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ABSTRACT 
There are many challenges involved in online participatory humanitarian response. We evaluate the 
Planetary Response Network, a collaboration between researchers, humanitarian organizations, and 
the online citizen science platform Zooniverse. The PRN uses satellite and aerial image analysis to 
provide stakeholders with high-level situational awareness during and after humanitarian crises. 
During past deployments, thousands of online volunteers have compared pre- and post-event satellite 
images to identify damage to infrastructure and buildings, access blockages, and signs of people in 
distress. In addition to collectively producing aggregated “heat maps” of features that are shared with 
responders and decision makers, individual volunteers may also flag novel features directly using 
integrated community discussion software. The online infrastructure facilitates worldwide 
participation even for geographically focused disasters; this widespread public participation means 
that high-value information can be delivered rapidly and uniformly even for large-scale crises. We 
discuss lessons learned from deployments, place the PRN's distributed online approach in the context 
of more localized efforts, and identify future needs for the PRN and similar online crisis mapping 
projects. The successes of the PRN demonstrate that effective online crisis mapping is possible on a 
generalized citizen science platform such as the Zooniverse. 
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INTRODUCTION 
During and after a natural disaster or other 
humanitarian crisis, there is a need for real- or near-
real-time information about an affected area. The 
informational needs of responders1, decision makers, 
and other stakeholders on the ground often fall under 
the broad term “situational awareness”: these needs 
pertain to key information about features in the 
environment that inform decision making at all levels. 
It is often the case that a relatively small group of 
responders has an urgent need for accurate, reliably 
sampled information concerning a large area of 
interest (AOI). In the digital age, ample relevant data 
frequently exists but responders often lack the 
additional resources required to extract this 
information themselves (Tapia and Moore, 2014). 
This tension between a flood of data and a trickle of 
resources is familiar to many citizen science 
practitioners (Bonney et al., 2009; Wiggins and 
Crowston, 2011). 

There are many types of crowdsourced responses to 
humanitarian crises, from locally-driven efforts (e.g., 
Dailey and Starbird, 2014; Brown et al., 2016) to those 
which filter SMS messages (Munro, 2013) and social 
media (Hughes and Palen, 2009; Popoola et al., 2013) 
and those which involve both local and remote 
participants (Rehman Shahid and Elbanna, 2015; 
Dittus, Quattrone and Capra, 2017). This work focuses 
on the application of distributed online citizen science 
principles and methods to the creation of 
humanitarian maps, sometimes called crisis maps 
(e.g., Ziemke, 2012; de Albuquerque, Herfort and 
Eckle, 2016), based on analysis of satellite imagery. 
Specifically, this paper offers a case study of the 
Planetary Response Network (PRN),2 which since 
2014 has provided rapid, accurate, high-value 
situational awareness to responders and decision-
makers in a disaster context. The PRN is run as a 
partnership between the Zooniverse, computer 
science researchers, and humanitarian response and 
resilience organisations. In the generalized citizen 
science project typology of Parrish et al. (2018), the 

 
1 In this manuscript, the term “responder” is used to refer 
to those who use the results of this project to coordinate 
and execute humanitarian responses on the ground in 
affected areas. It is distinct from terms such as “volunteer”, 

PRN is a “data generated: active participation: virtual: 
multiple independent classifications” project type. 
Within the Disaster Research Center (DRC) typology 
(for a recent review of this typology, see Strandh and 
Eklund, 2018), the PRN blends aspects of both the 
Extending and Emergent types of disaster response 
organizations. It is an online, distributed project that, 
within a recently-described geographic citizen science 
framework (Skarlatidou and Haklay, 2021), uses 
participatory design principles to capture 
volunteered geographic information (VGI) in a 
generalized (i.e., not purely geographic) web 
application interface. 

The field of online distributed humanitarian mapping 
is relatively new and still evolving (Meier, 2011, 2012; 
Ziemke, 2012; Sharma and Joshi, 2019; Turk, 2020). 
Assessments following the 2010 earthquake in Haiti 
(e.g., Zook et al., 2010; Harvard Humanitarian 
Initiative, 2011) and subsequent disasters have 
shown both the promise of crowdsourced crisis 
mapping and its challenges. For example, Westrope, 
Banick and Levine (2014) analyzed the 
OpenStreetMaps response to Typhoon Haiyan and 
found that the rapid assessment was valuable to 
responders but was limited by inaccurate labels, lack 
of participant training, and uneven coverage of the 
AOI. More generally, some of the challenges of online 
crisis mapping are relatively specific to that 
application, such as the lack of shared technical 
language between project teams and responders, 
competing priorities for security, privacy and 
publicity, and the psychological toll that participation 
in a project may take on its volunteers (Ziemke, 2012; 
Liu, 2014). Other challenges, such as data verification 
and reliability (Haklay, 2013; Kosmala et al., 2016; 
Parrish et al., 2018) and boundary issues between 
different involved groups (Shirk et al., 2012; Oswald, 
2020), have found multiple solutions in the broader 
realm of citizen science. In many cases these solutions 
were known to citizen science practitioners prior to 
the mainstream emergence of online distributed 
humanitarian mapping (e.g. participant training, label 
aggregation and validation, and uniform data 

“classifier”, and “participant”, which refer to those who 
participate in the online citizen science project to provide 
individual feature labels. 
2 planetaryresponsenetwork.org 



coverage; Lintott et al., 2008). Blending best practices 
from both fields is thus of high potential value to 
each. 

