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Abstract

There is an increased interest in the use of personalized medicine approaches in the 

prevention or treatment of obesity, however, few studies have used these approaches to identify 

individual differences in treatment effects. The current study demonstrates the use of the 

predicted individual treatment effects (PITE) framework to test for individual differences in the 

effects of the ACTION-PAC intervention, which targeted the treatment and prevention of obesity 

in a high school setting. We show how methods for personalized medicine can be used to test for 

significant individual differences in responses to an intervention and we discuss the potential and 

limitations of these methods. In our example, 25% of students in the preventive intervention, 

were predicted to have their BMI z-score reduced by 0.39 or greater, while at other end of the 

spectrum, 25% were predicted to have their BMI z-score increased by 0.09 or more. In this 

paper, we demonstrate and discuss the process of using methods for personalized medicine with 

interventions targeting adiposity and discuss the lessons learned from this application. 

Ultimately, these methods have the potential to be useful for clinicians and clients in choosing 

between treatment options, however they are limited in their ability to help researchers 

understand the mechanisms underlying these predictions.
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The prevalence estimates of obesity in adolescents in the United States indicate that 1 in 

5 youth have a body mass index (BMI) classified as obese (≥95th percentile for their age- and 

sex) (Hales et al., 2018). Childhood obesity can lead to long-term health problems including 

cardiovascular disease, osteoarthritis, diabetes, and certain types of cancer (Chatelan et al., 2019; 

Preston et al., 2018). Although many interventions have been developed to reduce adiposity or 

prevent obesity in youth (O’Connor et al., 2017; Wang et al., 2015; Wilson et al., 2015), the 

average effect size for most is quite small, often 0.20 or less (O’Connor et al., 2017). 

Importantly, across various types of obesity interventions (lifestyle, pharmacological, and 

surgical), there is considerable heterogeneity of response (Heymsfield et al., 2018; Kelly et al., 

2018; MacLean et al., 2018). This is unsurprising due to a complex interplay between biological, 

environmental and socio-behavioral etiologies of obesity. Root causes and effective treatments 

are therefore likely to differ between individuals (Baranowski et al., 2019; Beets et al., 2019; 

Hoelscher et al., 2013). Because the etiology of obesity differs and interventions target obesity 

through different mechanisms (e.g., diet, physical activity, motivation), it is reasonable that the 

optimal intervention is likely to vary for different individuals (Baranowski et al., 2019; Beets et 

al., 2019; Hoelscher et al., 2013; MacLean et al., 2018; Yanovski & Yanovski, 2018).  

There has recently been a push for the use of personalized medicine to help choose the 

treatment most likely to work for an individual (Heymsfield et al., 2018; Ingelsson & McCarthy, 

2018; Kelly et al., 2018; MacLean et al., 2018; Yanovski & Yanovski, 2018). The current paper 

utilizes a biopsychosocial framework and a specialized analytic strategy for estimating predicted 

individual treatment effects (PITEs) (Ballarini et al., 2018; Lamont et al., 2018) using data from 

the ACTION-PAC trial (Vallabhan et al., 2017). We aim to demonstrate the potential for using 

new methods for personalized medicine to assess individual differences in response to an 
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intervention targeting adiposity and clarify the limitations of these methods. We use PITEs to 

test for evidence of heterogeneity in the effects of both treatments, describe individual 

differences, and identify variables that contribute the most to these differences. We then discuss 

the lessons learned from this application and implications for future directions needed to increase 

the probability that methods for personalized medicine will impact clinical practice. 

The effect of interventions for the prevention and treatment of obesity

In the last 20 years, there have been over 100 randomized trials of interventions targeting 

the prevention of obesity or reductions in adiposity in children or adolescents (Wang et al., 

2015). Meta-analyses of these trials indicate that effective intervention models tend to utilize 

intensive, multi-component approaches (O’Connor et al., 2017; Wang et al., 2015; Irvin & 

Kaplan, 2016). However, even the most intensive treatment trials had small effect sizes (Cohen’s 

D=0.22-0.34). Less intensive trials typically show very small average effect sizes <0.10 

(O’Connor et al., 2017). Similar effects are observed in preventive interventions, with most 

producing effect sizes <0.10 (Wang et al., 2015). That intensive, multi-component interventions 

are required to achieve even moderate effects suggests the need to improve efficacy of treatments 

(Heymsfield et al., 2018; Kelly et al., 2018; MacLean et al., 2018) and that individuals may 

respond differently to different treatment approaches (Severin et al., 2019). However, efforts to 

identify predictors of individual differences in treatment effect have found that the only reliable 

predictors are adherence to treatment protocols (Lemstra et al., 2016; Severin et al., 2019) and 

initial response to treatment (e.g., weight lost during the first weeks) (Heymsfield et al., 2018; 

Yanovski & Yanovski, 2018). 

Personalized medicine for the treatment of obesity

In an effort to improve efficacy of interventions targeting obesity, there is a focus on the 
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potential role of personalized medicine (Estampador & Franks, 2018; Frühbeck et al., 2018; 

Ingelsson & McCarthy, 2018; Yanovski & Yanovski, 2018). The premise of ‘personalized 

medicine’ (Kent et al., 2018; Webb et al., 2020) is that by predicting individual differences in 

treatment effects, these differences can be used to select the most effective treatment for each 

individual. Thus, our working definition of personalized medicine is “the use of individual level 

data to choose the treatment most likely to be successful for an individual.” Personalized 

medicine aims to improve average outcomes for the entire population through individual 

targeting (Kranzler & McKay, 2012; Smith et al., 2013). 

To date, most of the publications on personalized medicine for obesity have been 

conceptual (Estampador & Franks, 2018; Ingelsson & McCarthy, 2018), with authors making the 

argument that personalized approaches will be needed to increase treatment efficacy (Frühbeck 

et al., 2018; Yanovski & Yanovski, 2018). Recent research with adolescent samples has 

quantified a high degree of heterogeneity in response to treatment and argued for personalized 

approaches (Ryder et al., 2019). We know of only one paper which applies new predictive 

personalized medicine methods to obesity treatment, focusing on identifying differential 

responders for adults with osteoarthritis (Xiaotong et al., 2020). Thus, the argument for 

personalized medicine in the treatment and prevention of obesity remains largely conceptual with 

those in the field arguing for a holistic, biopsychosocial approach (Frühbeck et al., 2018; 

Ingelsson & McCarthy, 2018; Yanovski & Yanovski, 2018). This suggests that the methods used 

to study individual responses to obesity prevention and treatment approaches should be able to 

detect heterogeneity in treatment effects due to complex biological, psychological, and social 

factors and examine higher-order and non-linear interactions. 

