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Dear Professor Dongping Ming: 

Associate Editor 

International Journal of Remote Sensing 

  

On behalf of my co-authors, we thank you very much for allowing us to revise the manuscript, 

and we are grateful to three reviewers for their constructive comments and suggestions on our 

manuscript titled “A2-FPN for Semantic Segmentation of Fine-Resolution Remotely Sensed Images” 

(ID: TRES-PAP-2021-1166.R1).  

 

We have revised the manuscript carefully according to the comments, and have documented our 

revisions in the part of the “response to reviewers”. Manuscripts of the "clean" revision and the 

"highlight" version of the revision were attached, respectively. In our point-by-point response letter 

attached below, the comments of each reviewer in plain text followed by our responses in blue text 

are provided below. The major change we have made in this version is the supplemental experiments 

on a very large-scale segmentation dataset, i.e., UAVid. To be specific, there are totally 420 images 

with large resolution in the dataset where 200 of them are for training, 70 for validation, and the 

remaining 150 for testing. Experimental results demonstrate the effectiveness of the proposed A2-

FPN again. 

 

We trust that you will find the revised manuscript acceptable for publication in the International 

Journal of Remote Sensing. 

  

Looking forward to hearing from you. 

Best wishes,  

Rui Li (lironui@whu.edu.cn) and Chenxi Duan (c.duan@utwente.nl) on behalf of all co-authors. 
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Response to Reviewer 

We are grateful to the anonymous reviewers for their constructive comments and suggestions and 

have revised the manuscript point-by-point carefully in response to their advice. The comments of 

each reviewer in plain text followed by our responses in blue text are provided below.  

 

Reviewer #1 

 

------ It seems that this is a manuscript that has been reviewed. This is a work to improve the semantic 

segmentation model. The method mentioned in the article has already had a lot of similar work 

without much innovation. It is more like a combination of multiple models. However, the 

experimental verification process is reasonable and effective. If other reviewers agree to accept, I 

won’t comment much. 

 

Response: Many thanks for reviewing our manuscript. Actually, our manuscript is indeed has been 

reviewed. For your concern about innovation, we do know that there are many FPN-based models 

for object detection and instance segmentation. But as far as we know, the applications of FPN on 

semantic segmentation, especially for remote sensing images, are not as much as those on object 

detection and instance segmentation.  

Besides, although there exist some pieces of literature which have explored the combination of 

attention mechanism and FPN, the attention mechanisms utilized in their models are totally different 

from ours. Actually, there are two types of technologies with the name of attention mechanism. One 

is the dot-product attention mechanism, which is designed to model long-range dependencies and 

enable contextual information extraction at a global scale. The other is scaling attention designed to 

reinforce informative features and whittle information-lacking features, while the typical examples 

are the squeeze-and-excitation (SE) model and the convolutional block attention module (CBAM). 

These two types of attention mechanisms have completely different principles and purposes. A 

comprehensive comparison between dot-product attention, scaling attention, as well as the 

simplified dot-product attention mechanism on semantic segmentation, can be seen in our previous 

work (DOI: https://doi.org/10.1109/TGRS.2021.3093977). The existing researches on the 

combination of attention mechanism and FPN are based on either dot-product attention which has 

expensive computing consumptions or scaling attention which is completely different from the 

attention used in our model. Actually, only in recent two years, the simplification of the dot-product 

attention mechanism just has gotten more and more focused. Therefore, although there are 

seemingly many ‘similar’ researches, the actual similarities are not many, while the main 

contribution of our work is to combine linear attention and FPN. 

Specifically, in the revised version, we supplement the experiment on a very large-scale dataset, 

i.e., UAVid. There are totally 420 images with large resolution (4096×2160 or 3840×2160) in the 

dataset where 200 of them are for training, 70 for validation, and the remaining 150 for testing. The 

quantitative results can be seen in Table 4: 
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Table 4. The experimental results on the UAVid dataset. 

Method Backbone building tree clutter road vegetation static car moving car human mIoU 

MSD - 79.8 74.5 57.0 74.0 55.9 32.1 62.9 19.7 57.0 

BiSeNet ResNet-18 85.7 78.3 64.7 61.1 77.3 63.4 48.6 17.5 61.5 

SwiftNet ResNet-18 85.3 78.2 64.1 61.5 76.4 62.1 51.1 15.7 61.1 

ShelfNet ResNet-18 76.9 73.2 44.1 61.4 43.4 21.0 52.6 3.6 47.0 

MANet ResNet-18 85.4 77.0 64.5 77.8 60.3 53.6 67.2 14.9 62.6 

BANet ResT-Lite 85.4 78.9 66.6 80.7 62.1 52.8 69.3 21.0 64.6 

ABCNet ResNet-18 86.4 79.9 67.4 81.2 63.1 48.4 69.8 13.9 63.8 

A2-FPN ResNet-18 87.2 80.1 67.4 80.2 63.7 53.3 70.1 23.4 65.7 

 

Considering the UAVid is a relatively large-scale dataset, the result strongly demonstrates the 

effectiveness of the proposed A2-FPN. 
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Reviewer #2 

 

------ Comments to the Author 

 

Response: Thank you very much for reviewing our manuscript and for providing us with valuable  

comments. We studied your comments and responded to them point by point as below. 

 

Q1. The paper is fine and the work is competently done but I raised a concern about plagiarism. Is 

Duplicate Publication a Plagiarism? 

- Ref: Hu, Miao, et al. "A2-FPN: Attention Aggregation Based Feature Pyramid Network for 

Instance Segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition. 2021. 

 

Response: Many thanks for your concern. Actually, our manuscript is not published by any Journal 

in any form before. Meanwhile, the only similarities between the suggested paper and our 

manuscript are the name of the network and the baseline of FPN. They try to address the instance 

segmentation, while we try to tackle the semantic segmentation; they aggregate the context by 

scaled cosine-similarity attention mechanism, while we aggregate the context by the linear 

attention mechanism. Although both are based on FPN, the methods are totally different; although 

both for segmentation, the instance-oriented and the semantic-oriented tasks are also fully different. 

Besides, the writing styles are also sheerly different. In summary, based on the same FPN structure, 

we and Hu Miao et, al utilize different methods to solve different tasks. Most importantly, they 

submitted the paper to the arXiv on 7 May 2021, while we submitted our paper to the arXiv on 16 

Feb 2021. Our manuscript does not have any relationships with the suggested one or anyone that 

has been published. Therefore, we do not think our paper constitutes any academic misconduct, 

neither plagiarism nor duplicate publication. 

