
1

Continuous Network Update with Consistency
Guaranteed in Software-Defined Networks
Xin He, Student Member, IEEE, Jiaqi Zheng, Member, IEEE, Haipeng Dai, Member, IEEE,

Chong Zhang, Student Member, IEEE, Geng Li, Member, IEEE, Wanchun Dou, Member, IEEE,
Wajid Rafique, Qiang Ni, Senior Member, IEEE, Guihai Chen, Senior Member, IEEE

Abstract—Network update enables Software-Defined Networks
(SDNs) to optimize the data plane performance. The single update
focuses on processing one update event at a time, i.e., updating a
set of flows from their initial routes to target routes, but it fails to
handle continuously arriving update events in time incurred by
high-frequency network changes. On the contrary, the continuous
update proposed in “Update Algebra” can handle multiple
update events concurrently and respond to the network condition
changes at all times. However, “Update Algebra” only guarantees
the blackhole-free and loop-free update. The congestion-free
property cannot be respected. In this paper, we propose Coeus to
achieve the continuous update while maintaining consistency,
i.e., ensuring the blackhole-free, loop-free, and congestion-free
properties simultaneously. Firstly, we establish the continuous
update model based on the update operations in update events.
With the update model, we dynamically reconstruct the operation
dependency graph (ODG) to capture the relationship between up-
date operations and link utilization variations. Then, we develop
a composition algorithm to eliminate redundant operations in
update events. To further speed up the update procedure, we
present a partition algorithm to split the operation nodes of the
ODG into a series of suboperation nodes that can be executed
independently. The partition algorithm is proven to be optimal.
Finally, extensive evaluations show that Coeus can improve the
update speed by at least 179% and reduce redundant operations
by at least 52% compared with state-of-the-art approaches when
the arrival rate of update events equals three times per second.

Index Terms—Continuous update, consistency, SDNs, opera-
tion dependency graph.

I. INTRODUCTION

Software-Defined Networks (SDNs) outsource the network
control function over switches to the logically centralized
controller. Benefitting from the global view of the controller
and the simplified data plane, SDNs can provide flexible
traffic management and fine-grained network monitoring (e.g.,

The work was supported in part by the National Key R&D Program
of China under Grant 2017YFB1001801, in part by the National Natural
Science Foundation of China under Grants 61802172, 61672276, 61872178,
61832005, 61672353, in part by the Natural Science Foundation of Jiangsu
Province under Grant BK20181251, and in part by the Royal Society project
IEC170324. (Corresponding authors: Wanchun Dou and Guihai Chen)

X. He is with the School of Computer Science, Nanjing University of Posts
and Telecommunications, Nanjing 210023, China (xhe@njupt.edu.cn).

J. Zheng, C, Zhang, H, Dai, W. Rafique, W. Dou, G. Chen are with the State
Key Laboratory for Novel Software Technology, Nanjing University, Nanjing
210023, China (e-mail: jzheng@nju.edu.cn, chongzhang@smail.nju.edu.cn,
haipengdai@nju.edu.cn, rafiqwajid@smail.nju.edu.cn, douwc@nju.edu.cn,
gchen@nju.edu.cn).

G. Li is with the Department of Computer Science, Yale University, New
Haven CT 06520, USA (e-mail: ligeng66@aliyun.com).

Q. Ni is with the School of Computing and Communications, Lancaster
University, Lancashire LA1 4WA, U.K. (e-mail: q.ni@lancaster.ac.uk).

traffic engineering [1]–[3] and failures recovery [4], [5]),
and have been widely deployed in datacenter networks [6]–
[8]. However, the traffic in datacenters is highly volatile and
bursty [9], [10]. To respond to the high-frequency network
condition variations, network applications produce a series of
network configuration updates [11], [12]. For simplicity, we
refer to a network configuration update as an update event.
Each update event consists of a series of update operations,
which assign new routes for flows. Executing an update event
means updating flows from their initial routes to target routes.
The SDNs controller needs to execute these continuously
arriving update events as soon as possible to optimize the
data plane performance continuously [13], [14]. Furthermore,
the network consistency should be guaranteed, where the
consistency means no blackholes, no forwarding loops, and
no link congestion during the update [15]–[18].

Most update solutions focus on processing the single update
event at a time, i.e., finding the update sequence for an
update event to shorten the update time while maintaining
consistency [19]–[25]. We collectively refer to these update
schemes as the single update. The single update fails to process
high-frequency network changes or the burst event in time.
For example, the load balancing can react to congestion and
produce update events at a microsecond level [26]. However,
the single update may complete each update event at a second
level [27]. In the single update, the continuously arriving
update events are executed in sequence. Each update event
cannot be responded to until the previous update events are
completed, leading to prolonged update time and poor network
performance. Instead of the single update, the current work,
“Update Algebra” [28], explores the solution that can execute
the continuously arriving update events in parallel. Specifi-
cally, “Update Algebra” models update operations in update
events as a set of projections and selects a feasible subset of
projections to execute. We refer to the solution of executing
continuous update events in parallel as the continuous update.
Although ‘Update Algebra” can rapidly handle continuous
update events, it only guarantees the blackhole-free and loop-
free properties and ignores the fact that different flows compete
for the limited link resources. Without a well-designed update
mechanism, transient link congestion may occur, leading to
packet loss and network performance degradation.

In this paper, we initiate the study of the continuous update
with consistency guaranteed, i.e., handling the continuously
arriving update events in time and ensuring consistency. To
achieve this goal, we face three main challenges: (1) The

2

update operations in continuously arriving update events that
act on the same flow may be redundant [28], [29]. For
example, one update operation requires modifying a flow for-
warding rule. Then another update operation requires deleting
this forwarding rule. Actually, executing the delete operation
is equivalent to executing these two update operations in
sequence. It is challenging to identify and eliminate redundant
operations of continuously arriving update events in time
because these update events may contain lots of update op-
erations and appear rapidly. Besides, the execution of update
operations will incur the link resource variations, and the
link resource will conversely affect the execution order of
update operations. To produce a consistent update order, the
dependency relationship between link resources and update
operations should be carefully considered. (2) The number of
possible congestion-free update orders is exponential, even for
a single update event [27]. For an update event that updates
n flows, the number of possible update orders is O(n!). In-
volving multiple update events makes the problem essentially
harder. (3) We need to speed up the continuous update process,
i.e., increasing the parallel execution of update operations. We
aim to find as many independent operations as possible, which
can be executed simultaneously. To address the challenges
mentioned above, we make the following contributions.

Firstly, we develop Coeus to achieve the continuous update
while ensuring consistency. We illustrate the continuous up-
date problem by using an example (Sec. III) and build the
continuous update model (Sec. IV). The continuous update
model captures the continuously update events in the control
plane and the forwarding actions in the data plane. Besides,
we give an overview of Coeus (Sec. V).

Secondly, we propose a set of algorithms to achieve the
continuous update with consistency guaranteed (Sec. VI).
Specifically, based on the continuous update model, we dy-
namically reconstruct the operation dependency graph (ODG)
to capture the relationship between update operations and link
utilization variations. The ODG is a bipartite graph containing
the operation nodes and the resource nodes. Then, we develop
an operation composition algorithm to represent redundant op-
erations as directed loops and eliminate redundant operations
in the ODG. With the ODG and operation composition, we
solve the first two challenges. To address the third challenge,
we design a partition algorithm to split the operation nodes into
a series of independent suboperation nodes that can be updated
in parallel. We prove that the partition algorithm is optimal,
and the update of suboperation nodes ensures consistency.

Finally, we conduct large-scale simulations on two common
topologies (i.e., SWAN [27] and fat-tree [30]) to verify the
effectiveness of Coeus (Sec. VII). The simulations show that
Coeus can improve the update speed by at least 179% and
reduce redundant operations by at least 52% compared with
state-of-the-art approaches when the arrival rate of update
events is three times per second.

II. RELATED WORK

With the advent of SDNs, the update problem has been
widely studied in recent years. Reitblatt et al. [6] introduced
the notion of consistent update in SDNs and proposed the

two-phase update protocols to maintain per-packet coherence.
To ensure connectivity consistency, Ludwig and Foerster et
al. [31], [32] achieved the fast blackhole-free and loop-free
update by using node-ordering protocols. However, they do
not consider link congestion. To ensure the congestion-free
condition, zUpdate [7] and SWAN [33] utilized the slack link
capacity to produce the static congestion-free update sequence.
On these bases, Xin et al. [27] and Gandhi et al. [34] presented
the dynamic update scheduling by utilizing the global resource
dependency graph. Wang et al. [20] and Wu et al. [35] divided
the global dependency relationship into the local dependency
relationship by dividing flows into segments. Then, indepen-
dent segments can be updated in parallel while the congestion-
free condition is guaranteed. By taking advantage of time
synchronization protocols [36]–[38], Zheng et al. [39]–[41]
designed heuristic algorithms to update a single flow and
multiple flows at a specified time with minimum time step
while maintaining the congestion-free property. Different with
scheduling update commands in a centralized manner, Nguyen
et al. [42] proposed a decentralized mechanism to achieve the
blackhole-free, loop-free, and congestion-free update. Besides,
when a congestion-free update plan does not exist, Zheng et
al. [25], [43] designed a flow migration approach to minimize
transient congestion and shorten the makespan. Nevertheless,
all of the update solutions mentioned above mainly focus on
producing the update order for the single update event. Such
an update manner leads to the serial execution of continuous
update events, which slows down the makespan significantly.

To the best of our knowledge, Li et al. [28] firstly studied the
continuous update problem. The authors built the theoretical
framework for continuous update events based on abstract al-
gebra and executed updates based on the operation projection.
Although “Update Algebra” [28] can generate the blackhole-
free and loop-free update order, it cannot guarantee the
congestion-free condition, leading to packet loss and network
performance degradation. On this basis, we proposed Coeus,
which is the first work to handle the continuous update events
with blackhole-free, loop-free, and congestion-free properties
guaranteed simultaneously.

III. A MOTIVATING EXAMPLE

In this section, we use a motivating example to illustrate the
continuous update problem. For convenience, we summarize
important notations in Table I.

