
2691-4581 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3150647, IEEE
Transactions on Artificial Intelligence

JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2022 1

An Improved eXplainable Point Cloud Classifier
(XPCC)

Nicholas I. Arnold, Plamen P. Angelov Fellow, IEEE, Peter M. Atkinson

Abstract—Classification of objects from 3D point clouds has be-
come an increasingly relevant task across many computer vision
applications. However, few studies have investigated explainable
methods. In this paper, a new prototype-based and explainable
classification method called eXplainable Point Cloud Classifier
(XPCC) is proposed. The XPCC method offers several advantages
over previous explainable and non-explainable methods. First,
the XPCC method uses local densities and global multivariate
generative distributions. Therefore, the XPCC provides compre-
hensive and interpretable object-based classification. Further-
more, the proposed method is built on recursive calculations,
thus, is computationally very efficient. Second, the model learns
continuously without the need for complete re-training and is
domain transferable. Third, the proposed XPCC expands on
the underlying learning method, xDNN, and is specific to 3D.
As such, three new layers are added to the original xDNN
architecture: i) the 3D point cloud feature extraction, ii) the global
compound prototype weighting, and iii) the SoftMax function.
Experiments were performed with the ModelNet40 benchmark
which demonstrated that XPCC is the only explainable point
cloud classifier to increase classification accuracy relative to the
base algorithm when applied to the same problem. Additionally,
this paper proposes a novel prototype-based visual representa-
tion that provides model- and object-based explanations. The
prototype objects are superimposed to create a prototypical
class representation of their data density within the feature
space, called the Compound Prototype Cloud. They allow a user
to visualize the explainable aspects of the model and identify
object regions that contribute to the classification in a human-
understandable way.

Impact Statement—The classification of 3D point cloud data
has become a significant topic in recent years, in part because
of the popularization of various unmanned robotics, augmented
reality, and 3D mapping software. Such applications often involve
decisions with direct consequences to individuals and society,
yet very little research has been done towards explainable 3D
classification algorithms. This paper proposes an inherently ex-
plainable prototype-based classification and visualization method
for 3D point cloud objects. Experiments demonstrate that the
proposed method is not only competitive with the state-of-the-
art, but that it is also transferable and improves accuracy over
the base algorithm.

Index Terms—3D, AI, Classification, Deep Learning, Explain-
able, Point Cloud Data.

February 8, 2022. This work was supported in part by the Cumbria
Innovations Platform (CUSP) at Lancaster University.

Nicholas I. Arnold is with School of Computing & Communica-
tions Lancaster University, Lancaster University, Lancaster, UK (e-mail:
n.arnold@lancaster.ac.uk).

Plamen P. Angelov is with School of Computing & Communica-
tions Lancaster University, Lancaster University, Lancaster, UK (e-mail:
p.angelov@lancaster.ac.uk).

Peter M. Atkinson is with School of Computing & Communica-
tions Lancaster University, Lancaster University, Lancaster, UK (e-mail:
pma@lancaster.ac.uk)

This paragraph will include the Associate Editor who handled your paper.

I. INTRODUCTION

CLASSIFICATION of 3D point cloud data has become
an important research goal in response to the widespread

adoption of 3D sensor technologies such as LiDAR and RGB-
depth cameras. 3D point cloud data are a sparse collection of
unordered coordinates in 3D space. They offer a fine-grained
representation of real-world objects and accurately preserve
intrinsic geometric 3D shape, surface and depth information.
Point clouds have become an increasingly relevant data struc-
ture across a range of computer vision applications including
remote sensing, autonomous driving, and robotics. In many
cases such applications may have important real-world conse-
quences (e.g., misperception of the environment may lead to
the collision of an autonomous vehicle). Therefore, it is critical
that a 3D object classification model is not only efficient in
terms of accuracy and speed, but that the model’s decisions can
be understood intuitively and interpreted correctly by a human.
In this paper, we propose a new prototype-based classification
method called eXplainable Point Cloud Classifier (XPCC) for
object classification of 3D point cloud objects. For clarity,
this paper adopts the terminology supported by [1] to describe
explainable machine learning models.

Early methods for 3D point cloud object classification rely
on handcrafted features extracted directly from local neigh-
borhood regions or through estimation of the surface around
each point. For example, the Fast Point Feature Histogram
(FPFH) [2] algorithm encodes the local geometric shape based
on the normal angle between points and their neighbors, [3]
uses binning to extend the FPFH into a global object descriptor
and [4] builds a histogram of point locations summed along the
bins of an accumulator constructed around each point to create
an image. These features are designed to be invariant to shape
transformations. Classification based on theses handcrafted
features can then be achieved through classical supervised
machine learning algorithms. These handcrafted features are
explainable at a human level precisely because they were
handcrafted to describe specific (local or global) properties of
the shape. However, it is not trivial to find the most effective
feature combination for a specific task. In this regard, the move
to features learned through artificial neural network (NN)
algorithms, such as convolutional neural networks (CNN) and
other deep neural networks (DNN), was a breakthrough. The
XPCC method benefits from the transfer learning paradigm
[5] to incorporate learned features while retaining human
interpretability.

Deep learning applied to 3D point clouds is far from
straightforward, as point cloud data are unordered and non-

Authorized licensed use limited to: Lancaster University. Downloaded on February 17,2022 at 12:21:22 UTC from IEEE Xplore. Restrictions apply.

2691-4581 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3150647, IEEE
Transactions on Artificial Intelligence

2 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2022

structured [6]. That is, there are no defined neighborhoods
to connect each point in space. This contrasts with 2D
images, where each pixel sits on a grid and has explicitly
defined neighboring pixels. Recently however, deep learning
classifiers, such as PointNet [7] and its derivatives [8], have
been proposed and adapted to the specific properties of 3D
point cloud data. These classifiers learn an embedding for
each point and aggregate this information into a global shape
descriptor. Classification is then achieved by feeding the global
descriptor into several fully connected layers. By removing
these last fully connected layers, the XPCC method uses a
fixed pre-trained CNN to act directly on the point cloud data
by extracting a global feature vector from the 3D point cloud
objects. The choice of fixed feature extractor is not linked
to any method in particular, it is therefore modular and can
updated as research into DNN on point clouds progress.

Several characteristics of deep learning algorithms limit
their wider real-world application. Firstly, DNNs are domain-
specific; that is, they make classifications through learned
properties as determined by the data on which they were
trained. The addition of new classes or even additional data
that do not follow the same statistical characteristics as the
training data requires a complete retrain of the network.
Secondly, training of DNNs is computationally demanding and
require substantial numbers of training data, computational
resources and time. While several 3D point cloud benchmark
datasets have been published, the classes available are far from
exhaustive. Therefore, training on atypical and uncommon
classes is problematic. XPCC overcomes these limitations
through both task domain transfer and learning domain trans-
fer. Adding a new class requires only training the model on the
new data samples, rather than a complete retrain, and the new
classes are not required to be known to the feature extraction
method. Furthermore, classification can be achieved with only
a few training samples per class.

