
Decentralised Data Flows for the
Functional Scalability of

Service-Oriented IoT Systems

Damian Arellanes
1
, Kung-Kiu Lau

2
and Rizos Sakellariou

2

1
School of Computing and Communications, Lancaster University, Lancaster LA1 4WA,

United Kingdom
2
Department of Computer Science, The University of Manchester, Manchester M13 9PL,

United Kingdom

Email: damian.arellanes@lancaster.ac.uk

Horizontal and vertical scalability have been widely studied in the context of
computational resources. However, with the exponential growth in the number of
connected objects, functional scalability (in terms of the size of software systems)
is rapidly becoming a central challenge for building efficient service-oriented IoT
systems that generate huge volumes of data continuously. As systems scale up, a
centralised approach for moving data between services becomes infeasible because
it leads to a single performance bottleneck. A distributed approach avoids such a
bottleneck but it incurs additional network traffic as data streams pass through
multiple mediators. Decentralised data exchange is the only solution for realising
totally efficient IoT systems, since it avoids a single performance bottleneck and
dramatically minimises network traffic. In this paper, we present a functionally
scalable approach that separates data and control for the realisation of decentralised
data flows in service-oriented IoT systems. Our approach is evaluated empirically,
and the results show that it scales well with the size of IoT systems by substantially
reducing both the number of data flows and network traffic in comparison with

distributed data flows.

Keywords: Internet of Things; Decentralised Data Flows; DX-MAN; Algebraic Service
Composition; Functional Scalability; Separation of Control and Data

1. INTRODUCTION

The Internet of Things (IoT) is penetrating essential
domains of our daily life such as healthcare, security
or city management. This emerging paradigm promises
the seamless interconnection of any physical object
(i.e., thing) through innovative distributed services,

leading to service-oriented IoT systems.
3

A proper
service composition mechanism is thus required for the
integration of IoT services into workflows that consist of
both control flow and data flow [1]. Control flow refers
to the order in which services are executed, whilst data
flow defines how services move data over the network.

As of early 2021, there are over 20 billion connected
things and it is predicted that this number will
exponentially grow in the next few years [2, 3, 4].
Hence, as IoT systems may potentially consist of an
overwhelmingly large number of services, functional
scalability becomes a challenging concern. Unlike
vertical and horizontal scalability, functional scalability

3
For the rest of the paper, the terms IoT system and service-

oriented IoT system are used interchangeably.

accommodates growth in terms of the number of services
composed in an IoT system [1]. To tackle the functional
scalability challenge, a service composition mechanism
must provide the means to compose loosely-coupled
services that exchange data as efficiently as possible over
the network.

IoT services can exchange data in three different ways:
(i) with a centralised coordinator, (ii) with multiple
distributed coordinators or (iii) in a purely decentralised
manner. A centralised approach [5] relies on a single
coordinator to mediate data streams between services.
Although this is viable for enterprise scenarios where
small amounts of data are involved, the coordinator
would easily become a bottleneck in IoT systems that
generate data in the order of Petabytes. To avoid the
central bottleneck, a distributed approach [6] can be used
for balancing loads over multiple coordinators. However,
this would cause network performance degradation as
data passes through multiple mediators before reaching
the actual data consumers.

A decentralised approach is the most efficient way
to exchange data as it enables direct data exchanges

The Computer Journal, Vol. ??, No. ??, ????

2 D. Arellanes et al.

from producers to consumers, thereby decreasing latency
and maximising throughput [7, 8, 9, 10, 11, 12, 13,
14]. However, exchanging data among loosely coupled
IoT services is not trivial, especially in resource-
constrained environments where things have poor
network connection and low disk space [7]. Furthermore,
building data dependency graphs is hard when control
flow and data flow are tightly coupled (i.e., when
data follows control). To overcome such issues, recent
research [15, 16, 17, 8, 18, 1] shows that the separation
of control and data can be useful since it allows
independent reasoning, monitoring, maintenance and
evolution of control flow and data flow. Consequently, an
efficient data exchange approach can be defined without
considering control, so a reduced number of messages
can be transmitted over the network.

1.1. Related Work

This section presents and analyses related work on
decentralised data flows in service-oriented systems.
We classify the existing approaches into three major
categories, depending on the composition mechanism
they are built on: (i) orchestration (with coordinated
data exchanges), (ii) P2P dataflows and (iii) P2P
choreography.

In orchestration-based approaches [19, 20, 21, 11], a
central orchestrator coordinates system execution by
passing data references alongside control. Although
data values do not follow control like in traditional
orchestration [22, 23], additional network traffic is
introduced since references and acknowledgement
messages are routed via the network. This additional
network traffic arises from the fact that orchestration-
based approaches do not separate data and control.

Dataflows is a composition mechanism that builds a
graph of data transformations, where vertices receive
data, perform some computation and pass the result(s)
to other vertices via data flow edges [24, 25]. Such data
exchanges can be done with or without mediators. In
P2P dataflows [14, 26, 27, 28, 29], services exchange
data with no mediators between them [1]. As control
flow is implicit in the collaborative exchange of data,
P2P dataflows do not separate data and control.

Service choreography describes decentralised interac-
tions among participants using a well-defined public
protocol. In P2P choreography, atomic services are par-
ticipants that exchange data via direct message passing
[30]. Some approaches [13, 31] introduce proxies to co-
ordinate the invocation of services and the exchange of
data alongside control. In any case, P2P choreography
does not separate data and control.

Table 1 summarises our analysis of related work, where
it is clear that there is no approach supporting the
separation of control and data for realising decentralised
data flows between atomic services, in order to efficiently
support environments that generate huge volumes of
data continuously. Furthermore, existing approaches

only consider vertical and horizontal scalability. It is
important to mention that the separation of concerns
does not imply decentralisation but provides a number
of benefits. Particularly, the separation is necessary
to avoid passing references alongside control during
system execution, thus, reducing the number of messages
transmitted over the network. Also, the orthogonality of
data and control enables separate reasoning, monitoring,
maintenance, reuse and evolution of those concerns, as
discussed in other studies [1, 8].

In the analysis above, we did not consider
decentralised orchestration, coordinated dataflows and
choreographed orchestration, since those approaches do
not support decentralised data flows between atomic
services. Nevertheless, for completeness, we analyse
those categories below.

In approaches built on top of decentralised orches-
tration, multiple composite services coordinate system
execution [10, 9, 32, 12]. In particular, approaches like
[32] persist data on distributed data spaces which may
become a bottleneck in IoT environments where services
exchange huge volumes of data continuously. Although
some works (e.g., [12]) solve the bottleneck issue by
persisting references instead of values, they require the
maintenance of tuple spaces and databases for moving
references and storing data, respectively. Moving refer-
ences is necessary because decentralised orchestration
does not separate data and control. Paradoxically, de-
centralised orchestration does not support decentralised
dataflows between atomic services.

In coordinated dataflows [33], a master composite
coordinates data flows between slave composites. As
data passes through multiple mediators, this approach
introduces unnecessary network hops (like decentralised
orchestration). This problem is also present in [34] which
introduces the notion of abstract data types for moving
data outside services. Discovery Net [35] and Kepler
[36] are workflow systems that implement the semantics
of coordinated dataflows, which provide mechanisms to
coordinate the execution of (disjoint) data flow graphs.
Discovery Net allows the definition of a control flow
graph where nodes exchange control tokens instead of
data values. Nodes can be data flow graphs per se. In
Kepler, a director is a semantic entity that controls
data exchanges from outside a data flow graph. These
systems do not support decentralised data flows because
their workflow execution mechanisms are centralised [9].

In choreographed orchestration, data passes through
multiple orchestrator participants leading to network
degradation [37]. To separate control and data, [8]
proposes a choreographed orchestration approach that
allows the manual modelling of cross-partner data
dependencies. However, there are no decentralised
data flows between atomic services, but only between
partners.

The Computer Journal, Vol. ??, No. ??, ????

Decentralised Data Flows for the Functional Scalability of Service-Oriented IoT Systems 3

TABLE 1: Analysis of related work.

Approach Separation of Data and Control Functional Scalability Decentralised Dataflows

Orchestration with Coordinated Data Exchanges × × ✓
P2P Dataflows × × ✓

P2P Choreography × × ✓
Our Approach ✓ ✓ ✓

1.2. Paper Contributions

This paper proposes a functionally scalable approach
that semantically separates data and control, in order to
decentralise data flows between atomic services in IoT
systems. Accordingly, this paper makes the following
contributions:

• We propose an (implementation-independent)
service composition model that semantically
separates data and control by so-called data forests.
The semantics allows the encapsulation of explicit
control flow graphs and explicit data dependency
graphs. As graphs are orthogonal, the semantics
enables a separate reasoning and analysis of data
and control.

• We propose an efficient algorithm that leverages the
model semantics for a compositional analysis of data
forests. The algorithm analyses a data dependency
graph, without considering control flow, for the
automatic construction of a decentralised mapping
between data consumers and data producers. The
algorithm reduces both the number of data flows
and network traffic of an IoT system.

• Unlike the state-of-the-art on decentralised data
flows, we evaluate the proposed approach in
terms of functional scalability. The evaluation is
implementation-independent and shows that the
approach scales well with the number of services
by reducing the number of data flows linearly and
network traffic logarithmically.

1.3. Paper Organisation

The rest of the paper is organised as follows.
Section 2 presents a motivating scenario to explain why
decentralised data flows are a crucial desideratum in the
IoT domain. Section 3 presents an overview of the model
semantics and a detailed description of the proposed
approach. Section 4 presents the implementation of
the proposed solution. Section 5 presents a case
study. Section 6 presents a comparative evaluation of
decentralised data flows versus distributed data flows
in the case study. Section 7 outlines an evaluation of
the proposed approach in terms of functional scalability.
Section 8 outlines the conclusions. Appendices A and B
formalise our motivating scenario. Appendix C describes
an example of the deployment-time process. Appendix D
presents a source code fragment of our implementation.
Appendix E presents the notation used throughout the
paper.

2. WHY DO WE NEED DECENTRALISED
DATA FLOWS IN IOT?

This section discusses the rationale for enabling
decentralised data flows in IoT, with the help of a
scenario based on the smart parking system presented
in [1] and real-world occupancy data from car parks in
Birmingham, UK (see Appendix A). The system is used
by drivers who want to find the nearest parking space
while they drive around a smart city. The workflow
for this scenario is a combination of the reduce and the
sequential data patterns and involves the services shown
in Fig. 1. Although data passes through operations, we
consider that it is routed between services as there is a
one-to-one relationship between services and operations.
For simplicity, we assume that services are deployed on
different things, e.g., the Availability Checking Service
is deployed on an infostation while the Space Finding
Service is deployed on an edge router. An infostation is
an urban infrastructure device that collects up-to-date
status from all occupancy sensors in range. We assume
that all parking spaces are equipped with occupancy
sensors whose functionality is abstracted by a Sensor
Service.

...

getState

Sensor Service

Parking Spot 1

getState

Sensor Service

Parking Spot 2

getState

Sensor Service

Parking Spot 577

getFreeSpaces

Availability Checking

Service

InfoStation

getUnreservedSpaces

Reservation

Service

City Council Cloud

computeDistance

Mapping Service

Geospatial Cloud

getNearestSpace

Space Finding

Service

Edge Router

State 2

Parking Spaces

(List)

Free

Parking

Spaces

(List)

Free and

Unreserved

Parking Spaces

with Distances

(List)

Car Gateway
Coordinates of the

Nearest Parking

Space

State 577

State 1

Thing

Operation

Data Origin Data Reducer Data FlowCar Control App

Reducer1

IoT Service

get

GPS Reducer2

Car

Coords.

Free, Unreserved

Parking Spaces

(List)

FIGURE 1: Workflow of the Smart Parking System.

The workflow of our scenario is triggered by a driver’s
request, and it starts with two parallel tasks. In the first
one, the Data Reducer 2 receives the driver’s coordinates
from the GPS Service. In the second one, the Data
Reducer 1 pulls the states from multiple Sensor services
to create a list that shows the status of parking spaces.
Then, the Availability Checking Service uses the list to
determine which parking spaces are free. As some spaces
can be reserved in advance, the Reservation Service
determines which free parking spaces are unreserved,
and passes its resulting list to the Data Reducer 2. Once
the Data Reducer 2 receives all its inputs, it forwards
them to the Mapping Service. The Mapping Service

The Computer Journal, Vol. ??, No. ??, ????

4 D. Arellanes et al.

then computes the distance between each (free and
unreserved) space and the driver’s location, and appends
the distances to the list. Finally, the Space Finding
Service determines the nearest parking space for the
driver, using the calculations from the Mapping Service.
The coordinates of the nearest parking space are the
final result of the workflow, and are passed to the car
control application.

As the number of occupancy sensors could be huge,
especially in large cities, the services of the smart
parking system may potentially exchange vast amounts
of data continuously. This is because there is a one-
to-one mapping between sensors and services, and
occupancy sensors are frequently producing data. Thus,
functional scalability becomes a challenging concern.
To understand how we can address this problem, we
analyse the three existing approaches for passing data
between the services of our scenario (see Fig. 2). For
simplicity, we do not show control flow and we assume
that there is no data required for both pulling sensor
data and starting the execution of the system (from the
car control application).

