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Abstract

Everything goes down if you do not have power: the financial sector, refineries and

water. The grid underlies the rest of the country’s critical infrastructure. This

thesis focuses on four specific problems to balance demand-supply gap with higher

reliability, efficiency and economical operation of the modern power grid. The

first part investigates the economic dispatch problem with uncertain power sources.

The classic economic dispatch problems seek thermal power generation to meet the

demand most efficiently. However, this project exploits two different power sources

such as wind and solar power generation into the standard optimal power flow

framework. The stochastic nature of renewable energy sources (RES) is modeled

using Weibull and Lognormal probability density functions. The system-wide

economic aspect is examined with additional cost functions such as penalty and

reserve costs for under and overestimating the imbalance of RES power outputs.

Also, a carbon tax is imposed on carbon emissions as a separate objective function

to enhance the contribution of green energy. The calculation of best power dispatch

is proposed using a cost function.

The second part investigates demand-side management (DSM) strategies to min-

imize energy wastage by changing the time pattern and magnitude of utility load

at the consumer side. The main objective of DSM is to flatten the demand curve

by encouraging end-users to shift energy consumption to off-peak hours or to con-

sume less power during peak times. It is more appropriate to follow the generation

pattern in many cases instead of flattening the demand curve. It becomes more

challenging when the future grid accommodates the penetration of distributed en-

ergy resources in a greater manner. In both scenarios, there is an ultimate need to

control energy consumption. Effective DSM strategies would help to get an accu-

rate balance between both ends, i.e., the supply-side and demand-side, effectively

reducing power demand peaks and more efficient operation of the whole system.

The gap between power demand and supply can be balanced if power peak loads
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are minimized. The third part of the thesis then focuses on modeling the con-

sumption behavior of end-users. For this purpose, a novel artificial intelligence

and machine learning-based forecasting model is developed to analyze big data in

the smart grid. Three modules namely feature selection, feature extraction and

classification are proposed to solve big data problems such as feature redundancy

and high dimensionality to generate quality data for classifier training and better

prediction results.

The last part of this thesis investigates the problem of electricity theft to minimize

non technical losses and power disruptions in the power grid. Electricity theft with

its many facets usually has an enormous cost to utilities compared to non-payment

because of energy wastage and power quality problems. With the recognition of the

internet of things (IoT) technologies and data-driven approaches, power utilities

have enough tools to combat electricity theft and fraud. An integrated framework

is proposed that combines three distinct modules such as data preprocessing, data

class balancing and final classification to make accurate electrical consumption

theft predictions in smart grids.

The result of our solution to balance the electricity demand-supply gap can pro-

vide helpful information to grid planners seeking to improve the resilience of the

power grid to outages and disturbances. All parts of this thesis include extensive

experimental results on case studies, including realistic large-scale instances.
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Chapter 1

Introduction

The conventional power grid covers power generation, transmission, distribution

and consumption sectors. The generation and consumption sites are located far

from each other and unidirectional power lines are used for power transmission.

There is no mechanism for real-time communication between consumers and the

power utility. So, the efficiency of the conventional power grids becomes lower. Es-

pecially in industrialized countries, most of the traditional power grids are contin-

uously under operational activities for decades, without any sufficient maintenance

and supervision.

Power grids continually encounter new challenges which impair their efficiency.

Due to the high interconnectivity of modern infrastructure, a small disturbance

at any location in a network may cause adverse effects on the whole system. Al-

ternatively, a cascade failure may result in severe effects, i.e., power outages. The

example of such a failure can be found in the late 1990s and summer of 2003 in

the United States of America (USA) due to the cascade disturbances in the North

American power grid [1]. To minimize the effect of such failures, advancement

in the field of communication, computation and control can be used for a power

grid, to locally adjust itself against threats, faults or disturbances. The main ob-

jectives of the transition from a traditional grid into a smart grid is to address all

aforementioned problems and to deliver highly sustainable, reliable and environ-

mentally friendly power for consumes. Today, the special attributes used for the

smart grid are; active participation by consumers in demand response (DR) and to
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Figure 1.1: Traditional power grid with one-way flow of power and communi-
cation [2]

protect itself both from physical and cyber-attacks; to accommodate the option of

distributed generation (DG) and storage; self-healing for power disturbance events

to provide power quality as needed in the 21st century [3].

The European Commission (EC) report states that the smart grid must be econom-

ical, reliable, flexible and accessible. According to the smart grid UK vision 2014,

it is a modernized electricity grid that uses information and communications tech-

nology to monitor and actively control generation and demand in near real-time,

which provides a more reliable and cost-effective system for transporting electric-

ity from generators to homes, business and industry [4]. The importance of smart

grids is confirmed by the specific procurement and allocation of billion dollars by

the United Kingdom (UK), European Union (EU), China and U.S government for

engineering research, development and deployment for smart grid realization.

Nowadays, the smart grid is gaining much attention from researchers to provide

feasible solutions to reduce the demand-supply gap. Due to information and com-

munication technologies (ICT), the smart grid’s role has become very effective to

deal with various issues of the conventional grid such as frequent blackout and sys-

tem instability. Smart grid is the next-generation grid to utilize ICTs for real-time

energy information exchange between power suppliers and end-users.

In the smart grid, new opportunities, such as supply-side management (SSM),

demand side management (DSM), accurate load and price forecasting methods
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Figure 1.2: Smart grid with two-way flow of power and communication [5]

and reduction of non-technical losses, need to be explored to balance energy supply

with energy demand and to achieve environmental and economic objectives. As

electricity cannot be easily stored in its original form, it is expected to produce

it at similar times when it is consumed. However, it requires many resources to

balance both ends in terms of expenses, technology, coordination and labor.

In the past, SSM was more concerned about the upgradation of existing gen-

eration and transmission infrastructure. However today SSM strategies support

on-site generation alternatives-including cogeneration; improving maintenance and

control of existing equipment and upgradation with state-of-the-art technologies.

Alternatively, energy consumption management is more economical than energy

generation because of the intelligent appliances, low-cost sensors, smart meters

and the communication and interaction between consumers, devices and the grid

[6]. Therefore, efficient utilization of energy can be ensured by adopting DSM

techniques. In the smart grid, DSM has promising effects on energy efficiency,

i.e., providing the same services using less energy. The user’s payment to the

power utility decreases due to scheduling the load for off-peak hours. In addition,

total energy generation costs and environmental pollution are reduced due to the
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minimal use of fossil fuel-fired power plants. The energy management system

(EMS) is an integral part of the smart grid that typically consists of computer-

aided tools and is largely used by utilities for the optimization of generation and

transmission systems. Energy load forecast is an essential part of EMS, which helps

experts to develop new strategies for perfect planning and operation of smart grid.

In a deregulated environment of the power industry, the role of electricity demand

forecasting has become increasingly important. The main purpose of price and

load prediction in smart grid is to minimize power peak demand and balancing

energy supply with demand [7]. A precise forecasting method not only reduces the

demand-supply gap but also helps to develop a stable and efficient power manage-

ment system. Among numerous forecasting methods, short-term load forecasting

(STLF) aims to predict the load from several minutes up to hours and weeks into

the future. An accurate and stable STLF brings an unprecedented level of flexi-

bility for its management and creates a winning situation both for the generation

and consumption side stakeholders. On one end, it helps the utility to address

uncertain power generation challenges specifically when penetration of renewable

energy resources (RES) is increasing. In addition, it brings higher reliability and

aims to achieve available energy sources economically and rationally in an effective

manner.

One of the main goals of a smart grid is to decrease power system losses specially

distribution losses which are approximately 50% of total system losses in the entire

power network [8, 9]. From generation to distribution, a power network encounters

two types of losses: technical losses (TL) and non-technical losses (NTL). TL

occurs due to losses in cables, transmission lines and transformers during energy

transfer and cannot be prevented within a distributed network. In contrast, NTL

occurs when there is a fraudulent usage of electricity with the aim to escape from

utility charges. Such cases include meter tampering and bypassing, tapping on

secondary voltages and synchronously switching power circuits [10]. The primary

cause of NTL is electricity theft, which gives rise to an estimated revenue loss of

$96 billion annually worldwide [83].
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In recent years, the reduction of NTL has become one of the leading drivers in

the smart grid and the use of advanced methods, such as big data analysis, is

becoming standard for detecting anomalous power consumption. By controlling

electricity theft, utilities curtail expenditure on energy and can better control the

power demand for a specific period. This yields financial benefits in terms of

generation cost and helps to control a wide range of anomalies at the planning

and distribution levels [12]. A precise and efficient theft detection method reduces

the supply-demand gap and helps ensure a stable and efficient power management

system. It addresses uncertain power generation challenges and brings higher

reliability to the available energy sources.

Energy crises are real, extensive and seem to be long-lasting. It is neither inevitable

nor desirable. This thesis aims to reduce the demand-supply gap with increased

penetration of RES at the supply side, developing DSM strategies at the consumer

side, accurate energy generation and consumption forecast methods and methods

of reducing technical and non-technical power losses in the system. Specifically,

STLF is more important because system losses often depend on the load shape

in the system. For example, partially loaded transformers are less efficient, so

it is desired that the system operates at a near-capacity level. Energy forecast

takes information from energy generation about available energy from RES and

non-RES. Similarly, the demand forecast is used to take information from energy

demand about current demand in residential, commercial and industrial sectors.

Based on this information, generation can either be increased or decreased with the

help of SSM. Similarly, available energy can efficiently be utilized by making use

of DSM programs on the consumer side. Generally, an electricity theft detection

(ETD) mechanism of some form is expected because of economic and industrial

requirements [13]. Also, customers have a predefined power purchase threshold,

and due to NTL, the burden on end-users is ultimately increased. However, the

ETD phenomenon is dynamic and complex in nature, comprising diverse aspects

of energy consumption and the variation tendencies over time are nonlinear.
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1.1. CURRENT DEFICIENCIES

1.1 Current deficiencies

In major parts of the world, the current grid operations have remained unchanged

for several years. The technological advancement in sensing technologies, commu-

nications and computational power need to be reformed to the power network for

optimal penetration of RES [14]. More generally, there is a lot of room for research

and development in multiple sectors in smart grids.

One of the examples would be the research of implications to the grid when RES

are connected at the transmission level. Traditional optimal power flow (OPF) in-

volves just conventional fossil-fuel-fired base generation sources, and this already

yields a highly nonlinear, non-convex and mixed-integer optimization problem.

However, it is evident from recent literature in this area that the increased pene-

tration of RES has created new challenges at the planning and operational stage.

The OPF problem escalates when the uncertainties associated with solar pho-

tovoltaic generators (SPGs) and wind power generators (WPGs) are considered,

along with conventional power generation sources, when optimizing generation

cost. Furthermore, it is widely anticipated that renewable energy larger contri-

bution will be based on DG. This might further aggravate the challenges for a

distribution network that scientists do not fully understand yet.

The increase in power peak demand would require the up gradation of costly

energy-based infrastructures. However, the geographical distribution of RES can

help to achieve the balance that delays the need for grid expansion. For this

purpose, both sides, i.e., load level and resources, require special attention simul-

taneously. DSM strategies promise a similar effect to the grid. Also, DR strategies

such as valley filling and peak clipping would offer an estimated annual savings of

80 to 120 billion in the EU and help minimize the required upgrades. The higher

RES generation costs might offset costs to grid expansion. Overall, recent liter-

ature demonstrate that DR is expected to deliver high net benefits to the power

utilities with limited expenditures.
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1.2. NOVELTIES OF THIS RESEARCH

Electricity is an expensive commodity and its consumption must be synchronized

with the generation to avoid wastage. A precise load forecasting method not only

reduces the demand-supply gap but also helps to develop a stable and efficient

power management system. Electricity load in its nature is one of the volatile

and unpredictable commodities and it can rise to tens and sometimes hundreds

of times to its average value. The under and overestimation of power generation

and consumption can pose severe challenges to the power system network. In

other words, by accurate forecasting and even improving the forecasting accuracy

only by 1% will become so impressive and meaningful to have the impact of 3–5%

energy saving at the consumption side. The overall impact of this decrease can

reduce the generation cost of about 0.1% to 0.3% [15]. Conventional methods for

load forecasting cannot handle huge data that has a nonlinear relationship with

load power. Hence an integrated approach is needed that adopts a coordinat-

ing procedure between different modules of electricity load forecasting. For this

reason, various artificial intelligence (AI) and machine learning (ML) forecasting

models need to be proposed to achieve higher accuracy of electricity load and price

prediction using big data in the power market.

Another technological grid deficiency is the lack of data-driven approaches to de-

tect non-technical losses in the power network. Until recently, there were few

effective solutions for this problem despite the availability of crowd-sourced mas-

sive labeled datasets. Labor-intensive premise inspections and account auditing

often cost more than the actual value of the losses. In developing countries, this

proportion is much higher with an estimated cost of $90 billion/year [16]. This

huge loss not only results in driving up prices for end-users and costly government

subsidies but also crippling utilities around the globe.

1.2 Novelties of this research

The overall aim of this research was to investigate, propose and analyze novel

demand-supply balancing techniques. Throughout the research, the focus was to
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1.2. NOVELTIES OF THIS RESEARCH

design a system that guarantees maximum penetration from RES to meet the

expected generation pattern and requires minimal investment for developing new

electricity infrastructure. There are four main parts of this research.

The first part of the study includes an optimal power flow (OPF) model that

combines thermal, solar and wind power generators to balance the unpredictable

power output by RES, where it shows successful results. During the second part of

the study, DSM strategies are exploited to schedule home appliances according to

the power generation (price) curve. With this strategy, not only were power peaks

avoided but also consumption cost was minimized. Electricity load forecasting

(ELF) has always been a significant part of the smart grid. It ensures sustainability

and helps utilities to take cost-efficient measures for power system planning and

operation. The third part of the study focuses on STLF using big data in smart

grids. The STLF is critical to minimize energy wastage at the building level and

mitigate uncertainties for the reliability of the grid. Finally, to combat electricity

theft and fraud in the power network, a novel stacked machine and deep learning-

based approach is proposed. Electricity theft has an enormous cost to utilities

compared to non-payment because of energy wastage and power quality problems.

It is a menace to the power utilities since its inception and no electric power

utility is immune to power theft. This results in not only driving up prices for

end-users and costly government subsidies but also crippling utilities around the

globe. Hence, the main goal of this research is to demonstrate SSM, DSM, STLF

and NTL detection and their abilities to respond to the grid needs.

The focus of this research was firstly on implementing the OPF problem, consider-

ing thermal, wind and solar power generation in the system. The stochastic nature

of RES has been modeled using Weibull, lognormal probability density functions.

The system-wide economic aspect was also examined with additional cost func-

tions such as penalty and reserve costs for under and overestimating the imbalance

of RES power outputs. Also, it has been demonstrated that due to the imposition

of a carbon tax, the overall contribution of green energy has been increased. For

solving the optimization problem, the grey wolf optimization (GWO) algorithm
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1.2. NOVELTIES OF THIS RESEARCH

is proposed. The performance of the GWO approach, in terms of robustness and

scalability, is confirmed on IEEE- 30 and 57 bus systems, respectively.

As an alternative method to balance electric energy, DSM strategies have also

been developed in this research to schedule smart home appliances in an auto-

mated manner. DSM programs usually encompass demand response programs,

fuel substitution programs, efficient conservation of energy programs and above

all commercial or residential load management programs [17, 18]. Reducing and

shifting consumption is one of the main key design features of the residential load

management program [19]. This can only be achieved if users are encouraged to

build energy-efficient buildings and to be well aware of their energy consumption

patterns. Apart from this practical initiative needs to be taken, including high

power appliances shifting from peak hours to off-peak hours for a measurable re-

duction in the peak-to-average ratio (PAR) in load demand. The novel technique,

hybrid GWO and genetic algorithm (GA) (hybrid G2) allow limiting the con-

sumption of home appliances in an optimum way. The results show that through

a carefully designed appliance scheduling model, users can offer a viable solution

to optimal power management among residential energy users.

The under and overestimation of power generation and consumption can pose

severe challenges to the power system network. To mitigate energy wastage at

the building level and control uncertainties for the reliability of the grid [20],

different ELF methods have been applied on a real-world dataset. It has been

demonstrated that conventional methods for load forecasting cannot handle huge

data that has a nonlinear relationship with load power. Hence an integrated ap-

proach is needed that adopts a coordinating procedure between different modules

such as pre-processing, feature engineering and regression of ELF. The proposed

novel convolutional neural network (CNN) model handles big data efficiently and

demonstrates better results compared to conventional forecasting techniques.

In recent years, the reduction of NTL has become one of the leading drivers in

the smart grid and the use of advanced methods, such as edge data analysis, is
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1.3. CONTRIBUTIONS OF THE RESEARCH

becoming standard for detecting anomalous power consumption. By controlling

NTL, utilities curtail expenditure on energy and can better control the power de-

mand for a specific period. This yields financial benefits in terms of generation

cost and helps to control a wide range of anomalies at the planning and distri-

bution levels [12]. The proposed novel stacked machine and deep learning-based

framework performs energy theft tasks efficiently to segregate normal and mali-

cious consumption patterns. To produce high-quality classifier training data, data

preparations steps such as imputation, outliers handling and standardization algo-

rithms are proposed. Second module develops a hybrid data resampling approach

to combine the characteristics of over-sampling and under-sampling techniques.

Three different machine learning ML methods, which are uncorrelated and skill-

ful on the problem in different ways, are employed as the base learning model.

Finally, a recently developed deep learning approach, namely a temporal convolu-

tional network (TCN), is used to ensemble the outputs of the ML algorithms for

improved classification accuracy.

1.3 Contributions of the research

In the smart grid, new opportunities need to be explored to balance energy sup-

ply with energy demand and to achieve environmental and economic objectives.

During overview of the current smart grid technologies in the early stage of this

research, it has been recognized that the energy demand-supply gap can be mini-

mized considering two sides of the coins i.e, the generation and consumption. The

work is logically divided into four parts, i.e., SSM, DSM, STLF and ETD in the

power network.

In the past, SSM was more concerned about the upgradation of existing generation

and transmission infrastructure. However today SSM strategies can struggle to

replace aging power plants with efficient ones, improve in maintenance and control

of traditional types of equipment and bring changes into diversifying alternative

fuel sources. Similarly, DSM programs need to engage end-users to make informed
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decisions about their energy consumption. Energy consumption management,

DSM, is more economical than energy generation [18]. DSM needs to be focused on

because most of the outages due to system failure are caused by existing problems

at the distribution side. By participating in DSM programs users are encouraged

to manage energy usage efficiently and smartly. It includes shifting their loads from

peak hours to off-peak hours. In this way, overall consumption is not much affected

however energy peak shaving is achieved. One instant benefit of adopting SSM

and DSM strategies is to reduce investment in developing new infrastructure for

power plants and transmission networks to meet ever growing electricity demand.

It is pertinent to mention that the SSM model is based on OPF while the DSM

model is based on a smart energy management system for the residential user.

Today’s technologies do not allow to store or queue extra energy in an economical

manner. Also, due to the limited transmission capacity of the existing power

network, it cannot be transported to other regions and hence makes electricity

characteristics local and time-varying in multiple aspects among different regions.

To balance both sides of a power network, the role of ELF is negligible. The

primary purpose of price and load forecasting is to minimize power demand peaks

and flatten the demand curve to meet generation pattern reliably and efficiently.

Electricity theft is one of the smart grid’s leading drivers that often causes a wide

range of anomalies at planning and distribution levels. By detecting electricity

theft, utilities curtail expenditure on energy and can better control the power

demand for a specific period. This yields financial benefits in terms of gener-

ation cost and helps to control a wide range of anomalies at the planning and

distribution levels. A precise and efficient theft detection method can reduce the

supply-demand gap and ensure a stable and efficient power management system.

It addresses uncertain power generation challenges and brings higher reliability to

the available energy sources.

The major contribution of this work therefore includes (i) total energy generation

cost minimization with OPF, (ii) demand profile shaping with DSM, (iii) NTL
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1.4. STRUCTURE OF THE THESIS

minimization with data driven methods, (iv) accurate electricity load and price

forecasting using big data in smart grid and (v) carbon emission control with max-

imum penetration of RES. The four methods, i.e., SSM, DSM, ELF and detection

of NTL can balance fast-growing consumption with traditional power generation

plants to create near-zero smart energy generation and consumption electricity

network.

1.4 Structure of the thesis

In this research, four new electricity balancing tools are proposed for residen-

tial, commercial and industrial applications. This section illustrates how different

chapters are logically interconnected in this thesis. Also, research approaches and

selected case studies are explained. Furthermore, it demonstrates how different

chapters of this thesis link together. The structure of the thesis is aptly summa-

rized as follows.

Chapter 2 includes a thorough literature review and research work carried out on

the optimization problems pertaining to the relevant algorithms applied in the

generation, distribution, ELF and ETD. Chapter 3 describes single-objective for-

mulations and solutions to the OPF problem considering conventional generators

and stochastic RES. Chapter 4 recognizes that one of the biggest challenges is to

achieve energy balance when intermittent power generation sources are present

in the system. At present, fast-reacting power plants are used to achieve an ap-

propriate level of energy dispatch by adjusting their generation. This chapter

emphasizes consumer-side related smart grid technologies, i.e., DSM, to elastic

the power demand for a particular time. Once the DSM background has been

analyzed, Chapter 4 is continued to develop an ELF model using big data in the

smart grid. It employs the CNN algorithm along with feature selection and ex-

traction algorithms to analyze STLF capabilities in the smart grid. Particularly,

the day ahead and week ahead electricity consumption profiles of the residential

sector are predicted to compute required energy for a particular time. Based on
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prediction results, smart appliances operations are controlled to participate in DR

program for their usage in more appropriate time slots when electricity prices are

low. Overall, this section addresses the electrical energy balancing problem with

the exploration and exploitation of domestic smart grid solutions.

There are places where electricity is being theft; thus it was also determined to re-

search alternative cost-effective strategies to cover the imbalance caused by NTL.

Chapters 5 and 6 employ data-driven approaches to optimize the problem of dis-

tribution network NTL minimization. Today no electric power utility is immune

to power theft. The electrical power network is a diversified field that requires

many intricate tools for an efficient power management system. From a differ-

ent but interconnected perspective, the energy imbalance problem was addressed,

i.e., reduction in residential and industrial NTL detection in distribution network

operations. Even with the slow traditional power plants, the electricity theft

mechanism can reduce the heavy load of electrical systems and save huge revenue

loss for power companies. Finally, the conclusion and potential future work are

discussed in Chapter 7.
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Chapter 2

Background and literature review

Today, electricity power network faces challenges in all its components i.e., gener-

ation, transmission, distribution and consumption. This section reviews the most

relevant literature pertaining to the SSM, DSM, ELF and ETD in conjunction

with the significance of current research work.

2.1 Supply side management

SSM refers to the actions taken to ensure that the generation, transmission and

distribution of energy are conducted efficiently. Effective SSM measures mainly

depend upon OPF of energy at generation and transmission side. Utility compa-

nies may look at means of modifying their load profile to allow their least efficient

generating equipment to be used as little as possible (compared with high efficiency

equipment that should be used to the maximum). SSM along with OPF increase

energy efficiency, allowing the utility company to defer major capital expendi-

ture, which might otherwise be required for increasing their capacity in growing

markets.

In smart grid, efficient SSM strategies deliver electricity at lower cost (permitting

lower prices to be offered to consumers) and reduces environmental emissions per

unit of end-use electricity provided. SSM can also contribute to improving the

reliability of a supply system. With the current trend of deregulating the supply

industry, it is becoming more important to embark on SSM methods where the
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supplier, user and the environment all win. In smart grids, SSM helps utility to

improve maintenance activities, better control of existing equipment and upgrade

operational capabilities with state-of-the-art technologies. Also, they may look

at on-site generation alternatives, including co-generation, consider diversifying to

alternative fuel sources (such as natural gas, solar, wind, biofuels).

In a typical power network, a large number of power plants are interconnected with

the grid to supply energy. These generation sources have multiple constraints

and multiple cost functions. Since the inception of OPF about half a century

ago, numerous traditional optimisation techniques have been proposed for appli-

cation in this field. These include nonlinear programming, interior-point methods,

quadratic programming and mixed-integer linear programming [21–23]. Because

of their fast convergence and robustness in finding an optimal solution, some of

these techniques have been successfully adopted by industry. However, a key issue

with such optimisation methods is the requirement to first linearise the optimisa-

tion function. For this reason, the non-convex, non-smooth and non-differentiable

properties of the optimisation function are often approximated.

2.1.1 Applications of heuristic algorithms

To address this problem, heuristic optimisation algorithms have also been pro-

posed. These aim to find an optimal solution for the power system without mod-

ifying the original cost function [24]. Generally, heuristic algorithms fall into two

main categories, namely single solution based and population-based. Simulated

annealing and tabu search best represent single solution based heuristic algorithms

in this area [25, 26]. Population-based heuristic algorithms have been proposed,

including genetic algorithms GA, particle swarm optimisation (PSO), crow search

algorithms (CSA), cuckoo search optimisation (CSO), artificial bee colony (ABC),

differential evolution (DE) and success history-based adaptive differential evolu-

tion (SHADE) algorithms [27–33].
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Various bespoke heuristic approaches have also been proposed in the context of

OPF to enhance the efficiency of the search methods. The authors of [27] proposed

a modified GA to solve the OPF problem by introducing an enhanced genetic

operator for an improved problem-specific optimisation. When tested on the well-

known IEEE RTS 96 and IEEE-30 bus system, the modified GA yields improved

elitism and fitness scaling features, compared to a basic GA. Similarly, a quadratic

cost function for OPF that considered multiple valve-point loading effects is more

efficiently solved by an improved PSO algorithm, as compared to the standard PSO

approach [34]. Karaboga and Akay [35] proposed a population-based heuristic

algorithm, ABC, that demonstrates competitiveness with other proposed methods

for OPF, in part because of the robustness of the algorithm, but also possibly

because fewer parameters were controlled.

With regard to modern heuristic techniques, it is essential to achieve a suitable

balance between exploration and exploitation. When efficiently driven, the former

emphasises the investigation capabilities of the algorithm in the search domain of

unknown regions. The latter, by contrast, enhances the ability of the algorithm to

find the global solution on the basis of the information provided by the exploration

strategy. These two aspects are contrary to each other and thus remain a major

challenge for the research community. Note that standard ABC performs well in

terms of the exploration process because of its randomness; however, the relatively

poor exploitation phase can result in poor convergence [36].

The DE algorithm has been suggested as a way to enhance ABC [37]. This in-

cludes, for example, use of ‘onlooker bees’ with a predefined probability and knowl-

edge of the current best solution. Gao et al. [38] exploited a chaotic system not

only improve the initialisation phase, but also to efficiently modify the search

mechanism to find an optimal solution. This approach depends on knowledge of

the current best solution to improve the exploitation aspect of standard ABC.

Tanabe and Fukunaga [33] proposed an advanced variant of DE, which yields an

algorithm they call SHADE. Here, the settings of successful control parameters

are used to guide the selection of future control parameters. This aims to ensure a
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suitable balance between the exploration and exploitation processes. Furthermore,

a comparatively fast convergence rate is achieved for nonlinear, multimodal and

constrained optimisation problems.

The efficiency of SHADE is further increased when combined with an effective

constraint handling technique, namely the superiority of feasible solution (SF) ap-

proach [39]. However, the resulting SHADE-SF [40] sometimes attains premature

convergence (i.e. becomes trapped in a local solution) and the convergence rate

can be very slow. Furthermore, the proposed techniques in references [40, 41] are

verified only on IEEE-30 bus system which does not guarantee good performance

over medium and higher bus systems (IEEE-57 and IEEE-118). For example,

the authors of reference [40] ran 24000 iterations to determine their optimal solu-

tions, requiring several minutes to converge to a local solution because of the high

computational load. Similarly, the authors of references [41, 42] ran their pro-

posed techniques for fewer iteration numbers (i.e. 6 200), and did not obtain the

constant convergence curves for other algorithms. For higher iteration numbers

(i.e. > 1000), there is a higher probability that other algorithms may outperform

the proposed algorithms to find better solutions with less computational time.

This implies that algorithms’ exploration and exploitation capabilities were not

fully explored. This could be impractical for industrial power plant applications,

which require fast and robust algorithms to handle uncertain demand. When an

algorithm converges to a local solution in the search space, it might satisfy all the

constraints but it could yield an inferior value for the objective function i.e. a much

better solution may exist. In practice, this could mean spending more money to

balance the same demand that could otherwise be achieved with algorithms that

find the OPF global solution.

In the economic dispatch (ED) problem, system constraints (especially limita-

tions on network parameters) may often have been ignored; however, complying

with network constraints is essential for OPF. Reference [43] mentions system

constraints, but does not explicitly address the question of how to satisfy these
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constraints. Furthermore, in the ED problem, emission aspects and voltage pro-

files are generally ignored; however, these are again all important in the case of

OPF.

