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Abstract

Mendelian randomization (MR) is a method that uses genetic variants as instrument

variables to investigate causality in epidemiology. The application of MR has increased

over the years due to genotype-exposure and genotype-disease estimates being published

in large genome-wide association studies (GWAS). This research investigates statistical

models using GWAS estimates.

To increase the application of Bayesian models in MR, an R package mrbayes,

which implements univariate and multivariate Bayesian estimation for commonly

used two-sample MR estimators, specifically; the inverse variance weighted (IVW),

MR-Egger, and radial MR-Egger models. The thesis investigated the use of multivariate

Bayesian models with hierarchical priors (BayesLasso, Horseshoe, and Horseshoe+)

that account for high-throughput data. Simulations showed these models produced

consistent estimates in the presence of pleiotropy and invalid instruments. This thesis

also investigated weighted and conditional quantile estimators. Quantile models were

shown to produce less bias estimates in simulations.

This thesis has described and reviewed the MR approach and then developed and

assessed Bayesian methods for genotype summary level data for application in MR

analyses. This research shows how prior distributions can be used to make MR models

more robust to the standard IV assumptions.
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Chapter 1

Introduction to Mendelian

randomization

1.1 Background

Epidemiology is the study of the relationships between exposures and disease outcomes.

Although work related to epidemiology has identified possible exposures, there are

limitations that make it difficult to distinguish between correlation and causation.

These limitations may be due to confounding variables or reverse causation. The

randomized controlled trial study design (RCT) is the gold standard for drug and

clinical studies. However, RCTs also have certain limitations especially relating to time,

expenses, and ethics. Due to merits of lower costs and less time, an epidemiological

study can inform drug trials targeting a particular disease. Examples of such cases

are: an observational study concluded an inverse association between Vitamin-C

and coronary heart disease (Khaw et al., 2001), however an RCT showed a null

estimate (Baigent et al., 2005). Similarly, observational studies recommended that

hormone-replacement therapy would reduce cardiovascular mortality and breast cancer,
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however, an RCT did not support this, but rather showed increased mortality (Banks

et al., 2004). A high profile clinical study found that selenium supplements had

no effect on prostate cancer despite substantial evidence suggesting otherwise from

epidemiological studies (Lippman et al., 2009).

Researchers have proposed that genetic studies can aid in establishing a valid

investigation towards identifying cause and effect relationships in healthcare. The

method proposed is Mendelian randomization (MR) which uses genetic variants

as instruments to infer causal effects (Davey Smith & Ebrahim, 2003). The MR

approach was conceptualized from an early paper by Katan (1986), which was the

first occurence of using genetic variants as instruments (Thomas et al., 2007). Katan’s

idea was motivated by observational studies that indicated an association between

low cholestrol level and increased cancer rates (Elwood, 2017); which implied that

the association may be causal with a decrease in cholesterol triggering an increase

or decrease in the risk of cancer. However, the study was limited by confounding

factors (e.g., dietary factors), Katan proposed to compare cancer risks in people with

different polymorphisms of the apolipoprotein E gene (APOE). The study mitigated

unmeasured confounders as individuals with E2 allele have lower levels of cholesterol.

The term “Mendelian randomization” was used by Gray & Wheatley (1991), however

the application was different from epidemiological applications (Wheatley & Gray,

2004).

The underlying principles of the MR approach come from Mendel’s laws which were

published by Lock et al. (1916). Mendel’s first law states that two alleles separate in

equal numbers of the germ cells within the reproductive stage. The more important

law within MR studies is Mendel’s second law which is the law of independent

assortment. This indicates the independence of the genetic variants except those in

linkage disequilibrium, the term is explained in section 1.3.2.
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1.1.1 Epidemiological terminology

This section introduces some concepts relating to epidemiology. We assume a study to

estimate the causal effect of an exposure X on a disease outcome Y . In epidemiological

studies it is important to consider different types of variables; including confounders,

colliders, and mediators. Relationships between variables in statistics can be graphically

represented in causal path diagrams also known as direct acyclic graphs (DAGs). Causal

diagrams were introduced in robotics and formalised by Pearl (2009), and they were

formally introduced to epidemiology by Greenland et al. (1999). The graphs are

connected by arrows also known as an arc, the points in the graph representing the

variables are nodes. A causal path in the graph is a directed path from one node

to another; they can be traced through a sequence of single arrows entering and

leaving a node. A backdoor pathway between an exposure and outcome is a pathway

which begins with an arrow pointing towards the exposure and ends with an arrow

pointing into the outcome, as per the Backdoor Criterion due to Pearl (2009). Using

this terminology confounding is the existence of an open backdoor pathway between

an exposure and an outcome. And hence a confounder is any variable on an open

backdoor pathway that when adjusted for would block the backdoor pathway. Our aim

in observational studies is therefore to adjust for a sufficient set of confounders in order

to block all open backdoor pathways between the exposure and outcome. A collider

is a variable that is caused by the exposure and outcome independently, controlling

for a collider would bias the estimate (Rothman et al., 2008). Hence, in observational

studies our aim is not to adjust for colliders. A mediator is a variable that lies on

the causal pathway between the exposure and outcome. Adjusting for a mediator

partitions a causal effect into a direct and indirect effect. Hence, in observational

studies we take care to adjust for mediators only if we wish to estimate specific direct

and indirect effects. Figure 1.1 gives a graphical representation where Z is used as a

confounder, collider and mediator.
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Figure 1.1: Scenarios showing the variable Z as a confounder (left), mediator (middle)

and collider (right) in a causal diagram.

1.1.2 Genetics and GWAS studies

This section introduces some genetic terms relating to MR study. The human genome

comprises of 23 pairs of chromosomes consisting of 22 autosomal pairs and a pair of

sex chromosomes. There are approximately 3× 109 base pairs of DNA in the human

genome. A deoxyribonucliec acid (DNA) sequence is made up of four nucleotide bases:

A, C, G, and T. A SNP is defined as a variation in which more than 1% of a population

which does not carry the same nucleotide at a specific position in the DNA sequence.

Although a specific SNP may not cause a disorder, some SNPs are linked to specific

diseases, e.g, Mendelian traits such as Huntingdon’s chorea. These associations enable

scientists to search for SNPs in order to assess an individual’s genetic general tendency

to develop a disease. Furthermore, if certain SNPs are known to be associated with a

trait, scientists may examine DNA stretches near these SNPs in an attempt to identify

the gene or genes responsible for the trait.

Individuals with two copies of a similar allele are considered homozygous in a genetic

locus, whereas people with two divergent alleles are called heterozygous. Given a
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common allele is given as a the risk allele as A, the three related genotypes are

homozygous (aa), heterozygotes (Aa) and the rare homozygotes (AA). The frequency

of these related genotypes is described by Hardy-Weinberg equilibrium (Hardy et al.,

1908). Mendelian traits are defined dominant when a single copy of the mutant (risk)

allele is sufficient to cause the disease, traits are defined recessive when only those

individuals with two copies of the risk allele have the disease. It is also possible to

inherit traits as co-dominant, which defines a relationship in which the phenotypes

induced by each allele manifest when both alleles are present.

Research by Pauling et al. (1949) observed mutations from specific genes in sickle-cell

patients which led to change of haemoglobin in red blood cells leading to the connection

between genetics and diseases.

Genome Wide Association Studies (GWAS) use SNP arrays to collect data to find out

the specific variants associated with common complex traits. Analyses are conducted

to check how likely a variant is related to a trait, a p-value of 5 × 10−8 indicates

significance, adjusted for multiple testing, that a variant is associated with a trait.

There is an archive of GWAS studies that offer summary-level datasets (Akiyama

et al., 2017; Sudlow et al., 2015).

For the data from GWAS to be utilized in an MR study, the genotypes of the

controls of the study ought to be in Hardy-Weinberg equilibrium (Weinberg, 1908).

Hardy-Weinberg equilibrium shows in the controls that the data is a representative

sample of the population in order to reliably conclude gene-disease associations in the

genetic association studies (Salanti et al., 2005). With the help of GWAS, where lots

of genetic variants are tested with exposures, this has led to the study of polygenic

and multifactorial disorders where researchers extend the investigation of a disease

from single gene mutation towards multiple gene variation and environmental factors.
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1.1.3 Concept of causality

A major objective of health studies are to differentiate between causation and

association because an exposure might be associated to a disease outcome, but an

intervention that affects exposure will not affect the disease unless the association is

causal (Hernán, 2004; Sheehan & Didelez, 2020). The association can be notated in a

conditional probability P (Y = y|X = x) which shows the distribution of the outcome

Y is described by the observation of an exposure X = x.

We illustrate an example that reflects association is not causation using the notation

of Pearl (2009). The notation (do(X = x)) represents an intervention setting X to x.

A hypothetical example could be a binary exposure variable indicating having either

stained teeth or not and a disease outcome for coronary heart diseases (CHD). This

is because stained teeth is informative of smoking which is causal to coronary heart

disease. P (Y = y|X = x) describes how coronary heart diseases can be predicted from

teeth inspection. However, an intervention on the stained teeth (P (Y = y|do(X = x))

from a dentist will not have an effect on heart failure.

There are many different causal effect estimands we can target. Three common ones

are the average causal effect (ACE), causal risk ratio (CRR), and causal odds ratio

(COR). The ACE describes the average change of the outcome from comparing different

settings of the exposure, often a 1 unit difference. CRR and COR are causal estimands

for different values of the exposure, again often in terms of a 1 unit difference in the

exposure, on the risk ratio and odds ratio scales respectively.

1.2 Instrumental variables

Instrumental variable (IV) analysis is a method proposed and primarily developed

within the field of econometrics which was later introduced to epidemiology by
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Greenland (2000). Within health research, two of the types of instrumental variables

that have been used are: those that are controlled and randomized by the researcher

(common within RCT) and those that is randomised by nature, applications to

MR fall within the second category. Instrumental variable estimators target causal

effect estimands, and hence if the instrumental variable assumptions are met in an

observational study we can draw causal conclusions. Using the example of linear

regression, the goal of an instrumental variable analysis is to resolve the bias in

ordinary least squares parameter estimates caused by the inclusion of covariates

associated with the error term; this bias is known in econometrics as endogeneity and

as confounding in epidemiology. Figure 1.2 represents the causal DAG for an MR

analysis which encodes the core instrumental variable conditions described in a later

section.

Figure 1.2: Causal DAG representing an MR analysis
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1.2.1 Instrumental variable assumptions

The assumptions/core conditions for instrumental variable analysis are; from figure 1.2,

parameters (G, U) represent the genotype and unmeasured confounder respectively, X

represents phenotype/exposure and Y represents the outcome. G is an instrumental

variable for the causal effect of X on Y if;

• It is associated with the phenotype of interest; G is directly associated with X.

• It is independent of the confounders between the exposure and outcome; G is

marginally independent of U

• It is independent of the outcome given the phenotype and confounders; G is

conditionally independent of Y in the presence of X and U .

In order to estimate the causal effect of X on Y a structural assumption is additionally

required (Sheehan & Didelez, 2020).

• The distributions of the parameters representing the genotype, confounders and

the conditional distribution of the outcome given the exposure and confounders

remain the same regardless of how the instruments affect the exposure (naturally

or by intervention)

These assumptions are not fully testable using observational study data. The

association between the instrument/s and exposure is of course testable. However,

for the second condition, this is not fully testable because of course all possible

confounders will not have been measured in any given study.
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1.3 Limitations to Mendelian randomization

Some of the limitations to MR analyses are outlined with examples in the following

sections.

1.3.1 Population stratification

Population stratification is a limitation to a MR study, this occurs when the population

investigated has well defined sub-groups. If the frequency of the genetic variant and the

distribution of exposure varies in distinct sub-populations, a misleading link between

the variant and the exposure will be produced due to sub-population differences,

not the genetic variant’s influence. Violations can also occur if there is a continuous

variation in the population’s structure rather than the unique sub-populations (Burgess

& Thompson, 2015). Population stratification can have a confounding effect because

different sub-groups may have different risk factors within a sample. Population

stratification can be controlled by stratified analysis (Cardon & Palmer, 2003).

However, stratification becomes difficult to control when there is admixture of samples.

It is preferable to apply MR analysis within populations of homogenous origins

(Davey Smith, 2006). Similar to Didelez & Sheehan (2007), figure 1.3 explains the

effects of population stratification.
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Figure 1.3: DAGs representing population stratification (P). The figure on the left

side shows P as a confounder between the G and X. The figure on the right shows P

as a confounder between G and Y

1.3.2 Linkage disequilibrium

The term “linkage disequilibrium” refers to a state that differs from the hypothetical

scenario in which all loci are completely independent.

Linkage disequilibrium can have both favourable and unfavourable consequences in an

MR analysis. It can be favourable if data is not available on a genotype in question but

instead on a genotype in high linkage disequilibrium with it, which can then be used

as the IV in the analysis. However, linkage disequilibrium can have the unfavourable

consequence of accidentally including genetic variants as IVs that are correlated with

additional exposures which also affect the outcome, which violates the IV assumptions.

Linkage disequilibrium can be mitigated by systematic testing of the interaction of

known confounders with the measured genetic variant (Burgess & Thompson, 2015).

The differences in patterns of linkage disequilibrium between populations may partly

account for differing estimates for gene-disease association studies (Little & Khoury,

2003). The effects of the conditions from linkage disequilibrium are described in DAGs

by Didelez & Sheehan (2007) denoted in figure 1.4. From figure 1.4, the variable
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G2 describes the genetic variant in linkage disequilibrium, G1 describes the genetic

variant used for instrument. The variables U,X and Y represent the confounders,

exposure of interest and the disease outcome respectively. In the presence of linkage

disequilibrium, (G1 and G2), if G2 is independently associated with confounders then

it violates IV assumption 2, the assumption of no pleiotropy is additionally violated if

the variant G2 is independently associated with the outcome of interest (Y ).

Figure 1.4: Examples of how linkage disequilibrium can violate the MR assumptions.

1.3.3 Canalization

Canalization is the ability of a population to produce the same type of phenotype

regardless of the variability from its genotype (Debat & David, 2001). This occurs

when an individual adapts to a genetic change in such a way the effect is reduced or

absent (Burgess & Thompson, 2015). Canalization is evident in studies where genes

are rendered inactive in an organism; the study subjects can develop a mechanism

that compensates for the inactive gene through other biological pathways which may

have downstream effects. This can become an issue in MR studies if the different

levels of genetic variants differ not only from the exposure of interest but through

canalization. The goal of MR, on the other hand, is to analyse the causal influence of

the (non-genetic) exposure, not just to characterise the effects of genetic change. MR

estimates may be unrepresentative of clinical interventions on the exposure undertaken
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in a mature cohort if there is significant canalization (Burgess & Thompson, 2015).

1.3.4 Pleiotropy

Pleiotropy is defined as a genetic variant related to multiple exposures, if such variants

are used as instruments it violates the second and third IV assumptions. Pleiotropy

is divided into two categories; Horizontal pleiotropy means if the genetic variant is

associated with an exposure that is not on the causal pathway to the exposure of

interest. Vertical pleiotropy means the genetic variant is associated with another

variable which is on the same causal pathway as the exposure of interest (mediation),

this pleiotropy is usually inconsequential in MR studies. An example relates to the

FTO gene which is related to food satisfaction (Wardle et al., 2008); a study on the

causal effect of body mass index on a disease outcome, a variant from the FTO gene

can be used as an instrumental variable due the relationship of food satisfaction to

body mass index are on the same pathway, which is a good application of vertical

pleiotropy. However, if the variant in the FTO gene affects another exposure which

is not on the same causal pathway as BMI it may lead to misleading conclusions

(horizontal pleiotropy) (Burgess & Thompson, 2015). Figure 1.5 graphically describes

horizontal and vertical pleiotropy. Pleiotropy is a common issue within MR due to

numerous metabolite-related instruments, especially horizontal pleiotropy (left of figure

1.5) which can severely bias MR studies. This has led to the development of different

study designs and methods to mitigate pleiotropy which are later discussed in section

2.5.
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Figure 1.5: DAGs representing pleiotropy. X1 represents the exposure of interest; X2

represents another exposure; G represents the instruments; U represent confounders;

Y represents the disease outcome. The left panel represents vertical pleiotropy and

the right panel represents horizontal pleiotropy.

