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Abstract

This thesis advances systematic and factor investing strategies using alternative data and
machine learning techniques. The first chapter studies the relevance of high-frequency news
data for low-frequency factor investing strategies. We build various news-based equity
factors for an investable global equity universe to investigate the factors’ ability to extend the
information inherent in standard factor models. Specifically, we document that incorporating
news-based equity factors benefits multi-factor equity investments, employing diversified
multi-factor equity allocations but also more dynamic factor timing strategies. The second
chapter examines dynamic asset allocation strategies that focus on explicit downside risk
management. We investigate suitable risk models that best inform tail risk protection
strategies. In addition to forecasting portfolio risk based on standalone models such as
extreme value theory or copula-GARCH, we propose a novel expected shortfall (ES) and
value-at-risk (VaR) forecast combination approach that utilizes a loss function that overcomes
the lack of elicitability for ES. This forecast combination method dominates simple and
sophisticated standalone models as well as a simple average combination approach in terms
of statistical accuracy. While the associated dynamic risk targeting or portfolio insurance
strategies provide effective downside protection, the latter strategies suffer less from inferior
risk forecasts, given the defensive portfolio insurance mechanics. The third chapter extends
the above ES and VaR forecast combination approach using machine learning techniques.
Building on a rich predictor set of VaR and ES forecasts from an array of econometric models
(including GARCH, CAViaR-EVT, dynamic GAS and realized range models), we leverage
shrinkage and neural network models to form combination forecasts. Such machine-learned
VaR and ES forecasts outperform a set of competing forecast combination approaches in
terms of statistical accuracy as well as economical relevance in dynamic tail risk protection
strategies.
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Introduction

This dissertation addresses two salient objectives of investment management: enhance
returns and reduce risk. To this end, quantitative investment processes are often guided
by classic asset pricing theory (Sharpe, 1964; Lintner, 1965; Mossin, 1966; Ross, 1976),
which focuses on harvesting systematic factor premiums. Well-known examples of factor
premiums in the equity market include the value, momentum, quality and low-volatility
premiums. The prevalence of these factor premiums has been extensively documented in the
literature, and they have been shown to be robust over time and across different markets.
Still, it is not a given that the factor evidence will continue to hold similarly in the future,
given that markets are adaptive. It is therefore of great importance to constantly validate and
evolve the employed quantitative model that guides the factor investing strategy. To improve
on a given factor’s definition, one can either seek to find better techniques using the same
underlying, traditional data or exploit new, alternative data sources that may help to better
capture the targeted factor premium. As for the latter, the advent of big and alternative data
opens up tremendous opportunities. In particular, the processing of news data seems highly
relevant, given that market prices ultimately aggregate all available information from news
data into one figure.

In the first chapter of this dissertation, we thus investigate whether high-frequency news
data can help improve low-frequency equity factor investing strategies. We build various
news-based equity factors for an investable global equity universe, relating to news volume,
news sentiment and further concepts. Our empirical analysis indicates that a global news
sentiment factor shows promise and is most pertinent in European and emerging markets.
While news sentiment factors are fairly correlated to classic momentum strategies, they
are not subsumed by common equity factors and thus help expanding factor investors’
opportunity set. As a result, incorporating news-based equity factors benefits diversified
multi-factor equity allocation but also dynamic factor timing strategies.
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Although equity factor investing strategies can deliver convincing risk and return
characteristics, the associated investment risk cannot be borne by all types of investors. For
instance, risk-averse investors often request further investment constraints or objectives that
ultimately call for explicit downside risk management. To achieve the desired risk-return
profile, one can implement risk-controlled asset allocation strategies that seek to align
long-term expectations and short-term risks by actively managing exposure to risky assets
such as equities. The associated asset allocation framework is typically built around three
pillars: strategic asset allocation, tactical asset allocation and risk management. Strategic
asset allocation targets a certain level of expected portfolio return and relies on long-term
expectations of the assets’ risk and return, typically over a horizon of five to ten years. The
strategic asset allocation is supplemented by a tactical allocation model seeking to add value
over the medium-term horizon, generally three to six months. The tactical asset allocation
dynamically deviates from the strategic asset allocation weights to navigate short-term
market fluctuations and takes into account the expected outperformance of risky assets in
different market environments. While the hope is that a diversified strategic asset allocation
together with a predictive tactical asset allocation allows navigating challenging downside
markets, forecasting the latter is challenging and one thus typically brings in a third line
of defense. To align the portfolio strategy with the investor’s risk objective, one adds a
short-term risk overlay to significantly reduce the probability of suffering from severe tail
events, albeit sacrificing some of the underlying strategy’s upside return potential. An
effective risk control may be achieved via dynamic allocation strategies, which aim to
improve the strategy’s downside risk profile by switching between the underlying’s portfolio
current asset allocation and a risk-free asset such as a money market investment.

The success of dynamic tail risk protection strategies strongly depends on the success
of forecasting tail risk. In the second chapter of this dissertation, we therefore investigate
suitable risk models for timely managing the investment exposure in dynamic tail risk
protection strategies. Specifically, we forecast the associated portfolio risk based on extreme
value theory, expectile regression, copula-GARCH and dynamic generalized autoregressive
score models. Utilizing a loss function that overcomes the lack of elicitability for expected
shortfall, we further propose a novel expected shortfall (ES) and value-at-risk (VaR) forecast
combination approach, which dominates simple and sophisticated standalone models as
well as a simple average combination approach in modeling the tail of the portfolio return
distribution. While the associated dynamic risk targeting or portfolio insurance strategies
provide effective downside protection, the latter strategies suffer less from inferior risk
forecasts, given the defensive portfolio insurance mechanics.
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Given the importance of risk forecasting for dynamic tail risk protection strategies, we
extend the above ES and VaR forecast combination approach in the third chapter and examine
the ability of machine learning techniques to increase prediction accuracy. Building on a
rich predictor set that contains VaR and ES forecasts from an array of econometric models,
including GARCH, CAViaR-EVT, dynamic GAS and realized range models, we leverage
shrinkage and neural network models to form combination forecasts. Such machine-learned
VaR and ES forecasts outperform a set of competing forecast combination approaches in
terms of statistical accuracy as well as economical relevance in dynamic tail risk protection
strategies. Specifically, egalitarian shrinkage models demonstrate good relative accuracy
in addition to convincing VaR and ES calibration backtesting results. In addition, neural
network combination models are deemed relevant, particularly in recessionary periods. Still,
the performance of the shrinkage models questions whether the additional complexity of the
neural network models is needed. When evaluating the combination forecasts during the
recent COVID-19 period, we observe lower VaR violation rates than in the global financial
crisis, suggesting that the combination models have learned from previous recessions.

The three chapters in this cumulative dissertation consist of individual research papers,
which I have written during my doctoral studies at Lancaster University and Invesco
Quantitative Strategies in Frankfurt. The first chapter, The Relevance of High-Frequency
News Analytics for Low-Frequency Investment Strategies, is a joint project with Carsten
Rother and my supervisors Harald Lohre and Ingmar Nolte. The second chapter, Estimating
Portfolio Risk for Tail Risk Protection Strategies, is co-authored with my supervisors and
published in the European Financial Management journal (Happersberger, Lohre, and Nolte,
2020). The third chapter, Combining Value-at-Risk and Expected Shortfall Forecasts using
Machine Learning Techniques, is joint work with Maximilian Stroh and my supervisors.
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Chapter 1
The Relevance of High-Frequency News
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1.1. Introduction

The proliferation of new alternative data sources opens new research avenues for enhancing
investment strategies through improved return or risk forecasts. A recent route seeks to
leverage news analytics that quantify textual information from news wire articles and social
media using natural language processing techniques and researching the link between
news and asset prices has been on the rise among both, academic scholars and industry
practitioners. Tetlock (2007), Fang and Peress (2009), Heston and Sinha (2017), Engelberg,
McLean, and Pontiff (2018) and Ke, Kelly, and Xiu (2019) are examples of this growing
literature. While most studies concentrate on the short-term relationship between news and
the cross-section of stock returns, there is only little evidence if and how news analytics can
inform the practice of investing.

In contributing to this strand of research, we are particularly interested in the relevance of
high-frequency news analytics for low-frequency investment strategies. First, we investigate
the use of news data to construct news-based equity factors, looking into univariate tests
as well as the factors’ ability to extend the information inherent in standard factor models.
Second, we analyze whether risk-based factor allocation strategies profit from adding
news-based equity factors to a set of benchmark factors. From a dynamic factor allocation
perspective, news data is used to inform the timing of standard investment factors using
cross-sectional information.

For our analyses we utilize a unique global news data set that covers firm-level business
news from all leading news providers and web aggregators between 2000 and 2017, collected
by RavenPack News Analytics.1 RavenPack does not only provide the flow of news articles
related to a firm but also quantifies the content-relevant information in each news article
based on natural language processing algorithms. In particular, it is determined which
companies are mentioned in an article, how relevant the article is to a company and what
the nature of the article’s tone is with respect to that company. For example, a news article
regarding a lapse in a company’s corporate governance, a corruption scandal involving a
company’s executive or a bad earnings report would be associated with a negative score,
whereas a news article regarding the announcement of a company’s new product, a successful
corporate acquisition or a positive earnings report would be associated with a positive score.

While other studies on news analytics concentrate on a single news phenomenon, we
analyze various news analytics indicators in a unified framework, covering most indicators
mentioned in the literature. These indicators can be divided into four news concepts: news

1RavenPack is a leading news data provider and its database has been used in many studies, see e.g.
Kolasinski, Reed, and Ringgenberg (2013), Dang, Moshirian, and Zhang (2015), Beschwitz, Keim, and Massa
(2020), and Audrino, Sigrist, and Ballinari (2020a).
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volume, news sentiment, news trend and alternative news concepts. News volume, also
referred to as media coverage or media attention, analyzes a firm’s media presence (e.g.,
Barber and Odean, 2008; Fang and Peress, 2009). News sentiment was first studied by
Tetlock (2007) and examines a news event’s tone relating to a particular firm. News trend is
about detecting time-series patterns in news sentiment (e.g., Leinweber and Sisk, 2011; Uhl,
Pedersen, and Malitius, 2015). Alternative news concepts encompass more complex ways
as to how news analytics can be used to inform investment strategies. These include the
concept of news beta (Hafez, 2010) that measures the responsiveness of a firm’s stock price
to an aggregate news sentiment or news significance that captures both mean and variance of
news sentiment.

Given the popularity of factor-based investment strategies, we first examine the predictive
content of news-based indicators in the cross-section of stock returns. To this end, we form
equally weighted long-short factor portfolios according to the respective news indicator
using a global universe of stocks. Given the vast amount of factors available to explain the
cross-section of expected stock returns, several studies (e.g. Hsu, Kalesnik, and Viswanathan,
2015; Harvey, Liu, and Zhu, 2016; Harvey, Liu, and Saretto, 2020; Arnott, Harvey, and
Markowitz, 2019) emphasize the importance of following a rigorous research protocol when
testing new factors in order to ensure their robustness. Accordingly, we adopt a five-step
procedure when assessing the cross-sectional relevance of news analytics.