It is clear, therefore, that in a mixed network consisting of thermal power genera-

tors (TPGs), solar power generators (SPGs) and wind power generators (WPGs),

further research into OPF is required. A number of optimisation issues in this

context are addressed in the present study, which has a particular focus on un-

certainty modelling of SPGs and WPGs. The biggest challenge for incorporating

SPGs and WPGs into the electricity grid is their intermittent nature. Normally,

RES are owned by private operators, from which the grid DSOs sign an agreement

for purchasing scheduled power. However, since electricity generation from these

RES are uncertain, sometimes the power output may be more than the scheduled

power, leading to underestimation of the available power level. The DSOs gen-

erally bear the penalty cost, since surplus power goes wasted if not utilised. By

contrast, overestimation is the scenario in which the generated power is less than

the scheduled power. To mitigate power demand, the DSOs must therefore keep

spinning reserve power, adding to the ongoing operating cost of the system.

2.2 Demand side management

Residential buildings account for 20-40% of total energy demand, and hence energy-

efficient buildings are essential for the sustainable development of electric power

systems [44]. Apart from being a major energy consumption source, buildings are

also identified for a substantial amount of energy wastage. Hence, the DSM’s role

is critical to minimize energy wastage at the building level and mitigate uncer-

tainties for the reliability of the grid [45].

The DSM monitors, implements, and plans certain utility activities to influence

electricity usage to produce required changes, time patterns and magnitude, in

the utility’s load shape. In the 1970s, the importance of DSM was first recognized
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and direct load control (DLC) is one of the premiers approaches used for residen-

tial load management [46]. By applying DLC programs, utility company remotely

controls energy consumption and operations of certain household appliances. For

instance, thermal comfort equipment including heating, ventilating and air condi-

tioning (HVAC), refrigerators, pumps and light control are well-known examples

of DLC programs. When considering home automation and residential load con-

trol specifically, users’ comfort is on the top priority and considered as a hurdle in

DLC programs execution [47].

Apart from this practical initiative needs to be taken, including high power ap-

pliances shifting from peak hours to off-peak hours for a measurable reduction in

the peak-to-average ratio (PAR) in load demand. Load shifting is expected to be

even more important because of the high penetration of plug-in hybrid electric ve-

hicles (PHEVs). Usually, PHEVs require 0.2-0.3 kWh charging power for one-mile

driving [48]. This significantly enhances the new load on the existing distribution

system. Particularly during charging hours, it doubles average household demand,

thus worsening the existing high PAR. In absence of a properly reinforced system,

high PHEVs penetration can create an unbalanced condition, thus compromising

power quality standards, voltage regulation issues and even prospective damage

to utility and consumer equipment.

Today, dynamic pricing replaces DLC programs features. In a dynamic pricing

mechanism, users are motivated to manage their loads individually on a volun-

tary basis, e.g., shutting and shifting heavy loads from peak hours to off-peak

hours [49]. Most popular and frequently used schemes of dynamic pricing include

critical-peak pricing (CPP), real-time pricing (RTP), inclined block rate (IBR),

time of use pricing (ToUP) and day-ahead pricing (DAP) schemes. With the help

of these schemes, users are encouraged to shift appliances from peak hours to

off-peak hours. This helps to achieve a lower PAR and reduces consumer costs

[50]. However, in a smart grid, load scheduling in response to pricing signal is an

alternative to DLC. For future smart grids, numerous other methods have been

proposed to obtain energy efficiency both at the supply-side and demand-side [51].
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Besides other methods to achieve energy efficiency in smart grids, we will focus

on the energy management techniques on the demand side and OPF methods on

the supply side.

2.2.1 Applications of heuristic algorithms

Researchers have recently developed and implemented different state-of-the-art

algorithms in SG. These algorithms successfully analyzed commercial, residential

and industrial buildings in terms of their load consumption profile. Researchers

have focused on optimizing energy controllers and schedulers in such a way that

energy cost is brought to an optimum level for utility companies and customers.

Maximum attention is given to balancing the supply-demand ratio and reducing

customer costs to a minimum level. Multiple factors are considered while develop-

ing these algorithms: appliance rating, pricing schemes, utility company priorities

and consumer demand to achieve maximum benefit for all stakeholders.

The research work carried out by [45] proposes a game-theory-based idea to sched-

ule energy consumption in the residential sector. In their work Mohsenian-Rad

A., et al. applied a distributed algorithm-based optimization. Several diverse

but interconnected aspects are thoroughly investigated for energy consumption

scheduling (ECS). A pricing mechanism is developed based on the convex and

increasing cost optimization function. The proposed method is considered a ref-

erence study for DSM strategies. Vickrey-Clarke-Grove (VCG) method proposed

in [52] is taken as an alternative mechanism. The primary purpose of this method

is to attain fairness, efficiency, truthfulness and non-negative transfer (i.e., from

utility to user) among end-users. The proposed pricing methodology is based on

differentiable, increasing and convex cost function. The suggested VCG method

inspires end-users to shift their load from on-peak hours to off-peak hours. In this

way, social welfare is obtained and the utility gets benefits in terms of reduction

in the average load shape curve.
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The role of pricing schemes is paramount in achieving an effective DSM model.

In [53], authors discussed the significance of combining inclining block rates with

real-time pricing and weighted average filter-based price prediction. Both energy

scheduler and price predictor interact in HEMS while participating in demand

response programs. The authors also formulated a detailed mathematical model

while considering price prediction capabilities to reduce energy consumption. With

a minor change in independent but correlated performance parameters, it is ex-

plained with experimented setup how to influence consumption patterns for max-

imum efficiency. In HEMS, an appliance waiting time is inversely proportional

to the flexible or adjustable control parameters. The authors achieve very effec-

tive performance results; however, the problem of fairness remains unaddressed in

their proposed model. Author in Ref. [54] explored the importance of a heuristic-

based optimisation model in DSM and employed an evolutionary algorithm (EA)

to schedule home appliances. A new pricing scheme, a day-ahead load shifting

pricing scheme, is proposed to minimise the optimisation problem. The simula-

tion results are obtained while considering residential, commercial, and industrial

end consumers. Their main focus of their work was on how to relate appliances

waiting time with user comfort or delay. The researchers achieved comparable

results in terms of total energy cost minimisation and reduction in PAR. However,

a major drawback of the proposed model was the difficulty in achieving fairness

and compatibility among smart appliances.

In reference [55], smart home appliances are optimally scheduled with RTP. The

authors focused on reducing energy costs in HEMS by minimizing unconventional

electricity usage and obtaining maximum advantages from energy storage mech-

anisms. The proposed model achieved a 22.6% reduction in the total cost and

a reduction of 11.7% peak price when compared to the normal pricing scheme.

A major flaw in their work was not to fully exploit optimizing schemes. To ad-

dress robustness and scalability problems, the proposed DSM architecture stores

energy when prices are low and utilizes it during peak hours to keep energy costs

minimum. The authors utilized a Linear programming-based optimal scheduling
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model and achieved suboptimal results.

The non-deterministic polynomial (NP) time hardness-based optimal scheduling

model is discussed in [56]. The authors use greedy iterative algorithms to meet

the home scheduling goal. In their work, optimization is achieved by using linear

programming and artificial intelligence optimization approaches. Lower peak load

and lower peak fluctuation phenomenon are also discussed. Problem formulation

is made not only based on the user’s load demand but also the generation cost.

In references [57], authors propose a mixed-integer linear programming-based al-

gorithm for fascinatingly scheduling home appliances. The real price tariff is used

for scheduling home appliances to reduce cost as well as peak reduction. In [58],

multiple types of users in the proposed model are evaluated. These users are cat-

egorized as commercial, industrial and residential users. From simulation results,

it can be concluded that the proposed algorithm contributes significantly to the

minimization of PAR and electricity cost.

The GA based cost minimization method is used in references [59]. In these papers,

RES and battery storage are integrated into the existing system. RES are supposed

to charge a battery bank for later use when electricity prices are high during the

high energy demand. For battery efficiency and life, a controller is developed

to monitor the charging and discharging thresholds associated with the battery

bank. Furthermore, when electricity prices are low, batteries are supposed to be

fully charged. Later, when prices are high then certain high-priority appliances

are handled from the battery source to save user cost.

It is vital to notice that all previous literature considered end-users with a fixed

load curve. However, while designing a pricing mechanism, load uncertainty needs

to be given high weightage [52]. The adopted DSM model must predict the load

curve of the consumer based on his energy usage profile. To achieve an effective

balance, both the real-time pricing and inclining block rates need to be combined.

The authors propose a multi-stage model that reveals information related to ap-

pliances consumption over different time intervals. For this purpose, an objective
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function is formulated while considering appliances load categorization according

to their consumption to achieve optimization-based scheduling. Their proposed

work achieved remarkable results and beat many states of the art models in terms

of billing mechanism and avoidance in load synchronization. Experimental results

demonstrate a reduction in energy cost, total PAR, and achieving suitable fairness.

However, the proposed model did not tackle a vital aspect of appliances waiting

time in HEMS.

Authors in [60] addressed two of the most effective and related ideas about fair-

ness and optimality. They combined RTP with an hour-by-hour billing mechanism

and presented it as an alternative pricing scheme to the work proposed in [62]. To

validate results, a game theory-based optimisation problem was formulated to min-

imise total energy cost and PAR. While residential users were in consideration, the

proposed model obtained 73% higher efficiency in fairness when inversely related

to optimality. Using an artificial intelligence-based technique, backtracking algo-

rithm, authors in [61] proposed an intelligent solution for appliance scheduler in

DSM and adopted an RTP mechanism for residential consumers. The performance

of the proposed model was evaluated only with PAR reduction and computational

complexity of the algorithm. However, a few important aspects such as coverage

area, fairness and waiting time of appliances were neglected. Mohsenian et al. in

[62] utilised Incentives based mechanism to encourage consumers to participate

in DR programs and schedule their load according to the pricing signal from the

utility. However, it is practically impossible for most utility companies to get

equipped with short term load and price prediction mechanisms. Simultaneously,

the energy consumption scheduler needs to predict the actual price for better load

control, all in real-time, considering the electricity pricing environment.

Authors in Ref. [63] presented an autonomous three-layered DSM architecture

with the iteration flow mechanism between different layers. The proposed model

consists of a load balancer (LB), admission controller (AC) and the third layer was

composed of a load forecaster and the demand response (DR) manager. Multiple

loads were categorized based on their energy consumption profile following the
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consumer choice and demand to start operation. The AC receives a request with

an interface to start the operation of a particular appliance taking part in the

DR program. It is the responsibility of the AC to check whether the capacity to

start an appliance is available or not, considering the total load limit. If both the

constraints, such as power peak limit and appliance operation in off-peak hours

are satisfied, the AC allows operation of the appliance. In contrast, when the

available capacity of an appliance operation is surpassed, then the AC neglects

that request and the appliance operation request is forwarded to LB. The main

role of an LB is to solve an optimization problem based on an objective function to

allocate a future time slot to complete the operation of that particular appliance

on time. Both the LF and DR manager have their location in the upper layer

of the proposed architecture to communicate with the smart grid to collect and

distribute real-time information. Particularly, the role of LF is to act as an auxil-

iary module to provide information to the LB and DR manager to further improve

the energy consumption profile by exploiting real-time energy pricing information.

For example, it is easy to efficiently operate appliances with available load forecast

information to fill consumption valleys and avoid power peak loads in the grid.

The authors obtained competitive results for the proposed model. However, scal-

ability and robustness are compromised when the number of appliances requested

exceeds a certain number.

To enhance the performance of the three-layered model and to achieve better

results regarding total energy cost minimization, PAR reduction and user comfort,

we will consider the dynamic pricing scheme along with hybrid GA and GWO

algorithms based optimization problem. Also, the performance of the proposed

DSM model will be evaluated to tackle the problem of excessive requests from an

appliance.
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2.3 Electricity load forecasting

The need for accurate short term load forecasting (STLF) strategies can be traced

back to the 1960s, and perhaps one of the first comprehensive studies on STLF was

conducted by Heinman et al. in 1966 [64]. The authors used regression analysis to

investigate the relationship between temperature and energy consumption during

summer. Since then, many other approaches and methods are proposed for STLF

with variations in the degree of success. The STLF methods are broadly classified

into two categories: classical statistical methods and AI methods. The statistical

methods determine the mathematical relationship between the exogenous factors

(independent) and the load (dependent). Many statistical methods are discussed

in the literature, such as multiple linear regression, time series analysis, adaptive

filtering, and exponential smoothing [65]. The regression method assumes a linear

or nonlinear relationship between dependent and independent variables (price,

weekdays and weather attributes).

2.3.1 Statistical models

The statistical methods identify the load pattern, and, based on the obtained pat-

tern, the time series analysis approaches are utilized to provide the future value of

the measurements. Regression analysis is then applied to determine the coefficients

of the independent variables in the assumed model. For instance, authors in [66]

used a multiple linear regression model to forecast the electric load up to 24 hours

ahead for Sulawesi Island Indonesia, by selecting the current and previous hourly

values of the temperature as independent variables. Time series models [67], on

the other hand, achieve accurate prediction by performing correlation analysis of

past observation. Some of the most widely used time series models are the auto-

regressive integrated moving average (ARIMA). These models have shown good

performance measures based on the box and Jenkins methodology. Fard et al. [68]

proposed an ARIMA-based algorithm to capture the linear component of the load
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time series. However, the existence of various outliers, computational burden and

building a model with raw data tends to make the forecasting accuracy unstable.

2.3.2 Artificial intelligence and machine learning models

Since the early 1990s, AI techniques have been widely explored prediction meth-

ods. One of the popular AI methods is neural networks (NNs). In artificial neural

networks(ANNs), the prediction is based on assuming a nonlinear relationship be-

tween historical data and external variables. The NNs prediction models provide

promising prediction results, and that is the reason why they are extensively used

in different applications. However, NNs undergoes several weaknesses, which in-

cludes over-fitting issue, estimation of connection weight, model construction, and

consideration of extensive data for model training. Due to these reasons, it is

challenging to employ NNs for STLF problems [69]. In 1995, turkey et al. [70]

proposed an innovative AI technique they called support vector machine (SVM)

and support vector regressor (SVR) to address the shortcoming of NNs. These

methods employ empirical risk minimization (ERM) principles to improve the

training process and find globally optimal solutions in the search space. However,

these methods are computationally costly and hence make the algorithm difficult

to converge. Also, these methods are not suitable for large data sets and their

performance degrades when training class values are overlapping.

For STLF strategies, most of the work is based either on selection or classifica-

tion methods where decision tree (DT) algorithms and ANNs have gained much

attention [71]. Both methods have limited capabilities such as DT faces over-

fitting problems, which means that model performance is good in training but

not in prediction. Similarly, ANN models have limited generalization capabilities,

inadequate control over convergence and stability, and insufficient capabilities to

deal with uncertainty. Furthermore, the learning-based model does not take into

account the big data characteristics, and the performance evaluation criterion is

based only on price and load data, which is not large. With the consideration of

big data characteristics, forecasting accuracy needs to be further improved.
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2.4 Detection of non-technical losses (electricity

theft)

There are three major challenges in supervised NTL detection methods i.e., han-

dling missing and outliers’ data values during data preprocessing, data class un-

balancing and choosing an appropriate classifier. This subsection reviews the most

relevant literature about the challenges stated in conjunction with the importance

of the current research work.

In the first instance, feature pre-processing is fundamental to the application of the

classifier. In a study [72], the authors utilized the conjunction of SVM and decision

DT algorithms to detect electricity theft with higher accuracy. Both studies have

proposed very promising results, however, none of them addressed missing data

issues. The authors in [73] conducted a detailed review of 34 supervised ML-

based research papers on ETD and found that only half of the considered research

articles addressed the issue of missing data values. Maddilina et al. [74] used SVM

and a boosting classifier, XGBoost, for identifying anomalies in the usage pattern

of consumers. With smart meter data analysis, consumers are ranked based on

their load profiles and essential features are extracted by making use of auxiliary

data. The SVM utilized the empirical risk minimization principle to enhance the

training process and improve performance with the boosting algorithm. However,

the authors did not take into account the data preparation steps and the presence

of various outliers in primary data from the market can make the classification

accuracy volatile.

Data class unbalancing is another critical problem in smart meters’ labeled data

sets for ETD applications. It causes a biasedness problem as the ML model will

learn key features and concepts related to the majority class and minority samples

(theft cases) that are most important to be identified would most often remain

unattended. To achieve an effective and unbiased ML model performance, a bal-

anced representation of samples is essentially required. Paulo et al.[75] used a
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deep learning (DL) model, namely the convolutional neural network (CNN), for

accurate detection of electricity theft. However, a major drawback of model gen-

eralization arises when the final output is taken from a fully connected layer in

the CNN. To address this problem, the authors of [76] applied a random forest

(RF) technique to obtain the final output of the classification task. In their work,

the imbalanced class problem was solved using a synthetic minority oversampling

technique (SMOTE) [77]. Although the proposed method addressed the model

generalization issue, SMOTE’s synthetic data generation can create an overfitting

problem. When a model overfits, it means that the model is performing better on

seen or training data, but its performance degrades for unseen or test data.

Once the process of data preprocessing is completed, the next challenge is the

selection of an appropriate classifier to efficiently segregate the hones and theft

consumers. Machine learning and time-series models are two main ways of ETD.

Based on smart meter data, normal and abnormal power consumption patterns

and footprints can be identified with irregular, longer and higher electricity usage

patterns than regular consumptions. The machine learning algorithm is gradually

trained based on supervised learning to determine the relationship between input

features (consumption) and corresponding labels (field inspection results). The

work described in [78, 79] apply supervised machine learning to characterize the

class label of normal and anomalous power consumption patterns. Since these

algorithms utilize already fabricated data, the computational cost is moderate with

no requirement of hardware devices and prior knowledge about network topology.

However, there are several associated shortcomings in existing classification-based

schemes such as high false-positive rate (FPR), time-consuming engagement of

experts and low adaption to a new type of electricity frauds [80].

Given the importance of boosting and DL algorithms, a limited but growing body

of literatures [81–84] utilized the publicly available SGCC (State Grid Corpora-

tion of China) dataset and successfully applied for NTL detection in smart grid.

Hussain et al. [81] used a feature engineered based category boosting (CatBoost)

algorithm in conjunction with the SMOTETomek sampling algorithm for ETD.
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The proposed model achieved an area under the curve (AUC) score of 92%. How-

ever, it is very challenging for boosting algorithms to attain a higher accuracy due

to the presence of the various outliers, noise and data sparsity since each estimator

in boosting algorithms is obliged to fix the error of the predecessors. Study in [82]

exploited a CNN based long short term memory (LSTM) model for ETD. In this

proposed hybrid model, CNN is used to automate the feature extraction process,

whereas LSTM is used to solve a classification problem. The authors also utilized

the synthetic minority oversampling technique (SMOTE) to avoid class imbalance

problem. However, SMOTE algorithm generates synthetic data instances for mi-

nority class samples to obtain an equal distribution of both majority and minority

samples. It causes low generalization and overfitting problems, resulting in inaccu-

rate prediction model results for unseen/test data. In [83], the authors proposed a

DL methodology based on multilayer perceptron (MLP) and a convolutional neu-

ral network (CNN) to capture electricity theft from raw electricity consumption

(EC) data. However, a major drawback of using CNN and MLP networks is their

difficulty in handling large time series data. Due to this, the input is limited to a

fixed size window and the prediction model cannot capture a descent in the EC

data if it occurred before the analysis period. More recent work in [84] utilized a

deep siamese network (DSN) to discriminate between honest and dishonest con-

sumers in EC data. The proposed model achieved good prediction results but at

the cost of two shortcomings, as compared to the other well performing DL meth-

ods [85]. First, DSNs are relatively slow to train due to quadratic pairs learning.

Secondly, the output of DSN does not involve probabilities due to involvement

of the pairwise learning, hence making it not generalizable and sensitive to some

variations in the input [86].

Time-series data analysis methods are widely used in electricity theft detection,

wherein statistical methods such as autoregressive moving average (ARIMA) have

shown good performance in stable electricity markets. In this regard, Singhet al.

[87] proposed a relative entropy concept that captures variations in probability

distribution obtained from multiple consumers. Similarly, Joker et al. [88] made
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use of energy consumption patterns as a base recognition system to model the pre-

dictability of normal and abnormal consumption patterns with advanced metering

infrastructure (AMI). Although, statistical methods help capture the partial non-

stationary in smart meter (SM) data and could be crucial for ETD. The presence

of various outliers and building the model on raw data may make the classification

accuracy unstable.

The macro-level (microgrid) and micro-level (SM) energy consumption profiling

are fundamental to the application of the classifier. It is necessary to enrich the

characteristics of normal energy consumers and differentiate the outliers to relate

to the energy theft phenomenon. In a binary classification problem, various ag-

gregating methods are also used for ETD. In a recent work, Jindal et al. [72]

proposed energy consumption data aggregation for multiple households in local

communities. For households, the authors employed a decision tree to predict

energy consumption value and then a SVM classifier was trained on multiple fea-

tures to locate customers with anomalous consumption behavior. On a similar

task, Pulz et al. [89] used census data to extract social indicators to find the

correlation between socio-economic indices and losses for electricity theft detec-

tion under various scenarios. The aggregated data-driven approaches are useful;

however, problems like non-stationary high-volume data measurements need to be

addressed to compose useful clusters.

Mostly, the aforementioned literature focuses on classifier design or feature engi-

neering algorithms, where conventional classifiers, e.g., SVM and decision trees

(DT) are popular [90, 91]. However, SVM usually has a high computational cost

and is hard to obtain optimal values of hyperparameters to achieve higher classi-

fication results. DT, on the other hand, possesses overfitting problems that mean

its performance is high during training (seen data) but not in prediction (unseen

data) [92]. Besides, these machine and deep learning methods rarely consider big

data into account and the experiments are conducted only on price or load data,

which is not sufficiently large. Thus, with the consideration of big data, the theft

detection accuracy could still be improved.
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2.5 Summary

This chapter reviews OPF, DSM, ELF and NTL with their challenges and key is-

sues. It is pointed out that the conventional OPF has non-linear constraints that

make it a highly non-linear, non-convex optimization problem. In literatures, non-

linear programming, interior-point methods, quadratic programming and mixed-

integer linear programming are proposed to handle OPF problems because of their

fast convergence and robustness. However, such optimization methods first lin-

earise the optimization function, which affects the non-convex, non-smooth and

non-differentiable properties of the optimization. A number of bespoke heuristic

approaches have been proposed in the context of OPF to enhance the efficiency

of the search methods. A survey of intelligent energy management methods is

presented, where pros and cons pertaining to the proposed methods are discussed.

Due to the elasticity and diversity of electric load demand, the grid operator adopts

DSM strategies to reshape the load profile and the overall cost of end users can

thus be minimized.

This chapter also reviews current literature on demand response and demand-side

management methods. All of the discussed DSM techniques are based on shift-

ing the load from on-peak hours to off-hours. For this purpose, home appliance

scheduling algorithms are employed in-home energy management system to opti-

mize the objective demand profile according to the price signal from the utility.

More attention should be paid to educating end-users to participate in DR pro-

grams or to developing a less complicated technique whilst addressing the concern

of all types of users.

This chapter also reviews and summarizes a variety of short-term load forecasting

models using statistical and machine learning algorithms. One of the critical issues

in today’s grid is to sustain power network stability when the high penetration of

distributed energy resources increases day by day. Most of the existing literature

works on classifier design. Recent advancements in communication technologies
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accelerate the need for load and price forecasting models using big data in the

smart grid.

Balancing the demand-supply gap is a complex problem. It is almost impossible

to depend on a single technology to end current energy crises. The detection of

non-technical losses is required to solve the same energy unbalancing problem. A

number of models are reviewed for this purpose, where most of the work is carried

on time series data models. However, these methods cannot efficiently handle the

sheer volume of available data. The aggregated data-driven approaches would be

helpful.
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Chapter 3

Power flow optimization for supply side

management

3.1 Introduction

Optimal power flow (OPF) in power systems research was first introduced in 1962

by Carpentier [93] and since then multiple extensions and solutions have been

proposed to solve OPF. It has particular significance when the distribution system

operators (DSOs) aim to maintain reliable and economical system operation in an

electric power system. The main objectives of OPF are optimising generation cost,

power loss minimisation, maintaining voltage stability and reducing greenhouse gas

emissions, all while maintaining optimal settings of various system constraints.

Special care must be taken to ensure that the constraints on power generator

capabilities, the current carrying capacity of the line, the generator bus voltage

and the power flow balance are all satisfied. During the process of optimisation, the

optimal performance of the system is achieved when scheduled generator power,

complex power flow in the lines and the voltage vector of buses are in accordance

with the required operating state of the system.

OPF with only traditional thermal power generators (TPGs) is widely studied in

the literature. However, with increased penetration of RES, it is necessary to incor-

porate associated uncertainty into the power network. A number of optimisation

issues in this context are addressed in the present chapter, which has a particular
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focus on uncertainty modelling of SPGs and WPGs. The biggest challenge for in-

corporating SPGs and WPGs into the electricity grid is their intermittent nature.

Normally, RES are owned by private operators, from which the grid DSOs sign

an agreement for purchasing scheduled power. However, since electricity genera-

tion from these RES are uncertain, sometimes the net power outputs are greater

than the scheduled power, resulting in underestimating the available power level.

The DSOs generally bear the penalty because the surplus power would go wasted

if not utilized. By contrast, power overestimation is when produce power is less

compared to the scheduled power. To avoid unwanted situation, the DSOs must

therefore keep spinning reserve power, adding to the ongoing operating cost of the

system.

3.1.1 Contribution and chapter organization

In the present chapter, a new objective function is formulated that considers the

generation costs of the TPG units along with direct, penalty and reserve costs

of RES. Wind distribution is modeled utilizing the Weibull probability density

function (PDF) and solar irradiance is modeled with a lognormal PDF (see later

section 3.3 for details and references). Generation cost is optimized, and the effect

on optimal scheduling changes to reserve and penalty costs is investigated. Finally,

fossil fuel-driven TPGs harmful emissions to the environment, a carbon tax is

imposed in proportion to the emitted amount (tons/hour) greenhouse gases [94].

For the relevant case study in the present article, a carbon tax is embedded into

the objective function to investigate its effect on generator scheduling.

To summarise, the cost functions and associated optimisation algorithms that have

been developed for OPF to date, have either relied on linear approximations or,

when using modern heuristic techniques, have seen unsolved challenges in relation

to the exploration and exploitation phases. The present research aims to address

these limitations by means of grey wolf optimisation (GWO). First introduced by

Mirjalili et al. [95], GWO has been proven to be flexible, easy to apply, scalable
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Figure 3.1: IEEE-30 bus system.

and, most importantly in the present context, has an inherent capability to strike a

practically useful balance between exploration and exploitation. (see section 3.4).

To the present authors’ knowledge, the application of GWO to OPF in the pres-

ence of uncertain power outputs from RES has not yet been documented in the

literature. The performance of the new approach is evaluated and benchmarked

against other well recognised evolutionary algorithms such as GA, PSO, CSA,

SHADE-SF, ABC and two well-established hybrid algorithms, namely GA-PSO

and ABC-CSO, for the modified IEEE-30 and IEEE-57 bus test systems. The

GWO potential is investigated to reduce both the total fuel cost and optimisation

convergence rates. Eight different scenarios, for example involving carbon tax and

for different types of renewable are also evaluated. Hence, novel contributions are

made in three main areas: the new objective functions for OPF; the use of the

GWO approach to optimise objective functions both in small and medium-scale

systems; and a simulation based investigation for selected case study examples to

demonstrate the benefit of proposed approach in terms of operation cost, compu-

tational time and scalability.

The rest of the chapter is organised as follows. Section 3.2 describes the mathemat-

ical model and associated constraints for OPF. Section 3.3 presents the uncertain

SPG and WPG output models. Section 3.4 develops the new approach for apply-

ing GWO to OPF with the presence of uncertain RES. The six algorithms under
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Figure 3.2: Valve point loading effect on a quadratic cost function.

consideration are compared for several realistic case study problems in simulation

in sections 3.5 (IEEE-30 bus), 3.6 (IEEE-57 bus) and 3.7 (hybrid algorithms).

3.2 Mathematical model

In Tables 3.1 and 3.2, important parameters for the IEEE-30 and IEEE-57 bus

system networks are summarised, respectively. Focusing initially on the IEEE-30

bus system for brevity and illustrative purposes, Fig. 3.1 shows that the network

comprises three different power generation sources, i.e., TPGs, WPGs and one

SPG. Outputs of the SPG and WPGs contain variations which need to be balanced

with the help of reserve and other generator outputs collectively. Thus, the total

generation cost includes the total operational cost of the TPGs, together with the

penalty and reserve costs due to intermittency in the SPG and WPG outputs.

Penalty and reserve cost details are provided in subsequent sections.