1.3.5 Genetic heterogeneity

An MR study requires the researcher to have substantial knowledge of the genetic

variants and their functions (Vineis, 2004). Brennan (2004) noted that a problem in

MR is having a vast knowledge of the alleles used as instruments and disease pathways.

Biological knowledge is highly relevant as it can help to identify the pathways of the

gene-disease association to confirm if it is only through the phenotype of interest. A

strong gene-phenotype association would reduce the likelihood of the genotype being

a ‘weak’ instrument, which would bias the estimator for instrumental variable (IV)

analysis (Staiger & Stock, 1994). Also to conduct an MR study requires consideration

of biological processes, an example is the segregation distortion of genes within the

locus. The process occurs when the distribution of alleles in a particular locus differs

from the surviving offsprings as a result of selective survival between conception and

birth. The phenomenom affects MR analysis as it can induce a correlation between

the genotype and confounders which was unlikely at population level (Davey Smith

& Ebrahim, 2008). The existence of selective survival due to the genetic variant
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can be a reference to the possibility that the differing genotype outcomes may bias

genetic association studies. If the effect of a variant on a phenotype is dependent on

the parent allele is known as parent-of-origin effect. Genetic heterogeneity occurs in

MR studies due to multiple genes causally associated with a phenotype. However,

genetic heterogeneity has no effect on the core assumptions if the genes do not affect

confounder or disease risk through another phenotype.

1.4 Motivation of study

The rise in GWAS studies has contributed to the increase of summary-level datasets

for MR studies. The development of robust statistical models is essential, with newly

developed models suitable for use in summary-level data settings. This research is

aimed at expanding statistical methods that range from software implementation,

theoretical methods, and data application within summary level data analysis.

1.5 Outline of thesis

The thesis is outlined as: Chapter 2 is a review of the literature on the historical

context of MR as an analytical method in epidemiology, the study designs and

statistical models used for estimating causal effects and robust statistical methods to

mitigate effects of weak instruments in MR. In Chapter 3 I introduce an convenient

application of univariate and multivariate Bayesian analysis for IVW and MR-Egger

models including the radial MR-Egger model. Chapter 4 extends the multivariate

MR model by investigating Bayesian hierarchical priors in summary-level data with

sparsity. Chapter 5 investigates the weighted and conditional percentile models in

summary-level data and introduces sensitivity analysis models. Chapter 6 discusses

the overall findings of the thesis and possible areas for further research.
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Chapter 2

Literature review

This chapter explains the various criteria to take into account when performing MR

analysis, including statistical methods for causal inference. There is also review of the

recent development of MR in new study designs and methods of sensitivity analysis.

2.1 Sample size

A requirement for studies in MR is large sample sizes, which has led to suggestions

and application of meta-analysis in MR studies (Lawlor et al., 2008). The reasons for

large sample size are because genetic effects explain a small proportion of the variance

in exposures (Frayling et al., 2007). Earlier studies into genetic associations were not

replicated due to lack of statistical power and publication bias (Little & Khoury, 2003),

until a study by Hirschhorn et al. (2002) led to the recognition of reproducible studies

relating to gene disease associations. A study by Danesh et al. (2008) showed they

had 80% power to detect an odds ratio of 1.2 with a minor allele frequency of 5% for

their sample size of 37,000 cases and 120,000 controls. That recognition brought about

the availability of large GWAS consortia. Examples are biobanks in the UK (Sudlow
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et al., 2015) and China (Chen et al., 2011), allowing researchers to apply MR studies

on large numbers of participants. GWAS consortia can also provide an opportunity

for GWAS studies to be harmonized and made more easily available to researchers

through web-based platforms (Hemani et al., 2016).

2.2 Selection of genetic variants

The selection of genetic variants as instruments is an important decision in an MR

study. This section explains how genetic variants for MR research are chosen.

The choice of genetic variants is either from a single gene region or from multiple regions

of the genome (a polygenic analysis). Selecting variants from a single gene region

offers the advantage of specificity, which means that if a gene region has a specific

biological link to the exposure, the MR study will be more accurate in determining the

causal role of that exposure. However, several robust statistical analysis methods are

not possible, as they assume independence of variants. Using polygenic variants has a

major advantage to explain additional variability in the exposure which will improve

the statistical power of an analysis (Brion et al., 2013).

There are two strategies for identifying variants in a polygenic analysis which include

a biologically driven method and a statistically driven approach. The overall decision

about which variants to include could include features from both methods (Burgess

et al., 2019). A biological approach to genetic variant selection would include variants

from regions with a biological relationship to the exposure of interest, however biological

knowledge is not perfect. A common statistical method for choosing genetic variants

is to include all variants that are linked with the exposure of interest at a certain

level of statistical significance (usually, a genome-wide significance threshold, such

as p-value < 5 × 10−8) in the analysis. The p-value selection is based on the data

in which genetic associations with exposure are estimated, but it can lead to genetic
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associations being overestimated. Furthermore, weak instrument bias is increased when

genetic variants are chosen based on their associations with the exposure in the data

under investigation. The bias in the estimates is in the direction of the observational

association in a one-sample setting, and in the direction of the null in a two-sample

setting (Burgess et al., 2011). Bias can be avoided by selecting genetic variants from a

different dataset (Zhao et al., 2019). Cis-variants are the most credible instruments

for MR studies because they have biological relevance to the exposure (e.g., molecular

phenotypes such as gene expression and DNA methylation) (Burgess et al., 2019).

However, with multifactorial exposures such as body mass index or blood pressure,

it is not possible to find a cis-variant so polygenic analysis is necessary. There is no

simple technique for deciding which genetic variants to include in a study. Burgess

et al. (2019) suggests a balance between adding fewer variants which potentially have

insufficient power and including more variants which potentially include pleiotropic

variants.

2.3 Study designs

The progression of MR analysis has led to various study designs to improve statistical

validity, some of these designs are applied independently or combined. They are

discussed in this section.

2.3.1 One-sample MR

The study design assesses exposure and outcome variables from a single sample,

allowing for the investigation of the causal effect in a single population sample. A

one-sample study design is used for the majority of individual-level data collection.

The study design has the benefit of being simple to collect data and having fewer

influences from the demographic groups. However, chance variation limits the study
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design; that is if the instrument-exposure relationship is weak (Burgess et al., 2019).

2.3.2 Two-sample MR

Results from GWAS studies have given researchers wider access to large

samples of summary-level data leading to MR studies conducted from different

samples. Two-sample MR analysis is conducted as the instrument-exposure and

instrument-outcome associations are obtained from different samples which do not

overlap each other (Burgess et al., 2015c). From figure 2.1 the DAG shows the

exposure variable from sample 1 (X1) and the outcome variable from sample 2 (Y2).

Two-sample MR is appealing due to the difficulty of acquiring sample measures for

exposure and outcome from the same sample set. The quality of the datasets are

dependent on individual studies, but due to their use of independent replication

samples, GWAS results are robust to replication. Two-sample MR methods are

available in several highly used R packages, for example TwoSampleMR applies

the methods to data from the MR-Base database of GWAS results (Hemani et al.,

2016). Hartwig et al. (2016) discussed several ways to simply improve the quality of

two-sample MR studies, including ensuring that the genotypes are harmonized with

respect to the coding of their alleles in the two-samples.

Figure 2.1: DAG representing Two-sample MR. X1 represents exposure from sample 1

and Y2 represents outcome from sample 2.
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2.3.3 Multivariable MR

The aetiology of certain outcomes is normally characterized by multiple exposures.

This has led to the development of designs appropriate for the application of MR

models including multiple exposures. The Multivariable MR (MVMR) study design

incorporates multiple genetic variants that are associated with multiple exposures

(Burgess et al., 2015b). From figure 2.2, the variables X and Z represent the exposures

with their respective instruments (GX and GZ) causal to the disease outcome Y , with

confounder U . MVMR study simultaneously estimate the ‘direct’ (X → Y and Z → Y )

effect of each exposure on the outcome. The design of the study also investigates the

‘indirect’ effects (X → Z → Y ) of the exposure by extending the paradigm to the

causal networks. And indeed the direct and indirect effects can be combined into a

total effect if this is the aim of the investigator.

Figure 2.2: DAG representing a multivariate MR study design, where Gx and Gz

represent the instruments for X and Z, X represents the exposure, Z a second exposure

which is also mediator between X and the outcome, and Y the outcome.

2.3.4 Two-step MR

Increased interest in the role of epigenetics in estimating causal effects of environmental

exposures on outcomes has led to DNA methylation mediators being incorporated

into the MR framework. Two-step MR study design is a framework to understand
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the role of these genetic markers (Relton & Davey Smith, 2012). Through integrative

genomics. The study involves two steps; the first is the use of instruments to estimate

the causal effect of the exposure on the mediator, while the second involves the using

instruments to estimate the causal effect of the mediator on the outcome summarized

in figure 2.3. The steps are then combined to investigate evidence of a causal effect of

the exposures through the proposed mediator on the outcome.

M

Gx

X Y

M

Gm

X Y

Figure 2.3: DAG representing the two-step study design. The dashed arrows represent

the causal effect estimated in each step. Gx is the instrument for the exposure, X the

exposure, M the mediator, Y the outcome, and Gm the instrument for the mediator.

2.3.5 Bi-directional MR

Bi-directional MR is a study design depicted in figure 2.4 when the investigator is not

sure whether the exposure (XA) is the cause of the outcome (XB) (first direction) or

the outcome (XB) of the exposure (XA) (second direction). The instruments generated

for both the exposure (GA) and outcome (GB) are independent of each other. The

study design is relevant as it dissects the direction of causality to establish higher

confidence in MR studies and to prevent reverse causation. Some examples are, the

direction of causality between serum uric acid (SUA) and adiposity (Lyngdoh et al.,

2012); and the association of adiposity and inflammation (Welsh et al., 2010).
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Figure 2.4: DAG for a bi-directional MR design.

2.3.6 Relationship between the study designs

The research designs are used for specific cases of MR analysis, but they share some

features. In this section, I discuss some of the characteristics and how they relate to

each other.

The use of two-sample MR has risen in MR analysis through time due to the multiple

advantages highlighted previously. For most of the study designs, the exposure and

disease outcome originate from independent samples, thus two-sample MR integrates

with most of the study designs mentioned earlier. The two-step and multivariate MR

study designs assess both direct and indirect effects; it is reasonable to suggest that

two-step MR is a multivariate MR study design when researching with two exposures

and the exposure associations are derived from separate instruments. MVMR study

designs, on the other hand, can additionally estimate the total effect, incorporate a

large number of exposures, and generate instrument-exposure estimates using similar

instruments or independent sets of instruments.

It is worth noting that study designs are evolving depending on the analysis; for

example, Zhao et al. (2019) introduced the 3-sample MR study design, which evolved

from the 2-sample MR study design, in which the genetic instruments are generated

from a different sample study. Also Burgess et al. (2015a) introduced network MR to

untangle the relationship between exposures and complex traits, which is related to

the MVMR study design. However, there is a reasoning that bidirectional studies can
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evolve into Network MR in the presence of multiple exposures.

2.4 Methods of estimating causal effects in MR

analyses

This section examines the methods used to estimate the causal effect in MR, with the

statistical properties underlying them.

2.4.1 Ratio method

The ratio of coefficients method, which is the ratio of instrument-outcome and

instrument-exposure association, is a simple approach for estimating the causal effect

(Wald, 1940). The ratio approach is accurate on the basis of the linearity assumption

between the exposure and the outcome, as a result of which the ratio estimate is the

linear IV average effect (Didelez et al., 2010). The ratio method is applied to a single

IV, if there is more than one IV, we can report an IV estimate for each variant or we

can combine the variants as a single IV in an allele score. In MR studies SNPs which

are instruments are represented in genetic subgroups which are either in a dichotomous

(biallelic) or polytomous form (diallelic). When the IVs are dichotomous (i.e G = 0, 1),

we measure the causal effect as the average difference between the subgroups indicated

below

∆Y
∆X = y1 − y0

x1 − x0
.

Alternatively, when SNPs are polytomous we can assume the association between

genetic variant and exposure is proportional to the number of alleles in the variant,

the causal effect is derived below
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β̂ = β̂Y |G

β̂X|G
.

When the denominator is closer to zero it is an indication of weak instrument which

creates a large variance and unstable estimator. When calculating the ratio estimate,

one does not need the full data specification of variables (G,X, Y ), summary-level

data include instrument-exposure associations and instrument-outcome associations.

From the IV assumptions, a higher association between instrument and exposure

(G-X) indicates a strong instrument. Within the linear assumption the strength of

the instruments would provide more information on the causal relationship through

smaller standard errors and confidence intervals. There is a functional relationship

between instrument and confounders, a strong instrument indicates a low effect from

the confounders.

The unobserved confounders κu have an effect on the outcome (Y ) while the causal

effect (β) indicates the average causal effect of one unit increase in the exposure X

E(Y |X = x, U = u) = βx+ κu.

Due to this effect, we get a biased estimate if we regress Y directly on X without

adjusting for U , hence we perform instrumental variable estimation instead.

To estimate the causal effect within MR, we need to test the instrument-outcome

association (G−Y ). The rationale follows from IV assumption (IV1), when testing for

a null hypothesis of no association the genetic variants would be independent of each

other. However there can be other reasons for no association for example low power

or a hidden interaction with unobserved groups. The test is to provide evidence and it

is indicated as good practice without parametric assumptions (Burgess & Thompson,
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2012).

2.4.2 Two-stage methods

Two-stage models follow a two-step procedure and are commonly applied to individual

level data. The model incorporates multiple instruments and requires full data from

the variables. In a sample population indexed by i = 1, 2, 3, ..., N and a group of

instruments J ; the first step below shows regression of the exposure (X) on the genetic

variant (G)

E(Xi|G) = γ0 +
J∑
j

γjGij + εxi .

The second step shows the outcome variables regresses on the predicted values of the

exposure

E(Yi|G) = α + βX̂ + εyi .

The method is asymptotically unbiased for the average causal effect when applied with

a single IV, if the instrument is weak, but it is at risk to small sample bias (Bound

et al., 1995). However, including more instruments can reduce the bias, additional

instruments in the two-stage least squares (TSLS) model estimate the weighted average,

the weights are estimated from the first stage regression. Although the TSLS approach

derives the correct point estimate, the standard error of the second stage does not

compensate for the variability of the first stage, and so the adjustment of replacing X̂

with X in the calculation of the second stage residual variance is made in instrumental

variable software.

The TSLS model assumes the outcome variable is from a continuous distribution,
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the counterpart model when the binary outcomes are distributed (e.g. case-control

study) is called two stage predictor substitution (TSPS). Estimates from such an

approach would be too precise because they do not account for variability. However,

the over-precision would be small if the standard error of the first-stage coefficients

were low. Two-stage regression methods for binary outcomes received some criticism

due to possible correlation of instruments and outcome (Angrist & Pischke, 2008).

The interpretation and validity of the results of the TSPS models depends on the

collapsibility. An estimate is collapsible if the constant value in each strata is equal to

the marginal value of the analysis, there are implications in MR (see Page 59, Burgess

& Thompson (2015)), which has led to adjusted two stage methods. Despite these

implications, TSPS is a valid test of the null hypothesis (Vansteelandt et al., 2011). An

adjusted two-stage method has been suggested, in which the residuals of the first-stage

regression of exposure on IV are included in the second stage, the approach is generally

referred to as the two-stage residual inclusion estimator (TSRI). The second stage is

derived below by Terza et al. (2008)

E(Yi|G) = α + βR̂ + εyi .

The variable R̂|G = X− X̂|G denotes the residual of the first stage regression. The IV

estimate is numerically closer to the conditional log odds ratio, making it recommended

for logistic regression (Palmer et al., 2008).

