September 14, 2011 15:46 WSPC/INSTRUCTION FILE ito-fnl8

Published in Fluct. Noise Lett. 22, 1240010 (2012).

ITO vs. STRATONOVICH: THIRTY YEARS LATER

RICCARDO MANNELLA

Dipartimento di Fisica, Universita di Pisa
Largo B Pontecorvo 3, I-56127 Pisa, Italy
mannella@df. unipi.it

PETER V. E. McCLINTOCK

Department of Physics, Lancaster University
Lancaster LA1 4YB, UK
p.v.e.mcclintock@lancaster.ac.uk

Received (received date)
Revised (revised date)

The Itd wvs. Stratonovich controversy, about the “correct” calculus to use for integra-
tion of Langevin equations, was settled to general satisfaction some thirty years ago.
Recently, however, it has started to re-emerge, following the advent of new experimental
techniques. We briefly review the historical background and discuss critically some of the
most recent contributions. We show that some of the new findings are not well-based.
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1. Introduction

In the macroscopic world, physical systems are usually nonlinear and subject to
noise (random fluctuations). The nonlinearity introduces subtleties into how noise
influences a system, and seemingly vexing conundrums arise where the noise is
quasi-white and enters multiplicatively in one of the parameters of a model equation.
In the presence of multiplicative noise, it turns out that a choice must be made as
to which is the appropriate stochastic calculus to be used: this choice appears to be
somehow arbitrary, which sparked a widespread debate, usually referred to as the it
1t6 ws. Stratonovich controversy. It attracted considerable attention in the physics
community for almost a decade. The controversy was eventually settled to general
satisfaction but, as so often happens in such cases, a few years later it has started
to re-emerge. One of the reasons has been the introduction of new experimental
techniques that allow thermodynamic properties to be probed on the nanometre
scale. In this paper we briefly review the controversy and the basic mathematics
that underlay it, and recall the main conclusions reached in the earlier debate. We
then consider some of the most recent papers, and point out where some of their
conclusions appear not to be well-founded.
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2. Background and historical notes

The It6 vs. Stratonovich controversy took place in the physics literature (mainly)
from the late 1970s to the early 1980s, in the burgeoning field of nonlinear stochastic
physics. To appreciate the reasons behind the controversy, we need first to recall
briefly the basic ideas behind stochastic processes.

2.1. Stochastic calculus

The root of the controversy lay with the counter-intuitive nature of stochastic cal-
culus in the presence of non-linearities, when considered from a physicist’s point
of view. Here we will provide intuitive arguments; a more formal derivation can be
found in [1]. We start from the stochastic differential equation (SDE)

dx = f(x) dt + g(x) dW (1)

representing the increment of an observable x (for example, the position of a Brow-
nian particle). Here dW is the increment of a Wiener process W (t) defined in
probabilistic terms (we assume W (0) = 0 for compactness of notation, without loss
of generality) via

1 _wmn?

PW (1) = ——e "%

Amongst others quantities, we need to deal with those of form [ g(x) dW. A possible
approach to the integration of Eq. (1) is through a Taylor expansion where, in the
simplest non-trivial case (f(z) =0, g(z) # 0), we can write

x(t)—ff(()):/o g(x) dW’*/O dW [g(x(0)) + ¢/ (x(0))(x(s) — z(0)] . (2)

To lowest order, z(t) — x(0) = g(x(0))W(t). If ¢’(z) # 0, at the next order an
integral of the form [ W (t) dW appears. To compute it, the standard approach is
through a discretization, in the mean square limit,

/ WA = mes. lim Xn: W) W (t:) — W(ti1)] 3)

using a suitable partition 0 = to < ¢; < ¢, = t, and where ¢,_1 < ¢} <{¢;: in what
follows, we take ¢ =t,_1 + a(t; — t;—1), with 0 < o < 1. The mean square limit is
defined as

ms. lim X, = X < lim <(Xn - X)2> =0 (4)

n— oo n—oo

where the average (...) is taken over the realizations of the Wiener process. In the
evaluation of the mean square limit appearing in Eq. (3), we need to estimate
terms like (W ()W (s')). Assuming that ¢ < ', we have that (W ("W (s)) =
(W(EHW (s )—W (I ))+(W ()W (t')). Recalling that the increment [W (s")—W (t')]
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is independent of W (¢'), it follows that (W ("W (s')) = (W)W (¥')) = t' and in
general (W (t")W(s')) = min(¢', s’). We have that

n

msnll—?clo(; W(ti) [W(tz) — W(ti_l)]> = Zti_l + a(ti — ti—l) — ti—l = at.
Note that the value of the integral depends on the point within the interval [¢t;, t;—1]
where the process W(t) is evaluated: in other words, it depends on a. Although
in principle any value of « in the range [0,1] is possible, in the literature only two
values are commonly found: a = 0 (It6 calculus [2]) and o = 1/2 (Stratonovich
calculus [3]). If W(t) were a smooth function, clearly ([ W dW) = (3W(t)?) = 1t,
which means that the “standard” result (holding for Riemann-Stieltjes integrals) is
recovered by setting o = 1/2.

