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The spread of the new severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) and the ensuing outbreaks of coro-
navirus disease 2019 (COVID-19) have placed a substantial 

burden on public health in the United Kingdom. As of 14 July 2021, 
the number of people recorded to have died in the United Kingdom 
within 28 days of a positive SARS-CoV-2 test was 128,530 (refs. 1,2). 
In response to the ongoing epidemic, the UK government has imple-
mented a number of non-pharmaceutical interventions to reduce 
the transmission of SARS-CoV-2, ranging from localized measures, 
such as the closures of bars and restaurants, to full national lock-
downs3. The localized measures have been employed through a 
regional tier system, with lower tier local authorities (LTLAs) being 
placed under varying levels of restrictions according to data such 
as the number of positive polymerase chain reaction (PCR) tests 
returned there over a 7-day interval (or local weekly positive tests)4. 
Following a third national lockdown that began on the 6 January 
2021, the United Kingdom has undergone a staged relaxation of 
restrictions, with lockdown rules ending on 19 July 2021 (ref. 5).

In the United Kingdom, there are two major ongoing studies 
that undertake randomized survey testing to provide an insight 
into the prevalence of SARS-CoV-2. Since April 2020, the Office for 
National Statistics (ONS) COVID-19 Infection Survey (CIS) tests 
a random sample of people living in the community with longitu-
dinal follow-up6. The survey is designed to be representative of the 

UK population, with individuals aged two years and over in private 
households randomly selected from address lists and previous ONS 
surveys, although it does not explicitly cover care homes, the shel-
tering population, student halls or individuals currently being hos-
pitalized. The REal-time Assessment of Community Transmission 
(REACT) study is a second nationally representative prevalence 
survey of SARS-CoV-2 based on repeated cross-sectional samples 
from a representative subpopulation defined via (stratified) ran-
dom sampling from the National Health Service patient register of 
England7,8. Importantly, both surveys recruit participants regardless 
of symptom status and are therefore able to largely avoid issues aris-
ing from ascertainment bias when estimating prevalence. The ONS 
CIS uses multilevel regression and post-stratification to account for 
any residual ascertainment effects due to non-response6, whereas 
the REACT study uses survey weights for this purpose.

While randomized surveillance testing readily provides an 
accurate statistical estimate of prevalence of PCR positivity, preci-
sion can be low at finer spatiotemporal scales (for example, at the 
LTLA level), even in large studies such as the ONS CIS and REACT 
surveys. Our major goal here is to unlock the information in 
non-randomized testing under arbitrary, unknown ascertainment 
bias. Although we expect the methods to apply in a broad manner, 
here we focus on Pillar 1 and Pillar 2 (Pillar 1+2) PCR tests con-
ducted in England between 31 May 2020 and 20 June 2021 (lateral 
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flow device (LFD) tests are not included; further details provided 
in Methods and Data availability). Pillar 1 tests refer to “all swab 
tests performed in Public Health England (PHE) labs and National 
Health Service (NHS) hospitals for those with a clinical need, and 
health and care workers”9, and Pillar 2 tests comprise “swab test-
ing for the wider population”9. Pillar 1+2 testing therefore has 
more capacity than the randomized programmes, but the protocol 
incurs ascertainment bias because those at increased risk of being 
infected are tested, such as frontline workers, contacts traced to a 
COVID-19 case or the subpopulation presenting with COVID-19 
symptoms, such as loss of taste and smell9. Hence, raw prevalence 
estimates from Pillar 1+2 data (as a proportion of tested popula-
tion) will tend to be biased upwards and cannot directly be used to 
estimate the unknown infection rate in a region. In contrast, as a 
proportion of the entire population, the bias is downwards as not all 
individuals with infection in the area are captured. Furthermore, the 
degree of upward bias may be influenced by overall testing capac-
ity and uptake. In addition, the raw prevalence estimates tend not 
to capture asymptomatic infection, even though there is evidence 
to indicate that asymptomatic individuals can contribute to viral 
transmission10,11.

Combining data from multiple surveillance schemes can 
improve estimates for prevalence. For example, Manzi et al.12 incor-
porated information from multiple, biased, commercial surveys to 
provide more accurate and precise estimates of smoking prevalence 
in local authorities across the East of England. A number of geosta-
tistical frameworks for infectious disease modelling based on mul-
tiple diagnostic tests have been developed13–15. These accommodate 
different sources of heterogeneity among the tests to deliver more 
reliable and precise inferences on disease prevalence.

To understand the ascertainment bias problem and to enable a 
statistical approach to correction, it is helpful to consider a simpli-
fied causal model16,17 for Pillar 1+2 data. This is represented by a 
directed acyclic graph (DAG), shown in Fig. 1a, that charts the 
dependencies of an individual from infection status to test result. 
The circles indicate the binary (yes/no) states of an individual. 
The DAG characterizes the joint distribution of the major factors 
leading to the observed data. Throughout the paper, we use the  

term ‘targeted testing data’ to refer to data gathered under  
some ascertainment process distinct from (stratified) random 
sampling, with an exemplar being selection for testing of the sub-
population with COVID-19 symptoms, which comprises a sizeable 
proportion of Pillar 1+2 tests. There are several other potential 
confounders, exemplified in Fig. 1a by socioeconomic status (SES), 
which is a well-studied factor of both infection risk and access 
to healthcare and/or testing. The DAG explicitly characterizes  
statistically why we cannot directly use Pillar 1+2 data. The  
DAG also points to a potential solution that we pursue here: if the 
statistical dependencies as indicated by the arrows in Fig. 1a can 
be modelled, then we can correct for the ascertainment bias in  
Pillar 1+2 data.

In addition to prevalence, there are a number of epidemio-
logical parameters that may be useful for informing localized 
non-pharmaceutical interventions. For example, one particular 
variable of interest is the (time-varying) effective reproductive num-
ber Rt, which is defined roughly as the average number of infections 
caused by an infectious individual. That is, when Rt > 1, the epi-
demic will continue to spread. The current pandemic has spurred 
the development of models that aim to incorporate multiple sources 
of data to estimate important epidemiological parameters. See 
Supplementary Table 1 for an overview of the methodological work 
most related to ours18–25 (https://localcovid.info/), including a brief 
description of each method and what the data inputs and results 
outputted are; we also recommend refs. 26,27 for reviews, which have 
a particular focus on Rt.

Within this urgent and fast developing area of research, it is 
clearly important to define the aspects in which our method con-
tributes. First, we have developed methods to infer unbiased local 
prevalence, It, from targeted testing data. This is important in its 
own right because being able to estimate local prevalence accu-
rately from targeted testing data adds an important facet to exist-
ing COVID-19 monitoring capabilities. Here, we focus on weekly 
period prevalence and explicitly target the number of infectious 
individuals via a correction to the estimated PCR-positive num-
bers. Second, our method outputs bias-adjusted cross-sectional 
prevalence likelihoods p(nt of Nt ∣ It), where nt and Nt are positive 
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Fig. 1 | Causal diagram and spatial structure underlying the test count data. a, A DAG representing the causal models underlying SARS-CoV-2 swab 
testing data for targeted test-and-trace data (Pillar 1+2) and randomized surveillance data (for example, REACT). Randomization breaks the causal link 
between COVID-19 symptoms and swab testing. The nodes represent binary (yes/no) states for an individual in the relevant population. SES is shown 
as an example confounder (in addition to symptom status). The dashed line represents residual ascertainment effects stemming from non-ignorable 
non-response in the REACT study. b, A map of LTLAs in England and their corresponding PHE regions.
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and total targeted test counts, respectively. This allows prevalence 
information from targeted data to be coherently embedded in a 
modular way into complex spatiotemporal epidemiological models, 
including those synthesizing multiple data types. We exemplify this 
by implementing a susceptible-infectious-recovered (SIR) model 
around our ascertainment model likelihood. Third, our local ascer-
tainment model is based on targeted testing data alone with both 
the number of positive and total tests being modelled (nt and Nt). 
This has two important benefits: spatiotemporal variation in testing 
uptake and capacity is explicitly conditioned on (via Nt), and differ-
ential test specificity and sensitivity can be naturally incorporated 
into our causal ascertainment model.

Results
Correcting for ascertainment bias in targeted testing data.  
Figure 2a–c displays the percentage of positive Pillar 1+2 tests 
(as a proportion of those tested) against accurate prevalence esti-
mates from the REACT study, which shows a clear upward bias 
(each point corresponds to a single LTLA). Here, we introduce a 
bias-correction method that aims to provide accurate estimates of 
prevalence at the local level, as displayed in Fig. 2d–f, based on the 
posterior cross-sectional prevalence p(It ∣ nt of Nt).

