vs. step 5 .316 3.28x1053 .002 <0.01 

7 SOA7 vs. step 6 .076 9.49x1010 <.001 <0.01 

Note: The data was BF01 = 3.02 times more likely under the step 2 model than under the step 3 model, which 
narrowly passes the Bayes Factor threshold for inferencing (BF10 > 3).  
 

 

Analysis B: Sensorimotor and linguistic distributional information. In steps 1 – 3 

of analysis B, we tested the hypothesis that categorisation performance (RT and accuracy) 

would be affected by the weighted average sensorimotor and/or linguistic distance between 

the block label (e.g., DOG) and the names given to a particular image (e.g., Labrador [image 

1]), see Table 2 for all model comparisons. 

In RT, Bayesian model comparisons between step 1 (which entered all mask SOA) 

and step 2 (which entered sensorimotor distance) revealed evidence against the effect of 

sensorimotor distance over that of the time available for perceptual processing, showing that 

the data was BF01=6.38 times more likely under the step 1 model. Furthermore, model 

comparisons between step 2 and 3(which entered linguistic distance) revealed strong 

evidence against the effect of linguistic over sensorimotor distance, showing that the data was 
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BF01= 12.86 times more likely under the step 2 compared to the step 3 model. See Table 2 for 

all model comparisons.  

In accuracy, Bayesian model comparisons between step 1 and step 2 revealed very 

strong evidence for the effect of sensorimotor distance over that of the time available for 

perceptual processing, showing that the data was BF10=1.35x1055 times more likely under the 

step 2 model. Furthermore, model comparisons between 2 and 3 once again revealed strong 

evidence for the effect of linguistic distance over the time available for perceptual processing 

and sensorimotor distance, showing that the data was BF10= 5.86x1017 times more likely 

under the step 3 compared to the step 2 model. According to the step 3 model, participants 

were up to 1.70 times12 more likely to respond incorrectly to trials when the average centred 

sensorimotor distance between the block label and the image names was high compared to 

average [β = -4.43, 95% CI = ±1.74, z = -5.024, p < .001], and up to 2.66 times11 more likely 

to answer incorrectly to trials when the average centred linguistic distance was high 

compared to average [β = -1.26, 95% CI = ±.32, z = -7.74, p < .001].  

These findings partially confirmed our hypotheses that sensorimotor and linguistic 

distance would affect categorisation performance, showing that accuracy decreased as the 

average sensorimotor and linguistic distance between the block label and the image names 

increased. However, in contrast to our hypothesis, neither sensorimotor nor linguistic distance 

affected RT above and beyond SOA.  

Interactions between sensorimotor and linguistic distance and SOA. In steps 4 

through 10 of analysis B, we tested the hypothesis that the effect of sensorimotor and 

linguistic distance on accuracy and RT would increase with SOA.  

In RT, Bayesian model comparisons (see Table 5 for all model comparisons) failed to 

favour any of the interactions with SOA in steps 4(a-c) through 10(a-c), with one exception: 

 
12 Calculated with the largest value for centred sensorimotor (.12) and linguistic distance (0.54). 
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there was moderate evidence (BF10 = 9.33) for including the interaction at Step 6b, between 

linguistic distance and SOA3 (i.e., 50 vs. 67-133 ms). That is, the effect size of linguistic 

distance on RT shifted in size as SOA increased, from no effect between SOA 67-133 ms. 

Nonetheless, the fit of the Step 6b interaction model was still worse than the original SOA-

only model, suggesting that overall neither sensorimotor nor linguistic distance affected RT 

more than the time available for perceptual processing.  

In accuracy, Bayesian model comparisons did not favour any of the interactions with 

SOA. The best model was always the step 3 model, with linear effects of sensorimotor and 

linguistic distance, but without any of the candidate interactions of SOA with sensorimotor 

and/ or linguistic distance.  

Overall, these results were partially consistent with our hypotheses. Larger 

sensorimotor distance did result in lower accuracy, but we found no evidence that this effect 

changed with increasing SOA. Larger sensorimotor distance did not affect response latencies, 

and we found no evidence that this effect changed with increasing SOA. Larger linguistic 

distance also resulted in lower accuracy, but we found no change in effect size with 

increasing SOA. In RT, we found some evidence that the linguistic distance effect changed 

with SOA, but the data overall still favoured the SOA-only model more strongly. As a 

consequence, we interpreted the effect of linguistic distance on RT to be potentially quite 

weak. We examine the linguistic effect in detail per SOA in analysis C (see below).   
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Table 3. 

Analysis B, model comparisons showing change in R-squared and Bayes Factors for the 

comparison for each step and the previous one (steps 1, 3) and for all interaction models 

compared to the non-interaction model (Step 3 vs. 4,5,6,7,9,10a-c). 

Step Model comparison RT Accuracy 

 %ΔR2 BF10 %ΔR2 BF10 

0 Null model (random effects) 32.61 - 27.770 - 

1 SOA (1-7) vs. null 8.481 7.47x101369 1.269 1.58x1015 

2 Sensorimotor distance vs. step 1 .002 <0.01 .317 1.00x1044 

3 Sensorimotor distance + Linguistic distance vs. step 2 .040 0.08 .049 4029950249.00 

      
4a Sensorimotor distance*SOA1 vs. step 3 <.001 <0.01 .077 0.22 

4b Linguistic distance*SOA1 vs. step 3 .007 0.09 .084 1.63 

4c Sensorimotor distance*SOA1 + Linguistic distance 
vs. step 3 

.011 <0.01 .013 0.01 

      
5a Sensorimotor distance*SOA2 vs. step 3 <.001 <0.01 .025 0.01 

5b Linguistic distance*SOA2 vs. step 3 .003 0.02 .027 0.02 

5c Sensorimotor distance*SOA2 + Linguistic distance 
vs. step 3 

.003 <0.01 <.001 <0.01 

      
6a Sensorimotor distance*SOA3 vs. step 3 <.001 <0.01 .013 <0.01 

6b Linguistic distance*SOA3 vs. step 3 .018 9.33 .013 0.01 

6c Sensorimotor distance*SOA3 vs. step 3  .006 0.49 <.001 <0.01 

      
7a Sensorimotor distance*SOA4 vs. step 3 <.001 0.05 <.001 <0.01 

7b Linguistic distance*SOA4 vs. step 3 <.001 0.05 <.001 <0.01 

7c Sensorimotor distance*SOA4 + Linguistic distance 
vs. step 3 

.001 <0.01 <.001 <0.01 

      
8a Sensorimotor distance*SOA5 vs. step 3 <.001 0.04 <.001 <0.01 

8b Linguistic distance*SOA5 vs. step 3 .006 <0.01 <.001 <0.01 

8c Sensorimotor distance*SOA5 + Linguistic distance 
vs. step 3 

<.001 <0.01 <.001 <0.01 
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9a Sensorimotor distance*SOA6 vs. step 3 .005 0.29 <.001 <0.01 

9b Linguistic distance*SOA6 vs. step 3 .008 1.28 .003 0.01 

9c Sensorimotor distance*SOA6 + Linguistic distance 
vs. step 3 

.009 <0.01 .003 <0.01 

      
10a Sensorimotor distance*SOA7vs. step 3 <.001 <0.01 .001 <0.01 

10b Linguistic distance*SOA7 vs. step 3 <.001 <0.01 .001 <0.01 

10c Sensorimotor distance*SOA7 + Linguistic distance 
vs. step 3 

<.001 <0.01 .002 <0.01 

Note: best-fitting interaction model printed in bold, interaction carried forward to all subsequent steps 
 

Analysis C: Sensorimotor and linguistic effects per SOA. In analysis C, we 

examined at what SOA the effects of sensorimotor and linguistic distance first appeared, and 

hypothesised that linguistic distance would require longer SOA to affect categorisation 

performance than sensorimotor distance. See Table 3 for all model comparisons.  

In RT, Bayesian model comparisons between step 1 (which entered sensorimotor 

distance) and 0 (which entered random effects) at every SOA showed strong evidence against 

the effect of sensorimotor distance over random effects. By contrast, model comparisons 

between steps 2 (which entered linguistic distance) and 1 showed moderate to strong 

evidence for the effect of linguistic distance over sensorimotor distance at mask SOA of 83 

and 100 ms. At a mask SOA of 83 ms, participants were up to 32.99 ms1 slower to respond 

for words with high compared to average linguistic distance (β = 61.09, 95% CI = ±32.30, 

t(1943.50) = -3.71, p < .001) At a mask SOA of 100 ms, participants were up to 35.26 ms1 

slower to respond for words with high compared to average linguistic distance (β = 65.29, 

95% CI = ±31.91, t(1842.58) = 4.01, p < .001). At all other SOA, model comparisons showed 

evidence against the added effect of linguistic distance.  

In accuracy meanwhile, Bayesian model comparisons between step 1 and 0 showed 

strong evidence for the effect of sensorimotor distance over random effects at all SOA. 

Furthermore, model comparisons between step 2 and 1 at each SOA showed mixed evidence 
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for the effect of linguistic distance over sensorimotor distance. At a SOA of 17ms, we found 

moderate evidence that linguistic distance predicted accuracy above and beyond sensorimotor 

distance, however at SOA of 33 and 50ms, evidence was in the equivocal zone. At SOA of 

67, 83, 100 and 177 ms, linguistic distance again predicted accuracy above and beyond 

sensorimotor distance, but at the longest SOA (133 ms), evidence was once again in the 

equivocal zone. Inspection of the coefficients revealed that at where the effect appeared, 

greater linguistic distance decreased the likelihood of a correct answer (see Figure 4). Greater 

sensorimotor distance also negatively affected accuracy, but not significantly so in any of the 

step 2 models for all SOA.  