The PRN is slightly different from other crisis mapping 
efforts (e.g., Ushahidi, Humanitarian 
OpenStreetMap), in part because it runs on the 
Zooniverse citizen science platform instead of a 
platform built specifically for mapping. As such, it 
must approach the mapping aspect of deployments 
slightly differently, but benefits from over a decade of 
lessons learned regarding citizen science project 
design, data quality and community engagement. It 
additionally benefits from exposure to the Zooniverse 
community of over 2 million registered participants. 
The choice of platform enables the PRN to 
complement, rather than compete with, existing 
crisis mapping efforts. This case study aims to 
describe the project design, present its deployment 
statistics, and evaluate project outcomes in the 
context of the field of distributed online crisis 
mapping, including a summary of lessons learned. 

PROJECT DESIGN 
The PRN has deployed multiple times for specific 
disaster responses. To date, the PRN has exclusively 
made use of satellite imagery for data assessment. 
Satellites provide verified data over large areas, which 
facilitates the rapid and broad situational analysis the 
PRN prioritizes. Within that context, we make project 
design choices (described in subsections below) that 
align both with the technical design of the Zooniverse 
platform and with domain-specific needs.  

Deployments of the PRN also adhere to best practices 
in citizen science (e.g., Lintott and Zooniverse, 2010; 
Gold, 2019); projects must have a genuine and 
beneficial outcome whose goal can be expressed in 
advance. In a disaster relief context, while outcomes 
may include e.g. providing training data for machine 
learning algorithms (Isupova et al., 2018; Weber and 
Kané, 2020), the primary goal of providing useful 
information to improve situational awareness 
necessitates that the PRN include partners on the 
ground. Co-creating crisis maps with local 
stakeholders is a critical step to prevent the 
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abstraction of digital humanitarian projects from 
those they affect (Mulder et al., 2016). 

While the specifics of the PRN pipeline have evolved 
over time, they generally involve three phases: (1) a 
planning phase, where all parties consult, gather 
available data, and decide on urgent situational 
awareness needs; (2) a crowd labeling phase, where 
volunteer classifiers assess available imagery 
(typically answering questions about and marking 
features on images); and (3) an analysis phase, where 
crowd labels are aggregated to produce a consensus 
result and feature assessments are produced. These 
phases may be repeated several times during a single 
deployment as more data becomes available and/or 
the response needs evolve. Following each analysis 
phase, the PRN produces a “heat map” for each 
feature of interest and delivers these to responders. 
In addition to the post-analysis heat maps, the 
involvement of the crowd facilitates rapid 
identification of unexpected features that impact 
situational awareness.  

Once a deployment is complete, the PRN 
organizational team meets to discuss successes, 
failures, and near-failures, so that we learn from 
these and improve our future pipeline. Many of the 
lessons learned discussed below crystallized from 
these post-deployment self-assessments. 

Planning Phase  
When a disaster is imminent or has just occurred, PRN 
partners consult with each other to decide whether a 
deployment is appropriate. For the PRN deployments 
to date, our primary domain-expert partner was 
Rescue Global, a UK response and resilience charity 
that operates worldwide.3 Rescue Global’s work 
includes search and rescue activities as well as liaising 
with local governments and stakeholders.  

The advance relationships Rescue Global builds on 
the ground with local governmental and community-
based organisations are crucial to the project. Given 
that many disasters strike communities in the global 
south, the need for local partnerships is especially 
critical for a response effort (such as the PRN) whose 
members are primarily from the global north. Rescue 



Global’s ongoing partnerships have included 
organisations such as the Caribbean Disaster and 
Emergency Management Agency (CDEMA) and the 
Mexican Jewish non-profit Cadena, which operates 
local branches throughout Central and South 
America. These larger non-profit partnerships have 
also facilitated relationships with individual 
communities in these and other regions, which helps 
Rescue Global communicate local priorities to the 
PRN team at all stages of a deployment. By partnering 
directly with a single organization whose expertise 
includes cultivating multiple local relationships, the 
PRN team can maximize the chances that a 
deployment will appropriately address the needs of 
affected individuals and communities, while 
minimizing the costs and risks of developing separate 
relationships from a remote position. The necessity of 
involving local stakeholders is echoed by many 
studies of geographical citizen science projects (e.g., 
Hecker et al., 2019; Skarlatidou and Haklay, 2021). 

For each PRN deployment, once Rescue Global 
confirms they will deploy to the region and would 
benefit from improved situational awareness, the 
other partners begin assessing imagery data 
availability. Satellite data availability can be a 
complex landscape. Some data is fully open, such as 
that from NASA's Landsat or ESA's Sentinel 
constellations. Higher-resolution imagery often 
comes from commercial providers, which may have 
their own humanitarian data programs and may also 
participate in the International Disasters Charter.4  

The date and resolution of available data varies, 
impacting deployment planning. Satellite imagery is 
typically not available for at least 24 hours after a 
disaster, and this can increase due to tasking delays, 
orbital patterns, and weather. Long delays can force 
deployment priorities to shift. The resolution of 
available data affects the labels that can be reliably 
collected (Battersby, Hodgson and Wang, 2012; See 
et al., 2013; de Albuquerque, Herfort and Eckle, 2016) 
and the speed of collection. Considering the needs of 
the responders and local decision-makers in the 
context of evolving data availability is critical to 

 
4 disasterscharter.org 
5 This tension could be alleviated by running the project, 
post-deployment, in a non-urgent phase to collect more 

ensuring the relevance and utility of crisis maps 
(Ziemke, 2012; Turk, 2020). 