Although the present article focuses on OPF, power systems are in general, highly

nonlinear and, therefore, many control and optimisation issues become hard-to-

solve problems unless linearised. As a result, GWO offers the potential to im-

prove other power system problems, such as controlling flexible alternating current

transmission system (FACTS) devices and the optimisation of the placement of

distributed generators.
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3.2.1 Cost model for thermal power generators

TPGs are operated on fossil fuel. The relationship between generator output

power (MW) and fuel cost ($/hr) is straightforwardly expressed with the following

quadratic equation,

CT0(PTg) =
NT∑
i=1

ai + biPTg,i + ciP
2
Tg,i (3.1)

where ai, bi and ci are cost coefficients associated with the i-th TPG, while NT

represents the total number of TPGs. However, cost function modelling with a

valve point loading effect has a precise and more realistic impact on the quadratic

cost function. In practice, TPGs operation is based on controlling the steam valves

for turbine operation through distinct nozzles. When the individual nozzle of the

multi-valve system operates at its full output, the highest efficiency of a TPG is

achieved [96]. Fig. 3.2 illustrates a multi-valve loading effect on the quadratic cost

function. To model these valve point loading effects, the basic cost function in Eq.

3.1 is altered with the addition of the absolute value of the sinusoidal function

for a multi-valve steam turbine. Consequently, the TPG units total cost ($/h)

becomes,

CT (PTg) =
NT∑
i=1

ai + biPTg,i + ciP
2
Tg,i +

∣∣gi × sin (hi × (Pmin
Tg,i − PTg,i)

)∣∣ (3.2)

In Eq. 3.2, gi and hi are cost coefficients representing the valve-point loading effect,

while Pmin
Tg,i denotes the minimum power which the i-th TPG produces when it is

in operation. The coefficients used in this work are provided in Table 3.3.

3.2.2 Direct cost of wind and solar photovoltaic power

TPGs are fossil fuel-fired. When compared to such conventional generators, SPGs

and WPGs need no fuel for operation. In this case, when RES belong to DSOs,
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Table 3.1: IEEE-30 bus system characteristics [40].

Main characteristics Value Details
Number of buses 30 6 generator buses and 24 load buses
Number of branches 41 Connect generator and load buses with each other
Number of TPGs 3 Connect at bus 1 (slack), 2 and 8
Number of WPGs 2 Connect at bus 5 and 13
Number of SPG 1 Connect at bus 11
Input variables 11 Scheduled power for five generators without PTg,1 which is slack bus

and bus voltages for all generator buses (with slack bus)
Connected load with buses - 283.4 MW, 126.2 MVAr
Allowed voltage range for load buses 24 [0.95-1.10] p.u.

Table 3.2: IEEE-57 bus system characteristics.

Main characteristics Value Details
Number of buses 57 7 generator buses and 50 load buses [97]
Number of branches 80 Connect generator and load buses with each other [97]
Number of TPGs 4 Connect at bus 1 (slack), 3, 8 and 12
Number of WPGs 2 Connect at bus 2 and 6
Number of SPG 1 Connect at bus 9
Input variables 13 Scheduled power for five generators without PTg,1 which is slack bus

and bus voltages for all generator buses (with slack bus)
Connected load with buses - 1250.8 MW, 336.4 MVAR
Allowed voltage range for load buses 50 [0.95-1.10] p.u.

only the initial outlay or maintenance cost of the RES are assigned [98, 99]. How-

ever, when the ownership of RES belongs to private parties, scheduled power

obtained from RES is charged in accordance with the mutually agreed contract.

The direct cost of the j-th wind power plant in terms of scheduled power is mod-

elled as follows,

CWd,j
(PWs,j) = dw,jPWs,j (3.3)

where dw,j and PWs,j represent the direct cost coefficient and scheduled wind power

associated with the j-th WPG, respectively. Similarly, the direct cost of the k-th

solar power plant is determined using,

CSd,k
(PSs,k) = ds,kPSs,k (3.4)

where ds,k and PSs,k are the direct cost coefficient and scheduled solar power from

the k-th SPG, respectively. Although there is only one SPG in the present case

study example (Fig. 3.1), the mathematical formulation utilises a k subscript here

so as to develop and solve the generalised problem.

40 Inam Ullah



3.2. MATHEMATICAL MODEL

3.2.3 Cost evaluation of uncertainties in wind power

Due to the intermittent nature of RES, two situations may be encountered with

respect to the energy generation profile. Situation one arises when the generated

power from RES is less than the expected value. This is referred to as overes-

timated output power. To compensate for overestimated power and to provide

uninterrupted power supply to end consumers, the spinning reserve needs to be

maintained by system operators on the generation side. The cost associated with

reserve generating units, as required to address the overestimation problem, is

termed the reserve generation cost [100].

The cost for the j-th wind power plant is determined using,

CWr,j
(PWs,j − PWa,j) = rw,j(PWs,j − PWa,j)

= rw,j

∫ PWs,j

0

(PWs,j − PW,j)fw(PW,j)dPW,j (3.5)

where rw,j is referred to as the reserve cost coefficient pertaining to the j-th wind

power plant, PWa,j is the available power from the same wind power plant and

fw(PW,j) is the probability density function for the wind power of the j-th power

plant. The output power probability calculation from various WPGs at different

wind speeds is discussed later (section 3.3.2).

The second situation arises when the the generated power from RES is greater

than the estimated power. The surplus power is potentially wasted. In this case,

the DSO aims to reduce output power from traditional TPGs. This situation

is referred as underestimated output power from wind energy resources, and the

associated cost is called the penalty cost. This penalty cost, paid by the DSO in

proportion to the power generated from WPG is calculated as follows [40],

CPW,j
(PWa,j − PWs,j) = pw,j(PWa,j − PWs,j)

= pw,j

∫ PWr,j

PWs,j

(PW,j − PWs,j)fw(PW,j)dPW,j (3.6)
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where pw,j and PWr,j represent the penalty cost coefficient and rated output power

from the j-th WPG.

3.2.4 Cost evaluation of uncertainties in solar photovoltaic

power

The output power from SPGs in the network is also intermittent and uncertain in

nature. The method to solve over and underestimation of SPG output is similar

to that used for the WPGs. However, one distinct difference is that solar radi-

ation follows the lognormal PDF as compared to the Weibull PDF for the wind

distribution [101]. In the present work, the reserve and penalty cost models are

built following similar concepts to those proposed by reference [102].

In the case when the generated output power is less than expected, the reserve

cost is calculated as follows [40],

CSr,k
(PSs,k − PSa,k) = rs,k(PSs,k − PSa,k)

= rs,k · fs(PSa,k < PSs,k) · [(PSs,k − E(PSa,k < PSs,k)] (3.7)

where rs,k and PSa,k represent the reserve cost coefficient and available power

respectively, associated with the k-th SPG. The solar power shortage probability

is represented by fs(PSa,k < PSs,k), while E(PSa,k < PSs,k) defines the expected

power of the SPG below PSs,k. The penalty cost for the k-th solar power plant is,

CSp,k
(PSa,k − PSs,k) = ps,k(PSa,k − PSs,k)

= ps,k · fs(PSa,k > PSs,k) · [E(PSa,k > PSs,k)− PSs,k] (3.8)

where ps,k represents the penalty cost and fs(PSa,k > PSs,k) shows the probability

of surplus power generated by the k-th solar power plant as compared to PSs,k.

Finally, E(PSa,k > PSs,k) is the expected surplus output power.
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Table 3.3: Thermal power generator emission and cost coefficients in IEEE-30
bus system [40].

TPG Bus # ai bi ci gi hi αi βi γi ωi µi
PTg,1 1 0 2 0.00375 18 0.037 4.091 -5.554 6.49 2.00E−04 6.667
PTg,2 2 0 1.75 0.0175 16 0.038 2.543 -6.047 5.638 5.00E−04 3.333
PTg,3 8 0 3.25 0.00834 12 0.045 5.326 -3.55 3.38 2.00E−03 2

Table 3.4: PDF parameters for solar and wind power generators in IEEE-30
bus system [40].

WPG plants SPG plants

Windfarm No. of wind Rated power Weibull PDF Weibull mean Rated power Lognormal PDF Lognormal mean
number turbines (PWr) in MW parameters (Mwb) (PSr) in MW parameters (Mlg)

1 at bus 5 25 75 c = 9, k = 2 v = 7.976 m/s 50 (connected at bus 13) λ = 6, ψ = 0.6 I = 483 W/m
2 at bus 13 20 60 c = 10, k = 2 v = 8.862 m/s

3.2.5 Carbon tax based emission model

Traditional TPGs release greenhouse gasses into the environment. The emission

of harmful gasses such as NOx and SOx into the environment increases when the

generation from thermal power generators increases (in p.u. MW). This direct

relationship is represented by Eq. 3.9, i.e., harmful emissions in tons per hour

(ton/hr),

E =
NT∑
i=1

[
(αi + βiPTg,i + γiP

2
Tg,i)× 0.01 + ωie

(µiPTg,i)
]

(3.9)

where αi, βi, γi, ωi and µi are the emission coefficients of the i-th TPG. Table 3.3

shows the emission coefficients used in this research. These values are similar to

those introduced by reference [99], except for a small adjustment to coefficient µ

for the generator connected with bus-1.

In recent years, to produce clean energy and to protect the environment from

the effects of harmful gases, notably to address global warming, many countries

are imposing a carbon tax on greenhouse gasses emissions [103, 104]. Due to

the associated additional cost, the energy production sector is under enormous

pressure to reduce such emissions or to produce a cleaner form of energy from RES.

In the present work, a carbon tax is optionally imposed on the level of greenhouse
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gas emissions. The carbon emission cost ($/hr) is determined as follows,

Cem = E × Ct (3.10)

where Cem and Ct represent the carbon emission cost and carbon tax per unit

amount of greenhouse gasses, respectively.

3.2.6 Objective functions

The objective functions for OPF are formulated from the various model compo-

nents discussed above. In this article, Objective 1 is based on the sum of the costs

from Eqs. 3.2–3.8, whilst Objective 2 also includes the emissions from Eq. 3.9.

Hence: Objective 1: Minimise,

Obj1 = CT (PTg)+
NW∑
j=1

[
CWd,j

(PWs,j)+CWr,j
(PWs,j−PWa,j)+CWp,j

(PWa,j−PWs,j)
]
+

NS∑
k=1

[
CSd,k

(PSs,k) + CSr,k
(PSs,k − PSa,k) + CSp,k

(PSa,k − PSs,k)
]

(3.11)

where NW and NS are the number of WPGs and SPGs in the network, respec-

tively. To study the impact of carbon tax on generation scheduling, the second

objective function is constructed by adding the emission cost to Eq. 3.11.

Objective 2: Minimise,

Obj2 = Obj1 + Cem (3.12)

Both OPF objective functions, Eqs. 3.11 and 3.12, are subject to system equality

and inequality constraints, as discussed below.

Equality constraints : Equality constraints represent typical load flow equations

in a power system. These constraints are used for power balancing of both real

and reactive powers generated to the total demand and loss in a system. The

equality constraints are stated below [40]:
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(a) Active power constraints:

PGi = PDi + Vi

NB∑
j=1

Vj [Aij cos(σij) +Bij sin(σij)] i ∈ NB (3.13)

(b) Reactive power constraints:

QGi = QDi + Vi

NB∑
j=1

Vj [Aij sin(σij)−Bij cos(σij)] i ∈ NB (3.14)

In Eqs. 3.13–3.14, σij = (σi− σj) represents the voltage angles difference between

bus-i and bus-j and NB represents the total number of buses. The active and

reactive power demand at bus-i is represented by PDi and QDi whilst the active

and reactive power generation is represented by PGi and QGi, respectively. Power

generation can either be from conventional power generators or through RES. The

transfer conductance and susceptance between bus-i and bus-j are represented by

Aij and Bij, respectively.

Inequality constraints: The inequality constraints define operating limits for

the equipment and components in the power system. These also relate to the

security constraints on load buses and lines.

(a) Generator constraints:

Pmin
Tg,i 6 PTg,i 6 Pmax

Tg,i , i = 1, ....., NT (3.15)

Pmin
Ws,j 6 PWs,j 6 Pmax

Ws,j, j = 1, ....., NW (3.16)

Pmin
Ss,k 6 PSs,k 6 Pmax

Ss,k , k = 1, ....., NS (3.17)

Pmin
Tq,i 6 PTq,i 6 Pmax

Tq,i , i = 1, ....., NT (3.18)
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Pmin
Wq,j 6 PWq,j 6 Pmax

Wq,j, j = 1, ....., NW (3.19)

Pmin
Sq,k 6 PSq,k 6 Pmax

Ss,k , k = 1, ....., NS (3.20)

V min
G,i 6 VG,i 6 V max

G,i , i = 1, ....., NG (3.21)

(b) Security constraints:

V min
L,p 6 VL,p 6 V max

L,p , p = 1, ....., NL (3.22)

Slq 6 Smaxlq , q = 1, ....., Nl (3.23)

where Smaxlq in Eq. 3.23 and the similar terms in Eqs. 3.15–3.22 represent the

constraint limits. In particular, Eqs. 3.15–3.17 define active power limits on the

TPGs, SPGs and WPGs while for the same generators, Eqs. 3.18–3.20 define

reactive power capabilities. Furthermore, Eqs. 3.21–3.22 apply voltage limits on

the generator buses and load buses (PQ). NG and NL represent the number of

generator buses and load buses, respectively. Finally, line flow limits on apparent

power oscillations are defined by Eq. 3.23 for the total number of transmission

lines (Nl).

It is pertinent to mention here that, after achieving an optimised solution for

power flow, the equality constraints are satisfied automatically via the power bal-

ance equations. By contrast, the inequality constraints are control variables. These

include the generator active power and generator bus voltages, and are intended to

be self-limiting. When the optimisation algorithm is applied to choose a feasible

solution, the selected value of these control variables lie in the bounded range.

However, inequality constraints associated with the slack bus generator, the reac-

tive power of other generators, line capacities and voltage limits on load buses, all
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require special attention. Hence, section 3.4 of the article describes the handling

of inequality constraints with control variables in more detail.

3.2.7 Load bus modelling

In OPF studies, generator reactive power capability has an important role. With

regard to TPGs, narrower implementation ranges are defined in this study, com-

pared to the ranges defined by e.g. references [104, 105]. This is because, in recent

years, the reactive power capabilities have evolved. Wind turbine reactive power

profiles and other relevant features are now commercially available [106]. With

the help of the Enercon FACTS wind turbine capability curve, it is clear that a

wind turbine can deliver reactive power from 0.4 p.u. to 0.5 p.u. during its active

power output range. The reactive power absorbing capability of the generator can

be enhanced with the help of negative reactive power delivery.

A rooftop SPG can be modelled as load bus (PQ) with Q = 0. However, large

photovoltaic generation facilities are equipped with converters. Considering the

dynamic behaviour of converters, it is desirable to conduct full-scale generator

modelling for P–Q capability [107]. Some articles in the literature consider con-

troller and converter models when conducting a detailed analysis of SPG reactive

power capabilities [108]. In reference [109], the authors extended their study to

analyse the impact of variation in radiation and ambient temperature on pho-

tovoltaic capability. In the present study, the generator active (P ) and reactive

(Q) power parameters are set according to Table 3.5, whereas the reactive power

capability of SPG is set between 0.4–0.5 p.u..

In the OPF problem, system parameters like real power loss in the network and

voltage deviation are also important. Some of the power losses in the transmission

system are unavoidable because of the inherent resistance in transmission lines.

Hence, the network losses are determined as follows,

Pl =
nl∑
i=1

nl∑
j 6=1

(
AijV

2
i + V 2

j − 2ViVj cos(σij)
)

(3.24)
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Figure 3.3: Distribution of wind speed for wind farm 1 (bus-5).
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Figure 3.4: Distribution of wind speed for wind farm 2 (bus-11).

where Aij is the transfer conductance and σij = (σi − σj) is the voltage angles

difference between bus i and bus j.

In a power network, voltage deviation indicates the relative voltage quality in the

system. To formulate a voltage deviation indicator in the network, a nominal value

(i.e. 1 p.u.) is taken as a reference value for cumulative voltage deviation for all

load buses. This is expressed as follows,

Vd =
NL∑
p=1

|VL,p − 1| (3.25)
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Figure 3.5: Distribution of solar irradiance for solar power generator(bus-13).
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Figure 3.6: Distribution of real power (MW) from solar power generator (bus-
13).

3.3 Stochastic solar power, wind power and un-

certainty models

It is well-known that PDFs can be used for mean power calculations of wind tur-

bines [100, 110]. The wind speed (v) m/s follows a Weibull PDF and is determined

using a scale parameter (c) and shape parameter (k) as follows,

fv(v) =

(
k

c

)(v
c

)k−1
e−( v

c )
k

, 0 < v <∞ (3.26)
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The Weibull distribution mean is defined,

Mwb = c · Γ(1 + k−1) (3.27)

To compute the gamma Γ(x) function,

Γ(x) =

∫ ∞
0

e−t · tx−1dt (3.28)

In the modified IEEE-30 bus system model, conventional TPGs at bus-5 and bus-

13 are replaced with WPGs. In the proposed case studies, these PDF parameters

are used to compute wind speed. Figs. 3.3 and 3.4 show the wind frequency

distribution based on Weibull fitting. The output curve is achieved after running

8000 Monte-Carlo scenarios. Wind turbine design requirements are specified in

reference [111], i.e. the highest turbulent class IA of turbine and maximum average

speed of 10 m/s at hub height. For the simulations reported below, k and c are

carefully chosen to ensure both diversity and realistic geographic locations for

wind farm sites, with their values given by Table 3.4. For both wind farms, the

value of shape parameter is 2 which corresponds to the moderately gusty winds.

In Northern Europe and most other locations around the world, this value for the

shape parameter is often assumed [102]. Also, to gain the capacity factor as for a

real wind farm (30–45%), the values of scale parameter for both wind farms are

assumed to be c = 9 and c = 10 [112].

Similarly, the IEEE-30 bus system bus-11 conventional generator is replaced with

the SPG unit. In [101], the author investigated frequency distributions of global

radiations at important metrological stations in Taiwan. According to the study,

the lognormal function describes the frequency distribution quite better where

weather conditions are more dispersive. In this study, the parameters for log-

normal distribution are determined using the corresponding mean and standard

deviation of the global irradiation in Taiwan. The output of the SPG has a direct

relation with solar irradiance (I) which follows lognormal PDF. The solar irradi-

ance probability is dependent on the standard deviation (λ) and mean (ψ) when
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it follows a lognormal PDF, as follows,

fI(I) =
1

Iψ
√

2π
exp

{
−[lnx− λ]2

2ψ2

}
, I > 0 (3.29)

The lognormal distribution mean is defined,

Mlg = exp

(
λ+

ψ2

2

)
(3.30)

Fig. 3.5 illustrates the frequency distribution and lognormal fitting of solar irradi-

ance after running Monte-Carlo simulations with a sample size of 8000. Values for

selected parameters of the lognormal PDF are assumed using the corresponding

mean and standard deviation of the global irradiation in [101] and summarised in

Table 3.4. These values are used in the simulation study, with the exception of sec-

tion 3.5.6, in which they are modified in order to observe the impact of parameter

variation on the total cost.

3.3.1 Solar photovoltaic and wind power generation mod-

els

Wind farm 1 consists of 25 turbines each with a rated output of 3 MW. Hence, the

cumulative output of wind farm 1 is 75 MW which is connected at bus-5 of the

IEEE-30 bus system. Similarly, wind farm 2 consists of 20 wind turbines with an

accumulative output power of 60 MW. The accumulative output of this wind farm

is connected at bus-11 of the IEEE-30 bus system. The output of the wind farms

are solely dependent on the wind speed (v). Wind turbine output is expressed,

Pw(v) =



0 for v < vin

PWr for vr < v 6 vo

PWr

(
v−vin
vr−vin

)
vin 6 v 6 vr

0 for v > vo

(3.31)
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where vin, vo and vr represent the cut-in, cut-out and rated output wind speed of

the wind turbine, respectively, while PWr defines the rated output power of the

wind turbine. According to the product data sheet of Enercon E82-E4, a 3 MW

wind turbine is based on vin = 3 m/s, vr = 16 m/s and vo = 25 m/s.

Similarly, the relationship between solar irradiance (I) and energy conversion for

the SPG in this study is expressed [43],

Ps(I) =

 PSr

(
I2

IsrIc

)
; 0 < I < Ic

PSr

(
I
Isr

)
; I > Ic

(3.32)

where Isr represents solar irradiance in a rated environment i.e. 800 W/m2, Ic

represents a specific irradiance point, here 20 W/m2 and PSr is rated output from

the SPG.

3.3.2 Wind power probability model

With reference to Eq. 3.31, it may be observed that WPG output is categorised

into three distinct features. This is due to the fact that wind speed is not constant

in all regions. The wind turbine output power is zero when it encounters a wind

speed (v) which is below cut-in speed (vin) or above cut-out speed (vo). The wind

turbine produces rated output PWr when it encounters the rated wind speed (vr)

or below cut-out speed (vo). Hence, the output of the wind turbine for the first and

second eventuality in Eq. 3.31 for being 0 or PWr is determined as follows [113],

Pr{PW = 0} = 1− exp

(
−
(vin
c

)k)
+ exp

(
−
(vo
c

)k)
(3.33)

Pr{PW = PWr} = exp

(
−
(vr
c

)k)
− exp

(
−
(vo
c

)k)
(3.34)

The output power of a wind generator is continuous between cut-in and rated

speed of wind. Hence, the probability for the continuous region is determined as
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follows,

PW =
k(vr − vin)

ckPWr

[
vin +

PW
PWr

(vr − vin)

]k−1
exp

−(vin + PW

PWr
(vr − vin)

c

)k


(3.35)

3.3.3 Solar power over and underestimation cost

As observed from the histogram in Fig. 3.6, the SPG unit has stochastic output

power because of the variance in solar irradiance. The dotted line shows the

scheduled output power needed to supply to the grid. It is important to note

that scheduled power has no fixed value, rather there is a mutually agreed power

level between the DSO and the private party which sells solar power. For the

calculation of under and overestimation costs of the SPG, the following equations

are used in the model.

CSp(PSa − PSs) = ps(PSa − PSs) = ps

N+∑
n=1

[PSs+ − PSs] ∗ fps+ (3.36)

CSr(PSs − PSa) = rs(PSs − PSa) = rs

N−∑
n=1

[PSs − PSs−] ∗ fps− (3.37)

where PSs+ and PSs− represent the surplus power and shortage power, as lying on

the left and right half plane of schedule power (PSs) in the histogram of Fig. 3.6.

Similarly, fps+ and fps− are relative frequencies for the occurrence of PSs+ and

PSs−. N+ and N− represent number of discrete bins on the right and left planes

of PSs for PDF generation.

3.4 Optimisation technique

GWO was proposed by Mirjalili et al. 2014 [95] and, in a relatively short period

of time, has already attracted significant research interest. It is inspired by the

leadership and hunting behaviour of grey wolves which live in the form of a pack.
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It has been widely used for different optimisation problems and can show im-

proved characteristics over other swarm intelligence techniques: its initial search

is based on relatively few parameters for which no initial derivation is required.

Furthermore, the approach is flexible, straightforward to apply, scalable and most

importantly for the present work, it helps to strike an accurate balance between

exploration and exploitation.

In the real world, grey wolves adopt a social hierarchy that has been categorised

into four different levels: alpha (α), beta (β), delta (δ) and omega (ω) wolves.

From the top to bottom of the leadership hierarchy, α wolves are known to be the

superior. Their role is decision making in the pack. Alpha wolves are followed

by β wolves, whose role is to help α wolves in decision making and to carry out

other important activities in the pack. At the bottom of this hierarchy come the

δ and ω wolves. Omega wolves are also known to be the scapegoats. They are

subordinates to all other wolves.

3.4.1 Selection criterion

In regard to GWO, accurate determination of prey location is treated as the op-

timisation problem (fittest solution), while the position of the wolves relative to

the prey determines the best solution. The position of the α wolves is said to be

the best solution found so far in the search space, because they are expected to

be closer to the prey than other wolves in the pack. Similarly, β and δ wolves

determine the second and third best solutions in the search space because of the

hierarchical classification and corresponding position towards the prey/optimal so-

lution. To allocate their position in the search space, these wolves are represented

as Xα, Xβ and Xδ. Fourth level ω wolves update their position Xω in accordance

with the relative position of the α, β and δ wolves. Initially, a random population

of grey wolves is generated for 11 control variables within upper and lower bounds

of variables. This population comprising of different arrays of solutions/controlling

inputs to the power system, 50 in our case, actually represents 50 candidate so-

lutions to the problem. Furthermore, each candidate solution/ controlling inputs
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is then evaluated by the fitness/objective function based on power flow and gen-

eration cost. In this way, GWO algorithm generates 50 different solutions based

on corresponding system inputs. Out of these solutions, a best solution with the

minimum generation cost is selected as a prey/target.

During the remaining iterations, new population/(different arrays of input) is gen-

erated by utilising the core steps of GWO algorithm, explained in subsequent sec-

tion. In each iteration, all the new generated set of arrays are evaluated and the

best solution is updated until the maximum iteration, 100 in our case, is reached.

3.4.2 Prey encircling

GWO starts with a step that is analogous to chasing and encircling the prey. To

mathematically model the encircling behaviour of grey wolves corresponding to

the prey location, the following equations have been proposed,

−→
X (t+ 1) =

−→
X p(t)−

−→
A ×

−→
D (3.38)

where,

−→
D =|

−→
C ×

−→
X p(t)−

−→
X (t) | (3.39)

and t indicates the current iteration, while
−→
X (t) and

−→
X p(t) are position vectors

representing the current location of the grey wolf and prey in the search space,

respectively. The coefficient vectors
−→
A and

−→
C are determined as follows,

−→
A = 2−→a ×−→r 1 −−→a (3.40)

−→
C = 2×−→r 2 (3.41)

To control exploration and exploitation, the components of −→a are linearly de-

creased from 2 to 0 over the course of an iteration. Note that −→r 1 and −→r 2 are
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random vectors whose values are chosen between [0, 1]. To reach prey position

(Xp, Yp), the current position of a grey wolf (X, Y ) is updated with Eqs. 3.38–3.41.

The value of −→a is assumed the same for all the wolves in a population. A wolf

can update its position according to the best agent in different places by setting

the values of
−→
C and

−→
A .

3.4.3 Hunting

After finding the prey location, the grey wolves encircle it. The α wolves guide

the pack for prey hunting, while β and δ wolves also contribute. Initially, the α,

β and δ wolves location are saved as the ‘best’ location, representing their better

knowledge to recognise prey location. The remaining search agents, mainly ω

wolves, update their location in accordance with the position of the best search

agents. For α, β and δ wolves, position location is determined as follows,

−→
Dα =|

−→
C 1 ×

−→
Xα(t)−

−→
X (t) | (3.42)

−→
Dβ =|

−→
C 2 ×

−→
X β(t)−

−→
X (t) | (3.43)

−→
D δ =|

−→
C 3 ×

−→
X δ(t)−

−→
X (t) | (3.44)

−→
X 1 =|

−→
Xα − A1 ×

−→
Dα | (3.45)

−→
X 2 =|

−→
X β − A2 ×

−→
Dβ | (3.46)

−→
X 3 =|

−→
X δ − A3 ×

−→
D δ | (3.47)
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−→
X (t+ 1) =

−→
X 1 +

−→
X 2 +

−→
X 3

3
(3.48)

At iteration t, the distance between
−→
X (t) and the three best hunt agents (

−→
Xα),

(
−→
X β) are (

−→
X δ) are determined using Eqs. 3.42–3.47, in which A1, A2 and A3 are

random vectors as defined in Eq. 3.40. Finally, wolves movement towards prey is

updated by Eq. 3.48.

3.4.4 Attacking the prey (exploitation)

Hunting ends when grey wolves attack the prey. It is possible when the prey stops

moving around, and grey wolves start exploiting its position. Mathematically, prey

approaching behaviour of grey wolves is modelled when the value of the exploration

rate −→a is decremented from 2 to 0 over the course of an iteration. The optimum

location of a prey is represented as 0 in the search space. Note that, the fluctuation

range
−→
A in Eq. 3.40 decreases with the decremented value of −→a . This is due to

the fact that
−→
A chooses a random value between [−2a, 2a] and the value of −→a

is decremented with every iteration to locate prey for attacking. Exploitation is

emphasised when agents attack prey whilst the value of
−→
A lies between [−1, 1].

This shows that the agent is ready to carry out an attack, since they are one step

behind, between the prey position and their current position in the search space.

The parameter −→a is linearly updated as follows,

−→a = 2− 2× t
T

(3.49)

where T indicates the maximum iteration number, set to 1000 in this study.

3.4.5 Searching again for prey (exploration)

The α, β and δ wolves′ position in the search space guide the whole pack to search

for prey. Initially, all wolves diverge from each other to first locate the prey,

before subsequently converging to attack the identified prey. This behaviour of

divergence and convergence is obtained when the value of
−→
A is randomly chosen
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between −1 > A > 1. The algorithm tries to search the global candidate solutions

when the value of |
−→
A | > 1 forces grey wolves to diverge from the prey. Similarly,

the value of |
−→
A | < 1 helps grey wolves to converge towards the fitter prey. These

random values of
−→
A enhance the search space area for wolves and obligate them

to diverge into a comparatively larger area to search for prey. This facilitates

the GWO algorithm to search globally for an optimum solution. Due to these

exploration and divergence characteristics, the GWO algorithm can find fitter

prey than other approaches.