 New methods for personalized medicine
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 We distinguish analytic approaches to personalized medicine such as using interactions 

to identify moderators of treatment effects, from new methods for personalized medicine. 

Established methods are designed to test specific hypotheses about individual differences.  The 

new methods focus on individual predictions, rather than hypothesis testing. These methods 

utilize predictive algorithms, often using machine learning approaches, and are typically based 

on the potential outcomes framework (Holland, 1986; Rubin, 2005). Established approaches for 

testing a priori hypothesized interactions between treatment and variables expected to predict 

differential treatment response are effective when a small number of key variables are expected 

to moderate treatment effects. In contrast, personalized medicine methods work when 

heterogeneity in treatment effects is more complex or when there are expected to be a large 

number of moderators (Green & Kern, 2012; Henderson et al., 2017; Imai & Strauss, 2011; 

Poulson, 2011). A strength of these methods is that they are designed to directly address the goal 

of improving treatment decisions by providing clinicians and clients with practically relevant 

predictions to help guide selection of the most appropriate intervention for a particular patient. A 

major limitation of these methods is that they often have limited ability to help researchers in the 

area understand the underlying mechanisms behind why the interventions work or fail to work. 

Methods to test mediation and moderation are among the approaches designed for testing 

mechanisms.

The new methods work best when theory, previous literature and clinical knowledge is 

used in selecting predictors and for guiding the choice of predictive model (Hoogland et al., 

2021). However, these methods are not designed to isolate moderating effects of particular 

variables. They instead focus on the larger picture and constellation of interactions between 

many relevant variables. In reference to this constellation of interactions, Breiman (2001) argued 
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that a “forest of trees is impenetrable as far as simple interpretations of mechanisms go.” 

Machine learning methods, such as Random Forests or BART, facilitate this approach to 

personalized medicine by picking up on the subtle relationships between predictors, each of 

which may have only a small impact. To provide this predictive accuracy regarding optimal 

treatment options for a particular patient, these methods eschew focusing on particular predictors 

in favor of assessing many potentially relevant variables simultaneously. Even though the 

mechanisms may not be understood, under conditions which are typically met in randomized 

trials, the results of the PITE framework and other similar methods can be interpreted as causal 

effects (Hoogland et al., 2021). However, a disadvantage of these methods is that, because they 

do not provide tests of mechanisms, options for diagnosing failure to find individual differences 

or a failure to replicate results are limited.   

The goal of this paper is to demonstrate the use and limitations of one of these methods, 

the PITE framework (Ballarini et al., 2018; Kuhlemeier et al., 2021; Lamont et al., 2018), for 

examining the utility of personalized medicine methods in obesity research. PITE is especially 

relevant to obesity treatment because of its focus on individual predictions, rather than 

identifying subgroups, and its flexibility in which predictive method can be used. Many existing 

methods focus on identification of subgroups who respond differently to treatment. Estimating 

individual effects is more appropriate when many different moderators jointly determine 

treatment response, which is what is expected in interventions targeting complex conditions like 

obesity.

Using a potential outcome framework (Angrist et al., 1996; Holland, 1986; Rubin, 2005), 

the causal effect of a treatment for client i is defined as the difference between their potential 

outcome under both treatment conditions, which is the outcome that they would obtain if 
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assigned to treatment (Y i
t) and the outcome they would obtain under control (Y i

c). Thus, the 

causal effect of treatment for an individual is defined as:

Y i
t – Y i

c (1)

Because the client cannot receive both conditions at the same time, the causal effect for any 

client is never observable. Instead we use a predictive algorithm with baseline covariates, X, and 

observed outcomes from those in the original randomized trial to obtain predictions of the 

potential outcome for each individual as a function of their values on the baseline covariates 

(Lamont et al., 2018):

PITEi  = Ŷ i
t – Ŷ i

c= f t ( x i )−f c ( xi ) (2)

Where ft is a function relating covariates for individual i to a predicted outcome under treatment 

and fc is this function under control. Thus, the PITE for a particular individual is the predicted 

effect of the intervention for them given their covariates and the particular function used to make 

the estimates. The algorithm for computing PITEs is:

1) Fit a predictive model or algorithm to the outcome using those in the control condition.

2) Fit another predictive model/algorithm to the outcome for the treatment condition.

3) For any individual, i, with observed covariates x, predictions of the outcome under 

treatment and control are computed by applying the predictive methods in 1 and 2.

4) The PITE for individual i is the difference between their predicted outcome under 

treatment and control.

One strength of the PITE framework is that it can be used with any predictive model or 

algorithm that allows individual-level outcome prediction. This approach focuses on including 

information from many variables that, together, can predict individual differences. Thus, PITE is 

equivalent to simultaneously testing many moderators. When BART (other machine learning 
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predictive methods also have the same property) is used, it tests higher-order and non-linear 

interactions. Analyses using PITE can produce predictions of intervention effects for any 

individual for whom covariates can be measured. As such, PITE can generate predictions for 

individuals not originally in the randomized clinical trial. 

Current Study

This study aims to demonstrate the use of methods for personalized medicine for obesity 

prevention and treatment using data from the ACTION-PAC cluster-randomized trial 

(ClinicalTrials.gov ID: NCT02502383), which tested two related interventions, a very low 

intensity preventive intervention for students with BMI < 85th percentile and a low-intensity 

(approximately 6 hours of contact time over 2 years) intervention for those with BMI > 85th 

percentile administered by school-based health center (SBHC) providers. We estimate individual 

differences in the effect of the ACTION-PAC intervention on endpoint BMI z-scores two years 

after the start of the intervention. The effects of the preventive and intensive interventions were 

estimated separately because these interventions differed substantively including in their level of 

intensity. 

Our analysis first examines whether there is evidence for individual differences in the 

effects of each treatment. Where individual differences are found, we describe the range of 

treatment effects estimated for that treatment. Finally, we conduct a variable importance analysis 

to identify variables which may be driving the observed differences. Our goal in this study is to 

show the potential use of methods for personalized medicine in obesity research, to demonstrate 

what these methods can contribute, and to discuss their limitations. One limitation of this study is 

that while the study was cluster-randomized, as of yet neither PITE, nor to our knowledge any 

other methods for personalized medicine, has yet been extended to account for cluster 
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randomization. This will impact p-values for tests of significance for individual differences but 

we do not expect impacts on the predictions themselves as parameter estimates are typically 

unbiased when clustering is ignored (Raudenbush & Bryk, 2002).