The assessment time for satellite imagery also 
depends on the complexity of the features being 
assessed. Citizen science projects across all disciplines 
must consider tradeoffs between labelling speed and 
the level of detail captured. For example, collecting 
binary responses about an image is fast but sacrifices 
considerable detail compared to drawing individual 
polygons around each feature. For the PRN, the needs 
of responders and local stakeholders, not academic 
researchers, take priority in project design. 
Responders are accustomed to operating with “good 
enough” information (Tapia and Moore, 2014), and 
generally do not require highly granular maps, 
especially in the early days of a response. PRN 
deployments have thus generally asked volunteer 
classifiers to label features with point marks, as this 
prioritizes the speed of classification while sacrificing 
precision at a level acceptable to responders. This 
choice deliberately places responders’ immediate 
needs above the future needs of our computer 
science partners who use PRN damage labels to train 
machine learning algorithms between live 
deployments.5 

The processing of satellite imagery is also part of the 
planning phase. PRN leadership procures available 
data, decides which datasets to use for a given 
deployment, and assembles geo-referenced pre-
event and post-event image mosaics. Ad-hoc 
decisions are often required to optimize tradeoffs 
between cloud cover, image quality, and imaging 
date, given sparse time-sampling of the AOI in both 
pre- and post-event imagery. Following assembly and 
resolution matching of pre- and post-event mosaics, 
the images are tiled into matched sections of a 
manageable size for data labeling. Typically, the 
mosaic is sliced into square sub-images of 500-600 
pixels on a side, which will be assessed by volunteer 
classifiers via the web and mobile devices (described 
further below). For high-resolution imagery the data 

detailed labels that reach the precision required by 
computer scientists. 



labels are collected on image subsections as small as 
150 m × 150 m, whereas for medium-resolution 
imagery this can be as large as 6 km × 6 km. All image 
subsections are large enough to provide useful 
context for damage assessments.  

Crowd Labeling Phase 
The Zooniverse is the world's largest online 
crowdsourcing platform for citizen research. For a 
detailed glossary of Zooniverse terms and 
infrastructure description, we refer the reader to 
Simpson, Page and De Roure (2014). In the PRN, 
Zooniverse volunteers typically classify paired pre- 
and post-event image subsections as a single unit of 
data; we refer to these image pairs as “subjects” 
below. A completed collection of tasks that each 
volunteer classifier is asked to submit within a 
workflow for each subject is called a “classification”.  

Like most Zooniverse projects, the PRN collects 
multiple classifications per subject. Aggregating 
multiple independent classifications addresses many 
data quality challenges identified within citizen 
science generally (Haklay, 2013; Parrish et al., 2018) 
and in Earth Observation and crisis mapping 
specifically (Harvard Humanitarian Initiative, 2011; 
Liu, 2014; Westrope, Banick and Levine, 2014; Fritz, 

Fonte and See, 2017). The minimum number of 
classifications the PRN collects per subject and 
workflow is generally at least 10. Subjects are served 
randomly to volunteer classifiers from within a set of 
subjects. Our design choices contrast with those of 
other crisis mapping projects, which allow users to 
choose their own map location and to submit highly 
detailed labels. Our choices are designed to facilitate 
rapid, uniform coverage of the entire AOI and to 
deliver initial results to responders as quickly as 
possible at their required level of precision. 

Figure 1 shows a PRN project screenshot showing the 
classification interface, with examples of both mobile 
and web interfaces. For deployments where available 
data may be of variable quality across an AOI, we have 
found best results with a combination of workflows 
which filter the subjects in a cascading fashion. 
Volunteers first assess whether images are 
“classifiable” (defined as having land visible). Only 
subjects with a majority of “Yes” responses are added 
to the feature marking workflow. One advantage of 
splitting the workflow is that the Yes/No workflow 
can also be deployed in the Zooniverse mobile app, 
whose interface facilitates rapid classification. 
Separating the project into multiple workflows thus 
optimizes for overall speed of classification without 

 

Figure 1: Example web (left) and mobile (right) interface for Zooniverse PRN projects. Left: Image shown: Barbuda, September 
2017. Right: Image shown: Bahamas, September 2019. Satellite imagery credit: Maxar Technologies’ Open Data Program. 



sacrificing completeness of coverage. Classifiers also 
tend to find this structure more satisfying than in 
early PRN deployments where feature marking 
workflows included high fractions of unclassifiable 
images. Classifiers may access additional resources 
for help (Katrak-Adefowora, Blickley and Zellmer, 
2020) on either a specific task or on the overall 
project. The Field Guide feature, available for all 
workflows, allows classifiers to see multiple examples 
of the different types of labels.  

When further data becomes available, the crowd 
labeling phase may continue with additional rounds 

of imagery. The project organizers announce each 
image set to participants in the project’s Talk 
community discussion area; if additional attention is 
required, the Zooniverse team may also send a 
newsletter to either the existing project community 
or a wider Zooniverse audience. We have sustained 
high levels of engagement over several weeks due to 
newsletter campaigns and regular data releases. Each 
deployed Zooniverse project remains active until the 
PRN partners decide the crowd labeling phase is 
complete. As soon as participants classify the first 
image set, the analysis phase of the PRN begins. 

 

Figure 2: Heat maps for labeled features in Dominica following Hurricane Maria in 2017. Web-based maps may be zoomed in 
to show further detail. Satellite imagery credit: Planet Team (2017) License: CC-BY-SA 



Analysis Phase 
In the analysis phase, we derive consensus from 
individual labels by volunteer classifiers. This 
aggregation step accounts for individual variations in 
assessment styles and minimizes the impact of the 
small fraction of classifications that contain errors 
(Lintott et al., 2008; Simmons et al., 2017) by 
resolving disagreements among the crowd and 
arriving at a high-confidence final label set. 