With reference to the causal DAG in Fig. 1a, we define the essen-
tial bias parameter, δ, as

δ := log
(

odds( tested | infected )
odds( tested | not infected )

)

(1)

that is, the log odds-ratio of being tested in the infected subpopula-
tion versus in the non-infected subpopulation. Larger values of δ 
generally correspond to higher levels of ascertainment bias; that is, 
a higher chance of an individual with an infection being selected for 
testing relative to an individual without infection.

Our approach combines randomized surveillance data (REACT) 
and targeted surveillance data (Pillars 1+2) to infer δ at the coarse 
geographical level (PHE region; Fig. 1b). We then take forward this 
information by specifying a temporally smooth empirical Bayes 
(EB) prior on δ1:T, applied to each constituent local region (LTLA) 
in the local prevalence analyses. Figure 3a shows the resulting EB 
priors on δ. There is potentially more variation in δ across regions 
early and late in the sampling period (before September 2020 and 
after March 2021), although the prior credible intervals are broad 
and often overlapping. The data provide more information on δ 
between October 2020 and February 2021.
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Fig. 2 | uncorrected (top) and corrected (bottom) Pillar 1+2 prevalence estimates against REACT estimates. a–f, Uncorrected (raw positivity rates) and 
corrected (debiased) Pillar 1+2 PCR-positive prevalence estimates against (gold-standard) REACT estimates from randomized surveillance. Each point 
corresponds to a LTLA. Each scatter plot compares pillar 1+2 prevalence estimates against unbiased estimates from the REACT study. a,d, REACT round 7 
data (13 November 2020 to 3 December 2020). b,e, Round 8 (6–22 January 2021. c,f, Round 9 (4–23 February 2021). Uncorrected results are shown in a–c 
and bias-corrected cross-sectional estimates in d–f. Horizontal grey lines are 95% exact binomial confidence intervals from the REACT data. The number of 
independent tests underlying each mean and (horizontal) credible intervals for the REACT data varied between 248 and 2,387. Vertical black lines in a–c are 
95% exact binomial confidence intervals for from the raw, non-debiased Pillar 1+2 data. Vertical black lines in d–f are 95% posterior credible intervals from 
the debiased Pillar 1+2 data. The number of independent tests underlying each mean and (vertical) credible interval for the Pillar 1+2 data varied between 
1,117 and 42,458. Neither set of prevalence estimates has been corrected for false positives or negatives. Note that in d–f, the credible interval widths are 
systematically tighter for the debiased Pillar 1+2 compared with the REACT data, which highlights the useful information content in debiased Pillar 1+2 data.
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Cross-sectional local prevalence from targeted testing data. 
Debiased likelihood for modular sharing of prevalence information. 
Equipped with a coarse-scale (PHE-region level) EB prior on bias 
δ, we evaluated a fine-scale (LTLA-level) δ-marginalized likelihood 
of the form p(nt ofNt|It, ν̂t) as described in equation (17) in the 
Methods (“Cross-sectional inference on local prevalence”). This 
debiased prevalence likelihood can be readily exported and modu-
larly incorporated into more complex models, as we illustrate below 
(“Longitudinal local prevalence and transmission”).

Cross-sectional prevalence posterior. The δ-marginalized likelihood 
can be inputted directly into cross-sectional Bayesian inference, 
outputting the prevalence posterior p(It|nt ofNt, ν̂t) for each time 
point at which such count data are available. Figure 3b plots these 
cross-sectional prevalence posteriors beneath the raw counts for 
a subset of LTLAs across the nine PHE regions. REACT sampling 

periods are plotted at the base of each panel, and local prevalence 
estimates from REACT round 7 (November 2020) and round 8 
(January 2021) are also superimposed. The corrected cross-sectional 
prevalence estimates are consistent with the gold-standard REACT 
estimates, but are more precise, as expected from Bayesian princi-
ples of data synthesis.

Longitudinal local prevalence and transmission. The cross- 
sectional debiased likelihood can be introduced modularly into a 
wide variety of downstream epidemiological models. We illustrate 
this by using the likelihood as an input to a simple SIR epidemic 
model (Methods, “Full Bayesian inference under a stochastic SIR 
epidemic model”, and Extended Data Fig. 1). Figure 4a plots the 
estimated prevalence against Rt number at the most recent time 
point (the week of 20 June 2021), with each point corresponding to a 
single LTLA. The scatter plot provides a quick visual representation 
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Fig. 3 | Ascertainment bias parameters and LTLA-level prevalence estimates. a, Smooth EB priors on bias parameters δ1:T. Left: heterogeneous bias 
across the nine PHE regions. Right: London only. The thick curves show the prior means and the narrow curves show 95% credible intervals. Note that 
δ is the log odds-ratio, so, for example, δ = 3 implies that the odds of being tested are e3 ≈ 20 times higher in individuals with infection compared with 
individuals without infection. b, LTLA-level prevalence estimates: raw Pillar 1+2 estimates (that is, positivity rate), cross-sectionally corrected Pillar 1+2 
and gold-standard REACT estimates. For each of the nine PHE regions, we present the constituent LTLA whose name is ranked top alphabetically. The 
number of independent tests underlying each (orange) mean and credible interval based on the REACT data varied between 288 and 620. The number 
of independent tests underlying each (green or cyan) mean and credible interval based on the Pillar 1+2 data varied between 390 and 43,650. The green 
symbols and error bars show the mean exact binomial 95% confidence intervals. The cyan symbols and error bars show posterior median and 95% 
credible intervals. The orange symbols and error bars show the mean and 95% exact binomial confidence intervals.
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of regions where transmission rates and/or prevalence are relatively 
high. To illustrate, we label five LTLAs with high prevalence and/
or Rt estimates. The estimated longitudinal prevalence and Rt for 
this subset of LTLAs (Fig. 4b,c) can help further characterize the 
longitudinal dynamics of prevalence and transmission in the time 
interval leading up to 20 June 2021. In particular, the data show 
the estimated rate of change in prevalence and separately indicate 
whether Rt is increasing or decreasing.

Figure 5a displays the spatiotemporal local prevalence and Fig. 5b  
displays Rt, using a fortnightly sequence of maps, with each LTLA 
coloured according to its estimate prevalence or Rt. Zoom-in boxes 
display the local fine-scale structure for London.

Relating local prevalence and transmission to spread of the 
variants of concern. A striking feature of the maps in Fig. 5a is 
the increasing prevalence in London throughout November to 
December 2020. This is consistent with the known arrival of the 
Alpha variant of concern (VoC) 202012/01 (lineage B.1.1.7) that 
emerged in the South East of England in November 2020, and has 
been estimated to have a 43–90% higher reproduction number than 
pre-existing variants28. Similarly, the increase in Rt from May 2021 
onwards is in accordance with the spread of the Delta VoC 21APR-
02 (lineage B.1.617.2), which is estimated to have a reproduction 
number approximately 60% higher than that of the Alpha VoC29.

Similar to a previous study28, we characterized the relation-
ship between the estimated local Rt and the frequency of Alpha 
VoC 202012/01, as approximated by the frequency of S gene target  

failure (SGTF) in Taqpath sequencing assays used during this time 
period30. Figure 6 illustrates the spatial distributions of the Alpha 
VoC 202012/01 against estimated prevalence and estimated Rt from 
mid-November 2020 to mid-December 2020. The increase in fre-
quency of the VoC was initially isolated to the South East but then 
spread outwards, accompanied by a corresponding increase in both 
local estimated prevalence and Rt. We observe a strong positive 
association between the local VoC frequency and estimated local Rt, 
which are consistent with the increased transmissibility of this VoC 
identified in ref. 28.

We performed a similar analysis for the Delta VoC 21APR-02 
using data provided by the Wellcome Sanger Institute’s Covid-19 
Genomics Initiative31. Extended Data Fig. 2 shows the spatial dis-
tributions of the Delta VoC 21APR-02 against estimated prevalence 
and estimated Rt from the end of April 2021 to the start of June 
2021. We see that the Delta VoC becomes the dominant variant over 
the course of this time period, and in contrast to the Alpha VoC, the 
spread of the variant was not isolated to a single region of England. 
We again observe a strong positive association between the local 
VoC frequency and estimated local Rt. A simple linear regression of 
Rt against Delta frequency for the week of 23 May 2021 indicated an 
increase in transmissibility of 0.55 (0.39–0.71) due to the Delta VoC, 
which is in accordance with estimates obtained in ref. 29.