Methods

We use data collected as part of the cluster-randomized ACTION-PAC trial (Vallabhan et 

al., 2017), which included 8 high schools from a state in the Southwestern United States. Schools 

were eligible if they had functioning school-based health centers (SBHC), enrolled ≥700 

students, had ≥40% Latinx students, and were located in high poverty areas. Each school was 

randomized to the intervention or control condition (see Figure 1). Participants in intervention 

schools were included in the intensive sample if their baseline BMI was ≥85th percentile, and in 

the prevention sample if their BMI was <85th percentile (Kuczmarski, 2002). Participants in 

control schools did not receive any intervention. The study ran from 2014 to 2017 and included 

991 students in total, 608 in the prevention sample and 383 in the intensive treatment sample. 

The parents of all students (intervention and control in both the intensive and prevention 

samples) received letters mailed home at baseline, midpoint (one year later), and endpoint (2 

years later) with the child’s health results. Letters outlined anthropometric measurements, blood 

pressure (BP) and cardiometabolic labs, highlighted normal or expected parameters for each 

marker, and healthy behaviors recommended by the American Academy of Pediatrics. 

Students in the intensive sample at intervention schools received sixteen 20-minute 

sessions with a SBHC provider trained in motivational interviewing (MI) over two academic 

years. Students in the prevention sample at intervention schools received two 20-minute sessions 

from a SBHC provider over the same time frame. ACTION-PAC aimed to evaluate the effects of 

the intervention on reduction in BMI z-score for those in the intensive treatment sample, and 
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incidence of overweight and obesity for students in the prevention sample. Percentiles were 

calculated based on sex-specific growth charts for children ages 2-20 (Kuczmarski, 2002). 

Although PITE analyses are established for the binary outcomes targeted by the preventive 

intervention, only 8% of students in this sample were overweight by study endpoint, so power 

for the analyses would be greatly reduced by considering only the dichotomous threshold.

Participants

Participants were in the 9th or 10th grade. Consent was obtained from a parent and assent 

from the participant. Participants were excluded if they reported: diagnosis of type 1 or 2 

diabetes; use of corticosteroids, antipsychotics, and/or medications to treat diabetes; inability to 

perform moderate to vigorous physical activity or were not ambulatory; hypertension, and/or 

hyperlipidemia; pregnancy; or developmental disorder(s) affecting weight or ability to 

understand study procedures. Participants were secondarily excluded if baseline assessments 

determined that their BP qualified as stage 2 hypertension or had a score ≥20 on the Eating 

Attitudes Test (EAT26), a screener to assess eating disorders (Garner et al., 1982).

In the prevention sample, 54.6% of participants were female and 85.4% were Latinx. The 

average age was 15.3 years (range: 13.4 years to 17.7 years), 95.6% of participants had a normal 

BMI and 4.4% were underweight (<5th percentile). In the intensive sample 55.1% of participants 

were female and 87.7% were Latinx. The average age was 15.3 years (range 14 to 17 years). At 

baseline, 51.2% had a BMI considered overweight (85th – 95th perentile), and 48.3% had a BMI 

considered obese (>95th percentile). Further, 10% were pre-diabetic (hemoglobin A1c [HgbA1c]: 

5.7-6.4%), 27% had high triglycerides (≥130mg/dL), and 30% had low HDL cholesterol 

(<40mg/dL) (de Jesus, 2011). 

Measures
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Outcome

BMI percentiles for each participant were calculated based on height and weight at two-

year follow-up. Percentiles were converted into BMI z-scores which was the primary outcome. 

BMI z-scores were used as the primary outcome in this analysis to align this study’s aims with 

the original clinical trial study protocols. Previous research with adolescents has also used BMI-z 

to account for age and sex differences among adolescents (Wilson et al., 2015).

Baseline Predictors of Response to Treatment

Individual predictions are a function of the baseline covariates included in the predictive 

algorithm. In this study, the process for choosing covariates was conducted before any data were 

analyzed. One of the co-authors (EYJ) reviewed the available covariates in light of the 

biopsychosocial model (Suls et al., 2010) and chose those for which there was either theory or 

previous research suggesting that they might predict who would respond to treatment. The co-

author was an investigator on the ActionPAC study, had previous knowledge of moderators of 

treatment effects, is experienced in interventions for prevention and treatment of obesity, and is 

clinically trained as a registered dietitian nutritionist.

All of the baseline variables described in Table 1 are included as predictors of individual 

differences in treatment response (treatment modifiers). The primary baseline variables used here 

included 45 variables for those in the prevention sample and 53 variables for those in the 

intensive treatment sample. The number differed between arms because some biomarkers were 

only assessed for participants in the intensive sample, per standard of care. However, for 

comparison we also conducted a secondary analysis for the intensive sample using only the 45 

covariates which are also available in the prevention sample. Covariates in these analyses 

included individual-level demographics, biomarkers, dietary intake, accelerometry output, and 
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psycho-social measures. While PITEs can become inefficient and the permutation test loses 

power when too many covariates are included (Chang et al., 2021), the point of this method is to 

obtain predictions which take into account a broad array of factors that contribute to individual 

differences. Therefore, we suggest using theory and previous research to guide the selection of 

covariates which are likely to contribute to individual differences. Including multiple indicators 

of an imperfectly assessed construct, such as SES or dietary intake in the current sample, should 

improve predictions although at the cost of making it more difficult to detect if the variables 

make an important contribution to the predictions as the overall contribution will be shared 

across all related variables.

Demographic Covariates: Demographic covariates included in PITE analyses were sex, 

age, race/ethnicity, eligibility for free or reduced-price lunch, parents’ level of education, 

occupation, and annual household income. Indicators of socioeconomic status were measured by 

parental report. Baseline covariates also included health history questions regarding family 

history of diabetes, heart attacks, and participation in weight management programs. 

Biomarkers: Baseline values for BMI z-score, systolic and diastolic BP and waist 

circumference percentile, assessed by trained ACTION-PAC researchers, were included for both 

samples. Baseline fasting plasma glucose, hemoglobin A1C, insulin, total cholesterol, HDL and 

LDL cholesterol, triglycerides and HOMA-IR were also included for those in the intensive 

sample only as these biomarkers are typically assessed for students who are overweight. 

Dietary Intake: All dietary intake variables were based on self-report using the 2007 

version of the Block Food Screener for Ages 2-17, which has been validated in adolescents 

(Hunsberger et al., 2015). We included baseline measures of average daily intake of fruits and 

vegetables (measured in cups), added sugar (in teaspoons), as well as average daily glycemic 
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index and average daily glycemic load.