From Eq. (1), it is possible to write the Fokker-Planck equation driving the
probability distribution P(z,t)

OPlzt) _ 2 {—f(w)—ag(x)g/(x)Jr;5292(13)}13(%’5) ©)

ot oz
which obviously depends on « and where ¢'(z) = dg(z)/0x; the ensuing equilibrium
distribution will depend on « too, and on the functions f(z) and g(x).

In a nutshell, the controversy centred on what is the “correct” choice of « for
the description of natural phenomena. We note that it is possible to have sets of
different f(x) and « which lead algebraically to the same f(z) + ag(z)g'(x): this
implies that there could be systems characterized by different f(x) and a but which
have the same equilibrium distribution.

Rewriting [ g(z) dW = > g(z(t})[dW (t;) — dW (t;—1)] we note that z(¢) is
given by the solution of the SDE (1). Intuitively, this means that, assuming we
integrated the SDE up to z(t;—1), we get the value of z(¢;) using, in general, values
of x(t) for times in the range [t;_1,t;] even though these are not yet known. This
is not a difficulty for continuous functions because, in the limit t,_1 — ¢;, z(¢) is
well behaved (z(t;) — x(¢;—1) x ¢; — t;—1). But it poses a problem for stochastic
processes (W (t;)—W (t;—1) x /T; — t;—1). Itd calculus elegantly solves this problem,
by evaluating g(x) at time ¢;_1, where it is known. Hence Itd prescription is termed
non-anticipating, whereas all other prescriptions are called anticipating.

2.2. History

It is impossible to mention here all of the papers that tackled the controversy: we
review briefly those that we feel were particularly helpful in shaping the growing
understanding on the part of the nonlinear and stochastic physics community.
Perhaps one of the earliest papers to question what is the applicable stochas-
tic calculus in nature was [4], where Stratonovich calculus was used in models
of population growth. In [5], following some theoretical works on the correspon-
dence between stochastic calculus and ordinary calculus [6,7], coupled stochastic
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differential equations were simulated on a hybrid computer. It was shown that any
calculus could be achieved in practice through the tuning of parameters. In [8]
it was argued that in theoretical biology It6 calculus should be preferred. In two
companion papers [9, 10], non-additive stochastic processes were considered, and
the Ito-Stratonovich controversy discussed, looking at the role of noise correlation
in some physical and chemical systems. In [11] a different approach was followed:
starting from a stochastic system with inertia, via contraction an SDE of the form of
Eq. (1) was obtained, and in the process it turned out that the “correct” stochastic
calculus was Stratonovich. A similar approach to derive the “correct” calculus via
contraction from a system with inertia was used in [12]. In [13] a criterion was pre-
sented which purposely allowed selection of the correct stochastic calculus. From a
theoretical point of view, [14] eventually settled the argument. The consensus that
had emerged was that —
e The parameter « is part of the model: it must be chosen on physical grounds
and it cannot be inferred through algebraic manipulations.
e In an experiment, a probability distribution is measured: knowledge of this
distribution function is not enough to infer o, but additional information is
needed, e.g. knowledge of f(x)). Eq. (5) is more fundamental than Eq. (1).
e In many real cases, Eq. (1) is an effective (mesoscopic) equation. One should
be careful in using some known microscopic force as the term f(z): in
principle, in the passage from the microscopic to the mesoscopic level, the
“deterministic” microscopic force might not coincide with the mesoscopic
force which, inserted in Eq. (1), reproduces the observed dynamics.
e In a typical, continuous, real physical system, we expect Stratonovich cal-
culus to apply; whereas in a system which is intrinsically discontinuous,
e.g. in the stock exchange or in the evolution of biological populations, we
expect Ito calculus to apply.
Analogue simulations [15,16] confirmed that continuous physical systems indeed
obey Stratonovich calculus: the same SDE’s numerically integrated on a digital
computer enforcing It6 calculus clearly reproduced the dynamics theoretically ex-
pected of It6 calculus. In [17] it was reported that the equilibrium distribution
of a stochastic system driven by two weakly autocorrelated additive and multi-
plicative noises behaved more It (Stratonovich) like when the additive noise was
faster (slower) than the multiplicative noise (the physical interpretation being that
the faster the additive noise, the less continuous the system would appear on the
timescale of the multiplicative noise).