2.4.3 Likelihood methods

The likelihood is derived by including the effects of confounders to correlate the error

terms in the two-stages of estimation. This can be formulated as the exposure and

outcome following a bivariate normal distribution denoted below
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Xi

Yi

 ∼MVN


µxi
µyi

 ,Σ
 .

The maximum likelihood estimate of the causal parameters are calculated

simultaneously which is referred to as a full information maximum likelihood approach

denoted below

µxi = α0 +
∑
k

αkgik

µyi = β0 + β1µxi .

A drawback to this approach is it estimates every parameter in each of the equations.

An alternative approach is maximizing the likelihood and profiling out other parameters

except the causal effect parameter; this approach is the limited information maximum

likelihood estimator (LIML). LIML has similar attributes to TSLS making them

sensitive to model misspecification and heteroscedasticity. Hahn et al. (2004) notes

that the LIML approach has a limitation of undefined moments for any number of

instruments. However the median of the estimate distribution is close to unbiased

even in the presence of weak instruments; making the approach appealing (Angrist &

Pischke, 2008). An alternative likelihood approach can be applied from the Bayesian

framework.

The model shows the measured exposure and outcome (Xi, Yi)T follow a bivariate

distribution. The mean of the exposure distribution is a linear function of the genetic

variants and the outcome is a linear function of the mean exposure where β1 is the

causal estimate (Jones et al., 2012). Using uninformative priors, estimation of the

posterior distribution is applied in a Markov chain Monte Carlo framework (MCMC),
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from which the mean or median of the distribution can be interpreted as the point

estimate while the credible interval can be described as the confidence interval. The

Bayesian approach has no distributional assumption for the posterior making them

robust to weak instruments (Burgess & Thompson, 2012).

2.4.4 Semi-parametric methods

Semi-parametric methods provide non-parametric assumptions in parametric methods

with the aim of being robust to model misspecification. Within MR, parametric

assumptions are made towards the equation relating the outcome and exposure while

error terms are assumed non-parametric. The generalised method of moments is a

semi-parametric estimator, the approach is intended as a more flexible TSLS that deals

with issues of non-homogeneous error terms and non-linearity (Johnston et al., 2008).

Structural mean models are another semi-parametric approach used in instrumental

variable estimation (Robins, 1986).

2.5 Robust methods in MR

Pleiotropic effects arise when a gene has multiple effects on different phenotypes, which

invalidates the IV assumption. Multiple genetic variants, which are widely used in MR

studies, increase the likelihood of pleiotropy. This section will introduce most of the

robust estimators (i.e., methods for sensitivity analysis). The instrument violations

that these models address are also discussed in this section.

2.5.1 Location parameter for ratio estimates

The standard IVW model is extended to a multiplicative random effects, the model

accounts for pleiotropy through an overdispersion parameter incorporated into the

variance (Bowden et al., 2017). The IVW model is extended to Egger regression
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(MR-Egger) by including an intercept that accounts for directional pleiotropy; the

model is based on the assumption of instrument strength independent of direct effects

(InSIDE) (Bowden et al., 2015). An extension of MR-Egger through a radial formulation

(Radial-MR), in this case the intercept does not include weights, the model is identified

as a direct sub-model to IVW model. The Radial-MR model is primarily used as

an aid for visualization of valid and invalid instruments however they also produce

consistent estimates within InSIDE assumption. The weighted median approach takes

the median of the ratio estimates after they have been given probabilistic weights that

are inversely proportional to their variances, the model is based on the assumption

of the weights derived from greater or equal to 50% valid IVs (Bowden et al., 2016b).

Similar weights are used to select the mode of smoothed density function of the ratio

estimates. The approach offers reliable estimates provided that the largest single

instrument causal effect is from a valid instrument (Hartwig et al., 2017), the modal

based estimator was extended through penalized weights (Burgess et al., 2018).

MR analyses with multiple instruments increase the power of an analysis. The ratio

estimates are instrument specific with the assumption of constant effect sizes, uneven

sizes of ratio estimates indicate weak or invalid instruments we can identify the variants

that have similar ratio estimates and obtain the causal effect from the subset (Burgess

et al., 2013). As a result, a test of heterogeneity within the ratio estimates has also been

defined by Bowden et al. (2019), with the inclusion of extra assumptions of instrument

subsets either the majority or mode (in a plurality case) of the ratio estimates to obtain

the estimate of the causal effect. While heterogeneity identifies invalid instruments,

it does not guarantee that valid instruments exist within a homogeneous subset. An

alternative to homogeneous subsets of instruments is using a linear regression where the

exposure is the predictor to the outcome, the slope is equal to the causal estimate with

residuals including the deviation and the intercept which are assumed independent

(InSIDE). The model allows the causal effect estimate to be computed even with
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invalid instruments given the validity of InSIDE.

Valid genetic instruments should generally have similar estimates (that is homogeneous),

however that is not usually the case as evidence of heterogeneity from combined

GWAS studies. Bowden et al. (2016a) introduced measures for between-instrument

heterogeneity similar to Q-statistics and I2. The detection of heterogeneity does not

always imply pleiotropy, rather it can relate to violation of instrument variable or model

assumptions like no measurement error (NOME). Even if the model assumptions are

met Q-statistics can still be inflated due to violation of NOME assumption due to large

variability from the instrument-exposure association that cannot be ignored. The large

variability can lead to violation of InSIDE assumption making the MR-Egger model

suspectible to regression dilution bias, which leads to alternative robust meta-analysis

procedures like the weighted median and modal based estimator (Bowden et al., 2016b;

Hartwig et al., 2017).

2.5.2 Penalized method and outlier detection

Most times, it is not practical to have complete knowledge of the genetic variants,

hence penalized models have been proposed by penalizing the effect of the instruments.

The choice of the penalty parameter (λ) follows cross-validation similar to the LASSO

method by Tibshirani (1996), tuning λ controls the effect on the model, as a high

value of the parameter would estimate most instruments as valid instruments and

a low value would estimate most of the instruments as invalid. Kang et al. (2016)

introduced the LASSO method for penalizing pleiotropic instruments (SiSVive), by

extending the conventional TSLS to include the penalty parameter (λ). The model

was extended by estimating the penalty parameter by cross-validation through an

adaptive LASSO (Windmeijer et al., 2019). These penalized models showed consistent

estimates provided that more than 50% of the instruments are valid, however the

models are in the form of individual-level data setting. Adaptive LASSO was extended
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into a summary-level data setup where the IVW model is extended by including

intercept terms that are SNP-specific and penalizing those pleiotropic intercept terms

(Burgess et al., 2016). Another robust method (MR-Robust) was introduced which is

a combination of method of moments estimation and Tukey’s biweight loss function

to downweight the effect of outlying instruments (Burgess et al., 2016). MR-Presso

is a test of the residual sums to identify horizontal pleitropic outliers (Verbanck

et al., 2018). The outlier test assumes ≥ 50% of the instruments are valid and the

InSIDE assumption. Zhao et al. (2018) derived a robust adjusted profile score method

(MR-RAPs) that models pleiotropic variants through a random effects distribution,

the estimates are robust by penalizing outlying variants by either Huber’s loss function

or Tukey’s biweight loss function.

The estimates of the causal effects can be modelled as a mixture distribution of the

effect sizes with the assumption that genetic markers are valid instruments. Qi &

Chatterjee (2019) measured the causal effects through a spike detection algorithm

assuming valid and invalid instruments known as the MR-Mix model. A similar

mixture model approach (conmix) models the ratio estimates which is characterized

in clusters of valid and invalid IVs with prespecific variance of invalid instruments

(Burgess et al., 2020). From the premise that valid and invalid instruments create

clusters, Foley et al. (2021) introduced an algorithm to find clusters and identify

variants that indicate different causal pathways.

2.5.3 Bayesian modelling approaches

Bayesian modelling approaches can be considered for relaxing the instrumental

variable assumptions. For example, the models can include strategies that account

for pleiotropic instruments within the likelihood and/or prior distributions. Some

strategies include adding shrinkage priors on the pleiotropic effects through the use

of hierarchical priors in a fully Bayesian estimator. In a summary level data setting,
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Li (2017) introduced a hierarchial shrinkage approach using a “Spike and Slab” prior

algorithm to penalize the effects of weak instruments. Berzuini et al. (2020) applied

the horseshoe prior on the effects on the genetic variants to account for and penalize

the effects of invalid instruments within an individual-level data setting. Thompson

et al. (2017) modelled pleiotropic scenarios within the prior distribution and used

Bayesian model averaging to provide estimates robust to those pleiotropic scenarios.

Shapland et al. (2019) introduced Bayesian model averaging methods to produce

robust estimators with dependent instruments. Shapland et al. (2020) applied

another Bayesian model averaging method where the profile likelihood score is used

as the basis for the posterior distribution within a two-sample study design. The

research by Bucur et al. (2020) introduced a Bayesian model that accounts for invalid

instruments and accommodates reverse causation. Zuber et al. (2020) introduced a

two-parameter Bayesian modelling averaging approach, which selects risk factors from

a high-throughput multivariate study design for summary-level data.

2.6 MR methods for complex traits

This section reviews MR models that estimate the causal effect of molecular phenotypes

known as complex traits. A particular problem in this area is pleiotropy, which arises

due to the polygenetic nature of these traits.

GWAS have identified numerous variants associated with complex traits (MacArthur

et al., 2017). Using results from GWAS studies to identify causal genes prove to be

difficult due to most of associated variants in linkage disequilibrium with the causal

marker (Flister et al., 2013). This highlights the importance of transcriptome-wide

association studies (TWAS) which integrates expression quantitative trait loci

(eQTLs) with GWAS studies to explore gene-trait associations (Nica et al., 2010).

Trait-associated SNPs are more likely to be linked to gene expression, which implies

31



that the instrument-exposure relationship could be mediated by gene expression.

The concept of MR analysis can be applied to gene expression levels, the genetic

variant is the instrument, the expression is the exposure of interest and the phenotype

is the outcome. Zhu et al. (2016) proposed the use of MR analysis, to search for the

most functionally relevant genes at the loci identified in GWAS for complex traits.

Since, many human complex traits are polygenic in nature, the amount of variance in

the phenotype explained by a single genetic variant is likely to be very small. As a

result, a very large sample size is required to detect the effect of a gene on a trait using

MR analysis. In practice, such large sample sizes are rarely available; however, large

amounts of summary-level data from very large-scale GWAS and eQTL studies are

available in the public domain, and these data can be used to perform two-sample MR

analyses. To test if the effect of the gene expression is mediated through transcription

Porcu et al. (2019) proposed the transcriptome-wide MR (TWMR). TWMR uses the

multivariate MR technique for estimating the impact of the gene expression adjusted

for transcription on a phenotype. These methods have revealed causal gene-trait

associations within complex traits.

2.7 Discussion

The principles, assumptions, and limitations of MR theory have been discussed in this

review. Specifically, this review discussed how genetic variants are used as instrumental

variables in the MR approach to perform causal inference in epidemiology. The review

discussed the need for large studies to improve power, due to the fact that genetic

effects explain a small proportion of the variance of the exposure. The review has also

shown that the use of genotype summary level data is very common in two-sample MR

analyses, which can be performed in MR-Base (Hemani et al., 2018). The review also

discussed the limitations of MR in terms of linkage disequilibrium and pleiotropy, in
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particular, the different types of pleiotropy and their impact on causal effect estimates.

The limitations also include population stratification and genetic heterogeneity.

This review also addressed the types of genetic variants that were used as instruments,

with the recommendation that polygenic and cis-variants are the most useful types

of instruments. We looked at the strategies used for identifying valid instruments

for analysis, which included a combination of statistical and biological processes to

identify valid instruments for analysis. We also looked at the lower level definitions

used in causal inference which underpin the MR approach. Employing instrumental

analysis (in this case, MR) helps to mitigate the effects of confounders that would

otherwise bias our causal effect estimates.

The review looked at some of the designs that have been introduced to conduct MR

studies. The review observed the similarities and differences between study designs.

We anticipate that as more data on instrument-exposure and instrument-outcome

relationships become available, MR study designs will continue to evolve.

In this review, the estimators used in MR analyses were critically evaluated, these

included the ratio, two-stage, likelihood, semi-parametric, and meta-analysis methods.

We discussed their properties in terms of their strengths and limitations. We also

covered estimators that are robust to some of the limitations of the conventional MR

estimators and the additional assumptions that they require.

Finally, this review discussed the application of MR methods for complex traits. One

problem in this field is that genetic variants can be in high linkage disequilibrium

with one another. Hence, there is interest in this area to determine whether gene

expressions are causally related to phenotypes.
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Chapter 3

Bayesian estimation of IVW and

MR-Egger models

3.1 Introduction

This chapter introduces mrbayes, an R package which implements Bayesian estimation

of the IVW, MR-Egger, and Radial MR-Egger models. The models are estimated

using Markov chain Monte Carlo(MCMC) methods through an R interface to the

JAGS and Stan software (using the rjags and rstan packages) (Plummer, 2018; Stan

Development Team, 2018). Our package includes some specified prior distributions;

non-informative, weakly informative, a shrinkage prior on the causal effect estimate

(Pseudo-Horseshoe prior), and a joint prior on the intercept and causal effect estimate

in the MR-Egger and radial MR-Egger models. The package also allows users to

specify their own prior distributions using the JAGS software.

The methods implemented in the package include some prior distributions. The

estimates of the models are fitted using different prior distributions on example

datasets. Further investigations were conducted into the joint prior distribution in
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relation to the InSIDE assumption and some strategies are introduced when choosing

prior distributions.

3.2 Methods

From the DAG in figure 3.1 the population size is represented by N , J represents

the number of instruments used for MR analysis. In the presence of confounding

variables (U), the conditional relationship between the phenotype (X) and outcome

(Y ) variables is represented by,

Ui|Gij =
J∑
j=1

κjGij + εu

Xi|Ui, Gij =
J∑
j=1

φjGij + δxUi + εx

Yi|Xi, Ui, Gij =
J∑
j=1

∆jGij + βXi + δyUi + εy.

(3.1)

Figure 3.1: Causal directed acyclic graph indicating the instrumental variable

assumptions underpinning the Mendelian randomization approach.

The variable Gij denotes the jth genetic instrument for the ith individual in the

population, φj is the parameter for the instrument-phenotype association. The

parameter κj denotes the pleiotropic (direct) effect of each genetic variant on the

outcome. The conditional densities of U , X, and Y denoted below
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P (U |G) ∼ N
(
κj, σ

2
u

)
P (X|G) ∼ N

(
φj + δxκj, σ

2
x

)
P (Y |G) ∼ N

(
∆j + δyκj + β

[
φj + δxκj

]
, σ2

y

)
.

(3.2)

The variables are extended into summary-level estimates which is a reduced form

of (3.2) to obtain estimates and standard errors for instrument-exposure (3.3) and

instrument-outcome associations (3.4). The estimate Γ̂j in (3.3) includes the effect

of pleiotropy αj = ∆j + δyκj using valid instruments it can be assumed there is little

or no effect of pleiotropy αj ≈ 0. The genotype-exposure associations is in a reduced

form of γj = φj + δxκj. and represents the genotype-outcome associations. With the

assumption that each instrument has an identical association with the outcome within

each sample, it is practical to perform two-sample MR where the genotype-exposure

and genotype-outcome variables are obtained from different samples (Bowden et al.,

2017), as such we assume that

γ̂j ∼ N(γj, σxj), (3.3)

and

Γ̂j|αj, σyj ∼ N(αj + βγj, σyj). (3.4)

Using valid instruments, the variable the estimate for β can be represented as a Wald

ratio IV estimate

Γ̂j
γ̂j

= βj. (3.5)
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The inverse variance weighted formula is used to combine the ratio estimates for each

instrument with its inverse variance weight of the first order denoted below

∑
j wjβ̂j∑
j γ̂j

= βIV W . (3.6)

The IVW estimate also represents the slope of the instrument-outcome associations

when regressed to the instrument-exposure associations with no intercept. Including

the first order inverse variance (of the instrument-outcome association) weights, where

σ2
yj

denotes the instrument-outcome variances, we can write the IVW model as

Γ̂j = βγ̂j + σ2
yj
εj; εj ∼ N(0, 1). (3.7)

Note, here the variance of the residuals being constrained to 1 indicates that the IVW

model is equivalent to a fixed effect model meta-analysis model.