Physical Activity: Average baseline minutes of sedentary, moderate to vigorous, and 

vigorous activity as measured by accelerometer and the 3-Day Physical Activity Recall 

(3DPAR), which has been shown to be valid and reliable for adolescents, were included in the 

PITE analysis (Argiropoulou et al., 2004; Pate et al., 2003; Trost, 2007). Methods for collecting 

and processing physical activity measures are described in detail elsewhere (Sanders et al., 

2019).

Psycho-Social Assessments: We included both some individual items and all subscales 

from the EAT-26 (Garner et al., 1982), a screening measure with established validity and 

reliability for identifying dieting behaviors, potential bulimia, and food preoccupation and oral 

control issues that may require further professional assessment (Garfinkel & Newman, 2001), 

and the Child Self-Report version (ages 13-18) of the 23-item Pediatric Quality of Life Inventory 

(PedsQL™), which has established reliability and validity as a measure of physical, emotional, 

social and school functioning in children and teens (Varni et al., 2001). The rationale for 

including items as well as the full scale is that there were some specific items which were 

expected to relate to treatment efficacy beyond the average of all items on the scale. Items 

included from the EAT-26 were assessed by frequency (0=”Never” to 5=”Often”) with which 

participants had (1) gone on eating binges where they felt like they might not be able to stop, (2) 

made themselves sick (vomited) to control their weight, and (3) used laxatives, diet pills, or 

diuretics to control their weight. Further, we included two individual items about motivation to 

change behavior. We included responses to the questions (1) “During the past 3 months, how 

ready have you felt to change your eating behavior?” and (2) “During the past 3 months, how 

ready have you felt to change your physical activity?” (0=“not at all ready” to 10=“extremely 
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ready”).

Data Analysis 

To increase replicability of PITEs we believe that data analytic process should: 1) follow 

the original study protocol to the extent possible; 2) include a formal process for using theory 

and previous results for selecting covariates and predictive method; 3) rely on decisions made a 

priori to conducting PITE analyses; 4) include one test for heterogeneity in treatment effects; and 

5) conduct both internal and external validation of model results. We also suggest that a protocol 

for the analyses proposed be written and registered in advance of testing for individual 

differences in a trial. We’ve described above the approach we took for selecting the outcomes 

and covariates. BART was selected as the predictive method prior to any analysis, based on the 

expectation of higher-order interactions which this method is well suited to detect.

To estimate PITEs in this analysis, we used BART (Chipman et al., 2010) as the primary 

predictive algorithm in steps 1 and 2, estimated with the BART package in R (McCulloch et al., 

2019) using default settings for the priors. BART is a machine learning method which builds a 

series of regression trees with the tuning parameters chosen using Bayesian priors (Hill, 2011). A 

strength of BART is that it can detect higher-order interactions and non-linear effects, which are 

difficult to detect using a parametric model. In this case we used BART specifically because we 

expected higher order interactions between the baseline covariates in predicting treatment 

effects, whereas a linear model would only capture two-way interactions between the covariates 

and treatment. To check our coding and implementation of BART, we also computed PITEs 

using a linear regression model. In this case, PITEs from the two methods had a Pearson’s 

correlation of .65, suggesting that under half of the variability in the BART estimates could be 

attributed to two-way linear interactions between treatment and the covariates. The rest of the 
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variability is due to higher-order interactions and non-linear effects. Thus, in this case, much of 

the variation in the PITEs goes beyond the two-way interactions most likely to be included in 

moderation analyses. 

After PITEs are estimated, but before the results are interpreted, it is important to show 

that the heterogeneity in treatment effects found is greater than what would be expected due to 

chance. Individual differences in treatment effects are quantified as the standard deviation (SD) 

of the PITEs across all individuals in the sample. If the treatment effect is predicted to be the 

same for everyone, the SD of the PITEs would be 0 (the null hypothesis). To test for the 

significance of individual differences we use a permutation test with 1000 bootstrap samples 

(Chang et al., 2021). This test has been shown to have adequate type I error rates and power 

given moderate effect sizes in previous simulation work (Chang et al., 2021).

In order to better understand which variables contribute to the individual differences 

observed in the effects of ACTION-PAC, our final analyses assessed variable importance 

(Bagherzadeh-Khiabani et al., 2016; Strobl et al., 2008) by re-estimating the PITEs separately for 

each covariate, removing that covariate from the full model and keeping all other variables. We 

examined the change in the SD of the PITEs as each variable was dropped from the full model. 

Similar to a backwards selection procedure, we consider the variable whose removal causes the 

largest decrease in the SD to have the largest impact on the PITE. We then removed that variable 

and restarted the iterative process, identifying the five variables responsible for the largest 

decreases in the PITE SD. These are the top candidates for explaining the individual differences 

in treatment effects observed. When estimated with BART, the impact of each variable is a 

combination of two-way interactions with treatment, and higher-order interactions, and non-

linear interactions (Chipman et al., 2010). While the variable importance measure provides some 
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insight into which variables may be responsible for the individual difference in treatment effects, 

it is not intended or powered to show underlying mechanisms. A limitation of variable 

importance is that if multiple correlated predictors are included, each individual predictor is 

expected to be less likely to be identified as important than if one reliable predictor was included. 

In this case, other decisions to be made a priori about data analysis include: 1) treatment 

of missing data; and 2) addressing clustering due to schools. Our a priori decision for missing 

data was to use single imputation with the “mice” package in R (van Buuren & Groothuis-

Oudshoorn, 2011) to account for missingness, primarily in the baseline covariates. Single 

imputation was used because there is not yet an approach to adjust p-values for the permutation 

test using multiple imputation, thus the p-values presented for this test are somewhat liberal. We 

imputed data for the intensive and prevention samples separately. The imputation model 

included the same baseline covariates described above, as well as BMI z-score from both mid- 

and end-point. Although 3% of total scores were missing across all of the covariates and 

outcome data, 57% of the intensive and 48% of the prevention sample had at least one missing 

data point. After imputation, we used a regression predicting BMI which identified two outliers 

in the intensive sample with high influence on the predictions and for whom imputed BMI z-

scores were higher than 5. Because influential datapoints change predictions for everyone, we 

made the decision before conducting PITE analyses to exclude these cases. In retrospect, a better 

decision would have been to use an imputation model which reduced the likelihood of influential 

datapoints (such as predictive mean matching), we report the original results here in order to 

avoid making decisions after the original results were obtained which could impact the 

replicability of those results. 

In this study, clustering due to school is very important as randomization occurred at the 
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level of school. We made the decision to ignore clustering here, since this is intended as a 

demonstration of PITE and because PITE has yet to be extended to incorporate clustered data. 