In our scenario, there are 373 drivers arriving to
the car park BHMBCCMKT01 between 07:59:45 and
16:26:47 on a given day (see Appendix A). This car park
has 577 occupancy sensors each producing 100 bytes,
so there are 577 ⋅ 100 = 57.7 KB of sensor data per
driver request. The number of bytes returned by the
Availability Checking Service, the Reservation Service
and the Mapping Service are computed by the functions
SA(t), SR(t) and SM(t), whose definitions are presented
in Appendix B. For simplicity, we assume that the GPS
Service and the Space Finding Service always return 40
bytes for the coordinates of a driver and a nearest space,
respectively.

We refer the reader to Appendix A for details about
the data set and the formalisms used in our scenario.
Appendix B presents the calculations for the total
data transmitted over the network, considering that
there are 373 drivers between 07:59:45 and 16:26:47.
These calculations are presented for each data exchange
approach depicted in Fig. 2. Below we interpret the
results.

A centralised approach [38, 39, 5] depends on a single
coordinator for passing data between services. Fig. 2(a)
shows how a central coordinator mediates data streams
for the smart parking system. The main drawback of
this approach is that such a coordinator is a potential
bottleneck (as huge amounts of data are exchanged) and
introduces an extra network hop for passing data. This
approach is therefore a threat for scalability as pointed
out by many researchers [7, 8, 11, 14]. Furthermore, IoT
may potentially require the deployment of coordinators
on resource-constrained things (e.g., edge devices) which
can lead to bottlenecks due to the presence of low
computing power and poor network resources [7]. For
instance, the central coordinator of our scenario is
deployed on an edge device which manages ∼102.98MB

get

GPS

FIGURE 2: Data flow approaches for the Smart Parking
System.

of data over the network using a poor connection (see
Equation 5 in Appendix B). Certainly, this impacts
the overall performance of the system negatively. This
is especially true in large cities with multiple drivers
requesting a space at the same time.

Although a distributed approach [40, 41, 33] removes
the central coordinator, it introduces unnecessary
network traffic as data passes through multiple
mediators, even if data is unimportant for them. For
example, in Fig. 2(b) the data generated by the
Availability Checking Service goes through Coordinator1
and then through Coordinator2, before reaching the
service that really needs the data (i.e., the Reservation
Service). These additional network hops negatively
impact the overall performance of the system.

For our scenario, the distribution of data load among
three coordinators avoids a single bottleneck. However,
as coordinators mediate interactions, ∼123.36 MB of
data is exchanged over the network (see Equation 5

The Computer Journal, Vol. ??, No. ??, ????

Decentralised Data Flows for the Functional Scalability of Service-Oriented IoT Systems 5

in Appendix B), leading to ∼19.80% more network
traffic than the centralised approach (see at the bottom
of Appendix B). In fact, this indicates that the
network traffic may increase linearly with the number
of coordinators.

The decentralised data exchange approach [7, 8, 11,
13] is the most efficient one, since data is passed directly
to the services that actually need it. Particularly, it
requires only one network hop to pass data from a data
producer to a data consumer, as depicted in Fig. 2(c).
The decentralised version of our scenario requires a
total data transfer of ∼51.49MB over the network (see
Equation 7 in Appendix B), i.e., ∼50.00% less network
traffic than the centralised approach and ∼58.26% less
traffic than the distributed one (see at the bottom of
Appendix B).

3. THE DX-MAN MODEL

To realise decentralised data flows, we propose to extend
the semantics of DX-MAN [42, 43, 44], which is an
algebraic model for building IoT systems, where services
and exogenous composition operators are first-class
semantic entities (see Fig. 3).

(a) Atomic
 Service

SA

FIGURE 3: DX-MAN Model.

A service S ∈ S is a stateless distributed unit of
composition that can be atomic or composite. Its
semantics is a workflow space W ∈W which is a (finite or
infinite) set of workflow control flow variants wi∈[1,∞] ∈
W that represent alternative service behaviours:

S ≡W ≡ {w1, w2, . . .} (1)

where S is the service type and W is the workflow space
type.

An atomic service is syntactically formed by
connecting an invocation connector with a computation
unit which encapsulates the implementation of multiple
operations and it is not allowed to invoke other units
(see Fig. 3(a)). Semantically, this is equivalent to
constructing an atomic workflow space whose variants
invoke different operations in the computation unit via
the invocation connector. An operation performs some

computation and has an input parameter and an output
parameter.

The DX-MAN model relies on algebraic composition
for defining complex services. Algebraic composition
is the process by which a composition operator
hierarchically composes multiple services of type S into
a composite service of type S which, in turn, can be
further composed into even more complex composites
(see Fig. 3(b)) [44]. A composition operator defines
control flows exogenously (i.e., outside the composed
services) to avoid service dependencies. Formally, it is a
function ○ for n services with the following type:

○∶Sn → S (2)

A composite service is syntactically formed by
connecting a composition operator with multiple
(atomic and/or composite) services, which has an input
parameter and an output parameter (see Fig. 3(c)).
Semantically, it is a composite workflow space produced
by a composition operator taking sub-workflow spaces
as operands. There are composition operators for
sequencing (i.e., sequencer), branching (i.e., inclusive
selector and exclusive selector) and parallelism (i.e.,
paralleliser). A sequencer or a paralleliser defines an
infinite workflow space, whilst a branching operator
defines a finite one.

SC

opA1 SBopAj
[orderList] [orderList] [orderList]

SC

opA1 SBopAj
|tasks#| |tasks#| |tasks#|

SC

opA1 SBopAj
condition condition condition

SC

opA1 SBopAj
~0/1~

condition

~0/1~ ~0/1~

(a) Sequencer Operator (b) Paralleliser Operator

(c) Inclusive Selector Operator (d) Exclusive Selector Operator

...

... ...

...

FIGURE 4: Abstract workflow trees for the composite
service shown in Fig. 3, when ○C is (a) a sequencer
operator, (b) a paralleliser operator, (c) an inclusive
selector operator or (d) an exclusive selector operator.

The control flow structure of a composite service is
represented by an abstract workflow tree whose leaves
are operations in atomic sub-services, whole composite
sub-services or any combination thereof (see Fig. 4).
An abstract workflow tree allows the definition of a
particular variant from a composite workflow space.
To do so, a concrete workflow tree must be created,
which is a selection function over a set of workflow
variants, and it is therefore isomorphic to an abstract
workflow tree. The edges of a concrete workflow tree are
labelled according to the composition operator used. In
particular, the label of a sequencer edge is an ordered
list of natural numbers and the label of a paralleliser
edge is a natural number (representing the amount of
parallel tasks). For the edges of an inclusive selector
and an exclusive selector, the labels are conditions and

The Computer Journal, Vol. ??, No. ??, ????

6 D. Arellanes et al.

boolean values, respectively. An exclusive selector also
has an associated global condition. For further details
on workflow selection, see [42, 43].

3.1. Separation of Control Flows and Data
Flows

IoT service composition can be endogenous or exogenous,
depending on control flow origin [45]. Endogenous
composition is used by P2P choreographies which mix
service computation (i.e., operations) with control flow
constructs (see Fig. 5(a)). By contrast, exogenous
composition relies on coordinators that define control
flow outside the computation of composed services (see
Fig. 5(b)). This composition approach is used by
orchestration and by DX-MAN. Unlike its counterpart,
exogenous composition avoids control flow dependencies
between services and facilitates reuse at scale [46, 47, 29,
44, 36]. It also avoids application logic being embedded
in the computation of multiple atomic services, thereby
facilitating tracking and monitoring which are crucial
desiderata of functional scalability [1, 48].

SA

opA

SB

opB

Coordinator

SA

opA

SB

opB

Control Origin
Control Flow

(a) Endogenous Composition (b) Exogenous Composition

FIGURE 5: Endogenous composition vs exogenous
composition.

Despite the above advantages, exogenous composition
suffers from performance issues when data follows control
[11, 14, 49]. This is because coordinators mediate
data streams even for data that is unimportant for
them (see Figs. 2(a) and 2(b)).

4
To address this

problem, we propose to define control flow and data
flow as orthogonal dimensions (see Fig. 6). The idea is
that coordinators (i.e., composition operators) never
exchange data during workflow execution, but only
control.

Control Flow

and

Data Flow
Computation

Control

Flow

Data Flow

Computation

(a) Mixing Data and Control (b) Separating Data and Control

FIGURE 6: Possible DX-MAN dimensions. This paper
proposes an approach for realising (b).

In DX-MAN, a workflow is defined by a concrete
workflow tree (see Fig. 7(b)). It has an input parameter
and an output parameter, and describes a series of steps
for the invocation of operations in atomic services, sub-

4
Section 2 provides a running example to describe the problem

of coordinated data exchanges when using exogenous composition.

workflows or any combination thereof.
5

Fig. 7(c) shows
an example of a sequential workflow for the invocation
of the operation opA (provided by the atomic service
SA) and the operation opB (provided by the atomic
service SB). This workflow variant results from the
composition depicted in Fig. 7(a) where the atomic
services SB and SC are composed into the composite SD
by the sequencer operator ○D. Likewise, the sequencer
operator ○E composes SA and SD into the top-level
composite SE . For each composite, we select a workflow
with a different concrete workflow tree. Note that a
DX-MAN composition is done in a hierarchical bottom-
up manner and, although there are infinite sequential
workflow variants, we describe only one of them for the
sake of this paper. Also note that the workflow invoking
opB is a sub-workflow of the top-level one. This is
because SD is composed into SE .

FIGURE 7: Relationship between DX-MAN composi-
tions and IoT workflows.

A workflow execution traverses a control flow tree
from top to bottom and then returns backwards (see
Fig. 8). Thus, the execution of the workflow depicted
in Fig. 7(c) starts with the activation of ○E which
sequentially passes control to the invocation connector

5
As a DX-MAN workflow is semantically equivalent to an

orchestration, a DX-MAN composite is equivalent to a (potentially)
infinite number of orchestrations.

The Computer Journal, Vol. ??, No. ??, ????

Decentralised Data Flows for the Functional Scalability of Service-Oriented IoT Systems 7

A and then to ○D. The latter just forwards control to
the invocation connector B. Once they are triggered,
invocation connectors execute an operation in their
computation unit.

D

SA

SE

SB SC

SD

o
iD
oD

i

o
iE
oE

i

(a) Data follows control

D

SA

SE

SB SC

SD

o
iD
oD

i

o
iE
oE

i

(b) Data does not follow control

FIGURE 8: Possible executions of the workflow shown
in Fig. 7(c) when control flows and data flows are (a)
mixed or (b) orthogonal. In (a), composition operators
(i.e., coordinators) mediate data streams, even if data
is unimportant for them. In (b), data is passed directly
between atomic services. This paper proposes an
approach to realise (b).

If data follows control, it passes through the
composition connectors ○E and ○D (see Fig. 8(a)).
Thus, to avoid such inefficient executions, we propose
an approach that enables decentralised data exchanges
between atomic services by the separation of control and
data (see Fig. 8(b)). Our approach is described below.

3.2. Design-time: (Semantic) Data Forest
Definition

A DX-MAN system is a workflow control flow variant
with an orthogonal data forest. The latter is a graph
of directed data dependency trees defined on service
composition at design-time, whose edges define an
explicit relationship between parameters. Formally, a
data forest is a graph F ≔ (V (F), E(F)) s.t. V (F) is a
(finite or infinite) set of parameter vertices and E(F) is
a (finite or infinite) set of edges. As a vertex v ∈ V (F)
is of type D, an edge e ∈ E(F) is a tuple of type D × D
where D is the parameter type.

For a paralleliser, the workflow input is connected to
the inputs of all the invoked elements (i.e., operations
or sub-workflows) whose outputs are, in turn, connected
to the workflow output. In this paper, we only describe
how parallel and sequential data forests are formed,
since decentralised data flows are only meaningful for
parallelism and sequencing. For a sequencer, the

connection of vertices forms a data pipeline, so the
output of an invoked element is connected to the input
of the next invoked element. Additionally, the workflow
input is connected to the input of the first invoked
element, and the output of the last invoked element is
connected to the workflow output.

Fig. 9 analyses thoroughly the composition depicted in
Fig. 7. It shows the sequential workflow variants and the
data forests for the composites SD and SE . Such forests
conform to the rules described for a sequencer. The
analysis is segmented because every composite in the
DX-MAN model is a black box that can have any possible
behaviour out of the alternative ones. Thus, as there are
no (bridge) connections between data dependency trees
of different forests, data is encapsulated in composite
services. Therefore, composites (with all their workflows
and data forests) are reusable across different IoT
systems.

Workflow Variant

FIGURE 9: Separation of Control and Data in
sequential composites. Control constructs and data
dependencies are explicitly defined by exogenous
composition operators and data forests, respectively.

Reusability is also present in the composite depicted in
Fig. 10(a), which shows an example where the paralleliser
○Z composes the atomic services SX and SY into the
composite SZ . In this example, we define a concrete
workflow tree for executing all the sub-service operations
in parallel. The resulting workflow has a fork construct
to pass control in parallel to opX and opY, and a join
construct to synchronise control flow. Choosing this
workflow implies that there is a data forest conforming
to the rules previously described for a paralleliser (see
Fig. 10(b)).