In summary, contrary to our expectations, linguistic distance did not require longer 

SOA to take effect than sensorimotor distance. As observed in analysis B, there was a 

relatively late effect of linguistic distributional information at 83 to a 100 ms, but no effect of 

sensorimotor distance at any SOA. In accuracy, analyses showed a mixed effect of 

sensorimotor and linguistic distance, with linguistic distance predicting accuracy above and 

beyond sensorimotor distance alone, although not consistently so. While sensorimotor 

distance affected accuracy at all SOA, linguistic distance had a weaker, inconsistent effect 

that appeared intermittently from 17 ms onwards.  
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Figure 4.   

Predicted response times and probability of a correct answers derived from the step 2 models 

at each SOA, for low, average and high sensorimotor and linguistic distance (corresponding 

to the highest, average and lowest values for weighted centred distance measures). With error 

bars showing ±1SE).  
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Table 4.  

Analysis C model comparisons for linear mixed effects regressions of RT and logistic mixed 

effects regressions of accuracy, showing change in R2 for nested comparisons and Bayes 

Factors for the comparison of each step against the preceding one. 

Mask SOA 
(ms) 

Step Model comparison RT Accuracy 

%ΔR2 BF10 %ΔR2 BF10 

17 0 Null model (random effects) 39.308 - 26.112 - 

 1 Sensorimotor distance vs. step 0 .003 0.01 .750 490.05 

 2 Linguistic distance vs. step 1 .064 0.05 1.236 5.30 

33 0 Null model (random effects) 38.834 - 26.69 - 

 1 Sensorimotor distance vs. step 0 .022 0.02 .850 823.03 

 2 Linguistic distance vs. step 1 .091 0.10 1.331 2.77 

50 0 Null model (random effects) 36.551 - 32.412 - 

 1 Sensorimotor distance vs. step 0 .002 0.01 1.370 425066.11 

 2 Linguistic distance vs. step 1 .009 0.02 .431 2.87 

67 0 Null model (random effects) 36.370 - 27.099 - 

 1 Sensorimotor distance vs. step 0 .030 0.03 1.280 124616.96 

 2 Linguistic distance vs. step 1 .135 0.20 1.018 430.74 

83 0 Null model (random effects) 36.959 - 30.355 - 

 1 Sensorimotor distance vs. step 0 <.001 0.01 1.437 541176.09 

 2 Linguistic distance vs. step 1 .350 10.59 1.239 4094.91 

100 0 Null model (random effects) 35.139 - 30.602 - 

 1 Sensorimotor distance vs. step 0 .129 0.27 1.649 4694949.29 

 2 Linguistic distance vs. step 1 .358 28.65 .982 254.68 

117 0 Null model (random effects) 35.104 - 29.400 - 

 1 Sensorimotor distance vs. step 0 <.001 0.01 1.887 122362682.50 

 2 Linguistic distance vs. step 1 .075 0.05 .868 194.22 

133 0 Null model (random effects) 38.208 - 30.255 - 

 1 Sensorimotor distance vs. step 0 .001 0.01 1.058 1717.28 

 2 Linguistic distance vs. step 1 .041 0.03 .488 1.78 
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Exploratory analyses. We pre-registered two exploratory analyses. Firstly, we 

investigated the effect of taxonomic level on categorisation performance at all mask SOA. 

Second, we intended to explore two alternative measures of accuracy, d‘ and c, in a signal 

detection paradigm. However, the signal detection analysis proved unworkable in the current 

design, and we only report the results of the analysis of taxonomic level here.  

In addition to the pre-registered exploratory analyses, we ran an additional set of 

analyses on the effects of psycholinguistic characteristics associated with the image and 

category labels on accuracy and RT.    

Taxonomic level. Although it was not the main focus of the present study, previous 

work (Macé et al., 2009; Mack & Palmeri, 2011, 2015) suggests that the classic performance 

advantage for categorisation at the basic (e.g., dog) compared to the superordinate level (e.g., 

animal) is reduced or even reversed when participants have limited time to recognise an 

object. Consequently, we pre-registered and carried out an additional hierarchical regression 

analysis of accuracy and RT for a dataset split by mask SOA (i.e., as per analysis C). For both 

RT and accuracy, at each SOA duration, step 0 entered crossed random effects of participant 

and nested concept/image, and step 1 entered taxonomic level (0 = basic, 1 = superordinate). 

We used Bayesian model comparisons between step 1 and 0 at each SOA duration to see 

whether a model including taxonomic level outperformed a null model including only 

random effects of participant and concept/photograph. Furthermore, we inspected the 

taxonomic coefficient to determine the direction of any effect (i.e., better performance at the 

basic or superordinate level). Finally, at every SOA duration, we compared the taxonomic 

step 1 model to the sensorimotor-linguistic model from analysis C, step 2 (see above), in 

order to examine whether the data were better explained by a taxonomic or sensorimotor-

linguistic model. 
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In RT, Bayesian model comparisons (see Table 4 for full model comparisons), showed 

that evidence was against the inclusion of taxonomic level at all SOA except 50 ms (BF10= 

33.95). Inspection of the coefficients revealed that at 50 ms, superordinate-level 

categorisation was slightly faster than basic-level categorisation (β = -10.46, 95% CI = ±5.16, 

t(5569.12) = -3.97, p < .001). The overall pattern in the data suggests that there was no clear 

basic-level advantage in RT: categorisation was equally fast at the basic compared to the 

superordinate level. Comparison to the step 2 model from analysis C revealed that the 

taxonomic model outperformed the sensorimotor-linguistic distance at all SOA except 83 and 

100 ms. Nonetheless, it is important to stress that few of these models were favoured over the 

null, and as such the best-fitting model was highly variable across SOA. That is, neither 

taxonomic nor sensorimotor-linguistic distance predicted RT at a SOA of 17 and 33 ms, 

taxonomic level was the better predictor at 50 ms, neither predicted RT at 67 ms, 

sensorimotor-linguistic distance was the best model at 83 and a 100 ms, and neither model 

predicted RT at a SOA of 133 ms.  

In accuracy, Bayesian model comparisons between step 0 and 1 revealed strong 

evidence for the effect of taxonomic level at all SOA except at 33 and 133 ms (see Table 4 for 

all model comparisons). Inspection of the coefficients showed that where an effect was 

present, categorisation was more accurate at the basic compared to the superordinate level 

(i.e., the classic basic-level advantage). Here it is important to stress that sensorimotor-

linguistic models strongly outperformed the taxonomic model and the null-model at every 

SOA. Combined with the results from analysis C, this means that the best-fitting model 

always included sensorimotor and/ or linguistic distance. A sensorimotor-linguistic model 

predicted accuracy best at SOA of 17, 67, 83, 100 and 117 ms, and a sensorimotor-only and 

sensorimotor-linguistic model predicted accuracy about equally well at 33, 50 and 133 ms.   
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Table 5:  

Exploratory taxonomic analyses: Model comparisons for linear mixed effects regressions of 

RT and logistic mixed effects regressions of accuracy, showing change in R2 for nested 

comparisons and Bayes Factors for Taxonomic levels vs. null, and sensorimotor-linguistic vs. 

taxonomic levels. 

Mask SOA Step Model comparison RT Accuracy 

 %ΔR2 BF10 %ΔR2 BF10 

17 0 Null model (random effects) 39.308 - 26.112 - 

 1 Taxonomic level vs. step 0 .024 0.04 .343 99.51 

 - Step 2 (analysis C) vs. step 1 - 0.02 - 26.11 

33 0 Null model (random effects) 38.834 - 26.693 - 

 1 Taxonomic level vs. step 0 .008 0.02 .078 0.08 

 - Step 2 (analysis C) vs. step 1 - 0.11 - 29100.19 

50 0 Null model (random effects) 36.551 - 32.412 - 

 1 Taxonomic level vs. step 0 .173 33.95 .414 334.411 

 - Step 2 (analysis C) vs. step 1 - <0.01 - 3651.89 

67 0 Null model (random effects) 36.370 - 27.099 - 

 1 Taxonomic level vs. step 0 .029 0.05 .359 50.86 

 - Step 2 (analysis C) vs. step 1 - 0.11 - 1055473.00 

83 0 Null model (random effects) 36.959 - 30.355 - 

 1 Taxonomic level vs. step 0 .006 0.02 .628 32032.29 

 - Step 2 (analysis C) vs. step 1 - 8.00 - 69182.28 

100 0 Null model (random effects) 35.139 - 30.603 - 

 1 Taxonomic level vs. step 0 .010 0.02 .643 30576.90 

 - Step 2 (analysis C) vs. step 1 - 387.61 - 39104.78 

117 0 Null model (random effects) 35.104 - 29.400 - 

 1 Taxonomic level vs. step 0 .36 0.22 .689 397819.60 

 - Step 2 (analysis C) vs. step 1 - <0.01 - 333534.00 

133 0 Null model (random effects) 38.208 - 30.255 - 
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 1 Taxonomic level vs. step 0 .064 .27 .125 0.61 

 - Step 2 (analysis C) vs. step 1 - <0.01 - 108.64 

 

In summary, taxonomic level did not systematically affect categorisation speed, 

showing neither the classic basic-level advantage nor the clear superordinate-level advantage 

previously observed in studies examining rapid categorisation with a blocked design (e.g., 

Macé et al., 2009). Furthermore, where a difference appeared, categorisation was less 

accurate at the superordinate-level compared to the basic-level, consistent with the classic 

basic-level advantage literature but inconsistent with previous work that suggests that the 

basic-level advantage may disappear in rapid categorisation with a blocked design (e.g., 

Mack & Palmeri, 2015). Crucially, these results suggest that neither a taxonomic level nor 

sensorimotor-linguistic model predicted RT systematically better across all SOA. However, in 

accuracy we found that sensorimotor-linguistic models were consistently better at predicting 

categorisation accuracy at every SOA.  