During a new search, if a wolf finds a better prey closer to it, that wolf becomes an

α and, based on distance, other wolves are divided into β and δ wolves. Here,
−→
C

is another important component which emphasises the exploration process in the

GWO algorithm. Random weights containing values between [0, 2] are assigned to

each prey in the search space via Eq. 3.41. If C > 1, the prey needs to be empha-

sised, while if C < 1, that prey is de-emphasised. The value of the
−→
C component

helps to avoid a local optimal solution, and helps the GWO algorithm in general

to adopt more random behaviour once the optimisation process has started. In

contrast to the values of A, the value of C is not decremented linearly. This is

part of the deliberately engineered behaviour of the GWO algorithm i.e. to provide

random values not only during the initial iterations but right through to the final

iteration, in order to maintain good exploration. With the help of this component,

local optimum stagnation is avoided, not only during the initial iterations but also

in the final iterations when local optimum stagnation is otherwise frequent.

In nature, many obstacles are faced by wolves before attacking prey. Due to

this fact, a rapid approach to the prey is essential. This behaviour in the GWO

algorithm is achieved with the help of the C vector. When the algorithm assigns

random weight values C for the prey, it becomes harder and it is further to go

for grey wolves to approach the prey and vice versa. Finally, the GWO algorithm

terminates when the end criteria are met.
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3.5 Case studies and results for IEEE-30 bus sys-

tem

This section verifies the effectiveness of proposed optimisation framework and the

chosen GWO algorithm, using the modified IEEE-30 bus system introduced ear-

lier. Numerical results using the GWO approach are compared with those obtained

by GA, PSO, CSA, ABC and SHADE-SF. To perform the simulation work, a core

i7 Mac book processor with 16 GB RAM is used. The MATPOWER packages

proposed in reference [106] are used for the power flow calculations. Six case stud-

ies are presented. Case-1 is a benchmark simulation to optimise total generation

cost. In Case-2, total generation cost is optimised when a carbon tax is imposed

on emissions from conventional TPGs. Case-3 schedules power generation sources

while considering stochastic WPG and SPG underestimation and overestimation

costs. In Case-4 and Case-5, power generation costs are optimised while consider-

ing reserve and penalty costs. Finally, Case-6 describes how Weibull and lognormal

variable variations affect the WPG and SPG capabilities. In a single run of the

algorithm, a maximum of 1000 iterations are performed as the end criteria.

3.5.1 Minimising total generation cost

By making use of Eq. 3.11, Case-1 performs optimisation scheduling of both TPGs

and RES to minimise total generation cost. The direct cost coefficients of wind

power are dw,1 = 1.6 and dw,2 = 1.75. The penalty cost coefficient for not fully

utilising wind power is assumed as pw,1 = pw,2 = 1.5 and the reserve cost coefficient

for overestimation is rw,1 = rw,2 = 3. These values are used for illustrative pur-

poses. Finally, the PDF parameters for the WPGs and SPG are given in Table 3.4.

With these settings, Fig. 3.7 compares the convergence characteristics of different

optimisation techniques. For this case study, Table 3.5 summarises the optimum

results for all the control variables, such as total generation cost, reactive power

(Q) and other important parameters. A voltage at the i-th bus is denoted by vi.

Similarly, with the help of Eqs. 3.24–3.25, power loss (Pl) and voltage deviation

59 Inam Ullah



3.5. CASE STUDIES AND RESULTS FOR IEEE-30 BUS SYSTEM

0 100 200 300 400 500 600 700 800 900 1000

Number of iterations

785

790

795

800

805

810

815

T
o

ta
l 
g

e
n

e
ra

ti
o

n
 c

o
s
t 

($
/h

)

Objective Space

GA

PSO

CSA

SHADE-SF

ABC

GWO

Figure 3.7: Convergence characteristics of different optimisation techniques
for Case-1.
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Figure 3.8: Convergence characteristics of different optimisation techniques
for Case-2.

(Vd) are determined. Note that PWg,1 and PWg,2 signify scheduled power from the

two wind generation sources. From simulation results, it is found that that the

GWO and SHADE-SF algorithms are more efficient with fast convergence and

better solution quality when compared to the other well established algorithms for

similar OPF frameworks. The minimum generation cost achieved by SHADE-SF

and GWO are 782.30 and 781.40, respectively. Hence, for this scenario, GWO

outperforms SHADE-SF and all other algorithms in terms of the total cost and

elapsed time.
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3.5.2 Minimising total generation cost when carbon emis-

sion tax is imposed

A carbon tax (Ct) with a rate of $20/ton is imposed in this case study [94].

The objective is to minimise the cumulative cost by utilising Eq. 3.12. With

the imposition of the carbon tax, penetration of RES is expected to increase,

and this is evidenced by the simulation results. Table 3.6 provides the optimum

power generation schedule of all relevant parameters, including total generation

cost (with the carbon tax), reactive power of the generators and other important

parameters required for OPF. In Case-2, a higher penetration of RES is achieved

as compared to Case-1, when no penalty was imposed on carbon emissions. The

extent of RES penetration in the optimum generation schedule depends solely on

the emission volume and rate of carbon tax imposed. For this scenario, Fig. 3.8

compares the convergence characteristics of GWO and other techniques to reveal

that GWO has the best performance in terms of total cost minimisation.

An important factor that needs to be critically addressed in OPF problems is the

load bus voltage. Operating voltages for all buses need to be within the range 0.95-

1.05 p.u.. In this regard, Fig. 3.9 illustrates the voltage profiles for both Case-1

and Case-2. These results show that the requirements are satisfactorily met after

optimisation. The remaining case studies (Case-3 to Case-6) yield similar voltage

profiles and so, for brevity, the equivalent plots are omitted.

3.5.3 Scheduled power vs the cost of wind and solar power

generators

Table 3.4 shows the Weibull PDF parameters used for the analysis in this case

study, while section 3.3.1 discussed wind turbine parameter selection. The cost

coefficients selected for this case study are similar to case-1. Note that the aver-

age cost of the TPGs is higher than the direct cost of RES. Similarly, the direct

costs are higher when compared to the penalty cost for not fully utilising available

wind power [94]. In these simulations, scheduled available power for the two wind
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farms is varied from zero (0) to the rated power, as plotted in Figs. 3.10 and 3.11.

Total costs represent the sum of direct, reserve and penalty cost of the correspond-

ing scheduled power. There exists a linear relationship between direct cost and

scheduled power. When the scheduled power from RES increases, larger spinning

reserves are required, which increases the reserve cost and consequently genera-

tion costs move upwards. Contrary to the reserve cost, penalty cost decreases at

a lower rate with increased scheduled power from RES.

Similarly, when SPG output is over and underestimated from scheduled power, cost

variations occur because of the associated penalty and reserve costs coefficients.

Fig. 3.12 illustrates the change in solar power generation cost for scheduled power.

To evaluate the total cost of SPG, operation and maintenance cost needs to be

analysed. It is learnt from [114] that the cost ranges selected for this study are

similar to those of onshore wind power plants. Therefore, in this study, the direct,

reserve and penalty cost coefficients are assumed as ds = 1.6, rs = 3 and ps = 1.5.

It is important to note that the total cost of solar power generation does not

increase uniformly with specified PDF parameters of solar irradiance. Cost plots

for this case study show that when scheduled power from SPG is set to 20 MW,

the minimum cost is achieved.
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Figure 3.9: Load bus profiles for Case-1 and Case-2.
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Figure 3.10: Variation of wind power cost vs scheduled power for PWg,1.
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Figure 3.11: Variation of wind power cost vs scheduled power for PWg,2.

0 5 10 15 20 25 30 35 40 45 50

Scheduled power P
Ss

 (MW) from SPG at bus 13

0

20

40

60

80

100

120

140

C
o

s
t 

($
/h

)

Reserve cost Penalty cost Direct cost Total cost

Figure 3.12: Variation of SPG cost vs scheduled power for the solar power
generator unit.

3.5.4 Effect of probability density functions on wind and

solar power generator cost

The Weibull distribution scale parameter (c) has direct impact on WPG cost.

This case study evaluates how, for a fixed arbitrarily scheduled power, WPG cost
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Figure 3.13: Weibull scale parameter (c) variations vs wind wind farm 1 power
cost.
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Figure 3.14: Weibull scale parameter (c) variations vs wind farm 2 power
cost.
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Figure 3.15: Variation of solar power cost vs lognormal mean (λ) for solar
power generator (bus-13).
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changes with the variations in scale parameter (c) of Weibull distribution. The

value of the shape parameter for both wind farms is k = 2 because, the Rayleigh

distribution is equivalent to a Weibull distribution with k = 2, corresponding

to moderately gusty winds. The values for the cost coefficients are identical to

those used in Case-1. The outputs of PWg,1 and PWg,2 are 25 MW and 20 MW

respectively, which is one third of the total installed capacity. This assumption

appears realistic, since real wind farms contribute a capacity factor between 30%–

45% [113]. The relationships between PWg,1 and PWg,2 costs and the Weibull

distribution scale parameter are shown in Figs. 3.13 and 3.14. Minimum costs are

achieved when the value of the scale parameter is in the middle of the specified

range. A higher valued scale parameter implies the prevalence of higher wind

speeds with a certain probability. This is due to the fact that for a fixed interval,

scheduled power remains the same, which increases penalty costs and hence the

overall costs also rise. However, above a certain value of the scale parameter, the

reserve cost reductions are insignificant.

Fig. 3.15 shows the relationship between power cost ($/hr) of the SPG and the

lognormal PDF mean (λ). Here, λ is varied with an increment of 0.5 in the range

of 2 to 7. Scheduled power from the SPG is 20 MW with standard deviation ψ

= 0.6. Cost coefficient values are identical to those used earlier in Case-1. The

minimum solar power cost is achieved when λ = 5.5. Also, when λ = 5.8, the

reserve cost and penalty cost values are the same. For higher values of λ, penalty

costs increase sharply, pushing the overall cost to a higher level. Finally, note that

SPG output and solar irradiance have a direct relationship with λ. When λ is

lower, then the output of the SPG is also low. To withstand this situation, high

reserve powers are required, which increases the reserve cost. When λ is relatively

high, high solar irradiance is expected, hence increasing output power from the

SPG. In such a scenario, the penalty costs yield an increase in the overall cost.

Keeping in mind these two scenarios, an appropriate value from the SPG always

needs to be scheduled.

65 Inam Ullah



3.5. CASE STUDIES AND RESULTS FOR IEEE-30 BUS SYSTEM

Table 3.5: Simulation results for IEEE-30 bus system Case-1.

Min Max (GA) (PSO) (CSA) (SHADE-SF)[40] (ABC) (GWO)
PTg,1 (MW) 50 140 134.9 134.9 134.9 134.9 134.8 134.9
PTg,2 (MW) 20 80 32.1 31.4 30.5 30.1 28.6 29
PWg,1 (MW) 0 75 41.8 43.8 44.5 44.6 44.4 44.5
PTg,3 (MW) 10 35 15.2 10 10 10 10 10
PWg,2 (MW) 0 60 33.7 37.4 37.8 37.6 39 38.2
PSg (MW) 0 50 31.8 32.5 31.9 31.8 32.4 32
V1 (p.u.) 0.95 1.1 1.02 1.05 1.04 1.07 1.06 1.1
V2 (p.u.) 0.95 1.1 1.01 0.95 0.90 1.05 1.03 1.08
V5 (p.u.) 0.95 1.1 1.02 1.00 0.9 1.03 1.01 1.07
V8 (p.u.) 0.95 1.1 1.00 1.03 1.00 1.05 1.04 1.09
V11 (p.u.) 0.95 1.1 1.03 0.95 1.01 1.09 1.09 1.1
V13 (p.u.) 0.95 1.1 1.05 1.01 1.04 1.04 1.01 1.09
PTq,1 (MVAr) -20 150 -1.64 48.8 31.4 -2.24 30.88 -10.9
PTq,2 (MVAr) -20 60 6.57 -20 -20 11.9 -15.5 16.63
PWq,1 (MVAr) -30 35 35 35 30.03 22.4 24.1 25.8
PTq,3 (MVAr) -15 40 40 40 40 40 40 40
PWq,2 (MVAr) -25 30 21 -3.4 15.6 30 30 19
PSq (MVAr) -20 25 20 22.7 25 14.9 10.4 22
Total cost ($/hr) 787.84 785.82 784.77 782.30 783.81 781.40
Execution time (s) 602 677 668 697 1704 429
Total Pl (MW) 6.43 6.79 6.47 5.75 6.06 5.44
Carbon emission (ton/hr) 2.76 2.36 1.96 1.80 1.75 1.76
Carbon tax ($/hr) – – – – – –
Vd (p.u.) 0.87 1.08 0.85 0.45 0.56 1.05

Table 3.6: Simulation results for IEEE-30 bus system Case-2.

Min Max (GA) (PSO) (CSA) (SHADE-SF)[40] (ABC) (GWO)
PTg,1 (MW) 50 140 122.9 123.2 122.8 122.9 123.6 122.9
PTg,2 (MW) 20 80 35.6 33.8 31.4 31.5 34.4 31.2
PWg,1 (MW) 0 75 45.3 45.3 45.5 45.2 46.8 45.4
PTg,3 (MW) 10 35 14.4 10 10 10 10 10
PWg,2 (MW) 0 60 36.9 36.9 38.3 38.1 37.3 38.1
PSg (MW) 0 50 33.7 39.4 40.6 40.7 36.3 40.5
V1 (p.u.) 0.95 1.1 1.03 1.10 1.07 1.06 1.07 1.10
V2 (p.u.) 0.95 1.1 1.02 1.03 1.06 1.05 1.06 1.08
V5 (p.u.) 0.95 1.1 1.00 1.09 1.06 1.03 1.08 1.07
V8 (p.u.) 0.95 1.1 1.02 1.07 1.04 1.04 1.04 1.10
V11 (p.u.) 0.95 1.1 1.04 1.04 1.00 1.10 1.09 1.09
V13 (p.u.) 0.95 1.1 1.02 1.04 1.05 1.05 1.05 1.09
PTq,1 (MVAr) -20 150 -1.76 36.50 -1.56 -3.25 -3.00 -8.92
PTq,2 (MVAr) -20 60 9.93 -20 20.83 10.68 12.84 14.13
PWq,1 (MVAr) -30 35 28.66 35 35 22.23 35 25.23
PTq,3 (MVAr) -15 40 40 40 40 40 27.43 40
PWq,2 (MVAr) -25 30 21.28 9.88 -0.49 30 27.48 18.91
PSq (MVAr) -20 25 20.45 12.75 21.55 16.07 15.19 21.87
Total cost ($/hr) 814.72 811.49 811.53 810.89 811.26 809.93
Execution time (s) 623 718 599 716 1751 535
Total Pl (MW) 5,63 5.46 5.44 5.28 5.31 4.99
Carbon emission (ton/hr) 1.36 0.98 0.92 0.88 0.89 0.86
Carbon tax ($/hr) 27 19.6 18.40 17.60 17.80 17.20
Vd (p.u.) 0.64 0.48 0.49 0.46 0.47 1.07

3.5.5 Optimized cost vs reserve cost

Case-5 evaluates the relationship between optimized cost and reserve cost. Values

for the solar and wind power generation reserve cost coefficients are increased
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from rw,1 = rw,2 = rs = r = 4 to r = 6 with an increment of 1. Penalty cost

coefficients for RES are similar to those used in Case-1 and Case-2, with p = 1.5.

For these parameters, the optimized schedules for all the generators are illustrated

in Fig. 3.16. Reserve costs are varied and three different cases are considered i.e.

r = 4 (Case-5a), r = 5 (Case-5b) and r = 6 (Case-5c). As shown in Fig. 3.17,

increasing the reserve cost yields an inverse relationship with RES optimum power

scheduling. This is because increased reserve cost coefficients imply higher costs

for spinning reserve and a reduction in the RES contribution to optimum power

scheduling. This gap is compensated for with increased output from the TPGs. In

conclusion, with an increase in the reserve cost coefficient values, the contribution

of both the SPG and WPG decreases, yielding an increase in the overall generation

cost.

3.5.6 Optimized cost vs penalty cost

For these simulations, most of the parameters are identical to those considered

in Case-1, except for the penalty costs associated with the SPG and two WPGs.

These are varied from p = 1.5 to p = 5 in discrete steps of 1. Here, pw,1 = pw,2 =ps

= p = 1.5 is increased to p = 3 (Case-6a), p = 4 (Case-6b) and p = 5 (Case-6c).

The reserve cost coefficient values for RES remains unchanged from those used in

case-1 and case-2 i.e. r = 3. The optimised schedules for all the generators output

are shown in Fig. 3.18.

The penalty cost is imposed when power generation from RES is higher than the

expected power. In such a scenario, with relatively high penalty costs, there is a

need to raise the scheduled power from RES if solar irradiance and wind speeds

are high. The strategy to increase scheduled power from RES helps to reduce the

penalty cost. In Case-5, when the reserve cost increases, the outputs from RES

monotonically decrease. However, in Case-6, when the value of p is increased, the

output from solar generation will occasionally be decreased. This is due to the

highly nonlinear relationship of wind and solar power reserve and penalty costs

with the probability distribution of these sources.

67 Inam Ullah



3.5. CASE STUDIES AND RESULTS FOR IEEE-30 BUS SYSTEM

Fig. 3.19 illustrates the four different costs, i.e. TPG, SPG, WPG and total cost.

Total cost is slightly increased due to the small upward fluctuations of solar and

wind power generation. TPG costs, however, remain steady for different values

of p. The relationship between penalty cost, reserve cost and the voltage range

is illustrated by Fig. 3.20. Here, the bus voltage range is specified as 0.95–1.10

p.u. and the reserve and penalty cost cases are combined to analyse the overall

impact. For all these cases, the voltage profile of different buses is ideal because

the voltage value lies within the specified limit. However, for bus-8, the generator

voltage shows a significant change for different values of the cost coefficients. This

is because PTg,3 is connected with bus-8, hence variations in the reactive power

output when different cases are simulated, can yield abrupt changes in the output

of bus-8.
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Figure 3.16: Reserve cost coefficient (r) vs optimal scheduling of real power.
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Figure 3.17: Cost curves for changes in reserve cost coefficient (r).
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Figure 3.18: Optimal schedule real power (MW) vs penalty cost coefficient
(p).
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Figure 3.19: Cost curves for change in penalty cost coefficient (p).
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Figure 3.20: Generator bus voltage variations for Case-5 and Case-6.

To solve the OPF problem, the operating limits of the power system states or

dependent variables should be satisfied. The state or dependent variables include
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Figure 3.21: Generator reactive power profile for Case-5 and Case-6.
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Figure 3.22: Convergence characteristics of different optimisation techniques
for Case-7.

the load bus voltages, the generator reactive powers and the line flows. The active

power loss, voltage profile and voltage security in a power system strongly depend

upon the flow of reactive power in the transmission lines [115]. Tables 3.5 and

3.6 specify limits on reactive power and scheduled reactive power profiles for all

the generators, as also illustrated in Fig. 3.21. For all of these cases, the reactive

power of all the generators successfully lies within the required limits. For the

optimisation problems considered in this section, a minimum violation of reactive

power constraints is desired. One advantage of the GWO approach, is that it

allows for network operation components to lie close to the defined limits i.e.

GWO provides an efficient method for handling the nonlinear constraints aspects

of the OPF problem.
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Figure 3.23: Convergence characteristics of different optimisation techniques
for Case-8.
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Figure 3.24: Convergence characteristics of hybrid algorithms for Case-9.
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Figure 3.25: Convergence characteristics of hybrid algorithms for Case-10.
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3.6 Case studies and results for IEEE-57 bus sys-

tem

To confirm the robustness and scalability of the proposed GWO algorithm, the

modified IEEE-57 bus test system, representing a medium-scale power system, is

investigated. The active and reactive power demands of this system are 1250.8

MW and 336.4 MVAR, respectively, at 100 MVA base. More details about the

system are given in [103]. To execute the optimisation process for all algorithms,

the population size is 50 and the maximum number of iterations is set to 1000.

The main characteristics of the IEEE 57 bus system are summarised in Table

3.2 whilst the cost and emission coefficients are described in Table 3.7. For the

following case studies in the IEEE-57 bus system, optimal solutions are obtained

under similar equality and inequality constraints given in Eqs. 3.15–3.22.

Table 3.7: TPG emission and cost coefficients in IEEE-57 bus system [99].

TPG Bus # ai bi ci gi hi αi βi γi ωi µi
PTg,1 1 0 2 0.00375 18 0.037 4.091 -5.554 6.49 2.00E−04 2.86E−01

PTg,2 3 0 1.75 0.0175 16 0.038 2.543 -6.047 5.638 5.00E−04 3.33E−01

PTg,3 8 0 3 0.025 13.5 0.041 6.131 -5.55 5.151 1.00E−05 6.67E−01

PTg,4 12 0 2 0.00375 18 0.037 3.491 -5.754 6.39 3.00E−04 2.66E−01

3.6.1 Minimising total generation cost

The aim of this case study is to minimise the basic quadratic fuel cost given in

Eq. 3.11. The fuel cost obtained by GWO algorithm is 20440.32 $/hr and this

value is the best solution compared with those obtained using the GA, PSO, CSA,

SHADE-SF and ABC algorithms, where the fuel cost value is 20919.9 $/hr by

GA, 21475.1 $/hr by PSO, 20905.4 $/hr by CSA, 20786.5 $/hr by SHADE-SF and

20462.4 $/hr by ABC as given in Table 3.8. The convergence characteristics of

GWO and the other optimisation techniques are shown in Fig. 3.22.
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Table 3.8: Simulation results for IEEE-57 bus system Case-7.

Min Max (GA) (PSO) (CSA) (SHADE-SF)[40] (ABC) (GWO)
PTg,1 (MW) 100 300 219.8 218.08 263.9 234.07 115.7 135.62
PWg,1 (MW) 0 100 82.9 91.33 88.68 93.8 100 100
PTg,2 (MW) 50 200 113.9 95.03 67.9 27.8 103.8 106.2
PWg,2 (MW) 0 100 92.8 44.49 97.9 89.1 100 100
PTg,3 (MW) 100 450 300 359.06 393.4 314.8 341.9 312.2
PSg (MW) 0 100 95.2 100 96.3 97.32 99.99 100
PTg,4 (MW) 50 410 361.4 359.06 264.24 408.6 403.18 410
V1 (p.u.) 0.95 1.1 1.05 1.04 1.01 0.98 1 0.95
V2 (p.u.) 0.95 1.1 0.97 0.97 1.02 1.08 1.1 0.95
V3 (p.u.) 0.95 1.1 0.99 0.96 1.05 1.07 0.98 1.05
V6 (p.u.) 0.95 1.1 1.00 1.04 1.00 1.03 1.06 0.9
V8 (p.u.) 0.95 1.1 1.00 1.01 1.04 1.02 1.04 0.9
V9 (p.u.) 0.95 1.1 1.03 1.07 1.07 1.06 1.04 0.97
V12 (p.u.) 0.95 1.1 1.04 0.95 0.99 1.05 0.95 1.1
PTq,1 (MVAr) -20 200 152.5 155.9 154.8 158.7 169.07 164.8
PWq,1 (MW) -20 60 -17 -17 -17 -17 -17 -17
PTq,2 (MVAr) -30 35 -10 -10 -10 -10 -10 -10
PWq,2 (MVAr) -15 40 -8 -8 -8 -8 -8 -8
PTq,3 (MVAr) -25 60 53.43 52.86 43.88 56.09 43.3 47.97
PSq (MVAr) -20 25 -3 -3 -3 -3 -3 -3
PTq,4 (MVAr) -30 150 96.66 98.32 131.54 86.51 83.70 81.3
Total cost ($/hr) 20919.97 21475.11 20905.43 20786.53 20462.16 20440.32
Execution time (s) 579 595 465 585 1373 440
Carbon emission (ton/hr) 20 24 19.80 17 11.56 11.87

Table 3.9: Simulation results for IEEE-57 bus system Case-8.

Min Max (GA) (PSO) (CSA) (SHADE-SF)[40] (ABC) (GWO)
PTg,1 (MW) 100 300 142.55 141.26 149.71 212.60 117.19 128.15
PWg,1 (MW) 0 100 82.91 100 76.91 53.52 100 100
PTg,2 (MW) 50 200 113.15 98.83 111.11 61.60 92.60 140
PWg,2 (MW) 0 100 87.92 11.16 85.90 99.36 100 100
PTg,3 (MW) 50 450 434.20 425.62 367.52 330.40 344.87 339
PSg (MW) 0 100 89.68 79.86 98.78 98.64 100 100
PTg,4 (MW) 100 410 319.81 410 375.79 408.33 410 359.06
V1 (p.u.) 0.95 1.1 1.05 1.01 1.06 0.96 0.95 1.01
V2 (p.u.) 0.95 1.1 0.97 0.97 097 1.09 0.98 0.98
V3 (p.u.) 0.95 1.1 1.04 0.97 1.00 0.96 0.99 0.96
V6 (p.u.) 0.95 1.1 1.04 0.98 0.96 1.07 1.05 1.06
V8 (p.u.) 0.95 1.1 1.03 1.09 1.01 1.03 1.02 1.09
V9 (p.u.) 0.95 1.1 1.05 1.02 1.08 0.98 0.98 0.95
V12 (p.u.) 0.95 1.1 1.04 0.97 0.95 0.96 1.01 0.95
PTq,1 (MVAr) -20 200 1701.12 169 166.34 162.76 170.01 163.86
PWq,1 (MW) -20 60 -17 -17 -17 -17 -17 -17
PTq,2 (MVAr) -30 35 -10 -10 -10 -10 -10 -10
PWq,2 (MVAr) -15 40 -8 -8 -8 -8 -8 -8
PTq,3 (MVAr) -25 50 37.63 52.49 42.57 48.99 43.58 42.61
PSq (MVAr) -20 25 -3 -3 -3 -3 -3 -3
PTq,4 (MVAr) -30 150 112.04 85.76 92.03 84.47 82.31 95.26
Total cost ($/hr) 21506.61 22650.54 21309.00 27140.24 20674.49 20615.57
Execution time (s) 564 532 549 598 1556 519
Carbon emission (ton/hr) 16.66 20.81 12.04 40.01 7.44 6.28

3.6.2 Minimising total generation cost when carbon tax is

imposed

The second case study in the IEEE-57 bus system aims to minimise both the

quadratic fuel cost and carbon gas emission. It is similar to Case-2 in the IEEE-

30 bus system when an additional emission constraint is included in the objective
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function given in Eq. 3.12. With higher penetration of RES, the value of emission

in GWO is reduced from 11.87 ton/hr to 6.28 ton/hr. The convergence character-

istics of GWO and the other techniques are shown in Fig. 3.23.

Simulation results in Table 3.9 show that the GWO and ABC algorithms are

more efficient to find global optimum when compared to the other algorithms

when using the IEEE-57 bus system. This is, perhaps, because of the GWO′s and

ABC′s search mechanism that prevents them from easily getting trapped in local

optima. Furthermore, the GWO algorithm requires the least computation time,

suggesting that GWO is a highly promising algorithm for solving many practical

global optimisation problems with computationally expensive objective function

and constraints.

3.7 Case studies and results using hybrid algo-

rithms

Generally, in a constrained optimisation problem, heuristic algorithms adopt pre-

mature convergence and tend to be computationally expensive. The OPF problem

involves a large scale system and hence could yield impractically long execution

times. For this reason, two hybrid techniques, namely GA-PSO and ABC-CSO,

are presented for comparison. Note that each optimisation technique, GA, PSO,

ABC and CSO, has its weaknesses and strengths. GA-PSO combines the proper-

ties of GA and PSO, while ABC-CSO combines ABC and CSO, in order to balance

the exploration and exploitation capabilities. During the first iteration, both hy-

brid algorithms determine the individual best result of the relevant algorithm. In

the second iteration, the best positions selected are mutated separately by apply-

ing different steps for both algorithms and the cost is therefore calculated. More

details about these hybrid methods are found in [116] and [117]. In the present

work, these hybrid algorithms are evaluated using the IEEE-30 and 57 bus sys-

tems. As expected, the hybrid models prove more successful with better search

quality than the basic methods (i.e. GA, PSO, ABC and CSO). The advantage

74 Inam Ullah



3.7. CASE STUDIES AND RESULTS USING HYBRID ALGORITHMS

Table 3.10: Simulation results for IEEE-30 and 57 bus systems using hybrid
models.

Bus system IEEE-30 IEEE-57

Objective functions
GA-PSO ABC-CSO GA-PSO ABC-CSO

Case-9
Case-9 with
carbon tax

Case-9
Case-9 with
carbon tax

Case-10
Case-10 with
carbon tax

Case-10
Case-10 with
carbon tax

Generation cost ($/hr) 781.994 809.791 783.415 810.230 20440.083 20615.934 20440.112 20615.934
Carbon emission (ton/hr) 1.761 0.896 1.756 0.856 10.896 6.285 10.893 6.295

Execution time (s) 496 545 587 627 520 580 1006 1114
Average execution time
for one iteration (s)

1.04 1.21 1.1 1.9

of hybrid approaches over basic techniques is their robustness and flexibility. The

results obtained from the hybrid algorithms are good in terms of generation cost

and are better in terms of execution time than the basic methods. Indeed, the

worst solution in iteration one obtained by the hybrid methods is still better than

the best result obtained by the basic methods in the last iteration (i.e. after 500

iterations). Finally, the comparison with the proposed GWO approach, for the

IEEE-30 and 57 bus systems, are discussed in Cases 9 and 10 respectively.