Although decentralised data flows are only meaningful
for parallelism and sequencing, for completeness we
describe how branchial data forests are formed. For
both exclusive and inclusive selectors, the corresponding
connection scheme is isomorphic to the one defined for a

The Computer Journal, Vol. ??, No. ??, ????

8 D. Arellanes et al.

SX SY

SZ

o
iZ
oZ

i

Workflow Variant Data ForestConcrete Workflow Tree

F

FIGURE 10: Separation of control and data in a parallel
composite. Parallel constructs (i.e., fork and join) and
data dependencies are explicitly defined by exogenous
composition operators and data forests, respectively.

paralleliser in which the workflow input is connected to
the inputs of all the invoked elements, and the outputs
of the elements are connected to the workflow output
(see Fig. 10(b)). This connection is done to ensure that
there is an output value no matter the execution branch
taken.

3.3. Deployment-time: Data Forest Refinement

At deployment-time, a data forest can be (manually)
refined in three different ways: (i) by adding or
removing edges, (ii) by adding input data into exogenous
operators or (iii) by introducing data processors. These
refinements are entirely optional with the overall aim
of providing extra flexibility for system modellers. To
understand them, we consider the data forest of the
composite SE (shown in Fig. 9):

FE ≔ ({iE, oE, iA, oA, iD, oD},
{(iE, iA), (oA, iD), (oD, oE)})

where iE, oE, iA, oA, iD, oD ∈ D.
For all the scenarios, we show how edges and vertices

change with respect to the original data forest (see
Fig. 11(a)).

3.3.1. Edges Refinement
Refining edges is useful for changing data relationships
and optimising data flows. For instance, the edge
(iE, iA) can be removed when the operation opA does
not need any data to perform computation. Similarly, by
replacing (oA, iD) with (iE, iD), the sub-workflow SD
receives data from the top-level input instead of getting
it from opA (see Fig. 11(b)). Formally, E(FE) becomes
E(FE) \ {(iE, iA), (oA, iD)} ∪ {(iE, iD)}.

o Output

i Input

Data Forest

FIGURE 11: Data forest refinement.

3.3.2. Exogenous Operator Refinement
Although they do not perform any computation,
exogenous operators might require input values to
evaluate boolean conditions at run-time. By default,
exogenous operators do not have any parameters, but
parameters can be added for a specific workflow. To
do so, new vertices are added into the respective data
forest and connected manually at the discretion of
the modeller. Edge connections must conform to the
rules described in [49]. Fig. 11(d) shows an example
of this kind of refinement, where iO ∈ D represents
the input parameter of the composition operator that
coordinates the execution of the workflow SE . Formally,
V (FE) becomes V (FE) ∪ {iO} and E(FE) becomes
E(FE) ∪ {(iE, iO)}.

3.3.3. Data Processor Refinement
Data processors can be introduced in a data forest to
perform intermediate processing. A data processor
is a function that receives at least one input data,
performs some custom computation and stores result(s)
in at least one output (see Fig. 11(c)). By introducing
data processors, we avoid tangling with the original
workflow control flow of an IoT system. Although the
DX-MAN model currently supports the most common
data patterns (i.e., map-reduce and filtering), other data
processors can be defined using the same semantics. For
instance, a replicator could be introduced to copy data
to multiple parameters.

Fig. 11(e) customises FE by filtering the data gener-
ated by opA before sending it to the sub-workflow SD.
Formally, V (FE) becomes V (FE)∪{iF, oF} and E(FE)
becomes E(FE) \ {(oA, iD)} ∪ {(oA, iF), (oF, iD)}
s.t. iF, oF ∈ D are the filter parameters. Fig. 11(f)
shows another refinement, where a mapper collects
data from both opA and the parent workflow to

The Computer Journal, Vol. ??, No. ??, ????

Decentralised Data Flows for the Functional Scalability of Service-Oriented IoT Systems 9

create a list of transformed key-value pairs. The
list is then processed by a reducer which produces
an output in a suitable format for SD. Formally,
V (FE) becomes V (FE) ∪ {iM, iM

′
, oM, iR, oR} and

E(FE) becomes E(FE) \ {(iE, iA), (oA, iD)} ∪
{(iE, iM ′), (oA, iM), (oM, iR), (oR, iD)} s.t.
iM, iM

′
, oM ∈ D are the mapper parameters and

iR, oR ∈ D are the reducer parameters.

3.4. Deployment-time: Data Forest Analysis

Once data forests have been defined and refined (if
needed), a direct mapping between consumer parameters
and producer parameters is created. To describe our
approach, some formal notations are provided.

Notation 1. Let Π1∶D × D → D be the tail map of a
forest edge.

Notation 2. Let Π2∶D × D → D be the head map of a
forest edge.

Notation 3. Let PI be the processor input type, PO the
processor output type, OI the operation input type, OO
the operation output type, WI the (top-level) workflow
input type, WO the (top-level) workflow output type
and EI the type of an exogenous operator input s.t.
PI,PO,OI,OO,WI,WO,EI ⊂ D.

Notation 4. Let Vc be the type of vertices that consume
data on workflow execution, namely service operation
inputs, exogenous operator inputs, data processor inputs
and top-level workflow outputs s.t. Vc ≔ OI∪EI∪PI∪
WO. Top-level workflow outputs contain the resulting
data from an IoT system execution.

Notation 5. Let Vp be the type of vertices that produce
data on workflow execution (i.e., operation outputs and
data processor outputs) as well as vertices representing
input data of top-level workflows s.t. Vp ≔ OO∪PO∪WI.
Top-level workflow inputs are the data needed for an
IoT system execution.

Notation 6. Let ς ⊂ (Vc × Vp) be a binary relation
(i.e., a mapping) between some consumer parameters
and some producer parameters.

Notation 7. Let ρ ⊂ (Vp × Vc) be a binary relation
(i.e., a mapping) between some producer parameters and
some consumer parameters.

Our approach analyses the edges of all the data forests
of an IoT system, from bottom to top with a complexity
of O(k) s.t. k is the total number of edges in a multi-level
composition (see Fig. 12). As they do not require any
data manipulation, workflow parameters (i.e., composite
service parameters) are discarded by transforming the
binary relations ς and ρ each time an edge is analysed.
When all edges have been processed, ς is the result of our
approach, i.e., a direct mapping from data consumers
to data producers.

A
n
a
ly

s
is

 T
im

e
lin

e

SA

SE SF

SC SD

SG

SB
Level 0

Level 1

Level L

FIGURE 12: Bottom-up analysis of data forests: from
level 0 to level L. The algorithm analyses the data
forests of the composite services at level 0, then the data
forests of the composite services at level 1, and so on
until reaching the data forests of the top-level composite
at level L.

We have designed Algorithm 1 to analyse individual
data forest edges. The algorithm uses the sets Xp ⊂ D
and Yc ⊂ D to process the endpoints of an edge e ∈ D×D.
The elements of these sets are determined according to
two fundamental rules. The first one is shown in lines 4-
7. It states that Xp is the set of vertices connected to the
tail parameter Π1(e) if the tail is not a data processor
parameter and has incoming connections; otherwise, Xp

only contains the tail. The second rule is shown in
lines 8-13. It states that if the head parameter Π2(e) is
not in a data processor and has outgoing connections,
then (i) Yc has the vertices connected from the head
parameter and (ii) Xp (without the head parameter)
is the set of additional producers for each consumer
y ∈ Yc. Otherwise, Yc just contains the head parameter
Π2(e) and the elements of Xp are additional producers of
Π2(e). After processing the above rules, the relation ρ is
updated to map each producer x ∈ Xp to each consumer
y ∈ Yc. Appendix C presents a simple example using
this algorithm. A more detailed example is presented in
Section 5.

Algorithm 1 Algorithm for edge analysis

1: procedure analyse(e ∈ D × D, ς, ρ)
2: Xp ≔ ∅ ▷ Xp ⊂ D
3: Yc ≔ ∅ ▷ Yc ⊂ D
4: if Π1(e) ∉ (PI ∪ PO) ∧Π1(e) ∈ dom(ς) then
5: Xp ≔ {b ∶ (a, b) ∈ ς ∣ a = Π1(e)}
6: else
7: Xp ≔ {Π1(e)}
8: if Π2(e) ∉ (PI ∪ PO) ∧Π2(e) ∈ dom(ρ) then
9: Yc ≔ {b ∶ (a, b) ∈ ρ ∣ a = Π2(e)}

10: ς ≔ ς \ {(a,Π2(e)) ∶ a ∈ Yc} ∪ (Yc ×Xp)
11: else
12: Yc ≔ {Π2(e)}
13: ς ≔ ς ∪ {(Π2(e), b) ∶ b ∈ Xp}
14: ρ ≔ ρ ∪ (Xp × Yc)

The Computer Journal, Vol. ??, No. ??, ????

10 D. Arellanes et al.

4. IMPLEMENTATION

The DX-MAN platform [50] implements the semantics
of the DX-MAN model and provides Java APIs to
algebraically compose, deploy and execute IoT systems.
Our approach is implemented on top of that platform
and uses the Blockchain as the underlying decentralised
data space. Please note that a Blockchain platform
is just a possible implementation of a decentralised
data space. Other possible implementations include
OpenLink Data Spaces (ODS), ZeroMQ messaging,

a shared memory for IoT or even Apache Storm.
6

We chose a Blockchain implementation to ensure data
ownership for every service and data provenance for
discovering data flow histories. Furthermore, we
guarantee an extra layer of performance, security and
auditability. It is important to note that we do not
claim any contributions in terms of implementation.
Our implementation is just for validation purposes.

Our approach uses Hyperledger Fabric 1.2 as the
underlying Blockchain infrastructure and Hyperledger
Composer 0.20.0 to define a Blockchain model based on
three smart contracts (see Fig. 13). CreateParameters
initialises the consumer parameters of an IoT system,
while UpdateParameters and ReadParameters change
and retrieve a list of parameter values from the data
space, respectively. The implementation logic of the
contracts is written in JavaScript and it is shown in
Appendix D.

The DX-MAN platform provides the programming
abstractions for composing IoT services (at design-
time) and selecting IoT workflows (at deployment-
time). When a workflow is selected, a data forest is
automatically created for the respective control flow.
Workflow selection is out of the scope of this paper;
on this matter, we refer the reader to [42]. Also,
to guarantee openness and replicability, the source
code of the DX-MAN platform is available at https:

//github.com/damianarellanes/dxman.
Once workflows have been selected, Algorithm 1

analyses the edges of all the data forests involved to
build a Java Hashmap (i.e., a binary relation ς) with
a consumer parameter UUID as the key and a list of
producer parameter UUIDs as the value. The entries of
the map are stored as Parameter assets in the Blockchain
using the transaction CreateParameters. In particular,
the field parameterId is the hashmap key and the field
producers is the hashmap value (see lines 7 and 12 in
Fig. 13).

At run-time, exogenous operators coordinate an IoT
system execution by passing control only via CoAP
messages.

7
When an exogenous operator receives

control, it performs one of the processes shown in
Fig. 14(b-c) only if input data is needed; otherwise,
steps 1-2 are omitted. When control triggers an

6
A pipeline of different technologies can be used to efficiently

implement data exchanges between services [51].
7
https://tools.ietf.org/html/rfc7252

1 namespace com.dxman.blockchain
2
3 ...
4
5 asset Parameter identified by id {
6 o String id
7 o String parameterId
8 o String workflowId
9 o String value

10 o DateTime timestamp optional
11 o String updater
12 --> Parameter[] producers
13 }
14
15 concept UpdateParameterConcept {
16 --> Parameter parameter
17 o String newValue
18 o String updater
19 }
20
21 event UpdateParameterEvent {
22 o String parameter
23 o String newValue
24 o String updater
25 }
26
27 transaction CreateParameters {
28 o Parameter[] parameters
29 }
30
31 transaction UpdateParameters {
32 o UpdateParameterConcept[] updates
33 }
34
35 @returns(String[])
36 transaction ReadParameters {
37 --> Parameter[] parameters
38 o DateTime workflowTimestamp
39 }

FIGURE 13: Blockchain model.

invocation connector, the latter performs the process
shown in Fig. 14(a). Firstly, the connector executes the
transaction ReadParameters to retrieve the necessary
inputs from the data space. For each input, the
Blockchain directly consumes values from the producer
list.

Inv. Conn Operation
Impl

1
Read Input Data

Input Data

Input
Data

Output
DataWrite Output Data

Data
Space

3

42

5

Ex.
Operator

1
Read Input Data

Input DataData
Space 2

(b)

(a)

Ex.
Operator

Control
3

Ex.
Operator

1
Read Input Data

Input DataData
Space 2

(c)
Control

3

FIGURE 14: Steps performed by (a) an invocation
connector and (b-c) an exogenous operator after
receiving control. (b-c) are only applicable for exogenous
operators that require input data. Other operators
ignore the steps 1 and 2.

Producer data is stored in the Blockchain as soon
as it is available, even before control reaches consumer

The Computer Journal, Vol. ??, No. ??, ????

https://github.com/damianarellanes/dxman
https://github.com/damianarellanes/dxman
https://tools.ietf.org/html/rfc7252

Decentralised Data Flows for the Functional Scalability of Service-Oriented IoT Systems 11

services. To avoid run-time synchronisation problems,
control flow blocks in an invocation connector until all
needed input values are retrieved. Next, the connector
executes the computation of an operation by passing
it the respective data. The result is stored in the
Blockchain via the transaction UpdateParameters.