Psycholinguistic variables. We explored the effects of psycholinguistic characteristics 

of subjective age of acquisition rating (AoA, retrieved from: Kuperman et al., 2012) Zipf log 

word frequency (retrieved from: van Heuven et al., 2014) subjective familiarity rating 

(retrieved from Scott et al., 2019; Stadthagen-Gonzales & Davis, 2006 and the MRC 

Psycholinguistic Database), and word length of the category block label, as well as the 

weighted average AoA rating, Zipf log word frequency, familiarity rating and word length per 

photograph.  

For both accuracy and RT, we carried out two exploratory analyses. Analysis D 

consisted of a set of mixed effects regressions, which we carried out in two stages. Stage one 

consisted of 9 steps, where each step added a psycholinguistic variable. We used Bayesian 

model comparisons between each step and the previous one to determine whether the variable 

included improved model fit, and carried only those variables forward that did. In this stage, 
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step 0 entered random effects (as per analysis A). Next, steps 1 through 4 entered category 

label AoA, Zipf log word frequency, familiarity and word length. Then, steps 5 through 9 

entered weighted average image name AoA, Zipf log word frequency, familiarity and word 

length. In the second stage, we added all SOA to the best-fitting model from stage one, 

following the same procedure as outlined in confirmatory analysis A. Here, we again used 

Bayesian model comparisons between each step and the previous one to determine at which 

step performance no longer improved. We were particularly interested to explore whether 

controlling for psycholinguistic characteristics changed the SOA-patterns we observed in our 

confirmatory analysis A. 

Our exploratory analysis E of RT and accuracy consisted of a set of hierarchical 

mixed effects regressions as per exploratory analysis A. Step 0 (null model) consisted of the 

best-performing psycholinguistic model from exploratory analysis D. Step 1 entered all 

Helmert-coded SOA; step 2 entered weighted sensorimotor distance and step 3 entered 

weighted linguistic distance. We used Bayesian model comparisons between steps 0, 1, 2, and 

3 to determine whether sensorimotor and/or linguistic distributional information affected 

categorisation performance beyond psycholinguistic characteristics and the time available for 

perceptual processing (SOA). Finally, steps 4 through 10 (a-c) explored whether interactions 

between sensorimotor and/or linguistic distributional distance and any of the SOA improve 

model fit over a non-interaction model (step 3). Again, we were particularly interested to 

explore whether the inclusion of psycholinguistic characteristics altered the patterns we 

observed in our confirmatory analysis B.  

Analysis D: SOA. In the analysis of RT, Bayesian model comparisons for stage one 

of analysis D showed that a model containing label AoA, frequency length and familiarity as 

well as weighted average image name AoA fit the data best (BF10 compared to the next-best 

model = 6.15x10141). Upon further inspection, we found that category label word frequency 
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and length were strongly correlated. However, we did not find evidence of multicollinearity 

(label word frequency, Tolerance = 2.97, VIF = 8.83; label word length, Tolerance = 2.89, 

VIF = 8.38). Since the primary aim of this analysis was to determine whether the previously 

established effects of SOA, and sensorimotor and linguistic distributional information could 

be observed in models including psycholinguistic characteristics, we opted to continue with 

the best-fitting psycholinguistic model. The final psycholinguistic model included category 

label AoA, frequency, familiarity, word length and weighted average image name AoA (see 

table 6 for full model comparisons) 

 We carried this model forward to stage 2, where Bayesian model comparisons 

revealed a similar pattern to our confirmatory analyses. We found strong evidence that every 

additional Helmert-coded SOA improved model fit over the previous one (see Table 7 for 

model comparisons). The best-fitting model included all seven Helmert-coded SOA (BF10 

compared to next-best model = 1.14x1011), and showed that RTs were faster at every mask 

SOA compared to the average of all subsequent SOA. Inspection of the coefficients showed 

that RT became faster as SOA increased, even with the inclusion of relevant psycholinguistic 

characteristics of the label and image name. Furthermore, we found that participants were 

slower to categorise images that followed labels with high compared to average AoA ratings 

[β = 23.97, 95% CI = ±2.42, t(10609.25) = 19.42, p < .001], high compared to average 

familiarity ratings[β = 27.87, 95% CI = ±6.50, t(30323.68) = 8.40, p < .001], as well as to 

images as well slightly slower when categorising photographs that were given names with 

higher compared to average age of acquisition [β = 7.55, 95% CI = ±3.66, t(232.03) = 4.04, p 

< .001]. Labels with high compared to average word frequency meanwhile resulted in faster 

response times [β = -20.03 95% CI = ±7.59, t(32997.13) = -5.17, p < .001], as did longer 

category names [β = -13.35, 95% CI = ±1.50, t(43583.84) = -17.43, p < .001]. 
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In the analysis of accuracy, Bayesian model comparisons in stage one of analysis D 

showed that a model containing category label AoA, frequency, familiarity, as well as 

weighted average image name AoA fit the data best (BF10 compared to the next-best model = 

2.28x1053; see Table 6 and 7 for full model comparisons). We carried this model forward to 

stage 2, where Bayesian model comparisons revealed a similar pattern to our confirmatory 

analyses. That is, we found strong evidence for steps one and two over their predecessors 

(i.e., favouring the inclusion of Helmert-coded SOA 1 and 2) but found no evidence that any 

other step improved performance over the previous one. In addition to the previously 

observed lower accuracy at SOA1 [β = -.32, 95% CI = ±0.06, z = -10.03, p < .001],  and 

SOA2 [β = -.20, 95% CI = ±0.06, z = -5.92, p < .001], compared to all subsequent SOA,  

inspection of the coefficients for the best-fitting model revealed that participants were less 

accurate at categorising photographs of objects following labels of high compared to average 

AoA [β = -.28, 95% CI = ±0.06, z = -9.46, p < .001], high compared to average frequency [β 

= -.62, 95% CI = ±0.11, z = -11.03, p < .001], as well as photographs that were assigned 

names with higher compared to average age of acquisition [β = -.25, 95% CI = ±0.10, z = -

4.72, p < .001] . Finally, accuracy was higher for photographs following labels that had 

higher than average familiarity ratings [β = .66, 95% CI = ±.16, z = 8.16, p < .001].  
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Table 6. 

Exploratory psycholinguistic analysis D stage one: Model comparisons for linear mixed 

effects regressions of RT and logistic mixed effects regressions of accuracy, showing change 

in R2 for nested comparisons and Bayes Factors for the comparison of each step against the 

previous best-fitting one. 

Step Model comparison RT Accuracy 

%ΔR2 BF10 %ΔR2 BF10 

0 Null model (random effects) 32.611 - 28.890 - 

1 Label_AoA vs. Null -.232 91.07 .719 8.72x1033 

2 Label frequency vs. step 1 .796 1.58x1035 2.258 1.30x1032 

3 Label familiarity vs. step 2 .190 1.13x1018 -.278 6.11x1011 

4 Label word length vs. step 3 -.377 1.25x1053 -.026 <0.01 

5 Weighted AoA vs. step 4* .314 1.76x10139 2.313 2.27x1053 

6 Weighted frequency vs. step 5 -.460 0.98 -.091 0.37 

7 Weighted familiarity vs. step 5 -.057 0.51 -.141 0.03 

8 Weighted word length vs. step 5 .334 <0.01 -.120 0.08 

*In accuracy, step 5 was compared to step 3, as step 4 did not improve model fit over step 3.  
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Table 7. 

Exploratory psycholinguistic analysis D stage two: Model comparisons for linear mixed 

effects regressions of RT and logistic mixed effects regressions of accuracy, showing change 

in R2 for nested comparisons and Bayes Factors for the comparison of each step against the 

previous one. 

Step Model comparison RT Accuracy 

  %ΔR2 BF10 %ΔR2 BF10 

9 SOA1 vs. psycholinguistic 3.099 5.96x10470 .234 3.03x1018 

10 SOA2 vs. step 9 2.186 6.88x10337 .085 103048.50 

11 SOA3 vs. step 10 1.634 3.74x10260 .024 0.36* 

12 SOA4 vs. step 11 .906 1.09x10150 .014 0.06 

13 SOA5 vs. step 12 .636 1.11x10105 .007 0.02 

14 SOA6 vs. step 13 .357 5.09x1054 .002 <0.01 

15 SOA7 vs. step 14 .077 1.14x1011 <.001 <0.01 

Note: The data was BF01 = 2.79 times more likely under the step 10 model than under the step 11 model, which 
does not exceed the Bayes Factor threshold for inferencing (BF10 > 3) and thus constitutes equivocal evidence. 
Bayes Factors for models in step 9 and 10 of RT are approximate values.  
 

Analysis E: Sensorimotor and linguistic distributional information.  

In RT, Bayesian model comparisons between step 1 (which entered the best-

performing psycholinguistic model + all SOA) and step 2 (which entered sensorimotor 

distance) revealed evidence against the effect of sensorimotor distance over that of the time 

available for perceptual processing, showing that the data was BF01=18.21times more likely 

under the step 1 model. Furthermore, model comparisons between step 2 and 3(which entered 

linguistic distance) revealed strong evidence against the effect of linguistic over sensorimotor 

distance, showing that the data was BF01= 134.85 times more likely under the step 2 

compared to the step 3 model. This finding matched confirmatory analyses. See Table 2 for 

all model comparisons.  
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In accuracy, Bayesian model comparisons between step 1 and step 2 revealed very 

strong evidence for the effect of sensorimotor distance over that of psycholinguistic 

characteristics of the label and image name and time for perceptual processing, showing that 

the data was BF10=1.35x1055 times more likely under the step 2 model. However, contrasting 

our confirmatory analyses, the inclusion of linguistic distributional information did not 

improve model fit; we found evidence that the data was less likely under the sensorimotor-

linguistic step 3 model than under the sensorimotor step 2 model (BF01 = 21.62). Inspecting 

the coefficients of the step 2 model showed that, in addition to the previously observed 

effects of SOA and psycholinguistic characteristics of the label and image name (see analysis 

D, and full model statistics in supplemental materials on OSF), participants were more likely 

to respond incorrectly to trials with increasing weighted average sensorimotor distance 

between the category label and image name(s) [β = -4.43, 95% CI = ±1.74, z = -5.024, p 

< .001].  