Deep learning methods, such as CNNs, involve and require a
large number (millions or more) of model parameters (network
weights) which have no direct link to the physicality of the
problem. In addition, the architectures of DNNs such as CNNs
involve several ad hoc decisions about the number and type of
layers, stride and kernel size. Due to this complexity, and the
opacity of the link between the inputs (point cloud coordinates)
and the output (class label), such solutions are considered as
‘black-box’ [9]. The output is a multi-level embedded function
(i.e., a function of a function of a function. . .) of inputs. This
makes it difficult to explain the cause – effect relationship and
the intuition of how the final decision is arrived at to a human
user. A lack of transparency is a particular drawback in the
case of 3D point cloud object classification. 3D point clouds
are often used for real-world applications and the actions in-
formed by the point cloud data have the potential to adversely
affect results or endanger human life, if an incorrect decision
is made (e.g., in self-driving cars). As algorithmic decisions
become more consequential to individuals it becomes crucial
that the algorithms are explainable in human terms. Efforts
in explainable AI have focused on explaining deep learning
methods [10], [11], but very little has been done to introduce
explainability specifically to point-set learning on 3D point

clouds.
This research builds on the image-based explainable deep

neural networks (xDNN) framework [12] by extending it to
object classification on 3D point sets. It is specific to point
cloud data and offers several layers of human-interpretable
explainability. By design, the XPCC internal architecture is
algorithmically transparent, simple and, thus, easy to explain to
a human user: the prototypes are the highly representative data
samples and are learned incrementally after the first encounter
of a specific class. The proposed method is non-iterative: in-
stead, XPCC is an incremental, greedy learning algorithm that
self-develops autonomously. It evolves the internal structure
with the addition of new prototypes that reflect the changes
of the data pattern represented by the local data density.
In this study, we use a fixed KP-CNN, pre-trained on the
ModelNet40 benchmark without limitation to the generality
of the proposed concept. Experiments show that the proposed
XPCC is not only explainable and computationally more
efficient than the state-of-the-art in explainable point set deep
learning classifiers, but also superior in terms of classification
accuracy. To the best of our knowledge, XPCC is the only
explainable point set classifier that achieves a higher overall
accuracy compared to the benchmark deep networks used.

The main contributions of this paper are summarized as
follows:

• A novel explainable point cloud classifier network is
proposed that addresses the lack of transparent object
classification algorithms for 3D point cloud data.

• A new prototype-based visual representation is proposed
that explores explanations within the 3D space.

• An evaluation of the proposed classification network to
improve classification accuracy over existing methods.

The rest of this paper is organized as follows. In section 2,
a brief overview of relevant related work is provided. Section
3 details the proposed XPCC classifier and CPC method.
Then, in section 4, we describe the experiments conducted
and analyze the results. Finally, in section 5 we provide a
conclusion.

II. RELATED WORK

A. Deep Learning for Point Cloud Object Classification

Recently, deep learning classifiers were proposed that adapt
to the properties of 3D point cloud data. These classifiers
use error-correction to learn an embedding for each point and
aggregate this information into a global shape descriptor. Hard
classification is performed by feeding the global descriptor
into several fully connected layers. Deep learning classifiers
on point set data can be divided broadly into three types. The
first of these is multi-view approaches, a technique pioneered
by MVCNN [13] whereby the 3D object is projected into mul-
tiple 2D representations. However, it is difficult to design an
efficient and robust strategy for choosing viewpoints. Recently,
[14] utilized a graph convolutional network to optimize view-
point sampling. The second type is volumetric-based methods.
These methods divide the point cloud into voxels; for example,
VoxNet [15] structures point cloud data into a volumetric
occupancy grid as input to a 3D CNN. Originally, volumetric

Authorized licensed use limited to: Lancaster University. Downloaded on February 17,2022 at 12:21:22 UTC from IEEE Xplore. Restrictions apply.

2691-4581 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3150647, IEEE
Transactions on Artificial Intelligence

NICHOLAS I. ARNOLD et al.: AN IMPROVED EXPLAINABLE POINT CLOUD CLASSIFIER (XPCC) 3

methods were limited to point clouds with a relatively small
number of points. However, octree structures have been used
to reduce memory usage and increase the computational
speed [16]. Nevertheless, volumetric approaches suffer from
undesirable bias due to grid axis alignment and it is not
clear if the advantages to processing 3D data directly in
this manner are worth the additional overhead accrued [17].
The third type of classifiers is point-based methods. These
methods are capable of learning directly on the point cloud
structure without intermediate representations. This contrasts
with the previous two types, where the point cloud data are
converted and structured to apply mature 2D or 3D CNNs: a
process that inherently results in information loss. Prominent
network architectures for the point-based methods include
graph convolution networks [18], [19], pointwise multi-layer
perceptron (MLP) type NN [7], [8], and kernel point CNN
[20], [21].

A main goal of the method proposed in this paper was to
explore explanations uniquely possible within the 3D space.
Therefore, the multi-view and volumetric approaches were not
used for feature extraction. Instead, a pre-trained kernel point
convolutional network, KP-CNN was used in the 3D feature
extraction layer. Unlike grid convolution, the kernel point con-
volutions define continuous convolution kernels composed of a
series of kernel points with weights. Specifically, the weights
for neighboring points are related to the spatial distribution
with respect to the center point; formulated as an optimization
problem [20].

B. Explainable Deep Learning On Point Clouds
Previous literature on explainable deep learning on point

cloud data focuses on techniques to better understand the
representations learned by the network. [7], [20], [22] demon-
strated how to visualize information learned by the point-cloud
based NN through projecting back a coloring based on the
level of activation of the point functions onto the input point
cloud. Additionally, [7] used t-SNE to embed point cloud
global features into a 2D space and visualize the correlation
between the point clouds. [22] modified the PointNet network
to create class-attentive mappings and specified in [23] the
model agnostic 3DCAM; however, these representations are
not always intuitive to non-experts. [24] proposed a two-stage
method of local-to-global attributes for explainable point cloud
classification. Specific to kernel point-based methods, in [20]
the Effective Receptive Field is computed as the gradient
of kernel point responses to measure the influence of each
input point in relation to the result at a particular location.
PointMask [25] introduces a differentiable layer before the
encoder that learns to mask out points by maximizing mutual
information between masked points and the class labels. [26]
demonstrated visualizations using kernel correlation as an
affinity measure between two different point sets: the neigh-
boring points and kernel points. These explanation techniques
are limited primarily to post-hoc interpretations and, in com-
parison to their base architecture, the explainability negatively
impacts classification accuracy.

In contrast to the above, the proposed method is explainable
by design, and an overall increase in accuracy over deep

learning methods. Furthermore, previous explainable point set
classification methods do not use the 3D medium itself, beyond
color visualization, for explanations. The proposed CPC is a
novel approach to using the inherent nature of 3D to offer
explication not possible in 2D.