Addressing clustering inside of predictive models is especially difficult because the predictive 

algorithm needs to apply to new cases from different clusters and we don’t know what the cluster 

level effects are for those. The impact of ignoring clustering is expected to be primarily on the p-

values for the permutation test because estimates obtained from models which ignore cluster-

level randomization are generally unbiased (Raudenbush & Bryk, 2002). If randomization had 

been at the individual level we see no reason that clustering would typically need to be accounted 

for.

Results

We start by examining the distributions of the ACTION-PAC baseline covariates and 

outcomes for both the prevention and intensive treatment samples. Table 1 shows descriptive 

statistics for each sample.

Individual differences in the effects of intervention among the intensive sample 

The intensive sample of ACTION-PAC participants included 381 individuals, 184 in 

treatment schools and 197 in control schools. The SD of the PITEs for this sample was 0.35. The 

permutation test showed that the expected SD of the PITEs, given no heterogeneity in treatment 

effects, is 0.32. The p-value is above .05, thus, individuals in the intensive sample did not 

respond significantly differently to the intervention as a function of the covariates we examined. 

Given the results of the permutation test, we do not further describe the PITE estimates for 

students in the intensive treatment condition. A secondary analysis to allow the results from the 

intensive and preventive interventions to be compared was run in which we computed PITEs and 

ran the permutation test using only the same 45 baseline predictors available for both samples, 
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the permutation test was still not significant in the intensive group and the standard deviation of 

the PITEs was .279.

Individual differences in treatment effects in the prevention sample

The prevention sample of ACTION-PAC participants consisted of 608 individuals, 318 in 

treatment schools and 290 in control schools. The SD of the PITE for students in the prevention 

sample was 0.39. The probability of finding this result given no individual differences in the 

effect of the intervention was 0.04, suggesting significant heterogeneity in the effects of 

treatment given the baseline covariates. 

For the prevention sample, PITEs ranged from -1.36 to 1.39, with a median predicted 

value of -0.13. The median is a non-parametric estimate of the total treatment effect on BMI z-

score, conditioning on all of the covariates in the analysis. This indicates there was a small 

difference in BMI z-score in the treatment group versus the control group. Average treatment 

effects were not tested here and will be reported in separate papers using methods proposed in 

the initial study grant. The distribution of the PITEs (see Figure 2) shows that 65.3% of the 

sample had a PITE score (BMI-z scale) less than zero. In this context, a predicted value of less 

than zero indicates that an individual’s baseline characteristics predict they would experience a 

reduction in BMI z-score in response to the ACTION-PAC intervention. The PITE distribution 

shows that 25% of students were expected to have BMI z-scores reduced by 0.39 or greater by 

the preventive intervention. Conversely, 25% of those in the prevention sample are predicted to 

have their BMI z-score increased by 0.09 or more. Note that this does not account for uncertainty 

in the predictions. For any particular individual, the difference between treatment and control 

might not be significant.

Variables which contribute to individual differences in the preventive intervention
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Neither treatment nor control groups showed any average changes in BMI z-score across 

the course of the study (change in BMI-z was ± .01 in both groups). We first examined the 

correlation between BMI z-score at baseline and predicted treatment effects. These were non-

significantly correlated at 0.14. Baseline BMI z-score was not related to predicted treatment 

effects. To better understand the variables contributing to observed differences in the effect of 

the intervention we conducted a test of variable importance by removing each baseline covariate, 

one at a time, and assessing model changes. We note that the decreases in SD that we observed 

were small and it is likely that the variables identified could be different in a different sample. 

We also note that, unlike the predictions, this test is likely to be quite sensitive to the inclusion of 

correlated predictors. 

Variable importance results (see Table 2) show that amount of added sugar in a 

participant’s diet contributed the most to individual differences in responses to the intervention. 

This was followed by social quality-of-life (QOL) scale score, emotional QOL scale score, 

readiness to change physical activity, and having had eating binges and feeling unable to stop. 

To understand the relationship between these variables and PITEs, we ran correlations. Higher 

amounts of added sugar in one’s diet was associated with a lower PITE score, indicating a higher 

predicted effect on BMI z-score. Higher social and emotional QOL scale scores were also 

associated with lower PITE scores. In other words, individuals with high added sugar in their 

diet and low levels of social and emotional difficulty at baseline benefitted the most from the 

intervention. 

On the other hand, higher baseline values for motivation to change physical activity and 

frequency of binge eating were associated with higher PITE scores. This positive correlation 

indicates readiness to change physical activity and frequent binging are associated with lower 
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effectiveness of the intervention. Because motivational interviewing comprised a key part of 

intervention, it is logical that those low in motivation at baseline would benefit more from 

receiving the intervention than those who already had high motivation to change. 

Discussion

While strong arguments have been made for using personalized medicine to target 

interventions for the treatment or prevention of obesity, few studies have tested the use of new 

personalized medicine methods in the area. Our analysis uses statistical approaches and a 

machine learning algorithm to demonstrate that a data-driven approach to personalized medicine, 

based on the biopsychosocial model (Suls et al., 2010), can identify individual differences in the 

effects of a psychosocial intervention targeting adiposity. To our knowledge this is the first study 

to demonstrate the use of these methods for personalized medicine to identify individual 

differences in the effects of treatments targeting adiposity. 

We only showed significant individual differences for those receiving the prevention 

intervention and these results are qualified because we could not account for school-level 

randomization or perform multiple imputation. If replicated, these differences would be notable 

because of the very low intensity of the intervention (only 20 min per academic year per 

student). Although there was no significant average treatment effect, these results suggest that 

this very low intensity treatment could help some students more than others. That said, the 

primary objective of personalized medicine methods is to obtain predictions which can improve 

outcomes by helping clinicians choose the best treatment. The potential impact on clinical care 

would have been much clearer if we were able to predict response to the intensive intervention 

for clients already overweight or obese. In terms of effects for the intensive sample, recent 

research suggests that power to find effects for this sample was likely limited (Chang et al., 
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2021). A larger sample would have been needed to conclude that there were not individual 

differences in this intervention. 

These results demonstrate the possibility of using the PITE framework to find and 

describe individual heterogeneity in the effects of an obesity intervention. A major point of this 

paper is that, from the perspective of personalized medicine, what ultimately matters is not the 

specific mechanisms but whether clinically useful predictions can be made. Predictive models 

are best constructed with careful attention to theory and previous results (Hoogland et al., 2021). 