Interactions between sensorimotor and linguistic distance and SOA.   

In RT, Bayesian model comparisons (see Table 8 for all model comparisons) favoured 

the step 6b model (adding the interaction between an SOA of 50ms and linguistic 

distributional information over a non-interaction SOA-psycholinguistic-sensorimotor-

linguistic model (step 3; BF10 = 9.97). However, this was the only interaction that improved 

model fit. Moreover, this model did not outperform a psycholinguistic-SOA model, 

suggesting that overall neither sensorimotor nor linguistic distance affected RT more as the 

time available for perceptual processing increased, when controlling for psycholinguistic 

variables.  

In accuracy, Bayesian model comparisons favoured the step 4b model (adding the 

interaction between the shortest SOA and linguistic distributional information) over a non-

interaction SOA-psycholinguistic-sensorimotor-linguistic model (step 3; BF10 = 3.35). We did 
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not observe this effect in a non-psycholinguistic model of the truncated data. However, the 

data were overall more likely under the simpler SOA-psycholinguistic-sensorimotor-only 

model (step 2) than under any of the interaction models. 

Table 8. 

Exploratory psycholinguistic analysis E, model comparisons showing change in R-squared 

and Bayes Factors for the comparison for each step and the previous one (steps 1, 3) and for 

all interaction models compared to the non-interaction model (Step 3 vs. 4,5,6,7,9,10a-c). 

Step Model comparison RT Accuracy 

 %ΔR2 BF10 %ΔR2 BF10 

0 Null model (random effects) 32.61 - 27.770 - 

1 SOA (1-7) + psycholinguistic vs. null 11.84 3.71x101640 5.347 1.21x10139 

2 Sensorimotor distance vs. step 1 -.176 0.05 -.240 8387430000.00 

3 Sensorimotor distance + Linguistic distance vs. step 2 -.141 0.01 -.274 0.05 

      
4a Sensorimotor distance*SOA1 vs. step 3 <.001 <0.01 -.225 0.28 

4b Linguistic distance*SOA1 vs. step 3 .010 0.11 -.188 3.35 

4c Sensorimotor distance*SOA1 + Linguistic distance 
vs. step 3 

.005 <0.01 -.182 0.02 

      
5a Sensorimotor distance*SOA2 vs. step 3 -.013 <0.01 -.260 <0.01 

5b Linguistic distance*SOA2 vs. step 3 .004 0.02 -.244 0.10 

5c Sensorimotor distance*SOA2 + Linguistic distance 
vs. step 3 

<.001 <0.01 -.243 <0.01 

      
6a Sensorimotor distance*SOA3 vs. step 3 -.007 <0.01 -.274 0.01 

6b Linguistic distance*SOA3 vs. step 3 .017 9.97 -.265 0.02 

6c Sensorimotor distance*SOA3 vs. step 3 .008 0.07 -.265 <0.01 

      
7a Sensorimotor distance*SOA4 vs. step 3 <.001 <0.01 -.274 0.01 

7b Linguistic distance*SOA4 vs. step 3 <.001 <0.01 -.274 0.01 

7c Sensorimotor distance*SOA4 + Linguistic distance 
vs. step 3* 

<.001 <0.01 -.274 <0.01 

      



 291 

8a Sensorimotor distance*SOA5 vs. step 3 <.001 <0.01 -.275 0.01 

8b Linguistic distance*SOA5 vs. step 3 <.001 <0.01 -.275 0.01 

8c Sensorimotor distance*SOA5 + Linguistic distance 
vs. step 3* 

<.001 <0.01 -.275 <0.01 

      
9a Sensorimotor distance*SOA6 vs. step 3 .004 0.03 -.273 0.01 

9b Linguistic distance*SOA6 vs. step 3 .004 0.06 -.271 0.03 

9c Sensorimotor distance*SOA6 + Linguistic distance 
vs. step 3 

<.001 <0.01 -.271 <0.01 

      
10a Sensorimotor distance*SOA7vs. step 3 <.001 <0.01 -.273 0.01 

10b Linguistic distance*SOA7 vs. step 3 <.001 <0.01 -.274 0.01 

10c Sensorimotor distance*SOA7 + Linguistic distance 
vs. step 3 

<.001 <0.01 -.272 <0.01 

 
Overall, these results nuance our confirmatory findings, showing that the inclusion of 

psycholinguistic characteristics of the label and image name explain additional variance in 

RT and accuracy, but that this comes at the cost of the previously observed effect of linguistic 

distributional information. A potential explanation for these findings might be that missing 

values in some of the psycholinguistic characteristics meant that the dataset was limited to 

complete cases only, thus reducing the sample size. However, an exploratory analysis of the 

truncated dataset with the original non-psycholinguistic SOA, sensorimotor and 

sensorimotor-linguistic models showed that the data favoured a model including linguistic 

distributional information over a model including only SOA and sensorimotor information. 

From this, we might infer that psycholinguistic characteristics account for some of the 

variance in accuracy previously attributed to linguistic distributional information. This 

finding mirrors exploratory results from speeded categorisation (van Hoef et al., 2022 – see 

Chapter 2). In that light, it is worth noting that the current work employed log co-occurrence 

frequency vectors to calculate linguistic distributional distance between category labels and 

image names. Such vectors are more likely to correlate with psycholinguistic factors such as 

word frequency and age of acquisition. Therefore, future research might consider using 
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alternative measures, such as a distance measure based on positive pointwise mutual 

information (PPMI; Bullinaria & Levy, 2007).  

 

5.6. General discussion 

 Previous research has shown that effects typically observed in object categorisation 

(e.g., the basic-level advantage) may disappear when task constraints (e.g., presentation time, 

time given to respond) change. Here, we investigated whether the effect of sensorimotor and 

linguistic distributional information we previously observed (van Hoef et al., 2022a – Chapter 

2) also changes as a function of task constraints, in particular the time available for perceptual 

processing.  

We hypothesised that categorisation performance would improve, then level off as 

more time for perceptual processing would become available. Indeed, our analyses showed 

that accuracy rapidly increased at shorter mask SOA (17 to 50 ms), but began levelling off at 

mask SOA from 50 ms, where accuracy was no longer significantly different to the average 

accuracy at longer SOA. By contrast, our analysis of response latencies showed a relatively 

linear decrease of RT; that is, at each mask SOA, responses were slower than the average of 

all subsequent SOA. Our findings for accuracy are in line with previous research, which has 

shown a strong link between the amount of time available for perceptual processing and 

participants’ accuracy in rapid categorisation tasks, but also that accuracy increases more 

rapidly at shorter compared to longer SOA (Bacon-Macé et al., 2007; Mack & Palmeri, 2011, 

2015). Our finding that response time did not level off contrasts some previous work, for 

example Bacon-Macé et al., 2007, who found that after an initial increase, response times in 

go/no-go and yes-no categorisation tasks dropped and then stabilised at SOA of around 50 

ms. Mack and Palmeri (experiment 3; 2015) reported that response times were significantly 

shorter with longer SOA, which matches our present findings, but median values reported for 
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each SOA in their study suggest that RT dropped most strongly between the shortest (17 ms) 

and second-shortest (33) ms SOA. One possible explanation is that the shortest amount of 

perceptual processing in the present study amounted to roughly 33 ms (i.e., stimulus 

presentation for 17 ms and blank SOA screen for 17 ms). By contrast, Bacon-Macé et al. used 

a presentation time of 6ms, with SOA also beginning at 6 ms, bringing the shortest amount of 

time available for perceptual processing to a mere 12 ms. Similarly, Mack and Palmeri (2015) 

used a stimulus presentation time of 25 ms, but measured SOA duration from the stimulus 

onset, such that a SOA of 25 ms meant that the mask appeared immediately after the 

stimulus, limiting perceptual processing time to 25 ms. As such, it is possible that our 

manipulation of perceptual processing time, which was linked to the most common screen 

refresh rate of 60Hz for technical reasons (i.e., online testing), simply was not short enough 

to observe an initial sharp drop in RT. Nevertheless, our study mostly confirmed our 

hypothesis that the time available for perceptual processing would affect categorisation 

performance.  

We also found partial confirmation for the hypothesis that sensorimotor and/or 

linguistic distributional information affect ultra-rapid picture categorisation performance. Our 

analyses show that increasing the average linguistic distance between the block label and 

implicit object names resulted in lower accuracy and slower RT. Furthermore, greater average 

sensorimotor distance between the block label and all implicit object names reduced accuracy 

but not RT.  

While we did not find a consistent effect of sensorimotor information on 

categorisation performance, we believe the current results are still in line with a 

sensorimotor-linguistic account of categorisation. The current results are a clear departure 

from our previous findings using a speeded category verification task (van Hoef et al., 2022a 

– Chapter 2). That is, where the relative effect of linguistic distributional compared to 
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sensorimotor information was small in speeded verification, it is markedly larger in ultra-

rapid categorisation. There are a number of explanations for this. Firstly, it may be the case 

that, in line with Connell and Lynott (2014), the relative task demands of speeded compared 

to ultra-rapid categorisation put different emphasis on sensorimotor compared to linguistic 

distributional information. In speeded object verification, where there is plenty of time to 

extract perceptual information (e.g., up to several seconds), the match between the 

sensorimotor representation activated by the label and the perceptual representation activated 

by the image may have been far more informative than linguistic distributional context. By 

contrast, in an ultra-rapid paradigm, when perceptual cues are limited, participants may have 

relied on good-enough linguistic representations. However, this pattern did not occur: 

sensorimotor information did not have larger effects at longer SOA. It is possible that the 

mask SOA used in the current study were simply too brief to detect an increase. A future 

study may address this by adding longer SOA, which may allow us to distinguish more 

clearly whether more time for perceptual processing activates stronger sensorimotor 

representations.  

