
 

Deformation Behaviour of Woven Fibre 
Elastomeric Composites 

By 

Mohamed Mousa Moraga Milad 

 

Thesis submitted for the degree of Doctor of Philosophy at 

Lancaster University 

Submitted 

 April 2020 

 



 
 

i 
 
 

Acknowledgements 

 

First of all, I must thank my supervisor Professor Sarah Green and Professor Jianqioa Ye 

for giving me the opportunity to undertake this project and for helping, advising and supporting 

me throughout. Without their guidance and extreme patience, I would never have been able to 

complete this task. 

I must thank the Higher Education Commission of Libya, for providing financial assistance in 

the form of a Doctoral Scholarship, and the Physics Department of The University of Tobruk 

for providing research resources. 

I am grateful to the academic staff of the Lancaster University Engineering Department. My 

appreciation also goes to Mark Salisbury, Andy Baker, Nicolas Renninson and Gavriluk, 

Andrew for providing the technical support in carrying out the experimental work reported in 

this thesis. 

I am truly indebted and thankful to Gerald Steele and Dr Harald Schlegl for their advice and 

support. Their kindness and understanding made this project a pleasant experience. 

Finally, this PhD was the dream of my late father. I will never forget the support and 

encouragement that came from him. It is for his faith in me that I thank him. I am obliged to 

other family members who supported me throughout my academic journey. My mother and 

my wife were great strengths, allowing me to carry on with my studies through difficult times. 

My sisters and brothers also provided invaluable support. I owe many apologies to my sweet 

kids Rodina, Mousa, Ahamed, Rawan and Raghad, that I was unable to give them the time they 

deserved because of the time taken by my study. 

 



 
 

ii 
 
 

List of Publications and Presentations 

 

Milad, M., Green, S. and Ye, J., 2018. Mechanical properties of reinforced composite materials 

under uniaxial and planar tension loading regimes measured using a non-contact optical 

method. Composite Structures, 202, pp.1145-1154. 

A nonlinear hyperelastic constitutive model for woven fibre reinforced composite “submission 

to Engineering Structures” 

 Video Gauging the Behaviour of Sheet Anisotropic Materials during a Hydraulic Bulge Test 

“submission to Composite Structures” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

iii 
 
 

ABSTRACT 

The focus of this thesis is both to improve the characterisation of hyperelastic materials and to 

develop a simple hyperelastic constitutive model for different composites materials, including 

woven fabric reinforcements with a hyperelastic matrix. Physical tests are performed on 

PVC/nitrile elastomer with woven continuous nylon reinforcement composite sheet under 

loading under uniaxial extension, pure shear, picture frame and bulge tests achieved via wide 

strip tension testing. Through the novel use of an advanced non-contact optical strain 

measurement technique,   the hyperelastic material behaviour of the composite is investigated, 

and materials parameters reported for both the warp and the weft directions of reinforcement 

fibre alignment. To characterise the materials, an appropriate constitutive model is determined 

by fitting experimental shear and uniaxial tension data. The non-contact technique is used to 

acquire normal and shear strains at the surface of the composite sheet material when loaded to 

tensile strains (stretches). Directly measured shear strains are compared to those derived from 

the normal strain outputs of an optical rectangular strain rosette array, where the two measures  

are in close agreement. The measured mechanical behaviour under loading is used to determine 

an approximate strain energy function for the composite via ABAQUS software hyperelastic 

materials modelling curve fitting, with the Ogden and Yeoh hyperelastic models showing 

reasonable agreement to experimental data. A simple hyperelastic constitutive model is 

developed to investigate nonlinear mechanical properties of composites (loaded to large 

deformations) made of an elastomeric matrix containing biased woven fabric reinforcement. 

The strain energy function of the developed constitutive model is decomposed into four parts 

via a series of strain energy contributions. These include the strain energy from the matrix, the 

tensile energy from fibre elongation in the warp and weft directions and the shearing energy 

from the interaction between the warp and weft yarns.  Furthermore, a new method is proposed 

to calculate shear strain whereby measurements are taken directly from the surface of the 
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sample. The three-dimensional digital image correlation (3D-DIC) technique is shown to be a 

useful tool for obtaining the membrane stress and strain fields during the bulge test. The 3D 

video gauging, combined with DIC, captures three-dimensional surface geometry and 

deformed surface displacements. 
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Chapter One 

1.1 Background 

Since their first general acceptance, the development of new materials has had regard to the 

mechanical and geometric properties of composites, where it is essential to understand the 

elastic behaviour of fabric-reinforced rubber elastomeric composites. 

Now among the most advanced and versatile of engineering materials, composites have 

brought advances in regard to the specific strength and stiffness of automotive and aircraft 

structures, where the woven fibre composites deliver enhanced elastic properties. Elsewhere 

fibres have proven suitable and cost-effective in covering large spaces, for example, stadium 

walls and tennis courts (Awais et al.,2020). 

Composites, of different types of fibre and elastomer or rubber-like matrix materials, offer a 

variety of technical uses. The distinguishing characteristic of elastomer-based composites is 

their useable deformation ranges.  These exceed those of composites with stiffer matrices, such 

as metals, ceramics, or rigid polymers (Huang et al.,2000). In particular, it is the non-linearity 

property that presents significant problems in developing a constitutive model to characterise 

the stress/strain response characteristics of elastomer composites. The fabric-reinforced rubber 

elastomeric composite is such that strands are generated via the process of weaving. Those 

strands are interwoven in two orthogonal directions (the warp and fill directions), and saturated 

with a resin substance (Scida et al.,1999). Fibre-reinforced composite materials offer greater 

out-of-plane stiffness, strength, and toughness capabilities than laminate composites. The 

complicated geometry of this composite class gives rise to an almost limitless number of 

designs and elements, where many aspects may be altered, including the microstructure 

geometry, weave type, hybridization, and the composition of the component elements (e.g. 

geometrical and mechanical parameters of strands and resin)( Chou, T.W., 1992). 
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Fabric-reinforced elastomeric composites play an essential part in a large number of 

engineering applications, including those in the petroleum, marine, aerospace, transport, and 

gas distribution industries, as shown in Figure 1.1. One appealing property of elastomer is the 

capacity to bear large temporary deformations with no significant permanent deformation upon 

load removal (Treloar, 1973). One reason is their low weight. Advantages also arise from their 

high strength properties, high absorption capacity and, indeed, their unique material properties 

(for example, resistance to chemical or climate effects) (Aboshio et al., 2015). 

 

Figure 1. 1: Storage Tank Seals, B. fuel and water storage (Trelleborg) 

They can be easily manufactured, as composites of polyester fibres and rubber coating 

materials are comparatively airtight (Reese, 2001). The fabric has practically no compression 

stiffness or bending, but has good tension and provides stiffness in tensile structures as it 

maintains its shape, thereby preventing flutter and excessive deflection (Bridgens, 2005; Testa, 

1987). 

In traditional forms of construction, fabrics have been in use for thousands of years in many 

applications involving temporary structures. In modern times, many applications have been 

https://www.sciencedirect.com/topics/engineering/permanent-deformation
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developed for fabrics, such as insulation, roofing work and fillers. Figures 1.2 and 1.3 show 

typical applications of fabrics in modern structures. Modern fabric-composites have a greater 

capacity to absorb impact than conventional materials (Reddy and Miravete, 1995). This 

property is enhanced when the fabric is coated with rubber. Other beneficial advances that 

reduce the extensibility of rubber in, for example, the strengthening crash barriers 

Typical carcass materials include neoprenes,  silicones and butyl rubbers  (Testa and  Yu,  1987;  

Reese et al.,  2001).  For woven textile reinforcements, the textile yarn orientation is a function 

of the method of manufacture and textile architecture.  If warp yarns are defined, by their 

direction of orientation in the axial/lengthwise directions of the textile, then the weft yarns are 

woven across the warp yarns, running in the transverse direction.  The load-deflection response 

of a woven textile is a function of the yarn material properties and also the overall textile 

architecture (Jacobsen et al.,  2004). To protect the yarns from both mechanical abrasion and 

chemical degradation,  textiles are commonly coated or moulded within an elastomeric carcass.  

Synthetic rubbers such as PVC/nitrile composites enhance thermal stability and deliver 

excellent ozone and oil resistance,  making these types of fibre-filled composites commonplace 

in the petrochemical industries (Hardiman, 2000).  
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Figure 1. 2: Dynamic Earth Centre, Edinburgh, U.K (Edinburgh Architecture 2014). 

 

Figure 1. 3: Saga headquarters, Kent, U.K (Saga Group Ltd 

1999). 

The behaviour of woven textiles is determined by complex structural interactions in yarn and 

fibre.  
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Vulcanised rubber components often have spatial heterogeneity (non-homogeneity) in their 

chemical and mechanical characteristics; examples include crosslink density, hardness, shear 

modulus, and so on. Material non-homogeneity is caused by non-uniform transit factors such 

as temperature during manufacture (e.g., compression moulding) or by the detrimental impact 

of oxidation. Aside from this inadvertent non-homogeneity, several studies have proposed 

purposeful tailoring of the continuous spatial variation of rubber. This is known in materials 

engineering as grading or functional grading. Although functional grading is well-established 

for metal-ceramic composites and other polymeric composites, it appears to be relatively new 

for rubberlike polymers (elastomers). It is widely known that, by spatially customising the 

relevant material characteristics, the mechanical, thermal, and optical performance of 

materials, including polymers, may be considerably enhanced and optimised for particular 

applications (Bilgili, 2004). 

1.2 Aims 

The aims of this research on fibre-reinforced composites materials are twofold: first is to 

understand their mechanical properties, where the particular focus is on rubber matrix mixes 

with fibres; second to investigate behavioural characteristics when the materials are subjected 

to deformation. 

1.3 Motivation and Contributions 

Developments in numerical methods have improved our ability to simulate fabric-reinforced 

elastomeric composites materials. There is a perpetual need to develop reliable techniques to 

determine the mechanical parameters of new materials. These include analytical modelling, 

numerical simulations, and experimental data to build a based understanding of characteristics 

of materials.  
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1.4 Objectives 

Specific objectives are to:  

1. Understand the physical properties of materials whose specification comprises a: 

a. vulcanised, carbon-filled black PVC/nitrile compound and nylon tyre cords 

fabric with a two-directional warp and weft (Trelleborg reference data sheet 

EXA-1196). 

b.  vulcanised carbon-filled black PVC/nitrile compound and nylon woven 

fabric (Trelleborg reference data sheet EXA-1180). 

c. vulcanised polychloroprene compound and nylon-coated base fabric, 

(Trelleborg reference data sheet EXA-1182). 

2. Advance a non-contact optical technique to measure composite deformation 

behaviour.  

3. Perform tensile tests on all fibre-reinforced composites to understand more about 

composite deformation behaviour parallel to the warp and weft fibre directions. 

4. Analyse tensile test results critically and establish relationships with fibre 

architecture. 

5. Perform appropriate tests to develop a reliable test technique to determine the shear 

characteristics of composite materials under large deformations. 

6. Develop numerical methods to improve the simulation capability of a constitutive 

model that closely correlates with the phenomenological response of fibre-

reinforced composites under various loads. Also, to draw comparisons between the 

Finite Element Model and the experimental data.  

7. Develop the three-dimensional digital image correlation (3D-DIC) technique, to 

measure the surface height of a pressurized membrane and strains when loaded in a 



 
 

7 
 
 

bulge test. Unlike simple tensile tests, the new method records effective stress and 

strain before the material peak, thereby providing comprehensive details of the 

mechanical properties of the material. 

1.5 Scope  

The first part of this research focuses on experimentally based uniaxial tension and shear tests 

of the three fibre-reinforced composite materials used for the carcasses of structures. 

The second part is concerned with the development and validation of composite materials 

constitutive models. To this end, the existing analysis theory is implemented. 

The third part focuses on the experimental investigation of the properties/characteristics of the 

different fibre-reinforced composites materials used in the hydraulic bulge test. 

1.6. Thesis Structure 

The thesis is comprised of seven chapters. Chapter 1 provides a general introduction and 

background to the aims and objectives of this research. 

Chapter 2 offers an overview of rubber-like materials, woven-fibre composites, and fibre-

reinforced composites. This chapter establishes the context of previous work and the current 

state-of-the-art in all areas pertinent to the research: fibre, yarn, coating and fabric properties, 

fabric test methods, the representation of uniaxial and planar shear biaxial test data, use of test 

data in membrane structural analysis, fibre-reinforced composites, applications and modelling 

and typical tests used to assess their properties. 

Chapter 3 describes different types of fibre-reinforced composite materials. It also describes 

how the various apparatus used, namely Video Gauge and Zwick machines, communicate with 

each other and the two sets of respective data can be combined. It also describes the benefits 



 
 

8 
 
 

of the video gauge and how it can be used for different testing methods. In addition, the uniaxial 

tests the mechanical behaviour of the different fibre-reinforced composites, are evaluated under 

different conditions. The results, which should give the characteristic behaviours of the 

composites, are analysed and discussed.  

Chapter 4 studies new planar shear and picture frame test methods, by using the video gauge 

to induce large deformations under small loads and subsequently to retain the initial 

configuration after the load is removed; i.e., with no permanent deformation. With significant 

results, this allows further comparisons of the different fibre-reinforced composites in terms of 

their shear test behaviours. Finite element modelling supplements the results from the picture 

frame test. 

Chapter 5 introduces and briefly reviews the literature on constitutive relation formulation for 

anisotropic materials. It also focuses on: continuum mechanics theory and constitutive relations 

for hyperelastic materials; the identification of model parameters; and the validation of the 

material model using the FEA software. Comparative results from the modelling are presented. 

Chapter 6 describes the bulge tester, a widely used testing facility for applying a nearly 

equibiaxial state of stress to a plate. This chapter describes the bulge tester that was designed 

and fabricated for this study and the results of the various bulge experiments performed. 

Chapter 7 presents a summary of the conclusions of each chapter and presents a number of 

recommendations for further work. 
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 Chapter Two 

 

This chapter offers an overview of rubber-like materials, woven fibre composites, and fibre-

reinforced composites. It reviews previous work and the current state-of-the-art in areas that 

are pertinent to the research, such as fibre, yarn, coating and fabric properties, fabric test 

methods, representation of uniaxial, planar shear, biaxial, and bulge test data, and the use of 

test data in membrane structural analysis and modelling. In this chapter, the mechanical 

properties of rubber, fabric, analytical modelling, numerical simulations, and experimental data 

reviewed.    

2.1 Rubber material 

Rubber is a series of long-chain molecular polymers that contains repeating subunits. The term 

Polymer is derived from the Greek words "poly" (many) and "mer" (parts). Polyisoprene is the 

chemical term for natural rubber. Isoprene is the “monomer” (one part) from which it is made., 

Although rubber is made up of repeated isoprene units, isoprene is not the beginning monomer. 

Rubber is produced by a sequence of biological events that begin in the tree with isopentenyl 

pyrophosphate. The term ‘elastomer’ is used interchangeably with ‘rubber’. Rubber has a wide 

variety of applications across many industries, including piped, vibration isolators, medical 

devices and structural bearings. (Smith, 1993).  

Natural rubber is a one-of-a-kind material found only in nature, where coagulation is used to 

extract sap ("latex") from rubber-producing plants. The commercial market is completely 

dominated by Hevea Brasiliensis. The majority of NR molecules are cis-1,4-polyisoprene, 

where there is no indication of trans material in the natural product. Although the natural 

polymer's molecular weight is extremely high, it varies across lattices from different tree 

clones. Average molecular weight (Mw) values can range from 3.4 106 to 10.2 106 g/mol. A 
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low glass transition temperature (Tg) of roughly 64°C is due to the highly flexible backbone. 

NR is also capable of crystallisation because of its highly regular structure. Stretching samples, 

such as in a tensile test, can also cause crystallisation. Microscopic crystal structures are 

generated by stress-induced crystallisation. Thereby, natural rubber has a higher vulcanizate 

strength than styrene-butadiene rubber, which does not crystallise. The inclusion of the methyl 

group in 1,4-polyisoprene increases the activity of the double bond, so making it more reactive 

- than styrene-butadiene rubber or polybutadiene rubber - to a wide range of chemicals 

including vulcanization solutions. However, the high unsaturation low saturisation of the 

carbon backbone brings several disadvantages, such as abrasion sensitivity, low oil and heat 

resistance, and assault by oxygen and ozone, as well as UV light (Hernández et al.,2018; Bai, 

and Yin,2015). 

Natural rubber manufacturers from the Far East (Malaysia, Indonesia, Thailand, and Sri Lanka) 

comprise almost 80% of the market. In  the year 2000, around 7 million metric tonnes of natural 

rubber were produced. By 2017, this had increased to over 13.2 million metric tonnes 

(compated with worldwide consumption, up cd by 1.4 percent in 2017, to 12.9 million tonnes 

(Osgooei, and Konstantinidis, 2014; Board, 2016; Fong, and Lim, 2018;) 

Because of its greater building tack, improved processing, hot tear resistance, high resilience, 

and outstanding dynamic and fatigue qualities, natural rubber is favoured over other synthetic 

rubbers. This, it is an excellent choice for tires and tire goods, particularly carcasses and 

sidewalls. Other products include footwear, carpet and rug backing, surgical items, adhesives, 

and textile thread (Hernández et al.,2018). 

Natural rubber belongs to the polymer group and have long-chain molecules made up of 

repeated units. The requirements for a material to be an elastomer are as follows: 
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 The molecules must be extended (chain-particles) with a capacity to rotate freely 

about the bonds at the ends of molecules joining neighbouring molecule units. 

 Either by chemical bonds or by mechanical entrapment, referred to as cross-links, the 

molecules must be joined at various points to form a three-dimensional system.  

 Aside from the cross links, the molecules must have the capacity to move quickly 

past one another; ultimately, the intermolecular attraction between them must be 

relatively small (Bever, 1992). 

 In addition to elastic recovery, elastomers have unique physical properties (flexibility, 

extensibility and durability). Excellent weather resistance, chemical attachment and a host of 

valuable mechanical properties are generally realised in processes such as vulcanisation 

(Morton, M. 2013). As identified by Faraday (1826), natural rubber, is primarily a hydrocarbon 

with the formula C5H8. This hyperelastic non-linear stress-strain behaviour of rubber is 

characterised by the absence of a  single,  well-defined  modulus of elasticity. As noted by 

Morton, by their inherently highly irregular chain structure, when tension is used elastomers 

including natural rubbers butyl and neoprene become crystallised. However,strain-crystallizing 

properties are not generally available to all elastomers (Bever, 1992) and may not be 

appropriate in the preparation of the materials for certain technical applications. 

The most important physical characteristics of natural rubber are (1) the high level of 

deformability under relatively little stress and (2) the recovery of the initial configuration after 

the load is removed. Given the highly non-linear stress-strain characteristics, a simple elasticity 

test is insufficient. Hence, the importance of ascertaining the elastic behaviour of extensible 

nonlinear materials. (Shahzad, et al., 2015).  

A force-stretch curve for rubber is illustrated in Figure 2.1. The extensibility is typically in the 

region of 500 – 1000% as compared to unloaded rubber (Treloar 1975). Spinal polymer chains 
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usually align when strain is applied, so causing the whole structure to display a crystallisation 

behaviour.  

 

 
Figure 2. 1: Typical load-extension curve for vulcanised rubber (Treloar 1975). 

2.1.1 Synthetic rubbers 

A butadiene-styrene copolymer (SBR) is the most frequently used synthetic general-purpose 

rubber. It was produced on a massive scale in the United States during World War II to 

compensate for the loss of the world’s primary rubber-growing regions (Malaya and the Dutch 

East Indies). Butyl rubber, which is made from polyisobutylene and has a low gas permeability, 

is widely used in inner tubes and other applications. When compared to natural rubber, 

polychloroprene (Neoprene) has a higher resilience to deterioration, as well as reduced oil 

absorption and flammability, These features make it suitable for engineering applications, 

especially when oil or petrol contamination is possible (Nurazzi et al.,2021 ) (Treloar 1975). 
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2.1.1 The chemical structure of the natural vs synthetic rubber 

Natural rubber is fundamentally a hydrocarbon, and Faraday (1826) determined its composition 

to be consistent with the formula (C5H8). When suspended in either a watery liquid or a serum 

to a concentration of approximately 35%, the rubber particles include small latex globules of 

0.1-1.0 /µm diameter. Unless protein is absorbed on the surface, those particles coalesce to 

form a protective layer or sheath of non-rubber components. Rubber may then be strengthened, 

either by drying the water or by using acid precipitation. As most non-rubber components 

remain in the serum, acid precipitation gives purer rubber (Treloar 1975).  

The rubber hydrocarbon is a polymer having a high number of isoprene (C5H8) units connected 

in the form of a continuous chain (as shown in Figure 2.2). The progression of isoprene units 

in the chain is perfectly regular, with each fourth carbon atom in the chain carrying a methyl 

(CH3) side-group. The stereochemical structure of the chain around its double bonds is critical 

because these bonds largely decide the susceptibility of the elastic structure to oxidation or 

other degradative responses, which then lead to the degradation of its physical properties 

(Treloar 1975). 

 

Figure 2. 2: Structure of molecule of (a) Hevea rubber (b) gutta-percha (Treloar 1975). 
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The structure of Gutta-percha, the other natural polymer of isoprene, varies slightly but 

noticeably from rubber. The single change, as shown in Figure 2. 2, is the placement of the 

single C—C bonds in relation to the double bonds in the chain backbone. The single bonds in 

rubber are on the same side of the double bond, making the cis-configuration, but they are on 

different sides of the double bond in Gutta-percha, forming the trans-configuration. Gutta-

percha crystallises more easily than rubber as a result of this difference; it is crystalline at 

ambient temperature and only becomes rubber-like when heated over the crystal melting point, 

which is 65 °C (Treloar 1975). 

Although the two single bonds nearest to the double bond are permanently set in a single plane 

(whether in the cis- or Jrans-configuration), the other single bonds are not. They may rotate out 

of the plane created by nearby bonds. Some common rubbers and related materials structural 

formulas are shown in Table 1.  
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Table 2. 1 The  Structural formulae of some typical rubbers 
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2.1.2 Rubber Elasticity 

The property of rubber elasticity may be measured by noting movements due to thermal 

vibrations, which cause its particles to take on an irregular winding shape with an end-to-end 

distance that is shorter than the fully extended length. A length of unstretched rubber is a 

tangled mass of long, randomly arranged molecules. As the rubber is extended, the molecules 

become more aligned in the direction, in which it is being stretched (Treloar, 1973; Freakley 

and Payne, 1978),).  

Variations in this outcome are mainly determined by the composition of the particular rubber, 

the manufacturing process and the design and shape of the product. Vulcanization results in 

substantial changes in properties in terms of hardness, elasticity or strength depending on the 

amount and type of chemicals and additives being used (Hanhi, and Tirila, 2007). The Gough-

Joule effect immediately follows from the initial assumptions of kinetic theory. Given changes 

in internal energy, it is thus possible to mathematically express them as 

                                       dU = dQ + dW                                                                (2.1) 

Internal energy is assumed independent of the extension; that is, dE = 0 for the rubber, as for 

the single chain (at constant temperature). 

Where 

 dU is the change in internal energy 

 dQ is the change in heat input  

 dW is changed in work input  

With the use of: 
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                                                 dQ = T d S                                                                        (2.2) 

And 

                                                    dW = Fdl                                                                        (2.3) 

                       dE = TdS + Fdl 

It follows that:                                           

                                                   𝐹 =
𝑑𝐸

𝑑𝑙
− 𝑇 

𝑑𝑆

𝑑𝑙
                                                           (2.4) 

Where F is the force, T is temperature and dl the change in length, dS is changed in entropy.     

𝑑𝐸

𝑑𝑙
  Represents the rate of changes in internal energy during deformation. 

T 
𝑑𝑆

𝑑𝑙
  represents the rate of change of entropy. 
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Figure 2. 3: Internal energy and entropy components of tensile stress as functions of 

extension (Freakley and Payne, 1978) 

 

Within a unit cross-sectional area, the force F in equation (2.4) becomes stress (σ). The stress-

strain curves of a strain-crystallising rubber are shown in Figure 2.3. Figure 2.4 shows the 

stress-strain relation of neoprene rubber, under both uniaxial and biaxial shear load conditions 

(Aboshio, 2014). As indicated by both figures, this relationship is clearly non-linear across all 

stretch regimes (Hooke's law does not apply). Although an approximately linear relationship 

between stress-strain is sometimes used in rubber, it is valid only in areas of low strain, i.e., 

not exceeding 5 %.  
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The high entropy shift due to the introduction of order in the system as the rubber is extended 

is another key element as seen in Figure 2.1. The same parameters are not observed for other 

materials especially metals, where entropy change is very low so that the rate of internal energy 

change (dl/dE) predominates. From this, it follows that the interatomic distances of the metal 

molecules, rather than the structure of molecules, change to bend metal. In short, the area of 

elasticity of metal relative to rubber is very weak (Freakley and Payne, 1978). 

 

  

Figure 2. 4: Typical neoprene rubber stress-strain 

relationship (%) for various loading modes (Aboshio, 2014). 

 

2.1.3 Thermal effects 

In addition to its mechanical properties, rubber has some remarkable thermodynamic, or 

thermoelastic, properties. In 1805, Gough showed that stretched rubber contracts on heating 

and extends on cooling. He also showed that heat within the material is developed on extension 

and absorbed on retraction. 
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The explanation of this effect is very simple and follows directly from the basic concept of the 

kinetic theory, namely, that the deformation of a rubber (at constant temperature) is associated 

with a reduction of entropy, with no change in internal energy. Putting dE = 0 in Equation (1) 

obtain:  

                                                   dE = dW (constant T)                                                      (2.5) 

The work done by this stretching force is inherently positive. The heat consumed by dQ; 

therefore, is negative, i.e., heat is evolved on an extension. The heat shift is the same as the 

work done on the rubber by the applied force (Treloar 1975). 

  

Figure 2. 5: Temperature rise with an adiabatic extension (Treloar 1975). 
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The illustration presented in Figure 2.5 shows Joule’s original data and later results provided 

by James and Guth (1943) on the adiabatic increase of temperature upon extension of rubber 

material.  

The two effects in question are often referred to as the Gough-Joule effects. Taken from Joule's 

writings, the second of these depicts the increase in temperature as it stretches to an 100 percent 

extension. 

Experiments that have investigated the relation between temperature change and expansion/ 

contraction complement each other; i.e., the temperature changes because of 

expansion/contraction, and expansion/contraction causes a change in temperature. This thermal 

effect does not vary from natural rubber, but is indicative of rubber-like conditions and occurs 

in a wide range of synthetic rubber polymers. 

2.1.4 Crystallisation 

Treloar (1942) was aware that unvulcanized rubber becomes hard and inextensible if kept at 

0°C or lower. Subsequent to being stretched fully, under suitable conditions raw rubber remains 

stretched, only retracting to its original length if subsequently heated to a particular 

temperature. As indicated by X-ray spectroscopy, these effects are caused by crystallisation. 

Therefore, the picture emerges from a compilation of crystallites produced by the 

tridimensional arrangement of chain segments interspersed within an ongoing matrix of non-

crystalline, disorganised material Figure 2.6 (a). Figure 2.6 (b) the single crystals from 

polymers such as dilute-platelets or lamellae formed by the normal foldings in the back and 

forth of single polymer chains, with the chains axis almost perpendicular to the plane of the 

lamella, is obtained by crystallization the diluted solution. 
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                       (a) Unstretched                                       (b) Stretched 

 

Figure 2. 6: Molecular structure of crystalline rubber (diagrammatic). The parallel 

bundles represent crystallites (Treloar 1942). 

At 90°C, vulcanised elastic crystallises only beyond a 500% extension. Thus, although 

associated by implication with the phenomenon of elasticity, crystallisation is viewed as a 

secondary effect. Representing the structure of partially crystalline cellulose fibres (with which 

rubber has numerous common essential elements), Figure 2. 6 shows the molecular structure 

of (a) unstretched and (b) stretched rubber. (Treloar 1942). 

2.1.5 The Glass-Rubber Transition  

The rubber-like state depends on the spontaneous thermal motion of chain elements produced 

by the rotation of single bonds in the chain backbone. As the temperature falls, significant 

rotation ceases. The material then loses its rubber-like properties and becomes hard and rigid. 

This is referred to as the ‘glass transition’ between the elastic and the glass-like properties of 

rubber materials. One of the most important advantages of the crystallisation transition for 

elastomer rheology and treatment is stress-induced crystallisation. The various elastomers, 

including natural rubber, can show crystallisation when extended in a tensile testing unit. At 

the point of transition, the modulus and viscosity of rubber increase by multiple orders of 

magnitude over only a small temperature range. Yet, there are no associated discontinuous 

changes in volume, entropy or enthalpy (Bower; 2010, Bever; 1992).  
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Trealoar (1971, 1976) and Bever (1992) have shown how the elastic state of rubber materials 

relates to rotation about single bonds in the backbone chain. That rotation depends on the 

thermal motion of chain elements.  As the temperature falls, significant rotation ceases. The 

material then loses its rubber-like properties and becomes hard and rigid.  

2.1.6 Energy Storing Capability 

The intrinsically high-energy conservation capacity is also an important mechanical feature of 

rubber. This makes it highly suitable for use in structures that are susceptible to crash or impact 

loads, such as in-car air sacks or fender structures and bridge dampers and high-rise buildings 

and masts. Due to its weak strain / elastic properties compared to other engineering materials, 

the high-energy potential of rubber materials is established. (Aboshio, 2014).  

As shown in Figures 2.1 and 2.2, the unique nonlinear stress-restrictive characteristic of rubber 

results from the capacity to store huge amounts of energy, most of which is released when 

retraction takes place (Bever 1992). In terms of storing energy, Freakley and Payne (1978) 

found the stress-strain properties of rubber to be some 150 times greater than an equal weight 

of hardened steel. 

Table 2. 2: Energy storage capabilities of various materials (Freakley and Payne,1978) 

Material  Energy [ J / kg ] 

Grey cast iron  1.11 

Extra soft steel 9.18 

Phosphor bronze  12.2 

Rolled aluminium 22.6 

Hardened Steel 284 

Hickory wood 365 

Vulcanised rubber  44800 
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2.2 Composite materials 

Composite materials are created by combining two or more materials with distinct qualities 

that do not disintegrate or blend. With natural composites, long cellulose fibres are bound 

together in a piece of wood. by a chemical called lignin. Various materials within the composite 

work together to deliver distinctive features.  