However, the strength of personalized medicine methods is their potential for clinical application 

rather than the ability to test theory (Kuhlemeier et al., 2021). While the clinical utility of this 

example would have increased if effects had been found for the intensive intervention, Figure 2 

shows how the method results in a prediction about the treatment effect for each individual. 

Ultimately, translating these approaches into clinical practice would be facilitated by web based 

collection of client data, automated calculation of the client’s prediction and predictive interval, 

and providing this data to the clinician and their client in a user—friendly format. External 

evidence for the validity of these predictions would be needed to justify clinical applications. 

We see the primary contribution of this paper as demonstrating that personalized 

medicine methods have potential to identify individuals for whom the effect of a behavioral 

treatment is likely to be larger or smaller than the average effect. One of the things this paper 

highlights is that personalized medicine methods need to be extended in multiple ways to 

account for situations seen in real world clinical trials. First, at present the methodology is unable 

to account for clustering which is needed for group randomized trials. Methods have been 

proposed for permutation tests with clustered data (Braun & Feng, 2001) so the overall test of 

individual differences should be achievable. More problematic is obtaining predictions for 
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individuals from new clusters (schools in our example). Second, methods for estimating 

individual-level predictive intervals with non-parametric predictive methods need to be 

established. Predictive intervals make it easier to interpret individual results and use PITEs for 

choosing between treatments. Third, methods for using multiply imputed data and for obtaining 

new predictions in the presence of missing data are badly needed. Fourth, new work on 

validation methods for PITEs is needed. Methods for validation of results would provide a tool 

for verifying that predictions from one sample are likely to generalize and would provide a tool 

for understanding what went wrong if these predictions are not replicated. A reviewer suggested 

presenting the accuracy of the predictions under each condition. While intuitive, this approach is 

problematic because predictions under each condition capture main effects as well as differences 

in the effect of treatment. As PITEs are never observed, measures of predictive accuracy of the 

PITE are not available. Finally, the goal of using PITEs is to choose the intervention most likely 

to be effective for a particular patient. Achieving this goal requires predictions which provide 

comparisons of multiple treatments. Future personalized medicine research should prioritize such 

comparisons.

One of the contributions of this study is the lessons to be learned for future use of 

personalized medicine methods. As was made clear by our choice of imputation methods and the 

use of BMI-z as an outcome, initial decisions made in the process can be consequential and open 

to questioning. Nevertheless, the ultimate goal of personalized medicine is to obtain predictions 

which will replicate in new data, a goal which is facilitated by making analytic decisions a priori. 

We propose several steps: 1) care should be taken to anticipate and plan for issues likely to arise 

in analyses, such as missing data and outliers, a priori and screening of baseline data should be 

conducted prior to estimating predictive algorithms; 2) the design of the original clinical trial 
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should be mirrored as much as possible (for example, in using BMI-z as the outcome); 3) 

approaches for increasing replicability such as pre-publication of protocols of studies 

implementing personalized medicine approaches are recommended; and 4) external validation of 

predictions in new samples provides the strongest evidence to support ultimate implementation 

in clinical settings. Another lesson learned is that while in the current study we had an 

investigator select covariates a priori based on theory and knowledge of the field, this process 

could be further improved by having a panel of experts arrive at a consensus informed by formal 

literature review. This panel should be instructed on how to balance being inclusive in choosing 

covariates so as not to miss individual differences, with including so many covariates that 

sampling noise is increased and power is reduced. Another alternative is new methods for 

reducing dimensionality of the covariates while maintaining higher order interactions. We also 

note that using PITE predictions for targeting a low-intensity prevention intervention may not be 

practical, as it would require obtaining data on students in order to make predictions. These 

methods are more useful when applied to clinical populations.

Advancement in personalized medicine methods would also be facilitated by 

consideration of treatment compliance as an additional outcome. Application of the PITE method 

could be applied to determine whether certain baseline characteristics predict meaningful 

heterogeneity in compliance with a given intervention. The results of studies such as these could 

enable interventionists to determine whether a particular patient, on the basis of a group of 

baseline characteristics, would be likely to comply with a given treatment regimen.

In sum, this study was intended primarily to demonstrate the potential of methods for 

personalized medicine with interventions targeting adiposity. To date, many have discussed the 

potential of personalized medicine in this area, but few papers are published showing that it is 
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possible to predict individual’s treatment response. This study both shows the promise that this 

approach can have while also illustrating that much work needs to be done in the area. This study 

also illustrates that the strength of these methods is in their predictions rather than their ability to 

inform theory about underlying mechanisms.
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Table 1 