3.7.1 Minimising total generation cost with and without

carbon tax imposition in the IEEE-30 bus system

This case elaborates on the standard OPF problem with a basic quadratic cost

function for the IEEE-30 bus system. The first objective is to minimise the total

generation fuel cost given by Eq. 3.11. The hybrid algorithm results are sum-

marised in Table 3.10 (cf. Tables 3.5 and 3.6 for GWO). The obtained cost for

GWO is 781.40 $/hr, compared to 781.994 $/hr and 783.415 $/hr for GA-PSO and

ABC-CSO, respectively. When the execution times are compared, GWO remains

effective, requiring only 429 seconds to complete 500 iterations, compared to 496

and 587 seconds for the GA-PSO and ABC-CSO algorithms. Fig. 3.24 compares

the convergence characteristics of GWO and the hybrid algorithms. For this ex-

ample, the hybrid algorithms converge faster, but all these techniques demonstrate

fast and stable convergence characteristics.

The performance of the hybrid models is also tested when an additional emission

constraint is added to the objective function i.e. Eq. 3.12. Simulation results
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in the Tables 3.5 and 3.10 show that GWO achieves similar minimum generation

costs (809.93 $/hr) compared to the hybrid approaches. It is important to note

that multiple parameters increase the complexity of the hybrid algorithms. Table

3.10 provides details of average execution time to complete one iteration. Using

Tables 3.5 and 3.6, it is calculated that GWO requires 0.96 seconds to complete

one iteration, compared to the higher execution times required by GA-PSO and

ABC-CSO for similar scenarios. However, the convergence characteristics in this

scenario are similar to those shown in Fig. 3.24, except that the generation cost

is increased because of the carbon tax imposition.

3.7.2 Minimising total generation cost with and without

carbon tax imposition in the IEEE-57 bus system

In this case study, the performance of the hybrid algorithms is tested on the IEEE-

57 bus system, again with and without tax imposition, with the results given by

Table 3.10 (cf. Tables 3.8 and 3.9 for GWO). Without carbon tax, the generation

costs are 20440.083 $/hr, 20440.112 $/hr and 20440.32 $/hr for GA-PSO, ABC-

CSO and GWO, respectively. The computational time taken by GA-PSO, ABC-

CSO and GWO are 520, 1006 and 440 seconds, respectively. Fig. 3.25 illustrates

the convergence on the IEEE-57 bus system for each algorithm. Table 3.10 also

shows results when the emission constraint is added i.e. Eq. 3.12. By imposing

a carbon tax at the rate of $20/ton, the carbon emissions have been significantly

reduced by GWO and the two hybrid algorithms.

The optimum results given in Tables 3.5, 3.6, 3.8, 3.9 and 3.10 show that the hy-

brid algorithms can potentially achieve a better result than GWO but (for these

examples) at the cost of computational time. According to the ”no free lunch the-

orem of optimisation” [118], there is no single optimisation technique which is best

suited to solve all kinds of optimisation problem. In the present context, hybrid

algorithms can be considered as a feasible solution for different OPF problems

where generation cost saving is a priority. Whilst the present article has focused

on the GWO approach, it can be pointed out that hybrid algorithms might also be
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made more computationally efficient, motivating further research into the utility

of such approaches for OPF.

3.8 Summary

In this chapter, a recently developed evolutionary algorithm, GWO, was employed

to optimise OPF problems whilst considering stochastic RES in the network. Dif-

ferent PDFs were used to model SPG and WPG uncertainty, and their integration

methods were discussed. A number of case studies were investigated to evaluate

the performance of the proposed algorithm and the results were compared with

other well recognised evolutionary algorithms. Hence, novel contributions include

the proposed objective functions that consider RES, the use of a GWO approach

to address the non-convex OPF problem, and its application both in small and

medium-scale systems with evaluation via simulations.

The safety of an electrical network is compromised if physical or security con-

straints on system components are compromised. Such a situation may lead to

excessive losses, malfunctioning of the components and sometimes complete fail-

ure of the system. It is essential that the network runs within predefined limits.

The new results show the GWO proves to be very effective and reliable, with fast

convergence rates to find global solutions for the considered objective functions. It

outperforms other algorithms in terms of total cost and convergence time minimi-

sation, whilst simultaneously addressing the necessary system constraints. In this

regard, the other algorithms sometimes adopt premature convergence, which can

stop the algorithm from finding a global solution. By contrast, for the scenarios

considered in this chapter, GWO maintains a satisfactory balance between explo-

ration and exploitation, in order to find a global solution. Furthermore, when

the elapsed time of GWO and the benchmark algorithms are compared, GWO

remains very effective. Hence, the results suggest that GWO could be applied

to various non-linear, non-convex, multimodal and constrained optimisation prob-

lems in OPF.
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Chapter 4

Demand side management and short term load

forecasting

4.1 Demand side management

In most countries, the amount of energy generated per annum is relatively less than

the energy demand. To tackle this problem, peak power plants (PPPs) are used

to support the baseline power plants during peak load conditions. However, PPPs

are dependent on oil and gas for their operation, and the cost of such type of fuel is

increasing day by day. As a result, the per-unit cost of energy generation increases.

Alternatively, energy consumption management is more economical than energy

generation because of the smart meters, low-cost sensors, smart appliances and

the communication and interaction between consumers, devices, and the grid [63].

So, efficient utilization of energy can be made sure by adopting DSM techniques.

The focus of this chapter will be on the smart management subsystem of the

smart grid, i.e., DSM. The DSM is, planning, implementation and monitoring

of those utility activities designed to influence the customer use of electricity in

ways that will produce desired changes in the utility’s load shape, i.e., changes in

the time pattern and magnitude of a utility’s load [119]. DSM programs are initi-

ated to use available energy more efficiently without developing new infrastructure

for generation, transmission and distribution. DSM programs usually encompass

demand response programs, fuel substitution programs, efficient conservation of
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energy programs and above all commercial or residential load management pro-

grams [46, 53].

The DLC is one of the useful approaches for residential load management [55, 120].

By applying DLC programs, utility company remotely controls energy consump-

tion and operations of certain household appliances. For instance, thermal comfort

equipment including HVAC, refrigerators, pumps and light control are well-known

examples of DLC programs. When considering home automation and residential

load control specifically, users’ comfort is on the top priority and considered as a

hurdle in DLC programs execution [121, 122].

This chapter proposes a meta-heuristic optimization model that is based on GA,

GWO and a hybrid grey wolf and genetic algorithm (hybrid G2) for scheduling

12 home appliances. Each day is divided into 96 time slots (every 15 minutes)

instead of one hour time slot for appliance operation. This is necessary because in

many cases an appliance requires less than an hour to complete its operation such

as the electric cattle and dishwasher. In this way, users have much freedom and

opportunities to reduce cost, PAR and total energy demand. Finally, simulation

results of the unscheduled, GA schedule, GWO and hybrid G2 are presented to

show the effectiveness of the proposed hybrid model for appliance scheduling in

DSM.

4.2 Proposed architecture

In this work, a smart home with multiple smart appliances is considered. Length

of operational time (LoTs) and power rating (PR) information of all appliances

are already taken from end consumers. The whole system is divided into three

sub-layers, including the supply side management layer (SSML), communication

management layer (CML) and demand-side management layer (DSML) as shown

in Fig. 4.1. SSML contains all information related to energy generation. DSML

uses an energy management controller (EMC) and appliance scheduler (AS) and
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Figure 4.1: The proposed system architecture

schedules smart appliances based on LOTs defined by the end-users. The pur-

pose of a load balancer (LB) is used to delay appliance operation to minimize

the demand-supply gap and not to allow consumer demand to exceed the limit.

Through CML, energy forecaster (EF) and demand response manager (DRM) ex-

change real-time demand-supply information with SSML and DSML. Home area

network (HAN) conducts effective communication between EMC through Wi-Fi,

Z-wave and Zig-Bee communication protocols. Furthermore, smart appliances are

further categorized into baseline loads, regular loads and controllable loads de-

pending upon whether their operation can be interrupted or not when activated.

EMC uses an appliance interface (AI) that controls on/off operation tasks of all

smart appliances associated with the system. It is pertinent to mention here that

EMC through AS, stops all scheduling operations of the appliances if the interrupt

is generated by the consumer to enhance comfort.

Three meta-heuristic techniques are adopted in this paper, including GA, GWO

and hybrid G2 to schedule these smart appliances in the home energy management

system (HEMS). Scheduling is performed to save electricity utilization costs for

end-users. The knapsack problem is formulated to establish coordination among

smart appliances at run-time. This gives autonomy to each consumer for managing

appliance operation according to comfort.
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4.3 Appliance categorization

Home appliances are classified into three sub-categories based on their operational

behavior. Interruptible appliances are those whose operation can be interrupted

or delayed during operation but their operational time is unchangeable. Similarly,

uninterruptible appliances are those whose operation cannot be delayed or inter-

rupted once they are in operating mode. However, these appliances can be shifted

to other time slots before their operations start.

It is important to shift interruptible and uninterruptible appliances to other time

slots to maintain overall energy consumption up to an allowed level. It is beneficial

to use the interruptible appliances at low peak hours for saving electricity costs. On

contrary, base appliances are those which can neither be interrupted nor deferred

in the HEMS. For example, refrigerators, air conditioning, lighting and microwave

oven are devices whose operation pattern remains unchanged. All appliances along

with their length of operation time (LOT), power rating and category used in this

study are listed in Table 4.1.

This section analytically describes the power system, energy cost and load control

model for residential purposes. Based on these descriptions, formulation of three

design optimization problems will be performed in the next section.

4.3.1 Power system

There can be one or multiple load users in a power system. These users are con-

nected to the main with the help of a step-down transformer or may have their

generation source e.g a generator. For simplicity, it is considered that each con-

sumer is equipped with a smart meter that keeps a scheduler that can schedule

different appliances (12 in our model) during different intervals of time (96 intervals

in a complete day i.e. 15 minutes each). By making use of appropriate commu-

nication protocol e.g through LAN different smart meters are interconnected not

only with the grids but also these smart meters can share information with each
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other. In this paper let ”n” be the set of users and utn denotes the total load at

time slot t ∈ T 1,. . . . . . .T, where T=96. Daily consumed load by a specific user is

denoted by un ∈ [u1n, . . . . . . . . . . . . .u
T
n ]. This definition leads us to calculate a total

load of an individual user in a single time slot across the whole day t ∈ T . It is

represented as,

Lt ∈
∑

utn (4.1)

Similarly, daily peak load and average can be calculated as,

Loadpeak = maximumt∈TLT (4.2)

and

Loadaverage =
1

T

∑
(t∈T )

Lt (4.3)

From equation A and B, the PAR is calculated as follows,

PAR =
Loadpeak
Loadaverage

(4.4)

4.3.2 Energy cost model

For each time slot t ∈ T energy cost for generation or distribution is represented

by Ct(Lt). Generally, the same load cost may differ in the different time slots. It

mostly depends upon the electrical price signal maintained by the utility at the

generation site. It is pertinent to mention here that the cost function is considered

in this paper can represent either the original cost or may also represent artificial

cost maintained by the utility for proper execution of load control programs. The

actual energy cost function can be represented in terms of a quadratic function as

follows,

Ct(Lt) = atL
2
t + btLt + ct (4.5)

where, at, bt and ct ≥ 0 at each time slot t ∈ T .
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4.3.3 Residential load control

For an individual user u ∈ U , let UA denotes the different set of appliances in-

cluding base appliances, interruptible and non-interruptible appliances in a smart

home. For scheduling purposes, a vector for each appliance a ∈ An of an individual

user is initially defined with n number of appliances in the following equation,

Ku,a = [K1
u,a, ........, K

T
u,a] (4.6)

In Eq. 4.6, Kt
(u,a) represents scheduled one time slot consumption for appliance a

by user u. Resultantly, the total load by uth user is calculated as follows,

ltu =
∑
a∈An

ktu,a, t ∈ T (4.7)

In the proposed model, the main task of the scheduler is to determine an optimum

time slot in uth user’s smart meter for individual appliance a. In this way, user

n can shape its daily energy demand by making use of Eq. 4.7. It is pertinent

to mention here that the energy scheduler does not aim to reduce the power

consumption of different appliances rather it shifts to other different time slots

for minimization of PAR. In this regard, a user needs to initiate a beginning and

end time slot in which an appliance a is supposed to complete its task. Let the

beginning time slot be represented by αu,a ∈ T and the end time slot is represented

by βu,a ∈ T . Importantly αu,a < βu,a needs to be satisfied otherwise an appliance

may not be able to complete its task. For example, an electrical vehicle (EV)

having E(u,a) = 2kWh needs 4 hours to complete its charging cycle. For compiling

tasks, a user may select a larger time slot because in case of any interruption

scheduler will complete its task to complete charging EV by its end time. For

example user may select αu,a = 12 AM and βu,a = 8 AM. Mathematically it is

represented as,
βu,a∑
t=αu,a

xtu,a = Eu,a (4.8)
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where, xtu,a represents energy consumption vector of appliance a during t time slot

by u. Also, from Eq. 4.8, it is concluded that appliance a schedules balances

according to daily consumption requirement. Similarly, total energy consumption

by all appliances and by all users can be easily summed up as follows,

∑
t∈T

Lt =
∑
u∈U

∑
a∈An

E(u,a) (4.9)

Since electronic devices are divided into base, interruptible and uninterruptible

smart appliances, so in the case of uninterruptible appliances, strict energy con-

sumption needs to be adopted. In our case, the washing machine and clothes dryer

have constraints that once the washing machine task ends, the clothes dryer must

start its operation immediately. In that case, αu,a = 1 for washing machine and

βu,a= 0 for clothes dryer. Similarly, a refrigerator is on all the time, so in that

case αu,a = 1 for washing machine and βu,a = 96. Generally, a scheduler has no

active impact on the operation of the non-interruptible appliances. For a complete

energy consumption profile, the standby power of interruptible appliances needs to

be calculated. It is the power that is consumed by interruptible appliances when

they are in idle mode. It is required that the minimum (ΥMin
u,a ) and maximum

(ΥMax
u,a ) standby power level for interruptible appliances is calculated. Standby

power can be assumed to be such power that a device is consuming when it is in

non-operation mode but ready to start its operation. The assumption is given as,

ΥMin
u,a ≥ xtu,a ≥ ΥMax

u,a (4.10)

The proposed Hybrid G2 model is now ready to perform optimal energy scheduling

with the help of Eq. 4.1 to Eq. 4.10.

4.4 Optimization method

Traditional optimization methods like integer linear programming (ILP), mixed in-

teger programming (MILP) and mixed integer nonlinear programming (MINLP)
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Table 4.1: Appliance parameters

Appliance name LoT (slots) Power rating (kWh Category
Washing machine 20 1.0 Uninterruptible

Clothes dryer 16 1.6 Uninterruptible
Electric vehicle 36 2.0 Interruptible

Water pump 32 2.0 Interruptible
Humidifier 12 0.5 Interruptible

Vacuum cleaner 24 1.5 Interruptible
Water heater 48 2.0 Interruptible
Dish washer 16 1.2 Interruptible
Refrigerator 96 1.4 Base

Air conditioner 40 1.5 Base
Home lightning 52 0.8 Base
Microwave oven 16 2.0 Base

are unable to control a large number of appliances. Furthermore, these methods

are computationally inefficient and hence not suitable for real-time optimization,

which is deterministic in nature. Instead, the meta-heuristic optimization tech-

nique can provide the best solution while considering user-defined constraints.

Both GA and GWO algorithms are their hybridization to achieve real-time opti-

mal results.

GA is inspired by the genes of living organisms. Initially, binary-coded chro-

mosomes are randomly initialized. The total number of smart appliances are

represented by the length of chromosomes’ and smart appliances on/off status is

identified through chromosomes binary-coded pattern. Once the initial population

is generated, the fitness function of GA is evaluated which is actually an objec-

tive function of this study. Mutation and crossover are performed to generate a

new population. Generated population fitness function is then compared with the

previous one and hence, optimum results are achieved.

On the other hand, the GWO algorithm is based on grey wolves hunting and

leadership hierarchy mechanism. Alpha, beta, delta and omega are four kinds of

wolves in the leadership hierarchy. For performing optimization hunting, searching,

encircling and attacking, prey steps are implemented. In this way, the positions of

the search agents are updated in the form of a position vector towards prey. Search
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Figure 4.2: Load profiles

agents update their position until it reaches an optimal position in n-dimensional

search space.

The purpose of proposing the hybrid technique is to achieve a balance between

global search and local search. GA performs well in terms of exploration mode.

Also, it has a good convergence rate to reach optimal solutions. Initially, GA

steps are followed for generating the initial population of chromosomes. These

chromosomes actually represent a candidate solution to the problem. Furthermore,

a bit of the chromosome represents the on/off state of the smart appliances. The

fitness function is based on the objective function, taken from GWO. The best

population is regenerated through the velocity updating step of GWO. Firstly, it

finds a local best solution and on the basis of this value, it achieves a global best

solution. Through an optimal stopping rule, the cost minimization problem can be

formulated and the best fit value is thus chosen. Based on crossover and mutation,

a new stream is generated. Hence new generation population is created which has

completely different characteristics as compared to the initial generation.
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Figure 4.3: Energy cost during the time slots
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Figure 4.4: Cost in different time slots over the day

4.5 Simulation results

This section presents simulation results and assess the performances of the pro-

posed algorithms. By making RTP signal for DSM, PAR reduction, cost mini-

mization and load balancing are key features to be analyzed. The cost, load and

waiting time for each group is represented in terms of cents, hours and kWh. Fig.
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Figure 4.5: Total cost under different approaches

4.2 shows the load on the grid for a single home using all three approaches ac-

cording to RTP. In RTP tariffs, electricity price changes during different times of

a single day. Particularly prices are higher in the afternoon, hot summer days and

cold winter days. Fig. 4.3 clearly demonstrates that during the high price rate

hours, if demand is high, then unscheduled load creates high peaks as compared

to the scheduled load. Due to this reason, the electricity cost of the unscheduled

load is high. It also depicts that without affecting the overall load, the proposed

fitness function has the greatest effectiveness on cost and PAR reduction.

Moreover, load profile during multiple time slots for a complete day is shown in

Fig. 4.4. It demonstrates that the proposed hybrid model outperforms the GA

and GWO models in terms of load shifting to off-peak hours; hence reduction can

be many folds in terms of PAR and cost. Fig. 4.4 illustrates the cost in different

time slots during the day, the consumption pattern by GWO and GA during the

peak price is high as compared to the hybrid G2 approach. This affects the overall

cost per day for aforementioned approaches as shown in Fig. 4.5. It clearly shows

that price using hybrid G2 is low as compared to GA and GWO. Using the hybrid

G2, the proposed approach reduces 20% cost, which is the best among all three

used approaches.
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PAR results are shown in Fig. 4.6, where the unscheduled load is very high and

for the hybrid G2 it is commendable. This shows the adeptness of the proposed

approach which is better than GA and GWO. In this case, about 50% PAR is

reduced by hybrid G2. While addressing the cost and PAR, the waiting time of

different appliances cannot be overlooked; this is highlighted in Fig. 4.7. Waiting

time has a direct relationship and impact on user comfort and it is an important

parameter for efficiency measurement in any proposed scheme. It shows that the
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waiting time for baseload appliances for GA and GWO is higher as compared to

the hybrid G2.

During the simulation, it is perceived that GA is best for the maximum number of

populations. With the increase in the number of population and generation steps,

the difference between the lowest and highest point becomes negligible. On the

other hand, GWO shows high performance for the small population under hundred

intervals. Fig. 4.5 and Fig. 4.6 show that GA outperforms GWO in terms of cost

reduction, peak reduction and PAR. The hybrid G2 shows a positive influence on

both approaches by lowering PAR, cost and peak load values.
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4.6 Short term electricity load forecasting

In a deregulated environment of the power industry, the role of electricity load

forecasting has become increasingly important in the smart grid. The ELF is one

of the main drivers of the smart grid, often causes a wide range of anomalies at

the planning and distribution level, and the advance prediction of ELF based on

big data is always an important and challenging issue. The primary purpose of

price/load prediction is to minimize power demand peaks and balance the supply-

demand gap. Among numerous forecasting methods, STLF predicts the load from

several minutes up to hours and weeks into the future.

The electricity load is affected by many factors such as generation capacity, fuel

prices, renewable generation, and most of the factors vary within short intervals.

Accurate electricity load forecasting is of great importance for smart grids and

many intricate factors in big data would exacerbate the difficulty. The big data

phenomenon is highly complex and dynamic, involving different aspects of the time

series data, and the variation trends over time are non-linear. Accurate forecasting

is essential, but it is challenging to increase accuracy due to the more extensive

data. Smart meters continuously monitor the associated factors such environ-

ment, RES generation and temperature, all in real-time; however, the amount of

data available for forecasting is considerably large and hence difficult to handle,

especially for STLF [123].

Customers have a predefined power price threshold, and based on forecasting re-

sults; they can decide to control power demand for a specific time to get financial

benefits in terms of energy cost savings. A precise forecasting method not only

reduces the demand-supply gap but also helps to develop a stable and efficient

power management system. On one end, it helps the utility to address uncertain

power generation challenges specifically when penetration of RES is increasing.

Besides, it brings higher reliability and aims to achieve available energy sources

economically and rationally in an effective manner.

91 Inam Ullah



4.7. SYSTEM FRAMEWORK

Figure 4.8: Proposed system model

4.7 System framework

Inspired from [70], the Fig. 4.8 shows the framework of the proposed system that

is based on three modules, namely feature selection, extraction, and classification.

The first part of Fig. 4.8 corresponds to the feature selection which starts with

the standardization of the raw data. Standardization is very crucial because it

later affects the overall performance of the classifier. After applying min-max

standardization, data is fed into the feature selector, which is based on RF and

recursive feature elimination (RFE) algorithms. Feature selector decides whether

a feature needs to be reserved or removed before fed into feature extractor. A

feature is kept only in the feature selector index if selected from both RF and

RFE algorithms. To remove redundant features, the t-Stochastic Neighbourhood

Embedding (t-SNE) algorithm is applied in the second stage. Finally, extracted

features are fed into the CNN classifier for building the forecast model. Since CNN

performance is controlled by many hyper-parameters, the grid search algorithm

(GSA) is used to assign optimal values to the hyperparameters for better efficiency.

The following three sections describe the details of these modules.

4.7.1 Feature selection

This section describes the details of feature selection methodology to identify

the most relevant features. Instead of relying on a single algorithm, a combined
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method based on two algorithms to control the feature selection process is pro-

posed. In this way, more accurate features are selected to improve the forecasting

mechanism. The RF and RFE algorithms independently give feature importance,

and their combination selects an essential set of features. Both features selection

steps are important and provide an excellent predictive performance.

First of all, RF is applied, which is an ensemble learning technique and has a higher

computational capability. As the name suggests, it consists of RF with hundreds

of decision trees trained with the bagging method. RF grows on bootstrap data

sets to divide the data into feature bagging and out of bag (OOB) data to best

separate the samples. The OOB data is used to calculate feature importance in

the data set. RF guarantees that all trees are decorrelated and, therefore, reduce

variance and over-fitting problems of the decision tree method. During the training

process, each feature impact on Gini impurity is calculated. A feature has more

importance if it decreases the Gini impurity. The final significance of the variable

is determined with high cardinality. Fig. 4.9 shows that combined importance

scores add up to 100%, and clearly, 10 out of 15 features are the most prominent

features contributing (>0.80) to the creation of the model.

The second method employed for finding an optimal number of features is RFE

with Cross-Validation (RFECV). Contrary to the RF method, RFECV recursively

eliminates highly correlated in the data set. Highly correlated features give the

same results and bring high computational complexity during classification. With

the help of the feature selection process, much computational overhead is reduced

to train the model. Fig. 4.10 shows that the RFECV achieves (>0.85) score

when six informative features are found. The performance of the curve gradually

decreases when non-informative features are added to the model. The shaded

area in the curve shows the variability of cross-validation above and below the

mean score. Initially, 15 features are fed, and their cumulative score jumps low

to high when 6–8 features are found and declined again from the optimal num-

ber of features. Both feature selectors work independently and can be deployed

distributively to achieve computation efficiency. To select the best ten features, a
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Figure 4.10: Number of optimum features selected by RFE

threshold (TRF ≥ 0.07) for RF is introduced. The RFECV provides the list of ten

best features. A combination of RF and RFE selects the most important features.

There exists a redundancy among ten best-selected features for which they are

sent to the t-SNE algorithm for feature extraction.

4.7.2 Feature extraction

Feature extraction is useful to remove redundant features, and a model generalizes

better when appropriate features are used during the fitting process. To reduce

the redundancy among features, principal component analysis (PCA), and classi-

cal multidimensional scaling are the most common methods for feature extraction.
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However, these techniques assume a linear mapping from high to low dimension

space [124]. Fig. 4.11 clearly shows that PCA makes the clusters of nonlinear data

that are entirely overlapping and results in high dimension mapping. Data in elec-

tricity load forecasting needs to be nonlinear mapped for appropriate embedding

into low dimension.

To addressed nonlinear data mapping issues, Kernel PCA (KPCA) is used, which

is an extension of PCA. However, KPCA requires multiple hyper-parameters of

the kernel functions to be tuned, which increases computation time and hinders

the performance. Moreover, KPCA is not as interpretable as PCA because it is

not possible to determine how much variance is explained by individual dimensions

[125].

To address the above-mentioned issues in PCA and KPCA, t-SNE algorithm is

used to perform nonlinear mapping and dimension reduction of data altogether

[126]. The t- SNE uses ”stochastic neighbours,” which means not to have a clear

border to distinguish how multiple data points are neighbours of the other lo-

cations. This is a significant advantage of t-SNE to take both local and global

structures into considerations. Finding local and global structure simultaneously

create a well-balanced dimensionality reduction map. The aim is to preserve the

maximum possible useful high dimensional data points into the low dimension

map. Fig. 4.12 shows how the data points from the different clusters are well

separated in the two-dimensional space. The ten best-selected features are used

as an input of t-SNE and the output matrix is expressed as,

X = (x1, x2, x3, ..., xN)T (4.11)

where xi is the ith feature of electricity load. In the t-SNE algorithm, two es-

sential steps are performed. First, in high dimensional data space, a probability

distribution P is constructed. Given a set of N high dimensional objects, a data

point xi would pick xj as its neighbour if its probability is in proportionate to the

probability density of a Gaussian centred on xi. The conditional probability(pj|i)
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Figure 4.11: Performance of PCA on dimensionality reduction

for picking a nearby data point is relatively high, whereas, for faraway data points,

it is almost negligible. Mathematical expression for construction P distribution is

given by,

pj|i =
exp−||xi−x

2
j ||/(2σ2

i )∑
k 6=i exp

−||xi−x2j ||/(2σ2
i )

(4.12)

such that the probability of selecting the pair xi and xj is,

pij =
pi|j + pj|i

2N
(4.13)

The probabilities pij = 0 for i = j. In Eq. 4.12, σ represents the bandwidth of the

Gaussian kernel to set the perplexity of the conditional distribution. Perplexity

indicates how well the bandwidth of local and global aspect is adapted according

to the density of data. The perplexity value has a complex effect on prediction and

model fitting of a sample. To achieve a target perplexity, the value of bandwidth

σi is adjusted according to the data density.

For the construct of d-dimensional map yi, ..., yN where yi ∈ Rd, second phase

of t-SNE defines probability density distribution,Q, through perfect replication of

high dimensional data points (xi, xj) into low dimensional data points (yi, yj).
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Figure 4.12: Performance of t-SNE on dimensionality reduction

Mathematically, qij is defined as following,

qij =
(1 + ||yi − yj||2)−1∑
k=l (1 + ||yk − yl||2)−1

(4.14)

The Student’s t-distribution is used to measure the similarities of high dimensional

data in qij. To obtain the yi, the Kullback Leibler divergence between high and

low dimensional space is minimized as follows,

KL(P ||Q) =
∑
i 6=j

pijlog
pij
qij

(4.15)

In fact, this result reflects the similarities between the high-dimensional inputs

very well. After describing feature selection and feature extraction, we propose the

ECNN classifier in the next section to perform the final electricity load forecasting.

4.7.3 Optimal classification

Since CNN is robust and efficient enough in electricity load data, the CNN is

chosen as the classifier. In this section, the classification problem is investigated

first. After that, the GSA based CNN is proposed to optimize this problem. The

main goal of this work is to minimize the cross-entropy loss function of CNN.
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However, there is a strong link between the loss function and value of CNN super

parameters. It is very challenging to obtain the optimal value of these super

parameters to achieve better efficiency and higher accuracy. In this work, a GSA

is used to tune these parameters.