 

Q2. Furthermore, the authors do not report standard deviations for their experiments. (Could you 

report the number of trials and standard deviations for your experiments?) 

 

Response: Thanks very much for your question. Actually, we adopt the early stopping strategy when 

training the models. To be specific, if the accuracy on the validation set does not increase for more 

than 20 epochs, then we will stop the training procedure. By the above operation, we obtain the 

optimal model. Therefore, we only report the accuracy of the selected optimal model. In the revised 

manuscript, to support and demonstrate the effectiveness of the proposed network further, we 

supplement an experiment on a very large dataset, i.e., UAVid. There are totally 420 images with 

large resolution (4096×2160 or 3840×2160) in the dataset where 200 of them are for training, 70 

for validation, and the remaining 150 for testing. As the training procedure on the UAVid dataset is 

extremely time-consuming and there are many publicly available results, we directly utilized models 
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which were tested on the UAVid dataset as the comparative methods. Meanwhile, since most of 

those models are based on the ResNet-18, the backbone of the proposed A2-FPN was also set as 

ResNet-18 for the UAVid dataset. The quantitative results can be seen in the official website 

(https://competitions.codalab.org/competitions/public_submissions/25224) as well as in Table 4: 

 

Table 4. The experimental results on the UAVid dataset. 

Method Backbone building tree clutter road vegetation static car moving car human mIoU 

MSD - 79.8 74.5 57.0 74.0 55.9 32.1 62.9 19.7 57.0 

BiSeNet ResNet-18 85.7 78.3 64.7 61.1 77.3 63.4 48.6 17.5 61.5 

SwiftNet ResNet-18 85.3 78.2 64.1 61.5 76.4 62.1 51.1 15.7 61.1 

ShelfNet ResNet-18 76.9 73.2 44.1 61.4 43.4 21.0 52.6 3.6 47.0 

MANet ResNet-18 85.4 77.0 64.5 77.8 60.3 53.6 67.2 14.9 62.6 

BANet ResT-Lite 85.4 78.9 66.6 80.7 62.1 52.8 69.3 21.0 64.6 

ABCNet ResNet-18 86.4 79.9 67.4 81.2 63.1 48.4 69.8 13.9 63.8 

A2-FPN ResNet-18 87.2 80.1 67.4 80.2 63.7 53.3 70.1 23.4 65.7 

 

Considering the scale of UAVid, the result strongly demonstrates the effectiveness of the proposed 

A2-FPN. 
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Reviewer #3 

 

------ The method used in this paper is sound.  

 

Response: Thank you very much for reviewing our manuscript and for providing us with valuable  

comments. We studied your comments and responded to them point by point as below. 

 

Q1. However there are so many similar research papers related to attention aggregation and feature 

pyramid network in semantic segmentation. The novelty and new contribution is insufficient.  

 

Response: Many thanks for reviewing our manuscript. For your concern about innovation, we do 

know that there are many FPN-based models for object detection and instance segmentation. But as 

far as we know, the applications of FPN on semantic segmentation, especially for remote sensing 

images, are not as much as those on object detection and instance segmentation.  

Besides, although there exist some pieces of literature which have explored the combination of 

attention mechanism and FPN, the attention mechanisms utilized in their models are totally different 

from ours. Actually, there are two types of technologies with the name of attention mechanism. One 

is the dot-product attention mechanism, which is designed to model long-range dependencies and 

enable contextual information extraction at a global scale. The other is scaling attention designed to 

reinforce informative features and whittle information-lacking features, while the typical examples 

are the squeeze-and-excitation (SE) model and the convolutional block attention module (CBAM). 

These two types of attention mechanisms have completely different principles and purposes. A 

comprehensive comparison between dot-product attention, scaling attention, as well as the 

simplified dot-product attention mechanism on semantic segmentation, can be seen in our previous 

work (DOI: https://doi.org/10.1109/TGRS.2021.3093977). The existing researches on the 

combination of attention mechanism and FPN are based on either dot-product attention which has 

expensive computing consumptions or scaling attention which is completely different from the 

attention used in our model. Actually, only in recent two years, the simplification of the dot-product 

attention mechanism just has gotten more and more focused. Therefore, although there are 

seemingly many ‘similar’ researches, the actual similarities are not many, while the main 

contribution of our work is to combine linear attention and FPN. 

 

Q2. Also, the experiments are based on the open datasets with small sizes and well labelled samples, 

the superiority and fesiblity of the method should be further testified using real remote sensing 

image with large size. Otherwise the value of this work is limitted. 

 

Response: Many thanks for your concern. In the revised version, we supplement the experiment on 

a very large-scale dataset, i.e., UAVid. There are totally 420 images with large resolution 
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(4096×2160 or 3840×2160) in the dataset where 200 of them are for training, 70 for validation, and 

the remaining 150 for testing. As the training procedure on the UAVid dataset is extremely time-

consuming and there are many publicly available results, we directly utilized models which were 

tested on the UAVid dataset as the comparative methods. Meanwhile, since most of those models 

are based on the ResNet-18, the backbone of the proposed A2-FPN was also set as ResNet-18 for 

the UAVid dataset. The quantitative results can be seen in Table 4: 

 

Table 4. The experimental results on the UAVid dataset. 

Method Backbone building tree clutter road vegetation static car moving car human mIoU 

MSD - 79.8 74.5 57.0 74.0 55.9 32.1 62.9 19.7 57.0 

BiSeNet ResNet-18 85.7 78.3 64.7 61.1 77.3 63.4 48.6 17.5 61.5 

SwiftNet ResNet-18 85.3 78.2 64.1 61.5 76.4 62.1 51.1 15.7 61.1 

ShelfNet ResNet-18 76.9 73.2 44.1 61.4 43.4 21.0 52.6 3.6 47.0 

MANet ResNet-18 85.4 77.0 64.5 77.8 60.3 53.6 67.2 14.9 62.6 

BANet ResT-Lite 85.4 78.9 66.6 80.7 62.1 52.8 69.3 21.0 64.6 

ABCNet ResNet-18 86.4 79.9 67.4 81.2 63.1 48.4 69.8 13.9 63.8 

A2-FPN ResNet-18 87.2 80.1 67.4 80.2 63.7 53.3 70.1 23.4 65.7 

 

Considering the UAVid is a relatively large-scale dataset, the result strongly demonstrates the 

effectiveness of the proposed A2-FPN. 
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ARTICLE TEMPLATE