First and foremost, there needs to be a clear economic rationale behind the existence and
persistence of a factor premium. There is an extensive theoretical literature (Basu, 1977;
De Bondt and Thaler, 1985; Cutler, Poterba, and Summers, 1989; La Porta et al., 1997;
Barberis, Shleifer, and Vishny, 1998; Daniel, Hirshleifer, and Subrahmanyam, 1998; Daniel,
Hirshleifer, and Subrahmanyam, 2001) arguing that the arrival of news affects a firm’s
stock price. Under the biased expectations hypothesis, investors are too optimistic about
some stocks and too pessimistic about others. When new information arrives in the form
of a news story, investors update their expectations, resulting in a correction to the stock
price (cf. Engelberg, McLean, and Pontiff, 2018). Thus, information contained in news
flow data can help to predict future stock price fluctuations. Second, the cross-sectional
effect should be robust to reasonable perturbations in a factor’s definition (cf. Hsu, Kalesnik,
and Viswanathan, 2015). We therefore build on different definitions when constructing
the news-based indicators for each concept, including various look-back windows, and
consider a market-capitalization weighting scheme in addition to equal-weighting when
forming the long-short factors. The latter ensures that our results are not solely driven by
smaller capitalized and less investable companies. Third, as suggested by Harvey, Liu,
and Zhu (2016) and Harvey, Liu, and Saretto (2020), we account for multiple testing by



Chapter 1. The Relevance of HF News Analytics for LF Investment Strategies 7

calculating various t-statistic thresholds a factor need to pass to be considered as statistically
significant (e.g. Bonferroni, 1936; Holm, 1979; Benjamini and Hochberg, 1995; White,
2000; Benjamini and Yekutieli, 2001; Romano, Shaikh, and Wolf, 2008). This allows us to
reduce the type I error, i.e. coming up with false positives which are not truly significant.
Fourth, we check whether news-based factors are subsumed by common equity factors such
as value and momentum or do indeed expand factor investors’ opportunity set, employing
mean-variance spanning tests according to Gibbons, Ross, and Shanken (1989), Cochrane
(2009) and Kan and Zhou (2012). Finally, we follow Hsu, Kalesnik, and Viswanathan (2015)
and analyze the cross-sectional effects of news-based factors in different regions and over
multiple return horizons, complementing the literature on news-based equity factors, which
is usually restricted to the US equity market and concentrates on one-month cross-sectional
effects (e.g. Tetlock, 2007; Fang and Peress, 2009).

Overall, the key findings of the cross-sectional analysis are as follows: First, we document
that global long-short factors based on news sentiment consistently pass the research protocol,
confirming its overall relevance for the cross-section of stock returns. Still, the results differ
when breaking the global universe down into its sub-regions. While the findings for Europe
and emerging markets are even more pronounced than for the global universe, we do not
find consistent significant cross-sectional stock return patterns of news sentiment for the US
and the Japanese market. The fact that average momentum returns have historically been
low in the Japanese market (see Daniel, Titman, and Wei, 2001; Hanauer, 2014) together
with the finding that the momentum factor is highly correlated with news-based factors may
explain the findings for the Japanese equity market. As for the US market, our findings seem
to be at odds with previous studies (cf. Tetlock, 2007). This discrepancy may be explained
by different underlying news data sets. While Tetlock (2007) solely analyzes a few US
newspapers, our study is based on a comprehensive data set, including all types of news
sources and a much longer sample period. Given the scope of the data set, our findings may
be rationalized by the market structure, with the US market being simply more efficient
than other markets, so that news are promptly incorporated in stock prices (see McLean and
Pontiff, 2016; Jacobs and Müller, 2020).

Second, we document that only some of the news trend factors survive the stringent
testing procedure. In contrast, we do not find consistent evidence that news volume or
news beta factors are profitable investments, contradicting existing studies (e.g. Barber and
Odean, 2008; Fang and Peress, 2009). As before, we rationalize this discrepancy by different
underlying data sets.

As news sentiment-based equity factors earn significant returns and expand the investment
opportunity set of common equity factors, we further investigate whether news analytics
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are beneficial for multi-factor investment strategies. We first analyze whether risk-based
factor allocation strategies can be enhanced by adding news-based factors to a representative
set of global equity factors. Specifically, we consider an equally weighted portfolio, a
minimum-variance portfolio and a risk parity portfolio. Empirically, we document that all
three risk-based allocation strategies benefit from augmenting the benchmark portfolio by
news sentiment-related equity factors.

Given the time variation in equity factor returns a forecasting-based factor allocation
may add value over and above a diversified passive factor allocation (see e.g., Asness, 2016;
Arnott, Beck, et al., 2016; Bender et al., 2018; Dichtl, Drobetz, Lohre, et al., 2019). We
explore the benefits of active factor allocation when incorporating information from news
flow data. To this end, we consider parametric portfolio policies that allow for timing factors
based on cross-sectional information. We argue that the information contained in news
flow data may help explaining the cross-section of factor returns as, similar to a stock level
rationale, news data may entail information on the attractiveness of a factor itself. For
example, a factor may be attractive when companies in the long leg have more positive
news and/or companies in the short leg have more negative surprises. Hence, positive (net)
news sentiment indicates positive factor returns. Following this rationale, we distill the set
of news-based indicators on the level of equity factors to generate innovative equity factor
characteristics and exploit them in the cross-sectional parametric portfolio policy framework
of Brandt, Santa-Clara, and Valkanov (2009).

Indeed, news sentiment-related factor characteristics exhibit positive coefficients in a
univariate parametric portfolio policy, which means that factors with positive news sentiment
are overweighted in the factor allocation (relative to an equally weighted benchmark),
whereas factors with negative news sentiment are underweighted. Associated performance
statistics are consistently better than those for an equally weighted benchmark. When
considering multiple characteristics jointly in multivariate parametric portfolio policies, it
shows that factor timing allocations profit from using information contained in news flow
data. The performance figures are in favor of those factor allocations that incorporate news
sentiment data. We document higher risk-adjusted returns and positive information ratios for
the news-related factor allocation strategies compared to an equally weighted benchmark
portfolio, even after accounting for transaction costs. In addition, the coefficient for the
news sentiment-related factor characteristic remains statistically significant, indicating its
relevance for the dynamic factor allocation strategy.

The outline of the paper is as follows: Section 1.2 introduces the news analytics data
and discusses the underlying ideas and the construction of the news-based indicators.
Section 1.3 examines cross-sectional patterns in the derived news indicators. In Section 1.4,
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we investigate the use of news flow data for multi-factor investment strategies. Section 1.5
concludes.

1.2. Condensing high-frequency news data into predictive indicators

1.2.1. News data

As main data source we utilize the news and sentiment data from RavenPack News Analytics.
RavenPack systematically tracks, collects and analyzes real-time, firm-level business news
from leading real-time news providers (including Dow Jones Newswires, the Wall Street
Journal, Barron’s and other major publishers) and web aggregators (including industry and
business publications), regional and local newspapers, government and regulatory updates
and trustworthy financial websites. In total, RavenPack features around 28,000 companies in
over 130 countries (representing 98% of the investable global equity market) and covers
news from a wide range of facts, opinions and corporate disclosures. The data is available
from the year 2000 onwards, enabling us to analyze almost two decades of news data.

To transform unstructured news data items into structured granular data and corresponding
scores RavenPack Analytics performs the following two steps. First, it classifies news articles
into news event categories according to the RavenPack taxonomy, and both the topic and a
firm’s role in the news article are tagged and categorized.2 Second, RavenPack constructs a
set of scores, rating different aspects of the relevant news items with respect to the respective
firm using natural language processing algorithms that effectively combine traditional
linguistic analyses, financial expert consensus and market response methodologies (see
RavenPack Analytics, 2017). The following four major scores form the basis of the news
indicators we will build:

• Event Sentiment Score (ESS): A granular score between−1.00 and +1.00 that represents
the news sentiment for a given company, where a negative (positive) score indicates
negative (positive) sentiment and 0 indicates neutral sentiment. The ESS leverages
RavenPack’s event detection technology and produces a sentiment score every time
an event is matched. In particular, the ESS is determined based on training sets in
which experts with extensive experience and backgrounds in linguistics, finance and
economics classify company-specific events and agree that these events generally
convey a positive, neutral or negative sentiment (Hafez and Xie, 2011).

• Relevance (REL): An integer score between 0 and 100, with higher values indicating
greater relevance of the underlying news story for a given company.

2See RavenPack’s taxonomy scheme in Figure 1.C.1 for further details.
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• Event Relevance (EVR): An integer score between 0 and 100 that reflects the relevance
of the event in the story, with higher values indicating greater relevance.3

• Event Similarity Days (ESD): An integer between 0 and 365 indicating the number of
days since a similar event was detected over the last 365 days. The ESD thus allows to
isolate the first news article in a chain of similar articles about a given news event.

1.2.2. Global equity data

To allow for a comprehensive investigation of the news analytics data, we assemble a
representative and investable equity universe encompassing the constituents of global and
regional equity indices from MSCI, FTSE, S&P and STOXX. Company-specific data such
as financial statement and price data are sourced from the Worldscope database. Having
matched news and firm-level data, we consider a broad universe of, on average, 5350
companies per month and 1,155,342 relevant news events in the sample period from January
2000 to December 2017. On average, this translates to 94 news events per firm and month
(cf. Table 1.1).

Panel A of Table 1.1 gives further descriptive statistics of the number of news events per
month and firm, reflecting a company’s media presence which we call news volume in the
following. We only consider relevant news events and therefore require a relevance score of
at least 75. This allows us to avoid clickbaits or biases by news stories just mentioning a
company as reference. To get an overview of the data, we initially do not restrict the event
similarity days analytics since a repeated dissemination of the same or similar news events
may be a useful indication of a company’s media presence. As a consequence, there is a
sample maximum of 57,528 relevant news events for one company within a month. The
covered company is Facebook, which went public in May 2012, constituting the biggest
initial public offering in the technology sector. In the subsequent analyses, we, however,
restrict the event similarity days analytics and focus on the most novel news events, see
Section 1.2.3.

The positive skewness and the huge maximum number of news indicate that news volume
is largely driven by company size. Indeed, large companies account for the majority of news
events: large companies have, on average, 208 news events per firm and month compared to
53 and 21 news events for medium-sized and small companies, respectively (see also Figure

3To clarify the difference of the relevance and the event relevance score: The relevance score measures
how relevant a whole news story is for a company, so that there is only one score for a story and company. In
contrast, the event relevance score measures how relevant a news event is within a given news story. As there
may be multiple news events for a company within a story, there may be multiple event relevance scores for a
news story and company.
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Table 1.1: Descriptive statistics of news data

Mean Median Min Max Sd Skew Kurt Obs Firms

Panel A: News Events
Overall 93.95 19 1 57,528 523.17 33.22 1,739 1,155,342 5349

USA 223.41 75 1 57,528 949.97 20.51 617 272,781 1263
Japan 41.53 10 1 24,704 223.16 32.97 2,398 106,144 491
Europe 85.11 23 1 41,395 379.43 27.62 1,383 280,823 1300
RES 55.63 13 1 12,207 188.01 17.51 542 158,896 736
EM 31.03 9 1 26,325 190.88 53.95 4,169 336,698 1559

Large 208.35 57 1 57,528 859.26 20.99 685 385,191 1783
Medium 52.83 19 1 22,643 220.85 51.52 3,538 385,038 1783
Small 20.62 7 1 18,684 117.12 92.88 11,454 385,113 1783

Panel B: ESS
Overall 0.17 0.23 -1.0 1.0 0.39 -0.52 -0.30 851,220 3941

USA 0.16 0.18 -1.0 1.0 0.34 -0.34 -0.13 250,088 1158
Japan 0.18 0.27 -1.0 1.0 0.40 -0.60 -0.44 74,719 346
Europe 0.19 0.27 -1.0 1.0 0.39 -0.63 -0.11 199,378 923
EMM 0.17 0.27 -1.0 1.0 0.41 -0.55 -0.51 222,669 1031

Large 0.19 0.22 -1.0 1.0 0.33 -0.56 0.24 283,806 1314
Medium 0.16 0.22 -1.0 1.0 0.39 -0.45 -0.38 283,667 1313
Small 0.16 0.27 -1.0 1.0 0.43 -0.50 -0.67 283,747 1314

This table shows the descriptive statistics of news volume (Panel A) and the average event sentiment score
(Panel B) per month and firm. For news volume, i.e. the number of news events per month, we require a
relevance score above 75. For the ESS we require an (according to the RavenPack taxonomy) assigned and
non-neutral ESS score as well as a relevance, event relevance and event similarity score above 90. For each
panel, we show the overall statistics as well as statistics for the regions USA, Japan, Europe and emerging
markets (EM) and for large, medium-sized and small firms (in terms of market-capitalization). We show the
following statistics: mean, median, minimum (Min), maximum (Max), standard deviation (Sd), skewness
(Skew) and kurtosis (Kurt). Obs is the total number of observations and Firms gives the average number of
firms per month. The time period spans from January 2000 to December 2017.