UpdateParameters raises an UpdateParameterEvent
after changing a parameter value. This is useful for data
processor instances that subscribe to events notified by
producer parameters. Thus, a data processor instance
performs a user-defined computation after receiving all
the events for its inputs. Currently, our implementation
supports mappers, reducers and filters, but further
processors (e.g., a replicator) can be implemented
conforming to the semantics presented in Section 3.3.

Consumer parameters are unaware of data producers,
and vice versa, since data references are stored in the
Blockchain. Furthermore, the mapping generated by
Algorithm 1 avoids the inefficient approach of passing
data values through exogenous operators at run-time.
Therefore, as consumer parameters read data directly
from producers and they are unaware of each other,
our approach enables a (transparent) decentralised data
exchange.

5. CASE STUDY

This section describes how to enable decentralised
data flows in the smart parking scenario presented in
Section 2, by covering the three phases of a DX-MAN
system life-cycle.

5.1. Design-time

At design-time, we use the syntactic constructs presented
in Section 3 to define a multi-level composition structure
for our smart parking application (see Fig. 15). This
process is done in a hierarchical bottom-up manner,
starting with the composition of Sensor Services into
SensorNet, via the paralleliser operator ○N . Afterwards,
we use the sequencer operator ○C to compose the
SensorNet composite, the Availability Checking Service
and the Reservation Service into CityManagement. In
the next level, the GPS Service and CityManagement are
composed into Information via the paralleliser operator
○I . Finally, we use the sequencer ○T to compose
Information, Mapping Service and Space Finding Service
into CarControlApp (i.e., the top-level composite). Note
that, according to the semantics presented in Section 3,
each composite service is a workflow space with a (finite
or infinite) set of workflow variants and a (finite or
infinite) set of data forest variants. For clarity and
conciseness, we do not present them. Instead, we refer
the reader to our previous work on this matter [43, 42].

5.2. Deployment-time

For each composite, we define a concrete workflow tree
to explicitly choose a workflow and a data forest from

the respective space (see Section 3). In particular, for
SensorNet there is a workflow that executes all sensor
operations in parallel. For CityManagement, there is a
workflow that sequentially invokes the SensorNet sub-
workflow, the getFree operation and the getUnreser
operation, in that order. For Information, there is
a workflow that synchronises the execution of the
getLocation operation and the CityManagement sub-
workflow. Finally, in the top-level composite, the
Information sub-workflow, the computeDis operation
and the getNearest operation are triggered sequentially.
The concrete workflow trees for each composite are
shown in Fig. 16 and the whole workflow of our
scenario is depicted in Fig. 17(a). The latter is just
a concatenation of individual workflows.

In Section 3, we mentioned that data forests are
implicitly selected when workflows are chosen. On that
basis, the resulting data forests for each composite
service are shown in Fig. 16 and the complete
concatenation of data forests is illustrated in Fig. 17(b).
Note that both workflows and data forests are not
manually created, but just selected using the syntactic
representation of concrete workflow trees.

Once data dependencies are in place, some data forests
are refined (see Fig. 18(a)). In particular, we remove
the edges between the inputs of the parallel composites
(i.e., SensorNet and Information) and the inputs of their
respective sub-services. Similarly, we remove the edges
connecting the inputs of the sequential composites (i.e.,
CarControlApp and CityManagement) and the inputs
of the parallel composites. Note that this does not
mean that edges are always refined. In some scenarios,
refinement never takes place.

After refinement, Algorithm 1 analyses the edges of
each data forest from the bottom-level composite (i.e.,
SensorNet) to the top-level one (i.e., CarControlApp).
The resulting binary relation between consumer
parameters and producer parameters is illustrated in
Fig. 18(b).

5.3. Run-time

At run-time, composition operators coordinate the
execution of the selected workflow by passing control
only (see Fig. 19(a)), while atomic services exchange data
directly (see Fig. 19(b)). In particular, when a driver
requests a nearest parking space, ○T passes control to
the ○I operator which, in turn, forks control towards the
invocation connector G and the ○C operator. When G
is triggered, it activates the getLocation operation before
passing control back to ○I . Meanwhile, ○C forwards
control to ○N for activating the invocation connectors of
all the sensors. After receiving control from all of them,
○N notifies the ○C operator for executing the operations
getFree and getUnreser via their invocation connectors.
Once control returns from R, ○C sends control back to
○I . If the latter has received control from G and ○C , it
notifies ○T for invoking the operations computeDis and

The Computer Journal, Vol. ??, No. ??, ????

12 D. Arellanes et al.

Sensor 1 Sensor 577

...

N
SensorNet

o
iN
oN

i

Space FindingReservation MappingAva. CheckingGPS

City
Management o

iC
oC

i

Information
I o

iI
oI

i

CarControlApp
o
iT
oT

i

FIGURE 15: DX-MAN composition for the smart parking scenario.

Workflow VariantComposite Service Concrete Workflow Tree Data Forest

DESIGN-TIME DEPLOYMENT-TIME

SYNTAX SEMANTICS

Space FindingMappingInformation

o
iI
oI

i

CarControl
App o

iT
oT

i

T
[0] [1]

computeDisInformation getNearest

[2]

i iI
o oI

i iM
o oM

i iS
o oS

o oT

i iT

FIGURE 16: Selecting workflows explicitly and data forests implicitly for the smart parking scenario.

getNearest via M and S, respectively. The execution
of the smart parking app terminates when ○T receives
control from S.

Fig. 19 illustrates the execution of the smart parking
scenario, where it is clear that data never passes
alongside control, but it flows in a decentralised manner
according to the binary relation shown in Fig. 18(b).

It is important to note that control blocks in an
invocation connector until all producer values become
available (see Section 4). For instance, A waits until
all sensor data has been produced, before executing the
getFree operation; thereby, guaranteeing synchronisation
between the Availability Checking Service and all Sensor
Services. Situations like this can be common since

The Computer Journal, Vol. ??, No. ??, ????

Decentralised Data Flows for the Functional Scalability of Service-Oriented IoT Systems 13

getFree

i iC

i iA
ooA

getUnreser i iR
ooR

FIGURE 17: Orthogonality between control flow (i.e., workflow) and data dependencies (i.e., data forests) in the
smart parking scenario.

i iC

i iA
o oA

i iR
o oR

i iN

ii1
oo1

i i577
o o577

i iI

iiG
ooG

i iT

i iM
o oM

i iS
o oS

o oN

o oC

Sensor Net

City
Management

Information

Car Control App

o oI

o oT

...

Algorithm 1

Removed: (iT,iI), (iI,iG), (iI,iC), (iC,iN), (iN,i1), ..., (iN,i577)

(a) Data forests after refinement

(b) Binary relation between
consumer parameters and
producer parameters

iA

iR
iM

iS
oT

o1

..
.

o577
oA
oG

oM
oS

..
.

Consumers Producers

iA

iM oR

FIGURE 18: Transforming data forests into a binary relation between consumer parameters and producer parameters.

The Computer Journal, Vol. ??, No. ??, ????

14 D. Arellanes et al.

Sensor 1 Sensor 577

...

N
SensorNet

o
iN
oN

i

Space FindingReservation MappingAva. CheckingGPS

C
City
Management o

iC
oC

i

Information
o

iI
oI

i

Car Control App
o

iT
oT

i

(a) Control Flows

I

Sensor 1 Sensor 577

...

SensorNet
o

iN
oN

i

Space FindingReservation MappingAva. CheckingGPS

City
Management o

iC
oC

i

Information
o

iI
oI

i

Car Control App
o

iT
oT

i

(b) Data Flows

Control Flow

Data Flow

FIGURE 19: Orthogonal control flows and data flows in the smart parking scenario.

control generally travels faster than data over the
network, and they may happen even in sequential
workflows. This implies that an operation can be
executing while control waits in the invocation connector
of the next service in a pipeline.

6. DISTRIBUTED DATA FLOWS VS DECEN-
TRALISED DATA FLOWS IN THE SMART
PARKING SCENARIO

This section presents a quantitative comparison between
the proposed approach (when data is separated from
control) and distributed data flows (when data follows
control), in terms of network traffic generated and
response time perceived. Our evaluation is based
on two OMNET++ simulations in which composition
operators and invocation connectors are OMNET++
modules, whereas control flow and data flow are channels
between modules.

8
For fairness, we assume ideal wireless

channels communicating over IEEE 802.11a links at a
rate of 54Mbps, with no delay and no bit error rate. The
configuration of our simulations is shown in Fig. 20.

8
https://omnetpp.org/

An OMNET++ experiment simulates drivers using
the smart parking application between 07:59:45 and
16:26:47 (see Appendix A). In all the experiments, we
assume that there is no network traffic for invoking
operations, since invocation connectors reside in the
same device as their connected operations. Also,
composition operators and invocation connectors do
not incur any processing time since they only forward
data or control. The latter is just a 1-byte signal that
activates an operator or a connector.

For simplicity and clarity, we also assume that
IoT devices hosting atomic services have a fixed data
processing time of 100µ seconds. This assumption is
valid since having equal data processing rates does
not influence the network traffic generated by atomic
services.

Considering the above assumptions, the first
experiment simulates decentralised data flows in the
smart parking system. Here, control is exchanged
among composition operators and invocation connectors,
while data is passed between producer connectors and
consumer connectors via ideal OMNET++ channels (see
Fig. 20). These channels simulate read-write operations
on a decentralised space (regardless its implementation).

The Computer Journal, Vol. ??, No. ??, ????

https://omnetpp.org/

Decentralised Data Flows for the Functional Scalability of Service-Oriented IoT Systems 15

FIGURE 20: OMNET++ configuration for the smart parking system. The simulation on distributed data flows do
not use the channels between invocation connectors, whereas the simulation on decentralised data flows use all visible
channels.

TABLE 2: Network traffic in the smart parking scenario
(from 07:59:45 to 16:26:47).

Data Traffic (MB) Control Traffic (MB) Total (MB)

Decentralised 51.49 0.44 51.93

Distributed 140.41 0.22 140.63

These actions are performed by invocation connectors on
behalf of their connected operations. In this experiment,
the total network traffic from 07:59:45 to 16:26:47 is
51.93MB (see Table 2). The additional traffic with
respect to the calculation described in Appendix B
corresponds to the bytes required for control exchange
(i.e., 0.44MB).

9
This extra traffic is minimal since control

is just a 1-byte signal that does not carry any additional
data.

The second simulation considers a distributed version
of the smart parking scenario, in which data passes
alongside control through invocation connectors and
composition operators. The only exception is when
control traverses from ○T to G, and from ○I to the
invocation connectors 1 and 577 (see Fig. 21(b)). This
is because the GPS Service and the Sensor Services
do not require any input data from the CarControlApp
composite (see Fig. 18(a)). Using distributed data flows,
the total network traffic from 07:59:45 to 16:26:47 is
140.63MB (see Table 2).

9
For increased clarity in our motivation example (see Section 2),

the calculations in Appendix B do not consider control flow.

Although our approach requires 50% more control
messages than its counterpart, the network traffic
is dramatically minimised by a rate of 2.71 times,
i.e., (1 − 51.93

140.63
) ⋅ 100 ≈ 63.07% less network traffic

than the distributed version. Particularly, the main
benefit occurs when data is passed directly from the
Reservation Service to the Mapping Service, since the
distributed approach requires four network hops whereas
our approach requires only one (see Fig. 21).

Reducing network traffic improves the overall response
time of the smart parking system by an average factor
of 4. This factor is computed as follows:

∑373
i=1

ψ
α
i

ψ
β
i

373
(3)

where ψ
α
i is the response time perceived by driver i when

requesting a parking space under distributed data flows

and ψ
β
i is the response time perceived by driver i when

requesting a parking space under decentralised data
flows. The response times (in seconds) are individually
collected from our simulations for the 373 drivers arriving
between 07:59:45 and 16:26:47.

10

As an example, Fig. 21 shows the time window
for the driver’s request at 08:26 (i.e., 1621 seconds
after 07:59:45), where it is clear that the system is
executed in 0.08 seconds using the distributed approach

10
Appendix A presents the computation for the number of

drivers.

The Computer Journal, Vol. ??, No. ??, ????