Over thousands of years, composite materials have been used in a variety of applications. 

Around 1500 BC, early Egyptians and Mesopotamian settlers utilised a mixture of mud and 

straw to build robust and enduring structures. The combination of mud and straw provides a 

brick with excellent resistance to squeezing, ripping, and bending. Among other ancient 

composite items, ceramics and boats were reinforced with straw.  

By 1945, about 7 million pounds of glass fibres had been employed in a variety of goods, the 

majority of which were for military purposes. After World War II, composite materials 

exploded in popularity. Composite pioneers were breaking into new markets like aircraft, 

building, and transportation. The public sector quickly learned about the advantages of fibre-

reinforced polymeric composites, particularly their corrosion resistance (Ngo, T.D., 2020). 

There is an ongoing quest for stronger, more robust, durable, lightweight and adapted structures 

and components. Figure 2.7 illustrates compositions of fibres and a matrix of composite 

materials. On a macroscopic scale, a combination of two or more materials is referred to as a 

composite material. In comparison with naturally existing materials, composites are usually 

lightweight and strong, delivering material characteristics that enhance performance and 

endurance. Although their fibres and resin matrix achieve their strength, composites are often 

viewed as a combination of high strength but brittle fibres in a weak but ductile matrix.   



 
 

25 
 
 

 

Figure 2. 7: Composite material composition (Ullah, H., 2013). 

 

While maintaining the geometric fibre arrangement, as the matrix transmits the load to those 

fibres, it strengthens and stiffens the mechanical properties of the compound (Gay, D. and Hoa, 

S.V., 2007, Ullah, H., 2013). The resulting composite material is capable of intermediate 

mechanical performance, higher than that of the matrix but lower than that of the fibrous 

reinforcement. 

2.2.1 Fibre-reinforced composites 

Non-orthogonal reticulated fibre fabric and pure rubber matrix make up the reticulated fibre 

fabric reinforced composite, which may be broken down into two primary fibre families. For 

the manufacturing of composites, fibres in various forms (chopped or continuous) are 

combined with the matrix to give flexibility in regard to cost, strength, and process 

requirements. The position of the fibres within a coordinated system is referred to as the 

architecture (Xu et al., 2021, Awais et al.,2020). 

It is now common to manufacture a variety of materials such as metal-matrix composites 

(MMCs), ceramic-matrix composites (CMCs), and polymer-matrix composites (PMCs). Based 

on the type of reinforcement, such composites are further classified into three categories (viz., 

particulate composites, fibre-reinforced composites and structural composites) as shown in 

Figure 2.8 (see Jones, R.M., 2014; Mallick, 2007; Yang et al., 2012). The highly elastic 

mechanical behaviour of elastomers varies from thermosets and thermoplastics (Erden, 2017). 

Thermosets have cross-linked polymer chains, which contribute to a permanently rigid product. 
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By contrast and more generally, further heat treatment converts thermoplastics into various 

products. As heating does not affect structural rigidity, the advantage of thermosets is that they 

can be used at high temperatures.   

.  

 

 

Figure 2. 8: Classification of composite materials a) based on a matrix and b) based on 

reinforcement. 

A composite matrix consists of the matrix of polymer in combination with fibrous, distributed 

strengthening. The composites of the polymer matrix consist of several short or permanent 

A 

B 
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fibres linked to an organic polymer matrix. The strengthening of a polymer composite matrix 

provides high strength and rigidity. Polymer matrix composites are constructed in such a way 

that the reinforcement meets the mechanical loads to which the structure is subjected in 

operation. The matrix’s function is to link the fibres and transmit loads between them (Tong et 

al., 2016). For fibre-reinforced polymer composites, this matrix system consists of polymer 

resin and a curing agent. The structural properties of the fibre-matrix interface play a crucial 

role in the physical and mechanical properties of composite materials (Gowda et al., 1999). 

2.3 Fabrics Materials 

Industrial uses of rubber elastomer carcass woven fabric reinforced composites are extensive, 

and because of the wide variety of their applications, there is considerable interest in the use of 

experimental techniques to determine in-service mechanical performance (Yang et al., 2016). 

As the use of woven fibre composites increases, it is essential to understand their elastic 

behaviour. Composites are among the most advanced and versatile engineering materials. 

Reinforcement fabrics, which can be woven or nonwoven, include natural filaments or man-

made materials such as glass fibres, polyesters or nylons (see figure 2.9).  

 

 
 

Figure 2. 9: SEM photographs of (a) natural and (b) human-made fibres (Williams, 

R.W., 2010). 
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Figure 2.9 shows two images from a scanning electron microscope (SEM) (Williams, R.W., 

2010). The image on the left is a close-up of cotton fibres forming the exterior of cotton 

polyester fusion yarns. On the right is an image of human-made fibres that form a non-woven 

material. 

Although woven fabric can be bent insome degree without shear deformation, if it is bent to 

far it becomes sheared. In most fabrics, this shearing is attributable to the change of angle 

between intersecting threads; but it may also be the result of the bending and twisting of yarns 

between intersecting threads. In many practical applications, the shearing properties of fabrics 

are important. With the specialised use of bias binding, the change of angle between the yams 

is used to produce extensibility (Cusick, G.E., 1961). 

Shear deformation is often the most significant material characterisation process (Khan, 2009). 

The forming processes of a woven fabric may induce significant in-plane shear angles that 

allow the reinforcement to conform to complicated contours and complex forms. As the correct 

characterisation of this material property can be important, that property of woven 

reinforcements is undertken using two de facto standard tests of a planar tension and picture 

frame. The specifics of those tests are described below. 

2.3.1 Constructions of flexible composites  

Composites require a careful selection of materials and structures to form basic fabrics and 

materials for coating / laminating. In the manufacturing process of woven composites, as 

illustrated in Figure 2.10: 

FIBRE > YARN > FABRIC > COMPOSITE 



 
 

29 
 
 

 

Figure 2. 10: Coated woven fabric components (Zhang, L., 2010). 

 

In the production of composites, fibres are grouped according to a specific design, then 

impregnated with yarn-forming resin. The yarns are then linked in specific patterns to form 

fabrics (Ullah, H., 2013, Barbero, E.J., 2010). For woven textile reinforcements,  the textile 

yarn orientation is a function of the method of manufacture and the textile architecture (Cox 

and Flanagan, 1997).  

Interlacing between two sets of yarns - the warp (00) and weft (900) - delivers a regular 

woven/weaving structure.  The mechanical interlocking of yarns maintains the integrity of the 

fabric. A balanced fabric is one in which the number and weight of fibres are identical in yarns 

along the warp and weft. The load response of a woven textile is a function of the yarn material 

properties and also the overall textile architecture (Jacobsen et al., 2004).  

To afford protection to the yarns from the effects of both mechanical abrasion and chemical 

degradation, textiles are commonly coated or moulded within an elastomeric carcass.  

Whether woven or non-woven, such fabrics can be made with normal filaments such as fleece, 

cotton, hemp, or silk, or man-made strands such as fiberglass, polyester, nylon, or Kevlar; the 

coatings are typically vinyl, neoprene, silicone, or Teflon (Testa and Yu 1987).  
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When a fabric is subjected to uniaxial stress, the crimp (‘waviness’) in the direction of loading 

is progressively reduced, as the crimp in the transverse threads is increased. Where the crimp 

reduction in warp yarns is equal to the increased crimp in weft yarns (so that the total yarn 

crimp remains constant) is termed the ‘interchange of crimps’. In general, the properties of 

woven fabric are governed by the weave design, fabric density (number of warp and weft yarns 

per unit distance), and fibre content. Those characteristics are governed by (i) weave 

architecture, yarn sizes, yarn spacing and yam crimp; (ii) laminate parameters such as stack 

orientation and fractional volume of total fibre; and  (iii) yam and resin stiffness parameters 

(Naik, R.A., 1996). Yarns can be pre-stretched before coating to induce isotropic behaviour 

(Fang, R., 2009, Forster, B., 1985) (Divya and Suresha 2021). 

2.3.2 Fabric types 

(i). Woven fabrics are the most generally utilised type of textile composites in structural 

applications. Woven fabrics utilised in textile composites are straightforward and essential 

weaves, i.e., plain, twill and satin weaves, which are distinguished by the repeated examples 

of interlaced regions in the warp and weft directions 

Figure 2.11 (a) shows a plain weave structure (the most commonly used), where one warp yarn 

is repeatedly woven under and over weft yarns. A twill weave passes the weft thread over one 

or more warp threads, then under two or more warp threads, and so on, with a "step" or offset 

between the rows to create a distinctive diagonal pattern (Figure 2.11 (b)). With this structure, 

twills generally drape well. A satin weave is woven, as shown in Figure 2.11 (c). It has a smooth 

surface with good drapability and reduced thickness.  

Figure 2.12 shows an in-plane view of the plain-woven fabric, illustrating warp and weft fibre 

directions. 
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Figure 2. 11: Schematics of common woven fabrics. (a) Plain weave. (b) Twill weave. (c)  

Satin weave (Gay and Hoa, 2007). 

 

 

 
 

Figure 2. 12: Typical plain-woven fabric showing warp and weft fibres (Tan et al., 1997). 

(ii). Braided fabrics are developed by intertwining or orthogonally intertwining two (or more) 

sets of yarns to form an integral structure, as shown in Figure 2.13. Tan et al. (1997), in contrast 

with twisted or knitted fabrics, records streamlined systems of braided fabrics to have improved 

impact resistance characteristics. However, under axial compression, they have poor stability 

in the direction of the yarn system.  
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Figure 2. 13: Schematic of a typical structural braided fabric (Atex, 2015) 

(iii). Knitted fabrics are of two types, as shown in Figure 2.14: weft-knitted and warp-knitted. 

Knitted fabrics interlock loops of yarns. As illustrated in Figure 2.14 (a), in weft-knitted fabric, 

the yarns run width-wise, and a single weft yarn forms loops. The row of loops in the 

longitudinal direction is called the warp and that in the transverse direction is called the weft. 

In warp-knitted fabrics, overlaps in alternate warps and wefts are generated, as shown in Figure 

2.14 (b) (Tan et al., 1997). 

 

Figure 2. 14: Schematic diagram of knitted fabrics (a) Weft-knitted fabric, (b) Warp-

knitted fabric (Li and Dai 2006). 
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2.3.3 Fabric material and coatings comparison  

Polyester fabric has a low tensile strength but, but a higher modulus of elasticity and stiffness 

than nylon. By its greater rigidity, this lower polyester strength is ‘traded’ for reduced 

deformations. Although polyester fibres are more susceptible than nylon fibres to ultraviolet 

degradation, they are easier to protect and more durable overall. Polyester provides better 

dimensional stability, shrinking strength, and light /UV resistance, while nylon is characterised 

by good resilience and elasticity, high abrasion resistance and thermal absorption (Fang, R., 

2009). As the materials used in conventional buildings must have consistent strength qualities, 

safety factors are tight. Yet, material qualities such as weathering, deterioration, and repetitive 

loading may cause fabric materials to display unpredictable behaviour, and their properties may 

alter dramatically over time. (Fang 2009). 

The prerequisite of these properties is that practical clothing is subject to a wide range of final 

applications, such that an internal and an external element (sunlight, wind, rains and cold 

weather conditions, fibre, yarn fine, warp/whistle, fabric width, thickness, fabric numbers and 

external conditions) affects a garment. Such factors influence practical apparel efficiency and 

behaviour (Venkatraman, 2015). 

 

2.4 Determination of the mechanical properties of composites 

with rubber-coated fibre 

The mechanical properties of coated reinforced rubber composites are rigorously tested, by 

such as the uniaxial test, pure shear test, biaxial test, balloon or bulge test and shear test. 

Composites are not isotropic since the characteristics of such materials depend on the direction 

in which they are being tested. When the material properties differ in three mutually 

perpendicular directions, they are referred to as orthotropic. The inherent anisotropy of 
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composite materials results in mechanical features that differ considerably from conventional 

isotropic materials (Jones, 2014). The mechanical parameters of anisotropic laminates include 

strength, rigidity and other physical properties, objectives that are achieved via experimental 

composite characterisation. The basic mechanical properties of materials are elastic and 

strengths. In order to describe their mechanical behaviour, the quality of independent material 

consistency such as stiffness and the Poisson ratio depends on the plane of the material under 

consideration. 

The uniaxial tensile test is the most commonly performed test for the determination of 

mechanical component behaviour. The uniaxial tensile test characteristics can be applied to 

material specifications as well as to the assessment of their carriage capacities. Almost all 

strength criteria include tensile strength (Bridgens, 2005; Lei, 2010; Bassett et al., 1999). 

The use of biaxial planar and bulk tests to evaluate the mechanical properties of rubber-coated 

materials and most other rubber-reinforced composites, is becoming increasingly important. 

Unfortunately, due to limited testing equipment, these tests are rarely performed. Most planar 

biaxial test rigs are limited to testing materials of low strength,  which effectively excludes 

composites reinforced by fibre (Bridgens, 2005). Similarly, a test set, designed and developed 

by Bhatnagar et al. (2007), is only effective for testing low-strength (biological) materials 

Brieuet al., 2007). 

The selection of a test method should, therefore, depend on its benefits, limitations, and 

availability, and the level of precision required for the intended purpose of the to-be-designed 

composite structure. The uniaxial test technique can be considered sufficient for assessing the 

mechanical behaviour of materials that only undergo small extensions in composite materials, 

excluding specials or unusual conditions. 
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2.4.1 Uniaxial testing 

The standard uniaxial tensile testing procedures for coated woven cloth are (1)  the ASTM D-

5035-06 (ASTM-D5035-06), ‘Standard test process for Break Force and Elongation of Textile 

Fabric (Strip method)’ and (2) the EN ISO 1421:1998 (Blether-EN-ISO-1421-Standard, 1998) 

Rubber or Plastic Coated Textile – Determination of Tensile Strength and Elongation at Break’. 

The main difference between these two methods is in the rate of stretching, which in ASTM 

D-5035-06 standard it is 305 mm (12 inches) per minute and in EN ISO 1421:1998 is 100 mm 

per minute (Aboshio, 2014). The uniaxial tensile test is the most commonly used method to 

classify composite mechanical behaviour. Most important in regard to textile performance are 

the tensile properties. Difficulties arise due to the high degree of bulkiness in the structure of 

the fabric and the variation of strain during deformation. As each piece of fabric consists of 

many fibres and yarns, any slight deformation of the fabric leads to a chain of complex 

movements between constituent fibres and yarns. The situation becomes more complicated 

when both fibres and yarns behave in a non-Hookean manner during deformation and exhibit 

hysteresis over time (Konopasek, 1970). 

2.4.2 Stress-Strain Curve of fibre 

Figure 2.15 shows a typical load-extension curve for a tensile test of a woven fabric, where 

there are three separate regions: 

 The first region, the initial part of the curve, is dominated by (usually minimal) 

interfiber friction; i.e., the frictional resistance due to yarns (thread) was bending. 

 The second region, the lower module, is the deciphering area that arises from the thread 

straightening in the direction of the operation of the load; a corresponding increase of 

the crimp is in a direction perpendicular to the direction of the thread. 
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 The third region, the final part of the load-extension curve, is the extension of the yarn; 

i.e., the tensile loading of threads in the direction of stress. As the crimp decreases, the 

magnitude of the loading force rises very rapidly. As a result, the fibres themselves 

begin to expand (Murman and Suresh, 2011; Schwartz, 2019). 

 

Figure 2. 15: Schematic of a typical load-extension curve (Murman and Suresh, 2011). 

 

2.4.3 Shear fabric test 

The shear modulus for composites or covered fabrics can be obtained using either the planar 

biaxial test or the uniaxial testing technique (Lei, 2010). However, other methods have been 

developed, such as the trellising or picture frame test. There are three primary techniques used 

to quantify fabric shear consistency and locking angle: the Direct Shear Force Measurement 

(DSFM) test method; the Bias-Extension (BE) test method; and the Picture Frame (PF) test 
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method, as schematically presented in the figure 2.16 (Taha et al., 2013). The shear properties 

of fabrics use two methods, namely the picture frame test and the bias extension test 

 

 

Figure 2. 16: (a) Direct shear force measurement, (b) bias-extension test method, and (c) 

picture frame test method (Taha et al., 2013). 

2.4.4 Planar tension test 

Unlike conventional uniaxial tensile tests, the key feature of the planar test is that there are no 

lateral strains. This is achieved by using specimens with a particularly high aspect ratio of 

specimens (large width to length) specimen is used for planar tension tests (Duncan et al., 

1999). The planar tension test imposes plane strain conditions on the test specimen by 

preventing its edges from contracting. “Pure shear consists of a trellising action, whereby the 

tows in the fabric rotate about the cross-over points” (Sharma 2003). However, there is no 

standard test strategy by which to decide the in-plane shear behaviour of a textile (Treloar, 

1944; Miller and Kurt, 2000). 

2.4.5 Picture frame test 

More recently, the test has been widely used for in-plane testing of all forms of sandwich plates, 

including honeycomb and foam core constructions with laminated plastic or metal face sheets 
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(Iosipescu, 1967, Walrath and Adams, 1983, Adams, 1990, Adams and Lewis, 1995). As there 

has been no standardisation for these tests and test procedures, a wide variety of fixture 

configurations have been established over the years. McGuinness and O’Bradaigh developed 

the picture-frame experiment to create a homogeneous time-dependent deformation in uni- or 

bi-directionally reinforced sheets, as a way of testing the rheological activity of composite 

materials in intra-ply shearing. With the picture-frame experiment, a flat pre-consolidated 

composite specimen is subjected to a consistent shearing deformation using a specially 

designed four-bar linkage connected to its sides.  

A picture frame is a square hinged frame whose sides are equal in size. A tensile tension is 

applied diagonally across opposite corners of the the picture frame rig, so causing the frame to 

distort into a lozenge. A clean and uniform in-plane shear strain is theoretically applied to the 

specimen within the image frame (Gong et al.,2020). The axial load is applied to two diagonal 

corners to cause shear loading. Typically, tension loading is used to prevent the frame buckling. 

The fibres which reinforce the specimen are parallel to the sides. The deformation is created 

by stretching along a diagonal of the sample (Spencer, 2000; McGuinness and O’Brádaigh, 

1997, Standard, 1993, Arumugam et al., 2016).  

2.4.6 Biaxial Tensile Testing 

Many different tests of the biaxial-tensile type have been undertaken (see Hutchings et al. 

(2009) and Reinhardt (1976)), where biaxial testing of coated fabrics is a more challenging 

operation than uniaxial textile testing (see Bridgens, 2005). Although tests are regularly 

undertaken using methodologies found in the literature (including Hutchings et al., 2009; 

Bridgens, 2005; Reinhardt, 1976)), neither British nor international standards for biaxial fabric 

testing currently exist. Uniaxial testing remains the primary test to gauge fabric strength (Lei, 

2010). That hydraulic bulge test has been used for many years as a laboratory tool to determine 
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fundamental material behaviours. Mostly it has been used to evaluate the mechanical properties 

of materials under biaxial tension, as obtained for sheet materials such as rubber, steel plate 

and thin films (Tsakalakos, 1981). Thereby, the stress-strain curves measured by the hydraulic 

bulge test correspond to equi-biaxial stretching (see Mersch, J.P., 2013; Ranta-Eskola, A.J., 

1979). The test involves rigidly clamping the specimen at its periphery onto a circular, 

rectangular or elliptical diaphragm. It is then inflated with liquid from one side of the sample 

by pumping hydraulic fluid or pressurised gas into it at a uniform rate. The resultant balloon 

shape of the specimen and its axial symmetry then requires tthe strain and the stress at the top 

of the bulge to be perfectly biaxial. The more the balloon is deformed, the more uniform 

becomes the stress and strain distributions across a wide region of the specimen (Aboshio et 

al., 2015; Sasso et al. 2008). This technique carries a risk of fracture, because the clamping 

system creates a very high and non-equi-biaxial stress state (Sasso and Amodio., 2006). 

The idea behind the bulge test has been in existence since the Treloar (Treloar, 1944) first used 

this method to characterise rubber materials by their material constants. The specimen is locked 

between two plates, before inflating it using air, water, or oil to create a blister/bulge, (see 

Figure 2.17). For a spherical membrane,  the average membrane stress, σ, is then defined by 

the Rule of Laplace as  

                                                                             𝜎 =  
1

2
 𝑃𝜌                                                                 (2.6)  

where P is the applied pressure and ρ the corresponding radius of the sphere. 

This concept can be used to examine any membrane experimentally. Depending on the 

particular form of anisotropy, the inflated form of an initially flat ring disc of an anisotropic 

material is axisymmetric. Inflating an initially flat circular disc of an orthotropic material 

produces a surface with oval contours. The major and minor axes of the oval shape are defined 

by the two directions of the elastic symmetry axes of the material (Zioupes et al., 1992). 
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Figure 2. 17 Schematic of a Bulge Test (Zioupes et al., 1992). 

By its accuracy, the "bulge test" has a wide range of applications in various thin-film 

mechanical tests. It has been used mostly to evaluate the mechanical properties of materials 

under biaxial tension, which are obtained for sheet materials such as rubber, steel plates and 

thin films of other materials. The "bulge test"  addresses most of the problems related to tensile 

testing, such as poor mounting, rough handling, tearing of the film at the edges, and grip 

slipping (Tsakalakos, 1981). An additional advantage of the bulging technique is that it allows 

the reproduction of more than one type of stress-strain in a cost-effective manner, most notably 

as compared to the uniaxial stress test (Ramezani et al., 2010).  

The stress-strain curves measured by the hydraulic bulge test correspond to equi-biaxial 

stretching (Mersch, J.P., 2013; Ranta-Eskola, A.J., 1979). Stresses are calculated based on the 

pressure applied, where strains are measured from the height of the bulge. As the phenomenon 

of "necking" from biaxial deformation is absent, the bulge test can be applied up to the failure 

of the entire plastic deformation zone. The circular bulge test has been used to estimate material 

stress under biaxial loads (Jaia, 2015; Siegert et al., 2003; Hecht et al., 2005; Gutscher et al., 

2000; Altan et al., 2006). For incompressible materials, the equal biaxial tension of a specimen 

induces a state of deformation equivalent to that under compression (Day and Miller 2000). 

Therefore, it is generally preferred despite its slightly more complicated test procedure. 
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Hydraulic bulge tests on composites were conducted by rigidly clamping the material onto a 

circular diaphragm. The material was then inflated from one side of the sample by pumping 

either hydraulic fluid or pressurised gas at a uniform rate, until the specimen shows a "balloon-

like'' shape. That shape of the specimen and its axial symmetry requires the strain and stress at 

the top of the bulge to be perfectly biaxial. The more the balloon is deformed, the more uniform 

the stress and strain distributions across a wide region of the specimen (Aboshio et al., 2015; 

Sasso et al. 2008.). Again, there is a risk of fracture because the clamping system creates a very 

high and non-equi-biaxial stress state  (Sasso and Amodio., 2006). In the field of experimental 

solid mechanics, video gauging combined with a DIC method is widely accepted as a 

representative non-interfering optical technique. It is commonly used as a powerful and flexible 

tool for measuring surface deformation.  A comparison between the surface images of the un-

deformed (or referenced) specimen and the deformed specimen, directly show full-field 

displacements and strains (Pan et al., 2009).   

2.4.7 Constitutive model 

Strain-energy density functions are a prime characteristic of hyperelastic material models. Over 

more than one hundred years, scholars have studied hyperelastic and rubber materials (Borst et 

al., 2012}.  More recent work was inspired by Mooney (1940) and Rivlin (1948). Mooney 

proposed (and Rivlin further developed) a two-term phenomenological model for large elastic 

deformations. Subsequently, Valais and Landel (1967) further developed this work. For 

reversible,   high strain efficiency,   biologic tissue and elastomers are widely used. Elastomers 

are a crucial component to allow broad strain action in synthetic nastic material studies.  

Constitutive equations explain the behaviour of material under the impact of external stimuli. 

Constitutive equations for hyperelastic materials, as well as other types of materials, are often 

derived from experimental evidence. Choosing the correct constitutive relation for a specific 
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hyperelastic material is essential in modelling. Although there are no physical standards to 

determine these mathematical relations, there are guidelines, or basics, for the development of 

scientific models leading to appropriate constitutive behaviour. These models and the 

mathematical relations must be validated by comparing them to reaction properties observed 

in physical experiments. In general, the constitutive relations can be mathematical, differential, 

or integral relations, as contingent with the behaviour of the material. These constants are 

measured utilising straightforward tests like the uniaxial tension test or the pure shear test. Due 

to their direct and clear physical results, engineering constants are utilised in determining 

stress-strain relations (Reddy, 2010). The behaviour of nonlinear materials is extremely 

complicated, but there are three methods for modelling a nonlinear material: the first, the 

empirical function-fitting method, is only usually successful in straightforward cases; the 

second, rational analysis, which is based on a particular theoretical method, is generally overly 

complicated; the third method, a combination of the first and second for developing constitutive 

models for hyperelastic materials, is the most commonly used (Bever, 1992). 

The stress-strain relationship for hyper-flexible solids is usually characterised by indicating its 

strain energy density as an element of its deformation inclination tensor or as a function of its 

strain invariants or the extent to which the material stretches. 

For elastic materials, the numerous constitutive models hypothesised in the literature, relate to 

isotropic hyper-flexible materials. Such models have evolved primarity in commercially 

available component codes. The determination of model constants to describe hyperelastic 

materials has been achieved by experimental information fitting, including Mooney-Rivlin, 

Yeoh, neo-Hookean, Arruda-Boyce, Polynomial, Ogden constitutive equations, and many 

others (Hoss and Marczak, 2010) (Külcü, 2020). 
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Most of these models perform well over relatively confined ranges of deformation, and under 

particular deformation modes. However, few are accurate, up to a strain magnitude of 600-

700% The Hoss and Marczak (2010) model is used for larger deformation ranges (e), for 

uniaxial tensile tests with 0 ≤ e ≤ 700% and also for small deformations of 0 ≤ e ≤ 100 %. There 

are more than 37 different models for rubber deformation. And for greater deformations 

ranging from 0 ≤ e ≤ 700 % for uniaxial tensile, 0 ≤ e ≤ 400 % for pure shear, and 0 ≤ e ≤ 350 

% for biaxial testing, the constitutive models having power-law terms of the first strain 

invariant match well. In comparing the hyperelastic models of Arruda-Boyce, Mooney-Rivlin, 

neo-Hookean, Yeoh and Ogden against experimental data (see Brown et al., 2009), models 

delivered a more accurate fit at the higher strain rate of 0.1s-1 (than at 0.025s-1). However,  

polynomial models were generally unable to capture the stress-stretch ratio characteristics, 

beyond a strain rate of 0.025s-1  . Brown et al., also suggested using Mooney-Rivlin or Yeoh 

hyperelastic models. As defined as the force divided by the undeformed area, the first Piola-

Kirchoff stress tensor is not symmetrical. The implication, the product does not correspond to 

the pressure energy density with Cauchy stress, and the small strain tensor, when combined 

with the Green24 Lagrangian strain tensor, is multiplied. 

This makes it unsuitable for numerical analysis for the first Piola- Kirchoff stress. The second 

Piola-Kirchoff stress tensor s the total force in the undeformed configuration divided by the 

undeformed field. This tensioner is ideal for energy density since the second stress and the 

Green-Lagrangian strain of strain energy is the stress density of the Cauchy stress and small 

strain tensor. In many cases, the stretch is both a deformation measure and strain for 

hyperelastic materials. The length / original length ratio is deformed. Therefore, the stretch is 

unity and strain zero when there is no deformation.  
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Mechanical characteristics of rubber and fabrics, as well as those of coated composites from 

these materials, have been reviewed in this chapter. Rubber Stress-strain relationships are 

generally non-linear and have a very high elastic range. Vulcanised rubbers have good 

weathering resistance, resistance towards chemical attack and excellent capacity to absorb 

energy. Compared to many engineering materials, however, they are of a low modulus. 

Composites of the fabric-reinforced polymer are found a wide range of applications. When 

covered, their mechanical properties generally improve significantly as compared with their 

uncoated properties. It is essential to characterise the material behaviour through experimental 

tests in order to understand the complex process of deformation of woven composites linked 

to their architecture.   

2.4.8 General formulation of anisotropic hyperelasticity 

A great deal of attention has been devoted to the constitutive modelling of elastoplastic fabrics 

for materials in the finite deformation range. Powerful computers and effective finite-element 

methods have made it possible to solve large-scale finite deformation problems, thereby 

increasing the demand for precise designs (Eterovic and Bathe 1990).  

To investigate the mechanical behaviour of biological soft tissue - where there are parallels 

with the hyperelastic matrix composite materials explored in this thesis - strain energy 

functions have been determined for traverse isotropic materials. Most recently, the mechanical 

behaviour of smooth biological tissues has attracted interest, especially in regard to arterial 

wall tissue (Holzapfel and Ogden 2010).  

Figures 5.1a and 5.1b present typical stress-stretch relationships, respectively between 

isotropic plastic fabric and anisotropic (soft tissue) fabric. These are comparable with the 

distinctive stress-stretch relationship for most rubber-fibre composites.  In comparison with 
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isotropic rubber material, in the initial stress state, the stress-stretch profile for anisotropic 

material is found to be flatter and then tougher under high stress. The implication is that the 

rubber surface is more robust in the initial stress state than the reinforced fibre material (soft 

tissue). The relatively massive extension (stretch) at low stress can be observed in Figure 2.18 

(Ogden, 2011).  

 This behaviour of fibre-reinforced material is related to its distribution in the matrix. The 

general conclusion is that the flexible response of the soft tissue in the initial stress state arises 

from the loose nature of the fibres; but at a higher stress rate, the fibres exceed their stretch 

limit and thus become steeper as the undelaying matrix response is overridden (Reese et al., 

2001, Ogden, 2011).  

 

 

Figure 2. 18 Typical simple tension response of (a) rubber and (b) soft tissue (Ogden, 

2011). 