1.1a).4 This fact is not only consistent with the literature on media and news indicating that
large firms attract higher media attention but is also aligned with the intuition that large
firms typically generate more news events (e.g. Ke, Kelly, and Xiu, 2019). To control for
size effects, we will standardize the derived news indicators by market capitalization going
forward (see details in Section 1.2.3).

Figure 1.1a shows the evolution of news volume over the sample period. The number of
news articles increases substantially from the beginning of the sample in 2000 to the year

4We divide the universe of companies into three size buckets according to their market capitalization. That
means, large companies refer to companies that are in the upper tercile, medium-sized and small companies in
the middle and lower tercile, respectively.
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Figure 1.1: Characteristics of news volume. This figure illustrates various characteristics of news volume
over the sample period from January 2001 to December 2017. Panel (a) shows monthly news events allocated
to the following regions: United States (USA), Japan (JAP), Europe (EUR), emerging markets (EM) and rest
of the world (RES). Panel (b) shows news volume per market capitalization (large, medium-sized and small
companies). Panel (c) illustrates the yearly pattern of daily news events for the years 2007 and 2017.

2012, but stabilizes afterwards. In addition to RavenPack’s changing media coverage, this
time-series pattern is driven by both an increasing intensity of media coverage and a growing
amount of firm activities. Figure 1.1b shows the evolution of the number of monthly news
events per region. We differentiate between United States (USA), Japan (JAP), Europe (EUR)
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and emerging markets (EM).5 It is not surprising that US stocks exhibit the largest fraction
of news events, followed by European stocks (cf. Table 1.1). Figure 1.1c shows the number
of daily news events over the years 2007 (upper part) and 2017 (lower part), conveying two
distinct seasonal patterns: first, we observe a quarterly cycle that coincides with quarterly
business reports (earnings announcements etc.).6 Second, we observe a weekly cycle which
shows a significantly reduced news dissemination on weekends. We control for both effects
when constructing our indicators.
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Figure 1.2: Characteristics of news sentiment. Panel (a) shows the histogram of the ESS, whereas Panel (b)
shows the monthly average event sentiment score across all firms. The sample period spans from January 2000
to December 2017.

To explore the characteristics of the event sentiment score we examine Panel B of Table
1.1. The number of ESS scores and firms is lower than the number of news events for two
reasons: first, an event sentiment score is only assigned to a news event when it can be
classified according to the RavenPack taxonomy. Second, we exclude news events with
a neutral ESS score of zero and require the ESS to pass filters of 90 for relevance, event
relevance and novelty to further reduce noise (see Section 1.2.3 for more details on noise
filtering). We document that sentiment is slightly positive on average: the ESS has a mean
of 0.17 and a median of 0.23, respectively. Panel (a) of Figure 1.2 shows the histogram
of all event sentiment scores, when applying the described filters. We observe a slightly
negative skewed and fat-tailed distribution.7 Panel 1.2b shows the evolution of the monthly

5Emerging markets include those countries that are classified as emerging market by MSCI, FTSE, S&P,
and STOXX. This classification is time-dependent. Emerging market countries are, for example, Brazil, Russia
and India.

6As a robustness check, we perform an analysis excluding news events corresponding to earnings
announcements when constructing the set of news indicators. Unreported results do not show significant
differences to the results including earnings announcements data, suggesting that the analysis of news-based
indicators is not solely driven by events concerning quarterly business reports.

7According to the news data provider RavenPack News Analytics, the peaks in the histogram of the ESS
correspond to the default sentiment scores that are assigned to events where no additional information was
found that allowed for a more granular choice within the assigned sentiment range. These peaks occur more
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ESS score averaged across firms, which is fairly stable with the exception of the time period
of the global financial crisis in 2008.

1.2.3. News-based indicators

In this section, we develop a broad set of indicators that aim to explain and predict asset
price fluctuations utilizing information extracted from news flow data. The general use
of news data for this purpose can be rationalized via the efficient markets hypothesis of
Malkiel and Fama (1970), which can be seen as the theoretical basis for any return prediction
analysis. Therein, market efficiency predicts that the expected return of a stock is dominated
by unforecastable news, as this news is rapidly (in its strongest form, immediately) and fully
incorporated in its price. An alternative hypothesis is that information in news flow data is
not fully absorbed by market prices instantaneously, for reasons such as limits-to-arbitrage
and limited investor attention (e.g. Baker and Wurgler, 2006; Tetlock, 2007; Ke, Kelly, and
Xiu, 2019). Under the biased expectations hypothesis (see e.g. Engelberg, McLean, and
Pontiff, 2018), investors are generally too optimistic about some stocks and too pessimistic
about others. When new information arrives in the form of a news story, investors update
their beliefs, resulting in a correction to the stock price. Thus, information contained in news
flow data can be predictive of future stock prices. While this alternative hypothesis is by
now considered uncontroversial for very short horizons (e.g. daily or intradaily horizons), it
is still not clear whether low-frequency investors can profit from information embedded in
news flow data, facing investment horizons of one month or longer. Our analysis adds new
evidence to the empirical literature investigating whether this alternative hypothesis also
holds for longer horizons.

In computing news-based indicators, we first filter the news data to reduce the noise.
In particular, we only include firms with at least one news story during our sample period.
While it seems favorable to include as much information as possible (i.e. keep as many news
events as possible), not all events are equally important. Therefore, we exclude news stories
with 𝐸𝑆𝑆 = 0 and filter the data based on relevance, event relevance and event similarity days
according to Hafez (2010), Kolasinski, Reed, and Ringgenberg (2013), Dang, Moshirian,
and Zhang (2015) and Beschwitz, Keim, and Massa (2020). Specifically, we only consider
stories that are directly relevant to the mentioned company by only retaining data with a
relevance score above 90. Therefore, we make sure to focus on the salient news items for
each company. In a similar way, we only retain events with high relevance in a news story to
avoid carrying unimportant news items, i.e. we require the event relevance score to be above

often for firms with small media coverage (and a small volume of news events) than for firms with large media
coverage (and a large volume of events).
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90. Furthermore, we only consider unique and novel news events for most of the indicators.
We hypothesize that the first instance of an event is most impactful and any subsequent
repetition thereof can be expected to have a lesser impact. By retaining only events that
have an event similarity days analytic above 90, we filter our data set down to only the most
novel events within the last 90 days. As such, any analysis of the news events is less likely
to be driven by the repetitive dissemination of the same or similar news events. Still, we
also investigate indicators that are less restrictive in terms of novelty, given that under the
prospect theory and as suggested by behavioral studies, there is the possibility that repetitive
news may change and force market participants to alter their attitude and trading strategies.8

In general, we proceed as follows when constructing a given news indicator: As our
main analysis is conducted at a monthly frequency, we first aggregate the high-frequency
news tick data to monthly indicators using indicator-specific functions. In this process, we
calculate each indicator for each firm in our investment universe using various look-back
windows. As the required information differs among indicators, not all indicators are based
on the same number of firms. To alleviate robustness concerns we require a minimum
number of 300 firms in each month when deriving the indicators. Furthermore, this allows
us to test the predictive ability of the indicator itself and reduce the stock-specific impact
when constructing the indicator. Second, as industries tend to perform differently across
the business cycle and may also be at different stages in their life cycle, it seems reasonable
to assume that the information extracted from news flow data is likely to reflect the broad
industry context, potentially confounded with cues about firm-specific performance. For
this reason, we settle for a standardization based on industry classifications by subtracting
industry averages and dividing by the industry-specific standard deviation, limiting the
impact from industry bets. Third, since a firm’s news volume and news sentiment are
likely driven by company size, we cross-sectionally neutralize the indicators by their market
capitalization. Appendix 1.A gives further details on how we construct the individual news
indicators.

The indicators that we derive from news flow data relate to various studies from the
existing literature on news analytics and can be categorized into four broad concepts when
building predictive indicators: News Volume, news sentiment, news trend and alternative
news concepts. We describe each of these concepts in the following.

8We tested various filters around a value 90, but do not find significant differences in our results. Hence,
we follow the studies from Hafez (2010), Kolasinski, Reed, and Ringgenberg (2013), Dang, Moshirian, and
Zhang (2015) and Beschwitz, Keim, and Massa (2020) that also use RavenPack news flow data and perform
analyses suggesting that RavenPack is good at identifying both relevance and sentiment of an article. Notably,
for some indicators we deviate from REL, EVR and ESD filters of 90 for indicator-specific reasons. For further
information see the detailed indicator description in Appendix 1.A.
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News volume

News volume captures a firm’s media presence measured by the number of news events within
a specific time window. Following the literature (Chan, 2003; Barber and Odean, 2008; Da,
Engelberg, and Gao, 2011; Hillert, Jacobs, and Müller, 2014) we investigate the “attention
grabbing hypothesis”, which states that investors are net buyers of stocks with high media
presence.9 Indeed, Barber and Odean (2008) find that returns of attention-grabbing stocks
are (temporarily) higher than those of firms with low (or without) media presence. By using
different time horizons (1, 3, 6 months), we analyze the persistence of the attention-grabbing
effect, investigating whether an associated premium can be harvested by long-term investors.
In addition to the standard filter settings (REL>90, EVR>90, ESD>90), we also examine a
less restrictively filtered news volume indicator (REL>75) to check the effects related to the
number of appearances of the same or similar news event across different news providers.
The argument is that repetitive news may change and force market participants to alter their
attitude and trading strategies, as proposed by the well-known known prospect theory and
other behavioral rationales.

News sentiment

News sentiment synthesizes a news event’s tone with respect to a particular firm. Positive
sentiment corresponds to a news event that portrays positive surprises and opinions, resonating
with generally good news or an outcome that is better than expected. Numerous studies
(e.g., Tetlock, 2007; Tetlock, Saar-Tsechansky, and Macskassy, 2008; Heston and Sinha,
2017; Wang, Zhang, and Zhu, 2018; Ke, Kelly, and Xiu, 2019) demonstrate that firms’ news
sentiment contains information relevant for predicting the cross-section of stock returns. For
instance, Tetlock (2007) shows that high media pessimism, i.e. negative sentiment, forecasts
falling stock market prices.10 In this vein, we construct four different firm-specific sentiment
indicators. First, a straightforward indicator simply computes the monthly average of the
event sentiment score over various look-back periods. Second, we construct a more robust
version that does not depend on the magnitude of the event sentiment score emerging from
the proprietary model of the news data provider.11 Specifically, we divide the number of
news events with a positive event sentiment score by the number of news events with a

9Conversely, other studies advocate the slogan “no news is good news”. For instance, Fang and Peress
(2009) find that stocks with no media presence earn higher returns than stocks with high media presence even
after controlling for well-known risk factors.

10For a detailed literature review on news sentiment see Uhl, Pedersen, and Malitius (2015) or Coqueret
(2020).