The MR-Egger model is an extension of IVW model that includes an intercept

parameter. The model generates consistent estimates given the InSIDE assumption,

from (3.2) InSIDE assumption means αj 6= 0 but κj = 0. The intercept parameter in

the MR Egger model represents the average pleiotropic effect. The further the estimate

of the mean pleiotropic effect (α̂) is from zero, the larger the difference between the

IVW estimate and the true causal effect. In the MR-Egger model the variance of the

residuals, σ2, is estimated, which means that this uses a multiplicative random effects

meta-analysis model (Higgins & Thompson, 2002). Prior to applying the MR-Egger

model the instrument-exposure and instrument-outcome associations must be oriented

such that all the instrument-exposures associations are positive

Γ̂j = α + βγ̂j + σ2
yj
εj, εj ∼ N(0, σ2). (3.8)
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The radial MR-Egger model is defined as,

β̂j
√
wj = α + β

√
wj + εj, εj ∼ N(0, σ2), (3.9)

where the variable wj denotes the weights and they differ from the MR-Egger model

as the weights are applied only to the slope due to the unweighted intercept, it is

considered that the IVW model is its sub-model.

Assuming known variance, the likelihood for the MR-Egger estimator follows a

univariate Gaussian distribution, again w denotes the weights

P (Γ̂|α, β, σ, γ̂) =
J∏
j=1

N(α + γ̂jβ, σ
2wj). (3.10)

The Bayesian posterior distribution is modelled as;

P (α, β, σ|Γ̂j, γ̂j) ∝ P (Γ̂j, γ̂j|α, β, σ)P (α, β, σ). (3.11)

The default prior distributions for the parameters in the mrbayes package are

summarised in table 3.1 and discussed in the next section.
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Table 3.1: Formula for default prior models in mrbayes. For functions in IVW model,

there is no α parameter

Model Priors

Uninformative Priors α ∼ N(0, 1000), β ∼ N(0, 1000), σ ∼ U(0.0001, 10)

Weakly-Informative Priors α ∼ N(0, 1), β ∼ N(0, 1), σ ∼ U(0.0001, 10)

Pseudo-Horseshoe Priors α ∼ N(0, 1), β ∼ C(0, 1), σ ∼ IG(0.5, 0.5)

Joint Priors Please see next section

3.3 Prior distributions

The choice of prior distributions is an important factor in Bayesian estimation. This

section gives a brief description on the formulation of the different prior distributions

included in this package and the JAGS syntax used for implementing them (Plummer,

2018).

3.3.1 Non-informative prior distributions

Non-informative prior distributions are used when there is no prior knowledge about

the distribution of a parameter. This type of prior distribution is expected to produce

estimates similar to frequentist estimates. There is no “best” choice of non-informative

prior but table 3.1 denotes some possible non-informative prior distributions, these

have large variances for the average pleiotropic effect (α) and the causal effect (β).

Although, an improper prior density was set for the σ, given a large number of

instruments (J > 3) the prior yields proper posterior densities (Gelman et al., 2006a).

In the presence of pleiotropic instruments the use of vague/non-informative prior

distributions may lead to estimates with low precision Jones et al. (2012).
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3.3.2 Weakly informative prior distributions

The idea of a weakly informative prior, (3.12), is to provide partial information on

the parameters to be estimated. Therefore, they are often used when performing

regularization. Weakly informative priors could mitigate the effects of winner’s curse

(when the estimated effect might be exaggerated). These prior distributions are

described in below, where the variance is reduced for α and β compared to the

non-informative prior distributions,

α ∼ N(0, 1), β ∼ N(0, 1), σ ∼ U(0.0001, 10). (3.12)

3.3.3 Pseudo-horseshoe prior distribution

The MR-Egger estimator is extended by placing a Cauchy distribution prior on the

causal effect β ∼ C(0, 1). The Cauchy distribution was chosen as the prior distribution

due to some appealing properties, for example the divergence property of no mean and

infinite variances, whereas mode and median which are equal. An investigation into the

direction of causality through Bayesian models showed that pleiotropic instruments can

give the causal effect a multimodal distribution (Bucur et al., 2020). In the presence

of valid instruments > 50%, the divergence property of the Cauchy distribution

gives greater weighting to the strong instruments and reduces the effect of outlying

instruments. The convergence towards the Gaussian distribution in the presence of a

large number of instruments is another useful property of the Cauchy distribution as

a shrinkage prior. For efficient mixing and convergence, σ follows an inverse-gamma

distribution. The default prior distributions for our prior = "pseudo" option, in the

mr_egger_rjags and mr_radialegger_rjags functions,

α ∼ N(0, 1), β ∼ C(0, 1), σ ∼ IG(0.5, 0.5). (3.13)

40



3.3.4 Joint prior distribution

A conjugate bivariate normal prior distribution on the slope and intercept in the

MR-Egger model has been shown to have good properties (Schmidt & Dudbridge,

2017). α and β follow a bivariate prior distribution,

α|σ2 ∼ N(µα, σ2σα)

β|σ2 ∼ N(µβ, σ2σβ)

σ2 ∼ U(1, 10)

Cov(α, β|σ2) = σ2ραβ.

(3.14)

Under its accompanying InSIDE assumption, the correlation coefficient can be described

as the degree of InSIDE violation when σασβ ≥ 0 within the MR-Egger model. The

InSIDE assumption is investigated using assumed external information on the values

for the hyperparameters denoted below;

µα, µβ = 0

σα, σβ = 10.
(3.15)

I investigate if the magnitude of the correlation coefficient between the intercept

and slope of the joint prior distribution influences the estimates, which can help us

determine the ideal value of correlation coefficient ρ while conducting an MR analysis.

The MR-Egger and radial MR-Egger models are fitted for values of the correlation

coefficient (ρ) between−0.99 ≤ ρ ≤ 0.99 under the null and alternative hypothesis. The

simulated datasets consist of two-sample study design showing directional pleiotropy

when the InSIDE assumption is violated (β = 0.5).
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Figure 3.2: Estimates of the causal effect and average pleiotropic effect for different

values of ρ in the joint prior distribution.

Figure 3.2 shows the results generated for α and β from the different values of ρ,

the values show a similar pattern when the InSIDE assumption is valid or violated.

The values of the parameters within the MR-Egger model show no difference when

the correlation coefficient changes. The Radial formulation shows a pattern in the

intercept parameter where there is a little change when ρ gets closer to ±1. The

simulation illustrates that the correlation coefficient’s value has no impact on the

causal effect estimate. However, using various distributions of instrument-exposure

and instrument-associations in a summary-level data context, more research on the

impact of correlation coefficient on the causal effect estimate is needed.
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3.4 Implementation

Mrbayes package provides the following functions:

• mr_format, a function for setting up the summary-level dataset for analysis.

The functions that use JAGS/Stan software are;

• mr_ivw_rjags/mr_ivw_stan, a function for estimating causal effects using the

Bayesian IVW model, with a choice of prior distributions;

• mr_egger_rjags/mr_egger_stan, a function for estimating causal effects

through the Bayesian MR-Egger model, with a choice of prior distributions;

• mr_radialegger_rjags/mr_radialegger_stan, a function for performing

Bayesian analysis under the radial formulation of MR-Egger.

The package allows users:

• to specify custom prior distributions for the estimate of the causal effect

(betaprior) and optionally for the residual standard error (sigmaprior) for the

MR-Egger models (original and radial). This option is only for _rjags functions,

the prior distributions are written in the JAGS syntax. For more information on

how to specify prior distributions see page 34 of JAGS manual; Plummer (2012)

• to choose a random seed for reproducible results and to choose the number of

chains for MCMC, each chain should have a different seed;

• to set parameter rho, the correlation coefficient between the average pleiotropic

effect and causal estimate. This option is only relevant when using the joint

prior method;

• to plot the posterior density and investigate the MCMC diagnostics.

The package also includes two summary-level datasets containing:

• 185 SNPs with multiple instrument-phenotype associations for low-density
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lipoprotein cholesterol (LDL-c), while the instrument-outcome associations for

coronary heart disease (CHD) (Do et al., 2013);

• 14 SNPs with instrument-phenotype associations of body mass index (BMI) and

instrument-outcome associations of insulin resistance (Richmond et al., 2017).

3.5 Strategies for choosing priors

Informative prior distributions can help to account for pleiotropy in Bayesian MR

analyses (Jones et al., 2012), an approach for informative prior distributions is to

use the result from a previous study. Alternatively, for cases where prior estimates

cannot be obtained, we can use regularized priors similar to weakly informative prior

distributions. I present some strategies when considering informative prior distributions

with the emphasis on the slope parameter (which is the causal effect estimate).

The choice of a prior distribution with small standard deviation (e.g. β ∼ N(0, 1)) can

be regarded as an ideal option when Γ̂j and γ̂j are standardized which is comparable

to the IVW and the original formulation of MR-Egger models. We can set prior

distributions for the slope and its standard deviation independently, an example is

the normal gamma distribution β ∼ N(0, 1/σβ); σβ ∼ G(a, b). However, this prior

distribution applies to non-standardized error terms similar to the radial MR-Egger.

The selection of hyperparameters (a, b) can make the normal-gamma distribution have

a similar shape as the Laplace distribution which has stronger regularization. This

prior distribution can also be considered a Bayesian version of frequentist LASSO

regression (Griffin et al., 2010).
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3.6 Example: estimates from some informative

prior distributions

The package demonstration using the motivating example by Zhao et al. (2018) which

is also the example dataset in mr.raps package for estimating the causal effect of

body mass index (BMI) on acute ischemic stroke (AIS) Zhao et al. (2018). Two groups

of instruments were selected for estimating the causal effect from the summary-level

dataset. The first set of instruments were selected from the GWAS p-value threshold as

p ≤ 5× 10−8 and the second set included all the instruments. The prior distributions

applied in table 3.1 are compared with the frequentist model.

3.6.1 Data description

The data is an excerpt from the mr.raps package, details of the instrument-exposure

and instrument-outcome associations are within the package documentation. The

outcome for this dataset is acute ischemic stroke and the exposure for this analysis is

body mass index (BMI). This dataset is created from three genome-wide association

studies (GWAS). GWAS on BMI was used for SNP selection by Akiyama et al. (2017),

The UK BioBank GWAS of BMI was applied to estimate the SNPs’ effect on BMI.

The third GWAS study estimates the SNPs’ effect on AIS Malik et al. (2018). For the

joint prior the correlation between the intercept and slope is assumed 0.5.
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Table 3.2: MR estimates from summary-level data (GWAS p-value threshold). CI in

the column indicates Confidence/Credible Interval

Method Model Coefficient Estimate 95% CI

Frequentist IVW Slope 0.3292 0.1815, 0.4768

Frequentist MR-Egger Intercept 0.0047 -0.0057, 0.3423

Frequentist MR-Egger Slope 0.3319 0.0393, 0.6245

Frequentist MR-Egger Radial Intercept 0.3772 -0.5037, 1.258

Frequentist MR-Egger Radial Slope 0.326 0.0147, 0.6373

Weakly Informative Bayesian IVW Slope 0.3295 0.1797, 0.4765

Weakly Informative Bayesian MR-Egger Intercept 0.0046 -0.0067, 0.0162

Weakly Informative Bayesian MR-Egger Slope 0.3329 0.0122, 0.654

Weakly Informative Bayesian MR-Egger Radial Intercept 0.3792 -0.4417, 1.2214

Weakly Informative Bayesian MR-Egger Radial Slope 0.3266 0.039, 0.6206

Pseudo Bayesian IVW Slope 0.3262 0.177, 0.4732

Pseudo Bayesian MR-Egger Intercept 0.0046 -0.0066, 0.0156

Pseudo Bayesian MR-Egger Slope 0.3175 0.0068, 0.6251

Pseudo Bayesian MR-Egger Radial Intercept 0.3763 -0.4997, 1.2425

Pseudo Bayesian MR-Egger Radial Slope 0.3123 0.0104, 0.6113

joint Bayesian MR-Egger Intercept 0.0045 -0.0033, 0.6585

joint Bayesian MR-Egger Slope 0.331 -0.5367, 1.1729

joint Bayesian MR-Egger Radial Intercept 0.3454 0.0276, 0.6288

joint Bayesian MR-Egger Radial Slope 0.3255 0.1797, 0.4765

The estimates derived from the models are seen in table 3.2 and 3.3 (dataset including

all the instruments) figure 3.3 shows a graphical summary. From table 3.2, MR
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estimates from the frequentist modes are approximately similar to the estimates from

the Bayesian models with weakly informative priors. The slopes show evidence of

significance while the intercepts show no evidence of significance. MR estimates from

the Bayesian models with pseudo prior distributions have lower estimates this is due

to the shrinkage effect of the Cauchy distribution. Similar to the frequentist and

weakly informative prior distribution the slope parameter are significant while the

intercepts are not significant. MR estimates using the joint prior distribution are

similar to frequentist and weakly informative prior distribution. However the estimate

of the slope and intercept parameter from the MR-Egger model shows no evidence

of significance while the slope and intercept of the radial MR-Egger model indicate

significance. The features of the estimates (and significance) in table 3.3 are similar to

the 3.2 except for the Bayesian MR-Egger model using joint prior distribution as the

slope indicates non-significance while the intercept indicates significance.
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Table 3.3: MR Estimates from summary-level dataset when all instruments are included.

CI in the column indicates Confidence/Credible Interval

Method Model Coefficient Estimate 95% CI

Frequentist IVW Slope 0.3173 0.2117, 0.4229

Frequentist MR-Egger Intercept 0.0001 -0.004, 0.3214

Frequentist MR-Egger Slope 0.3173 0.0998, 0.5348

Frequentist MR-Egger Radial Intercept 0.0015 -0.32, 0.323

Frequentist MR-Egger Radial Slope 0.3173 0.0981, 0.5364

Weakly Informative Bayesian IVW Slope 0.3175 0.2104, 0.4226

Weakly Informative Bayesian MR-Egger Intercept 0.0001 -0.004, 0.0042

Weakly Informative Bayesian MR-Egger Slope 0.319 0.1043, 0.5396

Weakly Informative Bayesian MR-Egger Radial Intercept 0.0007 -0.3203, 0.3228

Weakly Informative Bayesian MR-Egger Radial Slope 0.319 0.1056, 0.5396

Pseudo Bayesian IVW Slope 0.316 0.2124, 0.4194

Pseudo Bayesian MR-Egger Intercept 0.0001 -0.0039, 0.0042

Pseudo Bayesian MR-Egger Slope 0.3095 0.0897, 0.5284

Pseudo Bayesian MR-Egger Radial Intercept 0.0025 -0.3105, 0.3208

Pseudo Bayesian MR-Egger Radial Slope 0.3094 0.0973, 0.5215

joint Bayesian MR-Egger Intercept 0.0001 0.1002, 0.5318

joint Bayesian MR-Egger Slope 0.3184 -0.329, 0.3092

joint Bayesian MR-Egger Radial Intercept -0.0013 0.0956, 0.5404

joint Bayesian MR-Egger Radial Slope 0.3222 0.2104, 0.4226
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Figure 3.3: Y-axis represents the instrument-outcome associations (acute ischemic

stroke) and the x-axis indicates the instrument-exposure associations (body mass

index)

3.7 Update including the multivariate IVW and

MR-Egger estimators

Bayesian estimation for multivariate IVW and MR-Egger models are included as an

update to the package. To investigate the direct causal effects of p exposures, (3.7)

extends to a multiple exposure model

Γ̂j = β1γ̂1j + β2γ̂2j + ...+ βpγ̂pj + σ2
yj
εj; εj ∼ N(0, 1). (3.16)
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The MR-Egger model is extended to a multiple exposure model in (3.17), extending

(3.16), with the inclusion of an intercept (β0). We note that for the MVMR-Egger

model we have to choose which exposure to orientate the genotype-outcome and

genotype-exposure associations. Hence, we can obtain a different causal effect estimate

from a model incorporating the same exposures but oriented differently. It is common

practice to orient the MVMR-Egger model with respect to the main exposure of

interest (Rees et al., 2019)

Γ̂j = β0 + β1γ̂1j + β2γ̂2j + ...+ βpγ̂pj + σ2
yj
εj; εj ∼ N(0, σ). (3.17)

The distribution of the observed Γj and the posterior distribution are given by

Γj|βi, γij, σ2 ∼ N

( p∑
i=1

γijβi, σ
2
)

(3.18)

and

p(βi, σ2|Γ, γ) ∝ p(Γ|γ, βi, σ2)p(βi|σ2)p(σ2). (3.19)

The likelihood and posterior for MVMR-Egger model would include the intercept

parameter in (3.18) and (3.19). The prior distributions are identical to those used in

univariate models except the joint prior for the intercept with all of the exposures.