 

In applying the continuum theory of anisotropic material, the strain energy function can be 

expressed precisely in terms of tensor and fibre orientation invariants. (Spencer, 1984). An 

illustration would be that of a composite material composed of an anisotropic hyper-elastic 
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matrix combined with a variety of fibre families. Fibres are defined by a set of unit vectors, 

where the stress-energy depends, not only on the deformation but also on the orientation of the 

fibre (Aboshio et al., 2014). 

2.4.9 Extension into Principal Directions 

Typically, the straightening of crimped yarns also occurs when a plain-woven fabric is 

extended in either of the principal directions. A decrease in the amplitude of the yarn and the 

angle of weave can be observed in the direction of warp and weft. Those yarns appear to be 

less flattened during tensioning due to their consolidation into a tighter cross-section (Hearle 

et al., 1969; Hu, 2004). 

With regard to the uniaxial tensile properties of plain-woven fabrics, De Jong and Postle 

(1977a, b) indicate that six separate dimensionless parameters must be considered in the case 

of a balanced woven fabric (produced from identical warp and weft yarns). Those parameters 

are: (a) the ratio of warp to weft yarn length per weft yarn; (b) the ratio of yarn diameter to 

modular yarn length; (c) the ratio of yarn compression rigidity to bending rigidity; (d) the yarn 

compression index; (e) the ratio of yarn extension rigidity to bending rigidity; and (f) the degree 

of a set. Jong and Postle also argue tha, as the ratio of yarn compression rigidity to bending 

rigidity may be determined by the length of the yarn, a significant part of the extension of the 

fabric can be explained by the extension of the yarn when the ratio is lower. In the selected 

range, where the inter-yarn distance may be increased in order to make yarns transform into a 

rounder or more circular transformation during tensioning, average Poisson's ratios can be 

determined. (Hu, 2004) (Khajehsaeid, and Naghdabadi, 2013). 
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2.4.10 Anisotropy of Composite Woven Fabric Tensile Properties 

Anisotropy is a feature of most fabrics, particularly woven, where the effect of the direction of 

loading has been widely investigated (Dai & Zhang, 2003; Kilby, 1963; Kovar & Dolatabadi, 

2009; Kovar, 2003; Pan & Yoon, 1996; Postle et al., 1988). Although many publications deal 

with tissue tensile properties, most are focused upon the warp and weft directions. One 

difficulty in studying the tensile behaviour of composite woven fabrics is that any extension, 

occurring at an angle to either the warp or weft direction (Hearle et al., 1969). The modulus is 

almost entirely determined by the shear behaviour of the fabric in the 45° direction towards 

either the warp or weft, shearing behaviour cannot play a role if it is extended in the warp or 

weft directions. Consequently, the tensile strength of the fabric has a tendncy to produce a 

multi-directional effect.  

Woven fabric is highly anisotropic. As most fabric structures are asymmetrical, the strength 

necessary to stretch fabrics in various directions varies greatly. For instance, if a textile is being 

tightened, there is shear deformation, and so shear property becomes relevant. The tensile 

behaviour of fabric varies in accordace with the extension in two main directions (Hearle and 

Amirbayat, 1986). 

Fibre has a higher degree of elongation than the matrix and has a stronger strength and stiffness. 

When these two constituents are combined, a fibre-reinforced composite is created with tensile 

qualities that are halfway between the two constituents (Rahman and Putra 2019).  

Tensile strength tests create frictional forces in both the warp and the weft directions. With 

relatively more threads per inch, woven fabric has greater strength in the warp direction than 

in the weft direction. In measuring yarn-to-yarn frictional forces, the weave interlacing 

coefficient depends on weave geometry, thread crimp and the fabric shear properties of the 

composite. The higher weave interlacing coefficient of the plain weave fabric (higher average 
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yarn interlacing density) is indicative of tensile strength (Özdemir and Mert 2013). The specific 

tensile strains of structures were found to be proportional to their directional tensile strains in 

both warp and weft. This is explained by the fact that, owing to its higher interlacing 

coefficient, there is more crimping of yarns in plain weave. Thus, if yarns extend around the 

yarn axis during tensile strength testing, both crimp and length are increased. Warp and weft 

thread fabrics are most commonly pulled or biased when drawn diagonally. These results 

indicate that stitching yarn type, stitching directions, and stitching density generally influence 

the warp and weft directional tensile properties of PVC woven fibre reinforced composite. Such 

findings show that stitching yarn size, stitching directions and stitching density generally affect 

the directional tensile properties of the warp and weft. 

2.4.11  Ogden model 

The Ogden model (Ogden 1972) is a phenomenological model based on principal stretches 

rather than invariants. It is able to accurately capture upturn (stiffening) of the stress-strain 

curve and model rubber over large ranges of deformation. There is an excellent observational 

agreement between the Ogden model and Treloar’s experimental data for unfilled rubber for 

extensions of up to 700% (Ogden, 1972; Treloar,1975). The model is defined as follows: 

                             W =  ∑
2 µi 

αi
2   

N

i=1 

(l1
αi + l2 

αi +  l3
αi − 3)                                                               (2.7)  

 

Where μi, αi are temperature-dependent material properties 

2.4.12 Yeoh model 

Yeoh proposed a phenomenological model in the form of a third-order polynomial based only 

on  the  first  invariant, I1  (Yeoh  1993).  In  the  same  manner  as  the  Ogden  and  polynomial 
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models,  this model is based on a  series expansion  (Selvadurai, 2006).  The  Yeoh  model is 

also called the reduced polynomial model, and for compressible rubber is given by: 

 

                                          W =  ∑ Ci0

3

i=1

(I1 − 3)i                                                                           (2.8)    

With a good fit over a large strain range, the Yeoh model can simulate various modes of 

deformation with only limited data, so leading to reduced requirements for material testing. 

Based on the theory of incompressible hyperelastic solids, the constitutive models introduced 

above are described by the coordinate system X in an undeformed state. The Yeoh and Ogden 

models are used in terms of strain invariants for the isotropic part, with two terms of an 

exponential model in terms of a pseudo-invariant used to model the anisotropic response for 

each set of fibre. 

A variety of engineering polymers, such as carbon and glass fibre fabrics, large thermoplastic 

sheets, reinforced composites and elastomer composites,  are subjected to complex loads that 

result in different biaxial stress/strain conditions. The characterisation of biaxial deformation 

of engineering polymers is made difficult by the extent of deformation. The out-of-plane 

biaxial test (stretching balloons in bulge tests) is commonly used to determine the parameters 

of large deformations of elastomers for different hyperelastic materials (Jones and Treloar, 

1975; Leonhartsberger et al., 2012; Murphy et al.,2005). The wide variety of potential 

applications explains the considerable interest in the experimental characterisation of their 

behaviour (Sasso et al., 2008). 
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2.5. Summary 

The mechanical characteristics of rubber and textiles, as well as coated composites made from 

those materials, and some of the terminology used in the textile field,  have been discussed in 

this chapter. The following summarises the findings. 

Stress-strain for rubbers is usually non-linear: for example, they can be extended to 

approximately 700% of their original length. However, fabrics with low compression and 

bending stiffness have high tensile strength. In general, their mechanical properties will be 

different from their uncoated characteristics. 

 Fabric composites are suitable in many industrial applications, depending on the coating 

material and the volume fraction used in the composites.  

Vulcanised rubbers offer great weathering and chemical resistance, as well as excellent energy 

absorption ability. They have a low modulus of elasticity when compared to many engineering 

materials. Among the many applications are hydraulic hoses, seals, vehicle tyres, vibration and 

shock absorbers, and their use as cladding, roofs, pneumatic hoses, inflatable boats, pneumatic 

seats, beams and slabs. 

Complex structural interactions at both the yarn and fibre scales link the behaviour of woven 

textiles to the material qualities of the fibres. Loading in tension and shear  leads to complicated 

behaviour that is anisotropic, nonlinear and exhibits irreversible deformation, or hysteresis. In 

Chapter 5, the results of these tests are utilised to validate the findings of the FE simulations. 
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  Chapter Three 

  

This chapter describes the study of methods and materials used in the experimental work, to 

understand the mechanical behaviour of the fibre-reinforced composite under different uniaxial 

loading conditions. Results from the uniaxial tests showing the characteristic behaviour of the 

different composite conditions are presented and discussed. In addition, there is an analysis of 

the performance of three different fabrics with composite reinforcements. 

3.1. Materials  

3.1.1 Material 1  

Dunlop GRG Holdings Ltd (Manchester, UK) supplied the composite material used. It is a 

flexible composite, supplied in sheet-rolls of different thicknesses. The material is a woven 

rubber fibre matrix composite. Each component of the material and its manufacturing processes 

influence the mechanical properties of the composite material. Three different composite 

materials with different thickness, as indicated below, were studied.  

The first material’s 5 mm thickness specification comprised base fabric with high tenacity and 

continuous filament nylon tyre cords laid in on opposite diagonals coated with black PVC/ 

nitrile blend compounds and vulcanised. The continuous filament nylon is a woven fabric with 

a two-directional warp and weft (Trelleborg reference data sheet EXA-1196) material 

properties data – from manufacturers materials data specifications as shown in Table 3.1.  

Figure 3.1 shows the anisotropic nature of this material when the experimental strips are cut in 

different directions.   
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Table 3. 1 Material properties EXA-1196.  

Test Property Units Specification Typical 

Result 

Test Method 

Mass g/m2 2372 max 

1840 min 

2110 BS EN ISO 

2286-3 

Method A 

Breaking Load 

Warp 

Weft 

 

N/50mm 

N/50mm 

 

5400 min 

5400 min 

 

6400 

6750 

BS EN ISO 

1421 

Method 1 

Puncture Resistance 

x warp/ x weft 

 

N 670 min 850 Spec No.279 

Issue 9-

2.1.2.7 

Coating Adhesion  

Outer Cover  

          Un-aged 

After 3 days @40°C in 

Fuel B 

Inner Lining 

         Un-aged 

After 3 days@40° in 

Fuel B 

 

N/50mm 

 

N/50mm 

 

N/50mm 

 

N/50mm 

 

113.9 min 

 

65.7 min 

 

113.9 min 

 

65.7 min 

 

177 

 

142 

 

239 

 

159 

BS EN ISO 

2411 

Permeability to Fuel B 

Original 

Cm3/m2/day 50 max TBA Spec No 279 

Issue 9-

2.1.2.4 

 

 

Figure 3. 1: Specimen geometry and cross-sections of the composite material showing the 

warp and weft arrangements for 5 mm thickness. 

 

3.1.2 Material 2  

The second material of 3 mm thickness, is a base fabric with high tenacity, continuous filament 

nylon tyre cords laid-in on opposite diagonals, coated with black PVC/nitrile compounds and 

vulcanised. (Trelleborg reference data sheet EXA-1180) material properties data – from 

manufacturers materials data specifications as shown in Table 2. The anisotropic nature of the 
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material presents a different appearance when an experimental number of strips are cut in 

various directions, as shown in figure3.2. 

Table 3. 2 Material properties EXA-1180.  

Test Property Units Specification Test Method 

Mass g/m2 2950 BS EN ISO 2286-2 

Method A 

Gauge mm 

 

2.54 BS EN ISO 2286-3 

Breaking Strength in 

cords directions 

N/50mm 

(KgF/50mm) 

4400 

(448.6) 

BS EN ISO 2421 Method 1 

Coating Adhesion  

 

- Original  

 

 

- “Wet” 

 

 

 

N/50mm 

(KgF/50mm) 

 

% retention 

 

 

158 

(16.1) 

 

 

 

BS EN ISO 2411 

 

 

Figure 3. 2: Specimen geometry and cross-sections of the composite material showing the 

warp and weft arrangements for 3 mm thickness. 

 

3.1.3 Material 3  

The third material was manufactured to 2 mm nominal thickness. The woven material is high 

tenacity, continuous filament nylon base fabric that is coated with polychloroprene compounds 

on the outer cover and inner lining sides and vulcanised material properties data – from 

manufacturers materials data specifications as shown in Table 3. Figure 3.3 shows that the 

series of strips cut in warp and weft directions present alternative appearances (Trelleborg 

reference data sheet EXA-1182).   
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Table 3. 3 Material properties EXA-1182.  

Test Property Units Specification Test Method 

Mass g/m2 4,750 BS EN ISO 2286-2 

Method A 

Breaking Strength 

Warp 

Weft 

 

N/50mm 

N/50mm 

 

8,750 

11,000 

 

BS EN ISO 1421 

 

Puncture Resistance 

x warp/ x weft 

 

N 890 ASTM D751 

Coating Adhesion  

Outer Cover and inner 

Lining 

 

N/50mm 

 

 

 

100 min  

 

BS EN ISO 2411 

Abrasion Resistance cycles 25,000 to exposure 

of fabric, outer only 

FED-STD-191, Method 

5306, H22 wheel, 1000g load 

 

Tear Strength, warp 

and weft 

 

N 100 BS EN ISO 2411 

 

 

Figure 3. 3: Specimen geometry and cross-sections of the composite material showing the 

warp and weft arrangements for 2 mm thickness. 

 

3.1.4 Composite Volume Fraction Estimation 

The Zeiss Stemi, Zeiss GmbH Optical Microscope fitted with an axiom digital acquisition 

system, used to scale images of a section of the composite. Figure 3.4 illustrates the nature of 

the fabric crimp in both warp and weft directions. The weft fibres (also described as fill fibres) 

are linear in their un-stretched state; and they occupy the space relative to the 

undulating/sinusoidal warp fibres, having the same structure in the three materials.  
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Figure 3. 4: Specimen geometry and cross-sections of the woven fabric basic 

specifications, the warp (x) and the weft (y) fibre orientations within the PVC rubber 

matrix. 

 

Volume fractions of constituents of the composite were computed from mass values provided 

by Trelleborg raw materials as supplied by Dunlop Holdings Figure 3.5. The estimated volume 

fraction of PVC/nitrile and nylon tyre cords in the fibre-reinforced composite were 

approximately computed, as shown in Table 3.4.   

Table 3. 4 Volume fraction of matrix and fibre.  

Materials PVC Fibre 

EXA-1196 89.5 % 10.5 % 

EXA-1180 88.5% 11.5% 

EXA-1182 81.9% 18.1% 
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Figure 3. 5: Section of the composite showing microscopic images of the weft and warp 

fibres bundles. 

3.2. Video Gauging  

3.2.1 The principle of Video Gauging 

The accurate measurement of strain was obtained by video gauging, which gauges the distance 

between two points and the position and movements of points on a sample. One video camera 

measures the distance and position within a xy plane perpendicular to the optical axis of the 

camera and two cameras mounted on a camera bar obtain 3D measurements including the z 

coordinate of points along the optical axis.  

3.2.2 Advantages of Video Gauging 

The use of contactless video gauging (as with the Imetrum system) provides advantages in 

terms of accuracy and additional information, over a conventional stress-strain curve 
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measurement. The optical system and related computer software can capture movements and 

position change in the range of 1μm and below. The optical video system catches the pure real-

time strain of the specimen, without underlying expansions in the whole system from a 

mechanical stress-strain test. Inaccuracies in strain measurements by mechanical systems 

derive from the expansion of the grips and other parts of the testing machine as well as 

imperfect sample restraint (slipping of the specimen inside the clamps). 

A mechanical stress-strain test only examines the strain experienced in the direction of the 

stress over the complete length of the sample. Video gauging captures such additional features 

as multi-directional strains, even those perpendicular to the stress direction. The use of a second 

camera also identifies such three-dimensional features as a change of sample thickness. Any 

two points on the sample surface that are visible to the cameras can be a start point or endpoint 

for strain measurement. This is particularly important for revealing inhomogeneous or 

anisotropic strain, where a 2D strain map can capture and visualise the strain conditions over 

every surface point of the specimen. (See figures 3.6 and 3.7). 
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Figure 3. 6: Capability of video gauging capturing strains in different directions 

 

The contactless strain measurements used in video gauging eliminate any influence 

measurement might have on the material behaviour. Video gauge is particularly suitable for 

testing hyperelastic materials because of the large deformations possible with such material. 

Overall, a host of practical reasons speak for the use of video gauging, where many different 

measurements can be performed at different parts of the sample, together with additional “post-

processing” measurements that are possible after the experiment has ended. 
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Figure 3. 7: Capability of video gauging to identify strain values between any two sample points  

 

3.2.3 Limitations of video gauging  

There are several limitations of the video gauging methodology. It is essetial to ditect small 

scale motion, ideally of length smaller than a pixel. That requirement  can be overcome by the 

use of DIC software as described in 3.2.6. That the camera must be rigidly fixed in one place, 

makes necessary the use of a sturdy tripod. Even then, a noisy environment will corrupt the 

results. Another limitation is that motion signals are only detectable in areas  with good 

contrast, motion of areas without a texture is impossible to trace unless these areas are pre-

treated with a painted pattern. The volume of data from by digital 2D or 3D measurements is 

potentially enormous, especially if techniques like 2D strain maps (see 3.2.11) are used. These 

vast data makes a powerful computer necessary where processing may take hours. Real-time 

observation via 2D strain maps was not possible in our case. 
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3.2.4 Equipment used for video gauging  

As mentioned in section 3.2.1 video gauging equipment consists of two cameras including a 

stable tripod stand and 2 sets of LED panel lights with tripod stands, a camera bar with a fixed 

camera position if more than one camera is used, a computer to control and record the video 

and process the received data and cables to connect the cameras to the computer and each of 

the components with electrical power. The video gauging equipment used in this research was 

purchased from the company Imetrum, Bristol, UK. The two cameras are industrial Gigabit 

ethernet cameras which are powered over the ethernet (GigE PoE cameras). They are capable 

of a maximal frame rate of 15 Hz and provide a resolution of 2452 x 2056 monochromatic 

pixels with a pixel size on the sensor of 3.45μm x 3.45 μm. The cameras are fitted with low 

distortion lenses with a focal length of 50 mm, with an optimal focus achieved at a working 

distance of 660mm. For a working distance of 660 mm, the maximum field of view can be 

calculated as 111mm in width and 93mm in height, which is also confirmed experimentally. 

The actual pixel size depends on the size of the field of view and the working distance. With 

the working distance of 660 mm used in the optical experiments in this work, the actual pixel 

size projected onto the target object is 45.2μm x 45.2μm.  

3.2.5 Validation of video gauging measurements 

Using an electrical stage custom-built  at the Lancaster University Engineering Department, 

validation was achievd by moving the stage by 0.5mm (nominal) for each of  three steps 

forward and then for three steps backwards. The movement of the stage was measure and then 

captured in a video of the Imetrum system. 

The average measured movement was 0.507mm forward and 0.509mm backward (an average 

relative error of around 1.6%). The standard deviation of the forward and backwards steps was 
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0.015mm (3% of the average displacement). The movements of the electro stage were in close 

accordance with measurements recorded from the Imetrum system. 

3.2.6 Software used for Video Gauging – Digital Image 

Correlation  


Digital Image Correlation (DIC) is a software method used to achieve the sensitivity of motion 

detection at a level smaller than one pixel. DIC software tracks optical information across a set 

of images (a movie) that serve to calculate translation, rotation and deformation of a visually 

marked area on the surface of a filmed object. The accuracy of DIC can be very high using a 

technique called “sub-pixel grey level interpolation”. As a black spot of diameter 1 pixel moves 

across a uniform white background, neighbouring pixels react to the displacement of the 

original point by adopting a grey level value proportional to the surface of the black dot 

overlapping the white area of the neighbouring pixel. 

Digital Image Correlation (DIC) software enhances the displacement resolution of the cameras 

and lenses. Sub-pixel interpolation makes it possible to measure displacement amplitudes 

smaller than 0.1 pixel and, under favourable experimental conditions, even below 0.005 pixels 

Digital Image Correlation used in the Imetrum system is theoretically capable of detecting 

shifts of magnitude 1/200 of the size of one pixel (with focal length and working distance used 

in this research work, by 0.225 μm). Although the actual displacement resolution is dependent 

on other factors, experiments done with the Imetrum video gauging system at the Engineering 

department of Lancaster University show that a displacement of 1μm is detectable. 

The idea of using cross-correlation to quantify changes in data sets has been recognised for a 

long time and has been extended to digital images since at least the early 1970s (Anuta, 1970, 

Keating et al., 1975).  For DIC to work effectively, pixel blocks need to be random and unique, 

with a range of contrast and intensity levels (Abdul-Aziz and Wroblewski 2016). The 
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techniques were developed to obtain subpixel resolutions and to enable the algorithms to be 

performed efficiently. This allows high-resolution measurements to be made so that surface 

deformation can be measured with commercially available digital photography down to one 

part per million of the field of view (McCormick and Lord 2010, Potter and Setchell 2014) 

3.2.7 Targeting Points 

Video Gauge is used to define several target regions of interest. The targets describe the 

location and the area around the location to monitor during the test. At the start of the test, 

Video Gauge ‘learns’  a region of interest, where it identifies a point of interest or target point 

by the appearance of its surrounding area. It then monitors how the target point shifts in the 

form of displacement over time. From the displacement of the target points quantities such as 

point-to-point strains, extensions, or rotations can be derived (Solutions, 2009; Kock, 2015; 

Guide, 2009). 

Since a mechanical test can deform the surface of a sample, the targeting system must tolerate 

abnormalities while permitting accurate identification at specific points of interest. In 

experiments, the Imetrum system proved itself capable of this kind of flexibility. Even so, if 

the appearance of the neighbourhood of a target point changed either too rapidly or by too 

much, the location of the point was “lost” and the measurement aborted.  

3.2.8 Target Pattern 

To identify the exact position of a target point (section 3.2.5), the surrounding area should have 

a pattern distinguishing it from all other points. Thus, for a plain sample surface, it is necessary 

to apply a pattern. The Video Gauge does not require a specific shape or appearance of target 

patterns. There are several types of target patterns, such as Speckles, Blobs, Concentric Rings, 
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and Dashes. In the experiments performed in this thesis, the sample surface was plain, with 

black, white speckles painted on top of the sample surface. 

3.2.9 Measurements and Post-Process 

Measurements define and identify target points and measure their position or displacement, 

from the primary results of two or more target points other variables such as distance, strain, 

Poisson's Ratio, and shear strain can be calculated. In a simple procedure, the video window is 

used to display the exact location of the measurement on the sample surface. The Imetrum 

Video Gauging system can track more than 100 points in real-time, opening the possibility of 

multiple simultaneous measurements while only performing one physical experiment. Video 

Gauge can perform measurements in real-time using a video camera, but it can also save the 

footage from the camera to an AVI file for later re-processing. This AVI file can be viewed in 

Windows Media Player, on any PC or other video player. It also serves to set an additional 

position, distance, strain or Poisson’s ratio measurements long after the physical experiment 

has ended. This process of gaining additional data using a pre-recorded material is called “post-

processing”. 

3.2.10 Principle of 3D measurements 

For measurements in three spatial dimensions, the Imetrum system has a 3D coordinate frame, 

where at least two cameras are required. Position points along the optical axis of the camera 

are calculated from differences between the two images from the cameras. The method is also 

used to measure the deformation of both curved and planar surfaces; i.e., the 3D coordinate 

frame measures the positions (x, y, and z) for each measuring point. For this thesis, it was 

particularly useful in measuring the z coordinates of points on the surface undergoing a bulge 

test. 
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3.2.11 2D Strain Map  

As previously mentioned (3.2.1 and 3.2.2) video gauge achieves contactless measurement of 

strain between two or more points. During mechanical tests, images from an optical camera 

allows measurement of axial and transversal strain (εxx and εyy) as well as shear strains (εxy). 

Figure 3.29 indicates one advantage of video gauge over conventional strain measurement 

methods; i.e., the capacity to simultaneously measure strain at different locations on the surface 

of a sample. 

With the “Strain Map” function of the Imetrum system, comparing strains at different locations 

is taken one step further. From three strain measurements (figure 3.29), knowledge is gained 

of the strain at the top, middle and bottom of a sample. Here, the strain map overlays a 

rectangular area of the sample surface. The dimensions of this area and the number of strain 

measurement nodes are identified from the grid spacing. Depending on the size of each area 

relative to the grid spacing, targets may overlap each other. Strain and displacements are used 

to measure the Lagrangian strain tensor at each grid node. 

The resultant strain map gives a clear idea of the strain distribution. In particular, it shows if 

the strain is evenly distributed or if there are local concentrations. The distribution of the strain 

is depicted using a colour mapping. A maximum and minimum strain value for the colour 

mapping is defined either by the user or is set to the absolute maximum and minimum of strain 

in all of the nodes. The interval between the maximum and minimum strain value is coloured 

coded red, orange, yellow, green, blue and violet across decreasing values. The high strain 

values at the centre of the sample are red.  
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The individual strain maps of axial and transversal strain (εxx and εyy) and shear strains (εxy) 

are identified as the results of different stress experiments: a tensile test, planar test, picture 

frame test and bulge test. Respectively, these feature in sections 3.6, 4.6, 4.7.4 and 5.15. 

The maps of all composite samples are useful in validating theories relating to strain 

distribution. Both strain and shear strain measures obtained with single or multiple video 

gauges gave values close to the values obtained from 2D strain maps. In respect of a practical 

application, strain maps are ideal for identifying crack growth 

3.3. Normal Stress and Strain 

Standard uniaxial stretching tests according to BS EN ISO 1421 (2015) were performed at 

room temperature on six samples of the composite. The samples were 200 mm (length) x 50 

mm (width) x 5 mm, 3mm, and 2 mm (thicknesses). Since the stress-strain behaviour of the 

textile is usually directed in the orthogonal warp and weft directions, two sets of test samples 

were prepared. As shown in figure 3.8, one set had a warp running parallel to the load 

application axis, while the second set had a weft running parallel to the load application axis. 

For each of the three composites, tests undertaken at room temperature were performed on ten 

specimens of the composite: five were loaded in parallel to the weft fibre direction, and five 

were loaded in parallel to the warp fibre direction. As can be seen in the figure. 3.9, uniaxial 

tension was applied to the maximum load the sample was capable to withstand before 

destruction by a Zwick Z020 (Zwick GmbH) universal testing machine. Each specimen of the 

composite was uniaxially stretched at a cross-head extension rate of 100 mm/min. Load and 

extension data were recorded at a frequency of 10 data per second. Nominal stress and 

strain data were then calculated based on the sample original cross-sectional area and gauge 

length.  

https://www.sciencedirect.com/topics/engineering/nominal-strain
https://www.sciencedirect.com/topics/engineering/nominal-strain
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Figure 3. 8: Schematic of samples preparation.  

The load was measured by a 20 kN load cell. An internal displacement transducer within the 

test machine Zwick Z020 (Zwick GmbH) measured the displacement, which is proportional to 

the nominal strain. The true strain through the gauge part of the specimen was measured by a 

high-resolution Video Gauge, as described in section 3.2. The results reported were limited to 

two-dimensional (in-plane) measures of surface displacement. These were acquired using a 

single camera focused on the sample surface during testing (see Fig. 3.11). The strain data-sets 

arising from the video images were processed using a commercial software package.  

As shown in figure 3.9, the camera was located behind the equipment and pointing towards a 

Perspex screen, in order to avoid reflection. Lighting was to one side and at the same height as 

the camera. 

https://www.sciencedirect.com/topics/engineering/commercial-software-package
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Figure 3. 9: Experimental set-up showing the video gauge system and sample position 

within the tensile testing frame. 

 

To enhance contrast, samples were prepared with a speckle target pattern, multiple white dots 

were painted onto the black colour of the material. This allowed the video gauge to identify 

certain locations and track their movement and to provide an accurate measure of the dynamic 

displacement of the sample. The principle of creating a pattern on the surface of a sample for 

location identification is described in detail in section 3.2.6. 

To control the homogeneity of strain within the observed area, five optical video gauge lengths 

were defined longitudinally within the areas tested for different gauge lengths (i.e., 30,40,50,60 

and 70), from which measures of true strain during testing were obtained (figure 3.10).  

 

 

https://www.sciencedirect.com/topics/materials-science/tensile-testing
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Figure 3. 10: Strain gauges longitudinally aligned with the uniaxial tension load direction 

(Sample has been prepared with a speckle surface pattern). 

 

On deformation, each surface point of the specimen moves in coordination with its neighbours. 

The surface position of white speckles, both before and after the deformation, are captured on 

camera. The distance between the two (as depicted by blue lines) define the measuring points 

(Figure 3.11 (a) and (b)). As the surface points move under stress, the change of the blue line 

gives the strain value and a rough idea of its direction. As the distance between each of the 

white pattern speckles increases, their shape changes from circular to elliptic.  
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  (a)                                   (b)  

 

Figure 3. 11: (a) Displacement of the composite specimen before the loading; (b) after the 

loading, showing the strain. 

 

3.4. Combined Test Methods 

The combination of data obtained by a mechanical stress-strain test and a video gauge strain 

measurement improves accuracy and gives additional insights into specimen material 

properties. From the uniaxial testing of samples, as loaded either parallel to the weft direction 

or parallel to the warp direction in a Zwick extension-testing machine, the video gauge provides 

further useful information for the load cell curves. While the Zwick measures the strain of the 

whole system (sample, machine, and metal grips holding the sample in the machine), the video 

gauge measures the strain of the sample explicitly, taking two points of measurement to provide 
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the real length of the sample in real-time. Finally, it is necessary to combine the two sets of 

data created by these two methods. 

The time-alignment of the two data sets is a challenge since neither strain values nor the starting 

time of the experiment is the same. The time of the highest applied force was used as a reference 

point and aligned with the time of the largest strain values in both the mechanical experiment 

and the video gauging. To compare the data sets at different times and under different loads, 

the time of the complete experiment was subtracted from the reference point of the highest load 

to give a common starting point for the experiment and the duration of the experiment divided 

into 20 sections of the same time length.  