Accuracy validation using ultra-coarse and incomplete data to 
estimate δ. We assessed the performance of debiased fine-scale 
(LTLA-level) prevalence estimates by measuring how well they predict  
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Fig. 4 | outputs of the longitudinal local prevalence model. a, Scatterplot of prevalence against effective R number (each point corresponds to one LTLA) 
for the week of 20 June 2021. b, Longitudinal posteriors for prevalence at a selection of LTLAs. c, Longitudinal posteriors for Rt at a selection of LTLAs. 
The vertical line and horizontal line in b and c, respectively, indicate an effective reproduction number of Rt = 1; when Rt > 1, the number of cases occurring 
in a population will increase. In a, the symbols show posterior medians and the error bars show 95% credible intervals. In b and c, the thick lines show 
posterior medians and the narrow lines show 95% credible intervals.
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LTLA-level REACT data. The validation is best described in 
terms of coarse-scale REACT training data and contemporane-
ous fine-scale REACT test data. The training data inputted are 
REACT PHE-region-level and Pillar 1+2 LTLA-level positive (and 
number of) test counts for the week at the centre of the corre-
sponding REACT round to be predicted. The test data are REACT 
LTLA-level positive (and number of) test counts aggregated across 
the relevant REACT sampling round. Figure 2 visually compares 
cross-sectional LTLA prevalence estimates from debiased tar-
geted data (that is, based only on the training data) with accurate 
gold-standard estimates from REACT LTLA-level test data. The 
average estimated bias is reduced to low levels for comparisons 
with REACT round 7 (–0.08%, standard error (SE) = 0.02), round 8 
(–0.07%, SE = 0.03) and round 9 (0.01%, SE = 0.02). Extended Data 
Fig. 3c,d displays analogous results for REACT rounds 10 and 11, 

with average estimated bias reduce to 0.03% (SE = 0.01) and 0% 
(SE = 0.01), respectively.

REACT and ONS CIS are among the most comprehensive ran-
domized surveillance studies in the world. We have tried to assess 
how well the debiasing model might hold when we are faced with 
coarser-scale or more limited randomized testing data. First, to 
investigate the downstream effects of ultra-coarse-scale random-
ized surveillance data, we aggregated all REACT data to the national 
level, estimated the δ curve at this ultra-coarse national level and 
then took this δ forward to estimate local prevalence. We found that 
estimates retained a high level of accuracy (Extended Data Fig. 4g–i).  
Second, to examine the effects of a more limited randomized sur-
veillance regime, we left out REACT round 8, re-estimated δ curves 
at the PHE-region level and used these to infer local prevalence. In 
this case, we lost precision in our prevalence estimates for omitted 
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Fig. 5 | Maps of estimated prevalence and effective reproduction number. a, Fortnightly maps of estimated local prevalence in England from 13 September 
2020 to 20 June 2021. b, Fortnightly maps of estimated local Rt in England from 13 September 2020 to 20 June 2021.
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round 8, as we would expect, but the estimates remained highly 
accurate, with average bias of 0.05% (SE = 0.03; see also Extended 
Data Fig. 4j–l and compare vertical credible interval widths between 
Extended Data Fig. 4e and Extended Data Fig. 4k).

Predictive ability of Rt estimates. Rt measures whether the number 
of infectious individuals is increasing, Rt > 1, or decreasing, Rt < 1, in 

the population at time point t. Extended Data Fig. 5 compares LTLA 
Rt estimates with the future change in local case numbers. For vali-
dation purposes, here we are performed one-step-ahead at a time 
prediction and compared predictions with out-of-training-sample 
observed statistics (fold-change in raw case numbers from base-
line). The results were stratified according to baseline case numbers, 
and we examined predictions 1 week and 2 weeks ahead. Each point  
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corresponds to an (LTLA, week) pair, and the results are for the 
period 18 October 2020 to 20 June 2021. Across each of the six sce-
narios presented, there is strong evidence of an association between 
Rt and future change in case numbers (P < 2 × 10−16). The strength 
of association between Rt and 1-week-ahead case numbers has 
Spearman’s ρ = 0.73 for the high baseline case group (>500 cases 
per 100,000), which decreased to ρ = 0.29 in the low baseline group 
(≤200 cases per 100,000). The association remained strong when 
predicting caseloads 2 weeks ahead, with, for example, ρ = 0.73 
(Spearman’s) for the high baseline case group.

Comparison of effective reproduction number estimates from 
the debiasing approach with estimates from other studies. We 
extracted estimates of Rt based on our debiasing model likelihood 
implemented within a standard SIR model, illustrated in Extended 
Data Fig. 1. We compared the results to the local Rt estimates output-
ted by at the Imperial College COVID-19 website32. A cross-method 
comparison of longitudinal traces of Rt for a subset of LTLAs is 
shown in Extended Data Fig. 6. Encouragingly for both approaches, 
the estimates generally displayed good concordance, with credible 
intervals overlapping appropriately, despite being based on different 
data and models (Supplementary Table 1).

Discussion
The current standard practice internationally is to summarize 
SARS-CoV-2 infection rates by counting the number of individuals 
testing positive in a local area over a period of time, typically 1 week. 
The resulting statistic—cases per 100,000—is used to characterize 
and monitor the spatiotemporal state of an epidemic alongside 
other epidemiological measures such as Rt. Problematically, how-
ever, interpreting cases per 100,000 is not straightforward, as the 
data are subject to a number of unknown biasing influences such 
as (1) variation in testing capacity, (2) ascertainment bias on who is 
(self)-selected to be tested and (3) imperfect sensitivity and speci-
ficity of antigen tests. These factors, among others, make it diffi-
cult to quantify the true underlying local incidence or prevalence 
of SARS-CoV-2 infection, which places a burden on policymak-
ers implicitly to adjust for such biases themselves. To address this 
problem, we developed an integrative causal model that can be used 
to debias raw case numbers and accurately estimate the number of 
individuals with infection in a local area.

The flexible statistical framework allows simultaneous and 
coherent incorporation of a number of important features. First, it 
corrects for ascertainment bias that result from preferential testing 
based on symptom status or on other confounders. This accounts 
for any variation in testing capacity by modelling the total number 
of tests conducted locally. Second, it can incorporate the use of dif-
ferent SARS-CoV-2 testing assays, such as LFD and PCR, includ-
ing adjustment for particular sensitivity and specificity. Third, it 
infers the number of infectious individuals, while PCR tests may 
also pick up positive individuals at non-infectious stages. Finally, 
the model outputs week-specific debiased prevalence with uncer-
tainty (via a marginal likelihood), which allows modular interoper-
ability with other models. We illustrated this with a SIR epidemic 
model implementation that estimated local transmission rates while 
accounting for vaccine- and disease-induced immunity in the pop-
ulation. Our modelling work illustrates the benefits of having both 
a rolling randomized surveillance survey and targeted testing (for 
example, of frontline healthcare staff and symptomatic individu-
als). While targeted testing is routinely collected internationally, the 
United Kingdom has led the way in introducing regular national 
surveillance randomized surveys such as REACT7,8 and ONS CIS6. 
Ongoing international pandemic preparedness can benefit from 
sampling designs that combine random sampling with targeted test-
ing so that they can most powerfully complement and strengthen 
one another. Our model depends on the availability of randomized 

surveillance data. Future studies from other countries and collabo-
rations with local experts will show and may further validate the 
breadth of utility of our debiasing framework and how it contributes 
towards global public health responses.

Since randomized surveillance data are currently rare interna-
tionally, there would be utility in extending the causal framework 
to address situations where targeted testing is accompanied by 
semi-randomized data with a well-known selection process (such as 
routine tests for healthcare workers, in care homes or regular test-
ing at schools). Extending the current framework would begin with 
careful empirical exploration of the relationship between test posi-
tivity rate in such semi-randomized settings and comparable local 
prevalence (for example, in relevant age strata). The wealth of data 
available in the United Kingdom provides a good starting point for 
such exploratory work, which can be used to develop more complex 
causal models transferable to new semi-randomized contexts.

Methods
Ethics approval. The Alan Turing Institute Ethics Advisory Group provided 
guidelines for this study’s procedures and advised that Health Research Authority 
approval is not required for this research.

Observational models for surveillance data. The primary target of inference 
is prevalence, I out of M, being the unknown number of infectious individuals 
at a particular time point in the local population of known size M. Our method 
estimates two types of prevalence: (1) the number of individuals that would test 
PCR positive ( Ĩ) and (2) the number of individuals that are infectious (I). See 
below (“Focusing prevalence on the infectious subpopulation”), where we clarify 
the distinction between the PCR-positive and infectious subpopulations, and how 
we target the latter.