C. Prototype Learning

Prototype-based methods learn a set of highly representative
samples (i.e., the prototypes) which themselves represent the
probability distribution in the feature space [27]. One or
more prototypes represent each class in the dataset, with new
samples assigned to a class based on a similarity metric.
Prototype-based models have long demonstrated their high
efficiency and versatility in classification problems and have
an obvious interpretation. These models can be manipulated
through the addition, removal or adaptation of prototypes. This
makes them well suited for incremental learning. Examples
of well-known prototype-based approaches are the learning
vector quantization model [28], the radial basis function (RBF)
network [29], Gaussian Mixtures, and the self-organizing map
(SOM) [30] model. Additionally, k-means, support vector
machine (SVM), and particle filtering (Sequential Monte Carlo
methods), may be considered as kinds of prototype-based
methods. The k-nearest neighbors (kNN) algorithm is related
to many prototype-learning methods. However, because the
classic technique for kNN stores all data rather than selective
exemplars it is only loosely considered a prototype-based
method and is, strictly speaking, not a learning method. The
XPCC can, like other prototype learning methods, be viewed
as a type of feedforward NN. In particular, it is similar to
SOM in that the proposed method does not use error-correction
learning. Instead, a type of greedy competitive learning is
applied. XPCC is based on local densities and empirically-
derived global multivariate generative distributions.

III. PROPOSED METHOD

In the following sections, we consider the input to the
XPCC classification method as a set of N point cloud objects,
O = {Oi | i = 1, . . . ,N}, and the output is the set of predicted
labels. Each object is a separate point cloud, and these, in
turn, represent the shape of each object as a set of 3D (x, y, z)
coordinates. Depending on the specific acquisition technology,
the points may contain additional observed information such
as color and intensity. The proposed method classifies based
only on the objects’ shape and, thus, only the coordinates are
taken as the input. This means that the classification will not be
affected by inconsistent color values between different objects.
As such, object point cloud models are considered to contain
only one entity. Functionally, point cloud objects do not need
to have the same number of points.

A. Feature Extraction

Feature extraction encodes the global shape of each point
cloud object into a global descriptor. To do this, the layers of
a pre-trained CNN are used as a fixed feature extractor, and
the global descriptor obtained as the feature vector computed

Authorized licensed use limited to: Lancaster University. Downloaded on February 17,2022 at 12:21:22 UTC from IEEE Xplore. Restrictions apply.

2691-4581 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3150647, IEEE
Transactions on Artificial Intelligence

4 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2022

from the final fully connected layer. The set of feature vectors
define a feature space that is optimised for the separation of
the training objects. From the transfer learning concept, it is
assumed that this feature space can also effectively separate
objects from a different domain. The features extracted by the
DNN are denoted as X = DNN(O) ∈ RN×df , where DNN(·)
is the fixed DNN and df is the dimension of the extracted
features. In the case of the KP-CNN, df = 1024. We use xi

to refer to an object represented as it’s feature vector extracted
by the fixed DNN.

The point-based KP-CNN with rigid Kernel Point Convolu-
tion (KPConv) blocks [20] pre-trained on the ModelNet40 [31]
dataset is used as the feature extractor to produce a 1-by-1024
dimensional global feature vector per object. It incorporates a
method to perform downscaling or upscaling to the input point
clouds, as required, so that they do not need to have the same
number of points. This also means that the network remains
robust to varying point densities, particularly across objects
from different scenes or scanning technologies. Furthermore, it
has been shown that the KP-CNN identifies simple geometric
structures (lines, planes, and spherical regions) at lower layers
of the network, and more complex characteristics at further
layers [20]. Not only does this provide some transparency to
the CNN, but is also an important indication of generalizing
to object types that are not in the CNN training data.

The feature vectors are individually scaled to their unit norm
(i.e., L2 normalization is performed on each element):

xi =
xi

max(∥xi∥, ϵ)
, (1)

where ϵ is a small constant.

B. Training

Training the XPCC starts by performing a filtering operation
where the prototypes are identified from the training data. This
is done directly through a non-iterative ‘one pass’ process;
the prototypes themselves are the most representative training
samples belonging to a particular class. Thus, meta-parameters
for the XPCC are trained per-class: all the calculations are
performed separately for each class and can be performed
simultaneously (in parallel). Each classes’ parameters are
initialized with the first observation sample of that class,

k ← 1,M ← 1, µ← x1, p1 ← x1, N1 ← 1, rj ← r∗ (2)

where k is the current instance (number of training samples
seen), M is the number of prototypes identified for a class, µ is
the recursive global mean of all data samples as yet observed,
p1 is the first prototype {pj | j = 1, . . . ,M}, Nj is the number
of member points around each prototype, and rj is the radius
of the area of influence of the corresponding prototype. r∗ is
the initial degree of similarity of the prototype member space
and is defined as:

r∗ =
√
2 (1− cos (30◦)) =

∥∥∥∥ xi

∥xi∥
− pi
∥pi∥

∥∥∥∥ (3)

After initialization, the parameters of each class are updated
recursively, absorbing only the samples that belong to them.
The following pseudo-code demonstrates the process for each

new training sample of the class type. First, the instance count
is updated through:

k ← k + 1, (4)

then µ is updated as follows:

µ← µ (k − 1) + xi

k
. (5)

Data samples (i.e., the objects) that are closer to the global
mean have higher density values. Therefore, the data density
indicates how strongly data samples influence one another in
the data space. The density function is defined as a Cauchy
function [32]:

D (xi) =
1

1+∥xi−µ∥2

σ

(6)

where µ is the global mean and σ = 1− ∥µ∥2.
The prototypes are determined by partitioning the labeled

training data based on the data density and area of influence
within the latent feature space. The prototypes are the local
peaks of the data density in the feature space for their corre-
sponding class. It is important to note that the prototypes are
independent from each other, such that the addition of a new
prototype does not influence the already existing prototypes.

α = maxD(pj)

β = minD(pj)

j∗ = argmin(xi − pj)

(7)

IF D(xi) > α OR D(xi) < β OR (∥xi − pj∗∥ ≤ rj∗)

THEN add a new prototype
(8)

The prototypes with maximum and minimum density, α and
β respectively, and the index j∗ which denotes the prototype
closest to the current sample, are used to control the addition
of new prototypes [32]. If either of the first two conditions in
(8) is met, or if the sample lies outside the area of influence of
the closest prototype (the third condition in (8)), then the new
data sample is added as a new prototype to its respective class.
If the conditions are not met, then new samples are assigned
as a support member of the prototype nearest in the feature
space.