In essence, CNNs are a special kind of neural network, which processes data that

has grid topology. In this perspective, images are formed because of 2D grids,

and time-series data such as electricity load and price data are viewed as a 1D

grid. Among multiple layers, at least one layer of CNNs is dedicated to performing

convolutions for specific linear operation. The output of the convolution layer for

multidimensional input is calculated with the following equation,

S = (x ∗ w) (4.16)

where x is the input function, and w denotes the weighting function, also called

the filter or kernel of a CNN. The output is in the form of a feature map, denoted

by S. The inputs and weights of a CNN are multidimensional arrays. During

the course of iterations, random weights are assigned to each input for training

purposes. The convolution operation for a two-dimensional input can be expressed

as:

S(i, j) = (I ∗K)(i, j) =
∑
l

∑
m

I(l,m)K(i+ l, j +m) (4.17)

where I and K represent two-dimensional input and kernel, S is the resulting

feature map after applying the convolution operation. In reality, there are three

phases to complete the operation of the convolutional layer. As a first step, a fea-

ture map is obtained after performing a convolution operation. Then, a nonlinear

activation function is applied to all the elements of the feature map. The rectified

linear activation function (ReLU) is the preferred function to faster the training

process.

98 Inam Ullah



4.7. SYSTEM FRAMEWORK

Finally, to achieve a modified and desired feature map, a pooling function is em-

ployed. The purpose of pooling operation is to reduce the dimensionality and

amount of parameters, thus making the network less susceptible to small variations

in the input. In this work, the max-pooling method is used to avoid over-fitting

and computational complexity. In max pooling, the operation chooses the maxi-

mum value within a matrix and discards the lower value to provide an abstracted

form of representation.

As stated, the designed framework can be formed with one or more convolutional

layers. In the end, the produced outputs of the convolutional layer(s) are sent to

one or more fully connected layers to extract the features. In principle, fully con-

nected layers are the same as hidden layers in a traditional multi-layer perceptron

neural network. The output of fully connected layers in the form of a flatten ma-

trix is given to the output layer for classification. The function of the output layer

is similar to the output layer in a standard ANN. The final convolution involves

back-propagation for the learning process to weigh the end product accurately.

4.7.4 The grid search algorithm

In the proposed framework, a GSA is employed to choose optimal values for the

dropout rate (0.2–1.2), learning rate (0.1–1), number of epochs (10–1000), and

the number of neurons in the standard CNN. The main reason for choosing these

parameters is that little variations in the values can affect the performance of

CNN many folds. Among different optimization techniques, GSA is seen as one

of the fundamental tools to find the best combinations of parameters as a search

problem. GSA tries all candidate solutions on a grid and chooses the best one in

terms of the fitness function. It is a simple and straight forward method to reduce

the computational overhead. The optimization problem in GSA is defined as,

max F (θ1, θ2, ..., θn) s.t θmin,i ≤ θi ≤ θmax,i,(i = 1, 2, ..., n) (4.18)

where F (∗)i denotes fitness function and θi is the i-th decision variable. There
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Figure 4.13: Day ahead performance on load forecasting

Figure 4.14: Week ahead performance on load forecasting
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Figure 4.15: Comparison of accuracy between CNN and ECNN
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are two main steps in a standard grid search method, namely, grid creation and

grid validation. First, a set of grids parameters are generated as the candidate

solutions in the form of dictionary. These candidates solutions contain an equal

interval [di =
θmax,i−θmin,i

mi
] for the decision variable i, where mi represents sum

total of all candidates. Similarly, the j-th candidate solution for variable i, θi,j ,

is expressed as follows,

θi,j =

 θmin,i (j = 1)

θmin,i +midi (j = 2, 3, ...,mi)
(4.19)

As a second step, all candidate solutions are tried on the created grids to find the

optimal solution θ∗1, θ
∗
2, ..., θ

∗
n. It reaches the best set of parameters from a set of

values. In this work, the fitness function is designed as follows,

F =
1

3
ac(Tr) +

1

3
ac(V s) +

1

3

1

|ac(Tr)− ac(V s)|
(4.20)

where ac(Tr) and ac(V s) represent the average prediction accuracy for the training

and validation datasets of the ECNN model, respectively. According to Eq. 4.20,

an optimal value of hyperparameters needs to guarantee accurate prediction and

avoid the overfitting problem during learning. In the proposed framework, the

GSA searches the optimal values of the defined hyper parameters in an array.

4.8 Simulation results and setup

This section evaluates the performance of the proposed framework. The python

simulator is developed according to the system framework devised in section 4.7.

For this framework, input data contains energy generation data and hourly elec-

tricity load data of the ISO New England Control Area (ISO NE-CA) from 2010 to

2015 [127]. This record consists of over 50000 real-world electricity price records.

The simulation results are organized as follows:
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4.8.1 Performance of hybrid feature selection

Important features in ISO NE-CA are roughly selected from hourly electricity

load data from 1-1-2015 to 31-12-2017. During the feature selection process, ev-

ery feature sequence takes the form as a vector. The feature value in different

timestamps is represented as components of this sequence. Since our goal is to

predict the electricity load, which is named ”System load” in the data and those

features that have little effect on the load are removed. First of all, RF is applied

to calculate the feature importance, as shown in Fig. 4.9. The optimum number

of features graded by RFE method is shown in Fig. 4.10, which indicates that 6–8

most important features achieve above 84% score. Five features are dropped with

obvious low grade, i.e., features DA CC, RT MLC, RT CC, DA MLC, and RSP.

It is pertinent to mention here that with the increase in the threshold value, more

features are dropped, resulting in the increase of training speed and the decrease

of accuracy.

4.8.2 The t-SNE performance comparison with PCA

In order to eliminate the redundant information within the features, two principal

components PC1 and PC2 are extracted with t-SNE and PCA. PCA is a linear

algorithm, and it does not interpret the complex polynomial relationship between

features, while t-SNE captures the exact relationship between data points. PCA

performs a linear mapping of the data to a lower-dimensional space in such a way

that the variance of the data in the low-dimensional representation is maximised.

As shown in Fig. 4.11, PCA concentrates on placing dissimilar data points far

apart in a lower dimension representation with higher ranges. The t-SNE extracts

most of the principal components, as shown in Fig. 4.12 within a low range. Thus,

the t-SNE algorithm is used to guarantee higher accuracy of forecasting. The

data points of t-SNE distribute along coordinate axes, i.e., extract the principal

components that are more representative than the PCA.
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4.8.3 ECCN performance comparison with standard CNN

The performance of ECNN is compared with the standard CNN to forecast day-

ahead electricity load. To comprehensively understand the characteristic of the

proposed method, MAPE is calculated as a performance indicator,

MAPE =
1

N

N∑
i=1

|(yi − ŷi)2|
yi

× 100% (4.21)

In Eq.4.21, yi and ŷi are the actual and forecasting values, respectively. As shown

in Figs. 4.13 and 4.14, the ECNN is demonstrated as an improved model both

for the day-ahead and week-ahead load forecasting strategies. Fig. 4.15 clearly

shows that the MAPE values of CNN are much higher for both day-ahead and

week-ahead forecasting as compared to the ECNN values in the same scenarios.

The ECNN achieves a higher accuracy as its curve fits much well with the real

values. It appears that CNN has some outliers which deviate from the real values.

The GSA helps optimise the super parameters of CNN jointly; therefore, ECNN

performs better in terms of the accuracy of electricity load forecasting than the

CNN.

4.9 Summary

This chapter presents an effective approach utilizing DSM strategies in smart grid.

The main idea is to facilitate consumers to manage electricity load by shifting or

balancing home appliances in an optimum way. The results show that through

a carefully designed appliance scheduling model, users can offer a viable solution

to optimal power management among residential users. The proposed approach

is based on a hybridization of GA and GWO algorithms. It clearly demonstrates

that the hybrid approach outperforms individual GA and GWO algorithms. With

the proposed hybrid algorithm, the load is balanced in such a way that not only

load peaks are avoided but also user comfort is less compromised.
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This chapter also proposes a novel electricity load forecasting architecture. The

model integrates three modules, namely data selection, extraction, and classifi-

cation procedures. First, essential features are selected with the help of random

forest and recursive feature elimination methods. This helps reduce feature re-

dundancy and hence computational overhead for the next two modules. Second,

dimensionality reduction is realized with the help of a t-stochastic neighbourhood

embedding algorithm for the best feature extraction. Finally, the electricity load

is forecasted with the help of a CNN. The learning trend and computational ef-

ficiency of CNN is further improved with the help of a grid search algorithm

to tune hyperparameters of CNN. Simulation results confirms that the proposed

model achieves higher accuracy when compared to the standard CNN.
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Chapter 5

Detection of non-technical losses

5.1 A stacked machine and deep learning-based

approach for analysing electricity theft in

smart grids

In the energy sector, power systems are electrical grids that provide electricity to

homes and industries within a large geographical area. Electricity is an expensive

commodity and needs to be carefully and efficiently utilized. From generation to

distribution, a power network encounters two types of losses: TL and NTL. TL

occur due to losses in cables, transmission lines and transformers during energy

transfer and cannot be prevented within a distributed network. In contrast, NTL

occur when there is an illegal usage of electricity with an aim to escape from

utility charges. Meter tampering and bypassing, tapping on secondary voltages

and synchronously switching power circuits are one of the few examples of NTL

in power networks. The primary cause of NTL is electricity theft, which gives rise

to approximately 96 billion of revenue loss annually [83].

Electricity theft is one of the SG’s leading drivers that often causes a wide range of

anomalies at planning and distribution levels. To counter this, the role of ETD has

become increasingly important in the SG. The advanced methods for ETD based

on big data is always an essential and challenging issue. The primary purpose
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of ETD is to minimize NTL in the power system and balance the energy supply-

demand gap. An accurate and stable ETD method brings extraordinary energy

management compliance and develops a winning situation for the generation and

consumption side stakeholders [13].

Accurate ETD methods are of great importance for SG but many intricate factors

in big data would intensify the difficulty of using these methods for ETD. The big

data phenomenon is dynamic and complex that involves distinctive aspects of the

time series data where the variation trends over time are non-linear. Accurate ETD

is essential, but it is challenging to increase scalability, robustness and accuracy

due to the widespread non-linear data. SM continuously monitor the associated

factors such as time and consumption patterns of a consumer in real-time. As

a result, the amount of data available for ETD is significantly big and hence

challenging to handle, especially for ETD [9].

In more general terms, hardware and non-hardware solutions are two main ways for

electricity theft prediction. Non-hardware solutions are classification algorithms,

for which ML and DL methods, such as SVM, DT, RF, ANN and generative ad-

versarial networks (GAN) are very popular [88, 128]. However, a large body of

literature suggests that none of these approaches is perfect and each method may

exhibit its drawbacks during the classification procedure. Big data characteristics

such as high volume, high velocity and high veracity are creating new challenges

and require new processing paradigms. For example, SVM is computationally ex-

pensive because of the large number of support vectors for large training datasets,

and the associated hyper-parameters can be problematic to tune. Similarly, DT

and RF usually face over-fitting problems. The ANN and GAN convergences

cannot be easily controlled, and these methods have limited generalization capa-

bilities. In the context of electricity theft prediction, the challenging is to improve

robustness, scalability and accuracy in the face of widespread nonlinear data.
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Figure 5.1: Proposed framework for electricity theft detection

5.1.1 Contributions:

The resent work investigates various ETD issues, including binary classification

tasks where the main objective is to predict the normal and fraudulent patterns of

customers. ML methods provide the underpinning framework. During the classi-

fication process, each ML method attempts to separate different data points and

explain a class value. Although SVM, RF and DT are promising approaches, they

may outperform each other or have defects in different cases. Thus, the following

challenges must be addressed when making an accurate prediction between the

two patterns.

• Highly imbalanced theft data: One of the main problems in the real-world

dataset is imbalanced classes [88]. This is the scenario where non-fraudulent
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samples far outweigh the fraudulent ones. The common methods to deal

with the imbalanced class distribution problem is random oversampling and

under-sampling. However, both methods have known drawbacks that cause

the supervised ML models to become bias and overfit towards majority class

samples, thus leading to inaccurate prediction results for theft cases.

• Difficulty in parameters tuning : In ML methods, numerous hyperparame-

ters control the learning process. There is no analytical formula available

to calculate an appropriate value of these hyperparameters, which affect

the performance of models in the classification task. Gradient descent and

cross-validation [129] are two common methods to adjust hyperparameters.

However, both methods increase the computational complexity and make

the converging process difficult.

• High computational overhead : According to [70, 129], the DL methods are

weak to process uncertain information and have high computational costs. In

electricity theft prediction process, the presence of redundant and extraneous

features increases computational complexity and makes the final classifier’s

training process hard and prevents it from being a good fit model, which

decreases the prediction accuracy.

To address the above, a new integrated data preparations, first and second-order

classification (PFSC) procedures are integrated in this framework, as summarised

in Fig. 5.1. The three components of PFSC are: data preparation based on

interpolation, outliers detection, normalization, and balancing (IONB) tasks; a

first-order ML classifier based on SVM, RF and gradient boosting decision tree

(GBDT) methods; and a second-order classification step using a temporal convo-

lutional network (TCN). Specifically, the missing values in the data are filled by

applying an interpolation method to achieve data uniformity. Subsequently, out-

lier handling and data normalization steps are used to set the values between 0-1

and to ensure data consistency. In the State Grid Corporation of China (SGCC)

dataset, more honest (91%) and less dishonest (9%) consumers exist. Thus, the
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Figure 5.2: Schematic diagram of the proposed system

final task of IONB is to apply the sampling technique to get an equal distribution

of both classes. Once the data preparation task is performed, the prepared data

are used to train three different classifiers to construct a first-order ML classifi-

cation model. It is natural to expect that multiple methods will lead to superior

performance [129, 130]. Hence, the outputs of the three ML classifiers are stacked

and provided to the DL method (a recently developed second-order classifier in

our case) to obtain the final classification. Our recent conference article [9] also

proposes an integrated data pre-processing and resampling methods and present

some preliminary results. The present work builds on this concept but uses a new

approach to classifiers. In this manner, the main contributions of the research are:

• Development of an integrated ETD framework to achieve accurate theft de-

tection using real data in a smart grid. To our knowledge, this represents a

first attempt to integrate data preparation steps with first and second-order
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classifiers into a single framework for the studied problem. Due to cascading

effects, real smart meter data are efficiently handled and analyzed.

• An extensive IONB approach is proposed, involving imputation, handling

outliers, normalization and class balancing algorithms for better training of

classifiers.

• The original dataset has a sample size of 42372 and each sample has 1035

features, with issues like redundancy and irrelevancy. These issues can be

problematic for both the ML and DL models. As suggested in the literature

[129, 131], ML models have lower computational overheads when trained in

the presence of such big data. In our paper, the main aim is to achieve higher

prediction accuracy. However, there is always a trade off between accuracy

and computational complexity. Both higher accuracy and computational

efficiency are difficult to attain simultaneously. The multi-model ensemble

method trains a second-order DL classifier on the limited predicted features

provided by the first-order ML classifiers. It is important to note that the

first-order classifier training process is conducted in parallel and there is a

negligible execution time difference between them. The second-stage classi-

fier (ensembler) optimally combines the first-order models’ predictions (only

three features) to provide final results, with higher accuracy and minimum

computational complexity.

• Extensive simulations based on real-world data traces from electric grid’s

workload have been investigated for performance assessment. The exper-

imental results confirm that the DL based multi-model ensemble method

makes efficient use of multi-variate time sequence data and offers high accu-

rate predictions than any single machine and deep learning model trained in

isolation.

The remainder of this chapter is organised as follows. Section 5.2 describes the

proposed theft detection framework. Section 5.3 presents the data preparation
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module. Section 5.4 develops the base and meta-classifier procedures. The exper-

imental results for several realistic case studies are explained in Section 5.5.

5.2 System framework overview

The basic problem in ETD is to improve accuracy. Various factors can impact the

electricity consumption pattern of the consumers, which makes classifier training

challenging. To improve the accuracy of the proposed PFSC framework, a sequen-

tial IONB, a first-order ML classifier and a DL-based second-order classifier are

developed for the final prediction of normal and fraudulent patterns.

The approach begins with raw data standardisation, the first module in Fig. 5.1

Standardization is pivotal for the implementation of the whole framework. In the

second module, the standardized data are fed into the base classifiers to train SVM,

RF and GBDT in parallel. The schematic diagram shown in Fig. 5.2 illustrates

how base classifiers perform predictions. Due to the decoupling design of the

selection algorithm, the process could execute in a distributive fashion. Finally, in

the third module of Fig. 5.1, the processed data are sent to build the DL model,

namely the TCN. We prefer TCN because of advantages to learn essential laws and

key features from a large dataset. Also, it depicts stronger complex and nonlinear

function fitting and computing abilities than shallow ML models, hence make it

more suitable choice for classification tasks [132]. The details of these modules are

described in next two sections.

5.3 IONB based sequential data preparations

Data preparation is often the first important step while analyzing big data prob-

lems. It ensures accuracy in the data which leads to accurate insights and better

classifier training. We propose a sequential IONB method on collected data to

ensure accurate quantifications, i.e. true positives (TP), false positives (FP), true

negatives (TN) and false negatives (FN) found in a confusion matrix (CM). The
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sequential procedure starts with imputation, handling outliers, data normalization

and finally handling the class imbalanced problem. The assumed matrix is,

X =



x11 x12 ... x1n

x21 x22 ... x2n

. . . .

. . . .

. . . .

xm1 xm2 ... xmn


=



−→
t1
−→
t2

.

.

.

−→
tm


, (5.1)

where,

−→
tk = [xk1, xk2, ...xkn] k ∈ [1,m]. (5.2)

to represent electricity consumption pattern. Time stamps and the feature index

of recorded data are represented by the rows and columns, respectively. The index,

i.e., xmn is the n− th component of the m− th electricity usage values that need

to be classified.

5.3.1 Recovering missing data

The consumption record of electricity comprise numerous missing values and in-

complete information. The main reasons behind the problem may be due to data

corruption and failure of hardware. In time-series data analysis, the missing val-

ues cannot be simply neglected because these values can significantly impact the

performance and quality of the final predictions. A better way is to impute the

missing value by calculating the mean/median of the neighboring non-missing val-

ues. In the present work, missing values are retrieved through the interpolation

method in [83], as follows,

f(xi) =


(xi−1+xi+1

2

)
, if xi ∈ NaN, xi±1 /∈ NaN,

xi, otherwise,
(5.3)

112 Inam Ullah



5.3. IONB BASED SEQUENTIAL DATA PREPARATIONS

(a) Convolution (b) Causal convolution (c) Dilated convolution (d) Zero padding

Output

Input-length

Input with K = 3

Output Output

Input with K = 2, d = 2Input with K = 3

Zero-padding
tt-1 t+1 tt-1 t+1 tt-1 t+1

Figure 5.3: Differences between (a) Convolution (b) Causal convolutional (c)
Dilated causal convolutional and (d) Zero padding

where xi are the missed (null) or recorded values contain by the dataset. The null

value is a non-numeric character, expressed as NaN. If the value of xi is null, then

Eq. (5.3) is utilized to fill the corresponding value.

Motivated by [78], an equal number of consumption records are created for each

user by removing any clients with ≥ 600 null values from the original dataset . If

a user contains m ≤ 7 missing samples, the linear interpolation method is used on

existing data to fill missing values. Similarly, the missing values are replaced with

zero if m ≥ 7.

5.3.2 Handling outliers

Numerous erroneous values in the SGCC dataset are found alluded to above.

The presence of outliers misleads the training process, takes longer training times,

resulting less accurate models and, ultimately, mediocre results. The “three-sigma

rule of thumb” used in [83] is employed for mitigating the outliers and restoring

the data, as shown below,

f(xi) =

 X, if xi > X,

xi, otherwise,
(5.4)

where X indicates Avg(xi) + 2σ(xi)) and σ represents the standard deviation of

x.
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5.3.3 Data standardization

ML and DL methods are sensitive to diverse data. Hence, data normalization is

performed using the Min-Max method calculated in following equation,

f(xi) =
Xi −min(X)

max(X)−min(X)
. (5.5)

5.3.4 Handling imbalanced class

One of the main problems found in the electricity theft dataset is the majority

class (honest consumers) domination over the minority class (dishonest). The im-

balanced data have a non-uniform distribution of target variables and this causes

the classifier to become skewed towards the majority class [133, 134]. As a re-

sult, the classifier becomes bias and exhibits misleading performance towards the

minority class samples (theft cases). In the ETD problem, this problem is more

critical to handle because minority class samples identification is more important

than the majority class (honest customers).

Hence, this work develops a new class balancing method that strategically couple

the characteristics of over-sampling and under-sampling methods to minimise the

misclassification cost. The proposed technique STLU (SMOTE + Tomek link

undersampling) is applied for the first time in this framework to adjust for the

unbalanced class distribution problem.

In STLU, SMOTE is an oversampling technique, which generates new instances in

the minority class synthetically by interpolating between numerous minority class

samples that lie together. The creation of a synthetic data point starts by choosing

a random sample from s samples. In feature space, the Euclidean distance between

the random sample and its k nearest neighbors is calculated. The new synthetic

sample is created when one of those neighbors’ point k vector is multiplied with a

random number a. The value of a lies between 0 and 1. This procedure is repeated

until the distribution between both classes is balanced.
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Although oversampling methods can help achieve balance class distributions, some

other problems present in the electricity theft datasets, such as skewed class dis-

tributions, are not solved. More generally, some majority class samples might be

invading into minority class portions due to the undefined class clusters. The op-

posite can also happen i.e., when interpolation causes expansion of the minority

class cluster and introduces artificial minority class samples that are too deep in

the majority class area. To create well-established class clusters, Tomek links [134]

between examples are recognised and these examples are then removed from the

dataset.

Unlike SMOTE, the TLU method removes unwanted majority class samples from

class boundaries to make an equal proportion. The TLU defines a pair of data

points (xi, xj) in the majority class where xi belongs to the minority class and xj

denotes the majority class sample. The distance between both samples is denoted

as d(xi, xj). The pair (xi, xj) forms a Tomek link when no sample xk satisfies the

condition such that d(xi, xk) < d(xi, xj) and d(xj, xk) < d(xi, xj). In this way,

the data samples in the majority class having the least Euclidean distance with

minority class samples are removed.

To combine oversampling and undersampling methods, an imbalanced-learn Python

library [133] is used. The library provides a wide range of resampling methods,

as well as a pipeline class to allow transformation to be stacked in sequence on a

dataset. The STLU method with the help of pipeline first applies SMOTE and

then TLU to the output of the oversampling transform before returning the final

outcome.

Good results may be obtained when both the oversampling and undersampling

methods are combined. For illustration, a moderate quantity of oversampling in-

creases the bias towards the minority class, whilst undersampling by a modest

amount can result in a decreased bias towards the majority class samples. This

adoption of a combined strategy helps improve overall performance in contrast to

applying one or the other method in isolation. In this work, the SGCC dataset

115 Inam Ullah



5.4. CLASSIFIER ADJUSTMENT

Table 5.1: Hyperparameters of the machine learning models

Classifier Hyperparameters Range of values Optimal values

SVM
Cost penalty (C),
Intensive loss function (σ),
kernel function (k).

C = 0.01, 0.11, 1, 10, 100.
σ = 0.0001, 0.001, 0.01, 0.1, 1.
k = linear, ploly, rbf, sigmoid.

C = 1, σ = 0.1,
k = rbf.

RF
DT,
Sample leaves (SL),
Sample splits (SS), Criterion.

DT = 10, 15, 20, 25, 30.
SL = 1, 5, 10, 15, 20.
SS = 3, 4, 5, 6, 7.
Criterion = gini, entropy

DT = 15, SL = 5,
SS = 7,
Criterion = gini.

GBDT
Number of estimators (NE),
Maximum depth (MD),
Learning rate (LR).

NE = 60, 90, 120, 150, 180.
MD = 1, 3, 6, 9, 12.
LR = 0.0001, 0.001, 0.01, 1, 10.

NE = 180,
MD = 9,
LR = 0.001.

initially consisted of 1 (minority):10 (majority) class data distribution. First,

SMOTE is used which increases the ratio to 3:10 by synthetically generating mi-

nority class samples. Subsequently, TLU is used to further adjust the ratio to 1:1

by removing samples from the majority class.

The efficiency of first and second-order classifiers induced from standalone SMOTE,

TLU and STLU (SMOTE+Tomek) as a pre-processing method for a highly im-

balanced electricity theft dataset is evaluated in Section 5.5.1.

5.4 Classifier adjustment

Following the IONB steps, the data are clean, formatted and transformed to train

the classifier. In terms of the classifiers, the stacked generalization is selected,

arguably the best approach among various state-of-the-art methods, recently win-

ning many Netflix and Kaggle competitions for classification tasks [135, 136]. This

is an efficient and robust method of learning high-level classifiers (second-order)

on top of the base classifiers (first-order) to achieve greater predictive accuracy.

Specifically, first-order models involve three different ML methods that are estab-

lished on the classification problem in a different way. A newly developed DL

method is then employed as a high-level model to ensemble the output of the

first-order models and achieve reliability in classification tasks.
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5.4.1 Base classifiers

In SVM [72], training data are initially mapped into a feature space of high dimen-

sionality. With the help of a hyperplane, the two categories of data are separated

in such a way that the gap between different data points is largest. Tested samples

are mapped implicitly to the same space and classified based on which side of the

class they belong to with greater certainty.

RF [73] is an ensemble ML algorithm and has recently gained much attention

on classification tasks due to out-of-the-box learning algorithms and its relative

simplicity, diversity and computational capabilities. RF involves constructing a

large number of decorrelated decision trees, each of which corresponds to a random

vector value, sampled independently but with a similar distribution. By adopting

the wisdom of the crowd, the output class is the one that receives majority votes in

the forest. In contrast to RF, GBDT [74] is an ensemble technique that combines

multiple DT models for building a stronger prediction model. In GBDT, DT are

added one at a time in a gradual, additive and sequential fashion to reduce the

prediction error of prior DT models. The models are trained using an arbitrary

differential loss function and gradient descent optimization algorithm.

As suggested by [70], SVM is a classical approach and can be considered the

most common and useful technique for binary classification tasks. Nevertheless,

it is challenging for SVM to find an appropriate kernel to achieve higher accuracy

and efficiency in specific tasks. Specifically, for nonlinear cases, there exists no

general solution and prediction accuracy cannot be guaranteed. The RF and

GBDT methods are an ensemble of DT algorithms and solve over-fitting problems

to some extent. However, due to ensembling, the algorithms suffer interpretability

and may indicate the classification results to the class with additional samples.

5.4.2 Hyperparameter tuning of base classifiers

The simulated annealing (SA) algorithm method for optimizing ML model pa-

rameters is preferred for hard computational and practical optimization problems
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where exact algorithms such as gradient descent have failed [137]. SA is inspired

by annealing in metallurgy, which involves the heating and gradual cooling process

of the metal to produce defectless crystals. In essence, there are three main steps:

initialization, the states transition mechanism and the cooling schedule formulated

by an objective function of many variables. Every vector consisting of values of

the hyper-parameters can be an element in the population size. The four main

steps are executed repeatedly until the optimal values of the parameters given in

Table 5.1 are obtained:

i. The algorithm starts by randomly initializing the population.

ii. At each iteration, the target is to obtain a better solution in terms of the fitness

function.

iii. The probability-based decision decides whether the new solution is preferred

or discarded.

iv. At each step, the temperature is progressively decreased from an initial posi-

tive value towards zero. A better solution gets a positive moving probability while

an inferior solution is assigned zero moving probability.

For parameter tuning, a hyperparameter API is used to automatically configure

hyperparameter optimization toolkit [138]. It is highly versatile in model optimiza-

tion and provides a unified view of possible preprocessing modules and classifiers.

Instead of conventional tedious search, it is used to automatically search the best

combination of hyperparameters very quickly and can therefore surpass human

experts in algorithm configuration.

5.4.3 Meta classifier

In practice, multiple classification models are used for electricity theft detection

but none is fully accurate. The stacking of ML methods may improve the perfor-

mance due to well-performing base models that are skillful on a problem but in

a different way [136, 139]. In the multi-model ensemble technique, diverse basic

classifiers are trained independently on a given dataset to ensure high parallelism

and the predictions of the collection of models at the first stage are provided to
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the second stage learning (meta classifier) model as an input. The methodology

of PFSC is demonstrated in Algorithm 1. The algorithm starts with the data

preparation step based on IONB. Three base classifiers (b(1−3)) are fitted to the

resampled dataset xi and provide predictions. Each base classifier bi would give a

vector of features which form a new dataset x′i = b1(xi), b2(xi) and b3(xi). Once

the second level classifier is trained, its performance is tested on unseen data.

The main aim of DL based meta classifier development is to detect malicious be-

haviour by targeting the integrity of the readings on consumed energy. For this

purpose, different structures of the deep neural network, feedforward, recurrent

and convolutional-recurrent neural networks, are investigated to capture complex

data representative patterns of energy consumption. Finally, TCN is preferred

because of stronger function fitting and better nonlinear computing abilities to

learn key features and essential laws from mass data. Also, in time-series data

analysis tasks, TCN outperforms well-established recurrent networks such as re-

current neural network (RNN) and long short-term memory (LSTM) in terms of

accuracy and efficiency [140]. In the following section, the classification problem

and its optimization process are formulated.