16 D. Arellanes et al.

Time

T

I

M

S

G

577

C

R

A

N

1

..
. 100B

100B

s
G
(t)

s
A
(t)

57.7KB

57.7KB

s
A
(t)

s
M
(t)

s
M
(t)

s
R
(t)

s
R
(t)

s
R
(t)

s
R
(t) s

G
(t)+

s
S
(t)

1B

1B

1B

1B

1B

1B

1
6
2
1
.0
0
0
0
0
0
0
0

1
6
2
1
.0
0
0
0
0
0
1
5

1
6
2
1
.0
0
0
0
0
0
3
0

1
6
2
1
.0
0
0
0
0
0
4
4

1
6
2
1
.0
0
0
0
0
0
5
9

1
6
2
1
.0
0
0
1
0
0
5
9

1
6
2
1
.0
0
0
1
0
0
3
0

1
6
2
1
.0
0
0
1
0
6
2
2

1
6
2
1
.0
0
0
1
1
5
4
1

1
6
2
1
.0
0
8
6
6
3
5
6

1
6
2
1
.0
1
7
2
1
1
7
0

1
6
2
1
.0
1
7
3
1
1
7
0

1
6
2
1
.0
2
4
9
8
4
1
5

1
6
2
1
.0
3
2
6
5
6
5
9

1
6
2
1
.0
3
2
7
5
6
5
9

1
6
2
1
.0
3
9
6
4
2
9
6

1
6
2
1
.0
4
6
5
2
9
3
3

1
6
2
1
.0
5
3
4
2
1
6
3

1
6
2
1
.0
6
0
3
1
3
9
3

1
6
2
1
.0
6
0
4
1
3
9
3

1
6
2
1
.0
6
8
6
7
7
6
3

1
6
2
1
.0
7
6
9
4
1
3
3

1
6
2
1
.0
7
7
0
4
1
3
3

1
6
2
1
.0
7
7
0
4
7
2
6

T

I

M

S

G

577

C

R

A

N

1

..
.

100B

100B

s
G
(t)

s
A
(t)

s
M
(t)

s
R
(t)

s
S
(t)

1B

1B

1B

1B

1B

1B

1B

1B

1B

1B

1B
1B

1B 1B 1B

1B

1B 1B

1B 1B

Time

1
6
2
1
.0
0
0
0
0
0
0
0

1
6
2
1
.0
0
0
0
0
0
1
5

1
6
2
1
.0
0
0
0
0
0
3
0

1
6
2
1
.0
0
0
0
0
0
4
4

1
6
2
1
.0
0
0
0
0
0
5
9

1
6
2
1
.0
0
0
1
0
0
5
9

1
6
2
1
.0
0
0
1
0
0
3
0

1
6
2
1
.0
0
0
1
0
6
2
2

1
6
2
1
.0
0
0
1
1
5
4
1

1
6
2
1
.0
0
0
2
1
5
4
1

1
6
2
1
.0
0
7
8
8
8
0
0

1
6
2
1
.0
0
7
8
8
8
3
0

1
6
2
1
.0
0
7
8
8
8
4
4

1
6
2
1
.0
1
4
8
7
4
2
2

1
6
2
1
.0
1
4
8
7
4
5
2

1
6
2
1
.0
1
4
9
7
4
2
2

1
6
2
1
.0
2
3
2
3
7
9
3

1
6
2
1
.0
2
3
3
3
7
9
3

1
6
2
1
.0
0
0
0
0
0
7
4

1
6
2
1
.0
0
0
0
0
0
8
9

1
6
2
1
.0
0
0
0
0
1
0
4

1
6
2
1
.0
0
0
1
1
5
5
6

1
6
2
1
.0
0
0
1
1
5
7
0

1
6
2
1
.0
0
7
8
8
7
8
5

1
6
2
1
.0
0
7
8
8
8
1
5

1
6
2
1
.0
0
7
9
8
7
8
5

1
6
2
1
.0
1
4
8
7
4
3
7

1
6
2
1
.0
2
3
2
3
8
0
7

1
6
2
1
.0
2
3
3
4
3
8
5

(b) Decentralised Data Flows

(a) Distributed Data Flows

FIGURE 21: Decentralised data flows vs distributed data flows in the smart parking scenario.

and in 0.02 seconds with the decentralised version.
This improvement is due to the fact that data and
control travel independently over the network when
decentralised data flows are used, so that control arrives
before data in certain cases (e.g., see the timeline of R)
and data arrives before control in others (e.g., see the
timeline of M).

Table 2 presents the results of a quantitative
evaluation that considers a few services. However,

the benefit of our approach becomes more evident as
the number of services increases. To evaluate this
property, known as functional scalability, we conducted
an experiment in which we gradually increase the
data being processed by the smart parking application
through the continuous addition of sensor services (up
to 100,000). The aim of this experiment is to analyse
network traffic in the order of Gigabytes. The results
are shown in Fig. 22.

The Computer Journal, Vol. ??, No. ??, ????

Decentralised Data Flows for the Functional Scalability of Service-Oriented IoT Systems 17

 0

 5

 10

 15

 20

 25

 0 20000 40000 60000 80000 100000

N
e
tw

o
rk

 T
ra

�

c
 (

G
B

)

Number of Sensors

Distributed Data Flows
Decentralised Data Flows

(a) Data traffic.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 20000 40000 60000 80000 100000

N
e
tw

o
rk

 T
ra

�

c
 (

G
B

)

Number of Sensors

Distributed Data Flows
Decentralised Data Flows

(b) Control traffic.

 0

 5

 10

 15

 20

 25

 0 20000 40000 60000 80000 100000

N
e
tw

o
rk

 T
ra

�

c
 (

G
B

)

Number of Sensors

Distributed Data Flows
Decentralised Data Flows

(c) Total network traffic.

FIGURE 22: Impact of increasing the number of sensor
services in the smart parking scenario.

Fig. 22 shows that our approach outperforms
distributed data flows in terms of data traffic, whereas
the distributed version outperforms our approach in
terms of control traffic. Despite this, the total network
traffic is linearly improved by our approach since control
messages are minimal (i.e., they always oscillate below
0.08 GB). Consequently, the total traffic and the data
traffic are almost identical (cf., Fig. 22(a) and Fig. 22(c)).

The next section presents a generic evaluation
of functional scalability that is independent of any
implementation or specific case studies. In this
evaluation, we do not only increase services horizontally
(for the same composite) but also vertically (by
increasing the number of composition levels).

7. EVALUATION OF FUNCTIONAL SCALA-
BILITY

This section presents a comparative evaluation between
decentralised data flows (when control flow and data
flow are separated – Fig. 8(b)) and distributed data
flows (when data follows control – Fig. 8(a)), in
terms of functional scalability. To do so, two major
research questions are studied: (RQ1) Does the proposed
approach scale with the number of services? and (RQ2)
Under which conditions are decentralised data flows
beneficial?

To answer the above questions, we conducted a series
of experiments based on the following statements.

Definition 7.1. Gα = (Vα, Eα,Ωα) is a weighted
graph of distributed data flows in which Vα is a set of
parameters, Eα is a set of directed data flows (between
parameters) and Ωα ∶ Eα → R>0 is a function that maps
a distributed data flow to a network communication cost
s.t. Vα ⊂ (Vp ∪ Vc).

Remark 1. Vp is the type of a producer parameter
and Vc is the type of a consumer parameter.

Definition 7.2. M = ⟨e1, . . . , el⟩ is the type of a
finite walk in Gα for moving a data value through l
data flows, from a producer parameter v1 ∈ Vp to a
consumer parameter vl+1 ∈ Vc s.t. ej∈[1,l] ∈ Eα and
vj∈[1,l+1] ∈ Vα, ∀p ∈ (Vα ∩ Vp) ∃ M .

Definition 7.3. Given Gα, α∶M → R>0 is the
function that computes the total network cost of routing
data from a producer parameter p to a consumer
parameter q, via distributed data flows. The function α
is given as follows:

α(M ′) =
∣E(M ′)∣
∑
j=1

Ωα(ej)

where M
′
∈ M , ej∈[1,∣E(M ′)∣] ∈ E(M ′), E(M ′) ⊆ Eα,

p ∈ (Vα ∩ Vp) and q ∈ (Vα ∩ Vc).

Notation 8. Let ω∶Vp → R>0 be the function that
computes the network cost of writing/producing a
parameter value on a data space.

Notation 9. Let Γ∶Vc → R>0 be the function that
computes the network cost of reading/consuming a
parameter value from a data space.

Definition 7.4. Gβ = (Vβ , Eβ ,Ωβ) is a weighted
graph of decentralised data flows in which Vβ is a set of
parameters, Eβ is a set of directed data flows (between
parameters) and Ωβ ∶ Eβ → R>0 is a function that maps
a decentralised data flow to a network communication
cost s.t. Vβ ⊆ (Vp ∪ Vc). The function Ωβ is defined as
follows:

Ωβ(e) = (ω ◦Π
β
1)(e) + (Γ ◦Π

β
2)(e)

where e ∈ Eβ, Π
β
1 (e) ∈ (Vβ∩Vp) and Π

β
2 (e) ∈ (Vβ∩Vc).

The Computer Journal, Vol. ??, No. ??, ????

18 D. Arellanes et al.

E

SB SC

SF

SD

SE

o
iE
oE

i

o
iF
oF

i

Four-level Algebraic Composition

SA

o
iG
oG

iSG

E

SC SD

SE

o
iE
oE

i E
SE

opC opD

[0] [1]

FIGURE 23: Initial experimental setting.

Remark 2. The functions Π
β
1 ∶Eβ → Vβ and

Π
β
2 ∶Eβ → Vβ are the tail map and the head map of

an edge in Gβ , respectively.

Definition 7.5. Given Gβ, β∶Eβ → R>0 is the total
network cost of routing data from a producer parameter
p to a consumer parameter q, via a decentralised data
flow. The function β is notably given as follows:

β(e) = Ωβ(e)

where e ∈ Eβ, p = Π
β
1 (e), q = Π

β
2 (e), p ∈ (Vβ ∩ Vp) and

q ∈ (Vβ ∩ Vc).

We assume that Ωα, Γ and ω include all
network communication factors, such as marshalling,
unmarshalling, latency and bandwidth, just to name a
few.

7.1. Initial Experimental Setting

The worst performance of a distributed approach occurs
when all composite services are sequential. So, for our
evaluation we consider the DX-MAN composition shown
in Fig. 23, which has four hierarchy levels, four atomic
services and three composites. The sequential workflow
variants selected for each composite and their respective
data forests are also presented in the figure.

Fig. 24 shows the resulting workflow control flow
and the data exchange approaches that we use in
our experiments. For the distributed approach (see
Fig. 24(b)), we consider the graph Gα in which data
follows control and passes through workflow parameters
via nine data flow edges with a Ωα(ej) cost each s.t.
ej∈[1,9] ∈ Eα. Particularly, Gα has five data flow walks
since the number of producer parameters is directly

Work�ow

o Output

i Input

(b) Distributed
Data Flows (G)

i iG
o oG

i iA
o oA

i iF
o oF

i iB
o oB

i iE
o oE

i iC
o oC

i iD
o oD

e1

e2

e3

e4

e5

e6 e7

e8

e9

i iG
o oG

i iA
o oA

i iB
o oB

i iC
o oC

i iD
o oD

e1

e4

e2

e3

e5

(c) Decentralised
Data Flows (G)

FIGURE 24: Distributed data flows vs decentralised
data flows.

proportional to the number of walks: MiG = ⟨e1⟩ ∈
M , MoA = ⟨e2, e3⟩ ∈ M , MoB = ⟨e4, e5⟩ ∈ M ,
MoC = ⟨e6⟩ ∈ M and MoD = ⟨e7, e8, e9⟩ ∈ M s.t.
iG, oA, oB, oC, oD ∈ (Vα ∩ Vp) and ej∈[1,9] ∈ Eα.

For the decentralised approach (see Fig. 24(c)), we
consider the graph Gβ in which data is separated
from control and passes from producer parameters to
consumer parameters directly. In this case, there are
five data flows each with a network cost of Ωβ(ej) s.t.
ej∈[1,5] ∈ Eβ . For example, the cost of routing the
data produced by oA is Ωβ((oA, iB)) = ω(oA)+ Γ(iB).
As Gβ is constructed with Algorithm 1 and does
not consider any data exchanges through workflow
parameters, the number of edges is directly proportional

The Computer Journal, Vol. ??, No. ??, ????

Decentralised Data Flows for the Functional Scalability of Service-Oriented IoT Systems 19

to the number of producer parameters (i.e., ∣Eβ∣ = ∣Vβ∩
Vp∣ = 5) and the number of vertices is twice the number
of producers (i.e., ∣Vβ∣ = 2∣Vβ ∩ Vp∣ = 10). Therefore,
∣Vβ∣ < ∣Vα∣ ∧ ∣Eβ∣ < ∣Eα∣ ∵ ∣Vα∣ = 14 ∧ ∣Eα∣ = 9.

7.2. RQ1: Does the proposed approach scale
with the number of services?

We conducted an experiment to dynamically increase the
number of composites in the (four-level) composition
shown in Fig. 23. The experiment is carried out in
τ = 200000 steps with ∣Eα∣ ∈ (N ∩ [9, f(τ)]) and
∣Eβ∣ ∈ (N ∩ [5, g(τ)]) s.t. f(c) = 4c + 9 is the total
number of distributed data flows and g(c) = 2c + 5 is
the total number of decentralised data flows, when there
are c ∈ (N ∩ [0, τ]) new composites in SF .

At each step of the experiment, we compose a replica
of SE into SF and define a sequential workflow variant
for the invocation of the operations opC and opD (see
Fig. 23). At the end of the experiment, there is a
data pipeline in Gα for τ + 1 composites in SF . In the
case of Gβ , there are additional data flows between the
parameters of the atomic services added.

As they capture the growth pattern of data flows, we
use the functions f(c) and g(c) to analytically compare
∣Eα∣ and ∣Eβ∣ as the number of composites increases.
Fig. 25 shows the result of our analysis under the
assumption that the weight functions of Eα and Eβ
are Ωα ∶ Eα → {1} and Ωβ ∶ Eβ → {1}. On that basis,
it is clear that the number of data exchanges grows
linearly with the number of composite services and that
the number of distributed data flows grows twice faster
than its counterpart. The latter can be strictly explained
by the average rate of change ∆f

∆g
= 2 in the interval

[0, τ].