3.5. Poisson’s Ratio 

As tensile force is applied to the fabric in one direction, the fabric contracts in a perpendicular 

direction to that load. This is represented by Poisson's ratio (Penava et al., 2014), which is a 

structural parameter, which results from the geometry of the armour, the mechanical features 

of the yarn and the interactions yarn-yard. Poisson ratios for textile fabrics are different from 

standard engineering materials (Boubaker et al., 2010; De Jong and Postle, 1977; Sun et al., 

2005). The study of the effect of physical fabric parameters on the value of Poisson’s ratio is 

helpful because of its anisotropic nature. It provides a better understanding of the behaviour of 

this material. Due to the inherent nature of the fabric, it is difficult to measure this ratio 

accurately and reliably. (Shahabi et al., 2013). Poisson’s ratio of the fabric is defined as the 

ratio of the longitudinal strain to the transverse strain: 

𝑣𝑤𝑎  =  − 
𝜀𝑤𝑒

 𝜀𝑤𝑎
 

                                                          𝑣𝑤𝑒  =  − 
𝜀𝑤𝑎

 𝜀𝑤𝑒
                                                       (3.2) 
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Where 𝑣𝑤𝑎 and 𝑣𝑤𝑒 are Poisson’s ratio in the warp and weft directions, respectively, 𝑣𝑤𝑎 is the 

axial strain in the warp (0°) orientation, 𝜀𝑤𝑒 is the transverse strain showed by the material in 

the weft (90°) direction onto uniaxial loading in the warp (0°) direction (Ben Boubaker et al., 

2010; Clyne et al., 1995).  

To obtain a measure of the Poisson's ratio, a uniaxial tension test was performed on samples of 

size 200 × 50 × 5 mm. Tests at room temperature were undertaken on six specimens of each 

composite: three were loaded in parallel to the weft fibre and three in parallel to the warp fibre. 

Uniaxial tension was applied using a Zwick Z020 (Zwick GmbH) universal testing machine, 

to maximum loads. Each specimen of the composite was uniaxially stretched at a cross-head 

extension rate of 100 mm/min. Load and extension data were recorded at a frequency of 10 

data per second 

Two methods were used. The first applies a manually defined optical strain gauge (longitudinal 

and transverse aligned uniaxial gauges) to calculations from equations (3.2). The results are 

then compared with those from the video gauge for the (EXA-1196) shown in Table 3.5. The 

second method uses a software-generated (image processing) measurement of 𝜐, as shown in 

Figure 3.12. With both methods, Poisson's ratios for samples loaded parallel to the warp 

direction were higher than for those loaded parallel to the weft direction.  
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Table 3. 5 Comparison of Poisson’s ratio (EXA-1196). 

Elastic Properties Weft direction of 

loading  
 

Warp direction of 

loading 

 

Poisson’s ratio 

manually defined 

optical strain gage 

 

 

0.17 

 

0.37 

 

Poisson’s ratio 

machine defined 

 

 

0.18 

 

0.36 

 

 
                                             (A)                                                    (B) 

Figure 3. 12: (A) Poisson’s ratio of a virtual strain gauge in x- and y-direction; (B) 

Poisson’s ratio method shows the location in a typical composite sample in tensile 

loading. 

3.6 Results and Discussions 

For various materials, Figure 3.13 depicts findings from three tests, both when the load was 

zero and again when the maximum load was reached (6000 N). Specimens loaded parallel to 
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the weft fibre failed first due to nylon fibre overload. This was followed by a secondary 

constriction of the composite inside the gauge region, although there were no obvious cracks 

on the neoprene rubber. Composite delamination saw the rubber material ripping off those 

specimens loaded parallel to the warp fibre direction. As the work was focused on early 

deformation, uniaxial testing test was undertaken using a Zwick Z020 universal testing 

machine to a maximum load of 6000 N. The test results of uniaxial testing stress-strain 

behaviour measured by video gauge for different composite material are shown in Figs. 3.14 

to 3.16. These are the internal cross-head displacement for the samples loaded parallel to the 

warp fibre directions for the three samples. 
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Figure 3. 13: Mode for specimens before and after loaded parallel to the warp and weft fibre 

direction tested.  

 
Figure 3. 14: Uniaxial testing stress-strain for the composite specimens loaded parallel to 

warp fibre direction (EXA-1196). 
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Figure 3. 15: Uniaxial testing stress-strain for the composite specimens loaded parallel to 

warp fibre direction (EXA-1180). 

 

Figure 3. 16: Uniaxial testing stress-strain for the composite specimens loaded parallel to 

warp fibre direction (EXA-1182). 
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Figs. 3.17 to 3.19 show the uniaxial tensile stress-strain testing results of the composite 

specimens loaded parallel to the weft direction.  

 

Figure 3. 17: Uniaxial testing stress-strain for the composite specimens loaded parallel to 

weft fibre direction (EXA-1196). 

 
Figure 3. 18: Uniaxial testing stress-strain for the composite specimens loaded parallel to 

weft fibre direction (EXA-1180). 
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Figure 3. 19: Uniaxial testing stress-strain for composite specimens loaded parallel to 

weft fibre direction (EXA-1182). 

Figure 3.20 shows the stress-strain curves of all different samples loaded in different directions. 

For comparison reasons data is only displayed up to a maximal applied load of 3000 N for all 

samples.  
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Figure 3. 20: Uniaxial testing stress-strain for composite specimens of all different materials  

 

The average values for a strain in the weft and warp directions for EXA-1196, EXA-1180, and 

EXA-1180, are respectively shown in Table 3.6 for maximum load. Both sample orientations 

demonstrate nonlinear (hyperelastic) behaviour for the three different materials. 

Table 3. 6 Strain for the materials.   

Materials Warp Weft 

EXA-1196 26% 12% 

EXA-1180 23% 21% 

EXA-1182 51% 18% 

 

Figures 3.14 to 3.19 show stress-strain curves obtained from each three specimens of the 

different samples mounted parallel to warp fibre direction and weft fibre direction. The three 
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samples within each of these figures were cut from the same composite, mounted in the same 

direction, and thus ideally should show the same or very similar experimental results. 

Variations within the experimental results of these samples stem from random errors; the size 

of these variations is a good indicator for the homogeneity, reliability and repeatability of the 

experiments. Experimental aximal results lay between 23.8% and 25.9% for the EXA-1196 

samples, between 24.2% and 28.2% for the EXA-1180 samples and between 50.6% and 55.5% 

for the EXA-1182 samples. These were mounted in parallel to the warp fibre directions, 

showing a statistic range of 2.1%, 4.0% and 4.9% respectively .Experimental aximal results 

lay between 12.2% and 12.7% for the EXA-1196 samples, between 19.8% and 21.2% for the 

EXA-1180 samples and between 17.5% and 17.8% for the EXA-1182 samples. These were 

mounted parallel to the weft fibre directions, showing a statistic range of 0.5%, 1.4% and 0.3% 

respectively. Notably, the homogeneity of the strain results is generally better for samples 

measured in the weft fibre direction than for samples loaded parallel to the warp fibre direction. 

Figure 3.20 shows significant differences between the strain values obtained from 

measurements conducted parallel to the weft fibres and measurements conducted parallel to 

the warp fibres in the materials EXA-1196 and EXA-1182. The strain values corresponding to 

certain stress are lower in the weft fibre direction, the material expands less, the curves are 

steeper in the gradient, Young’s modulus is higher, so as a conclusion, samples mounted 

parallel to the weft fibre direction show a much stiffer behaviour than the same samples 

mounted parallel to the warp fibre direction. As demonstrated in Table 3.5, the strain in the 

warp direction was more than twice that in the weft direction when tested under maximum 

load.  

Interestingly, sample EXA-1180 is different and does not follow this trend. The stress-strain 

curves of this sample mounted parallel to the warp fibre direction and parallel to the weft fibre 
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direction look almost identical in shape and gradient. As reported in chapter 3 and particularly 

demonstrated in Figures 3.1, 3.2 and 3.3, material EXA-1180 is different from the other two 

samples in the optical appearance of the cut planes parallel to the weft and warp fibre directions. 

The distinctive wave-shaped pattern of the warp threads, clearly visible in the other two 

samples is hardly visible in sample EXA-1180. Furthermore, after removal of the elastomer 

matrix with a knife, it becomes apparent that the warp and weft fibres in this sample are strongly 

interlaced; the whole fibre structure seems denser. All of this makes the warp and weft direction 

more similar in their optical appearance and might explain why the mechanical differences 

between weft direction and warp direction are less pronounced in this sample. 

In addition, as expected, the elasticity of the composite is a function of the thickness of the 

sample and the fibre content of the composite. Sample EXA-1196, the thickest sample (5mm) 

with the lowest fibre content (10.5%) shows a greater elasticity, a higher strain value at the 

same stress compared to the thinner sample EXA-1182 (2mm) with the highest fibre content 

(18.1%). 

Young’s modulus (E) gives the relation between stress and strain in elastic materials and is a 

useful property for modelling. The elastic modulus for the uniaxial tensile test is defined as the 

ratio between stress and strain during elastic loading. The four types of elastic modulus in the 

tensile test are tangent, initial tangent, chord and secant. The behaviour of materials that exhibit 

nonlinear elastic stress-strain behaviour depends on the stress or strain application regime used 

(ASM, 2004; Mamlouk and Zaniewski 2011). The quantity (E) are described as primary and 

secondary chord modules as given by equation (3.1).  

Figures 3. 21 and 3.22 show the uniaxial tensile stress-strain for specimens loaded parallel to 

the weft and warp fibre directions. Using a Zwick Z020 universal testing machine, a maximum 
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load of 6000 N was applied to samples for each composite.  Table 3.6 summarises Young’s 

modulus for the fibre-filled composite materials examined: 

                                                𝐸 =  
𝑃𝑢  − 𝑃𝑙

𝐴×(𝜀𝑢−𝜀𝑙 )
                                                               (3.1) 

 

E is the primary and secondary chord modulus as defined in figures below. 

A is the cross-sectional area. 

𝑃𝑢  is the tensile load at upper strain limit. 

𝑃𝑙   is the tensile load at lower strain limit. 

𝜀𝑢 is the upper strain limit. 

𝜀𝑙 is the lower strain limit. 

 

Figure 3. 21: Uniaxial tensile stress-strain graph for composite specimens loaded parallel 

to the warp fibre direction. 
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Figure 3. 22: Uniaxial tensile stress-strain graph for the composite specimens loaded 

parallel to the weft fibre direction. 

Table 3. 7 Young's modulus. 

Young’s 

Modulus 

The thickness of 

the materials 

Weft direction of 

loading 

Warp direction of 

loading 

Primary chord modulus  

EXA-1196 

1.6 N/m2 0.59 N/m2 

Secondary chord modulus 2 N/m2 1.6 N/m2 

Primary chord modulus  

EXA-1180 

         0.67 N/m2 0.58 N/m2 

Secondary chord modulus             1.17 N/m2 1.15 N/m2 

Primary chord modulus  

EXA-1182 

             2.4 N/m2 2.50 N/m2 

Secondary chord modulus              6.2 N/m2 6.25 N/m2 



 
 

83 
 
 

Table 3.2 shows that the composites exhibit a higher modulus when loaded parallel to the weft 

fibre direction rather than to the warp fibre direction. 

Figures. 3.23 to 3.25 show samples loaded parallel to the weft for different thicknesses of EXA-

1196, EXA-1180, and EXA-1182, respectively. Figures 3.26 to 3.28 show the samples loaded 

parallel to the warp fibre directions using the virtual strain gauge for the calculations of 

Poisson’s ratio. However, those values converge when the force is increased. The highest 

Poisson’s ratio for the samples loaded parallel to the warp, and weft direction for the different 

composite materials as calculated by the video gauge are shown in Table 3.3. As previously 

mentioned, the video gauge processes many measurements at the same time. In addition, 

Poisson’s ratio is theoretically calculated from equations (3.2) and compared with the result 

obtained from the video gauge for the (EXA-1196) shown in table 3.7 

Table 3. 8 Poisson’s ratio of different materials.   

Materials Weft direction of 

loading 

Warp direction of 

loading 

EXA-1196 0.18 0.36 

EXA-1180 0.16 0.33 

EXA-1182 0.16 0.34 
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Figure 3. 23: Poisson’s Ratio for the composite specimens loaded parallel to the weft fibre 

direction (EXA-1196). 
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Figure 3. 24: Poisson’s Ratio for the composite specimens loaded parallel to the weft fibre 

direction (EXA-1180). 

 

Figure 3. 25: Poisson’s Ratio for the composite specimens loaded parallel to the weft 

fibre direction (EXA-1182). 
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Figure 3. 26: Poisson’s Ratio for the composite specimens loaded parallel to the warp 

fibre direction (EXA-1196). 

 

Figure 3. 27: Poisson’s Ratio for the composite specimens loaded parallel to the warp 

fibre direction (EXA-1180). 
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Figure 3. 28: Poisson’s Ratio for the composite specimens loaded parallel to the warp 

fibre direction (EXA-1182). 

 

Literature values for Poisson's ratio lying in the range of 0.2 to 0.5  for similar materials to 

those contained within the composite bracket the measured values obtained in this study (Hursa 

et al., 2009; Kraft et al., 2014).  

From the improvement in the potential for the fabric’s transverse motion, increasing the 

amplitude of the warp crimp inevitably leads to an increase in Poisson’s ratio (Figures 3.18, 

3.19 and 3.20).  

A woven fabric’s lateral contraction can cease for either of two reasons: (1) termination of the 

flattening of yarn crimp in the stretching direction; (2) when no space remains between adjacent 

threads. However, if the transverse deformation lies outside Poisson’s ratio (between the 

material’s transverse and longitudinal deformation), the ratio has no functional significance.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12 14 16

P
o

is
so

n
's

 r
at

io
n

Stress MPa

Sample 1

Sample 2

Sample 3



 
 

88 
 
 

The impact of the fabric’s structure arises from the interaction between the warp and weft 

yarns, where the mechanical parameters are recorded as the Poisson’s ratio.  

A Poisson’s ratio is not constant and changes with each extension because of the anisotropic 

nature of the fabric. The fabric’s behaviour primarily influences the pattern and shape of the 

Poisson’s ratio curve when there is an extension in the lateral direction. During fabric 

extension, there is a strong exponential relationship between warp and weft crimp. Textiles 

with greater yarn density have a higher Poisson’s ratio. 

3.7 Full-Field Strain Measurements 

Full-field optical strain measurements have recently begun to be used in textile deformity 

research. Video gauge offers qualitative and quantitative information on the homogeneous 

deformation of an object surface, especially for tensile tests. This can generate two-dimensional 

(2D) surface strain maps of areas of interest and provide comprehensive data enabling accurate 

statistical analysis between data sets.  

During the tensile test, surface deformations caused by external loads were digitized as phase 

maps (corresponding to the changes on the grating). Strain measurements have greater 

uniformity and approximately the same values in the strain map (corresponding to the sample 

images at maxim deformation).  

2D strain maps of similar sizes were created for tensile tests of different samples, where height 

ranged from 1195 to 1283 pixels and width ranged from 708 pixels to 796 pixels. At a working 

distance of 660 mm, these translate into dimensions projected onto samples surfaces: height 

54mm to 58mm and width 32mm to 36mm. The chosen grid spacing in the tensile testing 

experiments was 20 pixels, which gave 38 horizontal and 62 vertical nodes within the strain 
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map. Given the size of the virtual map, nodes providing strain measurements were located at 

0.9 mm from each other on the sample surface. 

During the tensile test, surface deformations caused by external loads were digitized as phase 

maps (corresponding to the changes on the grating). Also, this test approved the tensile test 

above and to get more information about the surface for the three composite specimens. Strain 

measurements have greater uniformity and approximately the same values in the strain map 

(corresponding to the sample images at maxim deformation).  

Typical examples of the 2D strain maps obtained are shown in Figs. 3.29 and 3.30 for 

specimens loaded parallel to the warp and weft fibre direction, respectively, of the three 

different composites. It maps the parallel strain (εyy) on materials at a tensile load of 6kN. To 

compare the strain distribution between materials, when mounted parallel to the warp and weft 

directions, the colour coding of strain in all 6 maps was between a minimum of 0 % (violet) 

and a maximum of 32 % (red). Figures 3.30 and 3.31 confirm the trends visible in graph 3.31. 

Firstly, at a load of 6 kN, the strain values of materials EXA-1196 and EXA-1182 are 

significantly higher when loaded in parallel to the warp fibre direction than to the weft fibre 

direction. Secondly, the thinner EXA-1182 material shows a higher strain at the same load than 

the thicker EXA-1196 material. Thirdly, material EXA-1180 shows noticeably different 

behaviour at the same load: at a thickness of 3 mm, it lies midway between the other two 

samples but has lower strain values than the other two samples when mounted parallel to the 

warp fibre direction, and higher strain values than the other two samples when mounted parallel 

to the weft fibre direction. 
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Figure 3. 29: Strain maps for the composite specimens loaded parallel to the warp fibre 

direction. 

 

Figure 3. 30: Strain maps for the composite specimens loaded parallel to the weft fibre 

direction. 

 

As mentioned in section 3.2.2, one of the advantages of video gauging over mechanical strain 

measurement techniques is that it is possible to not only measure the strain over the whole 
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sample but to explore the strain behaviour in different sections of the sample. This advantage 

is exploited to the full extent using 2D strain maps, where the sample surface is divided into 

lots of small areas. In this way, strain maps reveal strain distribution in the fabric deformation 

zone. Generally, the fabric strain distribution in the 3 mm and 2 mm thick samples EXA-1180 

and EXA-1182 was more irregular compared to strain distribution in the thicker EXA-1196 

fabric (5 mm), especially in the warp direction. The strain distribution was more even overall 

fabric locations of the 5 mm sample.  

A reduction of the maximal strain used for the colour coding of the 2D strain map from 32% 

to 23% reveals that the strain distribution in the EXA-1182 sample mounted parallel to the weft 

fibre direction is not as homogeneous as expected, shown in Figure 3.31. A general area of 16-

17 % strain contains insular spots of 3-5 mm diameter, in which the strain is 22-23 %.  

This shows a general weakness of the colour mapping in the 2D strain map. A large minimum 

to maximum interval is well suited to show the differences between different samples, but the 

smaller strain inhomogeneities inside one particular sample are lost to observation. On the other 

hand, a smaller minimum to a maximum interval of the colour coding reveals the 

inhomogeneities in one sample but is not suitable to compare different samples with largely 

different strain values. 
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Figure 3. 31: Strain maps for the composite specimens loaded parallel to the weft fibre 

direction, reduced colour mapping interval. 

The full-field strain offers an excellent method of studying strain distribution in composite 

materials during the deformation process. It provides strain measurements over the entire area 

under examination and offers more detail than strain gauges. Full-field strain measurements 

show the homogeneity of the sample during deformation, as shown above.  

3.8 Conclusions 

In this chapter, the mechanical properties of three different woven composite materials have 

been characterised by their performance in tensile tests upon on-axis specimens in the warp 

and weft directions. These tests were carried out at room temperature to assess the suitability 

of the material for structural applications. Where the application of other strain measurement 

techniques would have been difficult or unfeasible, with a video gauge non-contacting optical 

system, it was possible to take measurements at multiple points within the loaded gauge section 

and to gather data in real-time.  

https://www.sciencedirect.com/topics/engineering/optical-systems
https://www.sciencedirect.com/topics/engineering/optical-systems
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In these tests, video gauge proved to be a very useful non-contact technique for acquiring full-

field strain maps, where the non-uniform strain was distributed throughout the samples. Values 

were obtained for strain, shear strain, and the Poisson’s ratio. In that context, tested composites 

demonstrate the anisotropic material behaviour, whereby loading in the weft direction invokes 

higher stiffness than loading in the warp direction. That result is typical of fibre-filled 

elastomeric materials, where the fibre architecture dominates the load-deformation response.  

For three different composites, observations were made of the nonlinear stress-strain response 

under uniaxial loading test conditions. As yarns in the loading direction remain relatively 

straight, crimp rises in transverse yarns due to crimp interchange. This has a major impact on 

the mechanical properties of the fibre-reinforced composite. Owing to a thickness effect, 

significant differences exist between the tensile properties of the materials. With matrix 

cracking and fibre trellising, the tests demonstrate nonlinear behaviour for the three composites 

loaded parallel to the warp and weft fibre directions. 

 

 

 

 

 

 

 

 

 

https://www.sciencedirect.com/topics/engineering/material-behaviour
https://www.sciencedirect.com/topics/engineering/deformation-response
https://www.sciencedirect.com/topics/engineering/stress-strain-relations
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  Chapter Four 

 

Several approaches are used by industry and academia to characterise the stress-strain shear 

behaviour of fibre-reinforced composite materials. This chapter describes how the shear 

response of fibre-reinforced composite materials with different thicknesses was investigated to 

assess the effect of in-plane forces on shear behaviour during two material characterisation 

tests: the picture frame test and planar tension test. 

 

4.1 Introduction 

It is understood that most rubber materials can be deformed to a significant extent even under 

low stress, where the subsequent mechanical behaviours are nonlinear. Most rubber materials 

can be deformed by a large strain even under low stress, where again the subsequent mechanical 

behaviours are nonlinear. This nonlinear mechanical behaviour varies between different 

deformation states. For example, the stress-strain curves for uniaxial tension, equi-biaxial 

tension and planar tension for the same type of rubber are distinctly different (Xia et al., 2005).  

However, uniaxial data do not meet the requirement for accurate material characterisation in 

biaxial loading applications such as tubes or membranes. For such applications, a number of 

methods have been developed. The most commonly used are radial tension of a circular plate, 

biaxial tension of a thin square sheet, punching tests and bulge tests (Sasso et al., 2008). 

Treloar suggested an experiment to allow for the determination of pure shear on a thin rubber-

like sheet (Treloar, 1944). In extending experimental and theoretical analysis, Rivlin and 

Saunders established pure and straightforward shear states of incompressible isotropic material 

under considerable deformations (Rivlin, 1948. Rivlin and Saunders, 1951). Sasso et al. also 

carried out the analysis of hyper-elastic rubber-like materials by planar testing (Sasso et al., 
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2008). The key obstacles in designing a test method for the calculation of shear properties are 

(1) the availability of pure and consistent shear stress in the specimen, and (2) a simple 

methodology for the determination of shear stress and strain (Wang et al., 2020; Hodgkinson 

2000; Lee and Munro 1986). 

It is not straightforward to determine the intralaminar shear strength of unidirectional polymer 

matrix composites. Difficulties arise in subjecting the unidirectional composite material to pure 

and consistent shear stress while avoiding complications, high costs, and the effect of other 

stresses. Several test methods to characterise the shear strengths of composite materials have 

been created, each with its own limitations (Odegard and Kumosa 2000). Hodgkinson (2000) 

addressed many widely used techniques for determining fibre-reinforced fibre in-plane shear 

properties. He also addressed the problem of increasing anisotropy and inhomogeneity of the 

substance that cause increases in pure shear. There is a recognised need for an easy, inexpensive 

test method to calculate the shear properties of these materials, due to the orthotropic nature of 

most composite materials. Among the methods used are the picture-frame and planar tension 

shear tests. The popularity of these tests rests with the relative ease of the production and testing 

of the specimens, the low cost, and the precision of the shear strength values so determined. 

4.2 Shear deformation 

Shear behaviour is one of the most significant mechanical characteristics that contribute to 

woven fabric performance and appearance. Due to anisotropy, shear properties of woven fabric 

are checked in various directions (Penava et al., 2015). The bias-extension test and picture-

frame check are the most common approaches for the shear test as applied to woven fabrics. 

Spivak and Treloar (1968) represent one of the first experiments to study in-plane shear 

properties of woven fabrics using the bias extension method. Boisse et al. (2017) present a 
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detailed explanation of the bias-extension process for evaluating the in-plane shear modulus 

for synthetic composite reinforcements.  

4.3 Planar tension test 

The planar tension test is intended to test the sample in a state of deformation of the strain on 

the plane. The sample is thin with a width considerably larger than the height. The test imposes 

planar strain conditions on the test specimen by preventing its edges from contracting. All 

thinning appears in one direction (Wadham 2006) (through-thickness), as shown in figure 4.1 

(Figure 4.2 shows the planar tensioning test setup.) However, there is no special standard for 

the planar tension test. An ideal planar tension test, with high aspect ratios, is very much shorter 

in the direction of the load than the width (Treloar, 1944; Miller and Kurt, 2000).  

 

4.3.1 Test method description and specimen design  

The planar tension test was carried out using a Zwick Z020 universal testing machine to a 

maximum load of 6000 N. The specimen was designed with a width of 200 mm and a length 

of 40 mm between the clamps. A 100 mm/min predetermined cross-head extension rate was 

used during the experimental procedure (BS 903-5:2004). 

 

Figure 4. 1: Planar tension schematic representation (Wadham, 2006) 
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Figure 4. 2: Planar tension test 

The specimens were securely installed and centrally located in the test machine clamp, with 

the long dimension perpendicular to the direction in which the force is to be applied. The 

tension of the specimen is uniform across the clamped width.  

As shown in Figure 4.3, for high-strength fabrics which cannot be held in clamps, each 

specimen was placed around the pins and between the jaws to avoid slippage. As necessary, 

jaw padding was used. The clamps were tightened to distribute the holding pressure along the 

top (front) jaw clamping surface. Clamping too tightly could lead to sample damage at the front 

of the jaws; clamping too loosely could cause slipping or sample damage at the area of the back 

of the jaws and steel pins (ASTM, 2015). 
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Figure 4. 3: Schematic diagram of grips 

 

The shear strain was measured video gauging supported by digital image correlation (DIC). 

This method was also used to check for possible deboning or sliding at the sample metal 

interfaces. Video gauge has been described in detail in the previous chapter. The Video gauge 

system was developed to measure shear strain directly from the surface of a sample. Optical 

methods for shear strain measurement are ideally suited for these applications because the 

measurement is performed remotely without interfering with the versatile geometry of the 

specimen and with no need for any additional load operation. A similar technique has been 

used to test strains in hyperelastic materials similar to rubber (Potluri and Thammandra, 2007, 

Chevalier et al., 2001, Sasso et al., 2008, Palmieri et al., 2009). The software for the video 

gauging system had an internal option for the measurement and recording of shear stress, using 

the in-plane distortions of square-shaped strain gauge targets orientated at +45 and −45° to the 

axis of uniaxial tension. 
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For each material, six samples of the composite were tested, three in parallel to the weft, and 

three in parallel to the warp. (For materials details, see chapter three). Three were loaded in 

parallel to the weft fibre direction, and three in parallel to the warp fibre direction. In the wide 

strip sample, uniaxial tension acting in the Y direction (with respect to the rotated video gauge 

element in Figure.4.4) generates a stress state equivalent to that of equal and opposite principal 

normal stresses acting on the element. Measured nominal stresses applied during testing can, 

therefore, be converted to their equivalent shear stresses by application of a factor of 0.5. The 

shear strain (γ) measurements were generated from video gauge locations within the 

constrained central region of the sample, from an area of dimensions 100 mm × 40 mm. In 

terms of shear strain, it is taken in the middle of the specimen for EXA-1196, EXA-1180 and 

EXA-1182. 

4.4 Strain gauge rosette 

A strain gauge rosette is an assembly of two or more similarly spaced gauge grids, arranged to 

record standard strains in various directions on the underlying surface of the test part (Micro-

Measurements, 2008). For a typical rosette, three gauges would set at A = 0°, B = 45°, C = 90°. 

The three equations would then be solved. A typical strain gauge rosette is a mechanical device 

attached to the sample surface; in the case of video gauging used for strain measurement, three 

virtual gauges are performing the measurements.                        

                                     𝜀𝑎 =  
𝜀𝑥+𝜀𝑦

2
+

𝜀𝑥−𝜀𝑦

2
                                                    (4.1) 

                                             𝜀𝑏 =  
𝜀𝑥+𝜀𝑦

2
+

𝛶𝑥𝑦

2
                                                          (4.2) 

                                            𝜀𝑐 =  
𝜀𝑥+𝜀𝑦

2
+

𝜀𝑥−𝜀𝑦

2
                                                        (4.3) 

 

https://www.sciencedirect.com/topics/engineering/nominal-stress
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Figure 4. 4: Wide strip (pure shear) specimen geometry showing the six video gauge locations 

and the equivalent stress state. 

 

Where Ɛ45 is the normal strain at 45° to the x-axis, Ɛ𝑥 is the normal strain at x° to the x-axis 

and Ɛ𝑦 is the normal strain at y° to the Y-axis, as shown in the figure 4. 5. 

 

Figure 4. 5: Strain gauge rosette individual gauge orientations. 

 

https://www.sciencedirect.com/topics/engineering/specimen-geometry
https://www.sciencedirect.com/science/article/pii/S0263822318302526#f0025
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Solving equations (4.1), (4.2) and (4.3) of the strain gauge rosette is an alternative method to 

calculate the shear strain, which can be compared to the shear strain calculated in the 

conventional way, only using a 45° rotated target using equation (4).  

𝜀𝑥 =  𝜀𝑎        𝜀𝑦 =  𝜀𝑐 

                                                                𝛾𝑥𝑦 = 2 Ɛ45 −  Ɛ𝑥 −  Ɛ𝑦                                                                  (4.4) 

One method for performing a pure shear test is identical to the planar test described above. 

Since the material is almost incompressible, a state of pure shear exists at a 45 °angle to the 

stretching direction (K. Miller., 2002).  In that state, the specimen exhibits pure shear at an 

angle of 45°to the stretching direction (Nassiri, F., 2011). 

Figure 4.6 compares stress-strain curves from four different positions of the EXA-1182 sample 

mounted parallel to the warp fibre direction. The shear strain at these four positions is 

calculated both directly and using a strain gauge rosette. 

 

Figure 4. 6: Shear strain versus shear stress from a rosette strain gauge for the warp direction 

of fabric loading, experimental results and calculations. 
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The strain values calculated with the strain gauge rosette formulas were around 1% lower than 

the directly calculated strain values, but generally in good accordance. 

4.4.1 Test setup and specimen preparation 

One of the tests used to characterise the shear resistance of woven composite fabrics is the 

picture frame test, which can measure the shear behaviour of fabric across a wide range of 

shear angles, between 50°- 75°. In the picture-frame apparatus, two specimen orientations are 

possible. The direction of the warp fibre can be either + 45 ° or -45 ° to the axis of rising. If, 

for example, a -45 ° test is used to shear a specimen in a positive way, then a + 45 ° test would 

be a negative shear deformation. A schematic examination of the picture frame is provided in 

Figure 4.7. A tensile force is applied diagonally across opposite corners of the picture frame. 

This causes the picture frame to shift from an initial square configuration to a rhomboid. The 

clamped sample, therefore, experiences pure shear. 
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Figure 4. 7:  Shear-frame test. 