5.4.4 Problem formulation

The classification problem is modeled to compute the loss between actual class

and predicted class as follows,

L = − 1

N

[
N∑
i=1

yi − log(hθ(xi)) + (1− yi) log(1− hθ(xi))

]
(5.6)

Eq. 5.6 represents the binary cross entropy loss for N training samples, whilst

yi is the actual class value for the input-output pair (xi, yi). To cover the input

sequence, the values of hyperparameters c∞i (i = 1, 2, ...) such as kernel size k,

dilation factor d and receptive field size r need to be determined. The term hθ(x)

represents nonlinear hypothesis of convolutional network and can be defined as
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follows,

hθ(x) = f(wTx+ b), (5.7)

where b represents bias and f(.) : R→ R is the activation function. TCN relates

to a 1D CNN to encode sequence information [141]. A vanila 1D convolution layer

is written as,

F (xt) = (t)(x ∗d f) =
k−1∑
i=0

f(i).Xs−d.t, t > k (5.8)

where x is the input sequence, ∗d is dialated convolutional operator, f ∈ Rk×d is a

convolutional filter with size k, d is dilation coefficient and the term s− d.t repre-

sents direction into the past. By stacking several vanila 1D convolutional layers,

a 1D CNN is constructed. However, in sequence modeling, 1D CNN is restricted

due to limited receptive fields and shrinking output size [141]. By contrast, TCN

is featured with causal and dilated convolutional techniques to address these prob-

lems.

A. Causal convolutions. The Module 3 in Fig. 5.1 shows how a vanila 1D

convolutional layer takes n sequences as input and returns n− k + 1 sequences as

output. With more stacked layers, the output sequence shrinkage would increase

further. In time-series data analysis, models are expected to predict for each time

step with updates in real-time. This problem is well addressed when a causal

convolutional layer allows concatenation of zero paddings of length k − 1 at the

beginning of the input sequence to ensure that the output has the desired length.

Due to zero padding, the output tensor makes sure to have the same length as

the input tensor. The required number of zero-padding entries p is computed as

follows [142],

p = bi.(k − 1) (5.9)

where b is the dilation base and i is the number of layers below the current layer.

For a convolutional layer to be causal, the prediction p(xt+1|x1, ..., xt) only depends

on the elements that come before it in the input sequence {xt, xt−1, . . . , x−∞} but
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Algorithm 1: PFSC working for electricity theft detection

1 Input: Training data N = {xi, yi}ni=1 (xi, yi ∈ Rn)
2 Output: Obtained results from second-order classifier M
3 1: Module 1: Data preparation based on IONB
4 2: Module 2: Learn first-order classifiers
5 3: for t ← 1 to T do
6 4: First-order (base) classifier Ft training on N
7 5: end for
8 6: Construct a new dataset from D
9 7: for i ← 1 to m do

10 8: Construct a new dataset that comprises xi
′ = {b1(xi), b2(xi) and b3(xi)}

from N
11 9: end for
12 10: Module 3: Learn a second-order classifier
13 11: Second-order (meta) classifier M training on the newly constructed

dataset
14 12: return M(x)= m(b1(x)), (m2(x)) and (m3(x)).

not on the future indices,

F (xt) = (t)(x ∗d f) =
k−1∑
i=0

f(i).xs−d.t, x60 := 0 (5.10)

The causal convolution splits the convolution operation in half so that it can only

convolute the information of past time steps. The prediction result of the current

state t is only related to historical information, thus avoiding information leakage.

B. Dilated convolutions. Another disadvantage that pertains to the vanila 1D

CNN is its linear receptive nature, which means that the receptive field grows

linearly with every additional layer. In long-term dependency modeling such as

ETD, the historic data is sufficiently large and the narrow receptive field would

cause problems. To circumvent this, dilated convolution enables an exponentially

larger receptive field. In the context of a conventional convolutional layer, dilation

refers to the gap within the elements of the input sequence that are utilized to

calculate one entry of the output sequence. Therefore, a conventional convolutional

layer could be regarded as a 1-dilated layer because 1 output value depends on

adjacent input elements. Fig. 5.3 shows the differences between standard, causal,

dilated convolutions and zero padding to obtain long-term information. More
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specifically, receptive field size r of a 1D convolutional network with a kernel size

k nad n layers can be calculated as,

r = 1 + n ∗ (k − 1) (5.11)

whereas for a fixed kernel size k and keeping the receptive field size equal to input

length, the required number of layers for full history coverage is calculated as,

n =

[
(l − 1)

(k − 1)

]
(5.12)

Eq. 5.12 states that with a fixed kernel size, the network depth has a direct

relationship with the length of the input tensor. For full history coverage, the

involvement of a large number of parameters would be required to train the model.

Hence, the model would become very deep very quickly and may lead to the

degradation of the loss function. One way to increase the receptive field with

a relatively small number of layers is to introduce dilation to the convolutional

network, as shown in Fig. 5.3 (c). Fig. 1 (Module 3) also suggests that for full

history coverage, the value of the dilation factor d exponentially increases for a

specific layer as it is moved up through the layers. The formulas for exponentially

growing the receptive field and dilation are (k − 1)r−1 and d = bi respectively.

Hence, the width of the receptive field w is computed using Eq. 5.13 [140],

w = 1 +
n−1∑
i=0

(k − 1) . b1 = 1 + (k − 1) .
bn − 1

b− 1
> l (5.13)

Without sacrificing receptive field coverage, the dilation factor brings significant

improvement in terms of the required number of layers. As opposed to Eq. 5.12,

the minimum number of required layers n for full history coverage are now based

on the logarithmic length of the input tensor and dilation base b,

n =

[
logb

(
(l − 1) . (b− 1)

(k − 1)
+ 1

)]
(5.14)
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Fig. 5.1 (Module 3) shows that a residual block comprises two 1D causal convolu-

tional layers with the same d and k values. The outputs of both layers are added

and given to the next residual block as an input. The addition of residual blocks

affects the overall requirement of the number of layers and adds twice as much

receptive field width for full history coverage. Similarly, regularization techniques

such as batch normalization and dropout are introduced after every convolutional

layer to prevent overfitting. Finally, the output u of all the temporal convolutional

layers is defined as follows,

u = (F (x1), F (x2), ..., F (xn)) (5.15)

The PFSC performance is more sensitive to the hyperparameters values of TCN,

such as kernel size, dilation factor and receptive field size. To determine optimal

network configurations, a series of repeated models were generated with different

parameter settings and the final prediction accuracy was gauged using the error

metrics stated previously. Finally, the tunable parameters of the prediction model

using TCN are set as follows: convolution kernel size is 2; number of filters is 64;

the dilation factor is set as 2; the learning rate is 0.05; the number of TCN layers is

3; residual connections are adopted between TCN layers; the optimization function

of the model is Adam; and the loss function is chosen as binary cross entropy loss.

Based on the integration of IONB, first and second-order classifier adjustment, our

framework for ETD can identify the honest and dishonest consumption pattern

accurately.

5.4.5 Evaluation metrics

The performance is determined from the CM, i.e. the matrix that is used to explain

distinct outcomes in classification problems, as alluded to earlier and shown in Figs.

5.4 and 5.5. In binary classification tasks, the 0 class label is dedicated for honest

consumers and that for dishonest consumers, the class label 1 is assigned [91].

Here, TP (1,1) and TN (0,0) scores mean that normal and abnormal consumption
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patterns are identified accurately. Similarly, FP (0,1) and FN (1,0) scores mean

that the number of customers having normal and abnormal consumption patterns

are misclassified. More specifically, FP accounts for those observations in the

CM that were honest but predicted dishonest, whilst FN observations contain

dishonest consumption patterns that were predicted honest. CM is utilized for

the validation of the model’s performance in terms of different metrics such as

Accuracy, Precision, Recall and the F1 score.

Accuracy = TP+TN
TP+TN+FP+FN

, (5.16)

Precision = TP
TP+FP

, (5.17)

Recall = TP
TP+FN

, (5.18)

F1 Score = 2× Precision×Recall
Precision+Recall

(5.19)

The area under the curve (AUC) represents the degree of separability and pro-

vides a more reliable assessment between classes when data distribution has an

unequal proportion. It is the probability that a randomly chosen positive sample

ranks higher than a randomly chosen negative sample. For AUC calculations, the

formula is as follows [83],

AUC =
Σi∈PCRanki − M(1+M)

2

M ×N
(5.20)

where PC is Positive Class, Ranki is the rank value of sample i in ascending

order, M and N represent the number of positive and negative samples. The

AUC of receiver operator characteristic (ROC) curve is a graphical demonstration

of the false positive rate (FPR) and true positive rate (TPR) plotted on the x-

axis and y-axis, respectively. The FPR FP
FP+TN

measures the fraction of negative

class misclassified as dishonest and TPR, also known as Recall Sensitivity, TP
TP+FN

calculates the fraction of positive class labeled correctly. It is pertinent to mention

that the range of the ROC lies between 0 and 1. When AUC goes straight up the

y axis to approximate 1 and then along the x, it authenticates that the classifier

perfectly discriminates both classes. By contrast, if an AUC follows the diagonal
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Table 5.2: Metadata information

Description Value
Electricity consumption time window 01-01-2014 to 31-10-2016
Class of customers Residential
Power source (conventional, RES) Utility
Data resolution Daily data
Total consumers 42372
Honest consumers 38757
Dishonest consumers 3615

line or falls below 0.5, this means that the classifier is randomly guessing and has

no power for the classification task.

5.5 Experiments and results

To investigate the abilities of our proposed method, five different case studies in

Google Co-laboratory [143] according to the system framework devised in Section

5.2. The actual load profile data of each residential household is obtained from

SGCC [144]. The data includes an electricity usage record of 42372 consumers

from 2014 to 2016. Here, 38757 consumers are recognized as honest and the

3615 consumers as dishonest, as shown in Table 5.2. The models are trained

and tested on actual SM data Ṫhe SGCC dataset is the only publicly available

labeled dataset with at least one on-field inspection. The data have been divided

into a training and a test dataset to generalize model capabilities beyond the

training/seen dataset. The division is performed in a stratified manner so that

there is the same percentage (%) of NTL samples in the training and test datasets.

The dataset used for training purposes consists of 80% of the labeled data, while

the test dataset consists of 20%.

5.5.1 Impact of handling imbalanced class

In an extreme class imbalanced problem, one class predominates the other due to

the unequal distribution of classes and thus creates a problem when identifying
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Figure 5.4: Prediction results on imbalanced class

positive classes. Figs. 5.6 and 5.7 show the difference between minority and ma-

jority classes before and after handling the class imbalance. Clearly, the majority

class customers (green circles) are in a much higher ratio and may cause high bias

in the model during the training process. Without dealing with the imbalanced

class distribution problem, the CM in Fig. 5.4 shows severe performance loss and

identifies only 0.69%, wherein the reality 9% consumers are fraudulent. The value

of FN is 7.95% which means the model has corresponded to the majority class

well and considers minority class features as noise to be ignored. The model ob-

tained 0.5850 for the AUC score, and 0.7021 and 0.4453 for Precision and Recall

performance metrics, respectively. Afterwards, the STLU method is applied for

balancing the minority and majority classes and the resampled dataset has equal

distribution of both classes i.e., 50 % of honest and dishonest customers. After ob-

taining a balanced distribution for both samples, both model training and model’s

generalization capabilities are much improved. When the model is applied to the

test dataset, the CM in Fig. 5.5 exhibits that most of the positives and negative

cases are correctly identified. The numerical results of each classifier are based on

resampled data and achieved the performance metrics shown in Table 5.3.

5.5.2 Base classifiers performance comparison

In this case study, five different ML models have been used and, among them, the

three best performing models are preferred as first-order classifiers. Figs. 5.8 shows
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Figure 5.6: Data distribution on imbalanced class

AUC curves for DT, LR, RF, GBDT and SVM. From the performance curves, it

is seen that the RF, GBDT and SVM results are comparable; however DT and

LR tend to be weak classifiers for distinguishing honest and dishonest electricity

consumptions patterns because of the overfitting problem (and possibly other rea-

sons as discussed in Section 5.4.1). It is worth noting that the performance of the

meta classifier solely depends upon the performance of the base classifiers. Thus,

RF, GBDT and SVM are selected as base classifiers to guarantee higher accuracy

and robustness of final classification and drop DT and LR to avoid overfitting and

time complexity problems.
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5.5.3 Meta classifier performance comparison

This section compares the performance of TCN with other state-of-the-art clas-

sifiers such as MLP, LSTM, GRU and CNN. The experimental results for AUC

are shown in Fig. 5.9. Although LSTM and GRU models can achieve improved

prediction results, they are still worse than the TCN model, as can be seen from

Table 5.3. A notable drawback of LSTM and RNNs is that the sequential structure

makes them hard to parallelize since the output for a certain time step depends

on the output of previous time steps. The predicted value of the TCN model is

nearest to the actual value, which can accurately indicate the dynamic trend of

structural deformation. The TCN model effectively increases the receptive field

size by stacking the convolutional layer, extending the dilation factor, enlarging

the convolution kernel size, and thus better controlling the model’s memory length.

This evades the gradient explosion problem that often appears in RNNs due to the

difference in the back propagation path and sequence time direction [139]. Speed

is important and faster networks shorten the feedback cycle. From Table 5.3, it

is notable that the computational complexity of the TCN is less than the others

for this classification task. This is because massive parallelism shortens both the

training and evaluation cycles of TCN. In the meantime, the residual connection

can effectively improve the model accuracy. It is also notable that base classifiers

require more time for predictions when compared to the meta classifiers. This is
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because the base classifiers are trained on the original dataset that contains 1035

features with issues like redundancy and irrelevancy. The meta classifiers on the

other hand are trained only on the three informative features provided by the base

classifiers, and therefore the conventional problem of computational complexity in

DL models has been addressed. The proposed detection architecture achieves an

AUC score of 98.5% and an FP of only 1.03%.

5.5.4 PFSC performance on theft detection

This case study investigates the capabilities of PFSC and a comparison among

different benchmarks is conducted. These benchmarks are given in Table 5.4. Fig.

5.10 shows a line plot of accuracy and loss (how good or bad the model’s predic-

tion is on a single example) over each epoch. The lower plot shows that the loss

is smooth and the training process converges well between the probability distri-

butions. The uneven upper plot for accuracy in Fig. 5.10 shows that the training

and testing sets have binary prediction outcomes with a less granular feedback on

performance. The bar plot in Fig. 5.11 shows that the proposed PFSC framework

achieves higher accuracy in ETD than all the benchmarks. The comparison among

frameworks A–E suggests that, for these simulation experiments, every module in

our proposal can improve the accuracy of the classifier. With the IONB mod-

ule, the first-order ML classifier gives better results and, finally, the multi-model

ensemble method achieves better performance.

5.5.5 PFSC robustness comparison with benchmark algo-

rithms

In a practical setting, ML and DL models are sensitive to various outliers and

training data size. In PFSC, stacking method is preferred over the bagging and

boosting methods because it is more robust to the various outliers for the following

two reasons [145]. First, stacking considers heterogeneous weak learners and learns

to combine the base models using a meta-model. In contrast, bagging and boosting

methods consider homogeneous weak learners following deterministic algorithms.
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Figure 5.8: Standalone base classifiers performance

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

LS TM= 0.956

CNN = 0.974

MLP = 0.933

TCN = 0.985

GRU = 0.979T
ru

e
 P

o
s
it

iv
e
 R

a
te

Figure 5.9: Standalone meta classifiers performance

0 5 10 15 20

0.85

0.90

A
cc

u
ra

cy

0 5 10 15

Number of epochs

0.3

0.4

L
o
ss

Train

Test

20

Figure 5.10: Performance of PFSC model
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Table 5.3: Performance comparison of individual base and meta classifiers

Classifiers Accuracy Precision Recall F1-Score AUC Time (s)
Base classifier

LR 0.838 0.838 0.838 0.838 0.912 111
DT 0.899 0.899 0.899 0.899 0.894 58
RF 0.874 0.877 0.874 0.874 0.944 37

GBDT 0.884 0.886 0.884 0.884 0.944 85
SVM 0.858 0.868 0.859 0.857 0.924 88

Meta classifiers
MLP 0.746 0.829 0.749 0.731 0.933 21

LSTM 0.914 0.917 0.914 0.914 0.956 11
GRU 0.944 0.947 0.945 0.944 0.958 15
CNN 0.917 0.918 0.917 0.917 0.978 18
TCN 0.946 0.948 0.946 0.946 0.985 9

Table 5.4: Benchmark frameworks

Benchmark Description
Proposed IONB + Stacked generalization

E IONB + DL methods only
D IONB + ML methods only
C SMOTE [76]
B TLU [134]
A Without sampling

This case study also intends to affirm whether PFSC maintains its superiority when

small, medium and high sizes of training samples (60%, 70% and 80%), compared

to the size of all samples, are available for classifier’s training. As can be seen from

the experimental results provided in Table 5.5, the PFSC outperforms the other
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Figure 5.11: Comparison of accuracy among proposed method and benchmark
frameworks
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Table 5.5: Comparison among SPRC and other benchmark schemes

Methods
Training Ratio 60% Training Ratio 70% Training Ratio 80%

Precision Recall F1-Score AUC Precision Recall F1-Score AUC Precision Recall F1-Score AUC
RF 0.550 0.608 0.533 0.694 0.774 0.725 0.725 0.720 0.791 0.744 0.437 0.94

SVM 0.573 0.608 0.534 0.751 0.751 0.753 0.753 0.755 0.774 0.771 0.627 0.92
GRU 0.637 0.614 0.581 0.690 0.688 0.689 0.689 0.690 0.773 0.688 0.787 0.97
CNN 0.748 0.884 0.872 0.811 0.773 0.855 0.855 0.638 0.856 0.865 0.877 0.97
PFSC 0.947 0.912 0.943 0.938 0.961 0.980 0.941 0.938 0.964 0.954 0.959 0.98

algorithms under consideration for all sizes of the training dataset. Results from

the conventional schemes show an expanding trend with increased data available.

It is observed that PFSC achieves a maximum AUC value of 0.985 and outperforms

other algorithms in terms of performance metrics for these data.

5.6 Summary

This chapter discussed a DL-based multi-model ensemble approach, PFSC, to cap-

ture abnormal electricity consumption patterns in smart grids. This methodology

has been evaluated using realistic electricity consumption data issued by SGCC,

the largest power utility in China. The obtained results have shown that with

the proposed ensemble method, the complex relationships among the classifiers

are determined automatically and efficiently, thus allowing the ensemble approach

to improve the performance of the prediction model. The method has attained

an AUC score of 0.985 on the real dataset. The DL-based multi-model ensemble

approach minimizes the generation error and captures valuable information by em-

ploying the first-stage predictions as input features. These results show that the

proposed IONB and stacked generalization method outperform both base ML and

meta DL approaches. Moreover, the comparison with other state-of-the-art clas-

sifiers has proved that the proposed ensemble model can exceed the performance

of those established classifiers such as SVM, RF, GBDT, ANN, CNN, LSTM and

GRU in terms of accuracy and robustness, and thus can effectually be utilized in

industrial applications.
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Chapter 6

Detection of non-technical losses

6.1 Robust data driven analysis for electricity

theft attack-resilient power grid

Energy crises are real, extensive and seem to be long-lasting. This is neither

inevitable nor desirable. During the transfer of energy, power system networks

encounter two types of losses: TL and NTL [146]. TL are inherent and cannot

be averted because of their occurrence in transformers, cables and long-distance

transmission lines during the transfer of energy. NTL has long plagued the utilities

and has two dominant components, namely electricity theft and non-payment of

utility bills. Today, it is estimated that electricity theft costs the power industry

as much as $96 billion/year globally. In developing countries, this proportion is

much higher, with an estimated cost of $60 billion/year [16].

One of the main aims of the smart grid is to decrease power system losses to

balance the electricity demand-supply gap. With the recognition of the internet

of things (IoT) technologies and data-driven approaches (based on single-level

data collection), power utilities have enough tools to combat electricity theft and

fraud. The electricity consumption changes frequently and a large amount of

installed IoT devices monitor the multi-source real-time data, such as climatic

factors (wind, solar, temperature), transmission and the consumers’ electricity

usage record. For example, during the uncertain times of COVID-19, when people
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could be spending more time indoors, the quantity of historical data is big and

difficult to analyse [70, 78].

6.2 Challenges and contributions

This work examines binary classification problem for ETD in smart grids. Our ob-

jective is to predict the honest and dishonest consumers accurately using big data

from the smart grid. To achieve this challenging task, an improved ANN for the

underpinning framework is proposed that performs energy theft tasks efficiently

with normal and anomalous consumption patterns. Compared to the shallow ML

methods, it is preferred to choose ANN for the classification task because it has

stronger non-linear computational and complex function abilities. Also, it is more

suitable for classification tasks due to many potential advantages to learning es-

sential laws and key features from mass data. An ANN is formed when neural

structures are constituted in the form of layers. The computational power of a

neural network is attained by connecting hundreds of single-unit artificial neu-

rons with their respective weights. The artificial neuron, a processing element,

has weighted inputs and an output associated with a transfer function. Although

ANN is a promising approach, the subsequent challenges need to be addressed to

predict electricity theft with higher accuracy:

• Challenge 1 (Highly imbalanced theft data): One of the main problems in the

real-world dataset is imbalanced classes issues. This is the scenario where

non-fraud samples far outweigh the fraudulent ones. The common methods

to deal with imbalanced class distribution problem is random oversampling

and under-sampling. However, both these methods have known drawbacks

that cause the supervised ML models to become biased towards majority

class samples and give inaccurate prediction results for theft cases.

• Challenge 2 (High computational complexity): The DL methods are slow

to train. According to e.g. [147], the neural networks’ performance is con-

strained by processing uncertain pieces of information. Also, these methods
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Figure 6.1: Proposed electricity theft detection framework

have high computational costs due to the operation of forward and backward

propagations through the hidden layers. In electricity theft prediction, the

presence of extraneous and redundant features makes the classifier training

process difficult and prevents it from being a good fit model, which decreases

the prediction accuracy.

• Challenge 3 (Problem of limited generalization and over-fitting): One major

difficulty with training deep architectures is exploding and vanishing gradi-

ents. As back propagation computes gradients using the chain rule, gradients

can exponentially grow or vanish, preventing weights from updating and thus

stalling training. Another issue faced by neural networks is the internal co-

variate shift (ICS) which occurs when the distribution of network activation

changes because of variations in network parameters during training. As

ANNs have a large number of layers, this shift in input distribution can be

problematic in achieving fast convergence. Also, ANNs have the most com-

mon problems of over fitting, limited generalization and limited control over

convergence and stability.

To address above mentioned challenges and to assist electrical utilities to identify

energy frauds, a novel ETD framework is developed, called sequential preprocess-

ing, resampling and classification (SPRC), as presented in Fig. 6.1. The main
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components of SPRC are sequential preprocessing based on interpolation, out-

liers handling and standardization (IOS), hybrid data resampler (HDR) and final

classification with improved ANN (iANN). Specifically, missing values in the data

are filled by applying an interpolation method to achieve data uniformity. After-

wards, outlier handling and data normalization steps set the values between 0-1

and make the data consistent. Electricity theft data are imbalanced due to more

honest (91%¿) and less dishonest (9%¡) consumers. Thus, we an HDR based on

adaptive synthetic (ADASYN) oversampling and nearmiss undersampling (NMU)

technique is developed to obtain balance distribution for classifier training. Once

the data is in well-organized shape, the processed data is sent to iANN for final

classification. In the proposed framework, different iANN structures (sequential,

parallel and other combinations) are also proposed to improve the generalization

and better function capabilities of the classifier. In contrast to relying on the

output of a single structure, it is natural to expect that multiple iANN structures

would lead to superior performance. Our recent conference article [9] also pro-

poses an integrated data pre-processing method and presents some preliminary

results. The present work builds on this concept but uses a new approach to

resampling and classifiers and, more significantly, different configurations of the

ANN are investigated and new methods to improve the ANN performance. In par-

ticular, to achieve higher accuracy and computational efficiency, this paper makes

the following novel contributions:

• An integrated ETD framework is introduced that obtains accurate theft

predictions results by analyzing big data in a smart grid context. This

represents a first attempt to integrate data preparation, data resampling

and classification into this framework design for the studied problem. Due

to the cascading impact, big data is efficiently interpreted and investigated.

• First and foremost important, an IOS-based data preparations module em-

ploys data imputation, outliers handling and standardization algorithms to

ensure data accuracy and critical insights. This helps reduce human error

during inspections, such as typos or overlooked items missed by the human
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eye. Secondly, an HDR combines the characteristics of over-sampling and

under-sampling techniques to avoid the severely skewed class distribution

problem for real-world datasets. Finally, a multi-mode classification engine,

based on iANN, is designed to complete the prediction task. The ANN’s

performance is improved by adopting different procedures such as hyper-

parameters tuning, regularization methods and skip connections (HRS). The

HRS-ANN has significantly better performance than many ML and DL

methods proposed in this field. Moreover, among the different structures

of the multi-mode classification engine (iANN), the most effective structure

is chosen for the final classification.

• For performance assessment, extensive simulations based on real-world data

traces from electric grid’s workload have been investigated. The final results

indicate that the proposed model obtains high accurate prediction results

than benchmark approaches.

The remainder of this chapter is organised as follows. Section 6.3 presents the

data preparation and class balancing modules. In section 6.4, the ANN and its

improvement methods are presented. Section 6.5 verifies the proposed framework

with experimental results.

6.3 System framework

The primary issue in ETD methods is to maximize classification accuracy. How-

ever, various factors affect the electricity consumption pattern and make the clas-

sifier training process difficult and complex. To improve the accuracy of the pro-

posed framework, a sequential IOS, a newly developed HDR for class balancing

and an HRS-ANN-based improved classification method are proposed. As shown

in Fig. 6.1, the SPRC procedure starts with ordering and standardizing the raw

data. The standardization methods are essential for the implementation of the

whole framework under consideration. Secondly, the standardised data is fed into

the class balancer to handle class imbalance issues. Finally, the prepared data
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is sent to develop the ANN. Since ANN performance depends on several hyper-

parameters, the simulated annealing (SA) algorithm is employed to tune these

parameters. Furthermore, regularization methods such as batch normalization,

early stopping and weight decay are also employed for addressing the dual chal-

lenges of generalization and computational efficiency.

It is well-established that neural network performance degrades when more hidden

layers are added to the network [15]. However, the addition of hidden layers is

essential when handling big data in ETD. The addition of extra layers offers better

opportunities to learn hierarchical re-composition of complex features. To avoid

the degradation problem, skip connections between the hidden layers are used to

improve classifier accuracy. Finally, learned from [83], the most effective topology

of multi-mode iANN is utilized for theft prediction. A detailed explanation of

these modules is given in the following sections.

6.3.1 Data preparations

Data preparation is often the first and most important step when analysing big

data for a specific problem. This section describes the process of data preparation

for which a sequential IOS method is proposed on the collected data. This includes

data imputation, outlier handling and data standardization (data centring and

scaling). The matrix is assumed below,

X =



x11 x12 ... x1n

x21 x22 ... x2n

. . . .

. . . .

. . . .

xm1 xm2 ... xmn


=



−→
t1
−→
t2

.

.

.

−→
tm


, (6.1)
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where

−→
tk = [xk1, xk2, ...xkn] k ∈ [1,m]. (6.2)

to represent electricity consumption pattern. The rows and columns depict the

time stamps and the feature index of recorded data, respectively. The index, i.e.,

xmn is the n − th component of the m − th electricity usage values that need to

be classified.

A. Recovering missing data: Due to various reasons, the recorded data often

have missing values. Some of the associated reasons are failure of hardware, storage

issues, unscheduled maintenance, unreliable transmission of measurement data and

data corruption. In the present work, the unknown (missed values) are recovered

using an interpolation method [148] based on,

f(xi) =


(xi−1+xi+1

2

)
, if xi ∈ NaN, xi±1 /∈ NaN,

xi, otherwise,
(6.3)

where xi is a missed (null) recorded value represented as NaN.

B. Handling outliers: The presence of outliers increases data variability and

distorts real results. The “three-sigma rule of thumb” introduced in [83] is used

to deal with outliers as follows,

f(xi) =

 X, if xi > X,

xi, otherwise,
(6.4)

where X is a vector that is consisted of multiple entries of xi and can be computed

as Avg(X) + 2σ(X). Avg(X) and σ(X) represent average value and standard

deviation of X.

C. Data standardization: Often, attributes in historic data comprise of different

scales. The MIN-MAX scaling method is applied to rescale all the values to the

range 0-to-1 as follows,

xnew =
xi −min(x)

max(x)−min(x)
. (6.5)
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D. Hybrid data resampler: One of the main problems found in the electricity

theft dataset is the majority class (honest consumers) domination over the minority

class (dishonest). The imbalanced data have a non-uniform distribution of target

variables and this causes the classifier to become skewed towards the majority class

[149]. As a result, the classifier becomes bias and exhibits misleading performance

towards the minority class samples (theft cases).