A2-FPN for Semantic Segmentation of Fine-Resolution Remotely

Sensed Images

Rui Li a, Libo Wangt a, Ce Zhang b, c, Chenxi Duan d and Shunyi Zheng a

aSchool of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu
Road, Wuhan, Hubei 430079, China;
bLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK;
cUK Centre for Ecology & Hydrology, Library Avenue, Lancaster LA1 4AP, UK;
dFaculty of Geo-Information Science and Earth Observation (ITC), University of Twente,
Enschede, the Netherlands

ARTICLE HISTORY

Compiled December 21, 2021

ABSTRACT
The thriving development of earth observation technology makes more and more
high-resolution remote sensing images easy to obtain. However, caused by fine-
resolution, the huge spatial and spectral complexity leads to the automation of
semantic segmentation becoming a challenging task. Addressing such an issue rep-
resents an exciting research field, which paves the way for scene-level landscape pat-
tern analysis and decision making. To tackle this problem, we propose an approach
for automatic land segmentation based on the Feature Pyramid Network (FPN). As
a classic architecture, FPN can build a feature pyramid with high-level semantics
throughout. However, intrinsic defects in feature extraction and fusion hinder FPN
from further aggregating more discriminative features. Hence, we propose an Atten-
tion Aggregation Module (AAM) to enhance multi-scale feature learning through
attention-guided feature aggregation. Based on FPN and AAM, a novel framework
named Attention Aggregation Feature Pyramid Network (A2-FPN) is developed for
semantic segmentation of fine-resolution remotely sensed images. Extensive experi-
ments conducted on four datasets demonstrate the effectiveness of our A2-FPN in
segmentation accuracy. Code is available at https://github.com/lironui/A2-FPN.

KEYWORDS
semantic segmentation; deep learning; attention mechanism

1. Introduction

Land cover information can provide insights from a panoramic perspective to help
tackle urgent socioeconomic and environmental challenges, such as food crisis, climate
change, and disaster risks. Hence, semantic segmentation, which can assign definite
categories to groups of pixels in an image, has become one of the most significant
techniques for ground feature interpretation (Li et al. 2021d). For remotely sensed im-
ages, segmentation has played critical roles in several diverse geo-information applica-
tions, including urban planning, economic assessment, land resource management, etc.

Corresponding author. Email: c.duan@utwente.nl
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(Zhang et al. 2019; Tong et al. 2020; Zhu et al. 2017). Derived from blooming advances
in Earth observation technology, a series of satellite and airborne platforms have been
launched (Duan, Pan, and Li 2020; Zhang et al. 2020b), thereby making substantial
remotely sensed images are available. For segmentation, traditional methods usually
extract vegetation indices of land cover from multi-spectral/multi-temporal images to
manifest the physical properties. However, as the descriptors are hand-crafted, the
adaptability and flexibility of these indices are severely limited (Li et al. 2020b; Gu
et al. 2020).

Meanwhile, substantial significant leaps of segmentation in remote sensing have
been witnessed in recent years (Su et al. 2021; Wang et al. 2021a,b), due to the ex-
tensive applications of deep learning and deep convolutional neural networks (CNNs)
in particular. Compared with vegetation indices, a wide range of features can be fully
extracted by CNNs, such as context information, spectral characteristics, and the mu-
tual effect between different land cover categories (Wambugu et al. 2021; Bai et al.
2021). Further, benefiting from the powerful ability to capture nonlinear and hierar-
chical features automatically, CNNs can form the end-to-end framework from the raw
image to meaningful information and insights directly (Tong et al. 2021; Wang et al.
2021a; Zhang et al. 2021).

For remote sensing imagery, the scale variation of geospatial objects is a general
phenomenon, which is especially true for those with fine-resolution. Therefore, how
to extract the multi-scale representation is important for dealing with such an issue.
As a widely-used framework, Feature Pyramid Network (FPN) (Lin et al. 2017) is
a feasible scheme to address the problem of multi-scale processing. Specifically, by
fusing adjacent features through lateral connections and the top-down pathway, FPN
constructs a feature pyramid with abundant semantics at all scales, thereby exploiting
the inherent feature hierarchy.

Although effective in multi-scale feature representations, the designs of FPN hinder
feature pyramids from further aggregating more discriminative features for segmen-
tation. Specifically, in the procedure of feature fusion, feature maps are up-sampled
and fused directly, losing the rich context information. To remedy the defect of FPN,
we propose an Attention Aggregation Module (AAM) based on the linear attention
mechanism (Li et al. 2021b) to enhance multi-scale feature learning, thereby designing
A2-FPN. Compared to mainstream encoder-decoder frameworks, A2-FPN is distinc-
tive in two significant aspects: (1) It encodes semantic features form multi-scale layers;
(2) It extracts discriminative features by extracting global context information.

2. Related Work

2.1. Feature Pyramid Network

Figure 1. Illustration of the architecture of Feature Pyramid Network for detection.

2
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The feature pyramid network is initially designed for object detection, aiming at lever-
aging the pyramidal feature hierarchy (Lin et al. 2017). The components of the FPN
are comprised of a bottom-up pathway, a top-down pathway, and lateral connec-
tions, as illustrated in Figure 1. The bottom-up pathway usually takes the ResNet
as the backbone (He et al. 2016), where the feature hierarchy is computed with fea-
ture maps being generated at multiple scales. The feature maps at top pyramid levels
are spatially coarse but with high-level semantics. The top-down pathway interpolates
fine-resolution features by up-sampling from high-level feature maps, which are then
merged and refined with features at the same spatial size from the bottom-up pathway
via lateral connections. The effectiveness of FPN has been demonstrated in several ap-
plications, including object detection (Lin et al. 2017), panoptic segmentation (Kirillov
et al. 2019), and super-resolution (Shoeiby et al. 2020).

2.2. Semantic Segmentation

After the first successful Fully Convolutional Network (FCN), deep learning meth-
ods have been successfully and extensively introduced and applied to the semantic
segmentation, while the remote sensing area is no exception (Wang et al. 2021b,a).
For example, Sherrah (Sherrah 2016) adapted the FCN to semantically label remotely
sensed images. Kampffmeyer et al. (Kampffmeyer, Salberg, and Jenssen 2016) focused
on the segmentation of relatively small objects (e.g., Cars) by quantifying the uncer-
tainty at the pixel level. To investigate the impact of the intermediate features fusion
scheme, Maggiori et al. (Maggiori et al. 2017) adopted an auxiliary CNN to learn how
to combine features. Audebert et al. (Audebert, Le Saux, and Lefèvre 2018) further
leveraged multi-modal data by the V-FuseNet to enhance the segmentation accuracy.
However, such a fusion scheme will be invalid if either modality is unavailable in the
test phase. Kampffmeyer et al. (Kampffmeyer, Salberg, and Jenssen 2018), therefore,
proposed a hallucination network aiming to replace missing modalities during testing.
Besides, enhancing the segmentation accuracy by optimizing object boundaries is an-
other burgeoning research area (Zheng et al. 2020; Marmanis et al. 2018). Meanwhile,
semantic segmentation has shown great potential for practical applications in remote
sensing areas including road detection (Wei, Zhang, and Ji 2020; Shamsolmoali et al.
2020), urban resource management (Zhang et al. 2020a; Li et al. 2020a), and land-use
mapping (Tu et al. 2020). For example, a novel CNN-based multi-stage framework is
introduced by (Wei, Zhang, and Ji 2020) to extract road surface and center-line trac-
ing simultaneously. (Zhang et al. 2020a) characterizes and classifies individual plants
based on semantic segmentation methods by continuously increasing patch scale. The
recently developed semantic segmentation approaches using deep learning create a new
paradigm for land-use mapping (Tu et al. 2020).