Fig. 1(a) shows a network topology containing seven
switches R1∼R7, where the capacity of link 〈R1, R5〉 equals
5 units and others equal 10 units. The update event 1 (UE1)
and the update event 2 (UE2) arrive sequentially. UE1 will
install forwarding rules of two flows FA and FB , where
demands of FA and FB are both 5 units. UE2 will install
forwarding rules of flow FC , where the demand of FC is
8 units. Each update event incurs different network states,
where each network state captures the routing information.
We use the directed edge to denote the routing state of each
flow. The dashed line denotes that the forwarding rules of the
flow have not been installed, while the solid line denotes that
the forwarding rules of the flow have already been installed.
Fig. 1(b) denotes that when UE1 appears, the controller will

3

FA : 5

FB : 5

FC: 8
R1 R2 R3 R4

R5 R6

R7

(a) Network topology

R1 R2 R3 R4

R5 R6

R7

R1 R2 R3 R4

R5 R6

R7

FA : 5

FB : 5

R1 R2 R3 R4

R5 R6

R7

(c) Network state 2

FA : 5

FB : 5

(e) Update event 2 (network state 4)

FA : 5

FB : 5

R1 R2 R3 R4

R5 R6

R7

(d) Network state 3(b) Update event 1 (network state 1)

Fig. 1. A continuous update example. Fig. 1(a) shows the network topology. The capacity of link 〈R1, R5〉 is assumed to be 5 units while others are assumed
to be 10 units. The dashed line denotes that the forwarding rules for the flow will be installed in switches, and the flow will route on its target path. The solid
line denotes that the forwarding rules for the flow have been installed in switches and the flow has been routed on its target path. Fig. 1(b) represents that
the update event 1 will assign the paths of FA and FB , where the demand of FA and FB are both 5 units. Fig. 1(c) represents that FA has been routed on
its target path, while the forwarding rules for FB have not been installed. Fig. 1(d) represents that FB has been routed on its target path. Fig. 1(e) represents
that the update event 2 will inject flow FC with 8 units in the network. FA, and FB need to be rerouted to avoid the congestion on 〈R3, R4〉.
assign the path of FA and FB . However, the corresponding
forwarding rules have not been installed in switches. Fig. 1(c)
shows that in the network state 2 (NS2), FA has been updated
to its target path while FB has not been updated1. The network
state 3 (NS3) shown in Fig. 1(d) indicates that FB has been
updated. In NS3, UE1 is finished since all update operations
in UE1 are executed, i.e., flows in UE1 are routed on their
target paths. Fig. 1(e) shows that when UE2 occurs after UE1,
the controller will assign the route of FC and change the routes
of FA and FB due to the limited capacity of link 〈R3, R4〉.

TABLE I
KEY NOTATIONS

Notation Meaning
G Directed network graph G = (V,E)
V Set of switches {v}
E Set of links {〈u, v〉}
cu,v Capacity of link 〈u, v〉
F Set of flows {fi}
dfi Demand of flow fi
UE Update event
OUE Set of update operations in UE.
ÔUE Set of unexecuted update operations in UE.
NS Network state

NSinit Initial network state
OI Set of executed update operations
ONI Set of unexecuted update operations
GD Operation dependency graph
Ofi Operation node with a set of unexecuted update operations

of fi in the operation dependency graph
ofi Update operation in Ofi

Ru,v Resource node in the operation dependency graph
ru,v Residual resources of the resource node

Since the network traffic is highly dynamic, update events
may occur randomly and continuously. In the single update,
the subsequent update event must wait for the completion of
previous update events, i.e., if UE2 occurs after UE1, UE2

cannot be processed until all of the flows in UE1 are routed on
their target paths. This serial update prolongs the makespan.
This paper aims to rapidly respond to random and continuous
update events while ensuring blackhole-free, loop-free, and
congestion-free properties. However, achieving the objective
is full of challenges. For example, UE2 occurs when UE1

has installed the forwarding rule of FA in switch R2 but has
not installed the forwarding rule of FA in switch R3. UE1

encourages the controller to install the forwarding rule of FA

in R3, making R3 forward FA to R4. In the meantime, UE2

also encourages the controller to install another forwarding

1NS2 is a possible network state. In practice, update commands can be sent
by the controller simultaneously and completed by the data plane switches
asynchronously, resulting in different network states. Coeus can be applied to
all of the possible network states.

rule of FA in R3, making R3 forward FA to R7. Therefore,
simply installing all of the forwarding rules of continuous
update events may lead to chaotic routing. Besides, switches
must have forwarding rules of each incoming flow, and the
flow should not have transient loops during updates (i.e., the
blackhole-free and loop-free properties should be guaranteed).
For example, when UE2 occurs after NS3, switch R5 should
have the forwarding rule of FA before FA reaches. Besides, the
new forwarding rules of FA should be installed in R3 and R7

after the original forwarding rule in R2 is removed. Otherwise,
the transient loop 〈R2, R3〉 → 〈R3, R7〉 → 〈R7, R2〉 appears.
To guarantee a congestion-free condition, the update order of
multiple flows should be carefully calculated. For example,
when UE2 occurs after NS3, FA should not be updated before
FB . Otherwise, link congestion occurs due to the limited
resources of 〈R1, R5〉. Similarly, FC should be updated after
FA. To further speed up the update process, the concurrency
of update operations should be taken into account. For each
flow, we should carefully consider which update operations
can be executed in parallel. For example, when UE2 occurs
after NS3, installing the forwarding rules of FA in R1 and R3

simultaneously cannot incur inconsistency. However, installing
the forwarding rules of FA in R2, R3, and R7 simultaneously
may result in transient loops since the execution of update
operations in the data plane is asynchronous [44].

IV. UPDATE MODEL AND PROBLEM DEFINITION

In this section, we will introduce the continuous update
model and the continuous update problem.

A. Continuous Update Model

The general network can be modeled as a directed graph
G = (V,E), where V is the set of switches and E ⊆ V 2

is the set of bi-directional links. Each link 〈u, v〉 ∈ E has a
capacity cu,v . F is the set of s−d flows in the network, where
s and d are the source and destination of a flow. Each flow
fi ∈ F is an unsplittable flow with demand dfi .

In the control plane, continuous update events arrive ran-
domly. Each update event UE = {ofi |∀fi ∈ F} contains a
set of update operations {ofi} that assign routes of flows. An
update operation ofi is the operation necessary to change the
route of a flow. To be more specific, ofi acts on a single
switch to add, modify, or delete the forwarding rule of fi.
If an update operation ofi sent by the controller is executed
on the switch, the switch will execute the corresponding for-
warding action. All of the update operations can be classified
into three types {add,mod, del}. We illustrate the mapping
relationship between update operations in the control plane

4

TABLE II
VALID UPDATE OPERATIONS OF UEn

Update Event Update Operation
UEm ofiadd ofidel ofimod

UEn ofidel ‖ ofimod ofiadd ofidel ‖ ofimod

and forwarding actions in the data plane. If ofi is an add
operation ofiadd :add{fwd v} and is executed on switch u, the
switch u adds the forwarding rule and forwards fi from u to
v. If ofi is a del operation ofidel : del{fwd v} and is executed
on switch u, the forwarding rules of fi is deleted. Similarly, if
ofi is a mod operation ofimod :mod{fwd v → fwd w} and is
executed on switch u, the switch u forwards fi to w instead
of v. In fact, ofimod can be treated as a delete operation ofidel
that removes the original forwarding rule of fi, and an add
operation ofiadd that adds the new forwarding rule of fi.

The network state NS={OI, ONI} characterizes the current
routing state. OI denotes the set of update operations that have
been executed and ONI denotes the set of update operations
that have not been executed. Suppose there are n continuous
update events, OI and ONI can be expressed as follows.
OI ={(OUE1

−ÔUE1
)... ∪ (OUEi−ÔUEi)... ∪ (OUEn−ÔUEn)} (1)

ONI = {ÔUE1
... ∪ ÔUEi ... ∪ ÔUEn} (2)

where OUEi and ÔUEi represent all of the update operations
and all of the unexecuted update operations in the i-th arriving
update event UEi, respectively. When update event UEi

occurs, ÔUEi = OUEi . With the update procedure, update
operations in ÔUEi are continuously executed until ÔUEi = ∅.
Therefore, operations in OI and ONI vary with the time.

B. Continuous Update Problem

The network update needs to schedule unexecuted update
operations in order to preserve the consistency properties [6].
Instead of executing the continuously arriving update events
serially, the continuous update aims to process update events
concurrently. To characterize the update process of the con-
tinuous update, we define the initial network state as follows.

Definition 1. Initial Network State: The initial network state
is the state that all of the previously arrived update events are
completed, i.e., no update operations need to be executed in
the data plane at this time.

In the initial network state, OI = ∅. The network will
not update routes of flows. With the emergence of newly
arriving update events {UE}new, a series of update operations
should be executed to configure routes of flows continuously.
Therefore, the continuous update process starts from the initial
network state and ends when all of the newly arriving update
events {UE}new are completed. In the continuously arriving
update events, not all of the update operations are valid. We
define the validity of update operations as follows.
Definition 2. Valid Update Operations: For each flow,
the valid update operations depend on the previous update
operations acting on the same switches. The valid update
operations enable each switch to have at most one forwarding
rule for each flow, and the incorrect operation is not permitted.

Specifically, the valid update operations follow the rules
shown in Table II, where UEm is a previous update event, and

UEn is a newly arriving update event. On the specified switch,
if UEm involves an add operation ofiadd for fi, the operation in
UEn should only be a del or mod operation (i.e., ofidel ‖ o

fi
mod)

that deletes or modifies the original forwarding rule of fi.
Otherwise, there is another add operation ofiadd ∈ UEn for fi
acting on the same switch, leading to chaotic routing. If UEm

involves a del operation ofidel, the operation for fi in UEn

should only be an add operation (i.e., ofiadd). It is because
that if ofidel ∈ UEm for fi is executed, there is no forwarding
rule that needs to be deleted or modified for fi on the same
switch. Therefore, ofimod ∈ UEn or ofiadd ∈ UEn that appears
after ofidel ∈ UEm is an incorrect update operation. If UEm

contains a mod operation ofimod, the operation in UEn acting
on the same switch should only be a del or mod operation (i.e.,
ofidel ‖ o

fi
mod). It is because that if there is an add operation

ofiadd ∈ UEn that appears after a mod operation ofimod ∈ UEm,
the switch will have two forwarding rules for fi.
Definition 3. Valid Update Event: The valid update event
contains a series of valid update operations for each flow.

In this paper, we assume that all of the continuously arriving
update events are valid update events. Now we define the
continuous update problem.
Definition 4. Continuous Update Problem: The continuous
update problem aims to design a scheduling scheme to ex-
ecute valid update events that arrive continuously in time.
Meanwhile, the blackhole-free, loop-free, and congestion-free
properties should be guaranteed during the update procedure.

We propose Coeus to solve the continuous update problem.
Coeus is mainly focus on valid update events. However,
network applications sometimes generate invalid update events
due to the highly dynamic network environment [45], [46]. In
Sec VI-G, we discuss how to convert invalid update events so
as Coeus can also process them.