Temporal resolution of test count data. We applied the debiasing framework 
to test-count data aggregated into non-overlapping weeks. This has two clear 
advantages. First, by aggregating to weekly level data, we obviate the need 
to account for weekday effects that can be driven, for example, by logistical 
constraints or by individuals self-selecting to submit samples more readily on 
some weekdays than on others. Second, fitting a weekly model is computationally 
less intensive than fitting a model to daily test counts. The potential disadvantage 
of binning data by week is that high-frequency effects cannot be detected. 
Although it is possible in principle to adapt the framework to analyse daily testing 
data, we note that daily variation is likely to be confounded by weekday testing 
effects and so may be difficult to detect and interpret. Furthermore, while we 
use non-overlapping weekly data for model fitting, it is possible to output rolling 
weekly estimates, particularly to obtain as up-to-date prevalence estimates as are 
permitted by the data. However, we note that complete testing data are typically 
subject to a reporting lag of 4–5 days33.

Randomized surveillance data, u of U. Suppose that out of a total U randomized 
surveillance (for example, REACT and ONS CIS) tests, we observe u positive tests. 
The randomized testing (for example, REACT and ONS CIS) likelihood is

P(u ofU | Ĩ) = Hypergeometric(u |M, Ĩ, U) , (2)

and this allows direct, accurate statistical inference on Ĩ , the proportion of the 
population that would return a positive PCR test.

Focusing prevalence on the infectious subpopulation. PCR tests are sensitive and can 
detect the presence of SARS-CoV-2 both days before and weeks after an individual 
is infectious. It is usually desirable for prevalence to represent the proportion 
of a population that is infectious. We can obtain a likelihood for the number of 
infectious individuals I as follows:

P(n ofN | I) =

∫
P(n ofN | Ĩ)P(̃I | I)d̃I, (3)

where I and Ĩ  are the number of infectious and PCR-positive individuals, 
respectively.

The conditional distribution P(̃I | I) can be specified on the basis of external 
knowledge of the average length of time spent PCR-positive versus infectious. 
Our approach to estimating this quantity imports information on the timing of 
COVID-19 transmission34 and the interval of PCR positivity in individuals with 
SARS-CoV-2 infection35. More precisely, we specified the infectious time interval 
for an average individual with infection in the population to span the interval 1–11 
days after infection (the empirical range of generation time from fig. 1A of ref. 34). 
We then calculated the posterior probability of a positive PCR occurring 1–11 days 
after infection (fig. 1A of ref. 35). We incorporated the effects of changing incidence 
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in the calculations; this is important because, for example, if incidence is rising 
steeply, the majority of people who would test PCR positive in the population 
are those that are relatively recently infected. Full details can be found in 
Supplementary Information “PCR positive to infectious mapping—method details”.

Targeted surveillance data, n of N. In contrast to the randomized surveillance 
likelihood in equation (2), the targeted likelihood can be expressed in terms of the 
observation of n of N positive targeted (for example Pillar 1+2) tests as follows:

P(n ofN | I, δ, ν) = Binomial (n | I, P( tested | infected ))

× Binomial(N − n |M − I, P( tested | not infected )),
(4)

where P( tested | infected ) and P(tested | not infected) are the probabilities of an 
individual with infection (respectively, individual without infection) being tested.

Bias parameters, δ and ν. We introduce the following parameters:

δ := log
( odds( tested | infected )

odds( tested | not infected )

)
(5)

ν := log odds( tested | not infected ) , (6)

leading to the targeted swab testing likelihood being represented as

P(n ofN | I, δ, ν) = Binomial
(
n | I, logit−1

(δ + ν)
)

× Binomial(N − n |M − I, logit−1ν) .
(7)

The unknown parameter that requires special care to infer is δ, that is, the log 
odds-ratio of being tested in the infected subpopulation versus in the non-infected 
subpopulation. The other parameter, ν, is directly estimable from the targeted data: 
ν̂ := logit [(N − n)/M] is a precise estimator with little bias when prevalence is low.

Test sensitivity and specificity. The likelihood in equation (7) assumes a perfect 
antigen test. If the test procedure has false-positive rate α, and false-negative rate β, 
the targeted likelihood is instead

P(n ofN | I, δ, ν) =

min{I,N}∑
z=0

P(z ofN | I, δ, ν)P(n | z ofN) , (8)

where z denotes the unknown number of individuals who truly have an infection 
that were tested. The first term in the sum in equation (8) is obtained by 
substituting z in equation (7), while the second term is

P(n | z ofN) =

min{z,N−n}∑
nβ=max{0,z−n}

Binomial(nβ | z, β) Binomial(nβ + n − z |N − z, α) ,

(9)

with nβ denoting the number of false-negative test results. An analogous 
adjustment can be made to the randomized surveillance likelihood in equation (2).

Cross-sectional inference on local prevalence. We leveraged spatially coarse-scale 
randomized surveillance data to specify an EB prior on bias parameters p(δ) at 
coarse-scale (PHE region), and thereby accurately infer prevalence from targeted 
data at fine scale (LTLA j within PHE region Jj). We explicitly use the superscripts 
LTLA (j) in PHE region (Jj) in step 4 below, where notation from both coarse and 
fine scale appear together. All quantities in steps 1–3 are implicitly superscripted 
(Jj), but these are suppressed for notational clarity. For computational efficiency, 
we handle prevalence in a reduced-dimension space of bins as described in 
Supplementary Information section “Interval-based prevalence inference—set-up 
and assumptions”. The method in detail is as follows:

 1. Infer prevalence from unbiased testing data. At a coarse geographic level 
(PHE region Jj), estimate prevalence from randomized surveillance data ut of 
Ut. Represent the posterior at time t in mass function

p̂t(It) := P(It | ut ofUt) (10)

where p̂t : {0, …,M} → [0, 1] need only be available at a subset 
t ∈ T ⊆ {1, …, T} of time points.
 2. Learn δt from accurate prevalence. At a coarse geographic level, for each 

t ∈ T , we estimate bias parameter δt by coupling biased data nt of Nt with ac-
curate prevalence information p̂t. With νt fixed at ν̂t := logit [(Nt − nt)/M]

p(δt | nt ofNt, p̂t, ν̂t) =

∑
It

p(δt | nt ofNt, It, ν̂t)p̂t(It) (11)

≈ N (δt | μ̂t, σ̂2
t ) (12)

where a moment-matched Gaussian approximation is performed in 
equation (12) (we assessed the reasonableness of this approximation using 
diagnostic plots (Supplementary Fig. 2)). The posterior density in the sum in 
equation (11), p(δt | nt ofNt, It, ν̂t) is conjugate under a Beta(a,b) prior on 
logit−1

(νt + δt) ≡ P( tested | infected ), and so can be evaluated as follows (where 
BetaCDF is the cumulative distribution function of the beta distribution):

P(δt ≤ logit (x) − ν̂t | nt ofNt, It, ν̂t) = BetaCDF (x | nt + a, It − nt + b) . (13)

 3. Specify smooth EB prior on δ1:T. A smooth prior on δ1:T is specified as follows:

p(δ) ∝ N(δ | 0, Σδ)
∏
t∈T

N(δt | μ̂t, σ̂
2
t )

∏
t /∈T

N(δt|0, σ2
flat ) (14)

where N(δ ∣ 0, Σδ) imparts a user-specified degree of longitudinal smoothness, 
thereby sharing information on δ across time points. Ignorance of δt, in the absence 
of random surveillance data, is encapsulated in a Gaussian with large variance 
σ2
flat. A standard choice for N(δ ∣ 0, Σδ) corresponds to a stationary autoregressive, 

AR(1), process of the form

δt = c + ψδt−1 + εt (15)

with a diffuse Gaussian prior c ∼ N(0, σ2
flat ) and with smoothing tuned by 0 < ψ < 1 

and white noise variance σ2
ε. The normalized form of the prior in equation (14) is

p(δ) = N
(
δ | (Σ−1

δ + D−1
)
−1D−1 μ̂, (Σ−1

δ + D−1
)
−1

)
(16)

with ( μ̂, diagonal matrix DT×T) having elements (μ̂t, σ̂2
t ) for t ∈ T  and (0, σ2

flat ) for t /∈ T .
 4. Infer cross-sectional local prevalence from biased testing data. At a fine-scale 

geographic level (LTLA j in PHE region Jj), having observed n(j)t ofN(j)
t  posi-

tive test results (a subset of the n(Jj)t ofN(Jj)
t  observed at the coarse-scale level 

above), we calculated the posterior for I(j)t  separately at each time point t as 
follows:

p(I(j)t |n(j)t of N(j)
t ) ∝ p(I(j)t )p(n(j)t of N(j)

t |I(j)t , ν̂(j)
t ) (17)

= p(I(j)t )

∫

δ
(Jj)
t

p(n(j)t of N(j)
t |I(j)t , ν̂(j)

t , δ(Jj)
t )p(δ(Jj)

t )dδ(Jj)
t (18)

where ν̂(j)
t := logit [(N(j)

t − n(j)t )/M(j)
t ], the likelihood in the integral in  

equation (18) is available in equation (7), and the prior p(δ(Jj)
t ) is time point t’s 

marginal Gaussian from equation (16).