Secondly, our blocked design may have dampened the effects of sensorimotor 

simulation activated by the category label. Mack and Palmeri (2015) found that the 

superordinate-level advantage in ultra-rapid categorisation disappears when the target 

category label is presented directly prior to the presentation of the photograph compared, and 

trials are randomised. In our study, participants judged 80 images for each category label. It is 

unclear whether the sensorimotor representations activated by the label were sufficiently 

robust to affect categorisation at the first and the last image equally. However, it is also 

unclear why sensorimotor information would be disproportionally affected by this compared 

to linguistic distributional information, which reliably predicted accuracy. A potential follow-

up analysis might investigate whether images that were presented earlier on in the block were 
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affected more strongly by sensorimotor information than images that were presented later on, 

a follow-up experiment might adapt a speeded category-verification design, where labels are 

presented immediately preceding an image. Incidentally, this might also shed light on the 

question whether linguistic distributional information was simply more robust to our task 

design, and make the comparison to data from a speeded verification task stronger.  

Our exploratory analyses showed no evidence for a robust effect of the basic-level 

advantage, which is contrary to what hierarchical accounts would predict (e.g., (Jolicoeur et 

al., 1984), but our findings were also not in line with previous ultra-rapid categorisation 

studies with a similar design to our study, which showed a clear superordinate-level 

advantage in accuracy at shorter SOA (Mack & Palmeri, 2015). By contrast, the finding that 

categorisation accuracy is better explained by sensorimotor-linguistic information than 

taxonomic level is consistent with how sensorimotor-linguistic theories conceive of concepts 

and categorisation. That is, sensorimotor-linguistic accounts argue that it is overlap in 

sensorimotor and/or linguistic distributional information that determines category 

membership, and that performance differences in categorisation may stem from the degree of 

overlap in activation of this information, not from position in a taxonomic hierarchy of 

concepts.  

Our exploratory analyses also revealed that psycholinguistic characteristics of the 

category label and image names associated with the photograph explained variance in the 

speed with which participants responded as well as their accuracy. The effects we observed 

were partially as expected, that is, higher label age of acquisition resulted in longer RT, and 

lower accuracy. Higher label frequency resulted in lower accuracy. Moreover, images that 

were given names with higher age of acquisition were also categorised slower and less 

accurately. However, in contrast to our expectations, longer labels elicited faster responses. 

Furthermore, participants were slower to categorise items that followed labels that were more 
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familiar. Given the strong relationships between psycholinguistic characteristics such as age 

of acquisition, frequency and familiarity, we must be cautious to draw strong conclusions 

regarding individual effects from these exploratory analyses. 

The inclusion of psycholinguistic characteristics did not change the previously 

observed effects of perceptual processing time and sensorimotor information on accuracy and 

RT. However, in contrast to our confirmatory analyses, linguistic distributional information 

did not predict accuracy above and beyond the time for perceptual processing, sensorimotor 

distance and psycholinguistic characteristics. This suggests that at least some of the variance 

explained by our measure of linguistic distributional information was accounted for by 

psycholinguistic measures. A potential explanation is the fact that we calculated linguistic 

distributional distance measures from log co-occurrence vectors, which may correlate with 

measures of age of acquisition and word frequency. Future work might therefore explore 

alternative measures of linguistic distributional similarity, for example PPMI derived 

similarity (Bullinaria & Levy, 2007; Wingfield & Connell, 2019) to determine whether 

linguistic distributional information and psycholinguistic characteristics explain distinct 

aspects of categorisation behaviour. Furthermore, we found evidence of an interaction 

between the shortest SOA (17ms) and linguistic distributional information in predicting 

accuracy.  

In conclusion, our confirmatory findings show that performance differences in ultra-

rapid categorisation may at least partially be predicted by overlap in sensorimotor and 

linguistic distributional information between category and member concepts. Contrasting 

previous work in speeded categorisation (e.g., van Hoef et al., 2022a - see Chapter 2), our 

confirmatory analyses suggest that linguistic distributional information predicted accuracy 

above and beyond sensorimotor information. This suggests that when participants have 

limited time to perceive an object, they may rely more strongly on linguistic distributional 
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information, however we did not observe an increase in the effect of sensorimotor relative to 

linguistic distributional information as more time for perceptual processing became available. 

Therefore, we suggest that further work is needed to determine whether the longest SOA used 

in this study was still too short to observed flip to reliance on sensorimotor information. 

While these findings are not exactly as we hypothesised, they nevertheless fit with a 

sensorimotor-linguistic account of categorisation, which argues categorisation may 

dynamically depend on overlap in sensorimotor and/ or linguistic distributional overlap.  
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Chapter 6: General Discussion 

The contribution of this thesis to the literature is discussed in three parts. First, I will 

outline the thesis aims and corresponding findings. Next, I will address the contributions of 

this work and its place in the larger literature, by comparing it to previous work on object 

categorisation  

 

6.1. Thesis aims 

Traditional accounts of object categorisation are built on feature-based assumptions 

about the nature of concepts and the structure of semantic memory. These accounts argue that 

concepts and categories are represented either as abstract feature summaries (i.e., prototype), 

exemplars, or nodes in a hierarchically organised semantic memory.  On these accounts, 

categorisation is the process of judging an instance’s feature-similarity to the category 

prototype or stored exemplars. By contrast, current views on the nature of conceptual 

representation argue that concepts are represented in semantic memory not as collections of 

abstract, binary features or dimensions or as exemplars, but rather through a combination of 

(partially reactivated) sensorimotor experience (i.e., perception-action and affective 

experience of the world around us) and linguistic distributional knowledge (i.e., knowledge 

about the distribution of words in language). Crucially however, as of yet there exists no 

explicit simulated-linguistic account of object categorisation, or of the behavioural effects 

(e.g., taxonomic, typicality) that feature-based accounts were designed to explain. If concepts 

are not represented in semantic memory as feature-abstractions (e.g., prototype theory), 

experience with exemplars, or nodes in a hierarchical network, then by what means is 

category membership determined? Moreover, how can variations in categorisation speed and 

accuracy that are typically explained by referring to a particular feature-composition be 

explained?  
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This thesis aimed to evaluate the central assumptions of traditional accounts of 

categorisation, and to test a simulated-linguistic account of categorisation that builds on 

traditional accounts of categorisation in the iterative tradition that is our growing 

understanding of conceptual representation. To that end, this work in thesis tested the 

hypothesis that category membership may be determined by assessing the degree of overlap 

in sensorimotor experience and linguistic distributional knowledge between the concepts that 

represent instances and categories alike. Specifically, this work has zeroed in on behavioural 

effects that are synonymous with feature-based theories of conceptual representation; 

taxonomic and typicality effects, with a primary focus on taxonomic effects. Crucially, the 

aim of this work was not to discard previous explanations of these effects, but rather to adapt 

them to work in a sensorimotor-linguistic framework. The research collected in this thesis 

sought to provide evidence for a simulated-linguistic account of categorisation, and 

investigated whether sensorimotor and/or linguistic distributional information can explain 

basic-level advantage effects, exceptions to the basic-level advantage (e.g., due to object 

typicality or time available for perceptual processing), as well as to test the prediction that the 

relative importance of sensorimotor over linguistic distributional information varies with 

task, specifically when there is limited time to perceive an object (e.g., rapid categorisation).  

The work reported in Chapters 2 and 3 focuses primarily on the classic basic-level 

advantage in object categorisation, that traditional accounts typically attribute to the feature-

characteristics of categories at specific taxonomic levels (i.e., the basic-level advantage), or 

the notion of a preferred entry-level into a taxonomically structured semantic memory. I 

contrasted this with a sensorimotor-linguistic distributional hypothesis, which assigns no 

particular importance to categorisation at any taxonomic level, but rather argues that in 

categorisation, member concepts (e.g., Labrador) overlap in that are closer in sensorimotor 

experience and linguistic distributional context to a category concept (e.g., dog, animal) are 
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processed faster and more accurately. In Chapter 2, I used a classic label à picture 

categorisation task, and found that overlap in sensorimotor experience between member and 

category concepts best predicted the time it took participants to make a decision. Both 

sensorimotor and linguistic distributional information predicted categorisation, but not above 

and beyond taxonomic level. Furthermore, adjusting measures of sensorimotor and linguistic 

distributional information to incorporate object typicality effects improved how well in 

particular sensorimotor information predicted both RT and accuracy. This finding suggests 

that sensorimotor overlap may capture categorical graded structure, although imperfectly (see 

limitations). In Chapter 3, I used a forced-choice response task whereby participants were 

presented with a cue (e.g., Labrador) followed by two correct category options, one basic 

(e.g., dog) and one superordinate (e.g., animal). This study showed that sensorimotor and 

linguistic distributional information affect the processing of basic-level versus superordinate-

level labels, reducing the likelihood of a basic-level choice when the overlap in sensorimotor 

and linguistic distributional information was greater between the cue and the superordinate 

choice, but also revealed intricate interactions with word frequency.  

The effects observed in Chapters 2 and 3 are not clear-cut. For example, the studies 

reported in Chapter 2 showed that an overlap in sensorimotor experience between a category 

and member concept was a better predictor of response latencies than linguistic distributional 

information. By contrast, overlap in linguistic distributional information was a better 

predictor of accuracy than overlap in sensorimotor experience, but not better than taxonomic 

level. Moreover, the findings in Chapter 3 suggest that the effects of sensorimotor and or 

linguistic distributional information may vary with additional predictors of categorisation 

performance such as word frequency of the presented stimuli. It may be the case that these 

findings reflect the flexibility of a conceptual system that relies on sensorimotor and/or 

linguistic distributional information, and is affected by other factors such as word frequency 
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and familiarity. Exploratory analyses indeed hint at a relationship between the time course of 

the categorisation decision and psycholinguistic characteristics of the category labels, such as 

their associated age of acquisition, familiarity and length (but see limitations and directions 

for future research below).  