The prototype is then updated recursively as follows [32]:

pj∗ ←
pj∗ (Nj − 1) + xi

Nj
. (9)

The support, or the number of data samples associated with
a certain prototype, is updated S ← S + 1 and the radius is
updated recursively using (10) [32].

rj∗ ←
rj∗ + (1− pj∗)

2
(10)

After the initial training process, the model can learn
continuously by absorbing new training samples of previously
seen classes or of new unseen classes. Alternatively, a user
can manipulate and fine-tune the model through the addition,
removal, or adaption of prototypes manually.

Explanation of prototypes can be represented in the form
of linguistic logical IF...THEN rules where the density D can

Authorized licensed use limited to: Lancaster University. Downloaded on February 17,2022 at 12:21:22 UTC from IEEE Xplore. Restrictions apply.

2691-4581 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3150647, IEEE
Transactions on Artificial Intelligence

NICHOLAS I. ARNOLD et al.: AN IMPROVED EXPLAINABLE POINT CLOUD CLASSIFIER (XPCC) 5

Fig. 1. Visual illustration of linguistic IF. . . THEN rules, where ∼ stands for
similarity and x is the queried sample. If the sample is within the degree of
similarity for the set of prototypes belonging to a class, then the class label
is applied.

be seen as a fuzzy degree of membership [12]. All rules, per
class, can be combined using the logical OR operator (see
Fig.1).

C. Compound Prototype Cloud

After training, the XPCC model contains several class con-
tainers, one per class (n.b. that the containers are referred to as
‘data clouds’ in [12]. However, we call them class containers to
avoid confusion with ‘point clouds’). Each container consists
of the per-class meta-parameters, including the prototypes
identified for that class. The number of prototypes is much
less than the number of training samples of that type that were
seen (i.e., P ≪ N). The prototypes themselves represent the
3D point cloud object. The CPCs are composed of all point
cloud-based prototypes superimposed and, as a result, one
such aggregated prototype per class. The CPC creation process
is as follows. Starting with the first identified prototype as
the reference object, perform principal component analysis to
obtain the three main directions of the point cloud and deduce
the main axis. Second, take the extent along the main axis to
scale the clouds to the reference (reference objects are chosen
as the initial prototype). Then, perform a fine registration using
a point-to-point iterative closest point algorithm [33].

D. Classification Algorithm

In this section, we describe the classification procedure for
the XPCC method. The principle of the XPCC classification
approach is based on the intuition that people learn by com-
paring similarity between objects, but only remember a few
distinct objects during decision-making (i.e., the prototypes) -
the so-called anthropomorphic approach to machine learning
[34]. If a new object is encountered, a person is likely to
assume that it belongs to the class which it most closely
resembles. Following this logic, the learning of the proposed
method revolves around the position and properties of the
prototypes in the feature space.

Given a new test sample xt, the proposed XPCC method
first finds the local similarity to each class’s prototypes:

Sj = Similarity(xt, pj) =
1

(1 + ∥xt − pj∥2)
(11)

and then determines the global similarity to each class as
S∗j = maxSj . With these, the proposed method then performs
a global weighting (13), where ⊙ is the Hadamard product,
based on similarity between the new sample and the CPC
feature vector. The CPC feature vector is estimated as the
recursively updated global mean of the class, that is,

SCPC = Similarity(xi,CPCj). (12)

γi = SCPC ⊙ S∗j (13)

In the proposed method, the SoftMax function (14) is used
to normalize the output of the previous layer to a probability
distribution over the predicted output classes.

γ∗
i =

exp(γi)∑
k exp(γk)

(14)

Finally, the hard classification is conducted through the
argmax(γ∗

i) function, thus providing the label of the most
likely class.

IV. EXPERIMENTS

We compared the proposed XPCC classifier against both
classical machine learning classifiers and state-of-the-art point
set learning classifiers. Unless stated otherwise, the term
XPCC refers specifically to the use of the proposed method
with the KP-CNN feature extractor network. In the experiment
comparing the proposed method against classical machine
learning algorithms, the

Precision = TP/ (TP + FP) ,

Recall = TP/ (TP + FN) ,

and F1-score = 2
(Precision ∗Recall)

(Precision+Recall)
,

were used as evaluation metrics, where TP , FP and FN are
the number of true positives, false positives and number of
false negatives, respectively. For all experiments we also give
the overall accuracy,

OA =
TN + TP

TP + FP + TN + FN
,

where TN is true negatives. For our experiments comparing
the proposed method against point set deep learning algo-
rithms, we also use Mean Accuracy (mAcc),

mAcc =
1

M

M∑
i=1

acci,

where acci is the accuracy for the samples class i and M is
the total number of samples.

The Princeton ModelNet project provides a collection of
synthetic 3D CAD object models split into two benchmarks:
a 40-class subset and 10-class subset known as ModelNet40
and ModelNet10, respectively. We believe ModelNet is the
only publicly available 3D object benchmark specific to object
classification. Other 3D model and point cloud datasets exist,
but they are either a collection of objects without a defined
test/train split [35], have very few models per class [36] or are
intended for different tasks like semantic segmentation [37],
[38], [39] or 3D object detection [40]. The ScanObjectNN
[41] benchmark is an interesting dataset made up of real-
world object models; but at the time of writing, it is not
available for public access. It will be a topic of future
consideration. To evaluate the XPCC we used the ModelNet40
shape classification benchmark. There are 12,311 CAD models
from 40 categories of human-made objects, split into 9,843

Authorized licensed use limited to: Lancaster University. Downloaded on February 17,2022 at 12:21:22 UTC from IEEE Xplore. Restrictions apply.

2691-4581 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3150647, IEEE
Transactions on Artificial Intelligence

6 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2022

Fig. 2. The XPCC classification architecture represented as network layers. First, the point cloud object is input to the Feature Extraction layer and the
pre-trained CNN is used to generate a global descriptor that encodes the global shape of the object into a feature vector. Second, the Local Similarity layer
compares the object’s global descriptor against the prototypes of each class. This is called the Prototype Layer in this figure and is represented by the colored
rectangles within the local similarity layer. Third, the similarity score for each class is extracted by the Global Similarity layer as the classes’ most similar
prototype. Fourth, the classes’ similarity score is weighted by the object’s similarity to the respective classes’ compound prototype. Last, the Softmax layer
normalizes the output of the previous layer to a probability distribution over the predicted output classes. Hard classification is then performed on the output
to produce the predicted class label.

for the training set and 2,468 for the testing set. The CAD
models were converted into 3D point clouds by sampling
points randomly along the model surfaces.

Experiments with the XPCC were run on a Unix machine
with 3.6 GHz AMD Ryzen 5 3600 6-Core CPU, 16GB
RAM and SSD. The KP-CNN feature extractor network was
trained using an NVIDIA 2070S GPU. Training the KP-CNN
took 5 hours. Once trained, the fixed network acts as a
generalized point cloud feature extractor. In our comparison
studies we also evaluated the PointNet++ network as a feature
extractor; this was trained under the same conditions. The
points are restricted to contain only the (x, y, z) coordinate
information. Training of, and inference with, the XPCC is
highly parallelizable and can be conducted on either CPU or
GPU hardware.