The multivariate radial model is not included in this package because there has not

been research on selecting which exposures to use in the numerator of the weights, i.e.

selecting the parameter γj from wj = γ2
j

σyj
.
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3.8 Discussion

An R package, mrbayes, is presented to perform Bayesian estimation of the IVW and

MR-Egger models implemented through the JAGS and Stan software packages. The

example demonstrates the use of several different prior distributions to estimate the

causal and average pleiotropic effects from these models.

There are several R packages providing functions for MR analyses. The

MendelianRandomization and TwoSampleMR packages implement various two-sample

MR methods (Hemani et al., 2018; Yavorska & Burgess, 2017). The RadialMR R

package implements the radial MR models and visualization of instrument-exposure

and instrument-outcome associations through radial plots (Bowden et al., 2018;

Spiller & Bowden, 2019). Bayesian methods have not gained popularity in applied

studies due to limited availability of user-friendly software (Sheehan & Didelez, 2020).

Our package complements previous MR packages by offering a Bayesian perspective.

In a Bayesian analysis the prior distributions can have an important impact upon

the final parameter estimates. Hence in the mrbayes package offers a choice of

prior distributions. with the choice of four prior distributions for the causal effect;

non-informative, weakly informative, pseudo-horseshoe, and a joint prior distribution

for the MR-Egger model’s intercept and slope.
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Chapter 4

Bayesian hierarchical models in

MVMR

4.1 Motivation

Penalized regression is a statistical method commonly used when there are large number

of predictors to protect against overfitting (Tibshirani, 1996). Penalized methods

include a penalty parameter which is the threshold for the maximum likelihood estimate

of each phenotype. Some penalized models in MR analyses have been introduced in

section 2.5.2. The aim of this research is to extend the MVMR study design to a

Bayesian paradigm using a hierarchical prior distribution applied to high-throughput

summary-level data. The prior distributions include: Bayesian Lasso (Park & Casella,

2008), horseshoe (Carvalho et al., 2009) and horseshoe+ priors (Bhadra et al., 2017).

The prior distributions will be applied to a two-sample summary level GWAS dataset

to investigate the causal effects of metabolites on different outcomes.
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4.2 Penalized hierarchical priors applied to

MVMR models

Section 3.7 introduced Bayesian estimation in a multivariate MR model. In

highthrouput data we assume that there are a large number of exposures, say greater

than 10 exposures. The likelihood model in (4.1) includes a parameter λi. Therefore,

the posterior distribution in (4.2) includes the prior distribution for λi conditional on

βi

Γj|βi, γij, λi, σ2 ∼ N

( p∑
i=1

γijβi, λiσ
2
)

(4.1)

and

p(βi, σ2, λi|Γ, γ) ∝ p(Γ|γ, βi, σ2)p(βi|σ2, λi)p(σ2)p(λi). (4.2)

To apply a Bayesian model to a large multivariate dataset, a prior distribution is

needed that allows the data to collapse the entire marginal posterior for each phenotype

towards either zero or non-zero coefficients. This can be done by assuming a hierarchical

model on the parameter of each phenotype which is broken down into stages,

βi|λi ∼ p(βi|λi, τ)

λi|τ ∼ p(λi|τ)

τ ∼ p(τ).

The first prior distribution for each causal effect for each exposure (βi) is conditioned

53



with each shrinkage parameter (λi), while the distribution of the shrinkage parameter

is conditioned on an additional parameter τ . The idea behind the prior distribution is

similar to a global-local shrinkage effect, where τ performs a global shrinkage on all

the exposures while λi is exposure-specific local shrinkage parameter (Polson et al.,

2012).

4.2.1 Bayesian Lasso for MVMR

The Lasso model is a form of an L1 regularization method which includes a penalty

parameter on the phenotypes (Tibshirani, 1996). The estimate derived from the Lasso

applied to the MVMR model is given by the optimization problem

argmin
∑
j

σ−2(Γj − βpγ̂pj)2 + λ
∑
p

||β||1.

The principle of regularization methods is to penalise the log-likelihood function with

an effective non-decreasing function λ||β||. The shrinkage parameter λ defines the

magnitude of the penalty, with greater values indicating a higher penalty. βi’s are

assumed independent and can be interpreted from a Bayesian perspective as the

posterior mode of each exposure’s estimated causal effect. Park & Casella (2008)

introduced a fully Bayesian approach using prior distributions, the estimate is generated

from the mean of a distribution conditioned on the penalty parameter

βi ∼ N

(
0, σ2λi

)

λi ∼ Exp
(
τ 2

2

)
.

(4.3)
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4.2.2 Horseshoe prior distribution

The horseshoe prior is in the family of multivariate scale mixtures of normal

distributions. It has similar features to Bayesian model averaging methods for

handling sparsity and large outlying observations. From (4.4), τ represents the global

hyperparameter that follow a half-Cauchy distribution that penalises the vector β

towards zero and λi represents the local hyperparameter that reduces the effect of the

shrinkage on each phenotype’s causal effect βi

βi ∼ N(0, τ 2λ2
i )

λi ∼ C+(0, τ)

τ ∼ C+(0, σ).

(4.4)

From (4.4) the density of the local shrinkage parameter conditional to τ is denoted as

p(λi/τ) = 2
πτ
(
1 + (λi

τ

2))
which leads to the density of φi conditional on τ in (4.5)

p(φi/τ) ∝ τ√
φi(1− φi)

1
(1 + φi(τ 2 − 1)) . (4.5)

The shrinkage profile is plotted in figure 4.1 to indicate the Jacobian terms of the

horseshoe prior. The Jacobian indicates the behaviour of the profile to seperate signals

(φi = 0) from noise (φ = 1). Carvalho et al. (2010) investigated the behaviour of the

shrinkage profile (φi) for the horseshoe prior, which is derived in appendix B.1.
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4.2.3 Horseshoe+ prior distribution

The horseshoe+ prior distribution is an extension of the horseshoe prior where the

local shrinkage parameters (λi)’s are assumed conditionally independent with an extra

local shrinkage parameter ηi (Bhadra et al., 2017)

βi ∼ N(0, τ 2λ2
i )

λi ∼ C+(0, ηiτ)

τ ∼ C+(0, σ)

ηi ∼ C+(0, 1).

(4.6)

The density of the local shrinkage parameter from (4.6) integrated over the extra

parameter is

p(λi/τ) = 4
π2τ

log(λi/τ)
(λi/τ)2 − 1

that leads to the density of φi conditional on τ ,

p(φi/τ) ∝ τ√
φi(1− φi)

log (1− φi)/φiτ 2

(1 + φi(τ 2 − 1)) . (4.7)

The horseshoe+ prior offers another horseshoe U-shaped Jacobian component that

drives posterior mass to the locations of interest. This provides an extra level of

efficiency in the case of several sparse signals.
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Figure 4.1: Comparing marginal prior densities of φ. The top panel shows the density

of the horseshoe (HS) prior, and the bottom panel shows the density of the horseshoe+

(HS+) prior.

4.2.4 Estimation including horseshoe prior distributions

In this research the credible intervals of the marginal distribution are used for (exposure)

variable selection. For this analysis, the Bayesian models were estimated using the

Stan software within R using the RStan package (Stan Development Team, 2018). The

sampling technique is based on Hamiltonian Monte Carlo, which uses Hamiltonian

dynamics on the derivatives from the density function to produce efficient samples

from the posterior distribution (Betancourt & Girolami, 2015; Neal et al., 2012). The

posterior distribution is computed from 10 000 iterations, a burn-in of 1 000 samples

with 4 chains the threshold for the credible interval is set at 95%.

The formulation for horseshoe and horseshoe+ priors in (4.4) and (4.6) encounters

sampling issues when fitting models using Hamiltonian Monte Carlo. This is due

to the posterior distribution having an extreme funnel shape which is related to the
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thick Cauchy tails of the prior (Betancourt, 2017). To mitigate divergence issues,

the half-Cauchy priors on the global-local shrinkage parameters can be written as a

mixture of gamma densities

βi ∼ N(0, τ 2λ2
i )

1
λi
∼ G(0.5, ω)

ω ∼ G(0.5, τ)
1
τ
∼ G(0.5,Ψ)

Ψ ∼ G(0.5, σ2).

This is similar to the computation of the horseshoe prior in MR by Berzuini et al.

(2020). This approach is used for horseshoe and horseshoe+ prior distributions.

4.3 Simulations

The Bayesian models presented above will be investigated in three simulation scenarios

and compared with multivariate MR-IVW and MR-Egger models introduced in section

3.7. The simulation will assess the bias, standard deviation of the estimates and

coverage of the models. Data generation for the simulation study is based on the

variables denoted in (3.1). (4.8) shows the data generating process for the variables of

the risk factors and disease outcome. The simulation study indexed instruments as j

and individuals indexed as i. The simulation scenarios will be outlined in the following

subsections, along with the simulation results. The variable Xip in (4.8) represents

the exposure and Yi is the variable for outcome. The coefficient on the direct effect of

the genotypes, i.e., the pleiotropic effect of the genotypes is set to 0.2,
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Xip =
∑

φjGij + U + εxip

Yi = 0.2Gij + βipXip + U + εyi

Gij ∼ Binom(2, 0.3)

φj ∼ U(0.05, 0.15)

εxip , εy ∼ N(0, 1).

(4.8)

4.3.1 Collider scenario

A collider variable has been described in section 1.1.1, the scenario represents a

multivariable study design with 4 exposures (p = 4) with exposure variables X2 and

X3 having a null effect on the disease outcome with X4 colliding with Y as shown in

figure 4.2. The simulation scenario uses 10 instruments, 1000 individuals and 5000

iterations.

Gj

X1

X2

X3

X4

Y

Figure 4.2: DAG representing simulation scenario 1, where X4 is collider.

From table 4.1, the value of the bias for each model is approximately null. Simulations
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from the exposure with the true effect (β1 = 1) show larger standard deviations from

MVMR-horseshoe and MVMR-horseshoe+ models while MVIVW and MVMR-Egger

models have the largest coverage. For the exposure with null effect (β2), MVIVW and

MVMR-Egger models have the largest coverage and largest standard deviations, for

β3 the MVMR-BayesLasso model has the largest standard deviation while MVIVW

and MVMR-Egger models have the largest coverage. The simulation results from

the collider variable β4 show the MVMR-Egger model having the largest standard

deviations and largest coverage.

Table 4.1: Estimates from the collider scenario simualtions. SD is the standard

deviation of the estimates and cov indicates the coverage.

Models
β1 = 1 β2 = 0 β3 = 0 β4 = 1

Bias SD Cov Bias SD Cov Bias SD Cov Bias SD Cov

MVIVW -0.0001 0.163 0.99 -0.0001 0.1 0.95 0.0002 0.63 0.95 -0.0001 0.09 0.98

MVMR-Egger -0.0001 0.136 0.99 0.0001 0.21 0.95 0.0002 0.861 0.95 -0.0001 0.215 0.98

MVMR-BayesLasso -0.0001 0.1 0.91 -0.00003 0.022 0.76 0.0002 1.06 0.76 -0.00004 0.05 0.82

MVMR-Horseshoe -0.0001 0.302 0.83 -0.00001 0.005 0.72 0.0002 0.553 0.71 -0.0001 0.128 0.83

MVMR-Horseshoe+ -0.001 0.303 0.82 -0.00002 0.006 0.71 0.0002 0.642 0.71 -0.0001 0.1 0.82

The estimates from the simulation in figure 4.3 shows the MVMR-Egger model

has larger variability compared to the other models and the MVMR-horseshoe and

MVMR-horseshoe+ having the lowest variability. For β1 = 1 more than approximately

75% of the estimates fall below the true value and half of the estimates fall below the

null for β2 and β3. For the collider variable most of the estimates (> 95%) fall below

the true value.
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Figure 4.3: Boxplots of the estimates from the collider simulation scenario. Each plot

summarises the estimates for an exposure.

4.3.2 Mediation Scenario

Section 1.1.1 describes a mediation scenario. This simulation scenario is similar to

the collider scenario with the same number of exposures (p = 4) but with a different

relationship between the exposure variables. Variables X2 and X3 have a null effect on

Y while X4 mediates X3 and Y depicted in figure 4.4. The simulation scenario uses

10 instruments, 1000 individuals, and 5000 iterations.
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Gj

X1

X2

X3

X4

Y

Figure 4.4: DAG representing simulation scenario 1

Table 4.2 shows simulation results for the mediation scenario, the bias for each value of

the estimate is approximately null. For the true exposure X1 the MVMR-Egger model

has the largest standard deviation and all the models have the same value of coverage.

The exposure variable with null effect (X2) indicates that the MVMR-horseshoe+

model has the largest standard deviation and that the MVIVW model has the largest

coverage. For the exposure variable with null effect (X3), the MVMR-Egger model

has the largest standard deviation and the MVIVW model has the largest coverage.

For the X4 exposure variable MVIVW has the largest standard deviation. Figure 4.5

shows the estimates of the models have lower variability than in the collider scenario

and approximately 50% of the estimates fall below the true value for all the variables.

62



Table 4.2: Estimates the mediation scenario simulations. SD is the standard deviation

of the estimates and cov indicates the coverage.

Models
β1 = 1 β2 = 0 β3 = 0 β4 = 1

Bias SD Cov Bias SD Cov Bias SD Cov Bias SD Cov

MVIVW 0.0001 0.197 0.99 0.0003 2.71 0.99 0.0001 0.442 0.99 0.0002 0.65 0.99

MVMR-Egger 0.0001 0.231 0.99 0.0003 2.51 0.95 0.0002 0.574 0.95 0.0001 0.144 0.99

MVMR-BayesLasso 0.0001 0.11 0.99 0.0003 2.54 0.89 0.0001 0.242 0.88 0.0001 0.348 0.99

MVMR-Horseshoe 0.0001 0.032 0.99 0.0003 2.97 0.88 0.0001 0.224 0.87 0.0002 0.551 0.99

MVMR-Horseshoe+ 0.0001 0.052 0.99 0.0004 3.38 0.87 0.0001 0.25 0.86 0.0001 0.477 0.99

Figure 4.5: Boxplots of the estimates from the mediation simulation scenario. Each

plot represents the estimated effect of an exposure
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4.3.3 High throughput simulation scenario

In this simulation scenario four exposures have a direct effect on the outcome. The

study also incorporates eleven exposures that have no effect on the disease outcome

in order to produce a high throughput MVMR study design. For this simulation,

50 instruments were used with 1000 iterations. Figure 4.6 shows a summary of this

simulation scenario. The simulation results are shown in table 4.3 and figure 4.3.3.

Gj

X1

X2

X3

X15

Y

Figure 4.6: DAG representing high throughput simulation scenario

In table 4.3 the models show very low bias for all the estimates (≈ 0), and MVIVW

and MVMR-Egger models have the largest coverage. For the first true exposure the

MVMR-horseshoe+ model has the largest standard deviation while MVIVW and

MVMR-Egger models have the largest standard deviation for the second true exposure.