The loading rig, as mounted on a Zwick (Zwick GmbH) universal testing machine to a 

maximum of 2500 N, is shown in Figure 4.8. The specimen was cut into a cross shape, as 

depicted in Figure 4.9, and clamped to a square frame of 150 mm x 150 mm2  at an initial 

direction to the frame arms of 0/90°.  A steel test fixture was built with four arms linked 

together by four corner hinges with the upper and lower hinges attached to the load heads of 

the testing machine. The specimen was tested at a cross-head extension rate of 100 mm min-1, 

so making the two heads distinct from each other, thereby pushing the hinges and reducing the 

angle between the right and left sides as shown in Figure 4.6. McGuinness and O’Brádaigh 

(1997) proposed two ways of mounting the material by either clamping (for fabrics) or pinning 
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(for fibre-reinforced composites). In this study, the samples were securely clamped in the frame 

and against the gaskets under pressure from a set of bolts (Peng et al., 2004; Zhu et al., 2013). 

 

 

Figure 4. 8:  Experimental setup for the picture frame testing. 
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Figure 4. 9: Specimen shape and size. 

 

The sample was clamped to the frame with the help of clamping plates to ensure that no 

slippage occurred on the metal gaskets between the sample and the frame. As the pins attached 

to the clamping plate could damage the fibre in the specimen, so affecting the result, additional 

metal sheets were added under a clamping plate (Boisse et al., 2017; Cao et al., 2008; DIN 

2014; Lebrun et al., 2003). 

4.4.2 Shear strain in Picture Frame tests 

For woven fabric, the shear angle measures the change of the right angle between the warp and 

weft threading. The shear angle is a significant predictor of the draping quality of reinforced 

woven materials after deformation (Taha et al., 2013). Figure 4.21 shows the material at the 

beginning and the end of the shearing test. In the initial state, the yarns are orthogonal to each 
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other. Upon initiation of interplay shear deformation, the yarns begin to rotate and possibly 

slip, as two interlaced yarns slide over each other. Launay et al. (2008).  

The shear response of woven fabric is different from that of metals and other homogeneous 

material sheets. The in-plane shear response, in particular, is dominated by the relative rotation 

of the two yarns. This action is responsible for many distinct features of woven fabrics as found 

during shear deformation. The shear response was investigated by testing the deformation of a 

dot pattern applied to the surface of the specimen using a video gauge. The yarns are orthogonal 

towards each other in the initial stage. During testing, all specimens experience relatively 

uniform shear deformation in their central areas (Zhu et al., 2013). During the rotation of the 

yarn, it is assumed that the load primarily reflects the frictional interaction between the adjacent 

yarns at their crossover points. Compression of fibrous assemblies is well known to be a 

nonlinear mechanism of increasing rigidity, which describes the dramatic rise in the shear 

stiffness of the deformation. Further deformation continues until fabric compaction begins 

(Fetfatsidis et al., 2012).  

Härtel and Harrison (2014), and Cao et al. (2008) are among those who call shear angle 

determination and shear force "normalisation". The main task of normalisation is to transform 

the reported uniaxial load and displacement into a comparable parameter that represents the 

shear properties i.e., the shear angle and shear force per unit length. The shear strain in the 

sample is determined by the difference in angle between the warp and weft orientations (Boisse 

et al. 2017), which can be observed by geometrical inspection or optical measurement (camera 

monitoring process) (Cao et al. 2008; DIN 2014; Gatouillat et al. 2013; Harrison et al. 2004; 

Peng et al. 2004) 
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4.5 Test data and discussion 

4.5.1 Stress-shear strain curves at different sample locations 

During loading, the video gauge system was used to measure strain at six positions on the 

surface of each sample. Six discrete virtual/optical strain gauge regions (VGs 1-6) were defined 

on the sample surface, from which measurements of the shear strain response to tensile loading 

was obtained.  Shear strain gauges 1 and 6 were placed at an equal distance from the edge of 

the sample. The same was done for gauges 2 and 5, which were closer to the centre, and for 

gauges 3 and 4, which were closest to the centre of the sample. For the majority of tests, the 

closer gauges were to the centre, the higher the shear strain for the same values of stress, as 

one might expect. Near centre positions 3 and 4 show the highest strain, outside positions 1 

and 6 show the lowest strain, over the whole range of applied stress, as an example the stress-

shear strain curves of EXA-1180 mounted parallel to the weft direction are displayed in Figure 

4.10. 

 

Figure 4. 10: Stress-shear strain curves derived from different sample positions of the EXA-

1180 sample mounted parallel to the weft direction. 
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4.5.2 Shear stress – shear strain for different samples 

Shear stress-shear strain results for different composite materials mounted parallel to warp fibre 

direction and weft fibre direction are shown in Figs. 4.11 to 4.16. These results are derived 

from a wide strip planar tension test with the shear strain measured by video gauging at a 

square-shaped target rotated by 45° and located at the centre of the sample.  

 

Figure 4. 11: Planar shear-oriented stress vs strain behaviour for fibre-filled composite 

specimens loaded parallel to the warp fibre directions of EXA-1196. 
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Figure 4. 12: Planar shear-oriented stress vs strain behaviour for fibre-filled composite 

specimens loaded parallel to the weft fibre directions of EXA-1196. 

 

Figure 4. 7: Planar shear-oriented stress vs strain behaviour for fibre-filled composite 

specimens loaded parallel to the warp fibre directions of EXA-1180. 
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Figure 4. 8: Planar shear-oriented stress vs strain behaviour for fibre-filled composite 

specimens loaded parallel to the weft fibre directions of EXA-1180. 

 

Figure 4. 9: Planar shear-oriented stress vs strain behaviour for fibre-filled composite 

specimens loaded parallel to the warp fibre directions of EXA-1182. 
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Figure 4. 10: Planar shear-oriented stress vs strain behaviour for fibre-filled composite 

specimens loaded parallel to the weft fibre directions of EXA-1182 

 

Figures 4.11 to 4.16 show shear strain curves obtained from each of three samples mounted in 

parallel to warp fibre direction and weft fibre direction. The three samples within each of the 

figures were cut from the same composite and mounted in the same direction. The variations 

within the experimental results (attributable only to random errors) are indicative of the 

homogeneity, reliability and repeatability of the experiments.  

With EXA-1196, samples were mounted parallel to the warp direction, and the maximal 

experimental shear strain lay between 14.7% and 15.6%, with (respectively for low stress and 

strain, and maximum stress and strain) standard deviations of 0.01% and 0.39%. With EXA-

1180, samples were mounted parallel to the warp direction, and the maximal experimental 

shear strain lay between 14.3% and 15.3% with (respectively for low stress and strain, and   

maximum stress and strain) standard deviations of 0.01% and 0.41%. With EXA-1182, samples 
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were mounted parallel to the warp direction, and the maximal experimental shear strain lay 

between 13.2% and 15.3%, with (respectively for low stress and strain, and the maximum stress 

and strain) standard deviations of 0.01% and 0.86%. 

With EXA-1196, maximal experimental shear strain stress lay between 5.3% and 5.8%. With 

EXA-1180, maximal experimental shear strain stress lay between 11.0% and 11.6%.  With 

EXA-1182, maximal experimental shear strain stress lay between 4.0% and 4.5%.  Respective 

standard deviations for maximum stress and strain were 0.17%  (EXA-1196) and 0.29% (EXA-

1180). For both cases, tests were  mounted parallel to the weft fibre direction,  

Notably, the homogeneity of the shear strain results is generally better for samples measured 

in the weft fibre direction than for samples loaded parallel to the warp fibre direction similar 

to the homogeneity of the tensile strain results discussed in section 3.6.  

The results from Figures 4.11 to 4.16 also show that the shear strain measured in both 

orientations of fabric increase non-linearly with respect to the extent of the applied load. This 

behaviour can be attributed to the effect of reinforcement fibre crimping. As the fabric is 

woven, “waves” are created in the fabric. As fibres in the warp direction have a higher crimp 

value, the material experiences a higher strain for the same magnitude of stress as compared to 

the weft direction. This behaviour can be seen in both the uniaxial tension and pure shear stress 

tests. The crimp value reduces in the loading direction and increases in the transverse direction 

and continues until the yarns in the loading direction become straight or the yarns in the 

transverse direction reached a jammed state.                
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Figure 4. 11: Shear strain versus shear stress for composite specimens of all different materials 

 

Figure 4.17 shows the shear stress-shear strain curves of all three different materials mounted 

in both directions up to a load of 6000 N for comparison.  
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differences between the strain values obtained from measurements conducted parallel to the 

weft fibres and measurements conducted parallel to the warp fibres. The shear strain values 

corresponding to certain shear stress are lower in the weft fibre direction, the Shear Modulus 

is higher, the material is stiffer towards shear stress if it is mounted parallel to the weft fibre 

direction. In the case of shear strain, this is true for all samples. Sample EXA-1180, which 

showed no difference in stiffness between warp direction and weft direction in the uniaxial 

tensile strain test, does show a stiffer behaviour towards shear if mounted in the weft direction, 
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even if this difference between warp and weft is less pronounced than in the samples EXA-

1196 and EXA-1182. 

Both tensile tests and shear tests indicate correlation between the thickness and fibre content 

of the sample and elasticity. For samples with high fibre content, the planar test indicates 

greater stiffness towards shear. For the same shear stress, a thicker sample with lower fibre 

content (EXA-1196) shows higher shear strain values than a thinner sample with a higher fibre 

content (EXA-1182).  

4.6 Strain fields for the planar test 

Full-field shear strain map (εxy) measurement of deformation was performed using video 

gauging. At the centre of the test area, 2D strain maps were created of the approximate height 

of 400 pixels and width of 1680 pixels. At a working distance of 660 mm, these translated into 

an area of approximate height 18mm and width 76mm, as projected onto the surface of the 

samples as patterned with white dots. The chosen grid spacing in the tensile testing experiments 

was 20 pixels, which resulted in 84 horizontal and 20 vertical nodes within the strain map.  

A differential εxy from the shear strain map was determined. For the contour map, the smallest 

maximum and the most significant minimum of shear strain values were taken into 

consideration for calculating the shear strain contrast. Areas of lowest shear strain are colour 

coded violet and areas of highest shear strain are colour coded red. 

For a specimen of materials - EXA-1196 (thickness 5mm), EXA-1180 (thickness 3mm) and 

EXA-1182 (thickness 2mm) - contour plots for εxy at a maximum load of 6000N are 

respectively shown in Figures 4.18, 4.19 and 4.20, 
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Figure 4. 12: Strain contour map results for a sample of EXA-1196 thickness loaded parallel to 

the weft and warp. 
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Figure 4. 13: Strain contour map results for a sample of EXA-1180 thickness loaded parallel to 

the weft and warp. 
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Figure 4. 20: Strain contour map results for a sample of EXA-1182 thickness loaded parallel to 

the weft and warp. 

 

The 2D shear strain maps confirm the results obtained by the shear stress-shear strain curves 

presented in section 3.5, adding more detail about the strain distribution over the different 

locations of the sample. The conclusion from Figure 4.6, that positions at the centre of the 

sample experience higher strain values than the positions outside the centre of the sample is 

beautifully visualised in the 2D strain maps. Comparison of the minimum and maximum values 

displayed on the colour coding scales confirm that the woven fabric samples which were 
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mounted in the warp direction display a higher shear strain than the samples mounted in the 

weft direction. 

4.7 Picture frame test 

Over many years, various types of picture frame shear test have been used. Initially, the test 

was designed as an in-plane shear test tool for such strong laminated materials as plywood and 

composite laminates. 

The Deutsches Institut für Normung (DIN 2014) has suggested a standard test for determining 

the in-plane shear of fibre-reinforced plastic composites for the picture-frame method. 

Previously, several other researchers had undertaken substantial work in this field (Cao et al. 

2008; Lebrun et al. 2003; Peng et al. 2004; Taha et al. 2013; Zhu et al. 2013).    

4.7.1 Results and discussion of the Picture Frame Test  

In the previous section, the design of the frame, the preparation of the specimen and the 

significance and measurement of shear strain in picture frame tests were addressed. In this 

section, the results obtained for the different materials EXA-1196, EXA-1180 and EXA-1182 

are discussed. Shear strain was directly measured at six horizontally different locations from 

the vertical centre of the sample, the diagonal of the square shaped 100mm*100mm speckled 

testing area, as depicted in the left image of Figure 4.21. Video gauging can simultaneously 

measure and calculate shear strain at more than one position at the same time, which aids the 

determination of the shear strain (angle) at any particular point on the fabric specimen. As the 

Zwick machine directly recorded the uniaxial force, the testing video recorded the shear strain 

on the surface (from the centre of the sample) using the video gauge as shown in Figure 4.21 

A 
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The shear strain measured at the different locations in the picture frame test follows the same 

trend as already established during the wide strip planar tension test, generally the central 

positions 3 and 4 experience more shear strain than positions 1 and 6 at the ends of the diagonal, 

see Figure 4.21. 

 

Figure 4. 14: Picture frame test (a) at the start and (b) at the end of the test. 

 

Figures 4.22 to 4.24 show the shear stress-shear strain curves for samples EXA-1196, EXA-

1180 and EXA-1182 respectively. All these curves were obtained by a picture frame test, with 

the strain obtained from the centre of the sample, position 3 or position 4 in Figure 4.21. The 

principal stress, which is the tensile stress in the loading direction, was calculated from the load 

divided by the cross-sectional area of the diagonal, taking into account the different thicknesses 

of the different samples. The shear stress is half of the major principal stress. The minor stress 

in the direction perpendicular to the loading direction is ignored due to the small compressive 
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stiffness of the fabric material.  The results of the picture frame shear test show that the angle 

increases with increasing shear load and that the angle of the gradient of the shear stress-shear 

strain curves, as displayed in Figures 4.22 to 4.24 is an indicator for the shear stiffness. 

 

Figure 4. 15: Picture Frame shear stress vs shear strain behaviour for fibre-filled composite 

specimens of EXA-1196. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Sh
ea

r 
st

re
ss

 M
P

a

Shear strain 

Sample 2

Sample 3

Sample 1



 
 

121 
 
 

 

Figure 4. 16: Picture frame shear stress vs shear strain behaviour for fibre-filled composite 

specimens of EXA-1180. 

 

Figure 4. 17: Picture frame shear stress vs shear strain behaviour for fibre-filled composite 

specimens of EXA-1182. 
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The curves in Figures 4.22 to 4.24 show non-linear behaviour, particularly under high shear 

stress the shear strain seems to increase at a much slower rate, confirming increasing rigidity 

as a result of compression of fibrous assemblies, which under extreme is well known to cause 

a locking effect preventing further expansion.  

 

 

Figure 4. 18: Shear Strain versus shear stress in a picture frame test for composite specimens of 

all different materials 

 

In Figure 4.25, the shear stress-shear strain curves of all three different samples are displayed 

for comparison. As expected, and as already established in the wide strip planar tensile test 

experiments, shear strain is dependent on the thickness of the sample and fibre content. The 

fibre gives the elastic matrix stiffness against shear, so the sample with the highest fibre content 

shows the stiffest behaviour, reacting with the lowest shear strain at the same value of applied 

shear stress.  
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Figure 4.25 compares the shear stress-shear strain curves for the three different samples. As 

expected, and as already established in the wide strip planar tensile test experiments, shear 

strain is dependent on the thickness of the sample and fibre content. The sample with the 

highest fibre content shows the stiffest behaviour. 

A 5mm thick sample containing 10.5% fibres like EXA-1196 shows the largest shear strain, a 

3mm thick sample with 11.5% fibre content like EXA-1180 medium shear strain and an EXA-

1182 thick sample with a fibre content of 18.1% like EXA-1182 the lowest shear strain at a 

given shear stress value. 

A thicker sample with lower fibre content, such as EXA-1196, displays greater shear strain 

values than a thinner sample with higher fibre content, such as EXA-1182, when subjected to 

the same shear stress. 

4.7.2 Strain fields for Picture Frame Test 

Full-field shear strain map (εxy) measurement of deformation during a picture frame test was 

performed using video gauging and digital image correlation. At the centre of the test area, 2D 

strain maps were created of the approximate height of 420 pixels and width 2100 pixels. At a 

working distance of 660 mm, these translated into an area of approximate height 19mm and 

width 95mm, as projected onto the surface of the samples as patterned with white dots. The 

chosen grid spacing in the tensile testing experiments was 20 pixels, which resulted in 105 

horizontal and 21 vertical nodes within the strain map.  

A differential εxy from the shear strain map was determined. For the contour map the smallest 

maximum and the most significant minimum of shear strain values were taken into 

consideration for calculating the shear strain contrast. Areas of lowest shear strain are colour 

coded violet and areas of highest shear strain are colour coded red. 
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Figures 4.26 to 4.28 show the DIC strain data for the complete field measured in the standard 

compound tissue samples, with contour diagrams of the strain fields at a load of 2500N.  

 

Figure 4. 19: Strain contour map results for a picture frame of EXA-1196. 

 

 

Figure 4. 20: Strain contour map results for a picture frame of EXA-1180. 
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Figure 4. 21: Strain contour map results for a picture frame of EXA-1182 thickness. 

The results of the 2D shear strain map show the strain distribution over the surface of the 

defined target and confirm the conclusion from previous chapters that shear strain values show 

a maximum at the sample centre and decrease at locations further away from the sample centre. 

4.8 Conclusions 

This chapter has presented suitable test methods for investigating the shearing behaviour of the 

three fabric types investigated throughout this thesis. 

These tests were carried out at room temperature to assess the suitability of the material for 

structural applications. The non-contact video gauge technique used was found useful to 

quantify this behaviour for shear strains. With a non-contacting optical system, it is possible to 

take measurements at multiple positions and gather data in real-time. 

 Two types of shear property test methods were conducted: the planar tension and picture-frame 

tests. The measured shear strain for specimens loaded parallel to the warp fibre direction were 

generally higher than for specimens oriented in the weft direction. The composite demonstrated 
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anisotropic material behaviour, as confirmed by the various test results obtained for the 

composite loaded parallel to the weft and warp fibre directions. In addition, the nonlinear shear 

stress-shear strain response was observed for all the test conditions considered.  The shear 

properties of woven fabric are determined when a shear force acts on specimens of woven 

fabric that are cut in various angles. Using the video gauge technique, an improved method was 

obtained by which measurement shear strain measurements were made in planar tension and 

picture frame specimens. The strain gauge rosette method showed the optical methods to be 

mathematically accurate.  

Full-field measurements, which employ local deformations on a composite component after 

forming, provide a useful method by which to calculate local fibre orientations and shear angles 

over the component. It may also be used to examine the shear field of the cloth quantitatively 

and to understand better the dynamics relevant to the broad shear deformation of the in-plane 

and picture frame. 
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  Chapter Five 

  

This chapter reviews a number of aspects of mathematical and computational modelling of 

coated fibre-reinforced composites, giving particular emphasis to constitutive theories based 

on nonlinear continuum mechanics. 

Using ABAQUS software, finite element analysis of load-deformation was undertaken for two 

simple deformations; i.e., shear and uniaxial stretch experiments, as described in chapter three 

and chapter four in the previous chapter for different materials. 

5.1 Isotropic hyperelastic material models 

A finite element analysis model, containing hyperelastic materials, requires substantial data to 

obtain useful results. At best, some tension or compression stress-strain test data, or simple 

shear test data, may exist. Processing and applying such data is critical to analyzing 

hyperelastic models. Curve-fitting to these data is necessary (i) to derive material constants in 

the strain energy function, (ii) to assess accurate findings. Such test results are typically derived 

from a variety of deformation modes over a broad range of stresses.  

As mentioned in the previous chapter, by conducting uniaxial and pure shear testing, and 

recording the deformation using a non-contacting digital image correlation, the tensile and 

planar shear tests demonstrate the suitability of the non-contact optical technique for the capture 

of hyperelastic material behaviour during loading. This enables comparisons between several 

hyperelastic material models by using ABAQUS curve-fitting methods, with the objective of 

simplifying the choice of a hyperelastic model and the determination of its constants for a 

particular material. 

https://www.sciencedirect.com/topics/engineering/hyperelastic-model
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The simplest form of material anisotropy is represented by transversely isotropic materials 

which have only a single preferred principal (fibre) direction and exhibit isotropic behaviour 

to arbitrary rotations about the preferred fibre direction. The strain energy density is not derived 

from the deformation of the materials, as with isotropic hyperelastic materials, but from a 

combination of both the strain energy density from the deformations and strain energy density 

in the principal fibre direction. 

Constitutive materials models describing hyperelasticity can be formulated in terms of a strain 

energy function that depends upon the principal stretches, or invariants, of the strain tensor. 

The strain energy function (W), is directly linked to the material’s stress-strain response and 

depends upon a series of parameters (or material constants). In order to describe a given 

material behaviour using a particular hyperelastic material model, the material constants must 

be determined through curve fitting to obtain stress-strain data experimentally. W describes the 

amount of energy stored in the deformed hyperelastic material as a function of strain at that 

point in the material (Shahzad, et al., 2015; Boyce and Arruda, 2000; Ali and Sahari, 2010; 

ABAQUS, 1992) and can be written as: 

                                                 W = f(I1,I2, I3)                                                                        (5.1) 

Where I1, I2 and I3 are the three strain invariants of the Green deformation tensor. The strain 

invariants can be described in terms of the principal stretches, λ1, λ2 and λ3 according to: 

                                                     I1 =  𝜆1
2 +  𝜆2

2 +  𝜆3
2 

                                          I2 =  𝜆1 
2 𝜆2

2 + 𝜆2
2 𝜆3

2 + 𝜆3 
2 𝜆1

2                              \                                       (5.2) 

                                                   I3 =  𝜆1
2 𝜆2

2 𝜆3
2 

This enables the strain energy function (1) to be written as: 
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                      W =  ∑ Cijk

∞

i+j+k=1

(I1 − 3)i.  (I2 − 3)j . (I3 − 1)k                                                   (5.3) 

Where Cijk is the material-specific constants. If incompressibility is assumed, I3 = 1 and Eq. 

(5.3) can be further simplified to: 

                 𝑊 =  ∑ 𝐶𝑖𝑗

∞

𝑖+𝑗=1

(𝐼1 − 3)𝑖.  (𝐼2 − 3)𝑗                                                                    (5.4) 

Many specific hyperelastic materials models have been proposed (Boyce and Arruda, 2000; 

Seibert and  Schoche, 2000)  and software such as  ABAQUS  contains curve fitting routines 

for several hyperelastic strain energy functions, including those attributed to Mooney-Rivlin, 

Neo-Hookean, Polynomial, Ogden and Yeoh. Because these functions assume anisotropic 

hyperelastic material response, they are limited when applied to the modelling of anisotropic 

hyperelasticity, such as that demonstrated by a hyperelastic matrix (ground substance) when 

reinforced with a non-hyperelastic fibre phase.  In such materials, as the fibre phase fraction 

increases,   the isotropic hyperelastic contribution from the matrix to overall material behaviour 

diminishes, necessitating a more complex anisotropic hyperelastic material model in order to 

adequately describe the material (Holzapfel et al., 2000; Aboshio et al., 2014). As the fibre 

phase fraction increases with such materials, the isotropic hyperelastic contribution from the 

matrix to overall material behaviour diminishes. This necessitates a more complex anisotropic 

hyperelastic material model in order to adequately describe the material itself (Holzapfel et al., 

2000; Aboshio et al., 2014).  

Given the variation amongst hyperelastic models, in the number of material constants and their 

physical implications, the strain energy of each hyperelastic model is included below for 

reference. By integrating the observed data of uniaxial tension and pure shear deformation 

under particular circumstances, it is possible to reliably compute material constants. 
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ABAQUS commercial software has hyperelastic material modelling capability. Experimental 

data are input, and the relevant coefficients of selected hyperelastic material models that best 

fit the experimental data are identified (Julio, and Yarime, 2006). Nonlinear least-squares 

regression is performed to determine the hyperelastic constants, and this is then iterated to 

obtain the best fit to the dataset (Motulsky, and Ransnas, 1987, Hursa et al., 2009). The least-

squares error is minimised, using absolute and relative errors, respectively, given by: 

 

Absolute error =   ∑[experimental data (i) − calculated data (i)

i

]2        

 

Relative error =  ∑[ 1 −  
experimental data (i)

Calculated data (i)
 ]2     

i

 

Using experimental data obtained from the uniaxial tension and wide strip tension (pure shear) 

tests, ABAQUS was applied based on the assumption of hyperelastic material model behaviour 

and the fact that the composite contains a high volume fraction of isotropic hyperelastic matrix 

material. The results of the Ogden and the Yeoh material models are illustrated in Figures 5.2, 

and 5.3, which show the Ogden (order N1, N2 and N3 material model parameters) and Yeoh 

(order N3 material model parameters), that produced best fits for samples loaded in parallel to 

the weft direction. For samples loaded in parallel to the warp direction (Figures 5.4 and 5.5) 

the Ogden (order N1 material model parameters) and Yeoh (order N2 and N3 material model 

parameters) gave the best fits. The results from the ABAQUS model fitting are summarised 

see Appendix 1. 
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Figure 5. 1: Fitting of uniaxial data for samples loaded parallel to the weft direction using 

different hyperelastic models (EXA-1196). 

 

Figure 5. 2: Fitting of different hyperelastic models with planar data for samples loaded 

parallel to the weft direction (EXA-1196). 
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Figure 5. 3: Fitting of different hyperelastic models with uniaxial data for samples loaded 

parallel to the warp direction (EXA-1196). 

 

Figure 5. 4: Fitting of different hyperelastic models with planar data for samples loaded parallel 

to the warp direction (EXA-1196). 
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From a given set of data, curve fitting is undertaken for two models. It can intuitively 

comprehend the curve fitting properties of the mathematical and experimental basis of various 

hyperelastic models. With data obtained from stress/strain tests, curve fitting techniques have 

enabled tension and shear test data to be fitted to all six models from Ogden and Yeoh, as 

introduced above for (EXA-1196). Stable ABAQUS fitting results for data measured in the weft 

direction could only be achieved using Ogden N1, N2 and N3 and Yeoh N2, with the lowest 

least-square result of 36.74% achieved for Ogden N3.  Stable ABAQUS fitting results for data 

measured in warp direction could only be achieved using Ogden N1 and Yeoh N2 and N3, with 

the lowest least-square result of 31.15% achieved for Ogden N1.  

To present strain energy as a function of many independent strain invariants requires 

complicated mathematical analysis, especially when computing instantaneous moduli of 

elasticity. It is because our model uses the major stretches as an independent variable in 

generating the strain energy function, it is sufficiently basic for mathematical analysis to reflect 

the mechanical response of rubber-like materials. Among the various hyperelastic material 

models included within commercial FE codes, the Ogden and Yeoh relationship was best suited 

to model the experimental data. 

5.2 Anisotropic hyperelastic material models 

For a composite composed of a hyper-elastic matrix reinforced with a family of unidirectionally 

aligned fibres, the mechanical behaviour can be represented in the continuum mechanics 

system by a strain energy function W, which can be expressed as a scalar function of the right 

Cauchy-Green deformation tensor C = FT F and the original fibre is directional unit vector a0 

(Peng et al., 2010; Spencer, 1984; Selvadurai and Shi, 2012; Wineman, 2005)),  
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where 𝐅 =
∂x     

∂X
 is the deformation gradient tensor: X reflects the initial (undeformed) 

configuration of a material point; x is the position of the point in the new (deformed) coordinate 

(Shahzad et al., 2015; Boyce and Arruda, 2000; Ali and Sahari, 2010; ABAQUS, 1992). 

The strain energy function of the unidirectional fibre-reinforced composite is then represented 

as:       

 

    𝑊 = 𝑊 (𝐶 , 𝑎0)                                                                                    (5.5) 

In terms of C invariants and additional scalars, Eq. (7) can be rewritten as: 

 

                                         𝑊 (𝑪 , 𝒂0) =  𝑊 ( 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5)                                                         (5.6)       

 

Where the invariants are rendered as,  

𝐼1 = 𝑡𝑟𝑪,𝐼2 =
1

2
[ (𝑡𝑟𝐶)2 – 𝑡𝑟𝐶2], 𝐼3 = 𝑑𝑒𝑡𝐶,  

𝐼4 = 𝐚0 . 𝐂. 𝐚0 =  λa
2,     

𝐼5 = 𝐚0 . 𝐂2. 𝐚0 

Where 𝝀𝒂is the stretch of fibre a.  

 

If a second family of fibres with original fibre directional unit vector b0 reinforces the hyper-

elastic body, the strain-energy function W is the isotropic invariant of C, 𝐚𝟎 ⊗  𝐚, 𝐛𝟎 ⊗  𝐛𝟎.  

Moreover; W can be expressed as a function of the following invariants in addition to Equation 

(7). 

                      𝑊 (𝐂 , 𝐚0,𝐛𝟎) = W ( 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, 𝐼7, 𝐼8)                                                        (5.7)  

Where,                                        𝐼6 = 𝐛0 . 𝐂. 𝐛0 =  𝜆𝑏
2  

                                               𝐼7 = 𝐛0 . 𝐂2. 𝐛0   And                                                         (5.8) 
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          𝐼8 = cos 2 𝜃 

Where 𝝀𝒃 is the stretch of b,𝟐 𝜽 =  
𝐚.𝒃 

(‖𝐚‖.‖𝐛‖)
, is the Cosine of the angle between two fibres in 

the deformed configuration also given by (𝑰𝟒 𝑰𝟔 )
1/2 𝐚0 . 𝐂. 𝐛0. 

From the above formulation, the second Piola-Kirchoff stress tensor is derived directly from 

the hyper-elastic function of the energy strain (Spencer, 1984; Peng et al., 2010) as 

                                                      𝐒 =   
2 ∂w

∂𝐂
                                                (5.9) 

Then the Cauchy stress tensor is given by 

                                           σ = I3
−1𝐅𝐒𝐅T                                                                                       (5.10)  

                                σ = 2 I3
−1𝐅

∂w

∂𝐂
𝐅T    

𝜎 = 2𝐼3
−1  [(𝐼2𝑊2 + 𝐼3𝑊3)𝐼 +  𝑊1𝐵 − 𝐼3𝑊2𝐵−1 +  𝐼4𝑊4 𝑎0 ⨂ 𝑎0  +  𝐼4𝑊5(𝑎 ⨂ 𝐵𝑎

+ 𝑎𝐵 ⨂𝑎) + 𝐼6𝑊6𝑏 ⨂ 𝑏 +  𝐼6𝑊7(𝑏⨂𝐵𝑏 + 𝑏𝐵⨂𝑏) +
1

2
 (𝐼4𝐼6)

1
2⁄ 𝑊8(𝑎0 ⨂ 𝑏0

+ 𝑏0 ⨂ 𝑎0) ]                                                                               

Where I is the second-order unit tensor, B is the left Cauchy-Green tensor 𝐁 =  𝐅𝐓𝐅,  and 𝑊𝑖 =

 
𝜕𝑊

𝜕𝐼𝑖
. 