The primary aim of Chapter 4 was to collect a resource researchers may draw upon 

for future studies on for example object recognition, object naming and object categorisation. 

However, it also revealed a critical methodological advantage of including the 

psycholinguistic information (e.g., word frequency) for all names collected for an image 

rather than just the modal name. This measure proved to be a better predictor of recognition 

latency. In Chapter 5, we built on this finding, by including the weighted average 

sensorimotor and linguistic distance between a target category label and all names given to a 

particular image. As such, the picture naming study described in chapter 4 not only gave us a 

clearer insight into what names were given to an object, it also allowed us to calculate 

measures of sensorimotor and linguistic distance that were rooted in empirical evidence about 

the names given to an image rather than an assumption on the part of the researcher.  

Previous accounts have suggested that the relative importance of sensorimotor and or 

linguistic distributional information in conceptual processing may vary depending on task 

demands (Barsalou et al., 2008; Connell, 2018; Connell & Lynott, 2014). Therefore, the study 

described in Chapter 5 explored whether limiting perceptual processing and time to respond 

might affect the degree to which sensorimotor and or linguistic distributional information 

influence response latencies and accuracy. As in the study described in Chapter 2, linguistic 

distributional overlap between member and category concepts was a better predictor of 

categorisation accuracy than sensorimotor overlap, but contrasting the Chapter 2 studies, it 

also decisively outperformed taxonomic level. These results are complicated by a set of 

exploratory analyses, which suggest that the effect of linguistic distributional information on 
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accuracy is reduced by the inclusion of psycholinguistic characteristics of the category label 

(see limitations and future directions below).  

 

6.2. Contributions 

In this thesis, I examined the novel idea that category-membership is determined by 

the degree of overlap in sensorimotor and linguistic distributional knowledge between a given 

category (e.g., dog) and member concept (e.g., Labrador). Specifically, I examined two key 

effects in object categorisation research: the effects of taxonomic level (e.g., the basic-level 

advantage) and typicality on speed and accuracy in object categorisation. This work takes 

advantage of the recent development of state-of-the-art measures of sensorimotor experience 

and linguistic distributional knowledge (e.g., Lynott et al., 2019; Wingfield & Connell, 2019). 

The results presented here suggest that overlap in sensorimotor and/or linguistic distributional 

information successfully capture some of the relationship between a category and its 

members, and predicts aspects of categorisation behaviour, such as taxonomic effects 

(Chapters 2, 3 and 5) and the interaction between graded category structure and taxonomic 

effects (Chapter 2) that are traditionally explained by referring to features or networks.  

Moreover, these results also suggest that the relative importance of sensorimotor and 

linguistic distributional information to categorical decision-making varies from task to task, 

where testing paradigm, stimulus type and amount of time available for perceptual processing 

affected the degree to which sensorimotor and/or linguistic distributional information 

predicted categorisation performance (RT and accuracy). This is in line with previous 

sensorimotor-linguistic accounts of conceptual processing, which suggest the conceptual 

system may draw differently on both information types depending on task constraints. 

Furthermore, the findings in Chapter 3, and in the exploratory analyses of in particular 

Chapters 3 and 5 suggest that in particular tasks object categorisation may draw on 
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sensorimotor and/ or linguistic distributional information as well as on other psycholinguistic 

variables (e.g., word frequency, age of acquisition and familiarity), to inform a categorisation 

decision.  

The findings in Chapter 2 and 5 provide tentative support for the Linguistic Shortcut 

Hypothesis (Connell, 2018). The measure of linguistic distributional overlap was slightly 

better than sensorimotor distance at predicting categorisation accuracy (but not RT) in 

speeded category verification, but much better in a ultra-rapid categorisation paradigm, where 

there was limited time to perceive and judge an object,  With very little time to accumulate 

the perceptual information that is argued underpins object recognition (e.g., Busemeyer & 

Townsend, 1993; Ratcliff & Rouder, 2000), participants may have defaulted to rely on 

linguistic distributional information instead.  

6.2.1. Comparison to traditional accounts of object categorisation 

It is important to note that the aim of the work presented in this thesis was not to 

disavow the merits of feature-based theories of concepts. If one assumes features are 

verbalised expressions of conceptual representations that have been built from repeated 

sensorimotor experience (e.g., McRae et al., 2005) then features become a convenient 

methodological shorthand for testing theories on conceptual processing. That is to say, most 

recent feature-based work does not argue that features are the stuff that concepts are made 

off, but rather that they serve as a practical tool in measuring conceptual representations. 

Indeed, similarity measures derived from feature-norms have been shown to predict 

conceptual processing in a range of behavioural tasks (Vigliocco et al., 2004). However, it is 

important to note that there are still limitations to such an account. For example, participants 

will readily name features that have no clear sensorimotor correlate (e.g., used to tell time for 

clock; Yee et al., 2013), suggesting that even if one assumes features reflect sensorimotor 

information, they do not only reflect sensorimotor information. Moreover, critical features 
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may not easily be verbalised for all concepts, in particular abstract concepts (e.g., what are 

the features of hunger?). Furthermore, it is unclear how features are grounded in 

sensorimotor experience.  

Even though some recent feature-based theories of conceptual processing have 

explicitly argued against the overly simplified interpretation that features make up concepts, 

traditional accounts of categorisation typically do not nuance the features that underly their 

theories in this manner. Instead, in such theories the fundamental reliance on features as the 

building block of concepts and categories is rarely questioned. When faced with fundamental 

questions (e.g., absence of necessary and sufficient features for certain categories; the 

disconnect between the processes underlying determining typicality and category 

membership; basic-level advantage effects), the answer typically involved more features 

(e.g., characteristic features, distinctive features), different types of features (e.g., functional 

features), or a new framework to support features (e.g., contextual knowledge to constrain 

features). 

In contrast to the definitional, prototype, and exemplar view of categorisation, the 

sensorimotor-linguistic view of categorisation assumes no a priori difference between feature, 

member, and category concepts. All concepts are thought to comprise sensorimotor and or 

linguistic distributional information, which may be drawn on differently depending on the 

task at hand. However, to dismiss all of the traditional findings because of a different view on 

what constitutes a concept, would be to throw out the baby with the bathwater. If we work 

from the basic assumption that sensorimotor-linguistic similarity between member and 

member, and member and category, determine category membership, some of the process 

models and theories outlined by traditional accounts may be repurposed. For example, the 

process model of label → picture categorisation can be adapted to rely on sensorimotor 

experience and linguistic distributional knowledge rather than features. Furthermore, our 
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perceptual experience with specific exemplars may form an important part of particular 

conceptual representations, and relationships between concepts (e.g., car – driver), which are 

the focus of theory-theory accounts, is still very much a part of concepts. I will expand on 

these examples below.  

The results presented in Chapter 2 provide the first evidence that overlap in 

sensorimotor experience determines how quickly participants decide that a depicted object 

belongs to a given category better than a division into discrete taxonomic levels. 

Nevertheless, it was generally true that photographs were categorised faster and more 

accurately at the basic level. How would a sensorimotor-linguistic account explain this? The 

simplest explanation would be that basic-level labels generally (but not always) activate 

sensorimotor simulations which are closer to those activated by the image that follows them 

than subordinate or superordinate labels. This explanation is inspired by Murphy and Smith’s 

(1982) preparation model, which assumes that a given category label activates a conceptual 

representation. This representation is subsequently verified upon seeing an image of an 

object. If the object is a clear match or mismatch, a decision is made. If the object is not a 

clear match or mismatch, additional processing is required. The preparation model assumes 

that superordinate-level categorisation is generally slower because there is no single 

perceptual representation of concepts at this level of abstraction (e.g., no single perceptual 

representation of animal), and requires more information to be active at the same time. The 

advantage over the subordinate model then is thought to stem from a higher membership 

threshold because of greater between-category similarity (e.g., the threshold for determining 

that something is a bird or a dog is lower than for determining whether something is a 

sparrow or a finch). By contrast, on a sensorimotor-linguistic account, an instance’s overlap 

with a conceptual representation comprising sensorimotor experience and linguistic 

distributional knowledge determines how quickly and accurately it is categorised. That is, 
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reading a label (e.g., dog) reactivates aspects of sensorimotor experience across multiple 

perceptual, motor and affective areas (e.g., the sound of barking, the touch of fur, but also 

feelings of fondness or fear). Furthermore, the label activates linguistic distributional 

information about the linguistic contexts dog generally appears in (e.g., bowl, walk, park, 

leash, etc.). Together, both types of information form a rich concept of dog, which is matched 

against the sensorimotor and linguistic distributional information that is activated with a 

subsequent image. On this account, a basic-level advantage may arise because the label dog 

generally (but not always) activates sensorimotor and linguistic distributional information 

that more closely matches a perceived object. By contrast, superordinate-level labels (e.g., 

animal) activate sensorimotor experience and linguistic distributional information that does 

not closely match a perceived object, therefore the activation of more sensorimotor and 

linguistic distributional information is required. Subordinate-level labels on the other hand 

may require the activation of more specific sensorimotor and linguistic distributional 

information.  

This explanation of taxonomic effects closely matches the preparation model, but 

notably also retains aspects of influential feature-based accounts of categorisation. That is, 

sensorimotor representations of categories (e.g., Labrador, dog, animal) are unlikely to 

encompass all aspects of sensorimotor and affective experience every time they are activated. 