Debiasing LFD tests with PCR surveillance (or vice versa). The methods can be 
adapted in a straightforward manner to the situation in which the randomized 
surveillance study uses a different assay to the targeted testing. For a concrete 
example, we could use REACT PCR prevalence posterior p̂t (̃It) from equation (10)  
to debias Pillar 1+2 LFD test data nt of Nt. Equation (11) can be adjusted to 
estimate the ascertainment bias δ pertaining to LFD data as follows:

p(δt | nt ofNt, p̂t, ν̂t) =

∑
Īt

{p(δt | nt ofNt, Īt, ν̂t)
∑

Ĩt

P(Īt | Ĩt)p̂t (̃It)} , (19)

where Īt and Ĩt are the unobserved LFD- and PCR-positive prevalence, respectively, 
and the conditional distribution P(Īt | Ĩt) can be estimated on the basis of  
external knowledge of the average length of time spent PCR-positive versus 
LFD-positive, analogously to as described in above in “Focusing prevalence on  
the infectious subpopulation”. The remaining computations, from equation (12)  
onwards, are unchanged, with the outputted fine-scale marginal likelihood 
p(n(j)t ofN(j)

t | I(j)t , ν̂(j)
t ) in equation (17) to be interpreted as targeting the local 

LFD-positive prevalence Ī(j)t .

Full Bayesian inference under a stochastic SIR epidemic model. The 
cross-sectional analysis described above in “Cross-sectional inference on local 
prevalence” generates the δ-marginalized likelihood, p(n(j)t ofN(j)

t | I(j)t , ν̂t) in 
equation (17), at each time point for which targeted data are available. These 
likelihoods can be used as input for longitudinal models to obtain better prevalence 
estimates and to infer epidemiological parameters such as Rt.

We illustrate this via a Bayesian implementation of a stochastic epidemic 
model whereby individuals become immune through population vaccination 
and/or exposure to COVID-19 (Supplementary Fig. 1). We incorporate known 
population vaccination counts into a standard discrete time Markov chain SIR 
model (ref. 36, chapter 3). Details of the transition probability calculations are given 
in the Supplementary Information sections “SIR model details” and “SIR model—
discussion, assumptions and caveats”.
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Priors on R, I and R+. We place priors on I, R+ measured as a proportion of 
the population; this proportion then gets mapped to prevalence intervals on 
subpopulation counts as described in “Interval-based prevalence inference—
set-up and assumptions” in the Supplementary Information. Specifically, we use 
truncated, discretized Gaussian distributions on the proportion of the population 
who are immune and infectious. For example, on the number of infectious 
individuals It at each time point t, we specify the prior (suitably normalized over its 
support)

P(It = j) ∝

∫ j/M

(j−1)/M
N
(
x|μI, σ

2
I

)
dx for j/M ∈ [pmin, …, pmax] , (20)

with an example weakly informative hyperparameter setting being 
μI = 0.5%, σI = 1%, pmin = 0%, pmax = 4%. To ensure meaningful inference 
on R+

1:T , we placed an informative prior that reflects the state of knowledge of the 
immune population size. We did this using an informative truncated Gaussian 
prior on R+

1  and noninformative priors on R+

2:T . We placed a noninformative 
uniform prior on each Rt, for example a Uniform(0.5, 2.5).

Markov chain Monte Carlo sampling implementation. We performed inference 
under the model represented in the DAG in Supplementary Fig. 1. The likelihood 
is marginalized with respect to δ, and we used Markov chain Monte Carlo to draw 
samples from the posterior

p(I, R+,R| n, N) .

We sampled R and (I, R+) using separate Gibbs updates. For sampling (I, R+), we 
represented the joint full conditional as

p(I, R+
|R, n, N) = p(I |R, n, N)p(R+

|I) , (21)

sampling Inew from p(I |R, n, N), and then R+
new

 from p(R+ ∣ Inew).

Sampling from p(I | 𝑅, n, N). The sampling distribution on prevalence can be 
expressed as

p(I |R, n, N) ∝ p(n, N | I,R)p(I |R)

= p(n1, N1 | I1)p(I1)
T∏

t=2
p(nt ofNt | It)p(It | It−1,Rt−1),

(22)

which is a hidden Markov model with emission probabilities taken from the 
δ-marginalized likelihood in equation (18), and transition probabilities taken from 
equation (37) (Supplementary Information).

Sampling from p(R+∣I). We expressed the full conditional for Δ R+

1:T  as

P(R+

1:T | I1:T) ∝ P(R+

1 |V1)
T∏

t=2
P(R+

t | R+

t−1, It−1,Δ Vt)

and sampled the Δ R+

1:T  sequentially, with P(R+

t | R+

t−1, It−1,Δ Vt) available in 
equation (39) (Supplementary Information).

Sampling from p(𝑅 | I). The prior joint distribution of R1:T  was modelled using a 
random walk as follows:

Rt ∼ N(Rt−1, σ2
R

) , (23)

where σ2
R is a user-specified smoothness parameter.

The update involves sampling from

p(R| I) = p(R1)

T−1∏
t=2

p(Rt |Rt−1)
T∏

t=2
p(It | It−1,Rt−1) . (24)

We discretized the space of Rt into an evenly spaced grid and sample from the 
hidden Markov model defined in equation (24)37. The transition probabilities are 
given by equation (23) (suitably normalized over the discrete Rt space) and the 
emission probabilities given by equation (37) (Supplementary Information).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data underlying the Alpha VoC 202012/01 analysis were accessed via the UK 
Health Security Agency Data Science Hub (DaSH) data platform; they are not 
publicly available and can only be accessed using approved UK government email 
domains such as @test-and-trace.nhs.uk. For the remainder of the results presented 
here, the data are publicly available. Randomized surveillance data comes from the 
REACT study7,8 (https://github.com/mrc-ide/reactidd/tree/master/inst/extdata). 

From REACT, we create weekly test counts at the spatially coarse-scale level (PHE 
region) and, for validation purposes but not model fitting, use round-aggregated 
counts at the fine-scale level (LTLA), for rounds 7–11. The combined weekly Pillar 
1+2 data are publicly available for download (https://www.gov.uk/government/
publications/nhs-test-and-trace-england-statistics-14-january-to-20-january-2021; 
note that LFD results are not included in these weekly summaries). We downloaded 
Rt estimates outputted by the Imperial College team’s Epidemia model38,39 from 
https://imperialcollegelondon.github.io/covid19local/downloads/UK_hotspot_Rt_
estimates.csv on 13 October 2021, and we provide a copy of that downloaded file in 
our Zenodo repository at https://doi.org/10.5281/zenodo.5784718.

Code availability
The R scripts40 used to generate the results in this manuscript are available 
in the following Git repository: https://github.com/alan-turing-institute/
jbc-turing-rss-testdebiasing.

Received: 18 October 2021; Accepted: 18 November 2021;  
Published online: 31 December 2021

References
 1. PHE Data Series on Deaths in People with COVID-19: Technical Summary—12 

August Update (Public Health England, 2020).
 2. The Official UK Government Website for Data and Insights on Coronavirus 

(COVID-19) (GOV.UK, accessed 15 February 2021); https://coronavirus.data.
gov.uk

 3. Summary of Effectiveness and Harms of NPIs. Scientific Advisory Group for 
Emergencies (21 September 2020); https://www.gov.uk/government/
publications/ summary-of-the-effectiveness-and-harms-of-different- non- 
pharmaceutical-interventions-16-september-2020

 4. Prime Minister Announces New local COVID Alert Levels. Prime Minister’s 
Office, 10 Downing Street (12 October 2020); https://www.gov.uk/government/
news/ prime-minister-announces-new-local- covid-alert-levels

 5. COVID-19 Response—Spring 2021 (Summary). Cabinet Office (22 February 
2021); https://www.gov.uk/government/ publications/covid-
19-response-spring-2021/ covid-19-response-spring-2021-summary

 6. Pouwels, K. B. et al. Community prevalence of SARS-CoV-2 in England from 
April to November, 2020: results from the ONS Coronavirus Infection Survey. 
Lancet Public Health 6, e30–e38 (2021).