Descriptive Statistics by Sample for Covariates Used to Develop PITEs

Intensive Sample Prevention Sample

Variables in PITE analyses
Intervention

n=184
Control
n=197

Intervention
n=318

Control
n=290

Mean IQR
Mi
ss Mean IQR

Mi
ss Mean IQR

Mi
ss Mean IQR

Mi
ss

Endpoint BMI z-score 1.72
[1.3, 
2.1] 65 1.70

[1.2, 
2.2] 67 0.06

[-0.5, 
0.8] 90 -0.16

[-0.8, 
0.6] 83

Demographic

Male 46% 0 45% 0
46
% 0 45% 0

Age (years) 15.3
[14.7, 
15.8] 0 15.4

[14.8, 
15.9] 0 15.3

[14.8, 
15.8] 0 15.4

[14.8,1
5.9] 0

Parental Education

Less than high school 29% 3 32% 1 35% 1 27% 3

High school graduate 27% 3 27% 1 21% 1 22% 3

Some college 30% 3 30% 1 31% 1 27% 3

College graduate 14% 3 11% 1 13% 1 22% 3

Parental Work Status

Full-time 51% 2 44% 1 51% 4 38% 3

Part-time 9% 2 10% 1 10% 4 14% 3

Self-Employed 7% 2 8% 1 7% 4 10% 3

Out of Work 17% 2 22% 1 19% 4 26% 3

No Need/Unknown 16% 2 16% 1 13% 4 10% 3

Race/Ethnicity

Latinx 92% 0 83% 0 88% 0 83% 0

White 10% 0 13% 0 10% 0 16% 0

Black 2% 0 5% 0 4% 0 4% 0

American Indian 2% 0 4% 0 3% 0 2% 0

Eligible for free and reduced lunch 86% 6 82% 5 82% 6 76% 0

Household income 3.39
[2.0, 
5.0] 7 3.28

[2.0, 
4.2] 5 3.45

[2.0, 
5.0] 10 3.53

[2.0, 
5.0] 13

Scales

EAT-26 Items & Subscales 

Frequency of eating binges 1.71
[1.0, 
2.0] 0 1.61

[1.0, 
2.0] 0 1.59

[1.0, 
2.0] 0 1.54

[1.0, 
2.0] 0

Frequency of vomiting 1.09
[1.0, 
1.0] 0 1.10

[1.0, 
1.0] 0 1.05

[1.0, 
1.0] 0 1.02

[1.0, 
1.0] 0

Frequency of laxative use 1.17
[1.0, 
1.0] 0 1.10

[1.0, 
1.0] 0 1.02

[1.0, 
1.0] 0 1.02

[1.0, 
1.0] 0

Dieting subscale 5.30
[2.0, 
8.0] 0 5.27

[2.0, 
8.0] 0 3.12

[1.0, 
4.0] 0 2.78

[1.0, 
3.8] 0

Bulimia/Food preoccupation 
subscale 0.38

[0.0, 
0.0] 0 0.32

[0.0, 
0.0] 0 0.36

[0.0, 
0.0] 0 0.45

[0.0, 
0.0] 0

Oral Control subscale 2.01
[0.0, 
3.0] 0 1.82

[0.0, 
3.0] 0 2.30

[1.0, 
3.0] 0 2.40

[1.0, 
3.0] 0

Readiness to change diet 6.14
[4.0, 
8.0] 0 5.94

[5.0, 
8.0] 0 4.40

[2.0, 
6.0] 0 4.06

[1.0, 
6.0] 0

Readiness to change PA 6.72
[5.0, 
9.0] 0 6.77

[5.0, 
9.0] 0 5.67

[4.0, 
8.0] 0 5.61

[4.0, 
8.0] 0
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PedsQL™

Physical QoL 83.5
[75.0, 
93.8] 0 84.8

[78.1, 
93.8] 0 84.5

[78.1, 
93.8] 1 85.5

[81.3, 
93.8] 0

Social QoL 84.5
[75.0, 
95.0] 0 84.8

[75.0, 
95.0] 0 87.3

[80.0, 
100.0] 0 86.2

[80.0,1
00.0] 0

Emotional QoL 74.6
[60.0, 
90.0] 0 72.6

[60.0, 
90.0] 1 74.3

[60.0, 
90.0] 1 75.9

[65.0,9
0.0] 1

School QoL 68.5
[55.0, 
80.0] 1 66.4

[55.0, 
75.0] 0 70.0

[60.0, 
85.0] 0 71.2

[60.0,8
5.0] 0

Medical and Family History

Baseline BMI z-score 1.68
[1.3, 
2.0] 0 1.71

[1.3, 
2.1] 0 0.05

[-0.3, 
0.6] 0 -0.09

[-0.6, 
0.5] 0

Systolic blood pressure z-score 0.05
[-0.5, 
0.5] 0 0.17

[-0.3, 
0.7] 0 -0.59

[-1.2, -
0.1] 0 -0.60

[-1.2, -
0.0] 0

Diastolic blood pressure z-score -0.11
[-0.5, 
0.3] 0 -0.01

[-0.5, 
0.5] 0 -0.40

[-0.8, 
0.0] 0 -0.30

[-0.8, 
0.2] 0

Waist Circumference percentile 88.3
[83.7, 
94.8] 0 88.4

[84.2, 
95.4] 1 47.1

[31.1, 
64.7] 2 44.5

[29.2, 
61.1] 1

Sees doctor for medical condition 21% 5 28% 4 21% 9 16% 8

Takes medication 19% 4 24% 4 23% 8 19% 7

Family with Type II Diabetes 54% 15 60% 7 47% 0 42% 1

Immediate family with Type II 
diabetes 10% 0 14% 0 8% 0 4% 0

Family heart attack before age 55 23% 12 28% 15 15% 13 15% 20

Immediate family, heart attack 2% 0 3% 0 2% 0 1% 0

Weight loss program, last year 10% 0 5% 0 2% 1 2% 0

Dietary Variables

Fruit (cups) 1.4
[0.6, 
1.9] 1 1.4

[0.5, 
1.9] 1 1.4

[0.7, 
2.0] 1 1.5

[0.6, 
2.1] 1

Vegetables, no potatoes (cups) 0.7
[0.3, 
0.9] 1 0.7

[0.3, 
0.8] 1 0.7

[0.4, 
0.9] 1 0.8

[0.4, 
1.0] 1

Added sugar (tsp) 6.7
[3.3, 
8.1] 1 7.0

[3.1, 
8.6] 1 9.3

[3.9, 
11.6] 1 9.0

[4.6, 
11.3] 1

Glycemic index 48.8
[46.1, 
51.4] 1 48.6

[45.5, 
51.0] 1 49.0

[46.3, 
51.0] 1 49.1

[46.6, 
51.5] 1

Glycemic load 61.9
[38.9, 
75.7] 1 61.7 31.9 1 78.0

[47.3, 
92.5] 1 76.5

[48.3, 
97.2] 1

Physical Activity

3-Day PAR

Average energy expended 73.8
[64.7, 
82.4] 28 74.58

[63.1, 
84.0] 14 78.0

[64.0, 
82.6] 46 75.18

[64.5, 
89.6] 34

Average vigorous PA blocks 1.9
[0.3, 
3.0] 28 1.9

[0.0, 
3.3] 14 2.4

[0.0, 
4.0] 46 2.0

[0.0, 
3.0] 34

Average MVPA blocks 5.5
[3.3, 
7.3] 28 5.9

[3.3, 
8.3] 14 6.0

[3.3, 
8.3] 46 5.4

[3.0, 
7.3] 34

Average sedentary PA blocks 29.5
[27.0, 
31.3] 28 29.3

[26.7, 
31.7] 14 28.8

[26.3, 
31.7] 46 29.5

[27.0, 
32.3] 34

Accelerometer (minutes)

Weekly avg sedentary PA 801.3
[749.3
847.8] 9 818.3

[757.4
871.6] 17 799.5

[748.6, 
847.8] 27 811.4

[759.2, 
870.4] 19

Weekly avg MVPA 53.3
[30.8, 
69.5] 9 51.6

[28.6, 
69.0] 17 56.3

[31.2, 
77.1] 27 53.6

[29.5, 
72.5] 19

Weekly avg vigorous PA 4.1 [0.6, 9 4.0 [0.5, 17 6.3 [1.0, 27 5.5 [0.8, 19



Individual differences in ACTION-PAC 36

5.6] 5.3] 8.2] 7.7]