Rather, they are partial reactivations of stored sensorimotor experience, that through 

attentional mechanisms may emphasise particular aspects of our experience depending on the 

task at hand (Barsalou, 1999, Connell & Lynott, 2014). Linguistic distributional information 

meanwhile condenses our vast experience with language into statistical patterns. In this 

manner, the activated sensorimotor experience of dog may be an abstraction (summary if you 

will) of our experience with various dogs, and involve linguistic distributional knowledge 

that is an abstraction over the many linguistic contexts in which dog occurs. However, our 
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sensorimotor experience of dog may also focus particularly on a specific exemplar. For 

example, people’s concept of dog may be heavily influenced by experience with a specific 

dog (e.g., their pet corgi), which through regular exposure has become an important aspect of 

their representation of dogs. That is, when categorising a given instance as dog, they might 

activate parts of their perceptual and motor experience with their dog, in addition to linguistic 

distributional knowledge about dogs, and compare them to the target instance. A conceptual 

system that relies on sensorimotor and linguistic distributional information in this manner is 

dynamic (Barsalou, 2003b) in that the most accessible conceptual content at a given point in 

time depends on frequency, recency and context. Determining whether a given object is a 

dog, is my dog or is a large dog, is likely to activate reasonably different sensorimotor 

experience and linguistic distributional knowledge. A sensorimotor-linguistic account of 

categorisation thus flexibly encompasses both summary and exemplar representations, which 

is compatible with mixed prototype-exemplar accounts (e.g., Smits et al., 2002; Storms et al., 

2002; J.D. Smith & Minda, 2000), but does so without the problematic intermediate step of 

transducing perceptual experience into amodal symbols.  

Network-accounts of the basic-level advantage and object typicality (e.g., Jolicoeur et 

al., 1984; Collins & Loftus, 1975) assume that specific concepts are privileged because they 

occupy a particular level in a hierarchical structure, or because they are associated with 

contrasting properties (e.g., when determining that an ostrich is a bird, processing is slowed 

down because ostriches are linked to the property cannot fly, which contrasts the property can 

fly that is linked to bird). The sensorimotor-linguistic account presented here does not assume 

any particular taxonomic level is privileged, or that object atypicality can be captured fully by 

the possession of contrasting properties. Taxonomic effects are not bound to one particular 

level of abstraction, and typicality effects can be observed in concepts that arguably do not 

possess contrasting properties, such as uneven numbers (Armstrong et al., 1983). Rather, 
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taxonomic and typicality effects may arise spontaneously from the similarity relationships 

between patterns of neural activation across sensorimotor, affective and linguistic areas. This 

assumption adapts the differentiation view of taxonomic effects (Murphy & Medin, 1985), 

which also argues against the privileged status of any particular taxonomic level, but assumes 

that taxonomic effects are reflective of a perceived structure of static features and 

dimensions. Moreover, differentiation theory does not attribute representational value to 

category labels, whereas the account presented follows sensorimotor-linguistic accounts of 

conceptual representation in arguing that linguistic distributional knowledge is an integral 

part of conceptual representation.  

The work presented here also shares theoretical ground with connectionist or hub-

and-spoke approaches to explaining behavioural effects in categorisation (e.g., Rogers & 

Patterson, 2008), which similarly suggest stress the importance of sensorimotor and to a 

lesser extent linguistic information, and argue that taxonomic and typicality effects may 

originate in similarity-relationships between patterns of activation. However, connectionist 

accounts view sensorimotor experience, linguistic knowledge and semantic representations as 

related but separate entities (Meteyard et al., 2012). They argue that concepts are not 

represented through distributed reactivation of the modality-specific systems involved in 

perception and handling of their referents, but rather that information from these systems 

forms the input for a separate amodal system or “hub”, which mediates the communication 

between modality and language-specific areas of the brain (Patterson et al., 2007), in the 

same way a hidden layer of nodes mediates between input and output layers in a neural 

network that inspired this line of research (e.g., Rogers & McClelland, 2004). A proposed 

candidate for the neural location of such a hub is the anterior temporal lobe (ATL), as damage 

to this particular brain-region has been shown to result in multi-modal impairments (Lambon 

Ralph et al., 2017; Patterson et al., 2007), which lead to behavioural changes that are argued 
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to be consistent across tasks and stimuli (Lambon Ralph et al., 2017). The present work 

cannot make such architectural claims, but note that a sensorimotor-linguistic account of 

categorisation is not incompatible with hub-spoke accounts, as it may well be the case that 

similarity processes based on sensorimotor and linguistic distributional information are 

governed by particular brain areas. 

Finally, a sensorimotor-linguistic account incorporates the idea central to theory-

theory, namely that perceptual similarity by itself is insufficient to determine category 

membership in many cases (Murphy & Medin, 1985). Indeed, both sensorimotor and 

linguistic distributional aspects of concept representations have been argued to represent 

relationships between concepts. That is, a sensorimotor representation of car may include 

experience of driving, and depending on context may activate information about drivers. The 

same relationship can be expressed in terms of linguistic distributional knowledge, where 

driver and car may occur in the same linguistic contexts (e.g., steering wheel, driver’s seat, 

driving permit, vehicle). In another example, both sensorimotor and linguistic information 

have been argued be able to represent spatial relationships (Louwerse, 2008; Zwaan & 

Yaxley, 2003), whereby the canonical spatial relationships between objects (e.g., branches are 

higher than roots) is represented through perceptual experience and linguistic information. It 

is possible that knowledge about relationships informs categorisation (see also Gentner & 

Kurtz, 2005). For example, when determining whether a particular object is a car, the process 

of matching the perceived object to the category may include the activation of driver as a 

relevant aspect of cars. Likewise, when perceiving an unknown object in the sky, we may 

activate sensorimotor information as well as linguistic distributional information to constrain 

categorical information (e.g., the perceptual information that birds and planes typically 

appear in the sky, or that they appear in the same linguistic contexts).  
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6.3. Limitations and future directions 

6.3.1. Object typicality 

Barsalou (1982, 1983) suggests that the mechanisms for determining object typicality 

differ from those for determining category membership. Indeed, the task demands for a 

category membership judgment and a typicality judgment could be considered to be quite 

different. Where the first is generally an open question with a binary response (e.g., does this 

object belong to the category x, yes or no?), the second is less open (i.e., category 

membership is generally already determined) and often requires an answer that is not binary 

(e.g., ratings). As a consequence, people may make radically different judgments and engage 

different contrast sets (e.g., members vs. non-members for categorisation, and comparison to 

other members object typicality judgments). Indeed, there are examples of atypical items that 

most people would decisively place within a given category (e.g., penguin comes to mind). 

However, while it may be the case that category-membership verification and object 

typicality judgments require a different comparison, they are not unrelated (e.g., Jolicoeur et 

al., 1984; Murphy & Brownell, 1985). If category-verification is argued to depend on a 

judgment of similarity in terms of sensorimotor experience and/or linguistic distributional 

knowledge, it must also explain aspects of graded structure.  

The work in described in Chapter 2 (experiment 2 and 3b) showed little effect of the 

interaction between rated object typicality and subordinate-level categorisation. This finding 

is in contrast with previous work which found that categorisation performance for atypical 

items improved at the subordinate compared to the basic level (Jolicoeur et al., 1984; Murphy 

& Brownell, 1985). A possible explanation may be found in the limited range of typicality 

ratings for the object our study. Nevertheless, adjusting sensorimotor distance to reflect 

graded structure via linguistic distributional distance greatly improved its ability to predict 

both RT and accuracy, suggesting that in this particular study, variations in sensorimotor 
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overlap captured aspects of graded structure that object typicality ratings did not. What does 

this finding mean for a sensorimotor-linguistic account of typicality effects in categorisation? 

One possible answer is that object typicality ratings one the one hand and sensorimotor 

and/or linguistic distributional information on the other hand reflect distinctly different 

phenomena. This explanation is supported by Banks et al., (2020) who found that object 

typicality ratings (collected in the same experiment as the typicality ratings used in the 

present work) predicted label production frequency, rank and RT in a category naming study, 

whereas sensorimotor and linguistic distributional information predicted the ordinal naming 

position of a given member concept. Taken together, these results suggest that in particular 

sensorimotor information captures some aspects of graded structure, but that these aspects 

may not necessarily be equal to those captured by object typicality ratings. However, more 

work is needed to flesh out the relationship between measures of overlap in sensorimotor 

experience and linguistic distributional knowledge on the one hand, and ratings of object 

typicality on the other hand.  

It is not clear why evidence for the relationship between linguistic distributional 

information and object typicality ratings was negative, while adjusting measures of 

sensorimotor distance to reflect graded structure via linguistic distributional distance and in 

accordance with traditional accounts of typicality interactions with taxonomic level worked 

to improve its predictive power. This particular finding contrasts previous work on the 

relationship between linguistic distributional information from a count-vector model (LSA) 

and object typicality ratings (Connell & Ramscar, 2001) and is particularly remarkable since 

Banks et al. (2021) found evidence that a similar measure of linguistic distributional 

information and object typicality ratings from the same study did correlate. As stated before, 

it is possible that the lack of an effect of object typicality observed in Chapter 2 was the result 

of a particular stimulus selection. For example, one possible cause for the lack of a typicality-
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effect may have been that the stimuli we used in the Chapter 2 studies were all rated 

moderately to highly typical (with one exception, gavel, which had to be excluded from the 

analysis for deviating too much from the other stimuli), which may have been because they 

were not explicitly selected to range in object typicality. As such, we may not have been able 

to detect the effect object typicality has on categorisation judgments, or of its relationship to 

linguistic distributional information.  

To explore this matter further, a future study might explore both the individual effects 

of object typicality ratings, overlap in sensorimotor experience and overlap in linguistic 

distributional knowledge on category verification, as well as their relationships on a set of 

items with a broader object typicality range. The normed image set described in Chapter 4 

might prove a useful resource in that regard, as it allows for the calculation of weighted 

average sensorimotor and linguistic distance between a given category label (e.g., bird) and 

the names given to a particular image (e.g., ostrich, emu, bird, animal, creature etc.). 