The MVIVW model also has the largest standard deviation for the third and final

true exposures. For the exposures with null values, the highest standard deviations

vary between MVIVW and MVMR-Egger models except for β9, β12, β13 and β14.
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For the true exposure variables the simulation estimates in figure 4.3.3 show

approximately 95% fall below the true value and the Bayesian models have lower

variability compared to the MVIVW and MVMR-Egger models. For the null exposure

variables, approximately 75% of the estimates are above the true value with similar

variability as the true exposure variables.

Figure 4.7: Boxplots from estimates from the high throughput simulation scenario
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4.4 Data application

For this section, the proposed methods are applied in two two-sample summary level

datasets which include; i) a small number of exposures and ii) a large number of

exposures. The details of the study designs are described in further sections.

4.4.1 Data description

The models are applied to the summary-level dataset previously published by Kettunen

et al. (2016), which was made available in the MRChallenge GitHub repository (https:

//github.com/WSpiller/MRChallenge2019). The dataset consists of 148 instruments

with 118 exposures and 7 disease outcomes. The exposures are grouped into metabolite

risk factors. The outcome consists of Ischemic stroke, type-2 diabetes, small vessel

stroke, cardioembolic stroke, age-related macular degeneration, Alzheimer’s disease,

and large artery disease.

4.4.2 Data application 1: Investigating the causal effect of

low-density lipoprotein particle sizes on cardioembolic

stroke

The multivariate models are applied to the summary-level data described in 4.4.1

to investigate the causal effect of LDL particle sizes on cardioembolic stroke. The

particle sizes selected are small very-low density lipoprotein (S.VLDL.P), small low

density lipoprotein (S.LDL.P), medium very-low density lipoprotein (M.LDL.P), large

very-low density lipoprotein (L.VLDL.P), and large low density lipoprotein (L.LDL.P).

Figure 4.8 shows the results of the analysis. The MVIVW and MVMR-Egger models

provide evidence of a causal effect of M.LDL.P on cardioembolic stroke, whereas, the

Bayesian models show no evidence of a causal effect.
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Figure 4.8: Results from multivariate models using cardioembolic stroke as the outcome.

Further assessment of the estimates in table 4.4 indicates that M.LDL.P has a very large

estimate and the confidence interval does not include the null using the MVIVW and

MVMR-Egger models. However, the MVMR-BayesLasso model has a lower estimate,

with a credible interval that does include the null, whilst the MVMR-Horseshoe and
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MVMR-Horseshoe+ models show estimates at the null, again with credible intervals

including the null. This demonstrates a significant difference in the models, which will

be discussed more in the following section.

Table 4.4: Direct effect of M.LDL.P

Models Estimates (95% CI/CrI)

MVMR-IVW 3.11(0.54,5.68)

MVMR-Egger 3.01(0.38,5.65)

MVMR-BayesLasso 0.64(-0.46,2.53)

MVMR-Horseshoe 0.03(-0.13,0.38)

MVMR-Horseshoe+ 0.04(-0.12,0.43)

4.4.3 Data application 2: Investigating the causal effect of

cholesterol content, triglyceride content, and particle

diameter on Ischemic stroke

The exposures are pre-selected to include only lipoprotein measurements on total

cholesterol content, triglyceride content, and particle diameter in order to avoid

multi-collinearity among the exposures. Furthermore, risk factors are chosen if they

are strongly associated with at least one genetic variant which is included as an

instrumental variable, through selecting exposures with p-values less than a certain

threshold (p< 5× 10−8). Figure 4.9 shows the genetic correlation between the selected

exposures.
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Figure 4.9: Genetic correlation between the selected exposures.

The MVMR models introduced earlier are applied on LDL-C-related lipid subfractions

to examine their causal effect on Ischemic stroke. The results of multivariate analysis

show the estimates and their confidence/credible intervals from the models in figure

4.10. Table 4.5 shows the estimate of the direct effect of S.LDL.P from the different

models. The MVMR-IVW and MVMR-Egger models show evidence of a causal effect,

whereas the Bayesian models do not provide evidence in favour of a causal effect.
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Figure 4.10: Results from multivariate models using Ischemic stroke as the outcome.

Table 4.5: Direct effect of S.LDL.C

Models Estimates (95% CI/CrI)

MVMR-IVW 0.93 (0.23,1.62)

MVMR-Egger 0.93 (0.23,1.63)

BayesLasso 0.34 (-0.10,0.91)

Horseshoe 0.01 (-0.04,0.10)

Horseshoe+ 0.0065 (-0.04,0.1)
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4.5 Discussion

This section discusses the differences between the multivariate MR models, potential

extensions of shrinkage priors with relation to hyperparameters, as well as alternative

techniques for the selection of exposures in the MVMR study designs. Finally, the

possibility of big data in MR is discussed.

4.5.1 Penalised versus non-penalised models

The simulation results show MVIVW and MVMR-Egger models having larger coverage

than the Bayesian models presented in section 4.2 with similar bias values. In section

4.4, the main difference between the penalised and non-penalized models is highlighted.

The non-penalised models (MVIVW and MVMR-Egger) have large and significant

estimates, but the penalised models (MVMR-BayesLasso, MVMR-Horseshoe, and

MVMR-Horseshoe+) have reduced and non-significant estimates. This raises concerns

about the overshrinkage of estimates derived from penalised models. In a later

subsection, we will discuss on choice of hyper parameters and variable selection.

4.5.2 Choice of hyperparameters

For the Bayesian models using hierarchical prior distributions (e.g., horseshoe and

horshoe+), there has been no consensus on how to derive the inference on the global

parameter. An estimate of τ can be input into (4.4) which can be obtained from the

maximum marginal likelihood, which has the advantage of lower computational cost.

However there is a possibility of collapsing τ = 0 in the presence of larger exposures

due to an increased number of exposures with a null effect. Bayesian inference is

preferred for the global parameter for computational efficiency and because it can

account for posterior uncertainty. The proposed choice of prior follows a half-Cauchy

distribution for the global parameter by Carvalho et al. and Gelman et al..
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4.5.3 Variable Selection

From our study, we observed that estimates from models using the horseshoe and

horseshoe+ priors were heavily penalized which affects the variable selection. Zuber

et al. (2020) factored the marginal inclusion probability of each exposure to improve

variable selection. We suggest the prior distribution of τ parameter is modified such

that the variance is derived from the assumed non-zeros from the vector βp similar

to Piironen & Vehtari (2016). In the presence of correlated exposures the increase in

the number of exposures can produce results that are not intuitive. We also suggest

further research into applying the regularized horseshoe prior (Piironen et al., 2017).

4.5.4 Conclusion

The increased number of GWAS studies on metabolites and blood lipids provides the

opportunity for a summary-level dataset with large number of exposures in an MR study.

This work demonstrates the difference between penalised and non-penalized models in

the MVMR study design and highlights that over-shrinkage can be problematic.
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Chapter 5

Weighted percentile and

conditional quantile estimation for

summary-level Mendelian

randomization analyses

5.1 Introduction

Earlier in section 2.5 we discussed that MR-IVW estimator is susceptible to outliers

that may be attributed to pleiotropy. The effect of the outliers could bias the

causal estimate. This motivated researchers to develop sensitivity analyzes such as

the weighted median, modal estimators, and robust regression methods to mitigate

the effects of outlying variants (Bowden et al., 2015; Hartwig et al., 2017; Burgess

et al., 2016). Median quantile regression has semi-parametric properties by removing

parametric assumptions on the error term making it robust to outliers. The model has

been applied in MR settings when investigating a non-linear causal effect between the
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exposure and outcome variables (Burgess et al., 2014; Staley & Burgess, 2017) and a

sensitivity analysis model in a multivariate MR study design (Grant & Burgess, 2020).

This research extends the conditional and weighted median estimators to investigate

the use of different quantiles as a form of further sensitivity analysis. The approach is

akin to extracting estimates of different percentiles from the MR-median and weighted

median estimators.

5.1.1 Quantile regression in Mendelian randomization

The motivation for looking into different quantiles will be explained in this section.

Quantile regression is widely used in epidemiology, particularly in the research of growth

trajectories for example Wei et al. (2019), but do they have the same meaning when it

comes to a Mendelian randomization analysis? Figure 5.1 illustrates a hypothetical

scenario in which a summary-level dataset is analysed using quantile regression. The

instrument-exposure and instrument-outcome associations from two summary-level

datasets include both valid and invalid instruments. In the left panel, the IVW estimate

is biased by the invalid instruments. Whereas, the conditional median estimate using

quantile regression model is close to the true value of the causal effect. The right panel

shows the estimate from the 1st quartile (0.25) is closer to the true value. This is a good

reason to look at the other percentiles for weighted median and conditional-median,

the differences of the medians will be explained in 5.2.3.
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Figure 5.1: Scatter plots of instrument-exposure and instrument-outcome associations

for hypothetical datasets in which the MR-median estimate is approximately unbiased

(left panel) and where the MR-median estimate is biased (right panel). βIV W : IVW

estimate, βtrue: True value in these hypothetical examples, βτ=0.5: MR-Median estimate,

βτ=0.25: 0.25 quantile estimate

5.2 Percentile and quantile models in MR

The weighted percentile and MR-quantile models are presented in this section. This

section also explains the difference between the weighted percentile and MR-quantile

models, as well as the rationale behind the adjusted quartile estimator and modal

quantile estimator.

5.2.1 Weighted percentile estimator

The weighted median assumes a median estimator with equal weights and it is consistent

if only up to 50% of the instruments are invalid (Kang et al., 2016). The contribution

of the instrument (j) and the weights to the distribution of the causal effect are

proportional. The weighted percentile estimator is described below, when τ = 0.5 the

equation is equivalent to the weighted median estimator
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sj =
j∑

k=1
wk

θ = sj − wkτ
sj

WP = β̂k + (β̂k+1 − β̂k)θ.

The variables represent;

• k: the number of values less than the percentile

• β̂k = Γ̂k
γ̂k
: ordered ratio estimates

• wk = γk
σyk

: ordered corresponding weights

• τ ∈ (0, 1) represents the quantile level.

5.2.2 Quantile regression models

Quantile regression summarizes the univariate probability distribution function. It

is not influenced by the tail of distributions which provides robust estimates in the

presence of outliers (Koenker, 2017). The following is a brief description of the quantile

distribution:

• Given a discrete random variable (X), for any τ ∈ (0, 1) the τth quantile of X

is any value (ρτ ) such that Pr(X < ρτ ) ≤ τ ≤ Pr(X ≥ ρτ ).

• If X is a continuous random variable with cumulative distribution function then

for every X the probability would be Pr(X < x) = Pr(X ≤ x) = F (x) the τth

quantile is any value (ρτ ) such that F (ρτ ) = τ .

• Given a probability density p(x, y) the quantile function for the conditional
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distribution can be defined as Q(τ |x) = F−1(τ |X) = inf
[
y : P (Y ≤ y|x)

]
Koenker & Bassett Jr (1978) provide a method to estimate the conditional quantile

for any τ ∈ (0, 1), the quantile function for Mendelian randomization

QΓ(τ |γ) = βγj + wjF
−1(τ), (5.1)

when τ = 0.5 this is equivalent to conditional median model.

Quantile regression in MR uses a linear programming algorithm

β̂(τ) := argmin
J∑
j=1

ρτ (Γ̃j − βγ̃Tj )

for estimation, the variable wj represents the first order weights.

The variables Γ̃j and γ̃j represents the instrument associations divided by the first

order weights. The loss function variable ρτ (.), is defined as

ρτ (.) =


τu u ≥ 0

−(1− τ)v, v < 0.

The quantile estimator uses an absolute loss function, which does not directly estimate

a standard error, however the bootstrap method is used to estimate the standard

errors, from which confidence interval limits are constructed. The standard form of

the linear programme is elaborated in section C.1.

5.2.3 Ranked ratio and conditonal quantile estimates

Ranked ratio estimates are estimates derived from the weighted percentile model while

quantile conditional quantile estimates are derived from the quantile regression model.
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This section briefly discuss the differences between the estimators. In a research by

Grant & Burgess (2020), the multivariate version of weighted median is assumed to

be multivariate quantile regression model. In some cases the estimates can be closely

similar, however, these approaches are different because the weighted percentile is the

product of ranked ratio estimates with their respective weights, whereas the quantile

regression is the conditional densities at each quantile. Also, for quantile regression,

the lengths of the solution intervals for the quantiles are irregular and depend on the

study design, the role of order statistics is now performed by pairs of points to define

the approximate linear conditional quantile functions. In contrast to the ordinary

sample quantiles which are equally spaced on the quantile interval τ ∈ [0, 1], with each

separate order statistic occupying equal intervals of length 1
n
(Koenker, 2005). This

means the order of the estimates from the conditional densities would be random as

the quantile level changes, table 5.1 summarises the difference between the estimators.

Table 5.1: Difference between weighted quantile and conditional quantile

Weighted quantile Conditional quantile

Extension of weighted median for other centiles Quantile regression for other quantiles

Ranked ratio estimates with their respective weights Conditional densities at each quantile

Estimates are linear with the centile value Estimates depend on study design in (5.1)

5.3 Alternative quantile estimators

This section will introduce two proposed estimators extended from conditional quantile

models in (5.1) in the following subsections.
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5.3.1 Adjusted quartile estimator

Given that greater than 50% of the instruments are valid, the median of the centile

estimators has been proved to be consistent (Bowden et al., 2016b; Grant & Burgess,

2020). In figure 5.2, we hypothesise that, for example, the range of valid instruments

lie between the 0.25 and 0.75 percentiles. Based on this intuition, we propose an

adjusted centile estimator utilising the quartile estimates

βadjτ = β0.25 + 2β0.5 + β0.75

4 . (5.2)

We derive its standard error by bootstrapping methods.

τ=0.25 τ=0.5 τ=0.75

Valid 

Invalid Invalid 
τ

QΓ(τ|γ)

Figure 5.2: Hypothetical density plot indicating conditional density plot in

summary-level Mendelian Randomization

5.3.2 Modal quantile estimator

From section 5.2.3, we discuss why the estimates from the conditional quantile are

usually irregular due to the study design. The modal quantile estimator is proposed
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as an alternative estimator, this involves estimating the mode of the quantile space

(that is the mode of estimates from (5.1) within the quantile space). Consider the

kernel density function of the quantile estimates

f(x) = 1
h
√

2π

nτ∑
i=1

exp
[
− 1

2

(
x− β̂τ
h

)2]
(5.3)

where h is the smoothing bandwidth parameter that regulates bias-variance trade

off. Silverman’s rule of thumb is used in selecting the value h (Silverman, 2018).

The mode from the kernel density of the quantile is value of x that will maximise

f(βMQE) = max[f(x)]. Figure 5.3 gives a summary of the proposed quantile estimator.

βMQE
f(Βτ)

Figure 5.3: Hypothetical density plot from the distribution of quantile estimates. The

x-axis denotes the distribution function of the conditional quantile estimates.
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5.3.3 Instrument validity within quantiles

The research will also investigate the influence of outlying variants in the various

quantiles using the generalized Cook’s distance for the different quantiles (Benites

et al., 2015). The method uses EM algorithm to derive the maximum likelihood of the

regression quantile estimates and develop a case-deletion diagnostics analysis. This

method is applied using quokar package in R statistical software (Wang et al., 2017).

5.4 Simulation studies

The properties of the quantile models are investigated in simulation scenarios. The

setup for the simulation is in a two sample summary-level dataset generated from an

individual level data with sample size of (n = 10, 000), and large number of genetic

variants j = 200. The simulation studies will investigate the models assuming a null

effect and evidence of causal effect (β = 0.2) between the exposure and outcome

variables. The variables are derived from (3.1), (3.3), and (3.4). The parameters are

generated by

Gij ∼ Binomial(2,maf)

maf ∼ U(0.1, 0.5)

γj ∼ U(0.5, 4)

εu ∼ N(0, 2)

εx, εy ∼ N(0, 1)

(5.4)

where maf represents minor allele frequency.