V. COEUS OVERVIEW

In this section, we will introduce Coeus. Coeus mainly
focuses on traffic management applications for the network
core (e.g., B4 [1], SWAN [33]). Similar to [20], [27], [28],
Coeus assumes that each forwarding rule in the switch matches
at most one flow, making Coeus unsuitable for wild-card rules
or the longest prefix matching. We make this assumption since
a loop-free update order does not exist in networks that use
wild-card rules or the longest prefix matching [19].

The entire workflow of Coeus is shown in Fig. 2. In SDNs,
update events arrive continuously. To react to these update
events in time, the centralized controller judges whether the
previous update events have been finished when the new
update event arrives. If previous update events have been
finished, we build an operation dependency graph for newly
arriving update events. Otherwise, we make a further judgment
about whether the update operations in newly arriving update
events act on new flows or existing flows in the data plane.
For the update operations that act on new flows, i.e., executing
these operations will add paths for new flows, we build new
operation nodes for these flows in the operation dependency
graph and construct the corresponding dependency relation-
ship. For the update operations that act on the existing flows,

5

Update Event 1

Update Event n
Existing

Flow?

Yes

Yes

No

No

Coeus

Finished? Operation CompositionOperation Composition

Update Rules

Operation Dependency GraphOperation Dependency Graph

Update Scheduling

Operation Node PartitionOperation Node Partition

Fig. 2. Overview of Coeus.

i.e., executing these operations will change the routes of
flows, we add these operations to existing operation nodes and
dynamically reconstruct the dependency relationship between
existing operation nodes and link resource nodes. However,
the continuously arriving update events may contain redundant
update operations, which increases the size of the dependency
graph and prolongs the update time. The operation compo-
sition module is designed to eliminate redundant operations
in the operation dependency graph. With the composited
dependency graph, the operation node partition module divides
the operation nodes into a series of independent suboperation
nodes that can be updated in parallel. Finally, according
to the dependency graph with suboperation nodes, the up-
date scheduling module sends a set of update commands to
switches, and switches execute these commands until all of
the update events are completed.

VI. COEUS SCHEDULING

In this section, we will present Coeus consisting of a series
of algorithms to achieve the continuous update while ensuring
consistency.

Before introducing the algorithms in detail, we sketch the
problems solved by each algorithm.

The first problem is when update events arrive continuously,
how to determine the dependency relationship between link
resources and update operations to ensure the congestion-free
update. To solve this problem, Algorithm 1 and Algorithm 2
construct the initial dependency graph and dynamically recon-
struct the dependency graph when an update event occurs.

The second problem is when we reconstruct the depen-
dency graph, the update operations in update events increase
the size of the dependency graph, resulting in complicated
dependencies and long update time. However, we do not
need to perform all the update operations since some update
operations in update events are redundant. How to identify
and eliminate redundant operations to reduce the size of the
dependency graph? To solve this problem, Algorithm 3 checks
and eliminates the directed cycles in the dependency graph so
as to combine redundant operations into fewer equivalent ones.

The third problem is that Algorithm 3 only reduces the num-
ber of operations that need to be executed. To ensure that each
flow does not suffer from the blackholes and forwarding loops,
a feasible solution is to perform all update operations of a flow
serially in reverse order [28], [31], [42]. To further speed up
the update process, we need to investigate how to implement
the parallel update. To solve this problem, Algorithm 4 splits
the operation nodes into a series of independent suboperation
nodes that can be executed in parallel.

The last problem is how to send the update commands to
data plane switches in order while ensuring consistency. To
solve this problem, Algorithm 5 schedules updates based on
the constraints imposed by the operation dependency graph.

Now we introduce our algorithms in detail.

A. Continuous Update Process

Algorithm 1 illustrates the complete continuous update
process. Once an update event appears after the initial network
state, we construct the initial operation dependency graph GD

(lines 1-5). When the operation dependency graph GD 6= ∅,
i.e., the update events have not been completed, we check
whether a new update event UE arrives (lines 7). Once a new
update event occurs, we divide update operations in UE into
the update operations for the existing flows and the update
operations for the emerging flows. We use Ofi

UE to denote
a set of update operations for fi in update event UE. If fi
is an existing flow, we apply Algorithm 3 to composite the
update operations in the dependency graph (lines 9-10). If fi
is an emerging flow, we reconstruct the dependency graph by
adding a new operation node and building the corresponding
dependency relationships (lines 11-14). Then, we apply Al-
gorithm 4 to generate suboperation nodes in the dependency
graph (line 15). According to the operation dependency graph
with suboperation nodes, we apply Algorithm 5 to produce
and send a set of update commands to update the data plane
switches until GD = ∅ (line 16).

Algorithm 1 Continuous Update Process
Input: The continuously arriving update events
Output: A set of update commands
1: GD(O,R,EO99KR, ER99KO) = ∅;
2: for each updated flow fi do
3: Add Ofi with its demand dfi in O;
4: for each operation ofi ∈ Ofι do
5: Apply Algorithm 2 to obtain the ODG;
6: for GD(O,R,EO99KR, ER99KO) 6= ∅ do
7: if the new update event UE arrives then
8: for each Ofi

UE do
9: if flow fi is the existing flow then

10: Apply Algorithm 3 to composite update operations;
11: else
12: Add Ofi

UE with its demand dfi in O;
13: for each operation ofi ∈ Ofi

UE do
14: Apply Algorithm 2 to build the dependency relationship;
15: Apply Algorithm 4 to divide an operation node into independent

suboperation nodes;
16: Apply Algorithm 5 to schedule update commands;

B. Operation Dependency Graph Construction

When update events occur continuously, we construct and
adjust the operation dependency graph to capture the relation-
ship between the resource variations and update operations.
We define the operation dependency graph as follows.

Definition 5. Operation Dependency Graph (ODG): The
operation dependency graphGD(O,R,EO99KR, ER99KO) is a
bipartite graph that captures dependency relationships be-
tween update operations and link resources, where the two
subsets of vertices O and R denote the set of update operations
and the set of links. EO99KR is the set of directed edges from
vertices in O to vertices in R, and ER99KO is the set of directed
edges from vertices in R to vertices in O.

6

(b) Operation dependency graph of network state 2 (c) Operation dependency graph of update event 2

<R2,R3>:10 <R1,R5>:5<R3,R4>:10 <R5,R3>:10<R1,R2>:10

(a) Operation dependency graph of update event 1

<R2,R3>:5 <R1,R5>:5<R3,R4>:5 <R5,R3>:10 <R3,R7>:10 <R7,R2>:10 <R2,R6>:10 <R6,R4>:10<R1,R2>:5

<R2,R3>:5 <R1,R5>:5<R3,R4>:5 <R5,R3>:10<R1,R2>:5

AF
O :5 AF

O :5 AF
O :5

 B
F

O :5 BF
O :5BF

O :5

CF
O :5

Fig. 3. Operation dependency graph of UE1, NS2, and UE2 in Fig. 1.

Specifically, each operation node Ofi ∈ O with a set of
unexecuted update operations {ofi} is labeled with the flow
demand dfi . Each link resource node Ru,v ∈ R is labeled
with the residual link resources ru,v . The edge ERu,v99KOfi ∈
ER99KO denotes that once the update operation ofi ∈ Ofi is
executed, the link resource will be occupied by fi. Inversely,
the edge EOfi99KRu,v ∈ EO99KR denotes that executing the
update operation ofi ∈ Ofi will release the link resource.

Now we introduce the dependency relationship construction
in Algorithm 2. As Algorithm 1 mentioned, we add the
operation node Ofi in O (lines 2, 3). Then, in Algorithm 2,
we judge the type of each update operation ofi ∈Ofi . For each
update operation ofi ∈Ofi , we build a directed edge between
Ofi and Ru,v in the ODG (lines 1-13). Specifically, if ofi is
an add operation, executing ofi will add the new forwarding
rule in switch u, which forwards fi to link 〈u, v〉. Therefore,
the link resources of 〈u, v〉 will be consumed. We add resource
node Ru,v in the ODG if Ru,v does not exist. Then we add
directed edge ERu,v99KOfi in ER99KO (lines 1-4). Similarly,
we build the relationship between the operation node and the
resource node if ofi is a del or mod operation (lines 5-13).
Note that a mod operation can be treated as a del operation
and an add operation, we add ERu,v99KOfi in ER99KO and
EOfi99KRp,q in EO99KR (lines 9-13).

Algorithm 2 Dependency Relationship Construction
Input: The update operation ofi ∈ Ofi

Output: The dependency relationship between Ofi and Ru,v

1: if ofi is an add operation then
2: if corresponding link node Ru,v /∈ R then
3: Add Ru,v with its current capacity cu,v in R;
4: Add ERu,v99KOfi

in ER99KO ;
5: if ofi is a del operation then
6: if corresponding link node Rp,q /∈ R then
7: Add Rp,q with its current capacity cp,q in R;
8: Add EOfi 99KRp,q

in EO99KR;
9: if ofi is a mod operation then

10: Treat ofi as an add and a del operation;
11: if corresponding link node Ru,v or Rp,q /∈ R then
12: Add Ru,v with its current capacity cu,v or add Rp,q with its

current capacity cp,q in R;
13: Add ERu,v99KOfi

in ER99KO and EOfi 99KRp,q
in EO99KR;

The ODG maintains the dependency relationship between
the unexecuted update operations and the link resources. We
illustrate the variation of the ODG when the update operations
in Ofi are executed. Once ofi ∈ Ofi is executed, we remove
ofi from Ofi and delete the directed edge between Ofi and
Ru,v established by ofi . Besides, the link residual resources
are also updated. Specifically, if the performed operation
is an add operation, fi is routed on its target path and
the corresponding link resources are consumed. The residual
link resources can be updated by following Eq. (3). If the
performed operation is a del operation, i.e., the forwarding rule

of fi is deleted, the occupied link resources are released. The
residual link resources can be updated by following Eq. (4).
Similarly, if the performed operation is a mod operation, the
resources on the target link of fi are updated by following
Eq. (3), and the resources on the initial link of fi are updated
by following Eq. (4).

r∗u,v = ru,v − dfi (3)

r∗u,v = ru,v + dfi (4)

Fig. 3 shows the ODG of UE1, NS2, and UE2 in Fig. 1.
We assume that UE2 arises after NS2. Fig. 3(a) corresponds
to the ODG of UE1 shown in Fig. 1(b), where the operation
node OfA contains a set of unexecuted operations {oFA(R1,add)

,

oFA(R2,add)
, oFA(R3,add)

} of FA. Fig. 3(b) corresponds to the ODG
of NS2 shown in Fig. 1(c). Since operations in OFA has
been executed and FA has been routed on its target path, the
corresponding directed edges are removed and the residual
link resources are updated. Fig. 3(c) shows the ODG of UE2.
which means update operations in UE2 will add the route of
flow FC and adjust the routes of FA and FB .