5.3 A particular application for fabrics of composites 

Ignoring the energy dissipated by the friction between fibre yarns, and leaving aside the 

unloading process, the energy required to deform woven composite fabrics is approximately 
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equal to the strain energy calculated by the hyper-elastic hyperelastic representation discussed 

in the previous section.  

Theoretically, the strain energy function is the combination of four terms: the strain energy 

functions of the matrix; the fibres in the weft direction; the fibres in the warp direction; and the 

shear interactions in the matrix fibre interfaces (Ogden, 2011; Holzapfel et al., 2000). 

In this particular case, the strain energy expression is obtained using the following invariants: 

            W = W(𝐂, 𝐚0, 𝐛0) =  Wm + Wa
f + Wb

f + Wfm                                                              (5.11) 

           W(𝐂, 𝐚0, 𝐛0) =  Wm(I1) +  Wf(I4, I5, I6, I7) + Wfm(I8)                                              (5.12) 

        W =  W(𝐂, 𝐚0, 𝐛0) =  Wm(I1) +  Wa
f(I4, I5) +  WB

f (I6, I7) + Wfm(I8)                       (5.13) 

Where 𝑾𝒎 is the contribution of the strain energy from the matrix; 𝑾𝒇 is the strain energy of 

the fibres;  and 𝑾𝒇𝒎 is the shearing strain energy resulting from the interaction between the 

matrix and the fibres in shear. Matrix and fibre volume fractions are accounted for by νf = 

volume fraction of fibre  

νm = volume fraction of matrix  

𝜈𝑓 =  𝜈𝑎 +  𝜈𝑏 And 𝜈𝑏 = 2 𝜈𝑎 

Where νa and νb are the respective volume fractions of the fibres in the weft and warp 

directions. It is presumed that the isometric form is the familiar Neo-Hookean model with an 

additional term, given as 

 Wm = 𝑣𝑚[ 𝐶𝑚(𝐼1 − 3) + 𝐶𝑚2(𝐼1 − 3)𝛼]                                                                              (5.14) 

The other terms are: 

Wa
f = 𝑣𝑎[ 𝐾1(𝐼4 − 1)𝛼1 + 𝐾2(𝐼4 − 1)𝛼2]                                                                              (5.15)    
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Wb
f = 𝑣𝑏[ 𝐾3(𝐼6 − 1)𝛼3 + 𝐾4(𝐼6 − 1)𝛼4]                                                                              (5.16)    

Wfm=𝐾8(𝐼8)𝛼5                                                                                                                               (5.17)  

Adding Equations 5.7, 5.8, 5.9 and 5.10 gives the total strain energy function for the composite  

i.e., 

W =   Cm(I1 − 3) + Cm2(I1 − 3)2 +  K1(I4 − 1)3 + K2(I4 − 1)2 +  K3(I6 − 1)3 +  K4(I6

− 1)2 +  K8(I8)                                                                                                   (5.18) 

Where the constant 𝐶𝑚 =  
μ0

2⁄  (with μ0 being the shear modulus),  𝐶𝑚2
, 𝐾1, 𝑡𝑜 𝐾4,𝛼 and α1to 

α4 can be obtained by fitting the experimental results to the model. This is shown in section 

5.6. Note that, in the case of incompressible isotropic materials, the stretch ratios of the off-

loading directions are related by λ2 =  λ3 and 𝐼1 =  λ1
2 + λ2

2 + λ3
2 =  λ1

2 + 2
λ1

⁄  and 𝐼3 =

 λ1λ2λ3 = 1    

Therefore, the Cauchy stress tensor σ is given by: 

                                   σ = 2 (
𝑈1𝐁+ 𝐼4𝑈4 𝐚⊗𝐚+ 𝐼6𝑈6 𝐛 ⊗𝐛+

1

2
(𝐼4𝐼6)

1
2⁄ U8(𝐚⊗𝐛+b⊗𝐚)

)                                                       (5.19) 

Where a = 
𝐅𝐚0

√𝐼4a
⁄ and b = 

𝐅𝐛0

√𝐼6b
⁄  are the fibre direction vectors for the family of fibres.  
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5.4 Characterisation of three fibre reinforced composite 

materials 

5.4.1 Identification of the material parameters 

The material parameters may be approximated by applying the least-squares method to the 

experimental data (e.g., Figures 3.26 to 3.31) obtained from the uniaxial tensile tests in the 

fibre yarn direction for the three materials.  

Regression modelling is applied to determine mathematical function coefficients based on 

empirical data. The least-squares (𝜁𝑖) approach calculates the coefficients such that the sum of 

the squares of the deviations of the data from the curve-fit is minimumised, as shown in the 

flow chart below (Figure 5.6) (Vasquez Eldredge 2011). In order to calculate the minimised 

squares for all test data points, the initial values of the parameters were obtained by taking the 

difference between the stress-strain data points obtained from the experiment and the values 

obtained from equations 5.16 to 5.19. The subsequently applied optimisation algorithm in 

Excel is designed to minimise the sum of ζi over all data points (Aboshio et al., 2014). 
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Figure 5. 5: Schematic approach giving a description of parameters. 

 
Tensile strain energy density–strain curves can be obtained by integrating stress over the strain, 

while the tensile strain energy density(𝐼1 − 3), (𝐼4 − 1) and  (𝐼6 − 1) can be obtained by 

curve-fitting, as shown in Figures 6.7 to 6.12 for different composite materials (Peng et al., 

2010). For the shear tests reported in the previous chapter, integrating the shear stress over 

shear strain (Figure 6.16) gives the work needed to deform the composite fabric (𝐼8). This is 

known as the total fibre-fibre contact energy (cross-over shear strain energy), as no fibre 

stretching occurs if the fabric is perfectly aligned in the frame. Assuming that the composite is 

incompressible, the density of the strain energy is calculated by averaging the strain energy 

over the composite volume. 

The deformations found in composite experiments have been known to reduce the strain energy 

density in the material. That reduction of the deformation was mainly attributable to the 

isotropic neoprene matrix with little effect from the fibre. As discussed in Section 5.4, the 
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diminished strain energy densities in the weft direction were therefore obtained using 

Equations 5.16 and 5.17 for the different materials. 

Four items of experimental data were matched to equation 5.16 to obtain the values of the 

coefficients. Cm and Cm2 were respectively obtained, from the weft direction (which is the 

secondary fibre direction) for three different composite materials, see Appendix 2. As shown 

Figures 5.7 to 5.9, the typical fitting curve of Equation 5.16 to the experimental data. 

 

 

Figure 5. 6: Strain energy density against invariant in uniaxial tensile stress-strain graph in weft 

direction for EXA-1196. 
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Figure 5. 7: Strain energy density against invariant in uniaxial tensile stress-strain graph in weft 

direction for EXA-1180. 

 

Figure 5. 8: Strain energy density against invariant in uniaxial tensile stress-strain graph in weft 

direction for EXA-1196. 
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As can be seen, the proposed anisotropic energy function represents the experimental results 

well. The coefficient values of the properties K1 and K2 of the material, identified for the three 

different materials, see Appendix 3, are plotted as a function of the fibre volume fractions, 

which was also matched to Equation 5.17. Figures 5.10 to 5.12 show typical fitting curve of 

formulae 6 to 8 to experimental data; the fitting of all relevant datasets can also be found in 

Table 4 

 

Figure 5. 9: Strain energy density against the invariant in uniaxial tensile stress-strain graph in 

the weft direction for EXA-1196. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

ST
R

A
IN

 E
N

ER
G

Y
 D

EN
SI

TY
 (

M
p

a)

I4 - 1

EXPERIMENT

FIT



 
 

143 
 
 

 

Figure 5. 10: Strain energy density against the invariant in uniaxial tensile stress-strain graph in 

the weft direction for EXA-1180. 

 

Figure 5. 11: Strain energy density against the invariant in uniaxial tensile stress-strain graph in 

the weft direction for EXA-1182. 
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In the direction of the warp (fibre primary), the experimental values for the composite materials 

were matched to equation Equation 6.18, as shown in Figure 5.13 to 5.15. The coefficient 

values, K3 and K4, were calculated, see Appendix 4.  

 

Figure 5. 12: Strain energy density against the invariant in uniaxial tensile stress-strain graph in 

the warp direction for EXA-1196. 
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Figure 5. 13: Strain energy density against the invariant in uniaxial tensile stress-strain graph in 

the warp direction for EXA-1180. 

 

Figure 5. 14: Strain energy density against the invariant in uniaxial tensile stress-strain graph in 

the warp direction for EXA-1182. 
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As mentioned in Chapter Four, when the material is tested by using a picture frame along with 

the warp and weft directions, the shear strain energy can be expressed, as shown in Equations 

5.21 to 5.23. The contribution of the strain energy function arises from the interaction of the 

matrix–fabric in shear. The strain energy function versus the invariant I8 is shown in Figures 

5.16 to 5.18. When matched to equation 5.19, the value obtained was as shown in Table 6 see 

Appendix 5. Finally, the overall strain energy function of the composite, as expressed below, 

can be calculated by using the average values of the coefficients (in Pascals) as calculated from 

the fitting method described above. 

 

Figure 5. 15: Strain energy density against the invariant 𝑰𝟖 in the picture frame test for EXA-

1196. 
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Figure 5. 16: Strain energy density against the invariant 𝑰𝟖 in the picture frame test for EXA-

1180. 

 

Figure 5. 17: Strain energy density against the invariant 𝑰𝟖 in the picture frame test for EXA-

1196. 
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Finally, the overall strain energy functions Of the composite materials examined in this work 

(EXA 1182; EXA 1180 and EXA 1196), as expressed below, can be calculated by using the 

average values of the coefficients (in Pascals) as calculated from the fitting method described 

above. 

       𝑊1182   =   19.08325 ∗ 106 (𝐼1 − 3) + 94.622 ∗ 106 (𝐼1 − 3)2                                            

+  4.424587861 ∗ 106 (𝐼4 − 1)3 + 2.839717581 ∗ 106(𝐼4 − 1)2            

+  0230801368 ∗ 106 (𝐼6 − 1)3 + 0.576619529 ∗ 106(𝐼6 − 1)2  

+  1.581610233 ∗ 106 (𝐼8)                                                                              (5.20)  

 

   𝑊1180 =   9.176475 ∗ 106 (𝐼1 − 3) + 28.32975 ∗ 106 (𝐼1 − 3)2                                                

+ 0.060982146 ∗ 106(𝐼4 − 1)3 + 0.865736274 ∗ 106(𝐼4 − 1)2        

+  1.636813 ∗ 106 (𝐼6 − 1)3 + 0.748147 ∗ 106(𝐼6 − 1)2                    

+  0.515118094 ∗ 106 (𝐼8)                                                                              (5.21)  

 

   𝑊1196 =   49.47209 ∗ 106 (𝐼1 − 3) + 258.7695 ∗ 106 (𝐼1 − 3)2                                                

+  3.223707 ∗ 106(𝐼4 − 1)3 + 7.012044 ∗ 106(𝐼4 − 1)2                     

+  2.67571 ∗ 106(𝐼6 − 1)3 + 3.382935 ∗ 106 (𝐼6 − 1)2                         

+  1.360031018 

∗ 106(𝐼8)                                                                                                                (5.22)  

5.5 Numerical Validation of the Model  

The developed hyper-elastic constitutive law was implemented in the FE software, where the  

ABAQUS/explicit Finite Element code was selected for its capacity to handle extremely fast 

dynamic loading conditions and deformations typical of the rate of loading adopted in the 
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laboratory for testing of the composite specimens. These use a ‘user material subroutine’, 

together with the results of the experimental uniaxial tensile tests in the warp and weft 

directions and the picture frame shearing tests. 

All of the material parameters obtained in the constitutive model were used in Equations 5.20, 

5.21, and 5.22 which was coded in FORTRAN and linked to ABAQUS for the composites (see 

Appendix 6).  

The geometric model dimensions are 50 mm, 5 mm and 200 mm representing the width, 

thickness and length of the samples for the uniaxial tensile test. The geometric model 

dimensions for the picture frame test were 100 mm * 100 mm for different materials. 

5.5.1 Mesh 

Membrane elements (M3D4R, a quadrilateral membrane of four nodes, reduced integration, 

and hourglass control) were used for the simulation of 2500-elements. The main directions of 

the fibre were described using rectangular Cartesian coordinates. 

5.5.2 Boundary Conditions and Loads  

After the addition of a clamped boundary condition at one end, the model was steadily 

expanded at a rate close to that used in the laboratory. After deducing (from the material 

direction previously established for the model) the desired path of fibres, uniaxial test 

simulations of warp and weft were undertaken. All the degrees of freedom are fixed at the 

bottom, then the top has one degree of freedom in applied force direction and the side 

completely free. 
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5.5.3 Results and Discussion 

From the development of a hyperelastic material model and the fact that the composite includes 

different volumes of the three materials of the isotropic hyperelastic matrix, the experimental 

data obtained from the uniaxial tension and picture frame were used to model the product 

behaviour.  

For the different composites in the uniaxial simulation, varying loads were applied in the 

stretched directions of the warp and weft.  

The resulting displacements and load distributions of the FE calculations are shown in Figure 

5.19 (warp direction) and Figure 6.20 (weft direction). For a direct comparison of the 

experimental results and the simulation, respective displacements were taken from the centre 

of the sample. 
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Figure 5. 18: ABAQUS model of displacement distribution in a composite for warp direction. 



 
 

152 
 
 

 

Figure 5. 19: ABAQUS model of displacement distribution in a composite for weft direction. 

 

From Figures 5.21 to 5.26, the constitutive model shows close agreement with the 

corresponding experimental curves loaded parallel to the warp and weft directions. While the 

stress-strain relationships were similar, there was a closer agreement for the warp-oriented 

specimens. Appropriate comparisons were then possible between hypothetical loads and 

displacements obtained from ABAQUS modelling. These show that the new constitutive model 

is reliable for predicting material load-displacement behaviour. The same observation was 

obtained in the (Aboshio, 2014). 
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Figure 5. 20: True load-displacement relation of the experimental and simulated model under 

uniaxial loading in the warp direction (EXA-1182). 

 

Figure 5. 21: True load-displacement relation for the experimental and simulated model under 

uniaxial loading in the warp direction (EXA-1180). 
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Figure 5. 22: True load-displacement relation for the experimental and simulated model under 

uniaxial loading in the warp direction (EXA-1196). 

 

Figure 5. 23: True load-displacement relation for the experimental and simulated model under 

uniaxial loading in the weft direction (EXA-1182). 
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Figure 5. 24: True load-displacement relation for the experimental and simulated model under 

uniaxial loading in the weft direction (EXA-1180). 

 
Figure 5. 25: True load-displacement relation for the experimental and simulated model under 

uniaxial loading in the weft direction (EXA-1196). 
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Close agreement between the experimental and the numerical simulations, demonstate that 

hypothetical models can simulate composite samples, with better agreement obtained for 

specimens loaded parallel to the warp direction than those loaded parallel to the weft direction. 

For the materials - where EXA-1196 has a thickness of 5 mm and EXA-1182 a thickness of 

EXA-1182 - both have the same matrix and fibre. Therefore, their only difference is the volume 

fraction. The effect of the thickness was apparent in both directions. EXA-1196 took almost 

double the load of EXA-1182, and a quarter of the load of EXA-1180. As the fibres are almost 

linear in the direction of the weft, they are modelled as such. All test orientations displayed 

nonlinear behaviour (hyperelastic).  

 

5.6 Conclusion 

In order to reflect the anisotropic nonlinear mechanical behaviour of woven composite fabrics 

during the deformation phase, a basic hyper-elastic fibre reinforced constitutive model was 

developed within the continuum mechanics system. For the proposed hyper-elastic model, to 

facilitate the determination of material parameters, the strain energy per unit volume was 

additively decomposed into tensile energy, compaction energy, and shear energy. The strain 

energy function that characterises a material’s anisotropic behaviour can be described by four 

terms: interaction between fibres, the matrix, and fibre-fibre interactions in the warp and weft 

directions. From that basis, the processes of parameter determination were straightforward. 

Ultimately, the proposed anisotropic hyper-elastic model was implemented to simulate uniaxial 

stress and picture-frame shear testing, with the comparison between numerical results and 

experimental evidence suggesting the validity and accuracy of the model 

As always, many limitations apply to hypothetical models so a constitutive model that 

demonstrates realistic behaviour is difficult to obtain. 
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The comparisons and validations have demonstrated that the established constitutive model 

satisfactorily predicts the hyperelastic behaviour of composites described in this study. 
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  Chapter Six 

A bulge tester is a widely used test facility to apply near equibiaxial stress to a thin plate. This 

chapter deals with the method of bulge testing used in this project. The bulge test theory is 

presented after a brief overview and historical perspective of the technique. Bulge equations 

for samples are also presented. The general specification for the bulge test is then offered as 

guidance for manufacturing and mounting. 

 

6.1 Introduction 

This chapter describes a methodology for the precise mechanical experimental setup for bulge 

testing an amorphous hyperelastic rubber-like material (PVC-coated nylon woven fabric 

composites of different thicknesses). Many loading methodologies exist for applying biaxial 

charging. The basis of the method used in this chapter is the inflation of a thin material sheet 

into a bubble by pressurised oil. This requires accurate pressure calculation and determination 

of the strain distribution around the bubble axis.  

It takes due note of the degree of precision needed or the intended function of the to-be-

designed composite structure, the selection of test techniques is based on its benefits, limits, 

and availability. Except for specific circumstances, the uniaxial test technique may be deemed 

acceptable for analysing the material mechanical behaviour for modest extensions of composite 

materials. Yet, owing to testing equipment limitations, this test is seldom carried out to the 

point of failure of these materials.  

 

6.2 Bulge Equipment Setup 

 The bulge test system (Figure 6.2) consists of the following subsystems: 

 The liquid pressure chamber. 
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 A pressure sensor with electrical signal output. 

 A source of compressed oil (Hydraulic Pump). 

 A control system: PC-based microcontroller system (Arduino).  

 A bulge height measurement system (DIC by Imetrum system). 

 

 

Figure 6. 1: A systematic overview of the setup of the bulge. 

 

6.2.1. Assembly of the Bulge Chamber 

The specimen was placed between the top of the pressure chamber and a ring-shaped steel plate 

used as a die. The diameter of the opening of the pressure chamber, as well as the inner diameter 

of the die, was 100 mm and the outer diameter of both the pressure chamber and the die was 

180 mm. The polymer specimen was pressed between the die and the blank contour of the 
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pressure chamber top in the way depicted (see Appendix 7) using metal clamps. No lubrication 

was used at the interface between the blank and die surface. The reservoir was fitted with a 

hydraulic pump and pressure gauge for the inflation of the composite membrane. 

6.2.2. Pressurisation System 

Acting as a driving force, a high-pressure pump is required to reach 30 bar or more for 

composite material specimens. The Enerpac ZE3204MB electric induction pump contains a 

115V/1 HP induction electric motor for durability, holds up to 1 gallon of hydraulic fluid and 

is suitable for powering a single-acting hydraulic cylinder or tool. Induction motors are suitable 

for use in harsh environments. The pump’s moulded covering helps protect the motor. A steel 

guard protects the motor's fan. The reservoir is made of steel. A 40-micron filter helps to 

remove impurities, so keeping the hydraulic fluid clean. The pump has a sight gauge for 

monitoring the fluid level. The three-way, two-position manual valve offers advance and retract 

flow paths and controls the direction of the hydraulic fluid in a single-acting system. The output 

flow rate is 40 cubic inch per minute at a maximum operating pressure of 10,000 psi (pounds 

per square inch). An adjustable relief valve helps prevent overloading (see Appendix 7). 

6.2.3. Pressure Sensor and Control System 

Figure 6.3 (A) illustrates the pressure sensor that is widely used. It was designed to be fitted 

with an external pressure transducer to continually monitor and record the internal pressure of 

the pressure chamber of the bulge check die. The pressure sensor is used to measure the 

pressure of the liquid (or gas). The displayed pressure is the expression of the force needed to 

stop the expansion of the fluid and is usually indicated in terms of force per unit area. The 

pressure transducer was selected for its compatibility with the hydraulic press control system 

and data acquisition system. The pressure sensor generates an electrical signal relating to the 



 
 

161 
 
 

pressure applied and has a range between 0 and 25 bar. The voltage measurement sockets 

located on one side are shown in Figure 6.3 (B). Figure 6.3(C) shows the Arduino board 

connected to the power supply and the PC. 

 

Figure 6. 2: (A) The pressure pump system. (B) Power supply. (C) Arduino.  

 

6.3. 3D measurements  

Experimental mechanical research methods such as the bulge test rely heavily on surface 

displacement field estimation. The DIC measurement techniques reported in chapter 3 take a 

full-field optical approach that uses pattern tracking and stereovision-based analysis. This 

technique tests the surface characteristics of a specimen undergoing a user-defined mechanical 
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test load (Yoneyama and Murasawa, 2009). Thus, the technique is suitable for measuring 

displacement and strain, where it can create a three-dimensional map of images of the surface 

of the whole specimen (mechanically tested). Moreover, the 3D system can be used to measure 

the shape of the 3D bulge and thus determine its maximum height. 

6.4. Experimental Procedure 

Bulge tests were performed in a custom-built hydraulic bulge testing facility. The specimen 

was placed between the top of the pressure chamber and a ring-shaped steel plate used as a die. 

The diameter of the opening of the pressure chamber, as well as the inner diameter of the die, 

was 100 mm and the outer diameter of both the pressure chamber and the die was 180 mm. 

The polymer specimen was pressed between the die and the blank contour of the pressure 

chamber top in the way depicted in Figure 6.4, using metal clamps. No lubrication was used at 

the interface between the blank and the die surface. The reservoir was fitted with a hydraulic 

pump and pressure gauge for the inflation of the composite membrane. 

 

Figure 6. 3 Assembly of a pressure chamber, die and specimen for the bulge test. 
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Figure 6.5 shows an overview of the complete setup of the bulge test including the hydraulic 

pump, pressure gauge, pressure chamber, video cameras, lighting system and the appropriate 

computer systems controlling and measuring the oil pressure and the strain behaviour of the 

specimen. 

 

Figure 6. 4: Schematic of the bulge testing facility, showing the bulge tester, the 

pressurising unit, and the video gauge system. 

The bulge deformation was monitored via video gauge after spray-painting a coarse white 

speckle pattern on the surface of the specimen. As the DIC recorded strain and displacement, 

the pressure was recorded using appropriate "Arduino" software. Pressure sensors are 

connected (Arduino) and interfaced with the computer. The pressure signal was transmitted 

every 10s through the Arduino. Using one video camera, two-dimensional video gauging 

allowed image pixels to be used as a native 2D coordinate system. By comparing digital images 
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of the test surface before and after deformation (see Figure. 6.6), measurements of full-field 

strains, Ɛxx and Ɛyy, and shear strain, Ɛxy, were obtained. 

 

Figure 6. 5: Hydraulic bulge test with the video gauge system utilising two cameras. 

 

The utilisation of a second camera, synchronised with the first, allowed for strain and location 

measurements in the direction of the viewing axis of the camera system. It allocated X-, Y- and 

Z-co-ordinates to each of the measurement points on the bulging surface, so creating an 

accurate 3D coordinate frame. These 3D measurements also included the height of the dome, 

resulting from the viscous pressure under the material during the bulging experiment (see 

figure. 6.6). 
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6.5. Theoretical Investigation 

The hydraulic bulge was used to test sheets of composite materials under a state of equibiaxial 

stress (tension). Based on the balance of the forces on the small circular element in the centre 

of the membrane, and by presuming the ratio of the thickness of the sample to the size of the 

bulge to be small, the average membrane stresses can be determined (Aboshio et al., 2015; 

Campos et al., 2014; Ranta-Eskola, Santos, et al., 2010; 1979; Gutscher et al., 2004). To 

determine the stress curve from the bulge test, the pressure and the dome height can be 

respectively determined with a pressure transducer and video gauge. When an internal gauge 

pressure P is applied to a specimen, it deforms into a dome of radius r and wall thickness t. As 

shown in Figure 6.7, the bulging specimen can be regarded as a thin-walled spherical pressure 

vessel in its deformed form. Since the spherical specimen is under static conditions, the stress 

must balance the inner pressure. 

  

Figure 6. 6: Depicted is the cross-section of a spherical pressure. 

Centred at the equilibrium force of a small circular feature at the centre of a membrane and 

assuming that the specimen's thickness to the bulge ratio is small, the average axial symmetric 

membrane tension is given by   
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σ1

ρ1
+  

σ2

ρ2
=  

P

t
                                                                 (6.2) 

Where σ1 and σ2 are the principal surface stresses, ρ1 and ρ2 are the corresponding principal 

radii of the curved surface, P is the hydraulic pressure, and t is the thickness of the membrane 

at the pole (see Figure 6.8).  

Equation (6.2) relates to the general case in which σ1 ≠ σ2 and ρ1 ≠ ρ2. Based on the balance of 

forces of the small element in the centre of the membrane, and by assuming the ratio of the 

thickness of the sample to the size of the bulge to be small, then σ1 = σ2 = σ and ρ1 = ρ2 = ρ, so 

resulting in the axisymmetric case (Aboshio et al., 2015; Campos et al., 2014; Ranta-Eskola, 

Santos et al., 2010; 1979; Gutscher et al., 2004). This allows equation (6.1) to be simplified to: 

                                                             𝜎 =  
𝑃𝜌

2 𝑡
                                                           (6.3) 

 

Where σ is the biaxial stress, P is the bulging pressure, ρ is the instantaneous radius at the apex 

of the dome, and t is the thickness of the membrane at the pole.  

Irrespective of the anisotropy of the material of the dome, given the presumed hemispherical 

shape of the bulging membrane, the radius of curvature can be calculated by: 

                                                    𝑅 =  
𝑎2+ ℎ2

2 ℎ
                                                        (6.4) 

Where R is the radius of the fillet of the cavity, a is the initial radius of the circular diaphragm 

specimen, and h is the dome height after deformation, assuming that the dome is spherical 

(Merle, 2013; Hill, 1950; Ramezani et al., 2010; Aboshio et al., 2015; Vasilescu, 2016). 
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Figure 6. 7: Biaxial stress state of a membrane under the bulge test at the pole (Aboshio et al., 

2015) 

With the assumption that the bulge is spherical, Hill used analytical methods to describe the 

deformation in the hydraulic bulge test (Hill, 1950). The thickness at the top of the dome is 

then calculated using the following equation: 

𝑡 =  
𝑅− √𝑅2− 𝑡0 𝐶0

2/2ℎ

2
≅ 𝑡0 (1 +  

ℎ2

𝑎2)
−2

                                          (6.5) 

Where C0 is the initial gauge length measured perpendicular to the bulge axis, a is the radius 

of the circular specimen, and the other variables are as previously defined. 

6.6. Results and Discussion 

Figure 6.9 shows the height at the top of the dome (mm) against the applied fluid pressure for 

the different materials tested, using the methods for measurement discussed above. The polar 

heights are determined via a 3D coordinate video gauge using two coordinated cameras. 
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All the graphs display a parabolic shape. Those for the EXA-1182 and EXA-1196 samples are 

very similar: at a maximum pressure of 25 bar, maximum bulge heights of 19 mm and 26 mm 

were recorded for the EXA-1196 and EXA-1182 samples respectively. Up to a pressure of 13 

bar and a dome height of 16 mm, the graph for the 3mm sample is similar to those for the other 

samples. Thereafter, the size of the dome and its height remained constant until the end of the 

experiment at 25 bar. The explanation for the difference between the 2mm and 5mm samples, 

and the 3mm sample, lies with the denser interlaced weaving pattern. The different 

characteristics of the 3mm sample might also be associated with a locking mechanism that 

prevents further crimping, even as the stress on the sample is raised by increasing oil pressure. 

In summary, the results in Figure 8 indicate that the bulge test properties of PVC woven fibre-

reinforced composite are influenced by the stitching yarn form, directions and density.  

 

Figure 6. 8: Pressure versus dome height. 
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As calculated by equation (5.4), as the radius of the die increases, the pressure decreases as a 

function of the polar height (see Figure 6.10). The effect of different material thicknesses on 

these graphs is minimal. 

 

Figure 6. 9: Dome height versus bulge radius. 

 
 

As calculated by equation (5.5), the thickness at the top of the dome is plotted against its height 

for various materials (see Figure 6.11). As the oil pressure increases, the bulge grows and the 

dome height increases. At the same time, the material is stretched and the material thickness 

decreases. The change in thickness of the EXA-1196 sample is greater than that of the EXA-1180 

or the 2mm sample. The thickness at the pole decreases as the dome height increases, and this 

thinning effect increases rapidly towards the end of the procedure.  
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Figure 6. 10: Thickness variation versus dome height. 

Figure 6.12 compares the actual strain with the theoretical strain as calculated by equation 

(5.3). Stress was calculated using equation (5.2) for the three types of material. There was a 

significant difference between the theoretical and experiential results. For minimal strains, both 

experimental results were well matched with theoretical expectations, but for greater stress 

values, the experimental strain response was below the theoretical expectations for all 

materials. 
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Figure 6. 11: Stress versus strain theoretical (T) and experiential (E). 

 

Results of uniaxial testing and hydraulic bulge testing by video gauge have been reported for 

samples loaded parallel to each of the weft and warp fibre directions as shown in chapter three. 

The video gauge system was used to capture the strain measured from the sample surface 

during testing. The strains (stretches) in the weft direction were lower than those in the warp 

direction. 

Figure 6.13 shows the stress versus strain from the bulge test, while Figure 6.14 shows the 

stress versus strain for the tensile test. Samples loaded parallel to the weft fibre direction 

attained a higher strain level compared to the same samples measured in the tensile test. In 

addition, for both tests, the samples loaded in the weft fibre direction attained higher strains 

than the samples loaded in the warp fibre direction.   