In past deployments, individual labels have been 
aggregated using the Independent Bayesian Classifier 
Combination (IBCC) machine learning algorithm 
(Simpson et al., 2013; Ramchurn et al., 2016).  This 
algorithm calculates the reliability of each classifier 
and combines their labels into a single map by 
weighting each classifier contribution according to 
their reliability. The IBCC algorithm is unsupervised, 
i.e., no ground truthing (physical and/or expert 
verification of feature labels) is required to produce 
the crisis maps. However, if expert labeling is 
available then the algorithm can fold these into the 
maps as ground truth. 

The aggregation incorporates individual point-
marked labels for each feature type, as well as “blank” 
marks where a classifier indicated there was no 
feature of interest in the image. The aggregated 
labels are then turned into “heat maps” for each 
feature type.  A heat map is a color-coded overlay on 
the satellite image.  Figure 2 shows an example of 
heat maps provided for Dominica following Hurricane 
Maria in 2017, based on medium-resolution imagery 
from Planet. The resolution of the heat map grid is 
chosen to reflect both the resolution of the satellite 
imagery and the level of map detail required by the 
responders. These digitized maps are bundled 
together and forwarded to our partner responders.  

PROJECT DEPLOYMENT STATISTICS 
The PRN has so far deployed live, time-sensitive 
projects 4 times: (1) following the two earthquakes 
with magnitudes 7.8 and 7.5 in Nepal in spring 2015, 
(2) following the 7.8-magnitude earthquake in 

 
6 The projects we focus on here are at 
zooniverse.org/projects/vrooje/planetary-response-
network-and-rescue-global-caribbean-storms-2017 and 

Ecuador in April 2016, (3) following Hurricanes Irma 
and Maria in the Caribbean in autumn 2017, and (4) 
following Hurricane Dorian in autumn 2019. We have 
additionally prepared other projects that did not 
deploy (i.e., they never entered the crowd labeling 
phase described above). Projects may fail to deploy 
for a number of reasons, including changes to ground 
access granted by local governments and revised 
estimates of event severity (e.g. a hurricane that 
changes course or dissipates). We choose to focus 
here on the two most recent deployments of the PRN, 
as these projects exemplify the general properties of 
PRN deployments while being similar enough to each 
other to facilitate comparison.6 

Quantitative and technical details for the PRN 
Caribbean deployments are given in Appendix 1. The 
two projects jointly collected over 1 million individual 
classifications from thousands of online participants. 
Figure 3 shows classifications collected over time 
from logged-in and not-logged-in participants for 
both deployments. 

In both projects, Rescue Global joined the PRN team 
as on-the-ground partners. In the 2019 deployment 
responding to Hurricane Dorian, we also partnered 
with 24 Commando Royal Engineers, a unit of the 
British Army’s Royal Engineers who provide military 
engineering support to 3 Commando Brigade Royal 
Marines and who had additional assessment needs 
(see Appendix 1). 

Rescue Global has good relationships with multiple 
governmental and non-governmental organizations 
(NGOs) active in the Caribbean region. As a result, the 
heat maps provided by the PRN had wide reach 
during both deployments. The maps were delivered 
to over 60 NGOs, the UN and the Caribbean Disaster 
Emergency Management Authority (CDEMA). Below 
we analyze deployment outcomes and critically 
evaluate the PRN to extract several generalized 
lessons that may be learned from this case study of 
online citizen science for humanitarian aid. 

zooniverse.org/projects/mrniaboc/planetary-response-
network-hurricane-dorian 



EVALUATING PROJECT OUTCOMES 
There are many relevant lenses through which to 
assess the outcomes of the Planetary Response 
Network. Some are purely related to the citizen 
science aspect, while others additionally consider our 
humanitarian objectives. Below we evaluate the PRN 
in the context of its success in engaging the crowd, 
the nature of that crowd, the speed of delivery of heat 
maps, the quality of the data delivered, and evidence 
of actual use of the maps in the field. We also 
comment on the process of assessing and learning 
from failures. 

Engagement By, and With, PRN Participants 
The overall number of classifiers who participate in a 
given Zooniverse project can vary from hundreds to 
hundreds of thousands. Given the duration of each 
PRN deployment, the fact that thousands of people 
have participated represents a strong level of 
participation compared to other short-duration 
Zooniverse projects. In general, the success of a 
Zooniverse project is related to both project design 
and volunteer engagement, rather than project 
duration (Cox et al., 2015). 

The project statistics (see Appendix 1) are also typical 
of healthy Zooniverse projects. The classification 
activity over time (Figure 3), while more varied than a 
typical Zooniverse project, is within expectations for 

a project with time-sensitive data and staggered data 
releases (Spiers et al., 2019). The fraction of 
classifications submitted by logged-in participants is 
approximately 85% throughout both projects, which 
is also within normal ranges for successful Zooniverse 
projects (Cox et al., 2015). 

The “Talk” discussion area, where participants can 
engage more deeply via open-ended discussions and 
tagging interesting subjects, is a valuable part of the 
Zooniverse ecosystem. Within the Talk area for each 
PRN deployment, about 10% of logged-in participants 
posted at least 1 comment. Figure 4 shows the 
average word count per post for each participant who 
posted on Talk. Even among those who choose to join 
the Talk discussion, participation is not evenly 
distributed: in both deployments, approximately half 
of participants who posted on Talk posted a single 
comment, with a majority (68% and 77% in the 2017 
and 2019 deployments, respectively) posting 3 or 
fewer comments.  