C. Operation Composition

We present the graph-based operation composition to reduce
the number of redundant operations in continuously arriving
update events. Different from the algebra-based rules composi-
tion mentioned in [28], the graph-based operation composition
is more intuitive and easier to be applied in the ODG.

The input of the algorithm is the update operation in a
newly arriving update event UE and the ODG. After the
operation composition, the algorithm outputs the composited
dependency graph with fewer operations that need to be exe-
cuted. To transform redundant operations into fewer equivalent
ones, we add the update operation in UE to the existing
operation node in the ODG. For the added operation, we
construct the directed edge between the operation node and
the resource node. Then we check whether the addition of the
operation will incur a direct cycle between the operation node
and the resource node. If a directed cycle forms, we treat the
operations that establish the two directed edges of a directed
cycle as redundant operations. By eliminating directed cycles
and removing the corresponding operations in the ODG, the
number of operations that need to be executed is reduced. We
will explain the operation composition algorithm in detail and
then prove that the composited operations are correct.

Algorithm 3 shows an operation composition process. When
an update event UE with a set of update operations occurs,
we add each operation ofi to the corresponding operation node
and apply Algorithm 2 to build the dependency relationship
(lines 1-2). According to the rules of constructing the ODG,
if ofi is an add operation, we establish the directed edge

7

ERu,v99KOfi in the ODG, which means that fi will route on
the link 〈u, v〉 and consume the link resources. If there exists
the directed edge EOfi99KRu,v in the ODG, which denotes that
Ofi has a del operation ōfidel to delete the forwarding rule of fi
on switch u and the resources of link 〈u, v〉 will be released.
In this case, a cycle forms between Ofi and Ru,v . We treat
the add operation ofi and the del operation ōfidel which will
occupy and release the same link resources successively as
redundant operations. Since the target path of the flow will
not be changed by discarding these two update operations, we
remove two directed edges forming a cycle and {ofi , ōfidel}
from the ODG (lines 3-6). Similarly, if ofi is a del operation
and a cycle forms, according to Definition 2, there is an add
or a mod operation ōfi in Ofi . If ōfi is an add operation, we
remove ofi and ōfi directly. Otherwise, we divide ōfi into
an add operation ōfiadd and a del operation ōfidel. Then we
remove ofi and ōfiadd from Ofi (lines 7-12). If ofi is a mod
operation and a cycle forms, we split ofi into ofiadd and ofidel,
and eliminate the redundant operations related to the removed
edges (lines 13-19). Besides, if the residual operations of ofi
and ōfi contain a del operation and an add operation acting on
different links, we combine the residual operations into a new
mod operation õfi (line 20). If ofi does not incur a cycle in
the ODG and there exists another update operation ôfi acting
on the same switch, we combine these two operations into a
new mod operation õfi (line 22).

Algorithm 3 Operation Composition
Input: The operation in a newly arriving update event and the ODG
Output: The composited dependency graph
1: Add ofi in Ofi ;
2: Apply Algorithm 2 to build the dependency relationship;
3: if there is a directed cycle between Ofi and Ru,v then
4: Remove edges ERu,v99KOfi

and EOfi 99KRu,v
;

5: if ofi is an add operation then
6: Ofi = Ofi/{ofi , ōfidel}, where ōfidel is the operation that estab-

lished the directed edge EOfi 99KRu,v
;

7: if ofi is a del operation then
8: if ōfi is an add operation then
9: Ofi = Ofi/{ofi,ōfiadd}, where ō

fi
add is the operation that

established the directed edge ERu,v99KOfi
;

10: else
11: Divide ōfi into ōfiadd and ōfidel;
12: Ofi = Ofi/{ofi , ōfiadd};
13: if ofi is a mod operation then
14: Divide ofi into ofiadd and ofidel;
15: if ōfi is an add or a del operation then
16: Ofi = Ofi/{ofidel, ō

fi
add} or Ofi = Ofi/{ofiadd, ō

fi
del};

17: else
18: Divide ōfi into ōfiadd and ōfidel;
19: Remove the divided operations of ofi and ōfi that established

the directed edges ERu,v99KOfi
and EOfi 99KRu,v

;
20: Combine the residual operations of ofi and ōfi into a new mod

operation õfi ;
21: else
22: Combine ofi and ôfi into a new operation õfi , where ôfi and ofi

are update operations for fi that acting on the same switch;

Fig. 4 is an example to illustrate the operation composition.
We assume that UE2 (shown in Fig. 1(e)) occurs after NS2

(shown in Fig. 1(c)). For simplicity, Fig. 4 only shows the
composition result of operation node OFB . In NS2, OFB

contains update operations {ōFB(R1,add)
, ōFB(R5,add)

}. In Fig. 4(a),
the black line denotes the dependency relationship between

<R1,R5>:5 <R5,R3>:10<R1,R2>:5 <R1,R2>:5

(b) Composited Operation(a) Operation Composition of NS2 and UE2

<R2,R3>:5 <R2,R3>:5

BF
O :5 BF

O :5

Fig. 4. Illustration of operation composition for OFB .

<R1,R5>:5<R1,R5>:5 <R3,R4>:5<R3,R4>:5<R5,R3>:10<R5,R3>:10 <R3,R7>:10<R3,R7>:10 <R7,R2>:10<R7,R2>:10 <R2,R6>:10<R2,R6>:10 <R6,R4>:10<R1,R2>:5<R1,R2>:5

 A
F

O :5 A
F

O :5 CF
O :8

<R2,R3>:5<R2,R3>:5

B
F

O :5B
F

O :5

Fig. 5. Composited dependency graph.

link resources and the unexecuted operations in NS2. Then,
UE2 arises, Coeus adds a set of new operations {oFB(R1,mod),

oFB(R5,del)
, oFB(R2,add)

} to OFB . The red line in Fig. 4(a) denotes
the dependency relationship between link resources and the
operations in UE2. Update operations {oFB(R5,add)

, oFB(R5,del)
}

and {oFB(R1,add)
, oFB(R1,mod)} incur two cycles. According to

Algorithm 3, we delete {oFB(R5,add)
, oFB(R5,del)

} and the corre-
sponding edges in the ODG. Besides, we divide oFB(R1,mod) into
oFB(R1,add)

and oFB(R1,del)
. Then, we delete {oFB(R1,add)

, oFB(R1,del)
}

from the operation node OFB and remove directed edges. The
composited operation node OFB is shown in Fig. 4(b) and the
composited operation dependency graph is shown in Fig. 5.
Definition 6. Correct Update Operations: The correct up-
date operations in the update event mean that if all update
operations are executed, flows will be routed through their
target paths required by the update event, and there are no
redundant forwarding rules for each flow in switches.

In the single update, all operations in the previous update
events must be finished before executing the new update
event. For example, we assume that two valid update events
UEm, UEn arrive successively. When UEn occurs, the update
operations of UEm may be completed, partially executed, or
unexecuted. UEn can only be responded after all of the update
operations in UEm are finished. Since UEm and UEn are
valid update events, executing UEm and UEn orderly makes
switches always forward flows to the target paths specified
by the update event. Therefore, in the single update, the
correctness of update operations can always be guaranteed.
Table III represents the correct update operations in the single
update, where blanks denote invalid operations. However, the
single update incurs lots of unnecessary operations. In Coeus,
regardless of the state of UEm, UEn can be responded in time
by compositing the unexecuted operations in UEm and the
operations in UEn. Now, we prove that the update operations
are still correct after the operation composition.

TABLE III
CORRECT OPERATIONS IN THE SINGLE UPDATE

UEn

UEm o
fi
add o

fi
del o

fi
mod

o
fi
add o

fi
add

o
fi
del o

fi
del o

fi
del

o
fi
mod o

fi
mod o

fi
mod

Theorem 1. The graph-based operation composition produces
the correct update operations.

Proof: Table IV shows the result of operation composi-
tion when operations in UEm have not been executed and

8

TABLE IV
COMPOSITION OF UEm AND UEn

UEn

UEm o
fi
add o

fi
del o

fi
mod

o
fi
add ∅ ‖ õfimod

o
fi
del ∅ o

fi
del

o
fi
mod õ

fi
add õ

fi
mod

UEn occurs. We prove that after the operation composition,
executing operations in Table IV and Table III are equivalent.
According to Algorithm 3, an add operation in UEn and a
del operation in UEm may produce two types of operations
after composition. One is the empty set ∅, which means doing
nothing in the switch. The flow still routes along its original
path. This composited result corresponds to the condition
where a del operation in UEm deletes the original path of flow,
then an add operation in UEn adds the new path which is the
same as the original path in the single update. Another possible
result is a new mod operation õfimod that will delete the original
path and add a new path of fi, making fi route along the
new path. This composited result corresponds to the condition
where a del operation in UEm deletes the original path of
flow and an add operation in UEn adds the new path which is
different from the original path. Therefore, executing the new
operation õfimod is equivalent to executing the corresponding
update operations serially in the single update.

Similarly, if there is an add operation ofiadd∈UEm and a del
operation ofidel∈UEn, in the single update, ofiadd and ofidel are
executed successively. The switch will install and then delete
the forwarding rule of fi (i.e., there is no forwarding rule for
fi on the switch in the end). In the continuous update, since
UEm and UEn have not been executed, we composite these
two operations into ∅ which means that we will not install
the forwarding rule for fi. For an add operation ofiadd∈UEm

and a mod operation ofimod ∈ UEn, Coeus composites these
operations into a add operation õfiadd. Once õfiadd is executed,
fi will be forwarded to its new path. The routing of fi is
identical to performing an add operation ofiadd ∈ UEm and a
mod operation ofimod ∈ UEn successively. For the case where
update operations in UEn and UEm are mod operations, the
single update executes ofimod ∈UEn and fi will finally route
through the path specified by ofimod ∈ UEn. According to
Algorithm 3, Coeus divides these two mod operations into add
operations and del operations. Then the redundant operations
are removed, and the residual operations are composed into
the new mod operation õfimod. The final path of fi specified
by õfimod is the same as that of ofimod ∈ UEn.

Note that if operations in UEm have been executed when
UEn occurs, operations in UEn cannot be combined with
operations in UEm. Therefore, Coeus will execute operations
of UEn in switches according to the rule shown in Table III.