2.3. The Attention Mechanism

The accuracy of segmentation relies on inference from sufficient context informa-
tion. To this end, the dot-product attention mechanism is introduced to capture the
global context. However, the memory and computational consumptions which increase
quadratically with the input size heavily impedes the actual application of the dot-
product attention mechanism. Here, we illustrate the principles of the dot-product
attention mechanism as well as the attempts to reduce the complexity of the atten-
tion mechanism, especially the linear attention mechanism utilized in the proposed

3
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Figure 2. Illustration of the architecture of dot-product attention mechanism.

A2-FPN. By default, vectors in this section refer to column vectors.

2.3.1. The Dot-Product Attention Mechanism

The height, weight, and channels of the input are denoted asH,W and C, respectively.
X = [x1,x2, ...,xN ] ∈ RN×C refers to the input feature, where N = H × W . First,
the dot-product attention mechanism uses three projected matrices W q ∈ RDx×Dk ,
W k ∈ RDx×Dk , and W v ∈ RDx×Dv to obtain the query matrix Q, key matrix K and
value matrix V as:

Q = XWq ∈ RN×Dk ,

K = XWk ∈ RN×Dk ,

V = XWv ∈ RN×Dv .

(1)

Q and K are identical in their shapes. To compute the similarity between the i-th
query feature qTi ∈ RDk and the j-th key feature kj ∈ RDk , a normalization function
ρ is adopted as ρ(qTi · kj) ∈ R1. Thereafter, similarities between all pairs of pixels are
computed and taken as weights. The output is generated by aggregating all positions
using weighted summation:

D(Q,K, V ) = ρ(QKT )V . (2)

For dot-product attention mechanism, the normalization function is set as softmax:

ρ(QKT ) = softmaxrow(QKT ). (3)

where softmaxrow denotes that the softmax is operated along the row of matrix QKT .
The global context information is captured by the ρ(QKT ) through the modeling of
the similarities among all pairs of pixels in the input. However, as Q ∈ RN×Dk and
KT ∈ RDk×N , the multiplication between Q and KT belongs to RN×N , leading to
the O(N2) time and memory complexity (Figure 2).

2.3.2. Generalization and Simplification

Given the normalization function is softmax, the i-th row in the output matrix pro-
duced by the dot-product attention mechanism can be written as:

D(Q,K, V )i =

∑N
j=1 e

qT
i ·kjvj∑N

j=1 e
qT
i ·kj

. (4)
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Equation 4 can be generalized into any normalization function as:

D(Q,K, V )i =

∑N
j=1 sim(qi,kj)vj∑N
j=1 sim(qi,kj)

, sim(qi,kj) ≥ 0, (5)

sim(qi,kj) depicts the similarity between the qi and kj , which can be expanded as
sim(qi,kj) = ϕ(qi)

Tφ(kj). We can further rewrite equation 4 to equation 6 and then
simplify it as equation 7:

D(Q,K, V )i =

∑N
j=1 ϕ(qi)

Tφ(kj)vj∑N
j=1 ϕ(qi)

Tφ(kj)
, (6)

D(Q,K, V )i =
ϕ(qi)

T
∑N

j=1 φ(kj)vj

ϕ(qi)
T
∑N

j=1 φ(kj)
. (7)

In particular, equation 5 is identical to equation 4, when sim(qi,kj) = eq
T
i ·kj . The

equation 7 can be represented as the vectorized form:

D(Q,K, V ) =
ϕ(Q)φ(K)TV

ϕ(Q)
∑

j φ(K)Ti,j
, (8)

As sim(qi,kj) = ϕ(qi)
Tφ(kj) replaces the softmax function, the order of the com-

mutative operation can be altered, thereby reducing the computationally intensive
operations. Specifically, we can compute the multiplication between φ(K)T and V
first and then multiply the result and ϕ(Q), resulting in only O(dN) time and mem-
ory complexity. The appropriate ϕ(·) and φ(·) and enable the drastically reduced
computation without sacrificing the accuracy (Li et al. 2021c; Katharopoulos et al.
2020).

2.3.3. The Linear Attention Mechanism

By replacing the softmax into its first-order approximation of Taylor expansion, we
have developed a linear attention mechanism in our previous research (Li et al. 2021b)
as:

eq
T
i ·kj ≈ 1 + qTi · kj , (9)

However, the above approximation cannot guarantee the non-negative property of
the normalization function. Hence, we normalize qi and kj by l2 norm to ensure
qTi · kj ≥ −1:

sim(qi,kj) = 1 + (
qi

∥ qi ∥2

)T (
kj

∥ kj ∥2

), (10)

We then rewrite equation 5 into equation 11, and simplify it into equation 12:

5
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Figure 3. The (a) computation requirement and (b) memory requirement between the linear attention mech-

anism and dot-product attention mechanism under different input sizes. The calculation assumes. The calcu-

lation assumes D = Dv = 2Dk = 64. MM denotes 1 Mega multiply-accumulation (MACC), where 1 MACC
means 1 multiplication and 1 addition operation. GM means 1 Giga MACC, while TM signifies 1 Tera MACC.

Similarly, MB, GB, and TB represent 1 MegaByte, 1 GigaByte, and 1 TeraByte, respectively. Note the figure
is shown on the log scale.