11To ensure the validity of the ESS provided by RavenPack Wang, Zhang, and Zhu (2018) compute a simple
sentiment score using common text processing techniques as a robustness check. Their findings show that both
sentiment scores provide similar results.
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negative event sentiment score. The third news sentiment indicator seeks to exploit the
sentiment score evolution over time by putting larger weight on more recent sentiment scores
in the look-back window, because more recent news events might be more relevant than
older news events. Finally, prospect-theory and behavioral finance literature typically argues
that the market reaction to negative news is generally stronger than the reaction to positive
news, which is empirically shown by Hafez, Guerrero-Colon, and Duprey (2015) and Heston
and Sinha (2017). In this vein, we construct a firm-specific news sentiment indicator that
gives higher weights to negative than to positive news, employing a weighting scheme that is
based on the prospect theory of Tversky and Kahneman (1992).

News trend

News trend relates to changes in news sentiment rather than its average level. Analyzing
associated time-series patterns, Leinweber and Sisk (2011) and Uhl, Pedersen, and Malitius
(2015) argue that longer-term news sentiment cycles exist and can be exploited for return
predictions and investment strategies, documenting that a positive trend in a firm’s news
sentiment has a positive impact on its future returns. To reduce noise and enable identifying
longer-term trends in the news-sentiment indicator we follow Uhl, Pedersen, and Malitius
(2015) and use a frequency filter to construct a corresponding news sentiment momentum
indicator.12 More simplistic approaches to pinpoint time trends are (1) to compare the
distribution of the ESS between two different points in time (similar to a simple 𝑡-statistic of
a change in ESS) or (2) to regress the cumulative ESS on the time index.

Alternative news concepts

Alternative news concepts covers the indicators news beta, news dispersion and news
significance. News beta measures the sensitivity of a firm’s stock return to changes in market
sentiment. To this end, we calculate an overall market news sentiment by averaging the
ESS across firms for each month. The idea is that positive news beta stocks, on average,
outperform the market while negative news beta stocks tend to underperform (Hafez, 2010).
News dispersion looks at the intraday variation of the ESS, while news significance captures
both mean and variation of the ESS within a specific time horizon.

12We employ the cumulative sum (CUSUM) frequency filter to reduce the noise, see Appendix 1.A and Uhl,
Pedersen, and Malitius (2015) for details.
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1.3. News analytics and the cross-section of stock returns

If a certain firm characteristic is hypothesized to be relevant for the cross-section of stock
returns, a corresponding long-short portfolio can be constructed to proxy for the underlying
unknown factor. Given the biased expectation hypothesis (cf. Section 1.2.3), we therefore
form long-short portfolios of stocks sorted on the proposed news indicators to examine the
cross-sectional relevance of news analytics in a simple, non-parametric way. Specifically,
we monthly divide the stock universe into quintile portfolios based on the prevailing scores
of the selected news indicator and compute the equally weighted average return of each
portfolio during the following month.13 If the information embedded in the news indicator
was already incorporated in stock prices, then the top quintile portfolio return should be
similar to that of the bottom quintile portfolio. To test the pricing implications of news, we
therefore form zero-investment trading strategies that are long in stocks with the highest news
scores and short in stocks with the lowest news scores. Consequently, the ultimate long-short
factor portfolio return emerges as the return difference between the top and bottom quintile
portfolio returns.14

In this section, we test news-based equity factors for the global universe of stocks.
Following Hsu, Kalesnik, and Viswanathan (2015), Harvey, Liu, and Zhu (2016), Arnott,
Harvey, and Markowitz (2019) and Harvey, Liu, and Saretto (2020), we apply stringent
criteria for qualifying factors, including multiple testing hurdles, mean-variance spanning
tests and robustness across different regions and over multiple return horizons.

1.3.1. A robust framework to detect relevant news indicators

When testing 20 randomly selected factors, one factor will likely exceed the two-sigma
threshold (𝑡-statistic of 1.96 or above) by chance alone. Obviously, the standard 𝑡-statistic
of 1.96 is not appropriate if more than one factor is tested (e.g. Arnott, Harvey, and
Markowitz, 2019) and the early multiple testing literature in finance (e.g. Lo and MacKinlay,
1990b) already emphasized the importance to increase the 𝑡-statistic threshold to avoid false
discoveries. Harvey, Liu, and Zhu (2016) and Harvey, Liu, and Saretto (2020) provide a

13We follow an equal-weighting scheme when forming long-short portfolios, because it is a simple and
robust way of assessing the news indicators’ predictive power across the firm size spectrum. Anecdotally, it is
also close to the way that hedge funds use news text for portfolio construction (cf. Ke, Kelly, and Xiu, 2019).
Notwithstanding, we will also use a market capitalization weighting scheme as robustness check.

14Note that we use the notion of long-short portfolios as well as factors interchangeable in the following, being
aware that long-short portfolios are a tool to proxy the underlying unknown factor driving the cross-section of
stock returns.
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catalogue of different approaches to address the multiple testing problem.15 These methods
are designed to control false discoveries by either limiting the probability of a given number
of false discoveries (i.e. the family-wise error rate) or controlling the proportion of false
discoveries relative to the total number of discoveries (i.e. the false discovery rate).

We consider the following four approaches that strictly control the family-wise error rate
(FWER) by allowing only one false discovery: (i) Bonferroni (1936), (ii) Holm (1979), (iii)
the bootstrap reality check (BRC) of White (2000) and (iv) the StepM approach of Romano
and Wolf (2005). The popular Bonferroni and Holm procedures asymptotically control
the FWER under particular conditions and tend to do poorly in extreme situations, such as
when tests exhibit negative correlation. In contrast, the BRC and the StepM procedures
allow for any arbitrary dependence in the test statistics as they rely on resampling. However,
when the number of factors being tested increases, these methods become more and more
stringent (i.e., they lead to fairly high 𝑡-statistic thresholds). To alleviate this concern, the
k-StepM method of Romano, Wolf, et al. (2007) extends the concept of FWER to allow
for control of any arbitrary number of false discoveries, the so called k-FWER. A direct
extension of the k-FWER is the idea of controlling the proportion of false discoveries (FDP).
Romano, Shaikh, and Wolf (2008) introduce the FDP-StepM procedure, which is a sequence
of k-StepM tests.

Instead of controlling the probability that the FDP is less than or equal to a threshold,
one may also choose to control the average realized FDP, that is, the false discovery rate
(FDR). The two main methods to control the FDR are from Benjamini and Hochberg (1995)
(BH) and its extension by Benjamini and Yekutieli (2001) (BY). While the BH procedure
controls the FDR under the assumption that test statistics are independent, the BY procedure
allows for more general dependence. The former is therefore stricter (but less powerful) than
the latter.

Given that some of the tested news factors are highly correlated (as we consider different
factor definitions of the same news phenomena), we concentrate on multiple testing methods
that allow for any dependence in the test statistics.16

15In statistics, multiple testing refers to simultaneous testing of more than one hypothesis. Biases arising
from the multiple testing problem are known as data snooping, data fishing, data dredging or p-hacking (see
Harvey, Liu, and Zhu, 2016; Harvey, Liu, and Saretto, 2020).

16In the tables, we provide the multiple testing hurdles of the BRC, the StepM, the FDP-StepM and the BH
procedure. The methods not reported do deliver similar results. For more details on the described multiple
testing procedures, see Harvey, Liu, and Saretto (2020).
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1.3.2. News-based equity factor evidence

In Table 1.2 we report performance statistics for news-based equity factors constructed in a
global investment universe. Given that the underlying news data ranges from 2000 to 2017
and the computation of indicators consumes up to the last twelve months of data, we report
monthly scores and results from 2001 to 2017.

Table 1.2: News equity factors: Global universe

Multiple testing

Indicator Return Sd Min Max SR MDD 𝑡-stat Φ Holm BRC FDP BY Firms

News Volume
VOLREL>75,1 -0.38 4.23 -4.70 9.12 -0.09 -14.46 -0.38 3421
VOL1 0.53 2.90 -3.10 5.29 0.18 -7.81 0.76 2772
VOL3 0.96 4.34 -3.56 10.46 0.22 -8.81 0.92 3576
VOL6 0.80 5.00 -4.43 11.15 0.16 -16.20 0.66 3774

News Sentiment
SENT1 3.81 3.55 -6.32 3.38 1.07 -10.55 4.42 ✓ ✓ ✓ ✓ ✓ 2646
SENT3 4.29 4.24 -7.34 4.25 1.01 -12.34 4.17 ✓ ✓ ✓ ✓ ✓ 3535
SENT6 4.16 4.70 -8.09 4.55 0.88 -15.43 3.65 ✓ ✓ ✓ ✓ ✓ 3751
rSENT𝑙=𝑢=0,1 3.30 3.35 -6.18 3.10 0.99 -8.45 4.06 ✓ ✓ ✓ ✓ ✓ 2646
rSENT𝑙=𝑢=0,3 3.75 3.85 -5.62 3.93 0.97 -9.08 4.01 ✓ ✓ ✓ ✓ ✓ 3535
rSENT𝑙=𝑢=0,6 3.70 4.42 -7.72 4.39 0.84 -14.74 3.45 ✓ ✓ ✓ ✓ ✓ 3751
wSENT𝑡𝑑,1 3.67 3.44 -5.29 3.42 1.07 -8.33 4.39 ✓ ✓ ✓ ✓ ✓ 2646
wSENT𝑡𝑑,3 4.74 3.77 -5.23 4.49 1.26 -8.94 5.18 ✓ ✓ ✓ ✓ ✓ 3535
wSENT𝑡𝑑,6 4.52 4.54 -7.08 4.45 1.00 -14.01 4.11 ✓ ✓ ✓ ✓ ✓ 3751
wSENT𝑎𝑠,1 3.37 3.84 -6.50 2.93 0.88 -11.25 3.62 ✓ ✓ ✓ ✓ ✓ 2646
wSENT𝑎𝑠,3 3.93 5.75 -10.62 4.80 0.68 -22.07 2.82 ✓ ✓ 3535
wSENT𝑎𝑠,6 4.48 6.17 -11.33 5.51 0.73 -23.35 3.00 ✓ ✓ ✓ 3751

News Trend
SENTMOM 2.71 2.79 -6.16 1.94 0.97 -9.59 4.00 ✓ ✓ ✓ ✓ ✓ 2676
aSENTMOM3 1.38 3.15 -3.77 3.21 0.44 -10.98 1.80 2103
aSENTMOM6 1.66 3.13 -4.04 2.56 0.53 -10.55 2.18 ✓ 2806
REG6 0.77 4.93 -7.26 5.02 0.16 -17.61 0.65 847
REG12 0.47 3.85 -5.84 2.29 0.12 -17.12 0.50 1928

Alternative News Concepts
NEWSBETA 2.67 4.27 -5.52 4.83 0.62 -9.91 2.58 ✓ 2093
DISP1 1.18 5.90 -4.22 12.32 0.20 -13.39 0.82 2080
SIG1 2.38 3.81 -6.86 2.94 0.62 -14.00 2.57 ✓ 2034
SIG3 3.89 4.44 -7.13 3.81 0.88 -13.06 3.62 ✓ ✓ ✓ ✓ ✓ 3287
SIG6 3.78 4.82 -9.01 3.63 0.79 -17.00 3.24 ✓ ✓ ✓ ✓ ✓ 3629

This table shows performance statistics of equally weighted long-short portfolios for a set of news indicators using the global stock
universe. Annualized mean returns are calculated using the arithmetic average of simple returns. Standard deviation (Sd) and Sharpe
ratio (SR) are annualized through multiplication by

√
12. Min and Max denote the lowest and highest monthly excess return in the

sample period. MDD is the maximum drawdown. Mean return, Sd, Min, Max and MDD are given in percentage points. The last
column gives the average number of firms per month. 𝑡-stat is the 𝑡-statistic for testing against the Null of a zero mean return. To
address the multiple testing problem, we show whether a factor passes common 𝑡-statistics thresholds (✓) such as: the usual value of
1.96 of the standard normal distribution (Φ), 2.97 based on Holm (1979), 3.13 using the bootstrap reality check of White (2000)
(BRC), 3.02 using the FDP-StepM procedure of Romano, Shaikh, and Wolf (2008) (FDP) and 2.71 using the method of Benjamini and
Yekutieli (2001) (BY) for a significance level of 5%. The time period spans from January 2001 to December 2017.