D. Operation Node Partition

To speed up the update process, we present an operation
node partition algorithm to divide each operation node into a
series of independent suboperation nodes that can be updated
in parallel. Our algorithm is inspired by the partition tech-
nology used in [20], [35], while they either cause excessive

dependencies among each partition [20] or cannot be applied
to the situation where the network has potential loops [35]. In
Coeus, we develop a novel partition algorithm. We prove that
our algorithm is optimal for obtaining independent suboper-
ation nodes. Besides, we prove that each suboperation node
produced by the algorithm can be updated in a blackhole-free
and loop-free manner. Now, we define the suboperation node
and the independent suboperation node.

Definition 7. Suboperation Node: The suboperation node
Ofi

j ⊆ Ofi contains at least one mod operation to shift fi
from its original path to target path. The union of suboper-
ation nodes contains all update operations in Ofi and each
suboperation node contains different update operations, i.e.,
Ofi

j ∪O
fi
j+1 ∪ · · · = Ofi , Ofi

j ∩O
fi
j+1∩ · · · = ∅.

Definition 8. Independent Suboperation Node: The inde-
pendent suboperation node is the suboperation node that can
be updated independently without incurring forwarding loops.

In the following, we describe the process of operation
node partition in Algorithm 4. We define Ofi

j as the j-th
suboperation node of Ofi , which contains a part of operations
to update the forwarding rules of switches along the original
path and the target path of fi. Firstly, we traverse update
operations in Ofi along the target path of fi in reverse
order (line 2). When traversing to a mod operation ofimod,
we construct a suboperation node Ofi

j = ϕfi
jo ∪ ϕ

fi
jt , where

ϕfi
jo and ϕfi

jt denote the sets of update operations acting on
the original subpath and the target subpath of fi, respectively
(line 4). Then we add ofimod to Ofi

j and a set of add operations
{ofiadd} between ofimod and ofi(mod,nt) to ϕfi

jt , where ofi(mod,nt)

is the next mod operation of ofimod along the target path
(lines 5, 6). Executing ofimod and ϕfi

jt makes fi route on its
target subpath. According to ofimod and the operations in ϕfi

jt ,
we judge whether Ofi

j is an independent suboperation node
(lines 7-10). Specifically, a forwarding loop occurs when the
following condition are satisfied: (1) there is a potential loop
in the flow path (e.g., the flow path shown in Fig. 7(b)), and
(2) the operations for adding the target subpath are executed
earlier than the operations for deleting the original subpath in a
potential loop. To avoid a loop, we assign operations that may
incur a loop to two suboperation nodes. The first suboperation
node contains operations to delete the original subpath that is
involved in a potential loop. The second suboperation node
contains operations to add the target subpath that is involved
in a potential loop. The second suboperation node cannot
be updated until the first suboperation node is completed.
Therefore, if the target subpath added by operations in Ofi

j

is involved in a potential loop, Ofi
j is a dependent node.

Otherwise, Ofi
j is an independent node. Next, we check

whether the original subpath deleted by ofimod and the target
subpath added by ofi(mod,no) are involved in a loop, where
ofi(mod,no) is the next mod operation of ofimod along the original
path of fi. If the condition is true, there exits a dependent node
(line 11). We iteratively check whether the original subpath
deleted by ofi(mod,no) and the target subpath added by the
next mod operation of ofi(mod,no) along the original path are

9

involved in a loop (line 12). When the original subpath and
the target subpath of ofi(mod,no) are involved in two loops, we
split ofi(mod,no) into two operations ofi(add,sp) and ofi(del,sp) (line
13). The split operation enables ofi(add,sp) and ofi(del,sp) to be
assigned to two suboperation nodes, which reduces the length
of dependencies. Otherwise, there is a node that depends on
the node containing ofi(mod,no), and the latter depends on the
node containing ofimod. Finally, we add del operations {ofidel}
between ofimod and ofi(mod,no) to ϕfi

jo (line 15) and construct the
next suboperation node (lines 17, 18).

Algorithm 4 Operation Node Partition
Input: The operation node Ofi in dependency graph
Output: The suboperation nodes {Ofi

j }
1: j = 0;
2: Traverse operations in Ofi along the target path of fi in reverse order;
3: while ofimod 6= ∅ do
4: O

fi
j = ϕ

fi
jo ∪ ϕ

fi
jt , where ϕfi

jo = ϕ
fi
jt = ∅;

5: O
fi
j = O

fi
j ∪ o

fi
mod, Ofi = Ofi/o

fi
mod;

6: ϕ
fi
jt = ϕ

fi
jt∪{o

fi
add}, where {ofiadd} is a set of add operations between

o
fi
mod and ofi

(mod,nt)
;

7: if the target subpath added by ofimod and ϕfi
jt is involved in a loop

then
8: O

fi
j is a dependent suboperation node;

9: else
10: O

fi
j is an independent suboperation node;

11: if the original subpath deleted by ofimod and the target subpath added
by ofi

(mod,no)
are involved in a loop then

12: while the original subpath deleted by o
fi
(mod,no)

and the target

subpath added by the next mod operation of ofi
(mod,no)

along the
original path are involved in a loop do

13: Split ofi
(mod,no)

into ofi
(add,sp)

and ofi
(del,sp)

;

14: o
fi
(mod,no)

= the next mod operation along the original path;

15: ϕ
fi
jo = ϕ

fi
jo∪{o

fi
del}, where {ofidel} is a set of del operations between

o
fi
mod and ofi

(mod,no)
;

16: O
fi
j = ϕ

fi
jo ∪ ϕ

fi
jt ;

17: j = j + 1;
18: o

fi
mod = o

fi
(mod,nt)

;

19: Divide Ofi into a set of suboperation nodes {Ofi
j };

We use the continuous update instance mentioned in Fig. 1
as an example to illustrate the partition process. We assume
that UE2 arises after NS2. After finishing the operation
composition shown in Fig. 5, we partition the operation nodes
as follows. As shown in Fig. 1, the update operations along the
target path of FA in OFA are {oFA(R1,mod), o

FA
(R5,add)

, oFA(R3,mod),
oFA(R7,add)

, oFA(R2,mod), o
FA
(R6,add)

}. Firstly, we add oFA(R2,mod) to
OFA

1 and add oFA(R6,add)
to ϕFA

1t . Along the original path of
FA, the subpath 〈R2, R3〉 that will be deleted by oFA(R2,mod) is
involved in a potential loop, i.e., {R2 → R3 → R7}, whereas
the original subpath 〈R3, R4〉 that will be deleted by oFA(R3,mod)

is not involved in potential loop. Therefore, oFA(R3,mod) will
not be split. According to Algorithm 4, we obtain an inde-
pendent suboperation node OFA

1 ={oFA(R2,mod), o
FA
(R6,add)

} and
a dependent suboperation nodes OFA

2 . For the suboperation
nodes OFA

2 , we add oFA(R3,mod) to OFA
2 and add oFA(R7,add)

to ϕFA
2t . We continue to search the next mod operation

along the reverse direction of the target path of FA, i.e.,
oFA(R1,mod) and judge that whether the original subpath that

<R1,R5>:5 <R3,R4>:5<R5,R3>:10 <R3,R7>:10 <R7,R2>:10 <R2,R6>:10 <R6,R4>:10<R1,R2>:5

FA

3
O :5

<R2,R3>:5

FB

1
O :5

FA

2
O :5

FA

1
O :5

FC
O :51

Fig. 6. Dependency graph with suboperation nodes.

180

R1R1

R2R2

R3R3

R4R4

R7R7

(a)The network without potential loops

R5R5

R6R6

R1R1 R2R2 R4R4

(b) The network with potential loops

R3R3 R5R5

180180 180

Fig. 7. Illustration of independent suboperation nodes.

will be deleted by oFA(R1,mod) is involved in a loop. Then,
we produce OFA

2 ={oFA(R3,mod), o
FA
(R7,add)

}. Similarly, the
suboperation nodes OFA

3 ={oFA(R1,mod), o
FA
(R5,add)

} of FA,
OFB

1 ={oFB(R1,add)
,oFB(R2,add)

} of FB , and OFC
1 ={oFC(R3,add)

}
of FC are generated. Fig. 6 is the dependency graph with
suboperation nodes, where OFA

3 and OFA
1 are independent

suboperation nodes of FA. The red edge between OFA
1 and

OFA
2 denotes that OFA

2 cannot be updated before OFA
1 .

We can prove the following about Algorithm 4.
Theorem 2. The number of independent suboperation nodes
obtained by Algorithm 4 is optimal.

Proof: We prove Algorithm 4 is optimal for networks with
or without potential loops. If the flow route has no potential
loop (e.g., the route shown in Fig. 7(a)), Algorithm 4 adds
each mod operation to different suboperation nodes. Therefore,
the number of mod operations is equal to the number of
independent suboperation nodes. According to Definition 8,
the number of independent suboperation nodes produced by
Algorithm 4 is optimal. For the situation where the flow route
has potential loops (e.g., the route shown in Fig. 7(b)), we
assume that Algorithm 4 is not optimal, i.e., there exists an
algorithm that can generate more independent suboperation
nodes than Algorithm 4. We assume Ofi

e is an extra indepen-
dent suboperation node produced by the optimal algorithm.
According to the property of the independent suboperation
node, the target subpath deleted by Ofi

e cannot be in a loop,
while the original subpath added by Ofi

e is not necessary.
If the original subpath deleted by Ofi

e is not involved in a
loop, Ofi

e has the same properties as the suboperation nodes
shown in Fig. 7(a), i.e., both the original subpath and target
subpath of Ofi

e are not involved in loops. Therefore, Ofi
e

is one of the independent suboperation nodes produced by
Algorithm 4, which contradicts the assumption. If the original
subpath deleted by Ofi

e is involved in loops (e.g., the subpath
〈R2, R3〉 or 〈R3, R4〉 in Fig. 7(b)), the mod operation in Ofi

e

has the following properties: (1) the target subpath added by
the mod operation is not involved in a loop, and (2) the original
subpath deleted by the mod operation is involved in a loop.
However, Algorithm 4 can add each mod operation satisfying
these properties to an independent operation node. Therefore,
Ofi

e is one of the independent suboperation nodes produced
by Algorithm 4, which contradicts the assumption.
Theorem 3. The longest dependency chain of suboperation
nodes produced by Algorithm 4 is 2.

Proof: We prove the theorem by constructing a contradic-

10

tion. We assume that Algorithm 4 produces three suboperation
nodes O1, O2, and O3, where O3 depends on O2, and O2

depends on O1. In this case, the dependency chain of these
nodes is 3. The above dependency relationships indicate that
the original subpath deleted by O1 and the target subpath
added by O2 are involved in a potential loop. Similarly, the
original subpath deleted by O2 and the target subpath added
by O3 are involved in a loop. Therefore, O2 contains a mod
operation to shift the flow from its original subpath to target
subpath, where the target subpath and the initial subpath are
in two different loops. It contradicts the generation rules
of suboperation nodes in Algorithm 4 (lines 11-13), since
Algorithm 4 divides such a mod operation into two operations
and adds the divided operations to two suboperation nodes.