The nature of Talk comments varied, from single-
word notes tagging an image snapshot with a hashtag 
(including unexpected features of interest not 
captured by the main classification interface) to 
lengthy posts with discussion, comments, and 
suggestions. The PRN leadership also posted 
regularly, using Talk to update participants with 
descriptions of new image datasets and sharing 

 

Figure 3: Classifications over time for PRN Caribbean deployments (2017, left; 2019, right). Classifications from logged-in 
participants are shown in purple; classifications from not-logged-in participants are added in light green, such that the 
combined hourly histogram shows overall classification totals. Upper panels show the daily fraction of classifications from 
logged-in participants.  



preliminary heatmaps and feedback from responders. 
As in many Zooniverse projects, we observed “trickle-
down training” occurring on Talk, in which advice and 
tips initially shared by the project organizers were 
subsequently shared by other participants in 
response to common inquiries from less experienced 
classifiers. 

The Talk environment also allowed us to directly 
address the risk of participant burnout and secondary 
trauma inherent to online crisis mapping projects 
(Ziemke, 2012). To alleviate these risks, the PRN lead 
created a section of Talk explicitly for taking breaks 
and regularly reminded people that stepping away 
from the project was a healthy action that would not 
endanger those on the ground. Overall, this 
represented a small fraction of Talk interactions: it 
was more common that participants expressed 
sentiments of accomplishment and satisfaction. Still, 
both participant engagement generally and burnout 
prevention specifically are important ongoing 
responsibilities of teams organizing crisis mapping 
efforts. This is a domain-specific reflection of the 
need to provide a supportive environment for all 

 
7 Using Bayesian binomial confidence intervals and 
comparing PRN traffic to overall Zooniverse traffic during 
the same dates and during a 1-week period outside 
hurricane season (March 2019), we estimate the probability 

participants in a citizen science project (Resnik, Elliott 
and Miller, 2015; Chari, Blumenthal and Matthews, 
2019). 

The PRN is a virtual and distributed crisis mapping 
project. Analytics for the landing pages on both 
Caribbean projects indicate a wide global reach of 
visitors (over 130 countries represented overall). For 
both deployments, over 85% of web browser sessions 
originated in North America and Europe, which is 
generally consistent with overall Zooniverse traffic 
during deployment periods. More local participation 
from Caribbean countries represented less than 1% of 
browser sessions in either project; however, this 
fraction is higher than Caribbean traffic Zooniverse-
wide (<0.1% to non-PRN projects). This difference is 
statistically significant7 and reflects an increased local 
interest in the PRN even while overall participation is 
much more widely distributed. 

Therefore, while the PRN does generate some local 
activity, it primarily provides an opportunity for a 
global community to meaningfully contribute to a 
humanitarian aid effort, even (and possibly 
especially) when its members are too far from the 

that the fraction of browser sessions from the Caribbean for 
PRN deployments is consistent with the fraction outside 
PRN projects is p < 5 × 10-6. 

 
Figure 4: Average length of Talk posts for each participant versus their post count, for PRN Caribbean deployments. Volunteer 
participants are shown as purple circles and PRN organizational team members are shown as green squares. 



affected area to offer help in person. This 
complements humanitarian crowdsourcing projects 
that are more “ground up” in their origins: whereas 
those projects often provide highly localized and 
detailed individual information, the PRN can provide 
rapid and uniform coverage of a large affected area at 
a broad level of detail suitable for responders seeking 
to inform their initial and ongoing allocation of 
resources. This complementarity reflects the 
similarities and differences of these two approaches. 
Specifically, both “ground up” and “top down” 
crowdsourced crisis mapping efforts often strive to 
improve knowledge of a specific disaster by blending 
VGI with traditional sources of geospatial information 
(Zook et al., 2010), without placing the burden on 
responders to become experts in either. Locally-
driven efforts often harness high levels of relevant 
local factual and cultural knowledge (Goodchild and 
Glennon, 2010) that complements the humanitarian 
skills of response organizations (Strandh and Eklund, 
2018). In contrast, the more distributed online 
projects allow anyone to participate regardless of 
whether they have the resources or skills to join a 
locally organized effort. A distributed project such as 
the PRN, which is hosted on an established citizen 
science platform, also has access to a high fraction of 
participants with significant prior experience 
participating in citizen science, which facilitates 
accurate label collection and aggregation. 
Furthermore, the PRN team includes members with 
substantial experience running citizen science 
projects, which allows us to translate between our 
citizen science community and our responder 
partners. This significantly alleviates boundary issues 
when planning and deploying a response. We would 
stress, however, that it is extremely important for a 
distributed project such as ours to continually center 
local needs and priorities, including sharing results 
with local communities (e.g., Mulder et al., 2016) as 
soon as it is safe to do so. 

Data Quality and Delivery Speed 
The need for high-quality image labels was a key 
motivator for hosting the PRN on the Zooniverse. The 
platform is designed to enable high-quality data 
collection via proven methods such as collecting 
multiple independent classifications per subject 
(Kosmala et al., 2016; Parrish et al., 2018). Ensuring 

data quality is also a factor in ethical considerations 
in citizen science (Resnik, Elliott and Miller, 2015). 
Zooniverse projects have produced data labels whose 
quality matches and even exceeds that of a single 
expert (e.g., Lintott et al., 2008; Swanson et al., 2015). 
Additionally, the aggregation method we use is able 
to reduce the effect of noisy inputs from individual 
classifiers and account for individual skill levels in 
reaching consensus. This is especially important as 
ground truthing is generally not available in advance, 
which makes precise calibration challenging. We thus 
rely on feedback from the field to regularly assess the 
quality of our heat maps.  

There are several potential bottlenecks to delivering 
heat maps rapidly enough to be of use to responders. 
These include:  

• Domain Expertise: Humanitarian crisis mapping 
is inherently multi-disciplinary (Ziemke, 2012), 
and several types of expertise are required to 
successfully deploy all stages of the PRN. These 
include knowledge of Geographical Information 
System (GIS) data sources and formats, disaster 
response and resilience, data science and 
statistical methods, and citizen science project 
design. 