Theoretically, images that contain atypical objects should be named more frequently with 

specific names, which might mean that weighted average sensorimotor and linguistic 

distributional information for atypical items might show greater overlap with sensorimotor 

and linguistic distributional information activated by a subordinate (e.g., ostrich) rather than a 

basic-level label. Therefore, a measure sensorimotor and linguistic distributional similarity 

between weighted average image names and subordinate-level labels might correlate with 

object typicality ratings. To that end, a future study might also collect typicality ratings for 

the normed image set described in chapter 4.  

Another possibility for the lack of object typicality effects is that our attempt at 

finding an effect of object typicality did not focus on any particular taxonomic level. That is, 

typicality has traditionally been linked to categorisation performance at the basic and 

subordinate level. However, we tested object typicality on a full dataset, which included 
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superordinate items on which basic-level object typicality arguably may not have much of an 

effect (Murphy & Brownell, 1985), for example, the typicality of Labrador as a member of 

dog might not be relevant to the category of Labrador as an animal. It may be the case that a 

wider variety of objects, specifically manipulating a range of object typicality ratings, may 

allow for a clearer comparison between the effect of typicality ratings and sensorimotor-

linguistic measures on RT and accuracy in categorisation.  

 

6.3.2. Taxonomic information occasionally outperforms sensorimotor-linguistic 

information 

Throughout the studies described in Chapters 2, 3 and 5, taxonomic level predicted various 

aspects of performance (RT and/or accuracy) above and beyond overlap in sensorimotor and/ 

or linguistic distributional information between category and member. That is, we found the 

classic basic-level advantage in either RT or accuracy in all three studies (and the replications 

of the studies described of chapter 2). In and of itself, the fact that taxonomic levels were 

good predictors of categorisation performance does not constitute evidence against a 

sensorimotor-linguistic account of categorisation. As I have argued in Chapter 2, just as 

feature-based theories assumed features were organised in such a way (e.g., matching a 

perceived structure of features) that they gave rise to taxonomic effects, it is possible that 

taxonomic effects arise spontaneously from sensorimotor and linguistic distributional 

information. In fact, Connell et al., (2021) found that the relative extent to which different 

perceptual modalities and action effectors underlie sensorimotor experience of concepts is 

sufficient to cluster concepts into an inclusive hierarchy (e.g., the concepts sparrow, crow, 

eagle, and bird tend to be moderately strong in visual, auditory and head-action experience; 

moderately weak in haptic and hand-action strength and very weak on all other sensorimotor 

dimensions, and hence tend to cluster together).  



 320 

If taxonomic levels simply encode sensorimotor and linguistic distributional 

information, the question is why our predictor of taxonomic level explains additional 

variance to sensorimotor-linguistic measures in accuracy (Chapter 2) and RT (Chapter 3, 

chapter 5). Possible explanations lie in word frequency and object familiarity, which I did not 

explicitly control for (with the exception of word frequency in Chapter 3). Previous work in 

has suggested that response times in categorisation may be affected by stimulus familiarity 

(McCloskey, 1980), whereby more familiar stimuli are processed faster than less familiar 

ones. Similarly, Barsalou (2003b) argues that a concept’s frequency of instantiation affects 

how accessible information is. While often conflated with object typicality, some research 

suggests that familiarity affects categorisation separately (Malt & Smith, 1982). As such, it is 

possible that additional explanatory value of taxonomic levels in predicting RT or accuracy 

comes from the fact that participants were simply faster at making judgments for objects they 

were more familiar with.  

 

6.3.3. Linguistic distributional information and psycholinguistic characteristics 

Any study that employs labels either implicitly or explicitly is sensitive to variations 

in the psycholinguistic characteristics of those labels. In studying taxonomic effects in 

particular, word frequency, age of acquisition, familiarity and even word length might all be 

variables that inform the ease of categorical decision making (e.g., Rosch, 1976). The 

confirmatory analyses in this work suggest that taxonomic level indeed interacts with word 

frequency in predicting RT (Chapter 3) in a forced-choice categorisation task. Furthermore, 

while they were not explicitly designed to accurately determine the (often related) effects of 

psycholinguistic characteristics on object categorisation, the exploratory analyses included in 

Chapters 2,3 and 5 suggest that characteristics such as age of acquisition, word frequency, 

familiarity and word length also inform categorical decision-making to varying degrees. 
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Overall, psycholinguistic characteristics of the category label did not predict categorisation 

performance better than overlap in sensorimotor experience or than taxonomic level. 

However, the predictive effect of linguistic distributional information was reduced when 

psycholinguistic characteristics were included in the model.  

Previous research (Murphy & Smith, 1982) has provided some evidence against the 

explanations based of the basic-level advantage based on word-frequency and order-of-

learning. Consequently, Murphy and Smith argue that the assumption that basic-level labels 

are preferred because of their frequency and the order in which they are acquired ignores the 

underlying structure of concepts and categories. Indeed, this assumption seems to create more 

questions than it answers. What is it about basic-level labels that means they are used more 

frequently, and learned earlier? It could indeed be the case that psycholinguistic 

characteristics reflect rather than determine conceptual structure (e.g., patterns of activation 

of sensorimotor and/or linguistic distributional knowledge). However, where psycholinguistic 

characteristics informed performance, they did so separately from sensorimotor information. 

Linguistic distributional information meanwhile was affected by the inclusion of 

psycholinguistic characteristics. This may indicate that psycholinguistic predictors and 

linguistic distributional knowledge explain similar aspects of categorisation behaviour. 

However, the present work used a linguistic distributional measure based on vectors of log 

co-occurrence, which may correlate with psycholinguistic characteristics such as age of 

acquisition and word frequency. As such, future work might explore the use of linguistic 

distributional measures that are less strongly related to psycholinguistic characteristics, to 

explore whether linguistic distributional information and psycholinguistic characteristics 

explain distinct variance or whether they overlap. Furthermore, such a study would need to 

take care to use orthogonal designs to separate strongly related psycholinguistic 

characteristics such as age of acquisition, familiarity and word frequency.  
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6.3.4. Direct comparison to features  

The work presented in this thesis does not directly compare feature-based predictors 

of categorisation to sensorimotor-linguistic predictions. Instead, it focuses on explaining 

effects that have traditionally been explained from a feature-based perspective, for example 

the basic-level advantage, and the superordinate-level advantage in ultra-rapid categorisation. 

As stated earlier, the aim of this work has not been to dismiss the notion that features have 

been a useful measure of operationalising and thinking about conceptual knowledge, but 

rather to stress that an alternative explanation is possible: sensorimotor-linguistic overlap. 

Nevertheless, now that we have established a framework for how a sensorimotor-linguistic 

account might explain categorisation, future studies might explore direct comparisons, such 

as the extent to which the measures of sensorimotor experience and linguistic distributional 

knowledge used in this study overlap with the predictive power of feature-based alternatives, 

such as similarity measures derived from feature-norms.  

6.3.5. Technical improvements 

Due to COVID-19, the study described in Chapter 5, which was initially intended to 

be run in the lab, was moved to a web-based testing environment. While the SOA patterns in 

accuracy and RT that we observed are generally in line with what previous researchers found 

(e.g., Bacon-Macé et al., 2005; Mack & Palmeri, 2015), we had to forego some of the tighter 

controls on stimulus presentation time that would have been available to us in a lab, such as 

having control over the screen refresh rate and size, as well as ruling out lag due to internet 

connection, browser type and installed plugins, or background processes. To counter this, we 

did extensive pilot testing of the experiment across multiple browsers (Chrome, Firefox, 

Edge, Safari, Opera), operating systems (Windows, MacOS and Linux) and displays. 

Furthermore, we applied a strict screening and accuracy threshold, replacing a considerable 
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number of participants, and set a higher upper boundary for our sequential hypothesis testing. 

In addition to this, we used a script to load all images into a buffer at the beginning of each 

block, to ensure loading times did not affect stimulus presentation. A future, lab-based study, 

could aim to replicate the results described in Chapter 5, while maintaining tighter control 

over external variables and timings.  

 

6.4. Concluding remarks 

This thesis explored object categorisation from a sensorimotor-linguistic perspective 

on conceptual representations. Crucially, it has shown that overlap in sensorimotor and/or 

linguistic distributional information between a member and category concept predicts aspects 

categorisation performance in speeded and ultrarapid categorisation. The relative importance 

of either information type may change depending on task constraints. As such, the findings in 

this work are in line with sensorimotor-linguistic accounts of conceptual processing, and are 

the first step in providing an alternative to traditional accounts of object categorisation. 

Sensorimotor-linguistic accounts allow for a great richness of information to come to bear on 

cognitive processes, and we may only be scratching the surface of what such accounts can 

explain.  
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basic trials with a non-chosen label of average frequency, with 95% confidence intervals.  

Figure 4. Predicted RT for pro-superordinate and pro-basic datasets, by taxonomic 

level chosen, and non-chosen word frequency. With 95% confidence intervals.  

 

Chapter 4 

Figure 1. Example of processed images for the category dog.  

Figure 2. Breakdown of removal of trial-level response data, and corresponding 

image/name combinations.  

 

Chapter 5 

Figure 1. Mask creation process, showing an example of an original image, an image 

to which a cut-out filter was applied, and the final mask after using the forward warp tool.  

Figure 2. Trial-diagram, showing the variable SOA (blank screen), between the 

rapidly displayed target-image and the perceptual mask. The block label (e.g., bird) was only 

displayed once per block.  



 360 

Figure 3. Coefficient plots for analysis A, step 7 models of accuracy and RT, 

displaying estimated change in log-odds of answering correct and RT in ms per Helmert-

coded SOA (with error bars showing ±1SE)  

 

 

 