D(Q,K, V )i =

∑N
j=1(1 + ( qi

∥qi∥2
)T ( kj

∥kj∥2
))vj∑N

j=1(1 + ( qi

∥qi∥2
)T ( kj

∥kj∥2
))

, (11)

D(Q,K, V )i =

∑N
j=1 vj + ( qi

∥qi∥2
)T

∑N
j=1(

kj

∥kj∥2
)vT

j

N + ( qi

∥qi∥2
)T

∑N
j=1(

kj

∥kj∥2
)

. (12)

The vectorized form of equation 12 is:

D(Q,K, V ) =

∑
j V i,j + ( Q

∥Q∥2
)(( K

∥K∥2
)TV )

N + ( Q
∥Q∥2

)
∑

j(
K

∥K∥2
)Ti,j

. (13)

As
∑N

j=1(
kj

∥kj∥2
)vT

j and
∑N

j=1(
kj

∥kj∥2
) could be computed only once and reused for

each query, time and space complexity of the linear attention mechanism based on
equation 13 is O(dN). Specifically, given a feature X = [x1,x2, ...,xN ] ∈ RN×C , both
the dot-attention and linear attention generate the query matrix Q, key matrix K and

6
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value matrix V . For the dot-attention, the N ×N matrix is generated by multiplying
the transposed key matrix K and the value matrix V , resulting in O(DkN

2) time
complexity and O(N2) space complexity to compute the similarity using the softmax
function. Thus, the dot-attention would occupy at least O(N2) memory and require
O(DkN

2) computation to calculate the similarity between each pair of positions. For
linear attention, as the softmax function is substituted for the first-order approxima-
tion of Taylor expansion, we can alter the order of the commutative operation and
avoid multiplication between the reshaped key matrix K and query matrix Q. There-
fore, we can calculate the product between KT and V first and then multiply the
result and Q with only O(dN) time complexity and O(dN) space complexity. The
concrete comparison can be seen in Figure 3.

3. Attention Aggregation Feature Pyramid Network

Figure 4. The structure of (a) the overall framework of our A2-FPN, (b) the Attention Aggregation Module,

and (c) the Linear Attention Mechanism (taking the attention1 as an example). The figures (e.g., 64, 128, 512)
near the features indicate the number of channels..

The overall framework of the proposed A2-FPN is demonstrated in Figure 4. As a
single end-to-end network, the major components of our A2-FPN include the bottom-
up pathway (i.e., the first column in Figure 4a), the top-down pathway (i.e., the second
column in Figure4a), the lateral connections (i.e., the 1×1 convolutional layer between
the first and second column in Figure 4a), the feature pyramid (i.e., the second and
third columns in Figure 4a), and the Attention Aggregation Module (i.e., Figure 4b).
We will elaborate on each component below.

3.1. The Bottom-up Pathway

To design a simple and efficient framework, we select the ResNet-18 or ResNet-34 as
the backbone of the bottom-up pathway rather than the complicated backbones such
as ResNet-101. Based on ResNet backbone, the bottom-up pathway conducts the feed-
forward learning and generates the feature hierarchy. The feature maps are generated
at different spatial resolutions with a scaling step of 2. The top levels of feature maps
have large spatial context with coarse resolution, whereas the bottom levels of feature
maps present small context information with fine resolution. We use C2, C3, C4, and
C5 to indicate the output feature map of each residual block in ResNets (see above
Figure 4), while the spatial size of C2, C3, C4, and C5 are 1/4, 1/8, 1/16, and 1/32
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of the input size, respectively. Due to its large memory footprint, C1 is not included
in the pyramid.

3.2. The Top-Down Pathway and Lateral Connections

Figure 5. The feature pyramid in the proposed A2-FPN.

The top-down pathway up-samples semantically rich but spatially coarse feature maps
from top pyramid levels to create fine resolution features, which are then merged and
refined with corresponding features from the bottom-up pathway via lateral connec-
tions. As shown in Figure 5, a top-down layer and a lateral connection constitute a
feature pyramid in the proposed A2-FPN. The generated feature maps are denoted
as P2, P3, P4, and P5 accordingly. With a coarse resolution feature map (e.g., P4 in
Figure 5), we up-sample its spatial resolution by a factor of 2, while the up-sampling
mode is set as the nearest neighbor for simplicity. By element-wise addition, the up-
sampled map is then fused with the corresponding map in the bottom-up pathway,
wherein a 1× 1 convolutional layer is utilized to reduce dimensions of the channel.

The above procedure is iterated until the finest resolution map is generated. To start
the iteration, the coarsest resolution map (e.g., P5 in Figure 4) is directly produced by
a 1×1 convolutional layer on C5. After the merged map generated by the corresponding
feature pyramid, a 3 × 3 convolution is attached to produce the final feature map to
mitigate the aliasing effect caused by up-sampling operation. The feature pyramid
combines low-level contextual information into spatial feature maps, which improves
the representation capability of low-level side networks. Interpreting different scales
of land covers requires different levels of context information. Indeed, a large spatial
context is contained in the high-level features since the deep convolution layers have
larger receptive fields than the shallow ones. Hence, when merged with high-level
features, the low-level side networks acquire the multi-scale context information to
improve its accuracy of segmentation.

3.3. The Attention Aggregation Module

The local-aware property severely limits the potential of the CNN to capture the global
context information, while the latter is paramount for semantic segmentation. Graphi-
cal models and pyramid pooling modules partly remedy the context issue. However, the
contextual dependencies for whole input regions are homogeneous and non-adaptive,
ignoring the disparity between contextual dependencies and local representation of
different categories. Besides, those strategies usually utilized only in one layer do not
sufficiently leverage the long-range dependencies of feature maps.
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FPN is an effective framework to address the multi-scale processing issue. However,
the designs of FPN cause the lack of context information in feature maps. Here, to
extract the global context information, we design the Attention Aggregation Module
to enhance long-range dependencies on multi-level (Figure 4b and Figure 4c). Specifi-
cally, the four feature maps (i.e., S2, S3, S4, and S5) generated by the corresponding
feature pyramid are first concatenated and then fed into the 1× 1 convolutional layer.
Thereafter, the linear attention mechanism is utilized to capture global context infor-
mation and further refine fused feature maps. Finally, the refined features are added
with the original concatenated features.

4. Experimental Results

4.1. Datasets

We test the effectiveness of A2-FPN based on the ISPRS Vaihingen and Potsdam
datasets (http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.
html), the Gaofen Image Dataset (GID) (Tong et al. 2020) as well as the UAVid
dataset (Lyu et al. 2020).

Vaihingen: There are 33 images as well as normalized digital surface models
(nDSMs) in the Vaihingen dataset. The ground sampling distance (GSD) of tiles in
Vaihingen is 9 cm and the average size is 2494 × 2064 pixels. The image 2, 4, 6, 8,
10, 12, 14, 16, 20, 22, 24, 27, 29, 31, 33, 35, 38 are selected for testing, image 30 for
validation, and the remaining 15 images for training.