Samples were loaded in parallel to the warp fibre direction had approximately the same strain 

levels during the hydraulic bulge test and the tensile test. The stress experienced by the material 
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during the tensile test was generally much larger than the stress in the hydraulic bulge test, no 

matter whether the samples were loaded in parallel to the weft or warp fibre directions. In the 

uniaxial tension, much larger strains for the EXA-1182 material were observed compared with 

the other two sheets with thicknesses of EXA-1196 and EXA-1180. The results obtained from 

the different mechanical characterisation methods show the contrast between the mechanical 

behaviours of the specimen under the different load conditions imposed by these two methods. 

The data gained from the different methods can complement each other for a better insight into 

the mechanical behaviour of anisotropic specimen.   

 

Figure 6. 12: Stress versus strain (bulge test). 
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Figure 6. 13: Stress versus strain (tensile test). 

 

Comparison of the tensile test with the bulge test is performed using the curve shape of the 

material observed in the bulge test. The fact that the sample is initially flat but then deflects 

slightly, which is caused by the biaxial stress state, reflects anisotropic mechanical behaviour 

caused by the way the composite sheets are produced. The bulge test offers basic knowledge 

of the material behaviour of these composite materials. Strain from the bulge tests shows 

deviations from the anisotropic behaviour observed under uniaxial tension. 

The video obtained by the high-speed camera was post-processed with the video gauge 

software in order to measure strain at different angles under biaxial stress conditions. Video 

gauge allows the strain gauge to undergo free rotation in seven directions in forming an angle 

with the warp direction on the surface of the specimen ((warp) 0°, 15°, 30°, 45°, 60°, 75°, 90° 
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(weft)), as shown in figure 6.15. The deformation was recorded in the central zone of the 

sample. 

 

Figure 6. 14: Schematic view of directions (angles) in the strain direction.  

 

 

As illustrated in figures 6.16, 6.17 and 6.18, for materials of different thicknesses, the observed 

behaviour of the stress versus strain experienced at different angles to the warp direction was 

nonlinear. The nonlinearity is especially visible at the start of the experiment with relatively 

small pressure, strain and stress. As the experiment increases pressure, the plot of the 

relationship between stress and strain becomes increasingly linear for all measured angles. In 

the initial widespread nonlinear region, the relevant parameters are the structure of the thread, 

the crimp, the slip between warp and weft yarns, and the initial yarn undulation. In addition, 

the material thickness has a substantial effect on the observed tension.  
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Figure 6. 15: Stress versus strain for all orientation angles θ for materials of EXA-1196. 

 
 

Figure 6. 16: Stress versus strain for all orientation angles θ for materials of EXA-1180. 
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Figure 6. 17: Stress versus strain for all orientation angles θ for materials of EXA-1182 

thickness. 

 

The video gauge system was also used to measure the shear strain at six locations on the surface 

of each sample during loading. Shear strain measurements were taken from the in-plane 

distortions of the strain gauge elements oriented at + 45 and −45 ° to the biaxial tension as 

mentioned in chapter four. In Figure 6.19, the different positions of the measured shear stress 

values are depicted. Position 3 and position 4 are the most central at the top of the dome. 

Position 1 and position 6 at the periphery are closest to the points where the specimen is 

clamped between the pressure chamber and the die. The shear strain is higher when measured 

close to the centre than at the edges where dies restrict the material. Therefore, shear strains 

are calculated from the centre of the sample.  In Figures 6.20 to 6.22, the different positions of 

the measured shear stress values are depicted. 
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Figure 6. 18: Schematic shear strain with a position on the surface. 

     

 

Figure 6. 19: Pressure versus shear strain for materials of EXA-1196. 
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Figure 6. 20: Pressure versus shear strain for materials of EXA-1180. 

 

 

Figure 6. 21: Pressure versus shear strain for materials of EXA-1182. 
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Overall, there are similar shear strains for positions 1 and 6, for positions 2 and 5, and for 

positions 3 and 4, as exhibited in the diagrams above. These are consistent with the shear stress 

being affected only by the distance from the centre rather from  absolute values of  the X- and 

Y-directions. As compared with the polychloroprene matrix and nylon cord fabric with a EXA-

1196 thickness, a larger shear strain was obtained for the composite made of the PVC/nitrile 

elastomeric matrix reinforced with continuous nylon weave cord fabric with a EXA-1182. As 

determined by the state of biaxial stress, the shear there is very small compared with the result 

shown in chapter four. 

6.6.1  Strain Fields For Bulge Test 

Increasingly featured within the experimental mechanical engineer's discipline, is the full-field 

(strain map) optical measurement method. A random pattern is applied to the area of interest 

to detect deformation. This is commonly done by spraying white paint onto the surface. The 

video gauge software can provide full-field strain measurement, thus giving a straightforward 

approach to locating concentrations of three-dimensional strain distributions or displacements, 

and so to determine material parameters for the surface of the specimen. The theoretical 

background for this method, which can be used to measure deformations of both curved and 

planar surfaces, is described in more detail in chapter three. The digital camera recorded images 

during the mechanical testing process. The software then analysed those images to calculate 

axial and transversal displacements as well as axial, transversal, and shear strains. 

The bulge shape is extracted from the circular bulge window to determine the highest bulge 

height point, i.e., the middle point. The following technique is followed to find a circular bulge 

centre, as shown in figure 6.23. 
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Figure 6. 22: The specimen viewed from above during a test 

 

The strain maps of the specimen are shown for a late stage of the test under relatively high 

pressure. The maps show a range of colours, where vertical boundaries are violet and red: violet 

represents the lowest positive strain values (or the highest negative strain values); red 

represents the highest positive strain values (or the lowest negative strain values) (see Figure 

6.24) 

 

Figure 6. 23: Maps of the strain components on the undeformed configuration for 𝜺xx 

and 𝜺yy 
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Figure 6.25 shows the bulge of the specimen, with a colour plot overlay for specimens of 

different materials. The 𝜀yy and 𝜀xx results indicate the localised strain distribution in the highly 

deformed region (red colour, at the centre of the specimen). The maximum strain of 𝜀xx (‘apex 

strain’) is at 0.14057, 0.21789, and 0.43939, and the maximum strain of 𝜀yy, is at 0.35277, 

0.35291 and 0.34056 for thicknesses of EXA-1196, EXA-1180 and EXA-1182, respectively. 

These are recorded at the centre of the specimen. The apex point is marked in the specimen, 

and the middle section is then used to generate a bulge profile for various specimens and 

pressures. The apex point, as marked in the specimen, and the centre section is used to generate 

the bulge profile for different specimens and at different pressures. The curvature at the free 

edge makes little difference to 𝜀xx and 𝜀yy and the circumferential strain field, as viewed from 

above the bulge.  

 

Figure 6. 24: Maps of the shear strain components on the undeformed configuration 

 

The bulge of the specimen is indicated using a coloured plot overlay to show the shear strain 

in the specimen. At the edge of the specimen, the shear strain is approximately 0.09112, 

0.02446, and 0.10963 for the EXA-1196, EXA-1180 and EXA-1182 thicknesses, respectively. 
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As the biaxial stress state was uniform, the observed shear strain concentration regions were 

very small, as shown in figure 6.28. It is also evident that the deformation at the centre section 

of the gauge (at 45° to the X and Y loading directions) illustrates the equibiaxial condition. 

This region continues to deform under equi-biaxial tension as strain deforms the centre and 

reaches large equivalent strains. Under equibiaxial loading, materials are randomly deformed, 

as might be expected of anisotropic materials. 

6.7. Conclusions  

A novel approach was explored to measure the equi-biaxial extension of composite materials 

on three different sheet thicknesses: 5 mm, 3 mm, and 2 mm. The material characterisation was 

achieved using optical methods to investigate movements of a specimen during a bulge test. 

During the inflation, the video gauge software was able to capture and process digital images 

of the specimen, automatically recognise the grid pattern and calculate the shape, 

displacements and thus strain distribution, of the balloon’s upper region in real-time. This kind 

of measurement constitutes a novel methodology for the characterisation of hyper-elastic 

materials using the bulge test.  The results of the experiment presented here show the feasibility 

of using this setup to identify the pressure/strain, the pressure/displacement and the 

pressure/shear strain relationship and the mechanical characterisation of the material. A bulge 

test apparatus was developed that can be employed to measure the mechanical properties and 

observe the behaviour of hyper-elastic material. 

The video gauging software captures and processes digital images of the specimen in real-time, 

automatically recognises the grid pattern, calculates the shape and, thereby, the strain 

distribution (2D) of the balloon's upper region. The grid method for measuring the strain in a 

bulge test is advantageous in that it gives a full-field description of the specimen's deformation 

state. The composite materials investigated did show different stiffnesses in the warp and the 
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weft directions. The bulge deformation/axial displacements observed in the experiment were 

generally lower than those reported for rubber materials in the literature (Sasso et al., 2006). 

3D coordinate video gauging was used to measure the height of the dome, as pressure was 

applied from under the material during the bulging experiment.  

From the bulge experiments undertaken in this research, the insights obtained - of the strain 

behaviour of an anisotropic sheet material consisting of a woven structure inside an elastomer 

matrix - provide a good starting point for the FEA modelling of these materials. The 

experimental results will help in adapting material parameters in the FEA model under different 

kinds of loadings. 
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  Chapter Seven  

  

7.1 Conclusions and future work 

7.1.1. General 

At the end of each chapter’s main section, detailed conclusions have been given. The 

mechanical behaviour of woven fabrics was measured, and a phenomenological constitutive 

model developed to capture the anisotropic, nonlinear, and hysteretic behaviour observed in 

experiments. These offer a brief description of the study’s findings. 

 An extensive literature review has been undertaken of the physical properties relating to the 

components of the composite fabric (i.e. rubber and fibres) used for these and similar structures.  

In addition, the literature review was undertaken to assess the current state-of-the-art in the 

following areas: non-linear mechanical properties of coated woven fabrics, fabric test methods; 

non-linear test data representation methods; current practice in representing fabric properties 

for structural analysis; and predictive modelling of coated woven fabric tensile and shear 

behaviour. 

The review concludes that vulcanised rubber materials generally have high elasticity, low 

stiffness and a nonlinear stress-strain relationship, and using a woven fibre structure embedded 

into this rubber material reduces the elasticity and increases the stiffness of the composite 

material retaining the nonlinear stress-strain behaviour.  

In the experimental work performed in this thesis, the anisotropic nature of tensile stress-strain 

relationships of different samples was investigated in different ways. Both shear testing, and a 

new technique of incorporating test data into structural analysis, could be extremely beneficial 

to the business. The design of the test rig must be appropriate for the specific material 
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characteristics of the relevant textiles. This involves accepting enormous stresses (both positive 

and negative on either axis) and non-orthogonal primary axes in architectural textiles.  

A thorough understanding of this anisotropic nonlinear stress-strain relationship in natural fibre 

reinforced composites generates essential information for technical applications, especially in 

structural components.  

7.1.2. Conclusions 

In applying optical methods to uniaxial and wide-strip tension tests, a  novel investigation has 

been undertaken of the mechanical properties of a fibre-reinforced composite, consisting of a 

carbon-black filled vulcanised PVC/nitrile compound and a nylon cord fabric of two-

directional warp and weft.  These tests were carried out at room temperature to assess the 

suitability of the material for structural applications.  

Non-contacting optical methods (using a video strain gauge) were found to be convenient for 

the measurement of large deformations where, for example,    the application of other strain 

measurement techniques are brutal or unfeasible.   With a   non-contacting optical system,   it 

is possible to take measurements at multiple points within the loaded gauge section and to 

gather data in real-time.  In this respect,  the tested composite investigated in this work has 

demonstrated anisotropic material behaviour, whereby loading in the weft direction invokes 

higher stiffness than loading in the warp direction.  This result was expected and is typical of 

fibre-filled elastomeric materials,  whereby the fibre architecture dominates the load-

deformation response. 

This result was used to determine normal strain, shear strain and Poisson’s ratio. The composite 

demonstrated anisotropic material behaviour,  as confirmed by the various test results obtained 

for the composite loaded parallel to the weft and warp fibre directions. The non-linear stress-
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strain response was observed for all the test conditions considered. In order to reflect the 

anisotropic nonlinear mechanical behaviour of woven composite fabrics during the 

deformation phase, a basic hyper-elastic fibre reinforced constitutive model was developed 

within the continuum mechanics system. For the proposed hyper-elastic model, to facilitate the 

determination of material parameters, the strain energy per unit volume was additively 

decomposed into tensile energy, compaction energy, and shear energy. The strain energy 

function that characterises a material’s anisotropic behaviour can be described by four terms: 

interaction between fibres, the matrix, and the fibre-fibre interactions in both the warp and weft 

directions. From that basis, the processes of parameter determination were straightforward. 

Although there are many different picture frame test methods, these do not necessarily allow 

the measurement of the true shear strain. Using the video gauge technique, an improved method 

was obtained (giving prototype experimental results) whereby strain and shear strain 

measurements were made in uniaxial tension and picture frame specimens. 

Ultimately, the proposed anisotropic hyper-elastic model was implemented to simulate uniaxial 

stress and picture-frame shear testing, with the comparison between numerical results and 

experimental evidence suggesting the validity and accuracy of the model.  

Three-dimensional digital image correlation (3D-DIC) technique was shown to be a useful tool 

for obtaining the membrane stress and strain fields during the bulge test. The 3D video gauging, 

combined with DIC captures three-dimensional surface geometry and deformed surface 

displacements. Two-dimensional (2D) optical methods obtained strain, shear strain and full-

field strain measurements on the area of interest, which was the centre of the sample.  

During inflation, the VG software captures and processes digital images of the specimen, 

automatically recognising the grid pattern and calculating the shape, displacements and thus 

strain distribution of the balloon’s upper region in real-time. This approach constitutes a novel 
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methodology for the characterisation of hyper-elastic materials using the bulge test. The results 

of the experiment presented here, show the feasibility of this setup to identify the 

pressure/strain, the pressure/displacement and the pressure/shear strain relationship and the 

mechanical characterisation of the material. A bulge test apparatus was developed that can be 

employed to observe the behaviour of hyper-elastic material and to measure the mechanical 

properties. 

The grid method for measuring the strain in a bulge test gives a full-field description of the 

specimen's deformation state. Composite materials show different stiffnesses in the warp and 

the weft directions. The bulge deformation/axial displacements observed in the experiment 

were generally lower than those reported for rubber materials in the literature (Sasso et al., 

2006). 3D coordinate VG was used to measure the height of the dome, as pressure was applied 

from under the material during the bulging experiment. This means that the material is stiffer 

and more durable than rubber materials and is ideal for use in structures where low deformation 

is required.  

7.1.3. Recommendations for future work 

To further develop realistic fibre-reinforced composites materials simulations, there are many 

opportunities for future research. This work delivers a mechanical analysis of fibre-reinforced 

composites for different fibre architectures. Future investigations that might involve uniaxial 

tensile testing at higher or lower temperatures, may provide useful information on the 

variability of the mechanical properties of fibre-reinforced composites. 

Biaxial testing might be applied to a variety of fibre-reinforced composites. In general, bulge 

test methods would then obtain load/extension curves that would serve to determine the 

parameters for the biaxial mode of loading. Here, the optimal fibre content of each type of 
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reinforcement could be calculated in a polymer matrix. In other ways, laminates could be 

assessed to obtain an overview of the relationship between tensile properties and test directions. 

Another suggestion is to expand the model to assess the efficiency of the finite element analysis 

to gain a better understanding of fabric structure design, construction and more precise 

reliability analysis. Therefore, the Finite Element Analysis (FEA) suggested resolving the 

fundamental equation of more considerable deformation, of material parameters, which 

therefore provides a theoretical basis for future numerical simulations and storage optimisation 

of woven composites. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

189 
 
 

 References 

 

ABAQUS, 1992. Theory manual 6.12. Providence, RI, USA: Hibbitt, Karlsson & Sorensen 

Inc. 

Abdul-Aziz, A. and Wroblewski, A.C., 2016. Durability analysis and experimental validation 

of environmental barrier coating (EBC) performance using combined digital image 

correlation and NDE. Coatings, 6(4), p.70. 

Aboshio, A., 2014. Dynamic Study of Inflatable Offshore Barrier Structures under Impact and                    

Environmental Loadings (Doctoral dissertation, Lancaster University). 

Aboshio, A., Green, S. and Ye, J., 2015. Experimental investigation of the mechanical 

properties of neoprene coated nylon woven reinforced composites. Composite 

Structures, 120, pp.386-393.  

Aboshio, A., Green, S. and Ye, J.Q., 2014. New constitutive model for anisotropic hyperelastic 

biased woven fibre reinforced composite. Plastics, Rubber and Composites, 43(7), 

pp.225-234.  

Adams, D.F. and Lewis, E.Q., 1995. Experimental strain analysis of the losipescu shear test 

specimen. Experimental mechanics, 35(4), pp.352-360.  

Adams, D.F., 1990. The Iosipescu shear test method as used for testing polymers and composite 

materials. Polymer composites, 11(5), pp.286-290.  

Aimène, Y., Vidal-Sallé, E., Hagège, B., Sidoroff, F. and Boisse, P., 2010. A hyperelastic 

approach for composite reinforcement large deformation analysis. Journal of 

Composite materials, 44(1), pp.5-26.  



 
 

190 
 
 

Ali, A., Hosseini, M. and Sahari, B.B., 2010. A review and comparison on some rubber 

elasticity models. J Scient Indust Res, 69, 7, 2010, p 495. 

Altan, T., Palaniswamy, H., Bortot, P., Heidl, W. and Bechtold, A., 2006, November. 

Determination of sheet material properties using biaxial bulge tests. In Proceedings of 

the 2nd Int. Conference on Accuracy in Forming Technology (Vol. 13, p. 15).  

Amirbayat, J. and Hearle, J.W.S., 1986. The complex buckling of flexible sheet materials—

Part I. Theoretical approach. International journal of mechanical sciences, 28(6), 

pp.339-358.  

Anuta, P.E., 1970. Spatial registration of multispectral and multitemporal digital imagery using 

fast Fourier transform techniques. IEEE transactions on Geoscience Electronics, 8(4), 

pp.353-368.  

Arumugam, V., Mishra, R., Militky, J. and Tunak, M., 2016. In-plane shear behavior of 3D 

spacer knitted fabrics. Journal of Industrial Textiles, 46(3), pp.868-886.  

ASTM D 5035, 2011. Standard test method for breaking force and elongation of textile fabrics 

(strip method). ASTM International. 

ASTM, E., 2004. 111-04: Standard test method for Young’s modulus, tangent modulus, and 

chord modulus. Annual Book of ASTM Standards, 3.  

Astrom, B.T., 1997. Manufacturing of polymer composites. CRC press.  

Awais, H., Nawab, Y., Amjad, A., Anjang, A., Akil, H.M. and Abidin, M.S.Z., 2020. 

Environmental benign natural fibre reinforced thermoplastic composites: A 

review. Composites Part C: Open Access, p.100082. 

Bai, J., Li, H., Shi, Z. and Yin, J., 2015. An eco-friendly scheme for the cross-linked 

polybutadiene elastomer via thiol–ene and Diels–Alder click 

chemistry. Macromolecules, 48(11), pp.3539-3546.



Barbero, E.J., 2017. Introduction to composite materials design. CRC press.  

Bassett, R.J., Postle, R. and Pan, N., 1999. Experimental methods for measuring fabric 

mechanical properties: A review and analysis. Textile research journal, 69(11), pp.866-

875.  

Bhatnagar, N., Bhardwaj, R., Selvakumar, P. and Brieu, M., 2007. Development of a biaxial 

tensile test fixture for reinforced thermoplastic composites. Polymer Testing, 26(2), 

pp.154-161. 

Bird, W.W., 1977. Role of the Fabricator - Large Fabric Structures." ASCE Spring Convention 

and Exhibit. Dallas, TX: American Society of Civil Engineers. 

Board, M.R., 2016. Lembaga Getah Malaysia. Natural Rubber Statistics. 

Boisse, P., Hamila, N., Guzman-Maldonado, E., Madeo, A., Hivet, G. and Dell’Isola, F., 2017. 

The bias-extension test for the analysis of in-plane shear properties of textile composite 

reinforcements and prepregs: a review. International Journal of Material 

Forming, 10(4), pp.473-492.  

Boubaker, B.B., Assidi, M. and Ganghoffer, J.F., 2010. Evaluation of Poisson’s ratio of textiles 

from mesoscopic models. International journal of material forming, 3(1), pp.81-84.  

Boubaker, B.B., Assidi, M. and Ganghoffer, J.F., 2010. Evaluation of Poisson’s ratio of textiles 

from mesoscopic models. International journal of material forming, 3(1), pp.81-84.  

Boyce, M.C. and Arruda, E.M., 2000. Constitutive models of rubber elasticity: a 

review. Rubber chemistry and technology, 73(3), pp.504-523.  

Bridgens, B.N., 2005. Architectural fabric properties: determination, representation & 

prediction (Doctoral dissertation, Newcastle University).  

Brieu, M., Diani, J. and Bhatnagar, N., 2006. A New Biaxial Tension Test Fixture for Uniaxial 

Testing Machine--A Validation of Hyperelastic Behavior of Rubber-like 

Materials. Journal of Testing and Evaluation, 35(4), pp.1-9. 



 
 

192 
 
 

BS 903-5, 2004 - Physical testing of rubber. Guide to the application of rubber testing to finite 

element analysis, 08(02) pp,20-28.  

Cao, J., Akkerman, R., Boisse, P., Chen, J., Cheng, H.S., De Graaf, E.F., Gorczyca, J.L., 

Harrison, P., Hivet, G., Launay, J. and Lee, W., 2008. Characterization of mechanical 

behavior of woven fabrics: experimental methods and benchmark results. Composites 

Part A: Applied Science and Manufacturing, 39(6), pp.1037-1053.  

Chevalier, L., Calloch, S., Hild, F. and Marco, Y., 2001. Digital image correlation used to 

analyze the multiaxial behavior of rubber-like materials. European Journal of 

Mechanics-A/Solids, 20(2), pp.169-187.  

Chou, T.W., 1992. Microstructural design of fiber composites. NASA STI/Recon Technical 

Report A, 92, p.50452. 

Clyne, T.W. and Withers, P.J., 1995. An introduction to metal matrix composites. Cambridge 

university press. 

Cox, B.N. and Flanagan, G., 1997. Handbook of analytical methods for textile composites. 

Cusick, G.E., 1961. 30—The Resistance of Fabrics to Shearing Forces: A Study of the 

Experimental Method due to Mörner and Eeg-Olofsson. Journal of the Textile Institute 

Transactions, 52(9), pp.T395-T406.  

Dai, X., Li, Y.I. and Zhang, X., 2003. Simulating anisotropic woven fabric deformation with a 

new particle model. Textile research journal, 73(12), pp.1091-1099. 

De Bever, A., 1992. Dynamic behaviour of rubber and rubberlike materials. WFW-report. 

Netherlands: Technische Universiteit Eindhoven University of Technology.  

De Borst, R., Crisfield, M.A., Remmers, J.J. and Verhoosel, C.V., 2012. Nonlinear finite 

element analysis of solids and structures. John Wiley & Sons.  



 
 

193 
 
 

De Jong, S. and Postle, R., 1977. 39—an Energy Analysis of Woven-Fabric Mechanics by 

Means of Optimal-Control Theory Part I: Tensile Properties. Journal of the Textile 

Institute, 68(11), pp.350-361.  

DIN (Deutsches Institut für Normung). 2014. Fibre-reinforced plastic composites—Shear test 

method using a shear frame for the determination of the in-plane shear stress/shear 

strain response and shear modulus. DIN SPEC 4885. Berlin: DIN. 

Divya, G.S. and Suresha, B., 2021. Impact of nano-silicon dioxide on mechanical properties of 

carbon fabric reinforced epoxy composites. Materials Today: Proceedings. 

Dolatabadi, M.K., Kovař, R. and Linka, A., 2009. Geometry of plain weave fabric under shear 

deformation. Part I: measurement of exterior positions of yarns. The Journal of The 

Textile Institute, 100(4), pp.368-380.  

Duncan, B.C., Maxwell, A.S., Crocker, L.E. and Hunt, R., 1999. Verification of hyperelastic 

test methods.  

Efunda, "Spherical Pressure Vessel," Efunda, 21 March 2015. [Online]. 

Available:http://www.efunda.com/formulae/solid_mechanics/mat_mechanics/pressure

_vessel.cfm. 

Eirich, F.R., Science and technology of rubber, 1978. Rubber division of the American 

Chemical Society. Pag, 314, pp.315-341.  

Erden, S. and Ho, K., 2017. Fiber reinforced composites. In Fiber Technology for Fiber-

Reinforced Composites (pp. 51-79). Woodhead Publishing.  

Eterovic, A.L. and Bathe, K.J., 1990. A hyperelastic‐based large strain elasto‐plastic 

constitutive formulation with combined isotropic‐kinematic hardening using the 

logarithmic stress and strain measures. International Journal for Numerical Methods in 

Engineering, 30(6), pp.1099-1114.  



 
 

194 
 
 

Fang, R., 2009. The design and construction of fabric structures (Doctoral dissertation, 

Massachusetts Institute of Technology).  

Fetfatsidis, K.A., Soteropoulos, D., Petrov, A., Mitchell, C.J. and Sherwood, J.A., 2012. Using 

abaqus/explicit to link the manufacturing process to the final part quality for continuous 

fiber-reinforced composite fabrics. In Simulia Customer Conference. Rhode Island,15–17. 

Fong, Y.C., Khin, A.A. and Lim, C.S., 2018. Conceptual Review and the Production, C. 

onsumption and Price Models of the Natural Rubber Industry in Selected ASEAN 

Countries and World Market. Asian Journal of Economic Modelling, 6(4), pp.403-418. 

Forster, B., 1985. Engineered use of coated fabrics in long span roofs. J. COATED 

FABRICS., 15, pp.25-39.  

Freakley, P.K. and Payne, A.R., 1978. Theory and practice of engineering with rubber. 

Applied Science Publishers.  

Gatouillat, S., Bareggi, A., Vidal-Sallé, E. and Boisse, P., 2013. Meso modelling for composite 

preform shaping–simulation of the loss of cohesion of the woven fibre 

network. Composites Part A: Applied science and manufacturing, 54, pp.135-144.  

Gay, D., 2014. Composite materials: design and applications. CRC press.  

Gent, A.N., 2012. Engineering with rubber: how to design rubber components. Carl Hanser 

Verlag GmbH Co KG.  

Gong, Y., Song, Z., Ning, H., Hu, N., Peng, X., Wu, X., Zou, R., Liu, F., Weng, S. and Liu, 

Q., 2020. A comprehensive review of characterization and simulation methods for 

thermo-stamping of 2D woven fabric reinforced thermoplastics. Composites Part B: 

Engineering, p.108462. 

Gough, J., 1805. A description of a property of Caoutchouc, or Indian rubber. Memories of the 

Literacy and Philosophical Society of Manchester, 1, pp.288-295.  



 
 

195 
 
 

Gowda, T.M., Naidu, A.C.B. and Chhaya, R., 1999. Some mechanical properties of untreated 

jute fabric-reinforced polyester composites. Composites Part A: applied science and 

manufacturing, 30(3), pp.277-284.  

Guide, V.G.U., 2009. Imetrum Limited. Bristol, UK. 

Gutscher, G., Wu, H.C., Ngaile, G. and Altan, T., 2000. Evaluation of formability and 

determination of flow stress curve of sheet metals with hydraulic bulge test. Report no: 

S-ERC/NSM-00-R-15, The Ohio State University, Columbus, Ohio.  

Hanhi, K., Poikelispaa, M. and Tirila, H.M., 2007. Elastomeric materials. Tampere University 

of Technology, Tampere.  

Hardiman, C.J., McKenzie, G.T. and Stiberth, L.F., PARATEC ELASTOMERS LLC, 

2000. Nitrile rubber/polyvinyl chloride blends. U.S. Patent 6,043,318. 

Harrison, P., Clifford, M.J. and Long, A.C., 2004. Shear characterisation of viscous woven 

textile composites: a comparison between picture frame and bias extension 

experiments. Composites science and technology, 64(10-11), pp.1453-1465.  

Härtel, F. and Harrison, P., 2014. Evaluation of normalisation methods for uniaxial bias 

extension tests on engineering fabrics. Composites Part A: Applied Science and 

Manufacturing, 67, pp.61-69.  

Hasan, M.R., 2013. Influence of fibre architecture on mechanical properties of Jute fibre 

reinforced composites. 

Hearle, J.W.S. and Amirbayat, J., 1986. Analysis of drape by means of dimensionless 

groups. Textile Research Journal, 56(12), pp.727-733.  

Hecht, J., Pinto, S. and Geiger, M., 2005. Determination of mechanical properties for the 

hydroforming of magnesium sheets at elevated temperature. In Advanced Materials 

Research (Vol. 6, pp. 779-786). Trans Tech Publications Ltd. 



 
 

196 
 
 

Hernández Santana, M., den Brabander, M., García, S. and van der Zwaag, S., 2018. Routes to 

make natural rubber heal: a review. Polymer Reviews, 58(4), pp.585-609. 

Hill, R., 1950. C. A theory of the plastic bulging of a metal diaphragm by lateral pressure. The 

London, Edinburgh, and Dublin Philosophical Magazine and Journal of 

Science, 41(322), pp.1133-1142.  

Hoa, S.V., 2009. Principles of the manufacturing of composite materials. DEStech 

Publications, Inc.  

Hodgkinson, J.M. ed., 2000. Mechanical testing of advanced fibre composites. Woodhead 

publishing.  

Holzapfel, G.A. and Ogden, R.W., 2010. Constitutive modelling of arteries. Proceedings of the 

Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2118), 

pp.1551-1597. 

Holzapfel, G.A., Gasser, T.C. and Ogden, R.W., 2000. A new constitutive framework for 

arterial wall mechanics and a comparative study of material models. Journal of elasticity 

and the physical science of solids, 61(1), pp.1-48.  

Hu, J., 2004. Structure and mechanics of woven fabrics. Elsevier.  