After suboperation nodes are produced, we update each of
them in the following way. We execute all add operations in
the suboperation node simultaneously. Then we execute the
mod operation, making the flow route on its target subpath.
The corresponding residual link resources are updated. Finally,
we execute all del operations in the suboperation node to delete
the forwarding rules for the original subpath of the flow.
Theorem 4. The update of suboperation nodes is blackhole-
and loop-free.

Proof: The update of the suboperation node first needs
to execute the operations to forward flows to its target sub-
path. Then operations that delete the forwarding rules for
the original subpath of the flow are executed. The above
procedures ensure that packets always have the forwarding
rules on switches, the blackhole-free condition is guaranteed.
Besides, Algorithm 4 always assigns update operations that
may cause a forwarding loop to two suboperation nodes. We
restrict the update order of these two suboperation nodes,
which ensures the loop-free condition.

E. Command Scheduling

After dividing the operation node into several independent
suboperation nodes, the parallelism of the ODG has been
improved. According to the ODG with suboperation nodes,
Algorithm 5 aims to schedule and execute a set of update
commands in order to ensure consistency. We describe Algo-
rithm 5 in detail.

In Algorithm 5, we use θ and θ̃ to denote the set of
candidate update nodes and the set of formal update nodes.
Initially, we add Ofi

j which only contains del operations to θ̃.
Coeus updates such operation nodes directly since executing
del operations release link resources (lines 3-4). Then, we
find the operation nodes which have sufficient resources to
update and put them into θ (lines 5-7). The candidate update
nodes cannot be updated simultaneously since the residual
link resources may be insufficient. To select the operation
nodes which can be updated at once, we rank Ofi

j ∈ θ in
descending order of out-degree and add the congestion-free
operation nodes to θ̃ (lines 8-11). Selecting the operation nodes
with high out-degree because updating these nodes at the same
time will release more link resources. If the link congestion
is unavoidable, i.e., flows occupy insufficient resources of
links mutually, deadlocks occur in the ODG. To assign the
update order of operation nodes involved in a deadlock, for

each operation node, we calculate the throughput loss ratio Φ
caused by the update of the operation node. Similar to [35],
we select the operation node with minimum Φ and update it
by limiting the flow rate to dfi(1−Φ) (lines 13-16). Once a
set of update commands are sent, Coeus checks whether the
new update event arises and decides the next update step.
Algorithm 5 Command Scheduling
Input: The operation dependency graph
Output: A set of update commands
1: θ = θ̃ = ∅;
2: for each operation node Ofi

j do
3: if there is no add and mod operations in Ofi

j then
4: θ̃ = θ̃ ∪Ofi

j ;
5: else
6: if link resources are sufficient for executing operations in Ofi

j then
7: θ = θ ∪Ofi

j ;
8: Rank Ofi

j in θ in descending order according to their out-degrees;
9: for each Ofi

j in θ do
10: if link resources are sufficient for executing operations in θ̃+Ofi

j then
11: θ̃ = θ̃ ∪Ofi

j ;
12: Update operation nodes in θ̃;
13: if a deadlock occurs then
14: for each Ofi

j involved in a deadlock do

15: Calculate throughput loss ratio Φ =
dfi−min{ru,v}

dfi
, where

min{ru,v} is the minimum residual link capacity among the links
that need to be occupied by the update of Ofi

j ;
16: Update Ofi

j with minimum Φ and limit the rate of fi to dfi(1−Φ);

Theorem 5. Coeus always produces a blackhole-free, loop-
free, and congestion-free update sequence.

Proof: According to Theorem 4, suboperation nodes can
be updated in blackhole-free and loop-free manners. Besides,
Algorithm 5 always updates operation nodes with sufficient
link resources. For the condition where the congestion is
unavoidable, i.e., deadlocks occur, we limit the rate of flow to
fit the residual link resources. Therefore, the update process
will never congest the link.

F. Analysis of Time Complexity

Now we analyze the time complexity of Coeus. We assume
that an update event UE containing N update operations
arrives. UE needs to update M flows, i.e., there are M
operation nodes in the dependency graph. We build the depen-
dency relationship for each update operation and composite
the operation if the operation is redundant. It costs O(1)
to check whether an operation is redundant. Therefore, the
cost of dependency relationship construction and operation
composition is O(N). Then, we traverse update operations in
each operation node to divide an operation node into subop-
eration nodes. Since the node partition traverses each update
operation once, the cost is O(N). Assuming each operation
node can be divided into K suboperation nodes. There are
MK operation nodes that need to be scheduled. Since the
command scheduling updates at least one suboperation node
in each round, it needs at most MK rounds to complete
the update. In each round, it costs O(MK) to traverse each
suboperation node and costs O(MK log(MK)) to sort the
suboperation nodes based on their out-degrees. Besides, it
costs O(MK) to determine the suboperation nodes in θ̃ and
costs O(MK) to select the suboperation nodes involved in

11

TABLE V
CORRECT OPERATIONS OF UEn , WHERE UEm APPEARED EARLIER THAN

UEn , AND UEm HAS BEEN EXECUTED

UEn

UEm ofiadd ofidel ofimod

ofiadd õfimod ofiadd õfimod

ofidel ofidel ∅ ofidel
ofimod ofimod õfiadd ofimod

deadlocks to execute. Therefore, the command scheduling
costs O(MK × (MK + MK log(MK) + MK + MK)) =
O(M2K2 log(MK)). The total time complexity is O(N) +
O(N) +O(M2K2 log(MK)) = O(N +M2K2 log(MK)).

G. Discussion
Since the network state of the control plane is not strictly

synchronized with the routing state of the data plane, network
applications such as traffic engineering may produce invalid
update events that contain invalid update operations. A simple
way to handle invalid update events is to abandon them and
only perform the continuous update with valid update events.
However, eliminating invalid update events directly may result
in incorrect or missing forwarding rules on switches.

A more reliable method is to transform invalid operations
into correct ones. Specifically, we assume that UEm is a previ-
ously arrived update event and UEn is a newly arriving update
event. The update operations in UEn are not necessarily valid.
The transformation of invalid operations is to ensure that flows
can be routed along the target path required by the update event
UEn when all update operations (including valid operations
and converted operations) in UEn are executed.

Table V and Table VI show the transformation results of
invalid update operations, where the red font represents the
correct update operation transformed by the invalid update
operation in UEn, and the black font represents the valid
update operation. Table V characterizes the condition where
the invalid update event UEn occurs when UEm has been
executed. In this case, the update operations in UEm and
UEn cannot be composed. If an add operation ofiadd ∈ UEn

arises when ofiadd ∈ UEm has been executed, to ensure that
fi is routed on the path specified by UEn, we transform
ofiadd ∈ UEn into a mod operation õfimod ∈ UEn. The mod

operation õfimod deletes the forwarding rule of ofiadd ∈ UEm

and add the forwarding rule of ofiadd ∈ UEn. Then, we add
õfimod to Ofi and construct the corresponding relationships for
õfimod in the ODG. Similarly, other invalid update operations
can transform to correct update operations shown in Table V.
Table VI characterizes the condition where the invalid up-
date event UEn occurs when UEm has not been executed.
Algorithm 3 only composites valid update operations. For
invalid update operations, we replace unexecuted operations
in UEm with operations in UEn and construct dependency
relationships for operations in UEn in the ODG to ensure
that Coeus can execute operations in UEn and flows can be
routed on the paths specified by UEn.

VII. EXPERIMENTAL EVALUATION

In this section, we conduct large-scale simulation experi-
ments to verify the performance of Coeus.

TABLE VI
CORRECT OPERATIONS OF UEn , WHERE UEm APPEARED EARLIER THAN

UEn , AND UEm HAS NOT BEEN EXECUTED

UEn

UEm ofiadd ofidel ofimod

ofiadd ofiadd ∅ ‖ õfimod ofiadd
ofidel ∅ ofidel ofidel
ofimod õfiadd ofimod õfimod

Methodology: Our experiments run on a PC with Intel core
i5-7200U@2.71GHz quad-core processor and 8G of memory.
We evaluate Coeus on two common topologies: (1) The
Microsoft’s WAN topology (i.e., SWAN) [27] with 8 switches
shown in Fig. 8(a). (2) The 8-pods fat-tree [30] with 16 core
switches, 64 aggregate switches, 64 edge switches, and 128
hosts shown in Fig. 8(b). We set the link capacity of each
topology to be 1-Gbps and generate different numbers of
updated flows (i.e., 100, 200, 400, 600) with random source
and destination in the network. We generate continuously
arriving update events with different arrival rates λ to mod-
ify the routes of flows. For each update event that needs
flows to be updated from their initial routes to target routes,
we determine the demands of flows in the following way.
According to the initial routes of flows, we search for the
link that routed through the maximum number of flows and
treat this link as the bottleneck. We divide the capacity of
the bottleneck equally as the demand of each flow routing
through this link. Then we calculate the residual capacity
of each link. We iteratively perform the above operations
and obtain the demand of each flow on its initial route. We
adopt the same method to determine the flow demands on
their target routes. The demand of each flow is set to the
minimum value of demands calculated from its initial and
final routes. According to the test of commodity switches [27],
the execution time of insertion, deletion, and modification
operations is set to 5ms, 5ms, 10ms, respectively. The RTT
between the controller and data plane switches is set to 50ms.

S0

S4S5S6

S1 S2

S3S3S7S7

(a) Microsoft’s WAN topology.

… ……

…

…

…

…

…

…

…

(b) Fat-tree topology.

Fig. 8. Network topologies.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Time(s)

0.6

0.8

1

1.2

1.4

M
ax

im
um

 li
nk

 u
til

iz
at

io
n

Coeus Update Algebra

Fig. 9. Maximum link utilization.

We compare the performance of Coeus with “Update Al-
gebra” [28] and Cupid [20]. Specifically, “Update Algebra”
models each operation as a set projection. By leveraging the

12

0 1 2 3 4 5 6 7 8 9

The arrival rate(s-1)

0

0.5

1

A
ve

ra
ge

 c
om

pl
et

e
tim

e(
s)

Flows=100 Flows=200 Flows=400 Cupid Coeus

0 1 2 3 4 5 6 7 8 9

The arrival rate(s-1)

0

0.5

1

A
ve

ra
ge

 c
om

pl
et

e
tim

e(
s)

Flows=100 Flows=200 Flows=400 Cupid Coeus

1 1.5 2 2.5 3
The arrival rate (s-1)

0

5

10

15

C
o

m
p

le
ti
o
n

 t
im

e
(s

)

(a) WAN scenario

1 1.5 2 2.5 3
The arrival rate (s-1)

0

5

10

15

C
o

m
p

le
ti

o
n

 t
im

e
(s

)

(b) Fat-tree scenario

Fig. 10. Update time.