A. CPC-Demonstration

The motivation for the CPC is to represent what the model
has learned by visualizing the per-class parameters as a system
of superimposed prototypes in 3D space. This is comparable
to the idea of an object that a human might imagine when
thinking of a particular object class. For example, if asked to
think of an ‘airplane’, a cylindrical capsule shape with wings
and tail rudder is likely to come to mind. Although this is the
general shape, there are other aspects that might be different
depending on the person’s experiences with the object. For
the airplane example, attributes such as the wing positions,
angle or number might vary, and, additionally, the plane might
have propellers or jet engines. Much like the human idea of
an object, the CPC contains these aspects as physical options.
We illustrate the CPC representation in Fig.3. By encoding the

Fig. 3. Visual depiction of the compound prototype clouds for selected
ModelNet40 classes. A and B are the CPC for class Airplane. C and D are the
CPC for the class Guitar. The color represents the distribution of confidence
per data point extracted from the data alone. Blue areas are those with low
confidence, green areas are those with medium confidence, and red areas are
those with high confidence.

object’s similarity (the normalized data density) in the feature
space as a color, the CPC indicates the areas that contribute to
the classifier’s decisions when examining new objects. As can
be seen in Fig.3, green and red regions are areas with greater
density within the model’s decision space and correspond to
the areas of an object that contribute to the model’s knowledge
of that class and, ultimately, the decision-making process.

Authorized licensed use limited to: Lancaster University. Downloaded on February 17,2022 at 12:21:22 UTC from IEEE Xplore. Restrictions apply.

2691-4581 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3150647, IEEE
Transactions on Artificial Intelligence

NICHOLAS I. ARNOLD et al.: AN IMPROVED EXPLAINABLE POINT CLOUD CLASSIFIER (XPCC) 7

TABLE I
PERFORMANCE COMPARISON WITH CLASSICAL CLASSIFIERS ON THE

MODELNET40 BENCHMARK.

Method
Metric
Accuracy Precision Recall F1

kNN (brute-force) [42] 90.04 88.23 87.64 87.78
L-SVM (hinge-loss) [43] 90.36 87.89 87.27 87.25
C-SVM (linear-kernel) [44] 91.17 88.16 88.51 88.67
C-SVM (poly-kernel) [44] 91.05 88.97 88.03 88.35
C-SVM (rbf-kernel) [44] 91.00 89.04 88.39 88.53
C-SVM (sigmoid-kernel) [44] 90.88 87.63 88.49 87.88
Decision Tree (gini) [42] 81.97 76.89 77.77 77.00
Decision Tree (entropy) [42] 78.72 73.67 73.15 72.75
Random Forest (gini) [42] 90.43 87.79 87.71 87.61
Random Forest (entropy) [42] 90.55 88.69 88.09 88.25
MLP (relu) [42] 90.15 87.38 87.05 86.93
MLP (tanh) [42] 90.07 87.86 87.81 87.69
MLP (sigmoid) [42] 90.76 87.62 88.32 87.79
Gaussian Naive Bayes [45] 87.76 84.78 84.91 84.44
XPCC (ours) 91.82 92.10 91.82 91.83

All classical methods were implemented with the scikit-learn [42] python
library. The classical explainable classifiers are trained with the same feature
vectors as XPCC, generated by the fixed-CNN feature extractor. Normalization
was performed as described in (1) for all experiments.

B. Comparative Results with Classical Methods

In this section, we compared the proposed XPCC method
against classical machine learning approaches to classification
including: kNN, SVM, decision trees, random forest, multi-
layer perceptron, and Gaussian Naive Bayes. All methods were
implemented using the scikit-learn python library [42], how-
ever we cite the underlying algorithm or library if applicable.
The kNN method is formulated as a brute force problem. Five
variations of support vector machine classifier are reported.
L-SVM is underpinned by [43] and utilizes squared-hinge
loss to train one-vs-rest classifiers. Conversely, C-SVM is
underpinned by [44] and trains one-vs-one classifiers; results
are reported using the linear, polynomial (poly), radial basis
function (rbf), and sigmoid kernels. Two variations of the de-
cision tree and random forest algorithms are recorded, the first
using the gini-impurity and the second using entropy-impurity.
Additionally, results are compared against three variations of
MLP. Each consist of the standard 3-layers configuration and
use the ReLU, tanh, sigmoid activation functions, respectively.
Optimization of the MLP is performed using [46]. Lastly, we
compare against a Gaussian Naive Bayes classifier. Further
specifications of the comparative classifier implementations
can be found in [42].

From Table I, it is clear that the XPCC method achieved
higher scores across all metrics in comparison to these clas-
sical approaches. The proposed method increased the overall
accuracy by 0.65 percentage points (p.p.), increased F1-score
by 3.16 p.p., and increased Recall by 3.30 p.p., compared to
the subsequently leading C-SVM with linear-kernel method.
Similarly, Precision was increased by 3.06 p.p. over the
subsequently leading C-SVM with rbf kernel. The proposed
method shares the ability to perform online machine learning
with the Gaussian Naive Bayes method. A comparison of these
two methods shows that the XPCC method increases accuracy
by 4.06 p.p., precision by 7.32 p.p., recall by 6.91 p.p., and

F1-score by 7.39 p.p.. Furthermore, the XPCC method does
not incur performance or stability overhead when performing
online learning because it is built on recursive calculations.

C. Comparative Results with State-of-the-art

We performed a classification test on the ModelNet40
benchmark and compared the XPCC classifier against the
state-of-the-art in explainable point set learning algorithms,
including PointHop, CLAIM, and PointMask. Additionally, we
compared the proposed method against baseline deep learning
algorithms including PointNet, PointNet++ and the base KP-
CNN. The results from this experiment can be found in Table
II.

Prior explainable point cloud classifiers use either PointNet
or PointNet++ as their base method. These have an overall
accuracy score of 89.2 p.p. and 90.7 p.p., respectively (as
presented on the ModelNet40 benchmark rankings). However,
compared to the base methods the mechanisms by which the
explainable methods provide explanation result in a decrease
in overall accuracy: PointHop incurs a 0.6 p.p. decrease from
PointNet and 2 p.p. decrease from PointNet++, CLAIM sus-
tains a 2.1 p.p. decrease from PointNet and 3.6 p.p. decrease
from PointNet++, and PointMask experiences a 7 p.p. decrease
from PointNet and 8.5 p.p. decrease from PointNet++. With
our implementation of the KP-CNN, the base network alone
achieved baseline accuracies of 91.80% (overall accuracy) and
88.75% (mean accuracy). In comparison with this baseline
the XPCC produced on average an 0.02% increase to overall
accuracy and an 0.12 p.p. increase to mean accuracy. There-
fore, we believe XPCC to be the only explainable point set
classifier that leads to an increase in accuracy relative to the
base algorithm. In comparison with the previous explainable
approaches, the proposed method increased classification ac-
curacy by 2.7 p.p. (versus PointHop), 4.6 p.p. (versus CLAIM)
and 9.64 p.p. (versus PointMask).