The simulation scenarios include Balanced, Directional and Directional (InSIDE

satisfied) pleiotropy. The scenarios depend on the parameters for genetic effect from
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the confounder (κj) and pleiotropy (αj) link to (3.4), Table 5.2 indicates the data

generation model of each variable in relation to the scenario. The simulation studies

would be used to assess the precision and accuracy of the estimates.

Table 5.2: The different distributions of the pleiotropy parameter in the simulation

scenarios.

Scenario Distribution of pleiotropy parameter

Balanced Pleiotropy αj ∼ U(−0.2, 0.2)

Directional Pleiotropy(InSIDE) αj ∼ U(0, 0.2)

Directional Pleiotropy αj ∼ U(0, 0.2), κj ∼ U(0, 0.1)

5.4.1 Simulations assuming null effect

This section discusses the simulation results assuming a null effect. Table 5.3 shows

the mean estimates and mean standard error from the simulation scenarios. Figure

5.4 denotes the boxplot of the estimates generated from the simulation scenarios

to indicate the accuracy of the estimates. The estimators are accurate within the

balanced pleiotropy scenario although the precision reduces with the increase of invalid

instruments. From the directional pleiotropy scenario, the adjusted quartile estimator

produced more accurate estimates, however, as the proportion of invalid instruments

increases most of the estimates generated fall above the null value making them less

accurate than the balanced pleiotropy scenario. Following the InSIDE assumption

within the directional pleiotropy scenario, the generated estimates are more accurate

than within the directional pleiotropy but less accurate as the proportion of invalid

instruments increases. For the directional pleiotropy scenarios, the boxplots show the

adjusted quartile estimator produce more accurate values within those scenarios.
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Table 5.3: Mean estimates and standard errors within simulation scenarios assuming

null causal effect

Proportion of

invalid instruments MR-median Weighted Median Adjusted quartile MQE

Balanced

0.1 0(0.002) 0(0.0022) 0(0.0013) 0(0.0022)

0.3 0(0.0024) 0(0.0024) 0(0.0018) 0(0.0029)

0.5 0(0.0031) 0(0.0026) 0(0.0026) 0(0.0042)

Directional

0.1 0.0017(0.002) 0.0016(0.0022) 0.0021(0.0014) 0.0002(0.0023)

0.3 0.0072(0.0032) 0.0066(0.0026) 0.0108(0.0029) 0.0017(0.0031)

0.5 0.0195(0.0066) 0.0177(0.0031) 0.0235(0.0039) 0.0086(0.0051)

Directional (InSIDE)

0.1 0.0015(0.002) 0.0014(0.0022) 0.0018(0.0014) 0.0004(0.0022)

0.3 0.0056(0.0026) 0.005(0.0024) 0.0073(0.0021) 0.0017(0.0028)

0.5 0.0124(0.0041) 0.011(0.0027) 0.0153(0.0027) 0.0057(0.0037)
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Figure 5.4: Boxplot of the estimates within the simulation scenarios. MR-median

represents the quantile regression model in MR.

The mean absolute error (MAE) is measured from the simulation scenarios denoted

in figure 5.5. For the pleiotropic scenarios, the modal quantile estimator(MQE) has

the largest value of MAE for all proportion of invalid instruments. At 10% of invalid

instruments the adjusted quartile estimator has the lowest value, within 30% of invalid

instruments the adjusted quartile and MR-median estimators have the lowest MAE

and at 50% of invalid instruments the MR-median and weighted median have the

lowest MAE.
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Figure 5.5: Barplot of the mean absolute error of the estimates within the simulation

scenarios

Simulations also investigated the behaviour of the weighted percentile and MR-quantile

estimators when the quantile (τ) lies between (0.1, 0.9). The results from the directional

pleiotropy scenario (InSIDE) denoted in figure 5.6 were compared using simulations

within different quantiles. Figure 5.6 shows that as the proportion of invalid instruments

increases, the estimates from lower percentiles (τ ≤ 0.4) fall below the true value.
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Figure 5.6: Boxplot of the estimates within different quantiles in a directional pleiotropy

scenario. The title of each plot indicates the proportion of invalid instruments.
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5.4.2 Simulations assuming a causal effect

Table 5.4 shows the mean estimates and mean standard error generated within the

simulation scenarios. For the pleiotropic scenarios, the mean estimates from the

adjusted quartile estimator are closer to the true value followed by the MR-median

model, the weighted median model and the modal quantile estimator. In the directional

pleiotropic scenarios, the mean estimates increases with the proportion of invalid

instruments.

Figure 5.7 denotes the boxplot of estimates generated within the simulation scenario.

Generally, the MR-median model produces more accurate estimates than other models

and the estimators performed better within the directional (InSIDE) pleiotropy scenario

more surprisingly with increased invalid instruments. Figure 5.7 also indicate that

within a balanced pleiotropic scenario, the proportion of invalid instruments have

little or no effect on the estimates as they remain the same within the proportion

of invalid instruments. The mean absolute error (MAE) in figure 5.8 show the same

features within all simulation scenarios, with the modal quantile and weighted median

estimator having the higher mean absolute error and the adjusted quartile having the

least MAE.
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Table 5.4: Mean estimates and standard errors within simulation scenarios assuming a

causal effect

Proportion of

invalid instruments MR-median Weighted Median Adjusted quartile MQE

Balanced

0.1 0.165(0.0147) 0.1484(0.0069) 0.1684(0.0098) 0.145(0.0146)

0.3 0.1648(0.0149) 0.1483(0.0069) 0.1684(0.0099) 0.1449(0.0148)

0.5 0.1645(0.0151) 0.1481(0.0069) 0.1684(0.01) 0.1444(0.0151)

Directional

0.1 0.1702(0.0148) 0.1534(0.0069) 0.174(0.0099) 0.15(0.0147)

0.3 0.1813(0.0153) 0.1634(0.0072) 0.1857(0.0103) 0.1599(0.0154)

0.5 0.1921(0.0155) 0.1737(0.0074) 0.1972(0.0105) 0.1702(0.0158)

Directional (InSIDE)

0.1 0.1684(0.0148) 0.1516(0.0069) 0.172(0.0098) 0.1482(0.0146)

0.3 0.1751(0.0151) 0.1577(0.0071) 0.1792(0.01) 0.1542(0.015)

0.5 0.1826(0.0153) 0.1643(0.0072) 0.1873(0.0102) 0.1613(0.0152)

89



Models MR−median Adjusted quartile Weighted Median MQE

0.08

0.12

0.16

0.20

0.24

0.1 0.3 0.5

E
st

im
at

es
Balanced

0.10

0.15

0.20

0.25

0.1 0.3 0.5

E
st

im
at

es

Directional

0.10

0.15

0.20

0.25

0.1 0.3 0.5

E
st

im
at

es

Directional(InSIDE)

Figure 5.7: Boxplot of the estimates within the simulation scenarios. MR-median

represents the quantile regression model in MR.
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Figure 5.8: Barplot of the mean absolute error of the estimates within the simulation

scenarios

The results from the directional pleiotropy scenario (InSIDE) denoted in figure 5.9 were

compared using simulations within different quantiles. From figure 5.9, in the presence

of varying invalid instruments, estimates from the higher quantile/percentile have a

better precision towards the true value, especially within the 0.6 and 0.7 quantile.
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Figure 5.9: Boxplot of the estimates within different quantiles in a directional pleiotropy

scenario. The title of each plot indicates the proportion of invalid instruments.
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5.5 Data application

The quantile models are used to estimate the causal effect of lipid levels on coronary

heart diseases. Summary-level estimates and standard errors for the data were

generated with genetic variants for cholesterol levels (Waterworth et al., 2010).

The summarized data includes instrument-exposure associations of LDL-C and

HDL-C; the instrument-outcome association of coronary heart disease was obtained

from MendelianRandomization package (Yavorska & Burgess, 2017). The analysis

is implemented into two separate categories based on instrument selection, the

categories are instruments within p-value threshold (p-value ≤ 5 × 10−8) for each

instrument-exposure associations and using all the instruments for the same analysis.

5.5.1 Analysis using instruments from p-value threshold

The estimates from the quantile models are summarised in table 5.5. Results from

investigating the causal effect of LDL-C of coronary heart disease show the evidence

of causal effect which is similar to previous research works. Within LDL-C, when

using all the instruments also show evidence of causal effect. There is an inflation

of the estimates in the presence of more invalid instruments which is similar in the

simulation scenario. For the HDL-C exposure there are negative causal estimates

which are significant except for the weighted median. The result from the analysis is

denoted in a scatter plot for selected instruments in figure 5.10 and all instruments in

figure 5.14.
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Table 5.5: Estimates and confidence interval of the quantile models

Models P-value threshold All instruments

LDL-C

Weighted Median 0.4588(0.3329,0.5846) 0.4606(0.3377,0.5834)

MR-median 0.4565(0.3368,0.5763) 0.4571(0.3393,0.575)

Adjusted quartile 0.4555(0.3799,0.5311) 0.4571(0.3854,0.5289)

MQE 0.4566(0.3381,0.5751) 0.4571(0.3381,0.5751)

HDL-C

Weighted Median -0.0687(-0.2069,0.0696) -0.0689(-0.204,0.0663)

MR-median -0.1758(-0.342,-0.0095) -0.2222(-0.3931,-0.0514)

Adjusted quartile -0.1641(-0.2747,-0.0535) -0.1962(-0.3107,-0.0816)

MQE -0.2209(-0.3665,-0.0753) -0.2382(-0.3665,-0.0753)

The analysis is extended to investigate the causal effect within the quantile region for

instruments selected from the p-value threshold of the genotype-exposure associations.

Table 5.6 summarises the estimates from the conditional and weighted quantile

estimators. Under the LDL-C exposure variable, the weighted percentile model

has an increasing causal estimate with the percentile, whereas the mr-quantile model

has the same estimate within the quantile space. The weighted percentile estimates

for HDL-C exposure increase as the quantile level increases, whereas the MR-quantile

estimates decrease.

Table 5.6 indicates how each approach differs as earlier stated in section 5.2.3. The

estimate from weighted percentile is expected to correlate with the quantile level (i.e.

the quantile level increases/decreases with the estimate), whereas estimates from the

MR-quantile model vary within the quantiles. For insight into the influence of outlying
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variants within the quantile space the Cook’s distance for each genetic variant are

measured for each exposure the results are denoted in figure 5.12 and 5.13 .

Figure 5.10: Scatter plot of the summary-level data including the genetic variants

within the p-value threshold.

The estimates of the weighted percentile in table 5.6 was used to fit the density

plot including the estimates as vertical lines in figure 5.11. Estimates lie below or
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approximate the median except for the MR-Egger estimate.

Table 5.6: Estimates and confidence interval for weighted and conditional quantile

space

LDL-C HDL-C

Quantile Weighted Percentile MR-IVW quantile Weighted Percentile MR-IVW quantile

0.1 -0.1254(-0.3328,0.0821) 0.4571(0.314,0.6003) -1.3333(-1.5828,-1.0839) -0.0742(-0.2691,0.1207)

0.2 0.2821(0.1347,0.4295) 0.4571(0.3355,0.5787) -0.6068(-0.7977,-0.416) -0.0742(-0.2489,0.1005)

0.3 0.3001(0.1639,0.4363) 0.4571(0.3414,0.5729) -0.355(-0.5366,-0.1733) -0.0902(-0.254,0.0737)

0.4 0.4489(0.3188,0.5791) 0.4571(0.3397,0.5746) -0.177(-0.3281,-0.0259) -0.1758(-0.3407,-0.0108)

0.5 0.4606(0.3377,0.5834) 0.4571(0.3367,0.5776) -0.0689(-0.204,0.0663) -0.2222(-0.3958,-0.0486)

0.6 0.588(0.4571,0.7189) 0.4571(0.3411,0.5732) 0.001(-0.131,0.1329) -0.2235(-0.4054,-0.0416)

0.7 0.6021(0.4594,0.7448) 0.4571(0.3266,0.5877) 0.0622(-0.0747,0.1991) -0.25(-0.4388,-0.0612)

0.8 0.7668(0.6025,0.9311) 0.4571(0.3191,0.5951) 0.1408(-0.0119,0.2935) -0.2625(-0.5061,-0.0189)

0.9 1.0526(0.8339,1.2712) 0.4571(0.3085,0.6058) 0.3858(0.1864,0.5853) -0.2722(-0.5542,0.0097)
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Figure 5.11: Density plot of weighted percentile the vertical lines indicate estimates

from the models

Figure 5.12 shows the model may be affected by outlying instruments especially within

lower quantile, however there is no evidence of outlying variants around the upper

quantile (τ = 0.6, 0.7 & 0.8). Tracing the estimates from the quantile level in table

5.6 show similar and significant values indicating the model is not affected by outliers.

The results from investigating outlying instruments within the different quantiles for

HDL-C as shown in figure 5.13 shows no outlying variant τ = 0.4.
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Figure 5.12: Diagnostic plots of each quantile using instruments related to LDL-C

selected from p-value threshold
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Figure 5.13: Diagnostic plots of each quantile using instruments related to HDL-C

selected from p-value threshold

5.5.2 Analysis using all the instruments

This section discusses the findings of the analysis using all of the instruments within

the quantile space, having discussed estimates from the quantile model in the earlier

section. Figure 5.14 gives a graphical summary of the estimates, looking at the scatter

plot indicates similar estimates within each exposure, leading to further investigation

within the quantile space. Estimates from the weighted percentile model in table

5.7 has similar features with table 5.6 as the estimates correlates with quantile level.

Estimates from MR-quantile models show changes as the quantile level increases.

99



Figure 5.14: Scatter plot of the summary-level data including all instruments
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Table 5.7: Estimates and confidence interval for weighted and conditional quantile

space using all the instruments

LDL-C HDL-C

Quantile Weighted Percentile MR-IVW quantile Weighted Percentile MR-IVW quantile

0.1 -0.1053(-0.3076,0.097) 0.4524(0.3148,0.59) -1.2735(-1.5281,-1.0188) -0.0742(-0.2392,0.0908)

0.2 0.2834(0.1305,0.4363) 0.4524(0.3235,0.5813) -0.6015(-0.7963,-0.4067) -0.0742(-0.253,0.1047)

0.3 0.3007(0.162,0.4395) 0.4524(0.3299,0.5749) -0.3293(-0.4937,-0.1649) -0.0902(-0.2661,0.0858)

0.4 0.4482(0.3197,0.5767) 0.4565(0.3304,0.5827) -0.1354(-0.2846,0.0139) -0.1324(-0.3057,0.041)

0.5 0.4588(0.3329,0.5846) 0.4565(0.3428,0.5702) -0.0687(-0.2069,0.0696) -0.1758(-0.3484,-0.0031)

0.6 0.5877(0.4534,0.7219) 0.4565(0.3496,0.5634) -0.022(-0.1561,0.1122) -0.2222(-0.4073,-0.0372)

0.7 0.5948(0.4504,0.7392) 0.4565(0.3242,0.5889) 0.0621(-0.0711,0.1953) -0.2235(-0.4279,-0.0192)

0.8 0.756(0.5965,0.9155) 0.4565(0.3136,0.5994) 0.1326(-0.0197,0.2849) -0.2308(-0.4616,1e-04)

0.9 1.036(0.8136,1.2583) 0.4571(0.3014,0.6129) 0.3407(0.1463,0.5351) -0.25(-0.5198,0.0198)

Figure 5.15: Density plot of weighted percentile the vertical lines indicate estimates

from the models
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Further investigation of the outlying effects within the quantile space shows more

variability due to the inclusion of more instruments especially in figure 5.16.
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Figure 5.16: Diagnostic plots of each quantile in LDL-C using all instruments
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Figure 5.17: Diagnostic plots of each quantile related to HDL-C using all instruments

5.6 Discussion

This research investigates quantile models applied to summary level Mendelian

randomization analyses. The MR-median estimator is known to have good properties,

from this alternative estimators were proposed. The properties of the estimators are

investigated using simulations and data applications. The simulations show consistent

estimates in the presence of pleiotropy and invalid instruments. From the data

application, this research also introduced the use of the generalised Cook’s distance to

investigate the presence of outlying instruments.
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Grant & Burgess (2020), in a simulation study, introduced the multivariate quantile

median estimator as a multivariate form of the weighted median estimator and is

implemented in the MendelianRandomization package (Yavorska & Burgess, 2017).