We find all long-short factors based on news volume to deliver statistically insignificant
returns over the sample period, questioning the “attention grabbing hypothesis” put forward
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by Barber and Odean (2008). This outcome may well be rationalized by important differences
in the underlying data: While Barber and Odean (2008) (and others) rely on a few US
newspapers, we analyze a significantly broader data set including all types of news sources
and covering a longer sample period.

Next, we find significant long-short portfolio returns based on news sentiment indicators.
For instance, the simple news sentiment factor at one month horizon, SENT1, earns an
annualized return of 3.81% at 3.55% annualized volatility. Irrespective of the factor
definition, the ensuing return differentials between positive and negative news sentiment
companies are statistically significant. Still, we document performance differences among
the news sentiment-based global equity factors. Specifically, we find that a higher degree of
sophistication in estimating news sentiment is rewarded. The ESS-based average sentiment
factors earn higher monthly returns than the sentiment factors that merely build on the
nature of a news event (positive versus negative). For instance, SENT1 has a 51 basis points
(bps) pick-up in monthly return relative to rSENT𝑙=𝑢=0,1. Still, performance can be further
enhanced by weighting the individual news events. For example, the news sentiment factor
that gives higher weight to more recent news events (wSENT𝑡𝑑,3) earns a monthly return of
4.74% at a three month time horizon (compared to 4.29% for SENT3). This finding is in line
with the economic intuition that more recent news are more relevant in driving investor’s
decisions and ultimately stock prices (Beschwitz, Keim, and Massa, 2020). Notably, such
return benefits do not result from higher risk. In terms of Sharpe ratio, risk-adjusted
returns range from 0.68 (wSENT𝑎𝑠,3) to 1.26 (wSENT𝑡𝑑,3). The performance of the factors
differs across look-back windows. While we observe higher monthly returns for three and
six month horizons (e.g. 4.29% for SENT3 and 4.16% for SENT6 vs. 3.81% for SENT1),
the longer-horizon factor’s return comes with an increase in risk (higher volatility and
maximum drawdown). Risk-adjusted returns are highest for one and three month horizons.
Except for wSENT𝑎𝑠,3 and wSENT𝑎𝑠,6, all news sentiment-based equity factors pass both the
conventional two-sigma threshold of 1.96 and all multiple testing hurdles (e.g. 3.13 for the
BRC or 3.02 for FDP-StepM approach). Overall, we document that stocks with higher news
sentiment earn higher returns than stocks with lower news sentiment which is consistent
with existing studies (e.g. Tetlock, 2007) but measured against a broader news data set and
various factor definitions of news sentiment.

Concerning news trend factors, we only find the news sentiment momentum factor
SENTMOM to exhibit statistically significant returns. Its long-short factor return is 2.71%,
which corresponds to a Sharpe ratio of 0.97, and survives all multiple testing thresholds.
All other factors that use simpler approaches to capture changes in news sentiment do not
deliver convincing results. This finding suggests that a sophisticated technique that is able to
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reduce the noise in the signal, such as the CUSUM frequency filter, is required to capitalize
on news trend signals.

As for the alternative news concept indicators, both news beta and news significance
factors exhibit statistically significant long-short returns when using the conventional two-
sigma threshold of 1.96. Yet, when increasing the 𝑡-statistic threshold according to the
multiple testing procedures, only the news significance factors using longer horizons (three
and six months) do survive. This result is expected, as news sentiment is noisy and both
indicators, news beta as well as news significance, get more stable with increasing time
horizons. Having a clean market news sentiment for calculating beta helps in smoothing the
overall signal, which therefore exhibits a higher predictive ability.

As a robustness check, we compare factors’ performance based on equal weights with that
of market capitalization weights, allowing to gauge the practical relevance of our findings.
Table 1.3 reports the results of the capitalization-weighted long-short portfolios, showing
similar patterns like their equally weighted counterparts. Overall, factor portfolios related
to news sentiment have good performance, yet statistical significance is slightly reduced.
While the conventional threshold of 1.96 is passed by all news sentiment factors, some
are now failing the multiple testing hurdles. Consequently, news sentiment data is more
predictive for future returns to small stocks’ returns, all else being equal. Ke, Kelly, and
Xiu (2019) provide a number of potential economic explanations for this observation: First,
small stocks receive less investor attention and hence their prices respond more slowly to
news. Second, small stocks’ underlying fundamentals are more uncertain and opaque and
hence it requires more effort to process associated news into information that can be used for
assessing stock prices. Third, small stocks are less liquid and take longer time to trade and
thus to incorporate information into prices.

1.3.3. Mean-variance spanning

Factor-based investment managers usually build on a comprehensive set of factors to enjoy
the benefits of factor diversification. Hence, it is crucial to evaluate whether the proposed
news factors expand the investor’s investment opportunity set. Figure 1.C.2 in the Appendix
shows the return correlation matrix of the news factors including a set of common equity
factors, namely the Fama and French (1992, 2006) factors as well as the price momentum and
short-term reversal factors of Jegadeesh and Titman (1993).17 By construction, most news
factors are highly correlated within their concept category. We further find the momentum
factor to be highly correlated with some of the news sentiment factors, suggesting that news
factors partly reflect the information embedded in momentum indicators.

17See Table 1.B.1 for a definition of the set of equity factors.
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Table 1.3: News equity factors: Capitalization-weighting

Multiple hypothesis testing

Indicator Return Sd Min Max SR MDD 𝑡-stat Φ Holm BRC FDP BY Firms

News volume
VOLREL>75,1 -0.79 2.83 -3.56 4.70 -0.28 -15.77 -1.15 3421
VOL1 0.25 2.33 -2.45 2.75 0.11 -8.62 0.44 2772
VOL3 0.62 3.21 -3.13 6.42 0.19 -8.91 0.79 3576
VOL6 0.40 3.58 -3.94 6.60 0.11 -14.86 0.46 3774

News sentiment
SENT1 2.67 2.93 -4.93 3.00 0.91 -7.99 3.75 ✓ ✓ ✓ ✓ ✓ 2646
SENT3 3.06 3.73 -6.35 4.17 0.82 -11.14 3.39 ✓ ✓ ✓ ✓ ✓ 3535
SENT6 3.15 4.27 -7.32 4.54 0.74 -13.59 3.04 ✓ ✓ ✓ ✓ 3751
rSENT𝑙=𝑢=0,1 2.44 2.72 -4.54 2.52 0.90 -6.64 3.70 ✓ ✓ ✓ ✓ ✓ 2646
rSENT𝑙=𝑢=0,3 2.54 3.35 -4.77 3.91 0.76 -9.14 3.12 ✓ ✓ ✓ ✓ ✓ 3535
rSENT𝑙=𝑢=0,6 2.63 4.01 -6.89 4.39 0.66 -12.77 2.71 ✓ 3751
wSENT𝑡𝑑,1 2.58 2.81 -4.11 2.98 0.92 -6.06 3.78 ✓ ✓ ✓ ✓ ✓ 2646
wSENT𝑡𝑑,3 3.73 3.24 -4.64 4.50 1.15 -7.41 4.74 ✓ ✓ ✓ ✓ ✓ 3535
wSENT𝑡𝑑,6 3.46 4.02 -6.54 4.64 0.86 -12.50 3.55 ✓ ✓ ✓ ✓ ✓ 3751
wSENT𝑎𝑠,1 2.64 3.21 -5.86 2.65 0.82 -8.76 3.39 ✓ ✓ ✓ ✓ ✓ 2646
wSENT𝑎𝑠,3 2.67 5.35 -10.03 4.71 0.50 -21.00 2.06 ✓ 3535
wSENT𝑎𝑠,6 3.44 5.72 -10.25 5.33 0.60 -22.08 2.48 ✓ 3751

News trend
SENTMOM 1.49 2.30 -4.30 1.87 0.65 -6.95 2.66 ✓ 2676
aSENTMOM3 0.00 2.72 -3.09 3.06 0.00 -9.44 -0.01 2103
aSENTMOM6 0.51 2.64 -3.09 2.18 0.19 -10.32 0.80 2806
REG6 0.73 4.04 -5.84 5.44 0.18 -16.26 0.75 847
REG12 0.13 3.16 -5.11 1.83 0.04 -14.10 0.17 1928

Alternative news concepts
NEWSBETA 2.94 4.72 -5.55 4.99 0.62 -11.82 2.57 ✓ 2093
DISP1 0.74 4.20 -3.10 6.92 0.18 -12.91 0.73 2080
SIG1 1.39 3.03 -5.26 2.24 0.46 -10.64 1.90 2034
SIG3 1.91 3.63 -5.85 2.98 0.53 -12.53 2.17 ✓ 3287
SIG6 2.23 4.10 -8.11 2.95 0.55 -14.10 2.25 ✓ 3629

This table shows performance statistics of market capitalization-weighted long-short portfolios for a set of news indicators using the
global stock universe. Annualized mean returns are calculated using the arithmetic average of simple returns. Standard deviation (Sd)
and Sharpe ratio (SR) are annualized through multiplication by

√
12. Min and Max denote the lowest and highest monthly excess

return in the sample period. MDD is the maximum drawdown. Mean return, Sd, Min, Max and MDD are given in percentage points.
The last column gives the average number of firms per month. 𝑡-stat is the 𝑡-statistic for testing against the Null of a zero mean return.
To address the multiple testing problem, we show whether a factor passes common 𝑡-statistics thresholds (✓) such as: the usual value
of 1.96 of the standard normal distribution (Φ), 3.08 based on Holm (1979), 2.99 using the bootstrap reality check of White (2000)
(BRC), 2.94 using the FDP-StepM procedure of Romano, Shaikh, and Wolf (2008) (FDP) and 2.87 using the method of Benjamini and
Yekutieli (2001) (BY) for a significance level of 5%. The time period spans from January 2001 to December 2017.

To statistically examine whether news-based equity factors are subsumed by the set
of common equity factors or help expanding an investor’s opportunity set, we employ
mean-variance spanning tests, see Gibbons, Ross, and Shanken (1989), Cochrane (2009)
and Kan and Zhou (2012). These tests basically boil down to examining whether adding
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factors to a set of benchmark factors improves the tangency portfolio. At their heart, the tests
regress the returns of the news factors, 𝑟𝑁,𝑡 , on the returns of a set of benchmark factors, 𝑟𝑏,𝑡 :

𝑟𝑁,𝑡 = 𝛼 +
𝐵∑︁
𝑏=1

𝛽𝑏𝑟𝑏,𝑡 + 𝜀𝑡 . (1.1)

where 𝛼 and 𝛽𝑏 are the regression coefficients and 𝜀𝑡 is an independent and identically
distributed innovation term with mean zero and unit variance. If a given news factor is fully
explained by the set of benchmark factors, the estimated alpha �̂� should be insignificant.
Gibbons, Ross, and Shanken (1989), Cochrane (2009) and Kan and Zhou (2012) propose
different test statistics to test the null hypothesis of 𝐻1

0 : 𝛼 = 0 (that are, the GRS, GMM
and F1 step-down test).18 Kan and Zhou (2012) add a second test that investigates whether
the added factors benefit the global minimum-variance portfolio (F2 step-down test). The
corresponding null hypothesis is 𝐻2

0 : 𝛿 = 1 − ∑𝐵
𝑏=1 𝛽𝑏 = 0. To this end, it imposes the

restriction of 𝛼 = 0. Splitting up the hypotheses in this fashion allows to draw conclusions
about the nature of the potential benefit of the news factors.