3. Ito vs. Stratonovich again

Following a few years which saw little further interest in the problem, since the
beginning of the nineties a few papers started to appear in the literature which
again focused on the stochastic calculus realised in nature. In [18] the réle and
use of an anticipating SDE is discussed. The different integral calculi in quantum
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mechanical SDEs are discussed in [19,20]. The stochastic calculus to use in bacterial
interactions is discussed in [21]. Different calculi in stochastic partial differential
equations are discussed in [22]. Mixed stochastic calculi in systems with different
time scales are discussed in [23], whereas [24] tackles a similar problem, i.e. the
appropriate calculus to use for an overdamped system obtained as a contraction
of the dynamics of an underdamped system in the presence of correlated noise.
In [25] the problem of the appropriate stochastic calculus in different coordinate
systems is discussed. The different calculi are considered in [26], with application to
magnetic systems. [t6 and Stratonovich calculi have also been studied recently with
applications in oceanography [27], population growth [28], and optimal filtering [29].
A recent paper relates the Itd vs. Stratonovich problem to thermodynamics [30].

3.1. A recent case study: anticipating SDE’s

A number of theoretical papers [31-33] have also appeared advocating the possi-
bility of @ = 1. As counter-intuitive as this may seem, some experiments [34, 35]
have nonetheless claimed to have found empirical evidence that there could indeed
be physical systems where e = 1. We now focus on a discussion of [34,35], noting
that [34] has been the subject of a comment [36] and a reply [37]: we will show that
some of the arguments in [34] are not well-founded.

The work of [34] reports experiments on a colloidal particle near a wall in the
presence of a gravitational field, electrostatic repulsion from the wall and random
scattering from the solvent, the latter being modelled as space-dependent noise.
In [34] two different approaches are suggested to derive from the experiments the
force acting on the colloidal particle: one approach is based on drift measurements;
the other uses the equilibrium distribution (in space) of the colloidal particle. The
central result of [34] is a striking difference between these two forces. From this
discrepancy the authors of [34] infer the stochastic calculus realised in the system.

Let us first recast our SDE (1) in the form used in [34]:

F
dx = f(x)dt + g(z)dW = ((ac)) dt ++/2D, (z)dW (6)
~¥(z
where F(z) in the SDE, following [34], is assumed to be equal to the deterministic
force and v(x) is some damping, assumed to be very large, so that an overdamped
SDE can be considered. A drift measurement [34] looks at the distance Az travelled
during a short time At. From (5) we can relate Axz/At to our model quantities

F(x) dD | (x)
~v(x) ta dx (™)

_ dx
(/a0 =7 = (57 ) = 1) + agle)(0) =
Note that 4 is not proportional to F(x), i.e. to the deterministic force: this means
that, unlike the case when the diffusion g(z) is constant, a drift measurement can-
not, in general, be used to infer the microscopic deterministic force, contrary to the
assumption of [34] that F(x) = v(x)vq4.
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In [34] the force is also computed from the equilibrium distribution P(x), which
is assumed to exist (it is in fact measured in the experiments). This force is defined
as F.(x) = —dU(x)/dx where U(z) = —kBTln(P(:C)). From (5) we obtain

f(@) + (o - 1) (z)g' (x)
= —k‘BT/ /2 dx

Fo(@) _ 1 dU(@) _ .\ "
v(z)  A(x) dx f(@) + (o= 1)g(x)d () (8)

Egs. (7) and (8) differ by —g(z)¢'(z) = dD;(I) which is ezactly the experimental
discrepancy reported in [34] between the two “forces”; this difference is independent
of o, i.e. independent of the stochastic calculus used to describe the physical system.
However, the fact that the two “forces” differed by —g¢'(x)g(x) was construed by
the authors of [34] as evidence that o = 1.