Potsdam: The Potsdam dataset contains 38 images and nDSMs. The GSD Potsdam
is 5 cm and the size of each tile is 6000× 6000. We utilize 2 13, 2 14, 3 13, 3 14, 4 13,
4 14, 4 15, 5 13, 5 14, 5 15, 6 13, 6 14, 6 15, 7 13 for testing, image 2 10 for validation,
and the remaining 22 images, except 7 10 with error annotations, for training.

GID: The GID contains 150 RGB images (Tong et al. 2020). Each image is in
7200×6800 pixels which covers a geographic region of 506km2 captured by the Gaofen 2
satellite. Following the previous work (Li et al. 2021a), we select 15 images contained
in GID, which cover the whole six categories. We partition each image into non-
overlapping patch sets of size 512 × 512 pixels. Thereafter, 50% patches are selected
randomly as the training set, 10% patches are chosen as the validation set, and the
remained 40% patches are reserved as the test set.

UAVid: UAVid is a fine-resolution Unmanned Aerial Vehicle (UAV) semantic
segmentation dataset, which focuses on urban street scenes with a 4096 × 2160 or
3840 × 2160 resolution. UAVid is a very challenging benchmark since the large reso-
lution of images, large-scale variation, and complexities in the scenes. To be specific,
there are totally 420 images in the dataset where 200 of them are for training, 70 for
validation, and the remaining 150 for testing.

4.2. Evaluation Metrics

For ISPRS and GID datasets, the performance of our A2-FPN, as well as comparative
methods, is measured by the overall accuracy (OA), the mean Intersection over Union
(mIoU), and the F1 score (F1). Based on the accumulated confusion matrix, the OA,
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Table 1. The Experimental Results on the Vaihingen Dataset.

Method Backbone Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%)
U-Net - 84.3 86.5 73.1 83.9 40.8 73.7 82.0 64.0

DABNet - 87.8 88.8 74.3 84.9 60.2 79.2 84.3 70.2
BiSeNetV2 - 89.9 91.9 82.0 88.3 71.4 84.7 88.0 75.5
PSPNet ResNet-34 90.3 94.2 82.8 88.6 51.1 81.4 88.8 71.3
DANet ResNet-34 91.1 94.8 83.5 88.9 63.0 84.3 89.5 74.4
EaNet ResNet-34 92.8 95.2 82.8 89.3 80.6 88.0 90.0 79.1
CE-Net ResNet-34 92.7 95.5 83.4 89.5 81.2 88.5 90.4 79.7
A2-FPN ResNet-34 93.0 95.7 84.7 90.0 86.9 90.1 91.0 82.2

mIoU, and F1 are computed as:

OA =

∑N
k=1 TPk∑N

k=1 TPk + FPk + TNk + FNk

, (14)

mIoU =
1

N

N∑
k=1

TPk

TPk + FPk + FNk
, (15)

F1 = 2× precision× recall

precision+ recall
, (16)

where TPk, FPk, TNk and FNk indicate the true positive, false positive, true negative,
and false negatives, respectively, for object indexed as class k. OA is calculated for all
categories including the background.

For the UAVid dataset, the performance is assessed from the official server based
on the intersection-over-union (IoU) metric:

IoU =
TPk

TPk + FPk + FNk
. (17)

4.3. Experimental Setting

We implemented the proposed A2-FPN and comparative algorithms using PyTorch
under the Python platform and trained them using a single Tesla V100 with Adam
optimizer. The learning rate is parametrized as 0.0003. For training, we cropped the
original tiles into 512×512 patches (1024×1024 for the UAVid dataset) and augmented
them by rotating, resizing, horizontal axis flipping, vertical axis flipping, and adding
random noise.

For benchmark comparisons on ISPRS and GID datasets, we considered not only
the methods proposed initially for natural images, such as pyramid scene parsing
network (PSPNet) (Zhao et al. 2017) and dual attention network (DANet) (Fu et al.
2019), but also the models designed for remote sensing images, e.g., edge-aware neural
network (EaNet) (Zheng et al. 2020). In addition, U-Net (Ronneberger, Fischer, and
Brox 2015), DABNet (Li et al. 2019), BiSeNetV2 (Yu et al. 2020), and CE-Net (Gu
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Table 2. The Experimental Results on the Potsdam Dataset.

Method Backbone Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%)
U-Net - 85.0 88.8 76.7 73.1 90.3 82.8 80.6 74.3

DABNet - 89.9 93.2 83.6 82.3 92.6 88.3 86.7 79.6
BiSeNetV2 - 91.3 94.3 85.0 85.2 94.1 90.0 88.2 82.3
PSPNet ResNet-34 91.6 95.8 86.0 87.7 86.5 89.5 89.5 82.6
DANet ResNet-34 91.9 96.1 85.6 87.6 86.8 89.6 89.6 82.6
EaNet ResNet-34 92.4 96.3 85.6 87.9 95.1 91.5 89.7 85.2
CE-Net ResNet-34 92.5 96.4 86.4 87.8 95.3 91.7 90.0 85.4
A2-FPN ResNet-34 93.6 96.9 87.5 88.4 95.7 92.4 91.1 86.1

et al. 2019) are also taken into account for a comprehensive comparison. The test time
augmentation (TTA) in terms of rotating and flipping is applied for all algorithms
accordingly.

As the training procedure on the UAVid dataset is extremely time-consuming and
there are many publicly available results, we directly utilized models which were tested
on the UAVid dataset as the comparative methods. Meanwhile, since most of those
models are based on the ResNet-18, the backbone of the proposed A2-FPN was also set
as ResNet-18 for the UAVid dataset. The comparative models include MSD (Lyu et al.
2020), BiSeNet (Yu et al. 2018), SwiftNet (Oršić and Šegvić 2021), ShelfNet (Zhuang
et al. 2019), MANet (Li et al. 2021c), BANet (Wang et al. 2021b), and ABCNet (Li
et al. 2021d).

4.4. Results on the ISPRS Vaihingen Dataset

We compare our method with seven existing methods on the Vaihingen test set and
quantitative comparisons are shown in Table 1. For a fair comparison, the backbone of
ResNet-based algorithms is set as ResNet-34 consistently. Our A2-FPN outperforms
other encoder-decoder methods (e.g., U-Net and CE-Net), attention-based methods
(e.g., DANet), and context aggregation methods (e.g., PSPNet and EaNet) by a sig-
nificant margin. To be specific, at least 1.6% in mean F1 score, 0.6% in OA, and 2.5%
in mIoU higher than the other comparative methods. Especially, the F1 score of Car
predicted by our A2-FPN is far higher than any other approaches, which increase the
second-best CE-Net by a large margin of 5.7%, demonstrating the effectiveness of the
Attention Aggregation Module.