As a further experiment for accuracy, we reversed the
test/train split (i.e., train on 2,468 samples and test on 9,843).
The XPCC achieved an overall accuracy of 96.97% and mean
accuracy of 95.46%. This would be far too few training sam-
ples to produce accurate results with the deep learning point-
set learning methods. This demonstrates that the proposed
method can achieve high accuracy with significantly less train-
ing data, although we do note that this particular experiment
negates any difficulties purposefully encoded within the test
set of the benchmark.

D. Analysis

Improvements to benchmark results are often marginal and
relying on these scores alone can sometimes ignore other
aspects of an algorithm which may be equally beneficial. As
such, we stress that accuracy is only one aspect of explainable
classifiers. Specifically, it has been shown that scores over 91%
on the ModelNet40 benchmark are sensitive to optimizations
that do not necessarily transfer to real world experiments [17],
[41]. To highlight this effect, we also pre-trained a Point-
Net++ network as feature extractor using the optimized data
augmentation described in [17]. In terms of overall accuracy

Authorized licensed use limited to: Lancaster University. Downloaded on February 17,2022 at 12:21:22 UTC from IEEE Xplore. Restrictions apply.

2691-4581 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3150647, IEEE
Transactions on Artificial Intelligence

8 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2022

TABLE II
PERFORMANCE COMPARISON AGAINST STATE-OF-THE-ART AND EXPLAINABLE POINT-SET DEEP LEARNING METHODS ON THE MODELNET40

BENCHMARK.

Method OA mAcc Training Time Device # of parameters Transparent Reproducibility Retraining
PointNet[7] 89.2 86.2 5+ h GPU 3.5 M No No Yes
PointNet++[8] 90.7 – 5+ h GPU 1.5 M No No Yes
PointHop[24] 88.65 83.3 ∼20 m CPU – Yes No Yes
CLAIM[47] 87.1 – – GPU – Yes No Yes
PointMask[25] 82.18 – – – – Yes – –
KP-CNN (rigid KPConv)[20] 91.80* 88.75 5+ h GPU 14.3 M No No Yes
xDNN[12] 89.42 86.37 ∼7s CPU P × 2 Yes Yes No
XPCC & KPConv (ours) 91.82 88.87 ∼2s (GPU) ∼6s (CPU) CPU/GPU P × 2 Yes Yes No
XPCC & PointNet++ (ours) 92.18 88.43 ∼2s (GPU) ∼4s (CPU) CPU/GPU P × 2 Yes Yes No

The highest result for each accuracy metric listed is in bold, where OA is the overall accuracy and mAcc is the mean accuracy. Training time is
the approximate time needed to train a method. The Device column reports the device typically required by the algorithm. In the number of parameters
column, P is the number of prototypes; M is million. For both XPCC and xDNN there are two parameters (µ and σ) per prototype. The Transparent
metric is conditional on the network’s ability to be interpreted or if it is a ‘black box’ method. The Reproducibility metric is conditional on if, given the
same training data, the network will always conclude the same predictions. The Retraining is conditional on if the network must be completely retrained in
order to add a new training sample. Metrics that are not reported by or cannot be understood from the source literature are marked using the ‘–’ notation.

* The authors of KPConv record an accuracy score of 92.9 in their publication, however we were unable to reproduce this score; this is not unique to
our experience [41]. Our retrained KP-CNN achieves an average accuracy score of 91.8.

this formulation of the XPCC does perform better than the
KPConv feature extractor on the benchmark’s defined test/train
split. However, the XPCC & PointNet++ configuration was
less accurate under the mean accuracy metric which takes
class balance into consideration. As shown in the Domain
Transfer sub-section, the features extracted by the KP-CONN
are demonstrated to be discriminative when applied generally.
For this reason, we opted for the more sophisticated KP-CNN
as feature extractor.

We list the number of parameters for all methods (if
available) in Fig.II. The deep learning methods that rely on
error-correction learning (e.g., backpropagation with gradient
descent) have millions of parameters, a characteristic that
extends to their derivative explainable methods. In comparison,
the xDNN and XPCC methods have two parameters for each
prototype, where the number of prototypes for our proposed
method is around 10% of the number of training samples seen
for a class.

The XPCC is significantly faster than all other methods.
Training took on average 6 seconds on a CPU and 2 seconds
on a GPU. This is thanks to the highly parallelizable structure
of the model: all the calculations are performed separately for
each class and, thus, can run simultaneously. In relation to the
other methods this translates into the XPCC being at least 9000
times faster to train than methods that took 5 hours, and 600
times faster than methods that took 20 minutes to train. This,
compounded with the fact that the XPCC does not need to
be completely retrained to add new classification types (i.e., it
learns continuously), demonstrates the efficiency and practical
applicability.

E. Domain Transfer

The XPCC method incorporates two varieties of domain
transfer: task-wise domain transfer and learning domain trans-
fer.

Task-wise domain transfer is intrinsic to the method. The
prototype-based internal structure of XPCC allows for a
trained model to be transferred to a new domain without a

complete retrain. Specifically, adding a new class requires
training the model on only the new data samples, rather than
a complete retrain. For example, if an XPCC model has been
trained to classify chairs and tables, the model only needs
to be updated with training samples of a new class, such
as televisions. Similarly, the model does not need to forget
previously learned classes when transferred.

To investigate the effectiveness of the learning domain
transfer and the approach to transfer learning, we assessed
the transferability of the fixed-CNN feature extractor in the
XPCC method. This experiment was conducted using the
ModelNet10 benchmark, by examining accuracy results when
applied on classes of objects not seen by the feature extraction
network. The fixed-CNN feature extractor network was trained
without access to one of the object classes. Then, the XPCC
model was trained on the full dataset (including that object
class) and validated using the ModelNet10 train-test data split.
In this way, only the XPCC model had any knowledge of
the hidden class and, therefore, not reliant on the fixed-CNN
having knowledge of that class of object. This process was
systematically repeated for each class within the ModelNet10
benchmark, and the average accuracy score recorded. In this
experiment, the XPCC & KP-CNN feature extractor achieved
an overall accuracy score of 91.38% for the hidden classes. We
performed the same experiment with the XPCC & PointNet++
feature extractor. This configuration achieved only an overall
accuracy score of 89.96% for the hidden class, giving a
1.42 p.p. decrease in accuracy; these results suggest that the
PointNet++ feature extraction method is not as discriminative
when applied generally. For this reason, we selected the more
sophisticated KP-CNN feature extractor, which makes the
XPCC method more viable for training and classifying atypical
3D point cloud object model classes.