• Data Availability: Satellite and/or aerial imaging 
data may be unavailable for several reasons. 
Some of these are outside the project team’s 
control: tasking delays, weather issues, and 
corrupted data may all mean that needed data is 
either unavailable or severely delayed. 

• Data Access: Image data may exist, but not be 
accessible to the project team. Obstacles to data 
access can take the form of paywalls, 
bureaucratic delays, or technological problems 
(e.g., bandwidth issues).  

The PRN has been able to deploy projects with very 
rapid turnaround, including initial heat map delivery 
just hours after beginning the crowd labeling phase. 
This deployment speed is possible in large part due to 
the work that takes place prior to, and in between, 
active project phases. Advance preparation is thus a 
key solution to all of the obstacles described above. 

The PRN’s advance preparation alleviates the issues 
described above in several ways. We have carefully 



assembled the PRN partnership specifically to address 
the domain expertise needs of a distributed online 
crisis mapping project. These needs were identified as 
the PRN initially formed, but have been refined 
following assessments of successes and failures of 
deployments. Some of the PRN partnership assembly 
has included negotiating and building relationships 
with partners; other aspects have involved training 
existing team members in new skills, developing new 
features on the Zooniverse platform that are useful to 
the PRN, and documenting end-to-end procedures 
and guidelines for all phases of PRN deployment. 
These procedures have enabled us to redirect crowd 
attention to alternative workflows when post-event 
data is scarce. Pre- and post-event data has 
sometimes been available to the PRN days before the 
same data is made openly available due to previously 
established partnerships with commercial satellite 
companies. 

We therefore strongly agree with the findings of 
other studies (e.g., Harvard Humanitarian Initiative, 
2011; Liu, 2014) that preparation is critical to a 
successful crisis mapping deployment. We would also 
note a need to inform preparation with the need to 
be flexible for each deployment. This is consistent 
with the idea that advance preparation must 
prioritize “articulation” work  (Hughes and Tapia, 
2015), which develops means of inter- and intra-
organization information exchange so that this 
flexibility is possible during time-critical periods 
without sacrificing efficacy. 

Open data is a major benefit to crisis mapping efforts. 
However, improvements are possible in this area. 
While some sources of satellite data are technically 
open, they are not always open in a way that actually 
encourages their use. Since the PRN was created, we 
have encountered various issues with “open” data 
that have measurably slowed active deployment 
efforts. These have included restricted bandwidth for 
downloads of uncompressed GeoTIFF image tiles, 
previously open image search tools becoming 
paywalled with little or no notice, and unsearchable 
image lists presented in raw form with no separate 
geographic metadata available.  

 
8 planet.com 

The best implementations of open data have allowed 
us to save hours or days in the planning phase of the 
PRN. For example, humanitarian users of Planet8 data 
have access to the full commercial search and 
download area of the Planet website and API, which 
significantly streamlines data acquisition. 
Additionally, Amazon Web Services’ Open Data 
program hosts a copy of processed, mosaiced ESA 
Sentinel-2 image data with no restrictions on transfer 
bandwidth.9 This additionally facilitates GIS image 
processing in the cloud, which can save further time 
during live deployments. If more sources of satellite 
imagery took similar approaches in the future, this 
would encourage more rapid and more successful 
crisis mapping projects, including but not limited to 
the PRN. 

Improvements to Crisis Response 
Ultimately, the success of a crisis mapping project 
depends on whether it achieves its stated goals of 
positively impacting the response effort during and 
after a particular deployment. This framing 
encapsulates several of the ECSA’s ten principles of 
citizen science within a humanitarian context.  

Given that every disaster is different, it is difficult to 
rigorously quantify the effect of adding a distributed 
crisis mapping effort to a disaster response. While a 
project team may be highly motivated (e.g. by 
academic metrics or funding pressure) to answer 
questions such as “how much faster will the recovery 
be now that heat maps are available?”, it is not trivial 
to extract this information even by comparing to 
previous disasters where the project did not deploy. 
Attempts to collect uniform quantified feedback in 
situ during an ongoing response represent a 
significant local resource demand. For a distributed 
project such as the PRN, it would be particularly 
inappropriate for the organizers to either make these 
demands from their position of safety, or to risk 
sending personnel into an ongoing response for this 
purpose. Therefore, feedback to online distributed 
crowd mapping efforts on the utility of crisis maps is 
typically qualitative and often arrives after the most 
active periods of a response effort. 

9 registry.opendata.aws/sentinel-2 



Evidence of improvements during the example 
deployments considered here vary. They include 
broad messaging that the heat maps provided were 
actively used on the ground to inform the ongoing 
effort, as well as specific examples. The project team 
collected specific qualitative feedback on the use of 
the results of the analysis phase. These include the 
use of road-blockage heat maps to optimize 
personnel allocation and more quickly restore critical 
national infrastructure, the incorporation of features 
flagged directly on Talk into flight plans for aerial 
assessment and evaluation of airstrips, and the use of 
building-damage heat maps to target priority areas 
for rapid ground-truth assessments and subsequent 
allocation of aid. We also received feedback that 
responders generally found maps of proportional 
damage (the fraction of structures in a given area 
which are damaged) extremely useful, especially as 
they worked their way to more isolated communities 
and health centers. 

The above examples represent a minimum 
assessment of the utility of PRN heat maps. Rescue 
Global also distributed the maps widely to other 
organizations on the ground, and the remote PRN 
team did not receive feedback from those 
organizations as to whether and how the maps were 
used. Preparation for future deployments will include 
establishing contact with a wider group of 
organizations in advance, in part to facilitate end-of-
response collection of feedback from these groups. 