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 50000 100000 150000 200000

N
u
m

b
e
r

o
f

D
a
ta

 F
lo

w
s

Number of Composite Services in SF

Distributed Data Flows f(c)
Decentralised Data Flows g(c)

FIGURE 25: Impact of data flows when increasing the
number of composite services in SF .

7.3. RQ2: Under which conditions are decen-
tralised data flows beneficial?

We conducted two experiments to determine if there is
a benefit of decentralised data flows as the number of
levels increases in a DX-MAN composition. To do so, we

consider the total network costs of passing the output oD
(of the atomic service SD) to an output oT (of a top-level
composite), using both the distributed approach and the
decentralised one s.t. oT ∈ Vc. For both experiments,
we assume that im(Ωα), im(ω), im(Γ) ∈ R ∩ (0, 1].

For each experiment, we compute ten samples over
100 levels each. At each sample, we increase the number
of composition levels by 1 and define random network
costs for Eα and Eβ using Ωα and Ωβ , respectively.
The decentralised approach yields a graph with the
same number of edges no matter the composition levels,
whereas the distributed approach increases the number
of edges by 1 at every level. Thus, ∣MoD∣ also increases
by 1. The improvement rate of the decentralised

approach is given by 1 − β((oD,oT))
α(MoD) .

Fig. 26 shows the result of our experiments, where
it is clear that the benefit of decentralised data flows
is logarithmic and, as such, it becomes more evident
as the number of levels of a DX-MAN composition
increases. This is because ∣MoD∣ increases at every
level and so α(MoD). In the experiments, we allocate
network costs using random values uniformly distributed
in (0, 1] ∈ R. However, if the cost of performing
operations on a data space (i.e., β((oD, oT))) is more
expensive than the total cost of routing data through
composite coordinators (i.e., α(MoD)), the decentralised
approach is outperformed by the distributed one. Thus,
a DX-MAN composition only benefits from the proposed
approach iff β((oD, oT)) < α(MoD).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Im
p
ro

v
e
m

e
n
t

R
a
te

Number of Levels

ξ1
ξ2

FIGURE 26: Improvement rate of decentralised data
flows when increasing the number of levels in a DX-MAN
composition: ξ1 and ξ2 correspond to Experiment 1 and
Experiment 2, respectively.

8. CONCLUSIONS

In this paper, we presented a functionally scalable
approach that semantically separates control and
data in DX-MAN compositions for the realisation of
decentralised data flows in service-oriented IoT systems.
At design-time, the algebraic semantics of the model
allows the definition of data forests which denote data
dependencies between service operation parameters. At
deployment-time, data forests are (manually) refined and

The Computer Journal, Vol. ??, No. ??, ????

20 D. Arellanes et al.

(automatically) analysed by an algorithm that leverages
the separation of control and data. The algorithm works
for any workflow in a composite workflow space, and
produces a direct mapping from consumer parameters
to producer parameters. Thus, preventing coordinators
(i.e., exogenous operators) from passing data at run-
time. In fact, exogenous operators coordinate an IoT
system execution by passing control only. To realise our
approach, we implemented it on top of the DX-MAN
platform which uses the Blockchain as the underlying
data space for persisting direct mappings and managing
data at run-time. It is important to mention that
our approach is not exclusive to a specific data space
implementation (e.g., Blockchain or OpenLink Data
Spaces). For that reason, we evaluated the benefits of
the proposed approach rather than the benefits of a
particular implementation.

Unfortunately, as other composition models have
their own constructs and do not define composition
operators like DX-MAN, it is not possible to extend
other composition model semantics using our proposed
approach. Instead, a custom extension per model would
be required to enable the semantic separation of data
and control. Another interesting future direction is to
explore the possibility of incorporating stateful services
into the semantics of DX-MAN.

DX-MAN is a service composition model that
semantically separates data, control and computation
for separate reasoning, monitoring, maintenance and
evolution of such dimensions. More concretely, this
separation allows passing data from producer parameters
to consumer parameters directly, and enables the use of
distinct technologies to manage control flows and data
flows separately. For example, in our implementation we
use CoAP to pass control between exogenous operators
and the Blockchain for handling data flows.

Our experimental results confirm that our approach
scales well with the number of services, by reducing
the number of data flows by an average factor of two
with respect to a distributed approach (where data
follows control). They also show that our approach
scales well with the number of levels of a DX-MAN
composition. From our results, we found that the
proposed approach provides the best performance when
the cost of performing operations on a data space is
less than the cost of exchanging data over the network.
Thus, our solution is potentially beneficial for large-scale
IoT systems in which loosely-coupled services exchange
huge amounts of data continuously.

APPENDIX A

This appendix presents the notation required for
the analysis of the IoT scenario described in
Section 2. This scenario considers a real-world
data set publicly available at https://archive.ics.

uci.edu/ml/datasets/Parking+Birmingham# which
collects occupancy status in car parks operated by the

TABLE A.1: Occupancy in the car park BHMBC-
CMKT01.

Measurement Time t O(t) Availability Rate

07:59:45 0 57 0.90

08:26:46 1621 59 0.90

08:59:44 3599 72 0.88

09:26:47 5222 93 0.84

09:59:44 7199 130 0.77

10:26:47 8822 156 0.73

10:59:47 10802 198 0.66

11:32:43 12778 239 0.59

11:59:46 14401 261 0.55

12:32:47 16382 324 0.44

12:59:47 18002 359 0.38

13:32:43 19978 380 0.34

13:59:48 21603 408 0.29

14:39:47 24002 430 0.25

14:59:48 25203 424 0.27

15:26:49 26824 403 0.30

15:59:47 28802 384 0.33

16:26:47 30422 340 0.41

Birmingham City Council, from 07:59:45 to 16:26:47
on October 22, 2016 [52]. Table A.1 presents the data
obtained for the car park BHMBCCMKT01 whose total
capacity is 577. It particularly shows the measurement
time, the t seconds elapsed after 07:59:45, the number of
occupied spaces O(t) and the rate of available parking

spaces (calculated by 1 − O(t)
577

).

Notation 10. Let T = {0, 1621, 3599, 5222, 7199, 8822,
10802, 12778, 14401, 16382, 18002, 19978, 21603, 24002,
25203, 26824, 28802, 30422} be the set of measurement
times in our sample. Then, ∆O(ti, ti+1) is the function
that computes the number of drivers arriving to the car
park BHMBCCMKT01 between ti and ti+1 seconds:

∆O(ti, ti+1) = {O(ti+1) −O(ti) O(ti+1) > O(ti)
0 otherwise

(4)

s.t. ∑∣T ∣−1
i=1 ∆O(ti, ti+1) = 373 and ti, ti+1 ∈ T . This

means that there are 373 drivers arriving to the car park
BHMBCCMKT01 between 07:59:45 and 16:26:47.

Considering the columns 2 and 4 from our data set, we
performed a cubic regression to approximate a function
A(t) for the rate of available parking spaces at t seconds.
The resulting equation has an average relative error of
1.98% and it is defined as follows:

A(t) = 0.00000000000009516t
3
−0.00000000363813682t

2

+ 0.00000641771909518t + 0.89631130855805541

where 0 ≤ t ≤ 30422.
The probability of a parking space being unreserved

at t seconds is then A(t). Following the same trend of
demand for parking spaces, the rate of parking spaces
that are both free and unreserved at t seconds is given
by the function U(t) as follows:

U(t) = A(t)2

where 0 ≤ t ≤ 30422.

The Computer Journal, Vol. ??, No. ??, ????

https://archive.ics.uci.edu/ml/datasets/Parking+Birmingham#
https://archive.ics.uci.edu/ml/datasets/Parking+Birmingham#

Decentralised Data Flows for the Functional Scalability of Service-Oriented IoT Systems 21

APPENDIX B

This appendix presents the result of the calculations
for the total data transmitted over the network in
our IoT scenario (see Section 2 and Appendix A).
The calculations are presented for each data exchange
approach, i.e., centralised data flows, distributed data
flows and decentralised data flows. For all of them, we
assume that:

1. There are 577 occupancy sensors near a driver,
corresponding to each space in the car park
BHMBCCMKT01.

2. Each Sensor Service is hosted in an occupancy
sensor and produces 100 bytes.

3. Once all sensor data is collected by a reducer, it is
processed by the Availability Checking Service.

4. The Mapping Service appends 20 bytes to each
parking space that is both free and unreserved.
These extra bytes correspond to the distance
between the driver’s location and each occupancy
sensor.

5. The Space Finding Service produces 40 bytes for
the coordinates of the nearest parking space.

6. There is a driver requesting a nearest parking
space every ti+1−ti

∆O(ti,ti+1)
seconds between ti ∈ T and

ti+1 ∈ T (see Notation 10 and Equation 4).
7. The GPS service produces 40 bytes for the

coordinates of the driver.
8. The driver always finds a nearest parking space,

since the car park is never full (see O(t) in
Table A.1).

Notation 11. Considering assumptions (1) and (2), let
θ = 577 ⋅100 = 57700 be the constant for the total sensor
data (in bytes) produced for a driver’s request.

For the sake of clarity and conciseness, we use the
functions below to compute the number of bytes returned
by the Availability Checking Service, the Reservation
Service, the Mapping Service and the Space Finding
Service, respectively.

Notation 12. Let SA(t) = θ ⋅ A(t) be the function
that computes the number of bytes returned by the
Availability Checking Service. These bytes correspond
to the list of parking spaces that are available t seconds
after 07:59:45 s.t. 0 ≤ t ≤ 30422.

Notation 13. Let SR(t) = θ ⋅ U(t) be the function
that computes the number of bytes returned by the
Reservation Service. These bytes correspond to the list
of parking spaces that are both available and unreserved
t seconds after 07:59:45 s.t. 0 ≤ t ≤ 30422.

Notation 14. Considering assumptions (1) and (4), let
SM(t) = SR(t) + 577 ⋅ U(t) ⋅ 20 be the function that
computes the number of bytes returned by the Mapping
Service, where 0 ≤ t ≤ 30422. These bytes correspond
to the list of parking spaces that are both available and

unreserved t seconds after 07:59:45, plus the appended
bytes for the distance between each parking space in the
list and the driver’s location.

Notation 15. Considering the assumption (5), let
SS = 40 be the constant for the number of bytes
returned by the Space Finding Service, which represent
the coordinates of the nearest parking space.

Notation 16. Considering the assumption (7), let
SG = 40 be the constant for the number of bytes returned
by the GPS Service, which represent the coordinates of
the driver.

A centralised approach for exchanging data requires
two data flows for moving data from a service producer to
a service consumer. Therefore, Bγ denotes the total data
exchanged over the network from 07:59:45 to 16:26:47
when a centralised approach is used:

Bγ =

∣T ∣−1

∑
i=1

∆O(ti,ti+1)
∑
j=1

2SG+2θ+2SA(ti+
ti+1 − ti

∆O(ti, ti+1)
j)

+2SR(ti+
ti+1 − ti

∆O(ti, ti+1)
j)+2SM(ti+

ti+1 − ti
∆O(ti, ti+1)

j)+2SS

≈ 102.98MB (5)

For the distributed approach, each coordinator
requires two data flows for passing data between a
service producer and a service consumer. In addition,
Coordinator1 requires a data flow for moving data to
the Coordinator2 which, in turn, requires another data
flow for passing data to the Coordinator3. Thus, the
exchanges between the Availability Checking Service and
the Reservation Service are done with three data flows.
Likewise, there are three data flows for passing data from
the Reservation Service to the Mapping Service. The
symbol Bα denotes the total data exchanged over the
network from 07:59:45 to 16:26:47 when a distributed
approach is used:

Bα =

∣T ∣−1

∑
i=1

∆O(ti,ti+1)
∑
j=1

2SG+2θ+3SA(ti+
ti+1 − ti

∆O(ti, ti+1)
j)

+3SR(ti+
ti+1 − ti

∆O(ti, ti+1)
j)+2SM(ti+

ti+1 − ti
∆O(ti, ti+1)

j)+2SS

≈ 123.36MB (6)

A decentralised approach is the most efficient since
it requires only one data flow for moving data from a
service producer to a service consumer. Based on this
premise, Bβ denotes the total data exchanged over the
network from 07:59:45 to 16:26:47 when a decentralised
approach is used:

Bβ =

∣T ∣−1

∑
i=1

∆O(ti,ti+1)
∑
j=1

SG+θ+SA(ti+
ti+1 − ti

∆O(ti, ti+1)
j)

+SR(ti+
ti+1 − ti

∆O(ti, ti+1)
j)+SM(ti+

ti+1 − ti
∆O(ti, ti+1)

j)+SS

≈ 51.49MB (7)

The Computer Journal, Vol. ??, No. ??, ????

22 D. Arellanes et al.

(a) Binary relation after deploying E

iA

iS
oE

iE
oA

oB

Consumers Producers

iB

(b) Binary relation after deploying F

iA

iS
oE

iE
oA

oB

Consumers Producers

iB

iP

iC

oF

iF
oP
oC

(c) Binary relation after deploying G

iA

iS
oE

iE
oA

oB

Consumers Producers

iB

iP

iC

oP
oC

iD
oG

iG
oD

FIGURE 27: Deployment of the data forest shown in Fig. 28.