To qualitatively illustrate the effectiveness of the proposed A2-FPN, we provide
qualitative comparisons between different networks via 512× 512 patches in Figure 6.
Particularly, we leverage the red box to mark those intricate regions which are easy
to be confused. Designed for real-time segmentation, the speed of BiSeNetV2 is rela-
tively fast. However, the over-simplified structure leads to the deficiency of contextual
information. EaNet adopts a large kernel pyramid pooling (LKPP) operation to cap-
ture contextual information, but the LKPP is only used for a single-scale feature map.
By comparison, the elaborate attention aggregation across multi-scale feature maps
enables our A2-FPN to generate more accurate segmentation maps.

4.5. Results on the ISPRS Potsdam Dataset

To further evaluate the effectiveness of A2-FPN, we carry out experiments on the
ISPRS Potsdam dataset. The training and testing settings on the Potsdam dataset
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Figure 6. Visualization of results on the Vaihingen dataset.

are the same as the Vaihingen dataset. Numerical comparisons with comparative al-
gorithms are listed in Table 2. The A2-FPN achieves up to 92.4% in mean F1 score,
91.1% in overall accuracy, and 86.1% in mIoU.

In Figure 7, we further visualize 512 × 512 patches with the intractable regions
marked by red rectangles. Our A2-FPN produces consistently better segmentation
results than other benchmark approaches. Due to the loss of global contextual infor-
mation, the segmentation maps generated by DABNet are ambiguous, particularly at
the contour of objects. For example, in the first row of Figure 7, the edge of the low
vegetation is not well recognized by DABNet but precisely captured by the proposed
A2-FPN. Although CE-Net harnesses the context extractor to exploit contextual in-
formation, the utilization is on a single scale which is limited and insufficient. As can
be seen in the second row of Figure 7, CE-Net mistakes the building and impervious
surfaces. By contrast, the utilization of FPN and AAM enables the proposed A2-FPN
to exploit the multi-scale contextual information, thereby delivering an accurate and
robust performance.

4.6. Results on the GID Dataset

We conducted experiments on the GID dataset to further test the accuracy of our
A2-FPN. As listed in Table 3, our A2-FPN holds the leading position on the vast
majority of the evaluation indexes. Visualized results in Figure 8 also demonstrates the
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Figure 7. Visualization of results on the Potsdam dataset.

superiority of our method. The built-up category is classified as others wrongly by U-
Net on a large scale, while the PSPNet does not recognize the intervals in the meadow.
These mistakes are well addressed by our A2-FPN, benefiting from the utilization of
multi-scale contextual information.

4.7. Results on the UAVid Dataset

As illustrated in Table 4, the proposed A2-FPN achieves the best IoU score on five out
of eight classes and the best mIoU with a 1% gain over the suboptimal BANet. Con-
sidering the UAVid is a relatively large-scale dataset, the result strongly demonstrates
the effectiveness of the proposed A2-FPN. Since the ground truth of the test set is not
available now, we visualize and compare the results generated by our A2-FPN and the
official benchmark, i.e., MSD (Lyu et al. 2020). Compared with the baseline MSD with
obvious local and global inconsistencies, the proposed A2-FPN can effectively capture
the cues to scene semantics. For instance, in the third row of Figure 9, the cars in
the pink box are obviously all moving on the road. However, the MSD identifies those
cars which are crossing the street as static cars. In contrast, our A2-FPN correctly
recognizes all moving cars.
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Figure 8. Visualization of results on the GID dataset.

5. Discussion

5.1. Ablation Study about FPN and AAM

Ablation experiments were conducted to test the effectiveness of FPN and AAM in the
proposed A2-FPN. The encoder-decoder structure based on ResNet-34 is selected as
the baseline. As shown in Table 5, the FPN outperforms the encoder-decoder baseline
significantly. For the Vaihingen dataset, the introduction of FPN brings more than
3.6% in mean F1 score, 1.1% in OA, and 3.8% in mIoU, while the improvements
for the Potsdam dataset is 0.6%, 0.7%, and 2.7%, respectively. The FPN is initially
designed for object detection. To tackle the segmentation issue, the feature maps
generated by feature pyramids are simply concatenated, lacking the global context
information crucial for segmentation. Therefore, the Attention Aggregation Module
is developed to address the above limitation. As a specifically designed module for
semantic segmentation, the utilization of AAM contributes to the increase of more
than 0.6% in mean F1 score, 0.6% in OA, and 0.9% in mIoU for the Vaihingen dataset,
while the figures for the Potsdam dataset are about 0.7%, 0.9%, and 0.7%, respectively.
For qualitative comparison, we visualize certain segmentation maps generated by the
baseline, FPN, and our A2-FPN, which can be seen from Figure 10. Besides, the
increases brought by the AAM on the GID dataset are about 0.7% in mean F1 score,
0.8% in OA, and 1.0% in mIoU, and the visualization results are shown in Figure 11.
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Table 3. The Experimental Results on the GID Dataset.

Method Backbone build-up forest farmland meadow water others Mean F1 OA (%) mIoU (%)
U-Net - 82.3 85.0 89.7 84.1 93.2 69.2 83.9 82.3 73.0

DABNet - 81.7 86.9 90.6 85.9 94.2 72.7 85.3 83.9 75.0
BiSeNetV2 - 83.0 86.4 90.2 86.4 94.7 72.4 85.5 83.9 75.4
PSPNet ResNet-34 84.2 89.1 91.5 87.6 95.1 76.4 87.3 86.1 77.9
DANet ResNet-34 84.8 89.5 91.7 87.8 95.6 77.8 87.9 86.7 78.8
EaNet ResNet-34 85.2 90.4 91.8 86.4 96.2 78.4 88.1 87.3 79.1
CE-Net ResNet-34 85.9 90.2 92.2 87.4 96.5 79.4 88.6 87.7 79.9
A2-FPN ResNet-34 86.3 91.0 92.4 87.9 96.8 79.9 89.1 88.3 80.7

Table 4. The Experimental Results on the UAVid Dataset.