Learning from Failures 
Across all PRN deployments, lessons learned from 
failures underpin the majority of our subsequent 
successes. As described in the Project Design section 
above, several of the general best practices described 
herein arose from specific challenges and failures 
during deployments, some of which occurred during 
earlier deployments than those in focus in this paper. 
For example, prolonged cloud cover immediately 
following the Nepal earthquakes in 2015 forced the 
PRN to shift deployment priorities from damage 
assessment in post-event satellite images to 
prediction of locations likely to need urgent aid, 
based on comparing recent pre-event images with 
(then incomplete) existing building maps. This ad hoc 
shift subsequently improved our ability to statistically 

incorporate other sources of geographic information 
(such as earthquake severity maps) into our analysis 
pipeline. The value of preparation was further 
reinforced by another lesson from the PRN Ecuador 
deployment in 2016, when post-project reflection on 
deployment delays led us to create project templates 
including logos, disclaimers and other boilerplate 
language that could be pre-approved by funders, 
enabling the team to focus on more pressing issues 
during a live deployment.  

Additionally, communication with other crisis 
mapping teams and leaders has enabled us to learn 
from (and thus not repeat) external challenges. For 
example, early informal discussions with people 
involved in the 2010 Haiti earthquake and 2013 
Typhoon Haiyan responses highlighted the need to 
ensure our partnerships include local connections 
and underscored the interdependence between 
teams who focus on technology-driven solutions 
(such as the PRN) and more traditional, hierarchical 
aid organizations (Zook et al., 2010). Discussion with 
external crisis mapping experts has also been 
considered alongside the PRN team’s expertise in 
citizen science methods to inform our project design. 
For example, the design choices described in the 
Crowd Labeling Phase section above reflect an intent 
to minimize the biases that can appear in VGI data 
following a crisis (Goodchild and Glennon, 2010; Zook 
et al., 2010). All these considerations are especially 
important in applications where organizations based 
in the global north deploy to the global south, which 
is common in disaster and humanitarian aid. 

Overall, it is critically important to both communicate 
with other experts and include an internal reflection 
phase following each deployment, where the team 
aggregates both successes and failures into lessons 
for the next deployment. This should be part of the 
normal process for any crisis mapping project. 

CONCLUSION 
The Planetary Response Network is a distributed 
online crisis mapping project that has deployed 
multiple times since its creation in 2014. The project 
approaches crisis mapping through a strong citizen 
science lens, with particular focus on global 
community engagement, data quality, and producing 



outputs with clear utility to responders, decision 
makers, and other stakeholders. This case study, 
which focuses on the most recent deployments of the 
PRN, has produced several lessons learned following 
evaluation of the project’s structure, deployments 
and outcomes:  

• Distributed online crisis mapping projects, a 
particular type of humanitarian citizen science, 
play a positive role in the digital humanitarian 
sphere. It is critical that distributed projects such 
as the PRN continue to center the requirements 
of local stakeholders at all stages of project 
deployments. 

• There is a strong worldwide interest in response 
efforts following a disaster; distributed online 
crisis mapping provides an excellent way for 
people to help even when they are distant and/or 
cannot afford to financially support aid efforts. 

• Crisis mapping projects such as the PRN become 
robust when end-to-end response procedures 
are established early and the collaboration has 
prepared as much as possible in advance of 
deployments. With the addition of citizen science 
as a key response component, project design and 
planning become even more important, to 
ensure that the project makes ethical use of 
participants’ time and contributions. Pre-
established procedures must remain flexible to 
the needs of each specific deployment.  

• While some labelling requirements vary 
depending on the type of deployment, other 
features (e.g. infrastructure damage, access 
blockages, signs of ad hoc shelters) tend to be 
high priorities for situational awareness needs 
across multiple types of disasters. 

• Responders can generally tolerate more 
uncertainty in crisis maps than a purely academic 
study. This affects the design and deployment of 
a crisis mapping project, another reason it is vital 
to regularly liaise with responders and local 
stakeholders. 

• Point markings, even of extended features, are 
sufficient to flag features of interest during live 
deployments. However, these pose challenges 
when using these labels to train advanced 
damage detection algorithms. Communication 
between academic and responder team 

members is critical to establish priorities in 
advance and explore ways to alleviate tensions 
between urgency and precision that satisfy all 
parties. 

• Discussion software such as Zooniverse Talk 
provides an important way for crisis mapping 
project participants to identify serendipitous 
features of interest, train each other in advanced 
feature detection, and remain engaged 
throughout a deployment. Supervision of the 
discussion by team leaders is important for 
guiding self-training as well as identifying and 
intervening with participants showing signs of 
secondary distress. The latter is a particularly 
important ethical consideration. 

• Feedback between remote project organizers 
and responders on the ground is often qualitative 
and anecdotal rather than quantitative or 
statistical, necessitated by practical reasons of 
resource allocation priority and risk 
management. Qualitative feedback can still be 
extremely useful, provided team members 
accustomed to quantitative methods adjust their 
self-assessment techniques. 

• It is immensely valuable when satellite image 
providers make their data open and easily 
accessible to crisis mapping projects. Providers 
can enable humanitarian projects to significantly 
improve deployment and response times by 
ensuring their open data includes processed data 
products and that such data is easy to search and 
acquire. 

These lessons may be generalizable to other crisis 
mapping efforts, particularly those which conform to 
the virtual and distributed typology of citizen science 
projects. The successes of the PRN provide evidence 
that online distributed crisis mapping projects can be 
effective even when run on a generalized citizen 
science platform (such as the Zooniverse) not 
specifically designed for geographical citizen science. 
By applying best practices of citizen science and 
involving responders and local stakeholders at all 
stages of project execution, online distributed crisis 
mapping can add a valuable layer of information to 
complement purely community-based response 
efforts. 