Table 1.4 provides the mean-variance spanning results for those news factors that pass
multiple testing hurdles, where the set of common equity factors makes up the benchmark
factors. We report regression statistics according to Equation (1.1) as well as the test statistics
of the four spanning tests (GRS, GMM and the two F-tests). We find all factor alphas for
news sentiment, news sentiment momentum and news significance to be significant at the
1% level, suggesting that this set of news factors may help explaining the cross-section of
stock returns. Evaluating the 𝑅2

𝑎𝑑𝑗
we learn that the degree of added value decreases with

the length of the respective factor’s underlying time horizon: for instance, over 70% of the
returns of the SENT6 news factor can be explained by common equity factors (compared to
only 43% for SENT1). In line with the correlation analysis, we report significant loadings to
the momentum factor for all news indicators, suggesting that price momentum effects are a
crucial driver of most news factors.

These findings are reinforced by the mean-variance spanning tests. The GRS, the GMM
as well as the F1 step-down test reject the null hypothesis of 𝛼 = 0 for all news factors
at the 1% significance level, suggesting an improvement of the tangency portfolio. This
finding is illustrated in Figure 1.3. We see that adding the news factors SENT1, wSENT𝑡𝑑,3,
wSENT𝑡𝑑,6 and SENTMOM to the set of common factors helps shifting the efficient frontier
to the Northwest. Taking the same level of risk, we can annually earn about 125 bps more
when incorporating the news factors. Likewise, we document a significant improvement of
the minimum-variance portfolio. The F2 step-down test rejects the null hypothesis of 𝛿 = 0

18See the authors’ papers for details on their test statistics.
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Table 1.4: News equity factors: Mean-variance spanning

Indicator Alpha Market Value Quality Size MOM STR 𝑅2
𝑎𝑑 𝑗

GRS GMM F1-Test F2-Test

SENT1 0.0027 -0.029 -0.132 0.135 -0.236 0.150 -0.016 43.1% 20.08 11.99 19.98 134.33
(3.61) (-1.77) (-2.62) (1.14) (-1.98) (5.53) (-0.60) (0.00) (0.00) (0.00) (0.00)

SENT3 0.0026 0.008 -0.087 -0.007 -0.059 0.268 0.008 72.6% 26.74 17.57 26.61 104.92
(4.48) (0.70) (-2.34) (-0.08) (-0.79) (13.62) (0.36) (0.00) (0.00) (0.00) (0.00)

SENT6 0.0027 0.011 -0.156 -0.022 -0.092 0.276 0.005 70.5% 22.65 18.43 22.53 106.25
(4.58) (0.79) (-3.27) (-0.18) (-1.04) (13.17) (0.18) (0.00) (0.00) (0.00) (0.00)

wSENT𝑡𝑑,1 0.0027 -0.027 -0.166 0.160 -0.238 0.143 -0.010 44.6% 22.49 14.51 22.38 148.84
(4.05) (-2.03) (-3.04) (1.60) (-2.07) (4.99) (-0.52) (0.00) (0.00) (0.00) (0.00)

wSENT𝑡𝑑,3 0.0031 -0.005 -0.082 0.004 -0.104 0.222 -0.015 67.2% 42.40 26.26 42.20 130.53
(5.57) (-0.39) (-1.93) (0.04) (-1.56) (10.32) (-0.67) (0.00) (0.00) (0.00) (0.00)

wSENT𝑡𝑑,6 0.0027 0.006 -0.148 0.087 -0.181 0.273 0.000 71.6% 26.37 17.72 26.24 112.35
(4.32) (0.47) (-2.93) (0.77) (-1.72) (11.00) (0.00) (0.00) (0.00) (0.00) (0.00)

wSENT𝑎𝑠,1 0.0024 -0.019 -0.124 0.051 -0.128 0.183 -0.023 51.1% 16.88 10.43 16.80 121.32
(3.17) (-1.36) (-2.30) (0.40) (-1.16) (6.24) (-0.84) (0.00) (0.00) (0.00) (0.00)

rSENT𝑙=𝑢=0,1 0.0022 -0.026 -0.122 0.138 -0.250 0.135 -0.031 41.4% 15.63 10.01 15.56 162.36
(3.12) (-1.65) (-2.57) (1.22) (-2.14) (4.87) (-1.15) (0.00) (0.00) (0.00) (0.00)

SENTMOM 0.0018 0.010 -0.075 0.010 -0.047 0.133 0.014 41.5% 14.00 13.04 13.93 159.65
(3.99) (0.74) (-1.53) (0.11) (-0.59) (5.03) (0.49) (0.00) (0.00) (0.00) (0.00)

SIG6 0.0022 0.014 -0.091 0.010 0.050 0.309 0.003 74.2% 16.74 11.24 16.66 58.25
(3.69) (1.00) (-2.04) (0.09) (0.53) (14.05) (0.10) (0.00) (0.00) (0.00) (0.00)

This table shows results of spanning tests for the most promising equally weighted news analytics factors in the global stock universe.
The regressors are the market return (represented by the MSCI World) and the common equity factors value, quality, size, momentum
(MOM) and short-tem reversal (STR) that are known to affect the cross-section of stock returns. We report the estimated coefficients
for the intercept (alpha) and the equity factors. 𝑡-statistics are computed from Newey-West adjusted standard errors and are given in
parentheses. The last four columns report the test statistics and corresponding 𝑝-values (in parentheses) of the GRS test of Gibbons,
Ross, and Shanken (1989), the GMM test according to Cochrane (2009) and the Kan and Zhou (2012) step-down test. The null
hypothesis of all four tests is that news factors are spanned by the set of common equity factors. GRS, GMM and F1 test whether
news factors improve the tangency portfolio, while F2 tests the ability of news factors to improve the minimum-variance portfolio.
Coefficients and test statistics are in boldface if significant at a 5% level or better. The time period is from January 2001 to December
2017.

for all news factors at the 1% significance level. In a nutshell, the results of the spanning tests
suggest that the most promising news factors significantly expand the investment opportunity
set of investors by improving the tangency portfolio, representing minimum-variance hedging
opportunities and offering diversification potential.

1.3.4. Robustness to different holding periods

Next, we investigate the persistence of the news indicators’ predictive power, speaking to
the ease with which these factors could be implemented in a portfolio. If the predictive
power of the news indicators remains significant over various months, an investor may think
of reducing the portfolio’s rebalancing frequency and thus reduce implementation costs.
To this end, we assess the performance of a strategy that represents an equally weighted
average of the previous ℎ monthly portfolios. The look-back period ℎ is varied from one to
twelve, meaning that a portfolio created up to twelve months ago would be considered for
next month’s factor portfolio. Figure 1.4 charts the associated cumulative returns for the
news-based indicators. Table 1.5 reports the corresponding statistics.
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Figure 1.3: Mean-variance spanning of news equity factors. This figure illustrates the mean-variance
characteristics of the news equity factors in relation to the set of common equity factors. Note that the
underlying mean-variance optimizations include a full investment constraint and do not allow short selling.
The red line shows the efficient frontier of the benchmark portfolio comprising of market, value, quality,
size, momentum and short-term reversal. The green line shows the efficient frontier when adding SENT1,
wSENT𝑡𝑑,3, wSENT𝑡𝑑,6 and SENTMOM to the benchmark portfolio. Mean-variance inputs are derived from
monthly return data over the sample period from January 2001 to December 2017.

The main findings are twofold: (1) Most factors with significant one-month long-short
portfolio returns exhibit a fast signal decay in the following months. This finding is consistent
with the biased expectation explanation, because news effects get incorporated into stock
prices rather sooner than later. (2) Factors incorporating longer-term news sentiment
(e.g. SENT6 and wSENT𝑡𝑑,6) exhibit a quite stable return pattern, indicating that these factors
may be useful for long-term investment management. Still, these factor returns are significant
only at the conventional two-sigma threshold and do not pass any multiple testing hurdles.

1.3.5. Regional differences

Jacobs and Müller (2020) document regional differences when studying the pre- and post-
publication return predictability of 241 cross-sectional anomalies in various international
stock markets. In this vein, we divide the global stock universe into four regions—USA,
Japan, Europe and emerging markets—and look for regional differences in the efficacy of
the investigated news factors.
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Figure 1.4: News equity factors: Long-horizon effects. This figure shows the returns of cross-sectional
long-short portfolios based on news volume (Panel A), news sentiment (Panel B), news trend (Panel C) and
alternative news concepts (Panel D) indicators for the global stock universe from January 2001 to December
2017.

Table 1.6 reports the performance statistics of the long-short portfolio returns for the four
regions.19 News volume factors do not seem to be relevant in any of the four regions, similar
to the global universe evidence. The performance of news sentiment factors is mixed. While
there is limited significance of few news sentiment factors in the US universe (e.g. wSENT𝑡𝑑,3;
but only at the conventional 𝑡-statistic threshold of 1.96), we do not evidence any predictive
power for the Japanese market. In contrast, the results are substantially better for European
and emerging markets, with significant monthly returns of around 7% on average. Similar to
the global universe the best performing news sentiment factors are the time-weighted average
sentiment factors. For the news trend and alternative news concept, the news sentiment
momentum and news significance factors show promising performance, however, again only
in European and emerging markets.

In summary, we provide evidence of fairly weak results for the US and the Japanese
market and strong results for the European universe and emerging markets. The fact that
average momentum returns have been historically low in the Japanese market (see Daniel,
Titman, and Wei, 2001; Hanauer, 2014) in conjunction with the finding that the momentum

19We exclude news factors with low coverage. From a regional perspective we require an average of at least
100 firms per month.
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Table 1.5: News equity factors: Robustness to different holding periods

Indicator Ret.1M 𝑡-stat Φ FDP Ret.3M 𝑡-stat Φ FDP Ret.6M 𝑡-stat Φ FDP

News volume
VOLREL>75,1 -0.38 -0.38 0.51 0.51 1.94 2.04 ✓
VOL1 0.53 0.76 1.16 1.61 2.28 3.09 ✓
VOL3 0.96 0.92 -0.56 -0.63 0.64 0.79
VOL6 0.80 0.66 -0.13 -0.12 0.50 0.53

News sentiment
SENT1 3.81 4.42 ✓ ✓ 1.16 1.57 1.07 1.38
SENT3 4.29 4.17 ✓ ✓ 1.54 1.64 2.00 2.34 ✓
SENT6 4.16 3.65 ✓ ✓ 2.40 2.21 ✓ 1.41 1.58
rSENT𝑙=𝑢=0,1 3.30 4.06 ✓ ✓ 1.11 1.59 1.67 2.29 ✓
rSENT𝑙=𝑢=0,3 3.75 4.01 ✓ ✓ 1.35 1.58 2.05 2.58 ✓
rSENT𝑙=𝑢=0,6 3.70 3.45 ✓ ✓ 2.00 1.99 ✓ 1.35 1.62
wSENT𝑡𝑑,1 3.67 4.39 ✓ ✓ 1.25 1.55 1.11 1.43
wSENT𝑡𝑑,3 4.74 5.18 ✓ ✓ 1.62 1.82 1.44 1.74
wSENT𝑡𝑑,6 4.52 4.11 ✓ ✓ 2.00 1.90 1.86 1.99 ✓
wSENT𝑎𝑠,1 3.37 3.62 ✓ ✓ 0.56 0.63 1.30 1.47
wSENT𝑎𝑠,3 3.93 2.82 ✓ 1.60 1.35 2.33 2.03 ✓
wSENT𝑎𝑠,6 4.48 3.00 ✓ 2.70 1.99 ✓ 1.89 1.51