Method Backbone building tree clutter road vegetation static car moving car human mIoU (%)
MSD - 79.8 74.5 57.0 74.0 55.9 32.1 62.9 19.7 57.0

BiSeNet ResNet-18 85.7 78.3 64.7 61.1 77.3 63.4 48.6 17.5 61.5
SwiftNet ResNet-18 85.3 78.2 64.1 61.5 76.4 62.1 51.1 15.7 61.1
ShelfNet ResNet-18 76.9 73.2 44.1 61.4 43.4 21.0 52.6 3.6 47.0
MANet ResNet-18 85.4 77.0 64.5 77.8 60.3 53.6 67.2 14.9 62.6
BANet ResT-Lite 85.4 78.9 66.6 80.7 62.1 52.8 69.3 21.0 64.6
ABCNet ResNet-18 86.4 79.9 67.4 81.2 63.1 48.4 69.8 13.9 63.8
A2-FPN ResNet-18 87.2 80.1 67.4 80.2 63.7 53.3 70.1 23.4 65.7

Table 5. Ablation study about FPN and AAM.

Dataset Method Backbone Mean F1 OA mIoU

Vaihingen
Baseline ResNet-34 85.9 89.5 77.5
FPN ResNet-34 89.5 90.4 81.3

A2-FPN ResNet-34 90.1 91.0 82.2

Potsdam
Baseline ResNet-34 91.1 89.5 82.7
FPN ResNet-34 91.7 90.2 85.4

A2-FPN ResNet-34 92.4 91.1 86.1

GID
Baseline ResNet-34 87.4 86.1 78.0
FPN ResNet-34 88.4 87.5 79.7

A2-FPN ResNet-34 89.1 88.3 80.7
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Figure 9. Visualization of results on the UAVid dataset.

5.2. Ablation Study about Multi-head and Dot-product Attention

To demonstrate the advancement and efficiency of the proposed AAM, we replace the
linear attention mechanism in AAM with the multi-head and dot-product attention
mechanism to conduct the ablation study. Meanwhile, the inference speeds measured
in frames per second (FPS) on a mid-range notebook graphics card 1660Ti are also
reported. As can be seen in Table 6, the multi-head attention i.e., A2-FPN (M), can
indeed enhance the performance, but the inference speed (24.98 FPS) will be low-
ered 2.6 times compared with A2-FPN (65.44 FPS), which may be not a cost-effective
scheme. After replacing the linear attention mechanism with dot-product attention
mechanism, the network, i.e., A2-FPN (D), will occupy about 16.4 GB memory under
2 batch sizes for 512 ×512inputs, whilethefigurefortheraw A2-FPN is 15.1 GB un-
der 16 batch sizes. That is, there is more than an 8 times gap between the memory
requirements between the A2-FPN (D) and the proposed A2-FPN. In addition, the
inference speed will be lowered to 12.96 FPS due to the high complexity. Therefore,
the design of the AAM balances the accuracy and efficiency well.

5.3. Limitation

Although the proposed A2-FPN has bridged the gap between low-level and high-
level features and compensated for the weakness of the raw FPN, there are still some
potential issues that need to be considered.

First, the total trainable parameters in the A2-FPN are 22.27 M, which is less than
medium-scale networks such as DANet (22.78 M), PSPNet (34.14 M), and EaNet
(44.34 M) while larger than those small-scale networks such as BiSeNetV2 (12.30 M).
To extensively compare the efficiency, we report the complexity and the parameters of
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Figure 10. Visualization of ablation study on (top) the Vaihingen dataset and (bottom) the Potsdam dataset.17
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Table 6. Ablation study about multi-head attention and dot-product attention mechanism.

Method Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%)
A2-FPN 93.0 95.7 84.7 90.0 86.9 90.1 91.0 82.2

A2-FPN (M) 93.2 95.7 85.0 89.9 87.7 90.3 91.1 82.6
A2-FPN (D) 92.3 95.1 84.3 89.9 82.8 88.9 90.5 81.5

Table 7. The complexity and speed of the proposed A2-FPN and other methods. The complexity and pa-
rameters are measured under the 512 × 512 input, where ’G’ indicates Gillion (i.e., units for the number of

floating point operations) and ’M’ signifies Million (i.e., units for the number of parameters). For an extensive

comparison, we chose 256× 256, 512× 512, 1024× 1024, and 2048× 2048 pixels as the sizes of the input image
and report the inference speed measured in frames per second (FPS) on a mid-range notebook graphics card

1660Ti. * means out of memory.

Method Complexity (G) Parameters (M) 256×256 512×512 1024×1024 2048×2048
U-Net 247.85 43.42 30.16 10.64 2.75 *

DABNet 5.22 0.75 102.31 87.74 34.88 8.77
BiSeNetV2 13.91 12.30 129.71 111.70 31.23 7.07
PSPNet 22.24 34.14 156.66 83.92 26.08 6.94
DANet 19.58 22.78 111.40 81.54 24.43 7.14
EaNet 28.43 44.34 96.04 54.58 14.90 4.26
CE-Net 39.98 29.00 101.49 45.33 13.71 3.52
A2-FPN 22.93 22.27 107.12 65.44 16.87 4.60

each method as well as the inference speed. As demonstrated in experimental results,
CE-Net and EaNet are significantly superior to other comparative methods except for
the proposed A2-FPN. In Table 7, we can see that the complexity, parameters, as well
as speed of our A2-FPN, all have advantages over CE-Net and EaNet, indicating a
better structure that balance the accuracy and efficiency well.

Second, the incorporation of auxiliary information (e.g. DSMs) might further in-
crease the accuracy. However, these require intelligent approaches to handle compu-
tationally intensive operations to include more information. Our future work will,
therefore, be devoted to realizing real-time semantic segmentation, as well as devel-
oping efficient techniques to fuse DSMs or nDSMs, thereby further enhancing the
segmentation performance.

6. Conclusion

The automatic semantic segmentation from fine-resolution remotely sensed images re-
mains a complicated and challenging task, due to the limited spatial and contextual
information utilized. In this research, we employ the Feature Pyramid Network to
combine the extracted spatial and contextual features comprehensively. In particular,
the pyramidal hierarchy enables FPN to combine low-level detailed spatial informa-
tion with high-level abundant semantic features thoroughly. Besides, to enhance the
segmentation accuracy, we propose an Attention Aggregation Module to not only ef-
fectively merge the feature maps but also to fully extract the context information. Sub-
stantial experiments conducted on the ISPRS Vaihingen, Potsdam, and GID datasets
demonstrate the effectiveness of our A2-FPN. The extensive ablation studies illustrate
the validity of FPN and AAM accordingly.
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Figure 11. Visualization of ablation study on the GID dataset.
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Figure A1. The failure cases in the (top) Vaihingen dataset and (bottom) Potsdam dataset.
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Figure A2. The failure cases in GID dataset.

Figure A3. Visualization of tile-38 in the Vaihingen dataset.
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Figure A4. Visualization of tile-38 in the Potsdam dataset.
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