Hence, this work develops a new class balancing method that strategically com-

bines the characteristics of over-sampling and under-sampling methods to minimise

the misclassification cost. The proposed technique is named as the HDR and it

is applied for the first time in this framework to adjust for the unbalanced class

distribution problem.

In HDR, ADASYN [149] and NMU [150] are employed sequentially. First, ADASYN

synthetically generates alternatives (not duplicates) for each observation of the mi-

nority class. Letmj andmi be the observations of majority and minority class sam-

ples respectively, such that mi ≤ mj and mi +mj = m. The degree of imbalanced

ratio is calculated using d = mi

mj
. The cumulative number of synthetic samples that

require to be created for the minority class is determined as G = (mj −mi)× β.

The variable β represents the desired balanced level of minority and majority sam-

ples after applying ADASYN. An ideal situation arises when β = 1, meaning that

the minority and majority samples are equal. For each observation of the minority

class, xi ∈ mi, the k nearest numbers are obtained based on Euclidean distance to

calculate the ratio ri = majority samples
k

. After normalizing the density distribution

r̂i = ri∑
ri

, the synthetic samples to generate per neighbourhood are calculated us-

ing gi = r̂i × G. Finally, synthetic data alternatives Si are generated using the

following equation,

Si = xi + λ(xk − xi) (6.6)

where variable λ represents a random number λ ∈ [0, 1] and (xk − xi) is the

difference vector in n dimensional space. Unlike ADASYN, the NMU is based

on the nearest neighbour algorithm with multiple variants to remove unnecessary
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majority class observations from class boundaries. First, the number of majority

and minority class observations are counted. Secondly, the average distance of

majority class observations to each minority class observation d(mi,mj) is calcu-

lated based on their Euclidean distances. Finally, each minority class observation

picks three closest k nearest majority class observations in the majority class. The

resampled dataset has only those majority class observations which have the least

distance with minority observations in the feature space and discard the others.

This procedure repeats until the algorithm achieves a uniform distribution for both

classes.

Note that the efficiency of the iANN classifier in terms of ADASYN, NMU and

HDR (ADASYN+NMU) is evaluated in Section 5.5

6.4 Classifier adjustment

After the two stages of data preparations and resampling, the data are in a stan-

dardised form to train the classifier. This section provides a detailed description

of our proposal to accomplish the final classification task. Since the ANN is ro-

bust and efficient enough for supervised learning tasks, the ANN is chosen as the

classifier.

6.4.1 Problem formulation

The classification problem is modeled as to compute the loss between actual class

and predicted class as follows,

L = − 1

N

[
N∑
i=1

yi − loghθ(xi) + (1− yi) log(1− hθ(xi))

]
(6.7)

Eq. 6.7 represents binary cross entropy loss for N training samples, whilst yi is

the actual class value for the input-output pair (xi, yi). The non-linear hypothesis
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hθ(x) of the neural network is defined as follows,

hθ(x) = f(wTx+ b), (6.8)

where w and b represent weights and biases to train the model, and the activation

function is denoted by f(.) : R → R. Compared to the conventional logistic

sigmoid function and hyperbolic tangent, a rectified linear unit (ReLU) f(z) =

max {0, z} is preferred to increase the ANN learning rate. For a given sample, the

output value (activation) of unit i in layer k is defined as follows,

aki = f(zki ) = f(wk−1i1
ak−11 + wk−1i2

ak−12 + ... + wk−1ipk−1
ak−1pk−1

+ bk−1i ) (6.9)

where zki denotes the weighted sum of all activations aki , pk denotes the number of

neurons in layer k. Similarly, input layer K1 and output layer Knk
units activation

are computed as,

a1i = xi, (6.10)

hθ(x) = ank
i = f(wnk−1

i1
ank−1
1 + wnk−1

i2
ank−1
2 + ...+ wnk−1

ipnk−1
ank−1
pnk−1

+ bnk−1
i ). (6.11)

The activations of each unit in the input, output and hidden layers are computed

using forward propagation. The objective is to minimize L by adjusting the train-

able parameters w and b using a stochastic gradient descent (SGD) algorithm.

For this purpose, first small random values (near zero) of wkij and bki are initialized

and forward propagation computes the activation of each unit from the first hid-

den layer towards the final layer. In every iteration of the SGD algorithm, each

parameter is updated in order to minimise the loss as follows,

wkij = wkij − α
∂ L(w,b)

∂ wk
ij

(6.12)

bki = bki − α
∂ L(w,b)

∂ bki
, (6.13)
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where α represents the learning rate. The back-propagation is applied to compute

the partial derivatives and update each weight in the network, thereby minimiz-

ing the error for each output neuron and the network as a whole. The back-

propagation algorithm is based on four fundamental steps to compute the error

(δk) and the gradient of the cost function [129].

1. First, the forward propagation computes the activation of each unit in layer

K2 up to the layer Knk
.

2. Calculate the residual (error) for each unit i in layer nk,

δnk
i =

∂

∂ znk
i

|yi − hθ(xi)| = −(yi − ank
i )f́(znk

i ). (6.14)

3. Calculate the residual in each unit i in layer k, k = nk -1, nk – 2, . . . , 2,

δki = (

pk+1∑
j

wkjiδ
k+1
j )f́(zki ). (6.15)

4. Calculate the partial derivatives with respect to w and b,

akj δ
k+1
i =

∂ L(w, b)

∂ wkij
, δk+1

i =
∂ L(w, b)

∂ bki
. (6.16)

5. Finally, weight updating to minimise the error,

∆wkij = −α L(w, b)

∂wkij
. (6.17)

With the process of back forward and iterative steps of SGD, the neural network

is trained to decrease the cost function in Eq. 6.7.

6.4.2 Optimal classification

As discussed before, the main objective of this framework design is to minimize

the loss function given in Eq. 6.7. However, there is a strong relationship between
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Table 6.1: ANN hyper-parameters using simulated annealing

Hyper-parameter Range of values Optimal value
Activation Tanh, Relu, Sigmoid Relu
Batch size 15, 30, 45, 60, 75, 90 60
Solver Sgd, Adam, Nadam Sgd
Alpha 0.0001, 0.003, 0.05, 0.07 0.05
Learning rate Constant, Adaptive Adaptive
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the loss function and ANN hyper-parameters, which are the number of hidden lay-

ers, activation function, batch size and learning rate. It is hard to obtain optimal

values of hyper-parameters to improve accuracy and efficiency. The conventional

methods adopted for the adjustment of ANN’s hyper-parameters are the SGD al-

gorithm or cross-validation [70]. However, the adoption of these two methods may

lead to higher computational costs and convergence problems. In SPRC, therefore,

HRS methods are applied for optimal classification. These methods are described

below.

A. Simulated annealing-based ANN: The SA algorithm method for opti-
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mizing model parameters is preferred for hard computational and practical op-

timization problems where exact algorithms such as gradient descent have failed

[137]. SA is inspired by annealing in metallurgy involving the heating and gradual

cooling process of the metal to produce defectless crystals [137]. In essence, there

are three main steps: initialization, states transition mechanism and the cooling

schedule formulated by an objective function of many variables. Every vector

consisting of values of the hyper-parameters can be an element in the population

size. The four main steps are executed repeatedly until the optimal values of the

parameters given in Table 6.1 are obtained:

i. The algorithm starts by randomly initializing the population.

ii. At each iteration, the target is to obtain a better solution in terms of the fitness

function.

iii. The probability-based decision decides whether the new solution is preferred

or discarded.

iv. At each step, the temperature is progressively decreased from an initial posi-

tive value towards zero. A better solution gets a positive moving probability while

an inferior solution is assigned zero moving probability.

B. The role of regularization: Regularizations are the process of modifying

a learning algorithm to prevent over-fitting. Regularizers help limit the learning

process to a subset of the hypothesis space with manageable complexity. With the

adoption of modern regularization techniques such as batch normalization, early

stopping and weight decay to penalize large weights, the effective Rademacher

complexity of the possible solutions is dramatically reduced [151].

2A). Batch normalization accelerates the learning process of deep ANN and re-

duces ICS and generalization error. It stabilizes the initial random weights and

configuration of the learning algorithm to achieve a stable distribution of acti-

vation throughout training [152]. ICS of activation i at time t is defined as the
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difference,

||Gt,i −G′t,i||2 (6.18)
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where L is loss, wt1 , . . . , wt are the parameters of each nk layers, Gt,i corresponds

to the gradient of the layer parameters, G′t,i is the same gradient after all the

previous layers have been updated with their new values.

2B). An early stopping technique is incorporated into the training process, which

not only prevents over-fitting but helps train a model with fewer epochs [? ]. It is

a form of regularization that allows an arbitrarily large number of training epochs

and terminates the training process when model performance stops improving.

2C). Weight decay is a well-established regularization technique to keep neural

network weights small and avoid an exploding gradient [153]. The general formula

for weights updation is as follows,

wt+1
i = wti − η

∂L

∂wi
− µ∆wt−1i , (6.21)

where η and µ represent learning rate and momentum terms in the ANN. The

simple addition of a regularization term to prevent over-fitting and to constrain

the magnitude of the weights is as follows,

wti = wti − η
∂L

∂wi
− µ∆wt−1i −Υwti . (6.22)

where Υ is a weight decay parameter to control the relative importance of regular-

ization. When Υ = 0, the weight decay property can be easily disabled to obtain

typical behaviour.

C. Role of skip connections: The original intuition “the deeper the better”

is not always useful to learn complex features and representations. A research
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team at Microsoft [147] investigated the relationship between depth and network

performance and established that the percentage error for a 56-layer network is

higher than a 20-layer network on both training and testing data. This problem of

training very deep networks has been addressed to a greater extent with recently

developed residual neural networks (ResNets)[154]. ResNets feature residual or

skip connections to distribute learning behaviour across layers, display minimum

decay in gradients and make the training of individual residual blocks easier. In

ResNets, a direct connection skips some layers (this may vary in different models)

in between and connects directly to the output. This connection is called ‘skip

connection’ and is the core of residual blocks. The overall representation of the

residual block becomes,

Xl+1 = Ψ(Fl(xl) + xl) (6.23)

where Fl represents the residual function and Ψ(x) is the ReLU activationmax(0, x).

6.4.3 Multi-block classification engine

Enlightened by the findings of [37], various iANN based classification engines are

developed and extensive experiments have been conducted to achieve higher con-

vergence accuracy and time management. All variables in the classification engine

are optimized either using the regularization method described in Section 6.4.2 or

with rigorous trial and error to increase the training mechanism and classification

engine precision. Moreover, various models of the suggested classification engine,

based on iANN, are implemented with numerous mixes such as the sequential/-

cascade framework, sequential-parallel, parallel-sequential and combined parallel

construction, as illustrated in Fig. 6.2, in order to choose the best-combined ap-

proach.

Fig. 6.2a shows the sequence of the serial iANN blocks. First, the standardised

data is provided to the first iANN block as an input and the predicted results of

this particular block are given to the next block. The main goal of the model is

to fit the error through performance enhancement. Similarly, Fig. 6.2b presents
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the parallel mode of iANN combinations. The sequence of these blocks is very

important to form different connections. As seen from the figure, the same input at

the same time is considered by all blocks. Also, the same output will be evaluated

by this structure and aggregated as the process result.

Fig. 6.2c-6.2e presents the extended building blocks of the structures mentioned

with different topologies. The exogenous values such as load, price and related

parameters in the time series data are provided to the classification engine as an

input in the form of a matrix. The performance of the extended structures can be

enhanced by assigning higher weights to the best presentation and by no or low

weightings to the weak networks.

With the integration of IOS, HDR and HRS-ANN, the electricity theft prediction

approach can classify fraudulent activity accurately. The next section explains

experiments and analyses based on illustrative real-world theft data.

6.5 Experimental results

To investigate the capabilities of our proposal, five different case studies are de-

veloped in Google Co-laboratory according to the system framework devised in

Section 6.3. The realistic load profile data of each residential household is ob-

tained from SGCC [144]. The data contains the electricity consumption record of

42372 users from 2014 to 2016 with a tracked record of the 38757 users as honest

and the remaining 3615 users as fraudster.

For a binary classification problem, the confusion matrix (CM) has four possible

outcomes i.e. true positives (TP), false positives (FP), true negatives (TN) and

false negatives (FN). Based on CM results, Accuracy, Precision, Recall and F1-

score performance metrics are computed in Eqs. 5.16–5.19.

The area under the curve (AUC) represents the degree of separability and pro-

vides a more reliable assessment between classes when the class distribution is

imbalanced. For AUC calculations, the formula is given in Eq. 5.20. The AUC
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Figure 6.3: Data representations before and after handling imbalanced class

of receiver operator characteristic (ROC) curve is a graphical demonstration of

the false positive rate (FPR) and true positive rate (TPR) plotted on the x-axis

and y-axis, respectively. The FPR FP
FP+TN

measures the fraction of negative class

misclassified as dishonest while TPR, also known as recall sensitivity, TP
TP+FN

cal-

culates the fraction of positive class labelled correctly. Notably, the range of the

AUC curve lies between 0-to-1. When AUC goes straight up the y axis to approx-

imate 1 and then along the x, it demonstrates that the classifier separates the two

classes perfectly [148]. By contrast, if an AUC follows the diagonal line or falls

below 0.5, this means that the classifier is randomly guessing and has no power

for the classification task.

6.5.1 Performance of data balancing module

This section empirically studies the effects of no sampling, over-sampling, under-

sampling and HDR on the final classification. Figs. 6.3a and 6.3b show the

presence of minority and majority classes of data samples before and after handling

the imbalanced class problem. The majority class samples (green circles) are

in much greater number as shown in Fig. 6.3a, and a biased classification is

expected because the classifier is trained more on negative samples. Without

dealing with the highly imbalanced class distribution problem, Fig. 6.4 shows

the severe performance loss when classifying fraudulent users, whereas the values
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Table 6.2: Comparison among different modes of classification engine

Classifier Accuracy Precision Recall F1-Score AUC Training Time
Sequential 0.994 0.996 0.966 0.981 0.966 3min 55s

Parallel 0.996 0.996 0.978 0.987 0.978 2min 36s
Par Seq 0.997 0.996 0.987 0.991 0.987 4min 12s
Seq Par 0.996 0.996 0.983 0.989 0.983 5min 59s

Par Seq Par 0.995 0.995 0.973 0.984 0.973 4min 42s

of TN, FN, FP and TP are 100%, 5%, 0% and 95%, respectively. The honest

customers, TN, are identified 100% correctly; however, the value of FN is much

higher, which means the classifier incorrectly indicates dishonest consumers as

honest.

In ETD, the FN value needs to be reduced because these consumers are the real

culprits who are indulged in illegal usage of electricity. This issue is resolved

with the utilization of HDR, which efficiently obtains a balanced distribution for

minority and majority classes as shown in Fig. 6.3b. The balanced data distribu-

tion improves model training as well as generalization capabilities. The improved

numerical results are given in the form of the CM in Fig. 6.5.

6.5.2 iANN performance comparison with ANN

The performance of iANN is compared with the standard ANN and the results are

shown in Figs. 6.6 and 6.7. Both Figs show the loss (how good or bad the model’s

prediction is) graph for ANN and iANN over each epoch. The uneven upper plot

for ANN in Fig. 6.6 shows that the training and testing sets have binary prediction

outcomes with less granular feedback on performance. The lower plot for iANN

in Fig. 6.7 shows that the loss is smooth and the training process converges well

between the probability distributions. In Fig. 6.8, the AUC score for iANN is

97.9% compared to the ANN which has only 93.6%. The superior performance

of iANN mainly comes from the integration of improvement techniques in DL

areas. It jointly employs HRS to first optimize the hyper-parameters of the ANN,

followed by regularization methods to resolve over-fitting problems and finally skip

connection to distribute the learning behaviour across the layers.
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Figure 6.6: Performance of ANN

Figure 6.7: Performance of iANN
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Table 6.3: Robustness comparison among SPRC and other benchmark
schemes

Training Ratio 60% Training Ratio 70% Training Ratio 80%
Classifer

Precision Recall F1-Score AUC Precision Recall F1-Score AUC Precision Recall F1-Score AUC
LR 0.550 0.538 0.733 0.624 0.827 0.862 0.875 0.820 0.951 0.954 0.955 0.941
RF 0.573 0.577 0.654 0.641 0.748 0.748 0.733 0.701 0.774 0.771 0.767 0.720

SVM 0.637 0.654 0.664 0.690 0.688 0.689 0.689 0.684 0.773 0.688 0.747 0.719
ANN 0.748 0.744 0.816 0.781 0.793 0.795 0.855 0.878 0.856 0.865 0.947 0.936

CNN-LSTM [82] 0.664 0.615 0.661 0.666 0.629 0.662 0.636 0.670 0.670 0.690 0.676 0.730
WD-CNN [83] 0.640 0.691 0.651 0.689 0.624 0.720 0.770 0.718 0.661 0.760 0.685 0.756

DSN [84] 0.875 0.839 0.857 0.860 0.840 0.850 0.845 0.844 0.912 0.923 0.928 0.934
iANN 0.947 0.945 0.943 0.934 0.941 0.947 0.961 0.958 0.964 0.954 0.982 0.979

Par Ser
(Proposed)

0.950 0.950 0.973 0.938 0.979 0.978 0.979 0.968 0.996 0.987 0.991 0.987

Table 6.4: Benchmark frameworks

Benchmark Description
SPRC (Proposed) IOS + HDR + Par Seq

E IOS + HDR + iANN
D IOS + HDR + ANN
C IOS + ADASYN [89] + ANN
B IOS + NMU [70] + ANN
A Without IOS and Resampling

6.5.3 Performance of different multi-block classification en-

gines

In this case study, five different topologies of iANN have been used and the one

best performing model is preferred as the classification engine. It is seen in Ta-

ble 6.2 that the results obtained from combined topologies are comparable. The

standalone sequential and parallel topologies, however, tend to obtain weak clas-

sification results because of the over-fitting problem (and possibly other reasons

associated with ANN as discussed in Section 6.2). The results in Table 6.2 show the

superiority of the parallel sequential (Par Seq) and sequential parallel (Seq Par)

structures. However, we select Par Seq topology as the final classifier to guarantee

less computational complexity, higher accuracy and robustness of the prediction

results.
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Figure 6.9: Comparison of accuracy among SPRC and benchmark frameworks

6.5.4 The SPRC robustness comparison with benchmark

algorithms

Robustness is the ability of a network to perform well when it is subject to failures.

The main aim of this case study is to examine whether SPRC guarantees network

robustness under multiple scenarios. First, a random noise (Jitter) is added to

each input pattern during network training. The addition of noise is attained via

the Gaussian Noise layer in Keras. The layer requires the standard deviation of the

noise to be specified as a parameter. In this way, time-series patterns are recycled

to explicitly learn robust features and the average accuracy of the algorithm is

observed. Thus, deliberately introducing noise is one way to help hold our models

accountable.
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The second way is to observe the model’s performance on different proportions

of training data. The difference is subtle. A small dataset can cause the net-

work to memorize all training examples. It is expected that the model learn the

characteristics of training data and not memorize them. In essence, DL models

performances are severely affected by the size of input/training data. The aim

is to confirm whether SPRC maintains its superiority when small, medium and

high sizes (60%, 70% and 80%) of training samples, compared to the size of all

samples, are available for classifier’s training. As can be seen from the experi-

mental results in Table 6.3, the SPRC outperforms the other algorithms under

consideration for all sizes of the training dataset. Results from the conventional

schemes show an expanding trend with increased data available. It is observed

that SPRC achieves a maximum AUC value of 0.987 and outperforms the other

algorithms in terms of performance metrics for these data. Furthermore, under

a similar training/testing dataset ratio, the comparison results in Table 6.3 have

shown that the proposed model can surpass the performance of other state-of-the-

art methods such as CNN-LSTM [82], WD-CNN [83] and DSN [84] due to the

reasons as discussed previously.

6.5.5 The SPRC performance on theft detection

This case study examines the ability of SPRC and the comparisons among different

benchmarks are conducted. The benchmarks considered for this investigation are

given in Table 6.4. As displayed in Fig. 6.8, the SPRC has a higher AUC score

for electricity theft prediction of this data set than all the benchmarks. The

comparison among frameworks A, B, C, D, E and SPRC in Fig. 6.9 suggests

that every module with the relevant description already proposed, can increase

the accuracy of electricity theft prediction. The classifier learns the problem much

faster if network structure is better exposed for learning. The SPRC prepares

quality data with IOS followed by HDR to curb the class imbalance problem. The

hyper-parameter tuning, regularizations and skip connections improve the ANN

performance, hence ensuring higher accuracy of electricity theft prediction.
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6.6 Summary

This chapter investigates how a highly imbalanced class distribution dataset can

be arranged to train a classifier for the identification of normal and abnormal

electricity consumption patterns. The presented approach integrates data pre-

processing, resampling and multi-stage classification modules into a single model.

The classification is comprised of a multi-block neural network that is optimized

by an intelligent algorithm, regularization methods and skip connection to increase

model training and classification abilities. Moreover, different multi-block predic-

tion models were presented to choose the effective model. The proposed topologies

have been applied over real-world data with a number of cases studied. We found

that tuning the classifier’s hyper-parameters with an intelligent algorithm results

in smoother optimization and reduced computational complexity of the learning

process. Similarly, regularization methods help to reduce the over-fitting and ICS

problems associated with the standard ANN. It is found that residual networks

distribute learning across layers, each of which is responsible for learning bet-

ter representations, while standard networks concentrate on learning in shallower

layers and thus do not make effective use of deeper layers.

The above is supported by results for gradient norms, where non-decaying gra-

dients are observed during training and testing in terms of robustness. These

results show that varied training rates in SPRS do not change the representa-

tion as much as for the benchmark algorithms. In addition, it is found that the

parallel-sequential topology is more robust to varied learning rates.
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Chapter 7

Conclusion and future work

7.1 Conclusions

This final chapter of this thesis summarises how the outcome of this research

reflects on final goals and success in meeting them. This chapter also provides ex-

tensions and recommendations for future work. Due to increased RES trends and

increased energy requirements, transformation and expansion are indispensable

factors in modernizing the current electricity grid. Also, it is found that user en-

gagement is the key to efficient and reliable power grid operation. Besides, the role

of load and price prediction and avoidance of non-technical losses are also crucial

for the smooth operation of the future grid. This research mainly investigates novel

techniques to improve RES integration at the supply side, user engagement at the

demand side, electricity load and price prediction and avoidance of non-technical

losses.

Chapter 3 contains solutions to single-objective OPF problem using a recently

developed evolutionary algorithm, GWO, whilst considering stochastic RES in the

network. The overall impact on optimal generation costs are studied for the change

in values of PDF parameters and scheduled power from the RES. The critical

constraints of the OPF problem are also duly satisfied by the proposed GWO

algorithm. Different PDFs were used to model SPG and WPG uncertainty, and

their integration methods were discussed. Several case studies were investigated

using IEEE-30 and 57 bus systems to evaluate the performance of the proposed
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algorithm and the results were compared with other well-recognized evolutionary

algorithms.

Chapter 4 recognizes the importance of DSM strategies; proposes novel user en-

gagement through the smart appliance and investigates its impact on demand

elasticity. The devices would be connected to the grid through an energy man-

agement controller in the home energy management system environment. Since

electricity demand is fairly elastic, real-time pricing or other signaling means can

contribute to creating demand elasticity. It has been demonstrated that fluctua-

tions in energy demand predominantly occur due to consumer behavior changes.

Thus, demand response methods need to be adopted to achieve practical ancillary

balancing services. It has also been demonstrated that user awareness is impera-

tive in response to the electricity shortage. However, artificial intelligence-based

techniques are inevitable to do the scheduling job automatically to follow the gen-

eration pattern. Another research achievement was associated with the successful

adaption of deep learning methods to predict energy usage in the home energy

management system environment. Research on other related ML modeling tech-

niques was also conducted. Overall, this work enabled precise resource control

with individual consumption forecasts to best utilize limited resources.

The problem of non-technical loss minimization at the distribution side is stud-

ied in Chapters 5 and 6. In both chapters, artificial intelligence and machine

learning-based strategies are adopted to capture abnormal electricity consump-

tion patterns using edge data in smart grids. Specifically, in Chapter 5, a deep

learning-based multi-model ensemble approach examines the edge data to capture

abnormal electricity consumption patterns in smart grids. The obtained results

have shown that with the proposed ensemble method, the complex relationships

among the classifiers are determined automatically and efficiently, thus allowing

the ensemble approach to improve the performance of the prediction model. In

Chapter 6, a highly imbalanced class distribution dataset is arranged to train

the classifier for the identification of normal and abnormal electricity consump-

tion patterns. The presented approach integrates data pre-processing, resampling
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and multi-stage classification modules into a single model. The classification is

comprised of a multi-block neural network (NN) and optimized by an intelligent

algorithm, regularization methods and skip connection to increase model train-

ing and classification abilities. Moreover, different multi-block prediction models

are presented to choose the effective model. It is found that the classifier’s super

parameters tuning with an intelligent algorithm result in smoother optimization

and reduced computational complexity of the learning process. Similarly, regu-

larization methods help reduce over-fitting and internal covariate shift problems

resulting from standard ANN. It is found that residual networks distribute learn-

ing across layers, each of which is responsible for learning better representations,

while standard networks concentrate on learning in shallower layers and thus do

not make effective use of deeper layers. Both methodologies have been evaluated

using realistic electricity consumption data issued by SGCC, the largest power

utility in China.

7.2 Limitations of the study

As most evolving technologies develop, financial constraints always create a bottle-

neck for growth. Research in energy-related real-world experiments is financially

demanding. A large amount of financial resources and investment are required

to implement supply-side management, demand-side management and acquiring

big consumption data to conduct real-life tests and experiments. Consequently,

computer simulations for each part of this Ph.D project were the best feasible

option.

Secondly, simulations work for distributed energy resource management was con-

ducted on a limited time scale due to the limited computational resources. Fol-

lowing Moore’s law, it is expected that larger timescales analysis will be possible

in future due to the availability of computational resources. Thus, a wider variety

and diversity of dynamic smart appliances consumption responses can be included

in these domains.
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7.3 Future improvement

One of the main challenges in applying evolutionary algorithms is the huge exe-

cution time in the optimization process of a power network. The time complexity

rises many folds when the optimization of an objective function considers a larger

power network. For example, an IEEE 118-bus system needs 200,000 fitness evalu-

ations to perform in an OPF case study. It can take up to 60 minutes to complete

a single run with MAC Core i7 CPU @8GHz, 16GB RAM. Some algorithms can

quickly finish the execution process during the optimization process and converge

to a suitable solution. However, it may not be the best solution to adopt. State of

the art algorithms exploration and exploitation capabilities can be investigated in

the network while considering hundreds or even thousands of buses. In addition,

the GWO algorithm is good in achieving exploration and exploitation process bal-

ance in the search process. It is found to be consistent in optimizing non-convex,

multi-modal real-world problems. However, during the early exploration phase of

the optimization process, the performance can further be improved together with

appropriate constraint handling techniques. In the future, the constraint handling

aspect of heuristic algorithms shall further be investigated.

Chapter 3 presents the OPF problem with stochastic solar and wind power along

with conventional thermal power generation sources in the system. In the future,

the storage devices in the form of batteries or pumped hydro would be integrated

with a large number of buses in the OPF study. For a detailed analysis, accurate

models of FACTS devices and doubly-fed induction generators for wind power

generators can also be incorporated. The inclusion of voltage stability and solving

multi-objective optimization problems also remain a work for the future.

The future work on the DSM model will consider an additional ultra-fast storage

mechanism to reduce the required power ratings of the flow battery. In particular,

these could namely be electric vehicles, flywheels or super capacitors. It would help

further reduction in the power imbalance and correspond to the highest frequency

power variations to share the load with power flow batteries. In addition, the
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substitution of flow batteries can also be obtained by including diverse storage

technologies (of a similar power rating and capacity).

For the forecasting models, more inputs to the convolutional neural network can

be added. These include holiday dummy variables, user-programmable schedule

(user correction) and weather information (solar irradiation, wind speed, humidity,

outside temperature, precipitation). The work schedules from occupants might

also be of interest when creating these prediction models. Future work might also

include very high consumption irregularities in dwellings and their classification

can be based upon best and poor response to the DR programmes. In this way, the

poorest performing houses can be withdrawn from the demand response program

to achieve maximum efficiency. The seasonal factors have a larger impact on

electricity consumption and it can be noticed that weekend patterns shift in time

every week. When considering autoregressive terms during weekends, adding a

dummy variable or parameter could be effective for better generalization of the

time to be shifted.

In the context of electricity theft detection, performance may be improved with

two further investigations in the future. First, knowledge from power grid sources,

network distribution topology and geographic information will be exploited for

monitoring abnormalities in energy consumption patterns. Secondly, the robust-

ness of the proposed method will be investigated further, using synthetically gen-

erated theft attacks and adding random noise (Jitter) in selected data to observe

the average accuracy of the classifier.

As for as the extended work on the simulation framework is concerned, it com-

prises the signal propagation lags introduced by the communication media and

the inclusion of the communication side of the smart grid. It is important to note

that the smart grid requires knowledge from diverse disciplines. Thus, collabora-

tive research is highly demanded to develop simulation platforms in future smart

grids.
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