News trend
SENTMOM 2.71 4.00 ✓ ✓ 1.00 1.53 0.74 1.17
aSENTMOM3 1.38 1.80 -0.05 -0.07 1.43 2.25 ✓
aSENTMOM6 1.66 2.18 ✓ 0.86 1.39 0.46 0.76
REG6 0.77 0.65 1.15 0.99 -0.98 -0.81
REG12 0.47 0.50 -0.05 -0.06 -1.22 -1.37

Alternative news concepts
NEWSBETA 2.67 2.58 ✓ 1.51 1.47 0.74 0.69
DISP1 1.18 0.82 -0.19 -0.15 -0.12 -0.09
SIG1 2.38 2.57 ✓ 1.02 1.22 1.37 1.43
SIG3 3.89 3.62 ✓ ✓ 1.11 1.05 1.63 1.72
SIG3 3.78 3.24 ✓ ✓ 2.09 1.98 ✓ 0.70 0.73

This table shows performance statistics of equally weighted long-short portfolios based on the news indicators for the global stock
universe and longer return horizons. Annualized mean returns are calculated using the arithmetic average of simple returns and are
given in percentage points. We use different lags of the news indicator to return: 1, 3 and 6 months. 𝑡-stat is the 𝑡-statistic for testing
against the Null of a zero mean return. To address the multiple testing problem, we show whether a factor passes (✓) the standard
value of 1.96 of the standard normal distribution (Φ) and 3.02, 3.07, 3.19 for the lags 1, 3, 6 using the FDP-StepM procedure of
Romano, Shaikh, and Wolf (2008) (FDP) for a significance level of 5%. The time period spans from January 2001 to December 2017.

factor is highly correlated with news-based factors may explain the findings for the Japanese
market. The US findings may be rationalized by the fact that it is generally difficult to explain
the cross-section of stock returns in the US: the US stock market is likely more efficient
than the other markets due to an extremely high analyst coverage, so that news are readily
incorporated in stock prices (see McLean and Pontiff, 2016; Jacobs and Müller, 2020). In
addition, we also check whether the findings for the US universe may be explained by pre-
and post-publication effects. For this purpose, we divide the sample into the period before
the seminal study of Tetlock (2007) regarding news flow data, spanning from January 2000
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Table 1.6: News equity factors: Regional universes

Global USA Japan Europe EM

Indicator Return 𝑡-stat Return 𝑡-stat Return 𝑡-stat Return 𝑡-stat Return 𝑡-stat

News volume
VOLREL>75,1 -0.38 -0.38 -0.14 -0.09 1.82 1.40 -0.62 -0.50 2.45 2.30
VOL1 0.53 0.76 0.08 0.08 1.44 1.00 0.30 0.31 2.96 2.91
VOL3 0.96 0.92 3.13 2.10 2.68 1.93 -0.94 -0.67 1.96 2.24
VOL6 0.80 0.66 2.20 1.36 2.14 1.32 0.00 0.00 2.40 2.49

News sentiment
SENT1 3.81 4.42 1.27 1.11 0.73 0.50 4.97 4.91 8.33 6.19
SENT3 4.29 4.17 1.83 1.31 -0.31 -0.22 6.68 5.10 9.35 8.37
SENT6 4.16 3.65 1.35 0.85 0.41 0.30 7.17 4.95 7.62 7.26
rSENT𝑙=𝑢=0,1 3.30 4.06 1.06 1.00 1.54 1.09 4.62 4.45 6.51 5.36
rSENT𝑙=𝑢=0,3 3.75 4.01 1.77 1.44 -0.06 -0.05 5.73 4.56 8.39 8.40
rSENT𝑙=𝑢=0,6 3.70 3.45 1.03 0.70 0.59 0.47 6.21 4.30 7.36 7.80
wSENT𝑡𝑑,1 3.67 4.39 1.07 0.98 0.97 0.65 4.93 4.81 8.62 6.50
wSENT𝑡𝑑,3 4.74 5.18 2.70 2.25 0.18 0.13 6.73 5.65 10.02 9.15
wSENT𝑡𝑑,6 4.52 4.11 1.93 1.26 -0.60 -0.44 7.63 5.45 8.92 8.51
wSENT𝑎𝑠,1 3.37 3.62 0.64 0.54 1.69 1.17 5.03 4.37 7.80 6.30
wSENT𝑎𝑠,3 3.93 2.82 1.06 0.51 -0.04 -0.03 6.60 4.38 10.14 8.98
wSENT𝑎𝑠,6 4.48 3.00 1.17 0.52 0.22 0.13 7.29 4.20 8.75 7.67

News trend
SENTMOM 2.71 4.00 1.04 0.98 0.27 0.19 3.16 3.50 7.58 6.12
aSENTMOM3 1.38 1.80 -0.54 -0.55 0.71 0.49 2.87 2.64 4.80 3.26
aSENTMOM6 1.66 2.18 -0.51 -0.54 0.11 0.09 2.76 2.27 3.26 3.09
REG6 0.77 0.65 -0.67 -0.49 2.50 0.48 5.06 2.20 6.23 1.40
REG12 0.47 0.50 0.07 0.06 0.86 0.32 3.35 2.50 3.74 1.63

Alternative news concepts
NEWSBETA 2.67 2.58 -1.12 -0.59 -1.35 -0.62 2.27 1.91 -2.56 -1.52
DISP1 1.18 0.82 1.49 0.57 1.97 0.78 0.64 0.44 -0.86 -0.45
SIG1 2.38 2.57 -0.64 -0.58 2.61 1.38 4.87 3.94 9.24 5.47
SIG3 3.89 3.62 1.51 1.03 0.63 0.41 5.77 4.21 9.31 7.77
SIG6 3.78 3.24 1.24 0.77 1.27 0.94 6.19 4.18 8.13 6.96

This table shows performance statistics of equally weighted long-short portfolios based on the news indicators for the regional
universes USA, Japan, Europe and emerging markets (EM) in addition to the global stock universe. Annualized mean returns are
calculated using the arithmetic average of simple returns and are given in percentage points. 𝑡-stat is the 𝑡-statistic for testing against
the Null of a zero mean return. Mean returns are in boldface if their corresponding 𝑡-statistics exceed the FDP-StepM threshold of
Romano, Shaikh, and Wolf (2008) at 5% significance, which is 3.02 for the global universe, 3.24 for USA, 3.07 for Japan, 2.29 for
Europe, 2.21 for RES and 2.37 for EM. The time period spans from January 2001 to December 2017.

to December 2007, and thereafter. However, unreported results do not show significant
performance differences between the pre- and post-publication period.

1.4. News analytics and multi-factor investment strategies

Following Section 1.3.3, news-based equity factors may expand an investor’s equity factor
opportunity set. In this section, we thus explore whether news analytics may be beneficial
for constructing multi-factor investment strategies. Based on a benchmark set of factors
we first examine whether simple multi-factor portfolios can be enhanced by adding news-
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based factors. Second, we investigate the benefits of utilizing news flow data for dynamic
factor allocation strategies. In particular, we use the parametric portfolio policy of Brandt,
Santa-Clara, and Valkanov (2009) to arrive at meaningful factor timing allocations. To this
end, we follow Dichtl, Drobetz, Lohre, et al. (2019) and construct a set of equity factors
that expands the common factors used in Section 1.3.3 to further equity factors widely used
and well documented in academic research. These factors can be roughly assigned to the
following four categories:20

• 𝑉𝑎𝑙𝑢𝑒: cash flow yield (𝐶𝐹𝑌 ), dividend yield (𝐷𝑌 ), book-to-market ratio (𝐵𝑇𝑀),
earnings yield (𝐸𝑌 ), and profitability (𝑃𝑅𝑂𝐹)

• 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚: 12-month price momentum (𝑀𝑂𝑀12), short-term reversal (𝑆𝑇𝑅), and
long-term reversal (𝐿𝑇𝑅)

• 𝑄𝑢𝑎𝑙𝑖𝑡𝑦: asset turnover (𝐴𝑇), change in long-term debt (𝐷𝐿𝑇𝐷), change in shares
outstanding (𝐷𝑆𝑂), asset growth (𝐴𝐺), cash productivity (𝐶𝑃), profit margin (𝑃𝑀𝐴),
leverage (𝐿𝐸𝑉), return on assets (𝑅𝑂𝐴), sales-to-cash (𝑆𝑇𝐶), sales-to-inventory
(𝑆𝑇 𝐼), and accruals (𝐴𝐶𝐶)

• 𝑆𝑖𝑧𝑒: Size (𝑆𝐼𝑍𝐸)

1.4.1. Diversified factor allocation

Taking an agnostic perspective regarding expected factor returns, risk-based factor allocations
strategies are a common technique to construct diversified multi-factor portfolios. We examine
how an equally weighted portfolio (1/N), a minimum-variance portfolio (MV) and a risk
parity portfolio (RP) responds to the inclusion of news-based equity factors.21

Table 1.7 provides the performance statistics of the three strategies for the set of
benchmark factors (Panel A) and the set of benchmark factors augmented by a news-based
equity factor (Panel B). We compute the first optimal portfolio weights over a 36-month
window, which expands over time. To enable a fair comparison to the subsequent dynamic
factor allocation attempts, the out-of-sample period spans from January 2007 to December
2017. We enforce full investment and long-only constraints to make sure not to bet against a
given factor premium.

20See Dichtl, Drobetz, Lohre, et al. (2019) for a concise definition of each factor.
21In brief, the 1/N strategy rebalances monthly to an equally weighted allocation scheme. The minimum-

variance portfolio is the mean-variance efficient portfolio that is expected to have the lowest possible portfolio
variance. The risk parity strategy allocates capital so that the factors’ risk budgets contribute equally to overall
portfolio risk.
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Overall, we document that all three risk-based allocation strategies benefit from adding
the news sentiment factor wSENT𝑡𝑑,3 to the benchmark portfolio. Moreover, the reported
results are robust to the choice of the news-based factor to be added to the set of benchmark
news factors, given that the used factor is among the factors tested in the mean-variance
spanning tests in Table 1.4.

Table 1.7: Diversified multi-factor allocation

Strategy Excess Return Sd Min Max SR MDD 𝑡-stat

Panel A: Benchmark factors
1/N 2.91 2.44 -1.58 2.31 1.20 -2.74 3.80
MVP 2.15 1.25 -0.59 1.35 1.72 -0.87 5.45
RP 2.39 1.41 -0.85 1.73 1.69 -1.63 5.36

Panel B: Benchmark + news factors
1/N 2.97 2.27 -1.43 2.18 1.31 -2.44 4.15
MVP 2.41 1.13 -0.53 1.42 2.14 -1.00 6.79
RP 2.55 1.30 -0.71 1.69 1.97 -1.32 6.24

This table shows performance statistics of risk-based factor allocation strategies for the set of benchmark
factors (Panel A) and the set of benchmark factors augmented by the news-based equity factor wSENT𝑡𝑑,3
(Panel B). Specifically, we examine an equally weighted portfolio (1/N), a minimum-variance portfolio
(MVP) and a risk parity portfolio (RP). Annualized excess returns are calculated using the arithmetic average
of simple returns. Standard deviation (Sd) and Sharpe ratio (SR) are annualized through multiplication by√

12. Min and Max denote the lowest and highest monthly excess return in the sample period. MDD is
the maximum drawdown. Excess return, Sd, Min, Max and MDD are given as percentages. 𝑡-stat is the
𝑡-statistic for testing against the Null of a zero return effect. The performance statistics are based on the
out-of-sample period from January 2007 to December 2017.