F. Error Analysis

From examining the similarity scores between negatively
predicted samples and prototypes, it is clear there were some
limitations to the proposed method. A primary bottleneck of

Authorized licensed use limited to: Lancaster University. Downloaded on February 17,2022 at 12:21:22 UTC from IEEE Xplore. Restrictions apply.

2691-4581 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3150647, IEEE
Transactions on Artificial Intelligence

NICHOLAS I. ARNOLD et al.: AN IMPROVED EXPLAINABLE POINT CLOUD CLASSIFIER (XPCC) 9

the method is discerning between objects that share many
similar characteristics. As such, errors in the classification
are predominately from objects with subjective classification
labels, such as the distinction between a glass and vase or table
and desk. Other errors were from samples whose shapes are
similar, such as bench and sofa. This appears as a trend across
explainable 3D methods on the ModelNet benchmarks and
suggests that more contextual information is needed beyond
geometric shape. Additionally, semantic limitations present
within the ModelNet40 benchmark are arguably hard for a
human to discern between. For example, shapes that have
different semantic labels but are geometrically very similar,
such as the difference between a ‘flower pot’ (with a plant in
it) and a ‘plant’ (in a pot).

V. CONCLUSION

We proposed a new classification method, the explainable
Point Cloud Classifier (XPCC), for object classification within
3D point clouds. The proposed method is algorithmically and
structurally transparent, learns continuously, without the need
to be completely retrained at the addition of new classes,
and offers several layers of human-interpretable explainability.
This paper also presents a novel technique to visualize the
explainable aspects of the model, called Compound Prototype
Clouds (CPC). The technique is unique to 3D point clouds
and prototype-based learning and represents what the model
has learned. Specifically, it identifies object regions which
contribute to the classification. Experiments show that the pro-
posed classifier method is computationally efficient, trainable
on thousands of samples in seconds and is competitive with the
state-of-the-art in point set deep learning classifiers in terms
of classification accuracy. Furthermore, the proposed method
is the only explainable point set classifier that achieves higher
accuracy compared to the base network used. A limitation of
the proposed method is that classification relies on point clouds
containing only one object. In our future work, we will focus
on applying the method to real world data and extending the
method to other point-cloud specific objectives such as object
detection within a scene.

REFERENCES

[1] A. Barredo Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot,
S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina,
R. Benjamins, R. Chatila, and F. Herrera, “Explainable Artificial
Intelligence (XAI): Concepts, taxonomies, opportunities and challenges
toward responsible AI,” Information Fusion, vol. 58, pp. 82–115,
Jun. 2020. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1566253519308103

[2] R. B. Rusu, N. Blodow, and M. Beetz, “Fast Point Feature Histograms
(FPFH) for 3D registration,” in 2009 IEEE International Conference on
Robotics and Automation, May 2009, pp. 3212–3217, iSSN: 1050-4729.

[3] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3D recognition
and pose using the Viewpoint Feature Histogram,” in 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Oct. 2010,
pp. 2155–2162, iSSN: 2153-0866.

[4] A. E. Johnson and M. Hebert, “Surface matching for object
recognition in complex three-dimensional scenes,” Image and Vision
Computing, vol. 16, no. 9, pp. 635–651, Jul. 1998. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0262885698000742

[5] S. Bozinovski, “Reminder of the First Paper on Transfer Learning
in Neural Networks, 1976,” Informatica, vol. 44, no. 3, Sep. 2020,
number: 3. [Online]. Available: https://www.informatica.si/index.php/
informatica/article/view/2828

[6] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
and A. J. Smola, “Deep Sets,” Advances in Neural Information Pro-
cessing Systems, vol. 30, 2017. [Online]. Available: https://papers.nips.
cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html

[7] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “Pointnet: Deep
learning on point sets for 3d classification and segmentation,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 77–85.

[8] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: deep hierarchical
feature learning on point sets in a metric space,” in Proceedings of
the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,
Dec. 2017, pp. 5105–5114.

[9] C. Rudin, “Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead,” Nature
Machine Intelligence, vol. 1, no. 5, pp. 206–215, May 2019. [Online].
Available: https://www.nature.com/articles/s42256-019-0048-x

[10] E. A. Soares, P. P. Angelov, B. Costa, M. Castro, S. Nageshrao,
and D. Filev, “Explaining Deep Learning Models Through Rule-Based
Approximation and Visualization,” IEEE Transactions on Fuzzy Systems,
pp. 1–1, 2020, conference Name: IEEE Transactions on Fuzzy Systems.

[11] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K. Müller,
“Evaluating the Visualization of What a Deep Neural Network Has
Learned,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 28, no. 11, pp. 2660–2673, Nov. 2017, conference Name: IEEE
Transactions on Neural Networks and Learning Systems.

[12] P. Angelov and E. Soares, “Towards explainable deep neural
networks (xDNN),” Neural Networks, vol. 130, pp. 185–194, Oct.
2020. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0893608020302513

[13] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
Convolutional Neural Networks for 3D Shape Recognition,” 2015 IEEE
International Conference on Computer Vision (ICCV), 2015.

[14] X. Wei, R. Yu, and J. Sun, “View-GCN: View-Based Graph
Convolutional Network for 3D Shape Analysis,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).
Seattle, WA, USA: IEEE, Jun. 2020, pp. 1847–1856. [Online].
Available: https://ieeexplore.ieee.org/document/9156567/

[15] D. Maturana and S. Scherer, “VoxNet: A 3D Convolutional Neural
Network for real-time object recognition,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
Hamburg, Germany: IEEE, Sep. 2015, pp. 922–928. [Online]. Available:
http://ieeexplore.ieee.org/document/7353481/

[16] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “O-CNN:
Octree-based Convolutional Neural Networks for 3D Shape Analysis,”
ACM Transactions on Graphics, vol. 36, no. 4, pp. 1–11, Jul. 2017,
arXiv: 1712.01537. [Online]. Available: http://arxiv.org/abs/1712.01537

[17] A. Goyal, H. Law, B. Liu, A. Newell, and J. Deng, “Revisiting point
cloud shape classification with a simple and effective baseline,” 2021.

[18] Q. Xu, X. Sun, C.-Y. Wu, P. Wang, and U. Neumann, “Grid-GCN for
Fast and Scalable Point Cloud Learning,” 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

[19] L. Landrieu and M. Simonovsky, “Large-Scale Point Cloud Semantic
Segmentation with Superpoint Graphs,” in 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Jun. 2018, pp. 4558–4567,
iSSN: 2575-7075.

[20] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and
L. Guibas, “KPConv: Flexible and Deformable Convolution for Point
Clouds,” in 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), Oct. 2019, pp. 6410–6419, iSSN: 2380-7504.

[21] A. Boulch, “ConvPoint: Continuous convolutions for point cloud
processing,” Computers & Graphics, vol. 88, pp. 24–34, May 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0097849320300224

[22] B. Zhang, S. Huang, W. Shen, and Z. Wei, “Explaining the PointNet:
What Has Been Learned Inside the PointNet?” in CVPR Workshops,
2019.