Looking forward, work within the PRN partnership 
continues. In particular, the team leadership is 
pursuing promising avenues for streamlining the 
planning phase using more automated image 
processing techniques. We are also developing a 
machine learning pipeline, trained on labels provided 
by project participants, to provide early estimates of 
heat maps even of new geographical regions (Kuzin et 
al., 2021). This will allow responders to access high-
value information for early resource allocation. It will 
also enable the project to direct participant attention 
to higher-level tasks, easing the tension between 
urgency and the need for detailed information.  

There is also significant potential to develop the PRN 
further to include more frequent deployments as well 
as longer-term deployments. Deploying projects in 
partnership with local stakeholders to address risk 
reduction and resilience needs, for example, would 
enable the PRN to provide value at all stages of the 
disaster life cycle. These deployments would also 
benefit from the reduced time pressure compared to 
a response deployment, and they would allow the 
PRN community to remain active on an ongoing basis.  

SUPPLEMENTAL MATERIALS  

Appendix 1: Quantitative Details of PRN Caribbean Deployments  
Following partner discussions, the PRN activated the planning phase for its 2017 Caribbean deployment on 
September 8, 2017. After the team processed the available imagery and decided on a project design, the crowd 
labeling phase was launched on September 12, 2017. Between September 12 and October 5, 5,331 logged-in 
participants and 6,422 not-logged-in IP addresses provided approximately 650,000 classifications of the islands of 
Antigua, Barbuda, Dominica, Guadeloupe, Puerto Rico, Turks and Caicos, and the US and British Virgin Islands. This 
effort, which labeled damage from both Hurricanes Irma and Maria, represents approximately 2.8 years’ worth of 
full-time person-effort. Effort is measured from summing the duration of individual classifications (recorded by the 
Zooniverse software) and assuming 1 year of FTE is 40 hours’ work per week for 52 weeks. A small number of 
classification durations are extremely high (e.g. 10 minutes or more where the median classification is 10 seconds); 
this is typical among Zooniverse projects. For the 0.4% of classifications meeting this criterion for this project we 
assume this represents the classifier pausing their work without closing their browser window, and replace those 
duration values with the average duration across all non-outlier classifications. For purposes of label aggregation, 
each not-logged-in IP address is treated as a unique classifier/participant.  

The Gini coefficient (Gini, 1936) for classifications per volunteer was 0.82. The Gini coefficient measures inequality 
in a distribution and ranges from 0 (all classifiers contribute equal amounts) to a limit of 1 (one classifier contributes 
~all classifications). In a citizen science context, Gini values between 0.7–0.9 generally indicate that a project can 
both recruit new participants and retain a loyal community of classifiers (Cox et al., 2015).   

The first image set was labeled by volunteer classifiers in approximately 2 hours. The first heat maps were delivered 
to Rescue Global on the same day, including labels for building damage, road blockage, flooding, and temporary 
shelters. These features, particularly building damage and road blockage, tend to be of high value to responders 
following a wide variety of types of disaster. Overall, classifiers submitted over 180,000 individual marks labelling 
the features of interest. Exact mark counts for each feature type are given in Table A1, with the time series of 
submitted classifications shown in Figure 3. Additionally, 537 participants from this deployment posted at least 1 
comment on the project’s “Talk” discussion boards.  

The second PRN deployment in the Caribbean began its planning phase on September 5, 2019. This project focused 
on the northern Bahamas, which were severely affected by Hurricane Dorian. The initial launch of the crowd labeling 
project was on September 7, 2019; the first data set was labeled by the crowd in under 5 hours. Between September 
7 and 16, the project collected approximately 365,000 classifications from 2,404 logged-in participants and 2,105 



not-logged-in IP addresses (Gini coefficient: 0.81). Overall, classifiers submitted over 135,000 individual labels of 
features of interest (see Table A1). The total classification effort represents approximately 1 year of full-time person-
effort (replacing 0.2% of high-duration outliers with the average duration, as above). Of the 2,404 logged-in 
participants who contributed to the project, 219 posted at least 1 comment on Talk.  

The features labeled during the 2019 Caribbean deployment were building damage, road blockage, flooding, 
temporary shelters, underwater hazards and helicopter landing sites (HLSs). The latter two features were added 
after consultation with 24 Commando Royal Engineers, who were deployed in partnership with Rescue Global to the 
Bahamas. For the HLS feature assessment, classifiers were asked to examine each subject and assess via a Yes/No 
question interface whether it contained a 50 m × 50 m plot of clear land (using scale bars added to subjects; see 
Figure 1, right panel). This example of a specialized label added in consultation with active responders resulted in 
the identification of 381 high-confidence potential sites, details of which were forwarded for further assessment and 
potential use in reaching hard-to-access areas of the islands. High-confidence potential sites are defined as those 
where at least 80% of classifiers (of at least 10) have identified an image subsection as a potential HLS.  

  
Table A1: Counts for marks on images applied by classifiers in the PRN, for the two deployments in focus in this case study. The 
Underwater Hazard feature was not assessed during the 2017 deployment. One additional feature, Helicopter Landing Sites, 
was assessed in the 2019 deployment using a single-question task (images were not marked).  

Label (Image Marking)  PRN Irma & Maria (2017)  PRN Dorian (2019)  

Building Damage  95,713  82,870  
Flooding  53,981  21,403  

Road Blockage  19,317  20,168  
Temporary Shelters  11,947  2,392  
Underwater Hazard  N/A  8,738  
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