 7. Riley, S. et al. Community prevalence of SARS-CoV-2 virus in England 
during May 2020: REACT study. Preprint at medRxiv https://doi.
org/10.1101/2020.07.10.20150524 (2020).

 8. Chadeau-Hyam, M. et al. REACT-1 study round 14: High and increasing 
prevalence of SARS-CoV-2 infection among school-aged children during 
September 2021 and vaccine effectiveness against infection in England. 
Preprint at medRxiv https://doi.org/10.1101/2021.10.14.21264965 (2021).

 9. COVID-19 Testing Data: Methodology Note. Department of Health and Social 
Care (21 August 2020); https://www.gov.uk/government/publications /
coronavirus-covid-19-testing-data-methodology /covid-19-testin
g-data-methodology-note

 10. Byambasuren, O. et al. Estimating the extent of asymptomatic COVID-19 and 
its potential for community transmission: systematic review and meta-analysis. 
Off. J. Assoc. Med. Microbiol. Infect. Dis. Can. 5, 223–234 (2020).

 11. Subramanian, R., He, Q. & Pascual, M. Quantifying asymptomatic infection 
and transmission of COVID-19 in New York City using observed cases, 
serology, and testing capacity. Proc. Natl Acad. Sci. USA 118, e2019716118 
(2021).

 12. Manzi, G., Spiegelhalter, D. J., Turner, R. M., Flowers, J. & Thompson, S. G. 
Modelling bias in combining small area prevalence estimates from multiple 
surveys. J. R. Stat. Soc. Ser. A 174, 31–50 (2011).

 13. Giorgi, E., Sesay, S. S. S., Terlouw, D. & Diggle, P. J. Combining data from 
multiple spatially referenced prevalence surveys using generalized linear 
geostatistical models. J. R. Soc. Stat. Soc. Ser. A 178, 445–464 (2015).

 14. Amoah, B., Diggle, P. J. & Giorgi, E. A geostatistical framework for 
combining spatially referenced disease prevalence data from multiple 
diagnostics. Biometrics 76, 158–170 (2020).

 15. Crainiceanu, C. M., Diggle, P. J. & Rowlingson, B. Bivariate binomial spatial 
modeling of loa loa prevalence in tropical africa. J. Am. Stat. Assoc. 103, 
21–37 (2008).

 16. Pearl, J. Causality (Cambridge Univ. Press, 2009).
 17. Hernán, M. A. & Robins, J. M. Causal Inference: What if (Chapman & Hall/

CRC, 2010).
 18. Birrell, P., Blake, J., van Leeuwen, E., Gent, N. & De Angelis, D. Real-time 

nowcasting and forecasting of COVID-19 dynamics in England: the first 
wave. Philos. Trans. R. Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2020.0279 
(2021).

 19. Irons, N. J. & Raftery, A. E. Estimating SARS-CoV-2 infections from deaths, 
confirmed cases, tests, and random surveys. Proc. Natl Acad. Sci. USA 118, 
e2103272118 (2021).

NATuRE MICRoBIoLoGy | VOL 7 | JANUARy 2022 | 97–107 | www.nature.com/naturemicrobiology106

https://github.com/mrc-ide/reactidd/tree/master/inst/extdata
https://www.gov.uk/government/publications/nhs-test-and-trace-england-statistics-14-january-to-20-january-2021
https://www.gov.uk/government/publications/nhs-test-and-trace-england-statistics-14-january-to-20-january-2021
https://imperialcollegelondon.github.io/covid19local/downloads/UK_hotspot_Rt_estimates.csv
https://imperialcollegelondon.github.io/covid19local/downloads/UK_hotspot_Rt_estimates.csv
https://doi.org/10.5281/zenodo.5784718
https://github.com/alan-turing-institute/jbc-turing-rss-testdebiasing
https://github.com/alan-turing-institute/jbc-turing-rss-testdebiasing
https://coronavirus.data.gov.uk
https://coronavirus.data.gov.uk
https://www.gov.uk/government/publications/summary-of-the-effectiveness-and-harms-of-different-non-pharmaceutical-interventions-16-september-2020
https://www.gov.uk/government/publications/summary-of-the-effectiveness-and-harms-of-different-non-pharmaceutical-interventions-16-september-2020
https://www.gov.uk/government/publications/summary-of-the-effectiveness-and-harms-of-different-non-pharmaceutical-interventions-16-september-2020
https://www.gov.uk/government/news/prime-minister-announces-new-local-covid-alert-levels
https://www.gov.uk/government/news/prime-minister-announces-new-local-covid-alert-levels
https://www.gov.uk/government/publications/covid-19-response-spring-2021/covid-19-response-spring-2021-summary
https://www.gov.uk/government/publications/covid-19-response-spring-2021/covid-19-response-spring-2021-summary
https://doi.org/10.1101/2020.07.10.20150524
https://doi.org/10.1101/2020.07.10.20150524
https://doi.org/10.1101/2021.10.14.21264965
https://www.gov.uk/government/publications/coronavirus-covid-19-testing-data-methodology/covid-19-testing-data-methodology-note
https://www.gov.uk/government/publications/coronavirus-covid-19-testing-data-methodology/covid-19-testing-data-methodology-note
https://www.gov.uk/government/publications/coronavirus-covid-19-testing-data-methodology/covid-19-testing-data-methodology-note
https://doi.org/10.1098/rstb.2020.0279
http://www.nature.com/naturemicrobiology


ArticlesNATURE MICRObIOlOGy

 20. Teh, Y. W. et al. Efficient Bayesian inference of instantaneous reproduction 
numbers at fine spatial scales, with an application to mapping and nowcasting 
the Covid-19 epidemic in British local authorities (UK Local Covid Map, 
2021); https://localcovid.info/assets/docs/localcovid-writeup.pdf

 21. Cori, A., Ferguson, N. M., Fraser, C. & Cauchemez, S. A new framework and 
software to estimate timevarying reproduction numbers during epidemics. 
Am. J. Epidemiol. 178, 1505–1512 (2013).

 22. Flaxman, S. et al. Estimating the effects of non-pharmaceutical interventions 
on COVID-19 in Europe. Nature 584, 257–261 (2020).

 23. Jewell, C., Read, J., Roberts, G., Rowlington, B. & Suter, C. Bayesian 
stoschastic model-based forecasting for spatial Covid-19 risk in England. 
Technical Concept Note (GitHub, 2020); https://github.com/chrism0dwk/
covid19uk/blob/master/doc/lancs_space_model_concept.pdf

 24. Colman, E., Enright, J., Puspitarani, G. A. & Kao, R. R. Estimating the 
proportion of SARS-CoV-2 infections reported through diagnostic  
testing. Preprint at medRxiv https://doi.org/10.1101/2021.02.09.21251411 
(2021).

 25. Abbott, S. et al. Estimating the time-varying reproduction number of 
SARS-CoV-2 using national and subnational case counts. Technical Report. 
Preprint at Wellcome Open Research https://doi.org/10.12688/
wellcomeopenres.16006.2 (2020).

 26. Anderson, R. et al. Reproduction number (R) and growth rate (r) of the 
COVID-19 epidemic in the UK: methods of estimation, data sources, causes 
of heterogeneity, and use as a guide in policy formulation. Royal Society 
https://royalsociety.org/-/media/policy/projects/set-c/set-covid-19-R-estimates.
pdf (2020).

 27. Funk, S. et al. Short-term forecasts to inform the response to the Covid-19 
epidemic in the UK. Preprint at medRxiv https://doi.
org/10.1101/2020.11.11.20220962 (2020).

 28. Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 
lineage B.1.1.7 in England. Science 372, eabg3055 (2021).

 29. Campbell, F. et al. Increased transmissibility and global spread of 
SARS-CoV-2 variants of concern as at June 2021. Eurosurveillance 26, 
2100509 (2021).

 30. Investigation of Novel SARS-COV-2 Variants of Concern: Technical Briefings. 
Public Health England; www.gov.uk/government/publications/ 
investigation-of-novel-sars-cov-2-variant-variant- of-concern-20201201 
(2020).

 31. Lineage Counts by Local Authority and Week for England; https://covid19.
sanger.ac.uk/downloads (Wellcome Sanger Institute COVID-19 Genomics 
Surveillance, 2021).

 32. COVID-19 United Kingdom; https://imperialcollegelondon.github. io/
covid19local/#map (Imperial College London, 2021).

 33. Jersakova, R. et al. Bayesian imputation of COVID-19 positive test counts for 
nowcasting under reporting lag. Preprint at https://arxiv.org/abs/2103.12661 
(2021).

 34. Ferretti, L. et al. The timing of COVID-19 transmission. Preprint at medRxiv 
https://doi.org/10.1101/2020.09.04.20188516 (2020).