1 1.5 2 2.5 3
The arrival rate (s-1)

0

5K

10K

15K

20K

N
u

m
b

er
 o

f
o

p
er

at
io

n
s

(a) WAN scenario

1 1.5 2 2.5 3
The arrival rate (s-1)

20K

40K

60K

N
u

m
b

er
 o

f
o

p
er

at
io

n
s

p=0.1 p=0.2 p=0.4 Cupid Coeus

(b) Fat-tree scenario

Fig. 11. Number of executed operations.

100 200 300 400
The flow number

0

1

2

O
p

er
at

io
n

 c
o

m
p

o
si

ti
o

n
 r

at
io

(%
)

Coeus(6=1) Coeus(6=1.5) Coeus(6=2) Coeus(6=2.5) Coeus(6=3)

100 200 300 400
The flow number

0

10

20

30

40

F
lo

w
s

in
 d

ea
d

lo
ck

s

Cupid Coeus(=1) Coeus(=2) Coeus(=3)

100 600200 400
Number of flows

0

0.2

0.4

0.6

0.8

O
p

er
at

io
n

 c
o

m
p

o
si

ti
o

n
 r

at
io

 (
%

)

(a) WAN scenario

100 600200 400
Number of flows

0

0.3

0.6

0.9

O
p

er
at

io
n

 c
o

m
p

o
si

ti
o

n
 r

at
io

 (
%

)

(b) Fat-tree scenario

Fig. 12. Operation composition ratio.

100 600200 400
Number of flows

0

250

500

750

1000

In
d

ep
en

d
en

t
su

b
o

p
er

at
io

n
 n

o
d

es
(a) WAN scenario

100 600200 400
Number of flows

0

250

500

750

1000

In
d

ep
en

d
en

t
su

b
o

p
er

at
io

n
 n

o
d

es

(b) Fat-tree scenario

Fig. 13. The number of independent suboperation nodes.

properties of abstract algebra, “Update Algebra” selects the
subsets of projections for execution in order. “Update Algebra”
can process continuous update events in time. However, it only
ensures blackhole-free and loop-free conditions. Cupid is the
state-of-the-art approach to achieve the single update. Given
the initial and target routes of flows, Cupid divides the global
dependencies among flows into several independent segments
and identifies the critical nodes which may cause potential
link congestion. By updating independent segments in par-
allel and updating the critical nodes serially, Cupid ensures
the blackhole-free, loop-free, and congestion-free properties.
However, Cupid can only process one update event at a time.
We repeat the experiments 10 times for each data set to
generate the results discussed below.

Experiment results: We first investigate the maximum link
utilization of Coeus and “Update Algebra” shown in Fig. 9.
We do this simulation with 100 updated flows in the SWAN
topology. The arrival rate λ of update events is set to 3/s.
Once the maximum link utilization is beyond one, it means
that link congestion occurs. Fig. 9 shows that Coeus always
guarantees that the maximum link utilization is less than or
equal to one, ensuring the congestion-free condition during the
update. In contrast, the maximum link utilization of “Update
Algebra” sometimes is over 1.3. The link overload results in
packet loss and the degradation of network performance.

Next, we generate 10 continuous update events and compare
Coeus against Cupid in multiple dimensions. Fig. 10 shows the
time to complete all update events. We observe that the update
time of Coeus is shorter than that of Cupid. Moreover, the gap
between the update completion time of Coeus and Cupid is
getting larger with the arrival rate increasing. Specifically, in
the SWAN topology with 100 updated flows, compared with
Cupid, Coeus improves the update speed by 13.2%, 61.4%,
120.7%, 130.1%, 179.8% when the arrival rate of update

events λ=1/s∼3/s. The reason is that Cupid executes update
events serially while the operation composition in Coeus can
reduce the number of redundant operations, and the node
partition in Coeus can execute update operations in parallel.

Fig. 11 shows the number of executed update operations
after finishing 10 continuous update events. The number of
executed update operations of Cupid is constant with the
arrival rate varying since Cupid needs to execute all update
operations of each update event. In contrast, Coeus executes
fewer operations. This benefits from the operations composi-
tion, which composites unexecuted update operations into the
fewer equivalent ones. Furthermore, the number of executed
operations in Coeus decreases with the arrival rate increasing.
It is because that more unexecuted operations that can be
composed. When the arrival rate λ = 3/s and the number
of updated flows varies from 100 to 400, Coeus reduces
51.2%, 59.9%, 64.2% of executed operations compared with
Cupid in the SWAN. We also observe that executed update
operations in the fat-tree are much more than that of in the
SWAN since flows in the fat-tree are routed through more
links, requiring more update operations. In the fat-tree with
100, 200, 400 flows, Coeus reduces 82.2%, 83.4%, 90.1% of
executed operations compared with Cupid when the arrival
rate λ = 3. This demonstrates that Coeus can execute fewer
update operations while maintaining consistency.

Fig. 12 reflects the average operation composition ratio.
With the arrival rate increasing, the composition ratio in-
creases. Specifically, in the SWAN, Coeus composites at least
30% redundant operations of each update event, while in the
fat-tree, at least 70% operations can be composed by Coeus.
The composition ratio in the fat-tree is higher than that of in
the SWAN because the hierarchical structure of the fat-tree
increases the probability of operation composition.

When 10 continuous update events are completed, we

13

count the average number of independent suboperation nodes
produced in each update event in Fig. 13. Compared with
Cupid, Coeus generates more independent suboperation nodes
both in the SWAN and the fat-tree since we have proved that
the longest dependency chain of suboperation nodes produced
by Coeus is 2, while the suboperation nodes produced by
Cupid may have long dependency chains.

100 200 300 400
The flow number

0

10

20

30

40

F
lo

w
s

in
 d

ea
d

lo
ck

s

Cupid Coeus(=1) Coeus(=2) Coeus(=3)

100 600200 400
Number of flows

0

20

40

60

80

F
lo

w
s

in
 d

ea
d

lo
ck

s

Cupid Coeus(=1) Coeus(=2) Coeus(=3)

(a) WAN scenario

100 600200 400
Number of flows

10

20

30

F
lo

w
s

in
 d

ea
d

lo
ck

s

(b) Fat-tree scenario
Fig. 14. Number of flows in deadlocks.

Fig. 14 shows the number of flows in deadlocks in 10
continuous update events. We observe that Cupid produces
more flows in deadlocks in both two topologies. The reason
is that suboperation nodes produced by Cupid have long
dependency chains. The dependent suboperation nodes can
only be updated along the dependency chain. In contrast,
Coeus produces more independent suboperation nodes that can
be updated in parallel. Coeus can release more link resources
compared with Cupid, so there are fewer flows in deadlocks.

VIII. CONCLUSION

In this paper, we studied the continuous update problem in
SDNs. We proposed Coeus to respond to continuous update
events in time while guaranteeing the blackhole-free, loop-
free, and congestion-free properties simultaneously during the
update procedure. We developed a set of efficient algorithms
to handle update events and speed up the update process.
Extensive simulations demonstrate that Coeus can reduce the
makespan and redundant update operations significantly.

REFERENCES

[1] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
a globally-deployed software defined wan,” in ACM SIGCOMM, 2013,
pp. 3–14.

[2] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint vm placement
and routing for data center traffic engineering,” in IEEE INFOCOM,
2012, pp. 2876–2880.

[3] J. Zheng, Q. Zheng, X. Gao, and G. Chen, “Dynamic load balancing in
hybrid switching data center networks with converters,” in IEEE ICPP,
2019, pp. 1–10.

[4] C.-Y. Chu, K. Xi, M. Luo, and H. J. Chao, “Congestion-aware single
link failure recovery in hybrid sdn networks,” in IEEE INFOCOM, 2015,
pp. 1086–1094.

[5] J. Zheng, H. Xu, X. Zhu, G. Chen, and Y. Geng, “Sentinel: Failure
recovery in centralized traffic engineering,” IEEE/ACM Transactions on
Networking, vol. 27, no. 5, pp. 1859–1872, 2019.

[6] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in ACM SIGCOMM, 2012, pp. 323–
334.

[7] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. A.
Maltz, “zupdate: updating data center networks with zero loss,” in ACM
SIGCOMM, 2013, pp. 411–422.

[8] J. McClurg, H. Hojjat, P. Černỳ, and N. Foster, “Efficient synthesis of
network updates,” in Acm Sigplan Notices, vol. 50, no. 6, 2015, pp.
196–207.

[9] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in ACM SIGCOMM, 2010, pp. 267–280.

[10] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible
data center network,” in ACM SIGCOMM, 2009, pp. 51–62.

[11] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in IEEE INFOCOM, 2013, pp. 2211–2219.

[12] J. Zheng, X. Hong, X. Zhu, G. Chen, and Y. Geng, “We’ve got you
covered: Failure recovery with backup tunnels in traffic engineering,” in
ICNP, 2016, pp. 1–10.

[13] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE INFOCOM, 2018, pp. 1871–1879.

[14] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained
traffic engineering for data centers,” in ACM CoNEXT, 2011, p. 8.

[15] K.-T. Foerster, S. Schmid, and S. Vissicchio, “Survey of consistent
software-defined network updates,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 2, pp. 1435–1461, 2018.

[16] S. Brandt, K.-T. Förster, and R. Wattenhofer, “On consistent migration
of flows in sdns,” in IEEE INFOCOM, 2016, pp. 1–9.

[17] S. Akhoondian Amiri, S. Dudycz, S. Schmid, and S. Wiederrecht,
“Congestion-free rerouting of flows on dags,” in Springer ICALP, 2018.

[18] J. Zheng, Q. Ma, C. Tian, B. Li, H. Dai, H. Xu, G. Chen, and Q. Ni,
“Hermes: Utility-aware network update in software-defined wans,” in
IEEE ICNP, 2018, pp. 231–240.

[19] R. Mahajan and R. Wattenhofer, “On consistent updates in software
defined networks,” in ACM HotNets, 2013, pp. 1–7.

[20] W. Wang, W. He, J. Su, and Y. Chen, “Cupid: Congestion-free consistent
data plane update in software defined networks,” in IEEE INFOCOM,
2016, pp. 1–9.