Results from simulation within quantiles show the estimates from the models differ

especially in pleiotropic scenarios, this is also supported by the estimates in the data

application section. According to the data application, the estimates generated from

the quantile space of the MR-quantile model do not correspond to the quantile level

in a linear fashion. The estimators proposed here are designed to take advantage

of the quartiles and mode of estimates found within the conditional quantile space

of estimates. Compared to weighted estimators, quantile regression models produce

consistent estimates. The mode and quartiles estimators are being used to support

the median of the quantile regression model as a sensitivity analyses.

Further research could extend the MVMR-Median model by Grant & Burgess (2020)

to include a penalty parameter in the design of a high-throughput MVMR model.

Additionally, due to the limitations of the parametric bootstrap to estimate the standard

error of these estimates, there is scope for further research into semi-parametric methods.

For example, assuming the instrument-outcome association follows an asymmetric

Laplace distribution to derive the maximum likelihood estimate (Benites et al., 2015).

Finally, conditional median density and weighted median are established sensitivity

analyses in MR studies. The advantages of investigating the different quantiles is that

they can produce consistent estimates in the presence of heterogeneity and give a

broader understanding of the conditional distribution of the effects of the exposure on

a disease outcome.
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Chapter 6

Discussion & conclusions

6.1 Discussion

This thesis investigated and proposed statistical models to apply in a MR analysis

using summary-level data. The research consists of a literature review, the introduction

of software to apply Bayesian summary-level data models, introducing hierarchical

Bayesian models suitable for high-throughput summary-level data, and the investigation

of quantile estimators to summary-level data MR analyses. Each area is discussed,

and suggestions are made for future research.

6.1.1 Bayesian implementation of estimators for summary

level MR analyses: mrbayes package

Chapter 3 is a report on the package mrbayes which implements Bayesian models

for two-sample summary-level data MR analyses. The package implements a range

of prior distributions for the IVW, MR-Egger, and Radial Egger models, and their

multivariate versions. The Monte-Carlo Markov chain sampling is performed within

either JAGs or Stan. Introducing this package gives the opportunity for more applied
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Bayesian analysis within summary-level MR research. Extension to the package could

include incorporating additional likelihood models and creating a web application for

univariate and multivariate Bayesian MR models similar to the frequentist estimators

implemented within the MR-Base web application https://www.mrbase.org/ (Hemani

et al., 2018).

6.1.2 Bayesian models in MVMR

Chapter 4 shows the effectiveness of hierarchical shrinkage priors when applied to

models fitted to high-throughput data. The setup of hierarchical models in MVMR

study designs is efficient in estimating causal effects especially for pleiotropic exposures.

The data application highlights how the inclusion of large numbers of exposures

can affect multivariate models in such data applications. The research concluded

with recommendations relating to regularizing the hierarchical shrinkage priors and

further research towards establishing predictive models within summary-level data

MR analyses.

6.1.3 Efficient information from quantile estimates

The information from the quantile estimation is used in this analysis to gain a better

understanding of the conditional distribution of the effects of exposure on disease

outcomes in chapter 5. The conditional median is a robust estimator and useful for

sensitivity analysis in MR. This research investigated the estimates from the conditional

quantile space using quantile regression in an MR analysis to estimate the causal effect,

and introduced the use of Cook’s distance to help identify outlying instruments. From

the data example the estimates were approximately constant in all the quantile spaces.

To make the most of the estimates from the quantiles, we proposed two estimators as

alternatives to the conditional median for sensitivity analysis. The first alternative

estimator is derived from the median of the upper and lower quartile estimates and the
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second estimator is the mode of the estimates between the 0.1 and 0.9 quantiles. The

estimators were shown to have low bias in the presence of invalid instruments, although

bootstrapping was required to calculate their standard errors. Further research could

include investigating the use of semi-parametric methods for quantile estimation.

6.2 Future directions

As more GWAS studies are conducted especially in large consortia with high

dimensional datasets, methods for MR will continue to be developed. I will briefly

mention potential MR models to consider for future use.

6.2.1 MR models for time-varying exposures

There is a limitation in using MR to investigate lifetime effects of certain exposures, for

example, body mass index on disease outcomes because data for MR studies are mostly

measured at one time point which do not capture information at multiple time points

(Davey Smith & Ebrahim, 2003). Labrecque & Swanson (2019) shows the potential

bias of estimates from MR models using time-varying exposures. When considering

time-varying exposures, functional data analysis methods have been proposed to

estimate causal effects, for example, Yao et al. (2005) developed a method known

as principal analysis by conditional expectation (PACE) to recover the underlying

trajectories of time-varying exposures. Cao et al. (2016) extended the PACE method

within an individual-level data study design and proposed two models one of which

assumes the time-varying exposure has a cumulative effect on the outcome. The second

model uses functional regression methods to satisfy the assumption of the genetic

effect on the time-varying exposure changing with time. Functional regression models

could be extended to summary-level data.
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6.2.2 Using predictive models in high-throughput MR

The increased number of published GWAS studies has produced more summary level

estimates of instrument-exposure relationships, including blood lipids and metabolites.

These metabolites and lipids are linked to a variety of outcomes, and evidence of

causality can aid in disease prediction. Howey et al. (2020) applied Bayesian networks

to assess causality in complex data. We propose extending Bayesian networks by

incorporating machine learning techniques such as using predictive power to select

causal exposures or phenotypes on a large scale.

6.3 Conclusion

This thesis has described and reviewed the MR approach and then developed and

assessed Bayesian methods for genotype summary level data for application in MR

analyses. This research shows how prior distributions can be used to make MR models

more robust to the standard IV assumptions.
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Appendix A

Installation and application of

mrbayes package in R

A.1 Links to install mrbayes R package

To install the mrbayes package please use the CRAN link below, and to install the

development version of the package please see my GitHub repository linked below;

• CRAN link (https://cran.r-project.org/package=mrbayes)

• GitHub repository link (https://github.com/okezie94/mrbayes)

A.2 Results from more informative priors

From the example dataset, we applied an informative prior distribution on the

parameter on the causal effect for MR-Egger model (3.8) as follows
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β ∼ N (0, φ)

φ ∼ IG(0.5, 0.5)

σ ∼ IG(0.5, 0.5).

(A.1)

The hierarchical prior distributions were used for the Radial MR-Egger model (3.9)

on the parameter for the causal effect estimate (β) as follows,

β ∼ N
(

0, τ
λ

)
λ ∼ IG(0.5, 0.5)

τ = 0.025

σ ∼ IG(0.5, 0.5).

(A.2)

The posterior distribution was sampled using the rjags software. The estimates are

shown in Table A.1.

Table A.1: Estimates from informative prior distributions

Model Coefficient Estimate 95% CrI

Bayesian MR-Egger Intercept 0.0038 -0.0058, 0.0137

Bayesian MR-Egger Slope 0.3271 0.0412, 0.6153

Bayesian MR-Egger Radial Intercept 0.3178 -0.4154, 1.051

Bayesian MR-Egger Radial Slope 0.3248 0.0592, 0.598

Estimates in table A.1 show shrinkage towards the null and the credible interval spans

zero for the slope parameter. The estimates show the effects of different priors when

using Bayesian models in MR with summary-level data.
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In summary, it is helpful to compare estimates from models fitted with both

uninformative and partially informative prior distributions.
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Appendix B

Shrinkage profile and bounds for

Horseshoe and Horseshoe+ priors

B.1 Shrinkage profile

The shrinkage effect of the Horseshoe prior can be described through the shrinkage

profile φi which is the weight of the posterior mean of each exposure (βi), and the

posterior mean is derived as,

E
(
βij|Γj, λ2

i

)
= nσ−2

τ−2λ−2
j + nσ−2βij(

1− 1
1 + nσ−2τ 2λ2

j

)
βij = (1− φj)βij

where φi = 1
1 + nσ2λ2

i τ
2 .

(B.1)

B.2 Bounds for horseshoe prior

The Horseshoe density does not have an analytic form, however, tight bounds are

available. Given fixed scale values σ2 = τ 2 = 1 the marginal density is derived as
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phs(β) =
∫ ∞

0

1
2πλ2

1
2

exp
(
−β2

2λ2
2

π(1 + λ2)

)
dλ, (B.2)

differentiating by parts

u = 1
λ2

du

dλ
= −2λ−3

dλ = du

−2λ−3 ,

(B.3)

and including (B.3) in (B.2), gives

1
2π 1

2

∫ ∞
0

λ2

π(1 + λ2) exp
(
−β2

2λ2

)
du. (B.4)

Recall from (B.3)

1
2π 1

2

∫ ∞
0

1
1 + u

exp
(
−β2u

2

)
du (B.5)

then differentiating by parts

v = 1 + u

dv

du
= 1

du = dv

(B.6)

and subsituting into (B.5) we have

k exp
(
β2

2

)∫ ∞
1

1
v

exp
(
−vβ2

2

)
dv
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where k = 1√
(2π3)

. We can rewrite this in terms of the exponential integral i.e.,

E1(v) =
∫ ∞

1

e−vdv

v
.

The reduced form is

ke
β2
2 E1

β2

2 . (B.7)

From the exponential integral we set the bounds as;

K

2 log
(

1 + 4
β2

)
< phs(β) < K log

(
1 + 2

β2

)
.

B.3 Bounds for horseshoe+ estimator

The marginal density for the horseshoe+ is

phs+(β) =
∫ ∞

0

4
π2
√

2πλ2
e

−β2

2λ2
log(λ)
λ2 − 1dλ. (B.8)

Substituting (B.3) into (B.8) gives

1
π2
√

2π

∫ ∞
0

e
−β2u

2
log(u)
u− 1 du.

To setup the bounds (Bhadra et al. 2017) followed the strategy of log(u)
U−1 ≤

1√
u
for U > 0

for the upper bound. Subsituting we have;

131



∫ ∞
0

e
−β2u

2
log(u)
u− 1 du ≤

∫ ∞
0

−1√
U
e

−β2u
2 du

Γ(1/2)√
β2/2

=
√

2π
|β|

.

For the lower bound log(u)
U−1 ≥

2
1+U for U > 0;

∫ ∞
0

e
−β2u

2
log(u)
u− 1 du ≥

∫ ∞
0

2
U + 1e

−β2u
2 du

= 2e
β2
2 E1

(
β2

2

)
.

Recall the upper limit of an exponential integral and combining both the bounds for

the horseshoe+ estimator is

1
π2
√

2π
log

(
1 + 4

β2

)
< phs+(β) ≤

√
2π
|β|

. (B.9)

We see from (B.9), the bounds are sharper than for the horseshoe estimator.

B.4 Data Application of the MVMR models

The abbreviations of the selected exposures are denoted in table B.1.
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Table B.1: Summary of selected exposures

Abbreviation Name

ApoA1 ApoA1

ApoB ApoB

Est.C Esterified cholesterol

HDL.C Total cholesterol in HDL

HDL.D HDL diameter

IDL.C Total cholesterol in IDL

IDL.TG Triglycerides in IDL

L.HDL.C Total cholesterol in large HDL

L.VLDL.C Total cholesterol in large VLDL

L.VLDL.TG Triglycerides in large VLDL

LDL.C Total cholesterol in LDL

LDL.D LDL diameter

M.HDL.C Total cholesterol in medium HDL

M.VLDL.C Total cholesterol in medium VLDL

M.VLDL.TG Triglycerides in medium VLDL

S.HDL.TG Triglycerides in small HDL

S.LDL.C Total cholesterol in small LDL

S.VLDL.C Total cholesterol in small VLDL

S.VLDL.TG Triglycerides in small VLDL

Serum.C Serum total cholesterol

Serum.TG Serum total triglycerides

SM Sphingomyelins

Tot.FA Total fatty acids

TotPG Total phosphoglycerides

VLDL.D VLDL diameter

XL.HDL.C Total cholesterol in very large HDL

XL.HDL.TG Triglycerides in very large HDL

XL.VLDL.TG Triglycerides in very large VLDL

XS.VLDL.TG Triglycerides in very small VLDL

XXL.VLDL.TG Triglycerides in chylomicrons and extremely large VLDL
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Appendix C

Additional simulation results for

quantile models

C.1 Linear programme for quantile regression

The standard form for linear programs is

min
z
CT z (C.1)

subject to Az = b, z ≥ 0.

All variables minimising z should be positive to arrive at a linear programme on a

standard form. Therefore it is decomposed to a positive and negative part using slack

variables that is εj = uj − vj, where;
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uj = max(0, εj) = |εj|[εj ≥ 0]

vj = max(0,−εj) = |εj|[εj < 0].

The sum of residuals assigned weights by the check function

J∑
j=1

ρτ (εj) =
J∑
j=1

τuj + (1− τ)vj = τu+ (1− τ)v;

where u = (u1, . . . , uj)T and v = (v1, . . . , vj)T .

The residuals must satisfy the J constraints that Γ̃j − γ̃Tj β = εj = uj − vj , this results

in the formulation as a linear programme

min
β∈RJ ,u∈RJ+,v∈R

J
+

{τu+ (1− τ)v|Γ̃j = γ̃jβ + uj − vj, j = 1, . . . , J}. (C.2)

However β ∈ RJ is still not restricted to be positive as required for the standard

form. Hence β = β+ − β− where again β+ = max(0, β) and β− = max(0,−β). The J

constraints can be written as;

Γ :=


Γ1

...

Γj

 =


γT1
...

γTj


(
β+ − β−

)
.
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b is defined as b := Γ and the design matrix γ for storing independent variables as

γ :=


γT1
...

γTj

 .

The constraint can be rewritten as

b = γ
(
β+ − β−

)
+ u− v

= [γ,−γ]



β+

β−

u

v


.

(C.3)

The variables in (C.3) can be reduced to A := [γ,−γ] and β+andβ− are minimised

and they are part of z, making (C.3)

b = [γ,−γ]



β+

β−

u

v


= Az.

The variables β+andβ− only affect the minimization problem through the constraint

0, the coefficient vector c can be defined as;
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c =



β+

β−

u

v


.

This ensures that all the variables c, A and b are specified

cT z = 0T
(
β+ − β−

)
︸ ︷︷ ︸

0

+τu+ (1− τ)v =
J∑
j=1

ρτ (εj).

C.2 Simulation results from quantile estimates

The results of the simulation study of the quantile levels in Chapter 5 from the

balanced and directed pleiotropic scenarios are discussed in this section. Under the

null hypothesis, the median estimates are the most accurate for all proportions, 10%,

30%, and 50%, of invalid instruments, as shown in Figure C.1.
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Figure C.1: Boxplot of the estimates within different quantiles in a balanced pleiotropy

scenario assuming null effect. The title of each plot is according to proportion of

invalid instruments

The simulation estimates from the MR-quantile imply better accuracy in 0.6 for the

alternative hypothesis, however the quantile level of 0.7 shows better accuracy for the

weighted percentile estimator based on figure C.2.
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Figure C.2: Boxplot of the estimates within different quantiles in a balanced pleiotropy

scenario assuming causal effect. The title of each plot is according to proportion of

invalid instruments

The simulation studies depicted in figure C.3 show that the estimations from the

weighted percentile and MR-quantile models are accurate within the lower quantiles

when the null effect is assumed. For the alternative assumption depicted in figure C.4,

estimates from the MR-quantile model show accuracy within the 0.6 quantile level,

whereas estimates from the weighted percentile model show more accuracy at the 0.7
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quantile level.
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Figure C.3: Boxplot of the estimates within different quantiles in a balanced pleiotropy

scenario assuming null effect. The title of each plot is according to proportion of

invalid instruments
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Figure C.4: Boxplot of the estimates within different quantiles in a balanced pleiotropy

scenario assuming causal effect. The title of each plot is according to proportion of

invalid instruments
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