 35. Hellewell, J. et al. Estimating the effectiveness of routine asymptomatic PCR 
testing at different frequencies for the detection of SARS-CoV-2 infections. 
BMC Med. 19, https://doi.org/10.1186/s12916-021-01982-x (2021).

 36. Brauer, F., van den Driessche, P. & Wu, J. Mathematical Epidemiology. 
Mathematical Biosciences Subseries (Springer, 2008).

 37. Scott, S. L. Bayesian methods for hidden Markov models: recursive 
computing in the 21st century. J. Am. Stat. Assoc. 97, 337–351 (2002).

 38. Mishra, S. et al. A COVID-19 model for local authorities of the United 
Kingdom. Preprint at medRxiv https://doi.org/10.1101/2020.11.24.20236661 
(2020).

 39. Scott, J. A. et al. epidemia: modeling of epidemics using hierarchical Bayesian 
models. R package version 1.0.0 https://imperialcollegelondon.github.io/
epidemia/ (2020).

 40. R Core Team. R: A Language and Environment for Statistical Computing; 
https://www.R-project.org/ (R Foundation for Statistical Computing, 2021).

Acknowledgements
B.L. was supported by the UK Engineering and Physical Sciences Research Council through 
the Bayes4Health programme (grant number EP/R018561/1) and gratefully acknowledges 
funding from Jesus College, Oxford. K.B.P. is supported by the National Institute for 
Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated 
Infections and Antimicrobial Resistance at the University of Oxford in partnership with 
Public Health England (PHE) NIHR200915 and the Huo Family Foundation. S.R. is 
supported by MRC programme grant MC_UU_00002/10, The Alan Turing Institute 
grant TU/B/000092, and the EPSRC Bayes4Health programme grant EP/R018561/1. 
M.B. acknowledges partial support from the MRC Centre for Environment and Health, 
which is currently funded by the Medical Research Council MR/S019669/1. G.N. and 
C.H. acknowledge support from the Medical Research Council Programme Leaders award 
MC_UP_A390_1107. C.H. acknowledges support from The Alan Turing Institute, Health 
Data Research, UK, and the UK Engineering and Physical Sciences Research Council 
through the Bayes4Health programme grant. Infrastructure support for the Department 
of Epidemiology and Biostatistics is also provided by the NIHR Imperial BRC. Authors at 
the Alan Turing Institute and Royal Statistical Society Statistical Modelling and Machine 
Learning Laboratory gratefully acknowledge funding from the Joint Biosecurity Centre, 
a part of NHS Test and Trace within the Department for Health and Social Care. The 
computational aspects of this research were supported by the Wellcome Trust Core Award 
grant number 203141/Z/16/Z (to B.L.) and the NIHR Oxford BRC. The views expressed are 
those of the authors and not necessarily those of the National Health Service, the NIHR, the 
Department of Health, the Joint Biosecurity Centre or PHE.

Author contributions
G.N., B.L. and C.H. conceived and designed the research. G.N., B.L., T.P., R.J., J.L., R.E.K. 
and A.-M.M. acquired, analysed or interpreted the data. G.N., B.L., R.J. and J.L. created 
new software used in the work. G.N., B.L., R.J., T.P., K.B.P., P.J.D., S.R., M.B. and C.H. 
wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41564-021-01029-0.

Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41564-021-01029-0.

Correspondence and requests for materials should be addressed to 
George Nicholson, Brieuc Lehmann or Chris Holmes.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long 

as you give appropriate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made. The images or other 
third party material in this article are included in the article’s Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons license and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.
© The Author(s) 2021

NATuRE MICRoBIoLoGy | VOL 7 | JANUARy 2022 | 97–107 | www.nature.com/naturemicrobiology 107

https://localcovid.info/assets/docs/localcovid-writeup.pdf
https://github.com/chrism0dwk/covid19uk/blob/master/doc/lancs_space_model_concept.pdf
https://github.com/chrism0dwk/covid19uk/blob/master/doc/lancs_space_model_concept.pdf
https://doi.org/10.1101/2021.02.09.21251411
https://doi.org/10.12688/wellcomeopenres.16006.2
https://doi.org/10.12688/wellcomeopenres.16006.2
https://royalsociety.org/-/media/policy/projects/set-c/set-covid-19-R-estimates.pdf
https://royalsociety.org/-/media/policy/projects/set-c/set-covid-19-R-estimates.pdf
https://doi.org/10.1101/2020.11.11.20220962
https://doi.org/10.1101/2020.11.11.20220962
http://www.gov.uk/government/publications/investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201
http://www.gov.uk/government/publications/investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201
https://covid19.sanger.ac.uk/downloads
https://covid19.sanger.ac.uk/downloads
https://imperialcollegelondon.github.io/covid19local/#map
https://imperialcollegelondon.github.io/covid19local/#map
https://arxiv.org/abs/2103.12661
https://doi.org/10.1101/2020.09.04.20188516
https://doi.org/10.1186/s12916-021-01982-x
https://doi.org/10.1101/2020.11.24.20236661
https://imperialcollegelondon.github.io/epidemia/
https://imperialcollegelondon.github.io/epidemia/
https://www.R-project.org/
https://doi.org/10.1038/s41564-021-01029-0
https://doi.org/10.1038/s41564-021-01029-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturemicrobiology


Articles NATURE MICRObIOlOGyArticles NATURE MICRObIOlOGy

Extended Data Fig. 1 | Longitudinal model DAG for SIR epidemic model at local level (for example LTLA). Directed paths characterise conditional 
probability distributions, in contrast to the paths showing transitions between model compartments in Supplementary Fig. 1. Inference is for a region, for 
example an LTLA, based only on targeted test data collected in this region, nt of Nt. A prior on δt parameterized ( μ̂t, σ̂2

t ) brings information on the Pillar 1+2 
ascertainment bias learned from randomized surveillance testing data available for the PHE region in which the LTLA lies. The T × T covariance matrix Σδ 
imparts temporal smoothness on δ1:T. Effective reproduction numbers are denoted R1:T, number of infectious individuals by I1:T, and the number of immune 
individuals by R+1:T.
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Extended Data Fig. 2 | Maps of estimated local prevalence (left), estimated local Rt (middle), and frequency of the delta variant (right), and scatter plot 
of Delta variant frequency against estimated Rt. Grey-coloured areas denote where the total number of variant sequencing assays performed (across all 
variants) is less than 10; in these cases the delta variant frequency estimates are omitted due to having high standard error.
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Extended Data Fig. 3 | uncorrected (raw positivity rates) and corrected (debiased) Pillar 1+2 PCR-positive prevalence estimates against 
(gold-standard) REACT estimates from randomised surveillance for REACT rounds 10 and 11. Each point corresponds to an LTLA. Each scatter plot 
compares Pillar 1+2 prevalence estimates against unbiased estimates from the REACT study. Panels (a,c) show REACT round 10 data (11th Mar - 30th 
Mar 2021), and panels (b,d) show round 11 (15th Apr - 3rd May 2021). Uncorrected results are shown in panels (a-b) and bias-corrected cross-sectional 
estimates in (c-d). Horizontal grey lines are 95% exact binomial confidence intervals from the REACT data. Vertical black lines in panels (a-b) are 95% 
exact binomial confidence intervals from the raw, non-debiased Pillar 1+2 data. Vertical black lines in panels (c-d) are 95% posterior credible intervals 
from the debiased Pillar 1+2 data. Neither set of prevalence estimates has been corrected for false positives/negatives. Note that in panels (c-d), the CI 
widths are systematically tighter for the debiased Pillar 1+2 compared to the REACT data, pointing to the useful information content in debiased Pillar 
1+2 data. The number of independent tests underlying each mean and (horizontal) CI for the REACT data varied between 289 and 1,894. The number of 
independent tests underlying each mean and (vertical) CI for the Pillar 1+2 data varied between 977 and 29,998.
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Extended Data Fig. 4 | uncorrected (raw positivity rates) and corrected (debiased) Pillar 1+2 PCR-positive prevalence estimates against 
(gold-standard) REACT estimates from limited randomised surveillance. Each point corresponds to an LTLA. Each scatter plot compares Pillar 1+2 
prevalence estimates against unbiased estimates from the REACT study. Left to right the columns of panels show results from REACT round 7 (13th Nov 
- 3rd Dec 2020), round 8 (6th-22nd Jan 2021), and round 9 (4th-23rd Feb 2021). On the vertical axes: (a-c) show uncorrected test positivity rates; (d-f) 
show bias-corrected prevalence estimates; (g-i) show bias-corrected prevalence estimates where the bias δ was estimated at the ultra-coarse national 
level; and (j-l) show bias-corrected prevalence estimates where data from REACT round 8 was omitted, in order to assess the impact of a more limited 
randomised surveillance regime. Horizontal grey lines are 95% exact binomial confidence intervals from the REACT data. Vertical black lines in (a-c) are 
95% exact binomial confidence intervals from the raw, non-debiased Pillar 1+2 data. Vertical black lines in panels (d-l) are 95% posterior credible intervals 
from the debiased Pillar 1+2 data. Neither set of prevalence estimates has been corrected for false positives/negatives. The number of independent tests 
underlying each mean and (horizontal) CI for the REACT data varied between 248 and 2,387. The number of independent tests underlying each mean and 
(vertical) CI for the Pillar 1+2 data varied between 1,117 and 42,458.
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Extended Data Fig. 5 | Predicting future change in case numbers from current estimated Rt. Each point corresponds to an (LTLA, week) pair, predicting 
future case numbers in the LTLA using Rt for that week. Future case numbers are represented by forward-in-time log 2 fold change log 2(nt+k/nt). Case 
data underlying the plot are from the period 2020-10-18 - 2021-06-20. Note the number of points in each column differs based on how many LTLA-week 
pairs have baseline case numbers in the intervals in blue shown at the top of the plot.
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Extended Data Fig. 6 | Comparison of Rt estimates between de-biasing model and Imperial model. For each of the nine PHE regions, we present the 
constituent LTLA whose name is ranked top alphabetically.
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from the REACT study (data downloaded from https://github.com/mrc-ide/reactidd/tree/master/inst/extdata). From REACT, we aggregate weekly test counts at the 
spatially coarse-scale level (PHE region) and, for validation purposes but not model fitting, use round-aggregated counts at the fine-scale level (LTLA), for rounds 7 
to 11. The combined weekly Pillar 1 and Pillar 2 data are publicly available for download (https://www.gov.uk/government/publications/nhs-test-and-trace-england-
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Methods for studying COVID-19 epidemiology by analysing community testing data (quantitative count data, comprising the number 
positive and total number tested)