[23] Y. Cao, M. Previtali, and M. Scaioni, “Understanding
3d Point Cloud Deep Neural Networks by Visualization
Techniques,” ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, vol.
XLIII-B2-2020, pp. 651–657, Aug. 2020. [Online]. Avail-
able: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/
XLIII-B2-2020/651/2020/

[24] M. Zhang, H. You, P. Kadam, S. Liu, and C.-C. J. Kuo,
“PointHop: An Explainable Machine Learning Method for Point Cloud
Classification,” IEEE Transactions on Multimedia, vol. 22, no. 7,

Authorized licensed use limited to: Lancaster University. Downloaded on February 17,2022 at 12:21:22 UTC from IEEE Xplore. Restrictions apply.

https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://www.sciencedirect.com/science/article/pii/S0262885698000742
https://www.informatica.si/index.php/informatica/article/view/2828
https://www.informatica.si/index.php/informatica/article/view/2828
https://papers.nips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://papers.nips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://www.nature.com/articles/s42256-019-0048-x
http://www.sciencedirect.com/science/article/pii/S0893608020302513
http://www.sciencedirect.com/science/article/pii/S0893608020302513
https://ieeexplore.ieee.org/document/9156567/
http://ieeexplore.ieee.org/document/7353481/
http://arxiv.org/abs/1712.01537
https://www.sciencedirect.com/science/article/pii/S0097849320300224
https://www.sciencedirect.com/science/article/pii/S0097849320300224
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2020/651/2020/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2020/651/2020/

2691-4581 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3150647, IEEE
Transactions on Artificial Intelligence

10 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2022

pp. 1744–1755, Jul. 2020, arXiv: 1907.12766. [Online]. Available:
http://arxiv.org/abs/1907.12766

[25] S. A. Taghanaki, K. Hassani, P. K. Jayaraman, A. H. Khasahmadi,
and T. Custis, “PointMask: Towards Interpretable and Bias-Resilient
Point Cloud Processing,” arXiv:2007.04525 [cs], Jul. 2020, arXiv:
2007.04525. [Online]. Available: http://arxiv.org/abs/2007.04525

[26] Y. Shen, C. Feng, Y. Yang, and D. Tian, “Mining Point Cloud Local
Structures by Kernel Correlation and Graph Pooling,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp.
4548–4557, iSSN: 2575-7075.

[27] J. Bien and R. Tibshirani, “Prototype selection for interpretable classifi-
cation,” The Annals of Applied Statistics, vol. 5, pp. 2403–2424, 2011.

[28] T. Kohonen, J. Kangas, J. Laaksonen, and K. Torkkola, “Lvqpak: A
software package for the correct application of learning vector quan-
tization algorithms,” in [Proceedings 1992] IJCNN International Joint
Conference on Neural Networks, vol. 1, 1992, pp. 725–730 vol.1.

[29] Meng Joo Er, Shiqian Wu, Juwei Lu, and Hock Lye Toh, “Face
recognition with radial basis function (RBF) neural networks,” IEEE
Transactions on Neural Networks, vol. 13, no. 3, pp. 697–710, May
2002, conference Name: IEEE Transactions on Neural Networks.

[30] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1464–1480, Sep. 1990, conference Name: Proceedings
of the IEEE.

[31] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D
ShapeNets: A deep representation for volumetric shapes,” in 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Jun.
2015, pp. 1912–1920.

[32] P. P. Angelov and X. Gu, Empirical Approach to Machine Learning,
ser. Studies in Computational Intelligence. Springer International
Publishing, 2019. [Online]. Available: https://www.springer.com/gp/
book/9783030023836

[33] P. J. Besl and N. D. McKay, “A Method for Registration of
3-D Shapes,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, no. 2, pp. 239–256, Feb. 1992. [Online]. Available:
https://doi.org/10.1109/34.121791

[34] P. P. Angelov and X. Gu, “Toward Anthropomorphic Machine Learning,”
Computer, vol. 51, no. 9, pp. 18–27, Sep. 2018, conference Name:
Computer.

[35] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi,
and F. Yu, “ShapeNet: An Information-Rich 3D Model Repository,”
arXiv:1512.03012 [cs], Dec. 2015, arXiv: 1512.03012. [Online].
Available: http://arxiv.org/abs/1512.03012

[36] M. Deuge, A. Quadros, C. Hung, and B. Douillard, “Unsupervised
feature learning for classification of outdoor 3D Scans,” Australasian
Conference on Robotics and Automation, ACRA, 2013.

[37] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuScenes: A Multi-
modal Dataset for Autonomous Driving,” 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

[38] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner, “ScanNet: Richly-Annotated 3D Reconstructions of Indoor
Scenes,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jul. 2017, pp. 2432–2443, iSSN: 1063-6919.

[39] T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner,
K. Schindler, and M. Pollefeys, “Semantic3d.net: A New Large-
Scale Point Cloud Classification Benchmark,” ISPRS Annals
of Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. IV-1/W1, pp. 91–98, May 2017. [Online]. Avail-
able: http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.
net/IV-1-W1/91/2017/

[40] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The KITTI vision benchmark suite,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition, Jun. 2012, pp. 3354–3361,
iSSN: 1063-6919.

[41] M. A. Uy, Q.-H. Pham, B.-S. Hua, D. T. Nguyen, and S.-K. Yeung,
“Revisiting Point Cloud Classification: A New Benchmark Dataset and
Classification Model on Real-World Data,” in International Conference
on Computer Vision (ICCV), 2019.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[43] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“Liblinear: A library for large linear classification,” J. Mach. Learn.
Res., vol. 9, p. 1871–1874, jun 2008.

[44] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, may 2011.
[Online]. Available: https://doi.org/10.1145/1961189.1961199

[45] H. Zhang, “The optimality of naive bayes,” in FLAIRS Conference, 2004.
[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

2017.
[47] S. Huang, B. Zhang, W. Shen, and Z. Wei, “A CLAIM approach

to understanding the PointNet,” in Proceedings of the 2019 2nd
International Conference on Algorithms, Computing and Artificial
Intelligence, ser. ACAI 2019. Association for Computing Machinery,
2019, pp. 97–103. [Online]. Available: https://doi.org/10.1145/3377713.
3377740

Authorized licensed use limited to: Lancaster University. Downloaded on February 17,2022 at 12:21:22 UTC from IEEE Xplore. Restrictions apply.

http://arxiv.org/abs/1907.12766
http://arxiv.org/abs/2007.04525
https://www.springer.com/gp/book/9783030023836
https://www.springer.com/gp/book/9783030023836
https://doi.org/10.1109/34.121791
http://arxiv.org/abs/1512.03012
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-1-W1/91/2017/
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-1-W1/91/2017/
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/3377713.3377740
https://doi.org/10.1145/3377713.3377740