[21] A. Basta, A. Blenk, S. Dudycz, A. Ludwig, and S. Schmid, “Efficient
loop-free rerouting of multiple sdn flows,” IEEE/ACM Transactions on
Networking, vol. 26, no. 2, pp. 948–961, 2018.

[22] K.-T. Förster, R. Mahajan, and R. Wattenhofer, “Consistent updates
in software defined networks: On dependencies, loop freedom, and
blackholes,” in IEEE IFIP Networking, 2016, pp. 1–9.

[23] H. Xu, Z. Yu, X.-Y. Li, C. Qian, L. Huang, and T. Jung, “Real-time
update with joint optimization of route selection and update scheduling
for sdns,” in IEEE ICNP, 2016, pp. 1–10.

[24] H. Xu, Z. Yu, X.-Y. Li, L. Huang, C. Qian, T. Jung, H. Xu, Z. Yu, X.-
Y. Li, L. Huang et al., “Joint route selection and update scheduling for
low-latency update in sdns,” IEEE/ACM Transactions on Networking,
vol. 25, no. 5, pp. 3073–3087, 2017.

[25] J. Zheng, H. Xu, G. Chen, and H. Dai, “Minimizing transient congestion
during network update in data centers,” in ICNP, 2015, pp. 1–10.

[26] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, F. Matus, R. Pan, N. Yadav, G. Varghese et al., “Conga:
Distributed congestion-aware load balancing for datacenters,” in ACM
SIGCOMM, 2014, pp. 503–514.

[27] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic scheduling of network
updates,” in ACM SIGCOMM, 2014, pp. 539–550.

[28] G. Li, Y. R. Yang, F. Le, Y.-s. Lim, and J. Wang, “Update algebra:
Toward continuous, non-blocking composition of network updates in
sdn,” in IEEE INFOCOM, 2019, pp. 1081–1089.

[29] X. Wen, C. Diao, X. Zhao, Y. Chen, L. E. Li, B. Yang, and K. Bu,
“Compiling minimum incremental update for modular sdn languages,”
in ACM HotSDN, 2014, pp. 193–198.

[30] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM, 2008, pp. 63–74.

[31] A. Ludwig, J. Marcinkowski, and S. Schmid, “Scheduling loop-free
network updates: It’s good to relax!” in ACM PODC, 2015, pp. 13–
22.

[32] K. T. Foerster, A. Ludwig, J. Marcinkowski, and S. Schmid, “Loop-free
route updates for software-defined networks,” IEEE/ACM Transactions
on Networking, vol. PP, no. 99, pp. 328–341, 2018.

[33] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in ACM SIGCOMM, 2013, pp. 15–26.

[34] R. Gandhi, O. Rottenstreich, and X. Jin, “Catalyst: Unlocking the power
of choice to speed up network updates,” in ACM CoNEXT, 2017, pp.
276–282.

[35] K.-R. Wu, J.-M. Liang, S.-C. Lee, and Y.-C. Tseng, “Efficient and
consistent flow update for software defined networks,” IEEE Journal on
Selected Areas in Communications, vol. 36, no. 3, pp. 411–421, 2018.

[36] T. Mizrahi, E. Saat, and Y. Moses, “Timed consistent network updates,”
in ACM SOSR, 2015, pp. 21:1–21:14.

14

[37] T. Mizrahi, O. Rottenstreich, and Y. Moses, “Timeflip: Scheduling net-
work updates with timestamp-based tcam ranges,” in IEEE INFOCOM,
2015, pp. 2551–2559.

[38] T. Mizrahi and Y. Moses, “Software defined networks: It’s about time,”
in IEEE INFOCOM, 2016, pp. 1–9.

[39] J. Zheng, G. Chen, S. Schmid, H. Dai, and J. Wu, “Chronus: Consistent
data plane updates in timed sdns,” in IEEE ICDCS, 2017, pp. 319–327.

[40] J. Zheng, B. Li, C. Tian, K.-T. Foerster, S. Schmid, G. Chen, and J. Wu,
“Scheduling congestion-free updates of multiple flows with chronicle in
timed sdns,” in IEEE ICDCS, 2018, pp. 12–21.

[41] J. Zheng, B. Li, C. Tian, K.-T. Foerster, S. Schmid, G. Chen, J. Wu,
and R. Li, “Congestion-free rerouting of multiple flows in timed sdns,”
IEEE Journal on Selected Areas in Communications, vol. 37, no. 5, pp.
968–981, 2019.

[42] T. D. Nguyen, M. Chiesa, and M. Canini, “Decentralized consistent
updates in sdn,” in ACM SOSR, 2017, pp. 21–33.

[43] J. Zheng, H. Xu, G. Chen, H. Dai, and J. Wu, “Congestion-minimizing
network update in data centers,” IEEE Transactions on Services Com-
puting, 2016.

[44] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella,
L. E. Li, and M. Thottan, “Measuring control plane latency in sdn-
enabled switches,” in ACM SOSR, 2015, pp. 25:1–25:6.

[45] B. Heller, C. Scott, N. McKeown, S. Shenker, A. Wundsam, H. Zeng,
S. Whitlock, V. Jeyakumar, N. Handigol, J. McCauley et al., “Leveraging
sdn layering to systematically troubleshoot networks,” in ACM HotSDN,
2013, pp. 37–42.

[46] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann, “Ofrewind:
Enabling record and replay troubleshooting for networks,” in USENIX
ATC, 2011, pp. 327–340.

Xin He received the B.S. degree from the Inner
Mongolia University and M.E. degree from the Bei-
jing Institute of Technology, and the Ph.D. degree
from Nanjing University. He is currently an assistant
professor with the School of Computer Science at
Nanjing University of Posts and Telecommunica-
tions. His research interests are in the areas of SDN,
data center network and edge computing. He is a
student member of IEEE.

Jiaqi Zheng is currently a Research Assistant Pro-
fessor from Department of Computer Science and
Technology, Nanjing University, China. His research
area is computer networking, particularly data center
networks, SDN/NFV, machine learning system and
online optimization. He was a Research Assistant
at the City University of Hong Kong in 2015 and
collaborated with Huawei Noah’s Ark Lab. He vis-
ited CIS center at Temple University in 2016. He
received the Best Paper Award from IEEE ICNP
2015, Doctorial Dissertation Award from ACM SIG-

COMM China 2018, the First Prize of Jiangsu Science and Technology Award
in 2018, Doctorial Dissertation Award from Jiangsu Province and Nanjing
University in 2019. He is a member of ACM and IEEE.

Haipeng Dai received the B.S. degree in the De-
partment of Electronic Engineering from Shanghai
Jiao Tong University, Shanghai, China, in 2010,
and the Ph.D. degree in the Department of Com-
puter Science and Technology in Nanjing University,
Nanjing, China, in 2014. His research interests are
mainly in the areas of wireless charging, mobile
computing, and data mining. He is a research as-
sistant professor in the Department of Computer
Science and Technology in Nanjing University. His
research papers have been published in many pres-

tigious conferences and journals such as ACM MobiSys, ACM MobiHoc,
ACM VLDB, ACM SIGMETRICS, ACM UbiComp, IEEE INFOCOM, IEEE
ICDCS, IEEE ICNP, IEEE SECON, IEEE IPSN, IEEE JSAC, IEEE/ACM
TON, IEEE TMC, IEEE TPDS, and IEEE TOSN. He is an IEEE and
ACM member. He serves/ed as Poster Chair of the IEEE ICNP’14, Track
Chair of the ICCCN’19, TPC member of the IEEE INFOCOM’20, IEEE
IWQoS’19, IEEE ICNP’14, IEEE ICC’14-18, IEEE ICCCN’15-18 and the
IEEE Globecom’14-18. He received Best Paper Award from IEEE ICNP’15,
Best Paper Award Runner-up from IEEE SECON’18, and Best Paper Award
Candidate from IEEE INFOCOM’17.

Chong Zhang is currently an undergraduate stu-
dent of the software institute of Nanjing University.
He has majored in software engineering since he
entered Nanjing University in 2017. He is also a
student member of IEEE. His research interests
include computer communication, SDN and data
center transport.

Geng Li is an Associate Research Scientist in
the Department of Computer Science at Yale Uni-
versity. He received the Ph.D. degree in wireless
communications from Peking University in June
2016, advised by Professor Yuping Zhao, the B.S.
degree in electronics engineering, the B.A. degree in
economics (double major) from Peking University in
2011. He works in the areas of computer networks
and wireless communications.

Wanchun Dou received the Ph.D. degree in me-
chanical and electronic engineering from Nanjing
University of Science and Technology, China, in
2001. From Apr. 2001 to Dec. 2002, he did his
postdoctoral research in the Department of Com-
puter Science and Technology, Nanjing University,
China. Now, he is a full professor of the State Key
Laboratory for Novel Software Technology, Nanjing
University, China. From Apr. 2005 to Jun. 2005
and from Nov. 2008 to Feb. 2009, he respectively
visited the Department of Computer Science and

Engineering, Hong Kong University of Science and Technology, as a visiting
scholar. Up to now, he has published more than 60 research papers in
international journals and international conferences. His research interests
include cloud computing, big data, and service computing.

Wajid Rafique is currently pursuing his Ph.D.
degree in computer science at Nanjing University,
China. He received the BS (computer science) de-
gree from Virtual University of Pakistan and the
MS (software engineering) degree from National
University of Sciences and Technology, Pakistan.
His research works have been appeared in several
prestigious international journals and the top tier
conferences. His research interests include big data
services, machine learning, mobile cloud computing.

Qiang Ni received the B.Sc., M.Sc., and
Ph.D.degrees in engineering from the Huazhong
University of Science and Technology, Wuhan,
China. He is currently a Professor and the
Head of Communication Systems Research
Group, InfoLab21, School of Computing and
Communications, Lancaster University, Lancaster,
U.K. His research interests include future generation
communications and networking systems, including
green communications, cloud systems, cognitive
radio network systems, heterogeneous networks, 5G

and SDN, IoT, and big data analytics.

Guihai Chen received B.S. degree in computer soft-
ware from Nanjing University in 1984, M.E. degree
in computer applications from Southeast University
in 1987, and Ph.D. degree in computer science from
the University of Hong Kong in 1997. He is a
professor and deputy chair of the Department of
Computer Science, Nanjing University, China. He
had been invited as a visiting professor by many
foreign universities including Kyushu Institute of
Technology, Japan in 1998, University of Queens-
land, Australia in 2000, and Wayne State University,

USA during Sept. 2001 to Aug. 2003. He has a wide range of research interests
with focus on parallel computing, wireless networks, data centers, peer-to-peer
computing, high-performance computer architecture and data engineering.