Research sample We collectively analyse two types of community testing data: The REal-time Assessment of Community Transmission (REACT) study is 
a nationally representative prevalence survey of SARS-CoV-2 based on repeated cross-sectional samples from a representative 
subpopulation defined via (stratified) random sampling from England’s National Health Service patient register. Pillar 1 and Pillar 2 
PCR test data form the main part of the UK government's national antigen testing strategy. Pillar 1 tests refer to “all swab tests 
performed  in Public Health England (PHE) labs and National Health Service (NHS) hospitals for those with a clinical need, and health 
and care workers”, and Pillar 2 comprises “swab testing for the wider population”. The Pillar 1+2 research sample is dynamic, and is 
not representative of the population as a whole. In particular, Pillar 1+2 is enriched for NHS workers, individuals with symptoms, and 
those who self-select the testing, all of which can affect the demographic representation in the targeted Pillar 1+2 individuals. The 
REACT research sample is however designed to be nationally representative by stratified random sampling. We are able to use these 
REACT data to account for the ascertainment bias implicit in Pillar 1+2 data.  
 
For Pillar 1+2, the age and sex demographic breakdowns for the number of tests conducted are available here: https://
assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1007158/
Demographic_LA_tables_Week_60.ods As an example, for the week commencing 2021-01-07, the age breakdown was as follows: 
0-9yr:  83,864 (4%); 10-19yr: 127,482 (6%); 20-29yr: 394,029 (17%); 30-39yr: 406,058 (18%); 40-49yr: 364,772 (16%); 50-59yr: 
397,950 (18%); 60-69yr: 223,665 (10%); 70-79yr: 119,226 (5%); 80-89yr:  93,704 (4%); 90+yr:  49,908 (2%). The sex split was Males: 
886,970 (39%); Females: 1,373,688 (61%). 
 
For REACT, the age-stratified breakdown for round 8 is available here https://github.com/mrc-ide/reactidd/blob/master/inst/
extdata/region_age_week_aggregated/round_8_go.csv. As an example, for REACT round 8, spanning 6th-22nd Jan 2021, the age 
breakdown is 5-12yr: 11,545 (7%); 13-17yr:  8,842 (5%); 18-24yr:  6,614 (4%); 25-34yr: 14,715 (9%); 35-44yr: 21,357 (13%); 45-54yr: 
27,583 (17%); 55-64yr: 31,665 (19%); 65+yr: 43,246 (26%). Sex split metadata for REACT study are not publicly available. 
 
The rationale for choosing Pillar 1+2 positive and total counts is that these data are the most highly publicised case counts in England 
and they are regularly made publicly available, which allows ready reproducibility and ongoing implementation of our methodology. 
The rationale for choosing the REACT study is that we require randomised surveillance data in order to correct for ascertainment 
bias. REACT is one of the two major randomised surveillance studies, along with the office for National statistics COVID-19 infection 
survey, ONS CIS. We specifically use REACT data here because they are regularly made publicly available in raw form (positive and 
total counts) at the PHE region level, which is compatible with our downstream statistical modelling, and which allows transparency 
and reproducibility of our findings.

Sampling strategy For the REACT data, participants were included in the tested group through stratified random sampling. For the Pillar 1+2 data, 
however, there is strong ascertainment bias, since infected individuals are more likely to be chosen for testing (e.g. frontline workers, 
symptomatics). In our paper we correct for this ascertainment bias in the Pillar 1+2 data by designing a causal model and thereby 
adjusting for the bias to obtain accurate estimates of local prevalence. We have used two datasets in our study: Pillar 1+2 and REACT. 
These have the advantage of being both publicly available (allowing reproducibility of our results), and we demonstrate in the paper 
that they are sufficient for us to develop, illustrate and, importantly, to validate our methodology (See section “Accuracy validation 
using ultra-coarse and incomplete data to estimate delta”)

Data collection In the REACT study, participants self-gathered throat and nose swab samples; no researcher was typically present during sample 
collection and other members of the public could have been present; participants were not blinded to the study hypothesis. Samples 
were then sent by post to a pre-specified laboratory for processing.  
 
For the Pillar 1+2 data, throat and nose swabs were gathered in various ways. For home testing, participants self-gathered throat and 
nose swab samples; no researcher was typically present during sample collection and other members of the public could have been 
present; participants were not blinded to the study hypothesis. In the case of regional or local test sites, or mobile testing units, 
swabs were gathered by a trained healthcare professional while the participant was seated in a motor vehicle; usually only the 
researcher and participant were present; neither the researcher nor the participant were blinded to the study hypothesis. 

Timing Between 31st May 2020 and 20th June 2021

Data exclusions No data were excluded from the analysis



3

nature portfolio  |  reporting sum
m

ary
M

arch 2021
Non-participation Over the course of the REACT study, there has been a considerable number of individuals who (i) are invited to participate but 

decline; or (ii) dropped out at some point during the study. We do not have access to these data.

Randomization For the REACT data, participants were included in the tested group through stratified random sampling.  
 
For the Pillar 1+2 data there is a strong ascertainment effect since infected individuals are more likely to be chosen for testing (e.g. 
frontline workers, COVID-19 symptomatic individuals). In our paper we correct for this ascertainment bias in the Pillar 1+2 data by 
specifying a causal model to adjust for the bias and to obtain accurate estimates of local prevalence. We did not directly control for 
confounding covariates in our analysis of the Pillar 1+2 data; instead, we indirectly controlled for any potential confounders by 
estimating the marginal causal probabilities of being tested in the infected and non-infected groups (see Figure 1(a), in which socio-
economic status is an example confounder). 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics See above

Recruitment The REACT study approached a random sample of the population in England aged five years and above, using the National 
Health Service (NHS) records and invited them to join the study. There is some residual degree of non-response bias in the 
REACT study despite it being a randomised study; we illustrate this residual ascertainment effect in Figure 1(a) with a dashed 
blue arrow denoting non-response bias associated with socioeconomic status (SES). If metadata on SES were available, then 
this bias could be mitigated; we did not have access to SES data, and the likely impact on our results is that the debiased 
prevalence is mildly unduly weighted towards those strata in the population which are more likely to respond to REACT’s 
invitation to participate. 
 
Individuals tested in the Pillar 1+2 data were recruited, self-selected or selected according to place of work, according to a 
number of potential criteria (e.g. NHS workers, those with COVID-19 symptoms); i.e. the Pillar 1+2 data harbour self-selection 
and other biases -- it is the purpose of the current work to adjust collectively for these biases.  

Ethics oversight The Alan Turing Institute Ethics Advisory Group

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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