Taking into account the above calculations, the
distributed approach leads to (Bα

Bγ
− 1) ⋅ 100 ≈ 19.80%

more network traffic than the centralised approach.

Likewise, the decentralised approach produces (1− Bβ

Bγ
) ⋅

100 ≈ 50.00% less network traffic than the centralised
approach and (1 − Bβ

Bα
) ⋅ 100 ≈ 58.26% less traffic than

the distributed one.

APPENDIX C

This appendix presents an example of how data
forests are analysed in a bottom-up fashion using the
Algorithm 1 at deployment-time. Our example considers
the three-level data forest depicted in Fig. 28, which
obeys the connection rules described in Section 3.2. Here,
G is the forest of a parallel workflow that simultaneously
executes the corresponding workflow for F and an atomic
operation (with input iD and output oD). The workflow
for F sequentially executes the workflow for E and then
an atomic operation (with input iC and output oC).
To pre-process data, F has a filter that takes the data
produced by E before sending it to the corresponding
operation. In our example, E is the lowest-level data
forest defined by a branchial workflow that uses the
input parameter iS to choose an operation to execute
(out of two possible ones).

FIGURE 28: Three-level data forest.

As described in Section 3.4, the deployment process
begins at the bottom-level. So, we first analyse the edges

of the branchial data forest E via the Algorithm 1. The
resulting binary relation is shown in Fig. 27(a).

In the next step, we analyse the edges of the sequential
data forest F to yield the binary relation described in
Fig. 27(b). Here, we can notice that the relations from
the output oE are now the relations from iP. This
is because the filter input does not require to read
from oE. Instead, the filter reads data directly from
any of the actual producers, viz. the operation output
oA or the operation output oB. Likewise, the input
parameters iA, iB and iS do not read data from iE
since a new (intermediate) top-level data producer has
been found (i.e., iF). Complementarily, the operation
input iC reads data directly from the filter output, while
the (intermediate) top-level output oF reads data from
oC.

Finally, in the last deployment step, the edges of the
data forest G are analysed to yield the binary relation
depicted in Fig. 27(c). As iG is the new top-level data
producer, the relations from consumers iA, iB and iS are
updated accordingly. Similarly, as G is a parallel forest,
the top-level output oG takes both the data source from
oF (i.e., oC) and the output oD. At the end of the
deployment process, we have a mapping scheme that
discards unnecessary relations to allow data consumers
read values directly from data producers.

APPENDIX D

Fig. 29 presents the JavaScript source code of the three
smart contracts used in our implementation. The source
code follows the contract model definition described in
Section 4.

The Computer Journal, Vol. ??, No. ??, ????

Decentralised Data Flows for the Functional Scalability of Service-Oriented IoT Systems 23

1 /**
2 * @param {com.dxman.blockchain.CreateParameters} tx
3 * @transaction
4 */
5 async function createParameters(tx) {
6 var resources = [];
7 let reg = await getAssetRegistry("com.dxman.blockchain.

Parameter");
8 for(i = 0; i < tx.parameters.length; i++) {
9 let resource = getFactory().newResource("com.dxman.

blockchain", "Parameter", tx.parameters[i].id);
10 resource.parameterId = tx.parameters[i].parameterId;
11 resource.workflowId = tx.parameters[i].workflowId;
12 resource.value = tx.parameters[i].value;
13 resource.timestamp = tx.timestamp;
14 resource.updater = tx.parameters[i].updater;
15 resource.producers = tx.parameters[i].producers;
16 resources[i] = await reg.add(resource);
17 }
18 }
19 /**
20 * @param {com.dxman.blockchain.ReadParameters} tx
21 * @returns {string[]}
22 * @transaction
23 */
24 async function readParameters(tx) {
25 var parameters = [];
26 for(let i = 0; i < tx.parameters.length; i++) {
27 parameters[i] = readPar(tx.parameters[i], tx.

workflowTimestamp);
28 }
29 return await Promise.all(parameters).then(values => {return

values;},
30 error => {return [];});
31 }
32 function readPar(parameter, workflowTimestamp) {
33 if(parameter.producers.length > 0) {
34 for(i = 0; i < parameter.producers.length; i++) {
35 if(parameter.producers[i].timestamp >= workflowTimestamp &&
36 (parameter.producers[i].updater == parameter.producers[i].

id ||
37 parameter.producers[i].updater == "user")) {
38 return Promise.resolve(parameter.producers[i].value);
39 }
40 }
41 return Promise.reject(’PARAMETER_VALUE_NOT_FOUND’);
42 } else return Promise.reject(’NO_PRODUCERS’);
43 }
44 /**
45 * @param {com.dxman.blockchain.UpdateParameters} tx
46 * @transaction
47 */
48 async function updateParameters(tx) {
49 let paramsArray = [];
50 for(i = 0; i < tx.updates.length; i++) {
51 tx.updates[i].parameter.timestamp = tx.timestamp;
52 tx.updates[i].parameter.value = tx.updates[i].newValue;
53 tx.updates[i].parameter.updater = tx.updates[i].updater;
54 paramsArray[i] = tx.updates[i].parameter;
55 let updateEvent = getFactory().newEvent(’com.dxman.

blockchain’, ’UpdateParameterEvent’);
56 updateEvent.parameter = tx.updates[i].parameter.id;
57 updateEvent.newValue = tx.updates[i].parameter.value;
58 updateEvent.updater = tx.updates[i].updater;
59 emit(updateEvent);
60 }
61 let reg = await getAssetRegistry("com.dxman.blockchain.

Parameter");
62 await reg.updateAll(paramsArray);
63 }

FIGURE 29: Smart contracts logic.

APPENDIX E

This appendix presents the notation used throughout
the paper.

E.1 IoT Scenario

O(t) Number of occupied parking spaces at
t seconds after 07:59:45

T Set of measurement times (in seconds)
∆O(ti, ti+1) Number of drivers requesting a nearest

space between ti ∈ T and ti+1 ∈ T
seconds

A(t) Rate of free spaces at t seconds after
07:59:45

U(t) Rate of spaces that are both free and
unreserved at t seconds after 07:59:45

θ Total sensor data (in bytes) produced
for a driver’s request

SA(t) Number of bytes produced by the
Availability Checking Service for a
driver’s request

SR(t) Number of bytes produced by the
Reservation Service for a driver’s
request

SM(t) Number of bytes produced by the
Mapping Service for a driver’s request

SS Fixed number of bytes produced by
the Space Finding Service

SG Fixed number of bytes produced by
the GPS Service

Bγ Number of bytes exchanged in our
scenario using a centralised approach

Bα Number of bytes exchanged in our
scenario using a distributed approach

Bβ Number of bytes exchanged in our sce-
nario using a decentralised approach

E.2 The DX-MAN Model

S The type of a service
S ∈ S A service S
W The type a workflow space
W ∈ S A workflow space W
○ The type of a composition operator
○Z A composition operator defining a

composite service Z
D The type of a parameter
F A data forest F
V (F) The set of parameter vertices in a data

forest F
v ∈ V (F) A parameter v in a data forest F
E(F) The set of edges in a data forest F
e ∈ E(F) An edge e (i.e., a pair of parameters) in

a data forest F

The Computer Journal, Vol. ??, No. ??, ????

24 D. Arellanes et al.

E.3 Algorithm for Edge Analysis

Π1(e) The tail of a data forest edge e
Π2(e) The head of a data forest edge e
PI The type of a processor input
PO The type of a processor output
OI The type of an operation input
OO The type of an operation output
WI The type of a (top-level) workflow input
WO The type of a (top-level) workflow output
EI The type of an exogenous operator input
Vc The type of a vertex parameter that

consumes data during workflow execution
v ∈ Vc A consumer parameter v
Vp The type of a vertex parameter that

produces data during workflow execution
v ∈ Vc A producer parameter v
ς A binary relation between some consumer

parameters and some producer parameters
dom(ς) The domain of the relation ς
ρ A binary relation between some producer

parameters and some consumer parameters
dom(ρ) The domain of the relation ρ
k The sum of the number of edges in all

the data forests involved in a multi-level
composition

Xp A set of producer parameters
Yc A set of consumer parameters

E.4 Evaluation (Preliminaries)

Gα A weighted graph of distributed data
flows

Vα The set of parameters in Gα
v ∈ (Vα ∩ Vp) A producer parameter v in Gα
v ∈ (Vα ∩ Vc) A consumer parameter v in Gα
Eα The set of directed data flows

(between parameters) in Gα
e ∈ Eα A distributed data flow
Ωα(e) The function that maps a distributed

data flow e ∈ Eα to a network
communication cost

Ωα((oA, iB)) The network cost of passing the value
from the output parameter oA to the
input parameter iB, via a distributed
data flow

M The type of a finite walk of data flows
in Gα

M
′
∈M A finite walk of data flows in Gα

α(M ′) The function that maps a finite walk
M

′
∈ M to the total network cost

of routing data from a producer
parameter p ∈ (Vα ∩ Vp) to a
consumer parameter q ∈ (Vα ∩ Vc)

ω(v) The network cost of writing a value
produced by v ∈ Vp

Γ(v) The network cost of reading a value
for v ∈ Vc

Gβ A weighted graph of decentralised
data flows

Vβ The set of parameters in Gβ
v ∈ (Vβ ∩ Vp) A producer parameter v in Gβ
v ∈ (Vβ ∩ Vc) A consumer parameter v in Gβ
Eβ The set of directed data flows

(between parameters) in Gβ
e ∈ Eα A decentralised data flow
Ωβ(e) The function that maps a decen-

tralised data flow e ∈ Eβ to a net-
work communication cost

Ωβ((oA, iB)) The network cost of passing the
value from the output parameter oA
to the input parameter iB, via a
decentralised data flow

◦ The operator for function composi-
tion

Π
β
1 (e) The tail of a decentralised data flow

e ∈ Eβ
Π
β
2 (e) The head of a decentralised data flow

e ∈ Eβ
β(e) The total network cost of routing

data from a producer parameter

Π
β
1 (e) to a consumer parameter

Π
β
2 (e) s.t. e ∈ Eβ

E.5 Evaluation (Experiments)

τ The number of steps in the RQ1
experiment

f(c) The number of distributed data flows when
there are c ∈ (N ∩ [0, τ]) new composites
composed by the service SF

g(c) The number of decentralised data flows
when there are c ∈ (N ∩ [0, τ]) new
composites composed by the service SF

im(Ωα) The image of the function Ωα
im(ω) The image of the function ω
im(Γ) The image of the function Γ

DATA AVAILABILITY

The data underlying this article are available in UCI
Machine Learning Repository at https://archive.ics.
uci.edu/ml/datasets/Parking+Birmingham#.

ACKNOWLEDGEMENTS

This work was partially supported by the H2020 I-
BiDaaS project [grant agreement No. 780787].

REFERENCES

[1] Arellanes, D. and Lau, K.-K. (2020) Evaluating IoT
service composition mechanisms for the scalability of
IoT systems. Future Generation Computer Systems,
108, 827–848.

The Computer Journal, Vol. ??, No. ??, ????

https://archive.ics.uci.edu/ml/datasets/Parking+Birmingham#
https://archive.ics.uci.edu/ml/datasets/Parking+Birmingham#

Decentralised Data Flows for the Functional Scalability of Service-Oriented IoT Systems 25

[2] Sarkar, C., Nambi, A. U., Prasad, R. V., Rahim, A.,
Neisse, R., and Baldini, G. (2015) DIAT: A Scalable
Distributed Architecture for IoT. IEEE Internet of
Things Journal, 2, 230–239.

[3] Newman, P. (2020). The Internet of Things
2020. https://www.businessinsider.com/internet-of-
things-report?r=US&IR=T (accessed December 14,
2021).

[4] Arellanes, D. (2021) Self-Organizing Software Models
for the Internet of Things: Complex Software Structures
that Emerge without a Central Controller. IEEE
Systems, Man, and Cybernetics Magazine, 7, 4–9.

[5] Botta, A., de Donato, W., Persico, V., and Pescapé,
A. (2016) Integration of Cloud computing and Internet
of Things: A survey. Future Generation Computer
Systems, 56, 684–700.

[6] Giang, N. K., Lea, R., and Leung, V. C. M. (2020)
Developing applications in large scale, dynamic fog
computing: A case study. Software: Practice and
Experience, 50, 519–532.

[7] Paniagua, C., Eliasson, J., and Delsing, J. (2020)
Efficient Device-to-Device Service Invocation Using
Arrowhead Orchestration. IEEE Internet of Things
Journal, 7, 429–439.

[8] Hahn, M., Breitenbücher, U., Kopp, O., and Leymann,
F. (2018) Modeling and execution of data-aware
choreographies: an overview. Computer Science -
Research and Development, 33, 329–340.

[9] Jaradat, W., Dearle, A., and Barker, A. (2016) Towards
an autonomous decentralized orchestration system.
Concurrency and Computation: Practice and Experience,
28, 3164–3179.

[10] Pantazoglou, M., Pogkas, I., and Tsalgatidou, A. (2014)
Decentralized Enactment of BPEL Processes. IEEE
Transactions on Services Computing, 7, 184–197.