Lab Data

Glucose (mg/dL) 90.3
[85.0, 
95.0] 5 89.9

[85.0, 
95.0] 4

HgbA1C (%) 5.2
[5.0, 
5.5] 5 5.3

[5.2, 
5.5] 4

Insulin (uIU/mL) 21.6
[13.8, 
26.0] 5 24.3

[13.0, 
29.0] 4

Cholesterol (mg/dL) 142.0
[123.0
154.3] 5 146.0

[126.0
164.0] 4

HDL (mg/dL) 44.4
[38.0, 
43.5] 5 45.9

[39.0, 
52.0] 4

LDL (mg/dL) 75.7
[58.0, 
87.5] 5 77.90

[64.0, 
93.0] 5

Trigylcerides (mg/dL) 109.6
[66.0, 
135.3] 5 110.9

[70.0, 
137.0] 4

HOMAIR (mg/dL) 4.9
[2.9, 
5.9] 5 5.46

[2.9, 
6.4] 4
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Table 2

Variable Importance by Largest Reduction in Standard Deviation of the PITE (SD of full model 

=.39)

Standard Deviation of PITE

Baseline Variables
Full 

Model
-1 

variable -2 -3 -4

Most Important Variable
sugar 
added

emotiona
l QoL

social 
QoL

readiness 
to 

change 
binge 

frequency
Male 0.380 0.379 0.361 0.348 0.342
EAT-26 Items & Subscales 
Frequency of eating binges 0.377 0.359 0.360 0.345 0.330
Frequency of vomiting 0.373 0.359 0.352 0.337 0.341
Frequency of laxative use 0.379 0.370 0.362 0.342 0.344
Dieting subscale 0.373 0.358 0.364 0.350 0.338
Bulimia/Food preoccupation subscale 0.382 0.358 0.361 0.348 0.346
Oral Control subscale 0.376 0.361 0.364 0.346 0.342
Readiness to change diet 0.370 0.364 0.360 0.345 0.339
Readiness to change physical activity 0.365 0.355 0.359 0.335
PedsQL™
Physical QoL 0.373 0.363 0.367 0.358 0.338
Social QoL 0.384 0.366 0.352
Emotional QoL 0.366 0.336
School QoL 0.373 0.365 0.371 0.354 0.341
Age 0.368 0.354 0.353 0.341 0.335
Baseline BMI z-score 0.386 0.391 0.388 0.381 0.365
Systolic blood pressure z-score 0.370 0.364 0.357 0.347 0.338
Diastolic blood pressure z-score 0.372 0.355 0.369 0.347 0.342
Waist Circumference percentile 0.383 0.361 0.361 0.352 0.341
Sees doctor for medical condition 0.382 0.362 0.369 0.360 0.353
Takes medication for medical 
condition 0.380 0.367 0.359 0.356 0.345
Anyone in family with Type II 
Diabetes 0.386 0.365 0.367 0.350 0.351
Immediate family with Type II 
Diabetes 0.372 0.375 0.365 0.360 0.342
Anyone in family, heart attack before 
age 55 0.369 0.360 0.357 0.350 0.330
Immediate family, heart attack 0.383 0.362 0.367 0.352 0.348
Involved in weight loss program, last 
12 months 0.387 0.361 0.369 0.351 0.341
Eligible for free & reduced lunch 0.372 0.367 0.359 0.347 0.338
Household income 0.383 0.377 0.367 0.352 0.341
Parental education 0.374 0.362 0.370 0.348 0.337
Parental work status 0.376 0.362 0.366 0.352 0.345
Race/Ethnicity
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Hispanic 0.377 0.376 0.374 0.349 0.350
White 0.371 0.359 0.369 0.348 0.348
Black 0.379 0.364 0.367 0.348 0.347
American Indian 0.376 0.365 0.368 0.348 0.338
Fruit (cups) 0.379 0.362 0.362 0.357 0.343
Vegetables, no potatoes (cups) 0.380 0.359 0.366 0.340 0.331
Added sugar (tsp) 0.361
Glucose index 0.371 0.360 0.354 0.349 0.341
Glucose load 0.385 0.353 0.363 0.348 0.335
Average energy expended (3day 
PAR) 0.384 0.368 0.359 0.344 0.341
Average vigorous PA blocks (3day 
PAR) 0.380 0.362 0.371 0.350 0.341
Average moderate-vigorous PA 
blocks (3day PAR) 0.378 0.365 0.359 0.351 0.342
Average sedentary PA blocks (3day 
PAR) 0.381 0.358 0.360 0.346 0.336
Weekly average sedentary PA 0.377 0.371 0.372 0.353 0.351
Weekly average moderate-vigorous 
PA 0.374 0.358 0.364 0.349 0.352
Weekly average vigorous PA 0.374 0.359 0.360 0.347 0.345
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Midpoint 
– 1 Yr

Participating Public 
Schools (n=8)

Eligible participants 
screened (n=1049)

Data Collection (Int=152, Prev=239)
Lost to follow-up (Int=31, Prev=45)

Not at school (Int=31, Prev=45)
Withdrawn (Int=10, Prev=6)

Medical issues (Int=2, Prev=1)
Pregnant (Int=2, Prev=2)
Self-withdrawn (Int=6, Prev=3)

Control Schools (n=4) 
(Int=197, Prev=290) 

Intervention Schools (n=4) 
(Int=186, Prev=318)

Data Collection (Int=146, Prev=264)
Lost to follow-up (Int=22, Prev=50)

Not at school (Int=22, Prev = 50)
Withdrawn (Int=16, Prev = 4)

Medical issues (Prev=1)
Developmental delay (Int=1)
Pregnant (Int=2)
Self-withdrawn (Int=13, Prev=3)

Data Collection (Int=117, Prev=224)
Lost to follow-up (Int=22, Prev=36)

Not at school (Int=21, Prev=34)
Changed schools (Int=1)
Graduated Early (Prev=2)

Withdrawn (Int=7, Prev=4)
School attendance/grades (Int=1)
Self-withdrawn (Int=6, Prev=4)

Data Collection (Int=126, Prev=202)
Lost to follow-up (Int=23, Prev=32)

Not at school (Int=23, Prev=31)
Graduated Early(Prev=1)

Withdrawn (Int=3, Prev=5)
Pregnant (Int=1, Prev=2)
Self-withdrawn (Int=2, Prev=3)

Endpoint 
– 2 Yr

Baseline

Prevention Sample 
(BMI <85th

percentile) (n=608) 

Excluded (n=58)
High BP (n=9)
High EAT-26 (n=49)Intensive Sample 

(BMI ≥
85th percentile) (n=383) 

Figure 1. Study diagram for the Prevention (Prev) and Intensive (Int) Action PAC samples.
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Figure 2. Distribution of the predicted effects of the Action PAC preventive intervention versus 
control on BMI-z scores.