Huang, Z.M., Ramakrishna, S. and Tay, A.A.O., 2000. Modeling the stress/strain behavior of 

a knitted             fabric-reinforced elastomer composite. Composites science and 

technology, 60(5), pp.671-691. 

Hursa, A., Rolich, T. and Ražić, S.E., 2009. Determining pseudo Poisson’s ratio of woven 

fabric with a digital image correlation method. Textile research journal, 79(17), 

pp.1588-1598.  

Hutchings, A., Braun, R., Masuyama, K. and Welch, J., 2009, May. Experimental 

determination of material properties for inflatable aeroshell structures. In 20th AIAA 

Aerodynamic Decelerator Systems Technology Conference and Seminar (p. 2949). 



 
 

197 
 
 

Iosipescu, N., 1967. New accurate procedure for single shear testing of metals. J Mater, 2, 

pp.537-566.  

Jacobsen, A.J., Luo, J.J. and Daniel, I.M., 2004. Characterization of constitutive behavior of 

satin-weave fabric composite. Journal of composite materials, 38(7), pp.555-565.  

Jaia Jr, M.M.S., 2015. Learning Experience in Designing a Hydraulic Bulge Test Setup for 

Material Properties Characterization. 122 nd ASEE Annual Conference & Exposition, 

Paper ID #12983.  

Jones, R.M., 2014. Mechanics of composite materials. CRC press.  

Keating, T.J., Wolf, P.R. and Scarpace, F.L., 1975. An improved method of digital image 

correlation. Photogrammetric Engineering and Remote Sensing, 41(8), pp.993-1002. 

Khajehsaeid, H., Arghavani, J. and Naghdabadi, R., 2013. A hyperelastic constitutive model 

for rubber-like materials. European Journal of Mechanics-A/Solids, 38, pp.144-151. 

Khan, M.A., 2009. Numerical and experimental forming analyses of textile composite 

reiforcements based on a hypoelastic behaviour (Doctoral dissertation, Lyon, INSA). 

Kilby, W.F., 1963. 2—Planar stress–strain relationships in woven fabrics. Journal of the 

Textile Institute Transactions, 54(1), pp.T9-T27.  

Kock, N., 2015. WarpPLS 5.0 user manual. Laredo, TX: ScriptWarp Systems.  

Kovar, R., 2003. Structure and properties of flat textiles (in Czech), TU of Liberec 2003. 

Kraft, S.M., Moslehy, F.A., Bai, Y. and Gordon, A.P., 2014. Characterization of the orthotropic 

elastic constants of a micronic woven wire mesh via digital image 

correlation. Experimental Mechanics, 54(4), pp.501-514.  

Kular, G.S. and Hillier, M.J., 1972. Re-interpretation of some simple tension and bulge test 

data for anisotropic metals. International Journal of Mechanical Sciences, 14(10), 

pp.631-634.  



 
 

198 
 
 

Launay, J., Hivet, G., Duong, A.V. and Boisse, P., 2008. Experimental analysis of the influence 

of tensions on in plane shear behaviour of woven composite 

reinforcements. Composites science and technology, 68(2), pp.506-515.  

Lebrun, G., Bureau, M.N. and Denault, J., 2003. Evaluation of bias-extension and picture-

frame test methods for the measurement of intraply shear properties of PP/glass 

commingled fabrics. Composite structures, 61(4), pp.341-352.  

Lee, S. and Munro, M., 1986. Evaluation of in-plane shear test methods for advanced 

composite materials by the decision analysis technique. Composites, 17(1), pp.13-22.  

Li, Y. and Dai, D.X. eds., 2006. Biomechanical engineering of textiles and clothing. Woodhead 

Publishing.  

Lo, W.M. and Hu, J.L., 2002. Shear properties of woven fabrics in various directions. Textile 

Research Journal, 72(5), pp.383-390.  

Lomov, S.V., Boisse, P., Deluycker, E., Morestin, F., Vanclooster, K., Vandepitte, D., 

Verpoest, I. and Willems, A., 2008. Full-field strain measurements in textile 

deformability studies. Composites Part A: Applied Science and Manufacturing, 39(8), 

pp.1232-1244. 

Malhotra, N., Sheikh, K. and Rani, S., 2012. A review on mechanical characterization of 

natural fiber reinforced polymer composites. Journal of Engineering Research and 

Studies, 3(1), pp.75-80.  

Mallick, P.K., 2007. Fiber-reinforced composites: materials, manufacturing, and design. CRC 

press.  

Martin's Rubber Company., 2017. Nitrile Rubber Sheet | NBR Rubber | Buna-N. [online] 

Available at: http://www.martins-rubber.co.uk/products/sheeting/nitrile-nbr-rubber-

sheet/ 



 
 

199 
 
 

McCormick, N. and Lord, J., 2010. Digital image correlation. Materials today, 13(12), pp.52-

54.  

McGuinness, G.B. and ÓBrádaigh, C.M., 1997. Development of rheological models for 

forming flows and picture-frame shear testing of fabric reinforced thermoplastic 

sheets. Journal of Non-Newtonian Fluid Mechanics, 73(1-2), pp.1-28.  

Merle, B., 2013. Mechanical properties of thin films studied by bulge testing. FAU University 

Press. 

Micro-Measurements, V., 2008. Strain gage rosettes: Selection, application and data 

reduction. Technical note TN, 515, pp.151-161.  

Miller, K., 2000. Measuring material properties to build material models in FEA. Axel Products 

Inc.  

Miller, K., 2000. Testing elastomers for hyperelastic material models in finite element 

analysis. Axel Products Testing and Analysis Report. Axel Products Inc. Ann Arbor, 

MI, USA. 

Miller, K., 2002. Testing elastomers for ANSYS, Axel Products Inc. The Focus, publication 

for ANSYS users, (12).  

Mooney, M., 1940. A theory of large elastic deformation. Journal of applied physics, 11(9), 

pp.582-592.  

Morton, M. ed., 2013. Rubber technology. Springer Science & Business Media.  

Motulsky, H.J. and Ransnas, L.A., 1987. Fitting curves to data using nonlinear regression: a 

practical and nonmathematical review. The FASEB journal, 1(5), pp.365-374. 

Murman, S. and Suresh, S., 2011. Modeling Effective Stiffness Properties of IAD Fabrics. 

In 21st AIAA Aerodynamic Decelerator Systems Technology Conference and 

Seminar (p. 25-68).  

Nagdi, K., 1993. Rubber as an engineering material: guideline for users. Hanser Verlag.  



 
 

200 
 
 

Naik, R.A., 1996. Analysis of woven and braided fabric-reinforced composites. In Composite 

materials: Testing and design: Twelfth volume. ASTM International.  

Nassiri, F., 2010. New approach in characterizing accessory drive belts for finite element 

applications. (Doctoral Dissertation University of Toronto).  

Ngo, T.D., 2020. Introduction to composite materials. Composite and Nanocomposite 

Materials From Knowledge to Industrial Applications. 

Nurazzi, N.M., Asyraf, M.R.M., Fatimah Athiyah, S., Shazleen, S.S., Rafiqah, S., Harussani, 

M.M., Kamarudin, S.H., Razman, M.R., Rahmah, M., Zainudin, E.S. and Ilyas, R.A., 

2021. A review on mechanical performance of hybrid natural fiber polymer composites 

for structural applications. Polymers, 13(13), p.2170. 

Odegard, G. and Kumosa, M., 2000. Determination of shear strength of unidirectional 

composite materials with the Iosipescu and 10 off-axis shear tests. Composites Science 

and Technology, 60(16), pp.2917-2943.  

Ogden, R., 2011. Lectures on constitutive modelling of Arteries. delivered at Xi’an Jiaotong 

University, Xi’an, Chian.  

Ogden, R.W., 1972. Large deformation isotropic elasticity–on the correlation of theory and 

experiment for incompressible rubberlike solids. Proceedings of the Royal Society of 

London. A. Mathematical and Physical Sciences, 326(1567), pp.565-584.  

Özdemir, H. and Mert, E., 2013. The effects of fabric structural parameters on the tensile, 

bursting, and impact strengths of cellular woven fabrics. Journal of the Textile 

Institute, 104(3), pp.330-338.  

Palmieri, G., Chiappini, G., Sasso, M. and Papalini, S., 2009, June. Hyperelastic materials 

characterization by planar tension tests and full-field strain measurement. 

In Proceedings of the SEM Annual Conference (pp. 1-4). Albuquerque: Society for 

Experimental Mechanics. 



 
 

201 
 
 

Pan, B., Qian, K., Xie, H. and Asundi, A., 2009. Two-dimensional digital image correlation for 

in-plane displacement and strain measurement: a review. Measurement science and 

technology, 20(6), p.062001.  

Pan, N. and Yoon, M.Y., 1996. Structural anisotropy, failure criterion, and shear strength of 

woven fabrics. Textile Research Journal, 66(4), pp.238-244.  

Penava, Ž., Penava, D.Š. and Nakić, M., 2015. Woven fabrics behavior in pure shear. Journal 

of Engineered Fibers and Fabrics, 10(4), p.1-15. 

Penava, Ž., Šimić-Penava, D. and Knezic, Ž., 2014. Determination of the elastic constants of 

plain woven fabrics by a tensile test in various directions. Fibres & Textiles in Eastern 

Europe.  

Peng, X.Q., Cao, J., Chen, J., Xue, P., Lussier, D.S. and Liu, L., 2004. Experimental and 

numerical analysis on normalization of picture frame tests for composite 

materials. Composites Science and Technology, 64(1), pp.11-21.  

Peng, X.Q., Guo, Z.Y. and Harrison, P., 2010. A simple anisotropic fiber reinforced 

hyperelastic constitutive model for woven composite fabrics. International journal of 

material forming, 3(1), pp.723-726.  

Postle, R., Carnaby, G.A. and De Jong, S., 1988. The mechanics of wool structures. Ellis 

Horwood Limited Publishers, Chichester. ISBN 0-7458-0322-9. 

Potluri, P. and Thammandra, V.S., 2007. Influence of uniaxial and biaxial tension on meso-

scale geometry and strain fields in a woven composite. Composite Structures, 77(3), 

pp.405-418.  

Potter, K.D. and Setchell, C., Imetrum Ltd, 2014. Positional measurement of a feature within 

an image. U.S. Patent 8,718,403.  



 
 

202 
 
 

Rahman, R. and Putra, S.Z.F.S., 2019. Tensile properties of natural and synthetic fiber-

reinforced polymer composites. Mechanical and physical testing of biocomposites, 

fibre-reinforced composites and hybrid composites, pp.81-102. 

Raible, T., Reese, S. and Wriggers, P., 2000. Finite element modeling of orthotropic material 

behaviour in pneumatic membranes. ZAMM‐Journal of Applied Mathematics and 

Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 80(S2), pp.409-410. 

Ramezani, M. and Ripin, Z.M., 2010. Combined experimental and numerical analysis of bulge 

test at high strain rates using split Hopkinson pressure bar apparatus. Journal of 

Materials Processing Technology, 210(8), pp.1061-1069.  

Reddy, J.N., 2010. Principles of continuum mechanics: A study of conservation principles with 

applications. Cambridge University Press. 

Reese, S., Raible, T. and Wriggers, P., 2001. Finite element modelling of orthotropic material 

behaviour in pneumatic membranes. International journal of solids and 

structures, 38(52), pp.9525-9544.  

Reinhardt, H.W., 1976. On the biaxial testing and strength of coated fabrics. Experimental 

Mechanics, 16(2), pp.71-74.  

Rivlin, R.S. and Saunders, D.W., 1951. Large elastic deformations of isotropic materials VII. 

Experiments on the deformation of rubber. Philosophical Transactions of the Royal 

Society of London. Series A, Mathematical and Physical Sciences, 243(865), pp.251-

288.  

Rivlin, R.S., 1948. Large elastic deformations of isotropic materials IV. Further developments 

of the general theory. Philosophical Transactions of the Royal Society of London. 

Series A, Mathematical and Physical Sciences, 241(835), pp.379-397.  

Ruíz, M.J.G. and González, L.Y.S., 2006. Comparison of hyperelastic material models in the 

analysis of fabrics. International journal of clothing science and technology.  



 
 

203 
 
 

Sasso, M. and Amodio, D., 2006. Development of a biaxial stretching machine for rubbers by 

optical methods. In Society for Experimental Mechanics Annual Conference, St. Louis, 

MO, June (pp. 4-7).  

Sasso, M., Palmieri, G., Chiappini, G. and Amodio, D., 2008. Characterization of hyperelastic 

rubber-like materials by biaxial and uniaxial stretching tests based on optical 

methods. Polymer Testing, 27(8), pp.995-1004. 

Schwartz, P. ed., 2019. Structure and mechanics of textile fibre assemblies. Woodhead 

publishing.  

Scida, D., Aboura, Z., Benzeggagh, M.L. and Bocherens, E., 1999. A micromechanics model 

for 3D elasticity and failure of woven-fibre composite materials. Composites Science 

and Technology, 59(4), pp.505-517. 

Seibert, D.J. and Schoche, N., 2000. Direct comparison of some recent rubber elasticity 

models. Rubber chemistry and technology, 73(2), pp.366-384. 

Selvadurai, A.P.S. and Shi, M., 2012. Fluid pressure loading of a hyperelastic 

membrane. International Journal of Non-Linear Mechanics, 47(2), pp.228-239.  

Selvadurai, A.P.S., 2006. Deflections of a rubber membrane. Journal of the Mechanics and 

Physics of Solids, 54(6), pp.1093-1119.  

Shahabi, N.E., Saharkhiz, S. and Varkiyani, S.M.H., 2013. Effect of fabric structure and weft 

density on the poisson's ratio of worsted fabric. Journal of Engineered Fibers and 

Fabrics, 8(2), p.15-58.  

Shahzad, M., Kamran, A., Siddiqui, M.Z. and Farhan, M., 2015. Mechanical characterization 

and FE modelling of a hyperelastic material. Materials Research, 18(5), pp.918-924.  

Siegert, K., Jäger, S. and Vulcan, M., 2003. Pneumatic bulging of magnesium AZ 31 sheet 

metals at elevated temperatures. CIRP Annals, 52(1), pp.241-244. 



 
 

204 
 
 

Solutions, C., 2009. Digital Image Correlation: Overview of Principles and Software 2D Image 

Correlation Fundamentals. South Carolina Univ.  

Spencer, A.J.M. ed., 1984. Continuum theory of the mechanics of fibre-reinforced 

composites (Vol. 282, pp. 1-32). New York: Springer-Verlag.  

Spencer, A.J.M., 2000. Theory of fabric-reinforced viscous fluids. Composites Part A: Applied 

Science and Manufacturing, 31(12), pp.1311-1321.  

Spivak, S.M. and Treloar, L.R.G., 1968. The behavior of fabrics in shear: part III: the relation 

between bias extension and simple shear. Textile Research Journal, 38(9), pp.963-971.  

Standard, A.S.T.M., 1993. D5379. Standard test method for shear properties of composite 

materials by the V-notched beam method. Philadelphia: American Society for Testing 

and Materials.  

Sun, H., Pan, N. and Postle, R., 2005. On the Poisson's ratios of a woven fabric. Composite 

Structures, 68(4), pp.505-510.  

Taha, I., Abdin, Y. and Ebeid, S., 2013. Comparison of picture frame and Bias-Extension tests 

for the characterization of shear behaviour in natural fibre woven fabrics. Fibers and 

Polymers, 14(2), pp.338-344.  

Taha, I., Abdin, Y. and Ebeid, S., 2013. Comparison of picture frame and Bias-Extension tests 

for the characterization of shear behaviour in natural fibre woven fabrics. Fibers and 

Polymers, 14(2), pp.338-344.  

Tan, P., Tong, L. and Steven, G.P., 1997. Modelling for predicting the mechanical properties 

of textile composites—A review. Composites Part A: Applied Science and 

Manufacturing, 28(11), pp.903-922.  

Testa, R.B. and Yu, L.M., 1987. Stress-strain relation for coated fabrics. Journal of engineering 

mechanics, 113(11), pp.1631-1646.  



 
 

205 
 
 

Tong, X.C., 2016. Advanced materials and design for electromagnetic interference shielding. 

CRC press.  

Treloar, L.R.G., 1942. The structure and elasticity of rubber. Reports on Progress in 

Physics, 9(1), p.113.  

Treloar, L.R.G., 1944. Strains in an inflated rubber sheet, and the mechanism of 

bursting. Rubber Chemistry and Technology, 17(4), pp.957-967. 

Treloar, L.R.G., 1944. Stress-strain data for vulcanized rubber under various types of 

deformation. Rubber Chemistry and Technology, 17(4), pp.813-825.  

Treloar, L.R.G., 1973. The elasticity and related properties of rubbers. Reports on progress in 

physics, 36(7), p.755.  

Treloar, L.R.G., 1975. The physics of rubber elasticity. Oxford University Press, USA. 

Tsakalakos, T., 1981. The bulge test: A comparison of the theory and experiment for isotropic 

and anisotropic films. Thin solid films, 75(3), pp.293-305.  

Ullah, H., 2013. Analysis of mechanical behaviour and damage of carbon fabric-reinforced 

composites in bending (Doctoral dissertation, Loughborough University).  

Valanis, K.C. and Landel, R.F., 1967. The strain‐energy function of a hyperelastic material in 

terms of the extension ratios. Journal of Applied Physics, 38(7), pp.2997-3002.  

Vandeurzen, P., Ivens, J. and Verpoest, I., 1996. A three-dimensional micromechanical 

analysis of woven-fabric composites: I. Geometric analysis. Composites Science and 

Technology, 56(11), pp.1303-1315.  

Vasilescu, M., 2016. Development of a hydraulic bulge test to determine the work hardening 

behaviour of sheet materials. 

Venkatraman, P.D., 2015. Fabric properties and their characteristics. Materials and technology 

for sportswear and performance apparel, pp.53-86.  



 
 

206 
 
 

Wadham-Gagnon, M., Hubert, P., Semler, C., Païdoussis, M.P., Vézina, M. and Lavoie, D., 

2006, April. Hyperelastic modeling of rubber in commercial finite element software 

(ANSYS). In 51st SAMPE International Symposium, LA. 

Walrath, D.E. and Adams, D.F., 1983. The losipescu shear test as applied to composite 

materials. Experimental mechanics, 23(1), pp.105-110.  

Wang, C., Shankar, K., Morozov, E., Ram Ramakrishnan, K. and Fien, A., 2020. 

Characterization of shear behavior in stainless steel wire mesh using bias-extension and 

picture frame tests. Journal of Engineering Mechanics, 146(2), p.04019127.  

Williams, R.W., 2010. Measuring and modeling the anisotropic, nonlinear and hysteretic 

behavior of woven fabrics (Doctoral dissertation, University of Iowa). 

Wineman, A., 2005. Some results for generalized neo-Hookean elastic materials. International 

Journal of Non-Linear Mechanics, 40(2-3), pp.271-279. 

Xia, Y., Dong, Y., Xia, Y. and Li, W., 2005. A novel planar tension test of rubber for evaluating 

the prediction ability of the modified eight-chain model under moderate finite 

deformation. Rubber Chemistry and technology, 78(5), pp.879-892. 

Xu, X., Yao, X., Dong, Y., Yang, H. and Yan, H., 2021. Mechanical behaviors of non-

orthogonal fabric rubber seal. Composite Structures, 259, p.113453. 

Yang, H., Yao, X.F., Ke, Y.C., Ma, Y.J. and Liu, Y.H., 2016. Constitutive behaviors and 

mechanical characterizations of fabric reinforced rubber composites. Composite 

Structures, 152, pp.117-123.  

Yang, Y., Boom, R., Irion, B., van Heerden, D.J., Kuiper, P. and de Wit, H., 2012. Recycling 

of composite materials. Chemical Engineering and Processing: Process 

Intensification, 51, pp.53-68.  

Yeoh, O.H., 1993. Some forms of the strain energy function for rubber. Rubber Chemistry and 

technology, 66(5), pp.754-771.  



 
 

207 
 
 

Yoneyama, S. and Murasawa, G., 2009. Digital image correlation. Experimental 

mechanics, 207. 

Zhang, L., 2010. Reliability analysis of fabric structures (Doctoral dissertation, Newcastle 

University).  

Zhu, D., Mobasher, B., Vaidya, A. and Rajan, S.D., 2013. Mechanical behaviors of Kevlar 49 

fabric subjected to uniaxial, biaxial tension and in-plane large shear 

deformation. Composites Science and Technology, 74, pp.121-130.  

Zioupos, P., Barbenel, J.C. and Fisher, J., 1992. Mechanical and optical anisotropy of bovine 

pericardium. Medical and Biological Engineering and Computing, 30(1), pp.76-82. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

208 
 
 

APPENDIX 1 

Table 1: Results of fitting using uniaxial tension and planar data for samples loaded parallel to 

the weft fibre direction 

 

Hyperelastic 

model 

constants Least squared error 

Ogden N 1 µ1= 18.60  α1 = 25.00       40.21 % 

Ogden N 2 µ1= 417.55  𝛼1 = − 400.21              

µ2 = 8.26 α2 =  6.13 

38.67 % 

Ogden N 3 µ1 =  -2672.08  α1  = -10.35         

µ2 = 1695.67 α2  = -6.39         

µ3 =  992.35 α3  = -15.58         

36.74 % 

Yeoh N2 C10 = 8.48 C20 = 324.44         

 

Table 2: Results of fitting using uniaxial tension and planar data for samples loaded parallel to 

the warp fibre direction 

 

Hyperelastic 

model 

constants Least squared error 

Ogden N 1 µ1= 8.31      α1= 13.50        31.15 % 

Yeoh N2 C10 = 4.31     C20 = 18.66        

Yeoh N3 C10 = 4.59    C20 = 3.93   C30 = 

94.54          
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APPENDIX 2 

Table 3: Parameters for equation 5.16: characterising matrix 

EXA-1182 Cm / MPa Cm2 / MPa α 

1 17.569 96.897 2 

2 20.635 96.543 2 

3 19.617 91.255 2 

4 18.512 93.793 2 

MEAN  

 

19.08325 94.622  

EXA-1180 Cm / MPa Cm2 / MPa α 

1 9.2823 20.08 2 

2 10.358 34.973 2 

3 7.7598 30.214 2 

4 9.3058 28.052 2 

MEAN  

 

9.176475 28.32975  

EXA-1196 Cm / MPa Cm2 / MPa α 

1 45.38837 491.9578 2 

2 47.291 174.47 2 

3 56.406 184.03 2 

4 48.803 184.62 2 

MEAN  

 

49.47209 258.7695  
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APPENDIX 3 

Table 4: Parameters for equation. 5.17: characterising the fabric in the weft direction. 

EXA-1182  K1 / MPa K2 / MPa α1 α2 

1 5.157151529 2.420876057 3 2 

2 7.120224626 2.333668604 3 2 

3 2.671774875 3.485417411 3 2 

4 2.749200415 3.118908254 3 2 

MEAN  

 

4.424587861 2.839717581   

EXA-1180 K1 / MPa K2/MPa α  

1 0 0.836947304 3 2 

2 0.05910961 0.953176952 3 2 

3 0.174317 0.812093 3 2 

4 0.01050161 0.860727593 3 2 

MEAN  

 

0.060982146 0.865736274   

EXA-1196  K1 / MPa K2 / MPa α1 α2 

1 5.816839 7.282352 3 2 

2 1 7.4 3 2 

3 4.55253 5.594593 3 2 

4 1.52546 7.771230806 3 2 

MEAN  

 

3.223707 7.012044   
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APPENDIX 4 

Table 5: Parameters for equation 5.18 characterising the fabric in the primary direction 

EXA-1182  K3 / MPa K4 / MPa α1 α2 

1 0.199034122 0.621890123 3 2 

2 0.333223922 0.545881917 3 2 

3 0.171540018 0.557178043 3 2 

4 0.219407412 0.581528034 3 2 

MEAN  

 

0.230801368 0.576619529   

EXA-1180 K3 / MPa K4 / MPa α1 α2 

1 1.840025237 0.726897812 3 2 

2 1.510798407 0.804810151 3 2 

3 3.196427657 0.481202963 3 2 

4 0 0.979678655 3 2 

MEAN  

 

1.636813 0.748147   

EXA-1196 K3 / MPa K4/MPa α1 α2 

1 2.368964 3.363224 3 2 

2 2.473917 3.526026 3 2 

3 2.434368824 2.664834861 3 2 

4 3.42559 3.977655 3 2 

MEAN  

 

2.67571 3.382935   
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APPENDIX 5 

Table 6: Material parameters obtained from the curve fitting process from Equation 5.19 

characterising the fabric in the matrix-fabric interaction in shear. 

EXA-1182  K8 / MPa EXA-1196  K8 / MPa 

1 1.508062728 1 1.627772495 

2 1.719360032 2 1.410126188 

3 1.604828708 3 1.202656123 

4 1.494189463 4 1.199569266 

MEAN  

 

1.581610233 MEAN  

 

1.360031018 

EXA-1180 K8 / MPa 

1 0.626952291 

2 0.472803044 

3 0.445598946 

4 0 

MEAN  

 

0.515118094 
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APPENDIX 6 

Subroutine-(VUANISOHYPER) coding equation 5.17 in FORTRAN  
C------------------------------------------------------------- 
      subroutine vuanisohyper_inv (nb, nFiber, nInv, nElement, nIntPt, 
     $     nLayer, nSecPt, cmname, nstatev, nfieldv, numprops, 
     $     props, tempOld, tempNew, fieldOld, fieldNew, stateOld, 
     $     sInvariant, zeta, uDev, duDi,d2uDiDi, stateNew) 
C 
      include 'vaba_param.inc' 
C 
      character*80 cmname 
      dimension  props(numprops), 
     $     tempOld(nb), fieldOld(nb,nfieldv),stateOld(nb,nstatev), 
     $     tempNew(nb), fieldNew(nb,nfieldv),stateNew(nb,nstatev), 
     $     sInvariant(nb,nInv), zeta(nb,nFiber*(nFiber-1)/2), 
     $     uDev(nb), duDi(nb,nInv), d2uDiDi(nb,nInv*(nInv+1)/2) 
C 
C 
C 
      if (cmname(1:13) .eq. 'VUANISO_MODEL') then 
         call VUANISOHYPER_INVHGO(sInvariant, uDev, zeta, nFiber, ninv, 
     $     duDi, d2uDiDi, nb, numprops, props) 
      
      else 
         call xplb_abqerr(-2,'User subroutine VUANISOHYPER_INV missing!' 
     *        ,intv,zero,' ') 
         call xplb_exit 
      end if 
C 
C 
C 
      return 
      end 
c------------------------------------------------------------------ 
c 
c     New model 
c 
      subroutine vuanisohyper_invhgo (ainv, ua, zeta, nfibers, ninv, 
     $     ui1, ui2, nb, numprops, props) 
C 
      include 'vaba_param.inc' 
C 
      dimension ua(nb), ainv(nb,ninv), ui1(nb,ninv), 
     $     ui2(nb,ninv*(ninv+1)/2), props(numprops) 
C 
c     ainv: invariants 
c     ua  : udev 
c     ui1 : dUdI 
c     ui2 : d2U/dIdJ 
C 
      parameter ( half = 0.5d0, 
     *            zero = 0.d0,  
     *            one  = 1.d0,  
     *            two  = 2.d0,  
     *            three= 3.d0,  
     *            four = 4.d0,  
     *            five = 5.d0,  
     *            six  = 6.d0, 
c 
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     *            index_I1 = 1, 
     *            index_J  = 3) 
c      
C 
C     Anisotropic model 
C 
       a1=props(1) 
       a2=props(2) 
       a3=props(3) 
       a4=props(4) 
       a5=props(5) 
       a6=props(6) 
       a7=Props(7) 
c 
      do kb = 1,nb 
        ua(kb) = zero 
       
        do k1 = 1, nfibers 
          index_i4 = indxInv4(k1,k1) 
           rI1m3= (ainv(kb,index_i1) - three)  
           rI4m3 =     (ainv(kb,index_i4) - one )  
           
         
          ht4a    = (row*row) 
          aux     = (E_alpha*E_alpha) 
c energy 
        ua(kb) =   a1 * rI1m3 + a2 * rI1m3*rI1m3 
     *           + a3 * rI4m3*rI4m3*rI4m3 + a4 * rI4m3*rI4m3  
     *           + a5 * rI4m3*rI4m3*rI4m3 + a6 * rI4m3*rI4m3 
     *           + a7 * rI4m3 
 
          
c ui1 
        ui1(kb,index_i1) = a1 + two * a2 * rI1m3  
        ui1(kb,index_i4) = three * a3 * rI4m3*rI4m3 + two * a4 * rI4m3 
     *                 + three * a5 * rI4m3*rI4m3 + two * a6 * rI4m3 
     *                 + a7 
c           
c ui2 
        ui2(kb,indx(index_i1,index_i1)) = two * a2 
        ui2(kb,indx(index_i4,index_i4)) = three * two * a3 * rI4m3 
     *           + two * a4 + three * two * a5 * rI4m3 + two * a6 
  
c  
       end do 
c 
 
      end do 
c      
      return 
      end 
C------------------------------------------------------------- 
C     Function to map index from Square to Triangular storage  
C    of symmetric matrix 
C 
      integer function indx( i, j ) 
      include 'vaba_param.inc' 
      ii = min(i,j) 
      jj = max(i,j) 
      indx = ii + jj*(jj-1)/2 
      return 
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      end 
C------------------------------------------------------------- 
C 
C     Function to generate enumeration of scalar 
C     Pseudo-Invariants of type 4 
 
      integer function indxInv4( i, j ) 
      include 'vaba_param.inc' 
      ii = min(i,j) 
      jj = max(i,j) 
      indxInv4 = 4 + jj*(jj-1) + 2*(ii-1) 
      return 
      end 
C------------------------------------------------------------- 
C 
C     Function to generate enumeration of scalar 
C     Pseudo-Invariants of type 5 
C 
      integer function indxInv5( i, j ) 
      include 'vaba_param.inc' 
      ii = min(i,j) 
      jj = max(i,j) 
      indxInv5 = 5 + jj*(jj-1) + 2*(ii-1) 
      return 
      end 
C------------------------------------------------------------- 
c 
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APPENDIX 7 

 

Figure Appendix 7. 1 Pressure Pump System 