[11] Barker, A., Weissman, J. B., and Van Hemert, J. I.
(2012) Reducing Data Transfer in Service-Oriented
Architectures: The Circulate Approach. IEEE
Transactions on Services Computing, 5, 437–449.

[12] Sonntag, M., Gorlach, K., Karastoyanova, D., Leymann,
F., and Reiter, M. (2010) Process space-based scientific
workflow enactment. International Journal of Business
Process Integration and Management, 5, 32–44.

[13] Barker, A., Walton, C. D., and Robertson, D. (2009)
Choreographing Web Services. IEEE Transactions on
Services Computing, 2, 152–166.

[14] Binder, W., Constantinescu, I., and Faltings, B. (2009)
Service invocation triggers: a lightweight routing
infrastructure for decentralised workflow orchestration.
International Journal of High Performance Computing
and Networking, 6, 81–90.

[15] Hahn, M., Breitenbücher, U., Leymann, F., Wurster,
M., and Yussupov, V. (2018) Modeling Data
Transformations in Data-Aware Service Choreographies.
International Enterprise Distributed Object Computing
Conference (EDOC), Stockholm, Sweden, October, pp.
28–34. IEEE.

[16] Do, T.-X. and Kim, Y. (2017) Control and data plane
separation architecture for supporting multicast listeners
over distributed mobility management. ICT Express, 3,
90–95.

[17] Mohamed, A., Onireti, O., Imran, M. A., Imran,
A., and Tafazolli, R. (2016) Control-Data Separation
Architecture for Cellular Radio Access Networks: A
Survey and Outlook. IEEE Communications Surveys &
Tutorials, 18, 446–465.

[18] Filippini, I., Redondi, A. E. C., and Capone, A.
(2017) Beyond Cellular Green Generation: Potential
and Challenges of the Network Separation. Mobile
Information Systems, 2017, 1–11.

[19] Liu, D. (2002) Data-flow Distribution in FICAS Service
Composition Infrastructure. International Conference
on Parallel and Distributed Computing Systems (PDCS),
Lousville, KY, September, pp. 1–6.

[20] Barker, A., Weissman, J. B., and van Hemert,
J. (2008) Eliminating the middleman: peer-to-
peer dataflow. International Symposium on High
Performance Distributed Computing (HPDC), Boston,
MA, USA, June, pp. 55–64. ACM.

[21] Barker, A., Weissman, J. B., and van Hemert, J. (2008)
Orchestrating Data-Centric Workflows. International
Symposium on Cluster Computing and the Grid
(CCGRID), Lyon, France, May, pp. 210–217. IEEE.

[22] Aalst, W. M. P. v. d., Aldred, L., Dumas, M., and
Hofstede, A. H. M. t. (2004) Design and Implementation
of the YAWL System. In Persson, A. and Stirna,
J. (eds.), Advanced Information Systems Engineering,
Lecture Notes in Computer Science, 3084. Springer,
Berlin, Heidelberg.

[23] OASIS (2007). Web Services Business Process
Execution Language Version 2.0. http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (ac-
cessed December 14, 2021).

[24] Morrison, J. P. (1978) Data Stream Linkage Mechanism.
IBM Systems Journal, 17, 383–408.

[25] Kahn, G. and Macqueen, D. (1977) Coroutines and
Networks of Parallel Processes. International Federation
for Information Processing (IFIP), Toronto, Canada,
August, pp. 993–998. IFIP.

[26] Cherrier, S., Salhi, I., Ghamri-Doudane, Y. M., Lohier,
S., and Valembois, P. (2014) BeC 3: Behaviour Crowd
Centric Composition for IoT applications. Mobile
Networks and Applications, 19, 18–32.

[27] Seeger, J., Deshmukh, R. A., Sarafov, V., and
Bröring, A. (2019) Dynamic IoT Choreographies. IEEE
Pervasive Computing, 18, 19–27.

[28] Macker, J. P. and Taylor, I. (2017) Orchestration and
analysis of decentralized workflows within heterogeneous
networking infrastructures. Future Generation
Computer Systems, 75, 388–401.

[29] Giang, N. K., Lea, R., and Leung, V. C. M. (2018)
Exogenous Coordination for Building Fog-Based Cyber
Physical Social Computing and Networking Systems.
IEEE Access, 6, 31740–31749.

[30] Arellanes, D. and Lau, K.-K. (2018) Analysis and
Classification of Service Interactions for the Scalability
of the Internet of Things. International Congress on
Internet of Things (ICIOT), San Francisco, CA, USA,
July, pp. 80–87. IEEE.

[31] Autili, M., Inverardi, P., and Tivoli, M. (2018)
Choreography Realizability Enforcement through the
Automatic Synthesis of Distributed Coordination
Delegates. Science of Computer Programming, 160,
3–29.

The Computer Journal, Vol. ??, No. ??, ????

26 D. Arellanes et al.

[32] Wutke, D., Martin, D., and Leymann, F. (2008)
Model and infrastructure for decentralized workflow
enactment. ACM Symposium on Applied Computing
(SAC), Fortaleza, Ceara, Brazil, March, pp. 90–94.
ACM.

[33] Giang, N. K., Blackstock, M., Lea, R., and Leung,
V. C. M. (2015) Developing IoT applications in the
Fog: A Distributed Dataflow approach. International
Conference on the Internet of Things (IOT), Seoul,
Korea (South), October, pp. 155–162. IEEE.

[34] Arbab, F. (2005) Abstract Behavior Types: a foundation
model for components and their composition. Science
of Computer Programming, 55, 3–52.

[35] Ghanem, M., Curcin, V., Wendel, P., and Guo, Y. (2008)
Building and Using Analytical Workflows in Discovery
Net. In Dubitzky, W. (ed.), Data Mining Techniques
on the Grid. Wiley Publishing, New York.

[36] Ludäscher, B., Altintas, I., Berkley, C., Higgins, D.,
Jaeger, E., Jones, M., Lee, E. A., Tao, J., and Zhao, Y.
(2005) Scientific workflow management and the Kepler
system. Concurrency and Computation: Practice &
Experience, 18, 1039–1065.

[37] Decker, G., Kopp, O., and Barros, A. (2008) An
Introduction to Service Choreographies. Information
Technology, 52, 122–127.

[38] OpenJS Foundation (2020). Node-RED: Flow-based
programming for the Internet of Things.

[39] Ngu, A., Gutierrez, M., Metsis, V., Nepal, S., and
Sheng, Q. (2017) IoT Middleware: A Survey on Issues
and Enabling Technologies. IEEE Internet of Things
Journal, 4, 1–20.

[40] Xue, G., Liu, D., Liu, J., and Yao, S. (2019) A process
partitioning technique for constructing decentralized
web service compositions. Software: Practice and
Experience, 49, 1550–1570.

[41] Cheng, B., Solmaz, G., Cirillo, F., Kovacs, E.,
Terasawa, K., and Kitazawa, A. (2018) FogFlow: Easy
Programming of IoT Services Over Cloud and Edges
for Smart Cities. IEEE Internet of Things Journal, 5,
696–707.

[42] Arellanes, D. and Lau, K.-K. (2019) Workflow
Variability for Autonomic IoT Systems. International
Conference on Autonomic Computing (ICAC), Umea,
Sweden, June, pp. 24–30. IEEE.

[43] Arellanes, D. and Lau, K.-K. (2018) Algebraic Service
Composition for User-Centric IoT Applications. In
Georgakopoulos, D. and Zhang, L.-J. (eds.), Internet
of Things – ICIOT 2018, Lecture Notes in Computer
Science, 10972. Springer International Publishing,
Cham.

[44] Arellanes, D. and Lau, K.-K. (2017) Exogenous Con-
nectors for Hierarchical Service Composition. Interna-
tional Conference on Service-Oriented Computing and
Applications (SOCA), Kanazawa, Japan, November, pp.
125–132. IEEE.

[45] Lau, K.-K. and Di Cola, S. (2017) An Introduction
to Component-based Software Development, 1st edition.
World Scientific, Singapore.

[46] Rana, T., Bangash, Y. A., Baz, A., Rana, T. A., and
Imran, M. A. (2020) Incremental Composition Process
for the Construction of Component-Based Management
Systems. Sensors, 20, 1–18.

[47] Arbab, F., Autili, M., Inverardi, P., and Tivoli, M.
(2019) Different Glasses to Look into the Three Cs:
Component, Connector, Coordination. In Boreale, M.,
Corradini, F., Loreti, M., and Pugliese, R. (eds.), Models,
Languages, and Tools for Concurrent and Distributed
Programming. Springer International Publishing, Cham.

[48] Netflix (2020). Conductor.
https://netflix.github.io/conductor/ (accessed Decem-
ber 14, 2021).

[49] Arellanes, D. and Lau, K.-K. (2019) Decentralized
Data Flows in Algebraic Service Compositions for the
Scalability of IoT Systems. World Forum on Internet of
Things (WF-IoT), Limerick, Ireland, April, pp. 668–673.
IEEE.

[50] Arellanes, D. and Lau, K.-K. (2017) D-XMAN: A
Platform For Total Compositionality in Service-Oriented
Architectures. International Symposium on Cloud and
Service Computing (SC2), Kanazawa, Japan, November,
pp. 283–286. IEEE.

[51] Fu, Y. and Soman, C. (2021) Real-time Data
Infrastructure at Uber. International Conference on
Management of Data (SIGMOD/PODS), China, June,
pp. 2503–2516. ACM.

[52] Stolfi, D. H., Alba, E., and Yao, X. (2017) Predicting
Car Park Occupancy Rates in Smart Cities. In Alba,
E., Chicano, F., and Luque, G. (eds.), Smart Cities,
Lecture Notes in Computer Science, 10268. Springer
International Publishing, Cham.

[53] Morrison, J. P. (2010) Flow-Based Programming: A
New Approach to Application Development, 2nd edition.
CreateSpace, USA.

[54] Hahn, M., Breitenbucher, U., Leymann, F., and Weiss,
A. (2017) TraDE - A Transparent Data Exchange
Middleware for Service Choreographies. In Panetto, H.,
Debruyne, C., Ardagna, C. A., Gaaloul, W., Papazoglou,
M., Paschke, A., and Meersman, R. (eds.), On the
Move to Meaningful Internet Systems, Lecture Notes
in Computer Science, 10573. Springer International
Publishing.

[55] Guimaraes, F. P., Kuroda, E. H., and Batista, D. M.
(2012) Performance Evaluation of Choreographies and
Orchestrations with a New Simulator for Service
Compositions. International Workshop on Computer
Aided Modeling and Design of Communication Links
and Networks (CAMAD), Barcelona, Spain, September,
pp. 140–144. IEEE.

[56] IoT Analytics (2018). State of the IoT 2018: Num-
ber of IoT devices now at 7B – Market accelerat-
ing. https://iot-analytics.com/state-of-the-iot-update-
q1-q2-2018-number-of-iot-devices-now-7b/ (accessed De-
cember 14, 2021).

[57] Nanda, M. G., Chandra, S., and Sarkar, V.
(2004) Decentralizing Execution of Composite Web
Services. ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and
Applications (OOPSLA), Vancouver, BC, Canada,
October, pp. 170–187. ACM.

[58] Kleinfeld, R., Steglich, S., Radziwonowicz, L., and
Doukas, C. (2014) Glue.Things: A Mashup Platform
for Wiring the Internet of Things with the Internet of
Services. International Workshop on Web of Things
(WoT), Cambridge, MA, USA, October, pp. 16–21.
ACM.

The Computer Journal, Vol. ??, No. ??, ????

Decentralised Data Flows for the Functional Scalability of Service-Oriented IoT Systems 27

[59] Chafle, G., Chandra, S., Mann, V., and Nanda, M. G.
(2004) Decentralized orchestration of composite web
services. International World Wide Web conference
(WWW), New York, NY, USA, May, pp. 134–143. ACM.

[60] Zhou, J., Leppanen, T., Harjula, E., Ylianttila, M.,
Ojala, T., Yu, C., Jin, H., and Yang, L. T. (2013)
CloudThings: A common architecture for integrating
the Internet of Things with Cloud Computing.
Proceedings of the 2013 IEEE 17th International
Conference on Computer Supported Cooperative Work
in Design (CSCWD), Whistler, BC, Canada, June, pp.
651–657. IEEE.

The Computer Journal, Vol. ??, No. ??, ????

	Introduction
	Related Work
	Paper Contributions
	Paper Organisation

	Why Do We Need Decentralised Data Flows in IoT?
	The DX-MAN Model
	Separation of Control Flows and Data Flows
	Design-time: (Semantic) Data Forest Definition
	Deployment-time: Data Forest Refinement
	Deployment-time: Data Forest Analysis

	Implementation
	Case Study
	Design-time
	Deployment-time
	Run-time

	Distributed Data Flows vs Decentralised Data Flows in the Smart Parking Scenario
	Evaluation of Functional Scalability
	Initial Experimental Setting
	RQ1: Does the proposed approach scale with the number of services?
	RQ2: Under which conditions are decentralised data flows beneficial?

	Conclusions
	
	
	
	
	
	IoT Scenario
	The DX-MAN Model
	Algorithm for Edge Analysis
	Evaluation (Preliminaries)
	Evaluation (Experiments)