There is another reason why an experiment like the one described in [34, 35]
cannot be used to infer the value of «, even if the force f(x) were known [38].
Going back to Eq. 1, a possible discretization algorithm for numerical integration
of z(t) at first order in the integration time-step h is® [39]

z(h) = z(0) + W(h)g(z(0)) + h f(2(0)) + ag'(z(0))g(x(0)) h 9)
The evolution of z(t) depends ezplicitly on the stochastic calculus: hence, in princi-
ple we could infer . But the experiments of [34,35] deal with a system where the
overdamped limit has been taken: the SDE where this limit has not yet been taken
(we assume the mass of the particle to be unity for compactness) reads:

dv = [F(z) — v(x) v]dt + \/ 2kpT~(x) dW
dxr = v dt. (10)
The relationship between diffusion and the term multiplying v on the r.h.s. follows

from the existence of an equilibrium distribution, i.e. detailed balance. To first order
in h, Eq. (10) is integrated as

v(h) = v(0) + W(h)v/2kpT(2(0)) + h[F(x(0)) = v(2(0)) v(0)]
z(h) = x(0) + h v(0) (11)

which does not depend on «, contrary to the scheme of Eq. (9)! Hence, it is not
possible to guess the “correct” « from observations of the model given by Eq. (10).
The quantity « appears when we go from Eq. (10) to Eq. (1), taking some limit. In
doing so, however, one finds that the assumption that F(z) in Eq. (1) equals F(z)
in Eq. (10) is wrong [38]. The correct procedure to obtain the model of Eq. (1) is:

aThe expression for z(h) which follows from the evaluation of the stochastic integrals is given by

z(h) = z(0) + W(h)g(z(0)) + h f(z(0)) + %9'(33(0))9(27(0))[W(h)2 + (2a—1) A

which coincides with Eq. (9) at order h, owing to the fact that (W (h)?) = h.
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Fig. 1. Forces computed from a simulation of (10) and of the SDE obtained from contraction of (10)
using Stratonovich calculus (see [38] for more details). To make contact with the experiment, we
took F(z) = Be™*® 4+ C with B =770 pN, C = —5fN, k = (18 nm)~!, and D, (z) = kpT/v(z),
v(z) = 67r77Rx;ra, with z in nm, @ = 700 nm, 2R = 1.31 nm, T = 300 K, = 8.5 x 1073 Pas,
mass m = 6.3 x 10716 kg.

(a) write the Fokker-Planck equation corresponding to Eq. (10); (b) adiabatically
eliminate v from the Fokker-Planck equation, which yields [12]

and (c) write the SDE corresponding to Eq. (12). It is at this latter stage that «
appears, as a choice that we must make, and it determines the correct relationship
between the F(x)’s in Egs. (10) and (1). In [34, 35], however, their equality was
assumed [38], so that, in effect, a choice of stochastic calculus had already been
made. Eq. (12) yields a force measured from the probability distribution, equal
to F(x) regardless of the stochastic calculus. Inspection of Eq. (8) shows that the
stochastic calculus implicitly assumed in writing Eq. (1) was o = 1. It is a legitimate
choice, but should not be taken as a “proof” that @ = 1 when inferring the “correct”
(in reality, “picked at a previous step of the derivation”) a.

Fig. 1 summarizes these arguments: integrating Eq. (10) [40,41], the forces ob-
tained from drift and equilibrium distribution measurements coincide; and they
coincide, both with the deterministic force, and with the force obtained from equi-
librium distribution measurements by integration of the correct overdamped 1D
SDE obtained from contraction of Eq. (10) using Stratonovich calculus. The force
from the drift measured in the 1D simulations differs from the corresponding force
obtained from equilibrium measurements but, when the correction ¢'(z)g(x) is ap-
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plied, we again have coincidence with the deterministic force.

4. Conclusions

After being a major topic in nonlinear stochastic physics for an extended period, the
1t6 ws. Stratonovich controversy was finally settled some thirty years ago. The recent
resuscitation of the debate has involved theoretical and experimental works whose
claim to be able to determine experimentally what is the appropriate stochastic
calculus in a system is not soundly based. Although these papers are very inter-
esting, some of the conclusions are incorrect — primarily because the earlier debate
seems to have been forgotten. Here we have reviewed this debate and discussed the
new findings, showing that the “correct” calculus is still as elusive as ever, and that
it can only be inferred from the chosen model. In particular, we discussed how the
“force” derived from the drift of a Brownian particle need not necessarily coincide
with the “force” obtained from the equilibrium distribution. We showed that the
discrepancy reported in [34,35] has nothing to do with different stochastic calculi as
the authors had inferred: it is simply a consequence of having two different defini-
tions of force, neither of which corresponds to the true microscopic force, and which
coincide only where the diffusion coefficient is constant. Furthermore, we recalled
that some of the simplified models we use may be characterised by quantities that
differ from the true microscopic quantities which appear in a full model.

It is evident that stochasticians of all kinds — mathematicians, physicists, engi-
neers and others — need constant reminders that the It6 versus Stratonovich problem
was solved long ago. The ideas expressed with such clarity and force by Van Kam-
pen in the 1980s were amply validated by experiments (e.g. [15, 16]). His classic
paper [14] has stood the test of time and is well worth re-reading.
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