The simple 1/N strategy earns an annualized excess return of 2.91% at 2.44% volatility.
As commonly documented in the literature, the minimum-variance and risk parity portfolios
exhibit lower excess returns than the 1/N portfolio (2.15% for the MV portfolio and 2.39% for
the RP portfolio). The strengths of the MV and RP strategies are in (downside) risk hedging,
translating to a significant reduction in volatility and maximum drawdown compared to the
1/N strategy. Specifically, we document volatility and maximum drawdown figures of 1.25%
and -0.87% for the MV portfolio and of 2.39% and -1.63% for the RP portfolio, compared to
2.44% and -2.74% for the 1/N portfolio. The associated Sharpe ratios are in favor of the MV
and RP strategies (1.72 and 1.69 versus 1.20 for 1/N).

When including the news-based factor, the strategies’ Sharpe ratio increases by 0.32
(MV), 0.18 (RP) and 0.12 (1/N), respectively. This improvement is due to the favorable
risk-return characteristics of the news equity factor, which are reflected by high weights in the
minimum-variance and risk parity strategies. The news sentiment factor exhibits the second
highest average weight (around 15% for the MV and 11% for the RP strategy), only exceeded
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by the accrual factor (with average weights of 28% and 20%, respectively). The attractiveness
of the news sentiment factor also shows in increased return and reduced volatility figures for
all three risk-based factor allocation strategies. For instance, the minimum-variance strategy
earns a 26 bps higher excess return at a decrease of 12 bps in volatility when including the
news-based factor. Similar improvements can be documented for the risk parity and 1/N
strategy. While the latter strategies also profit from the information contained in news data
in terms of downside risk, we observe a slightly more severe maximum drawdown for the
MV portfolio.

Due to the robustness and simplicity of the 1/N strategy (see DeMiguel, Garlappi, and
Uppal, 2009), we benchmark the subsequent dynamic factor allocation strategies using the
1/N strategy.

1.4.2. Dynamic factor allocation

A popular way of dynamic factor allocation exploits cross-sectional differences in factor
characteristics by tilting the factor allocation according to those characteristics. Utilizing
the cross-sectional parametric policy framework developed by Brandt, Santa-Clara, and
Valkanov (2009), we exploit factor characteristics based on the derived news indicators in
addition to benchmark characteristics from Dichtl, Drobetz, Lohre, et al. (2019) to assess
the relevance of the news analytics indicators.

Cross-sectional factor characteristics

To calculate news-based equity factor characteristics we follow Lee (2017) and look for
“factors within factors”. Therefore, we first build quintile portfolios for a given equity factor,
such as value or momentum. We then compute the average news indicator score across
all stocks in each quintile portfolio. A factor’s news characteristic is finally computed as
the spread between the news score of the top and that of the bottom quintile portfolio. For
instance, one can thus back out whether a given factor has implicit positive news sentiment
that might lend itself naturally to time factors. Similar to a stock level rationale, news
sentiment on a factor level may entail information on the attractiveness of a factor itself. A
positive net news sentiment for a factor is driven by more positive news for those companies
on the long leg and/or more negative surprises for the short leg. Following the rationale
that positive news sentiment indicates positive factor returns, we use the characteristic to
compare factors and tilt towards those with positive sentiment and underweight those with
negative sentiment.

In addition to a representative set of news-based characteristics we include the following
factor characteristics that are well documented in the literature and used by Dichtl, Drobetz,
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Lohre, et al. (2019): factor valuation, factor spread, factor momentum, factor volatility
and factor crowding. Factor valuation applies the same rationale of value investing at a
factor level, overweighting factors that, on aggregate, experience attractive valuation levels
while underweighting those that look expensive. Factor spread measures the difference
in a characteristic between the long and short leg. As a large factor spread might proxy
for the factor’s potential future return dispersion, we utilize this information to tilt towards
factors with a high spread as this corresponds with a higher factor return opportunity as
shown by Huang et al. (2010). Avramov et al. (2017) show that factor momentum is helpful
in predicting the next month’s factor return. Given that low-volatility stocks outperform
high-volatility stocks on a risk-adjusted basis (e.g. Jensen, Black, and Scholes, 1972; Haugen
and Baker, 1991), we calculate factor volatility to test for a volatility effect among equity
factors. Crowding measures the risk and sensitivities to shocks investors are exposed to as
they hold the same securities. We follow Cahan and Luo (2013) and capture crowding by
the mean pairwise correlation within a given factor.22

Factor timing using cross-sectional characteristics

We incorporate the standardized cross-sectional characteristics into the parametric portfolio
policy (PPP) of Brandt, Santa-Clara, and Valkanov (2009), which allows us to exploit the
information content in a utility-based portfolio optimization. In contrast to other applications,
the PPP allows to directly use characteristics for a dynamic factor allocation, avoiding to
estimate the joint distribution of factor returns. While a mean-variance optimization needs
to transform the expected returns to incorporate the timing component, the PPP proposes to
model the portfolio weight as a linear function of asset characteristics 𝑥𝑖,𝑡 :

𝑤𝑖,𝑡 = 𝑓 (𝑥𝑖,𝑡 ; 𝜙) = 𝑤𝑏,𝑖,𝑡 +
1
𝑁𝑡
𝜙

′
𝑥𝑖,𝑡 , (1.2)

where 𝑤𝑖,𝑡 denotes the portfolio weight for asset 𝑖, 𝑤𝑏,𝑖,𝑡 is the benchmark weight, 𝑁𝑡 denotes
the number of assets at time 𝑡, 𝜙 is the vector of coefficients to be estimated through utility
maximization and 𝑥𝑖,𝑡 denotes the estimated standardized factor characteristics.

For a mean-variance utility function, the original problem can be restated as

max
𝜙
𝜙

′
�̂�𝑐 −

(𝛾
2
𝜙

′
Σ̂𝑐𝜙 + 𝛾𝜙

′
�̂�𝑏𝑐

)
, (1.3)

where Σ̂𝑐 is the sample covariance matrix, �̂�𝑐 is the mean of the characteristic return vector
and �̂�𝑏𝑐 is the sample vector of covariances between the benchmark portfolio return and the

22See Dichtl, Drobetz, Lohre, et al. (2019) for a detailed description of these factor characteristics.
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characteristic-return vector.23 Thus, we can measure the information content embedded in
our cross-sectional characteristics statistically via the coefficients 𝜙 and economically by
analyzing the resulting information ratios.

Hence, the PPP directly incorporates cross-sectional characteristics into a dynamic factor
allocation strategy and thus enables a comparison to the risk-based allocations discussed
above.

Empirical results

Table 1.8 reports the estimation results and performance statistics for news-related factor
timing allocations based on univariate and multivariate parametric portfolio policies.
Panel B presents the results of six news-related allocations based on a univariate PPP.
Across the univariate models, we obtain the only significant coefficients for the tilting
characteristics wSENT𝑡𝑑,1 and wSENT𝑡𝑑,3, suggesting a short-term sentiment effect among
equity factors. Hence, positive sentiment factors are overweighted relative to the equally
weighted benchmark while negative sentiment factors are underweighted. The annualized
returns of the corresponding PPP using wSENT𝑡𝑑,1 and wSENT𝑡𝑑,3 are 88 and 97 bps higher
than the one for the equally weighted benchmark, whereas the volatility is increased by 23
bps for the wSENT𝑡𝑑,1 characteristics and decreased by 7 bps for wSENT𝑡𝑑,3. These figures
correspond to an information ratio of 0.52 and 0.59, respectively.

While statistically weak, longer-horizon news sentiment-related characteristics have pos-
itive information ratios as well: SENT3, wSENT𝑡𝑑,6, SENTMOM, and SIG6 with information
ratios of 0.55, 0.53, 0.26 and 0.54, respectively. Moreover, capturing news sentiment over a
longer horizon seems to be more profitable: The wSENT𝑡𝑑,3 timing portfolio has a higher
Sharpe ratio than the wSENT𝑡𝑑,1 timing portfolio and than the equally weighted benchmark
(1.64 vs. 1.42 vs. 1.20). After accounting for transaction costs the wSENT𝑡𝑑,3 strategy’s
return and Sharpe ratio are reduced to 2.53% and 1.07, which is equivalent to an information
ratio of 0.39 net of transaction costs. Notably, news sentiment-related timing allocations
show similar performance statistics to allocations using common tilting characteristics such
as factor crowding, factor valuation and factor volatility and seem to be more profitable than
those for factor momentum and factor spread allocations.

Instead of relying on one factor characteristic only, we consider multiple characteristics
jointly in different multivariate parametric portfolio policies. Panel C of Table 1.8 shows the
results of a multivariate PPP based on the common tilting characteristics factor crowding,

23As all characteristics are standardized cross-sectionally across all factors at time 𝑡, deviations from the
benchmark are equivalent to a zero-investment portfolio (DeMiguel, Martin-Utrera, et al., 2020; Dichtl,
Drobetz, Lohre, et al., 2019). For a detailed description see also DeMiguel, Martin-Utrera, et al. (2020).
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Table 1.8: Dynamic factor allocation

Characteristic �̂� Return SD Sharpe Maximum 𝑡-statistic Tracking Information Turnover
p.a. p.a. ratio drawdown error ratio p.a.

gross net gross net gross net gross net gross net two-way

Panel A: Benchmark model
1/N – 2.91 1.89 2.44 1.20 0.78 2.74 2.99 3.80 2.47 – – – –

Panel B: Univariate models
SENT3 3.22 3.83 2.51 2.33 1.65 1.08 4.07 4.65 5.22 3.42 1.67 0.55 0.37 1.83
wSENT𝑡𝑑,1 4.63 3.79 1.93 2.67 1.42 0.72 3.32 4.00 4.52 2.30 1.69 0.52 0.02 4.52
wSENT𝑡𝑑,3 3.49 3.88 2.53 2.37 1.64 1.07 3.93 4.51 5.19 3.39 1.64 0.59 0.39 1.95
wSENT𝑡𝑑,6 2.80 3.79 2.55 2.28 1.66 1.12 3.95 4.52 5.27 3.54 1.66 0.53 0.40 1.40
SENTMOM 1.64 3.38 1.74 3.16 1.07 0.55 4.16 6.51 3.39 1.74 1.78 0.26 -0.08 3.40
SIG6 2.67 3.85 2.62 2.34 1.65 1.12 3.69 4.26 5.22 3.55 1.74 0.54 0.42 1.36
Volatility 5.41 3.89 2.53 2.87 1.35 0.88 3.36 3.92 4.3 2.79 1.76 0.55 0.36 1.98
Crowding 4.36 4.25 2.61 3.02 1.41 0.87 3.53 4.19 4.48 2.76 1.95 0.69 0.37 3.41
Momentum 1.32 3.57 1.70 2.91 1.22 0.58 3.09 3.57 3.89 1.83 1.45 0.45 -0.13 4.55
Spread 16.82 3.55 2.23 3.23 1.10 0.68 3.80 5.51 3.49 2.16 1.89 0.34 0.18 1.79
Valuation -1.61 3.36 2.17 2.19 1.53 0.99 3.20 3.74 4.87 3.14 1.77 0.25 0.16 1.16

Panel C: Multivariate model based on benchmark characteristics
Volatility 14.69 3.39 1.64 3.22 1.05 0.51 4.02 6.67 3.34 1.62 2.11 0.23 -0.12 3.94
Crowding -11.12
Momentum 0.84
Spread 17.90
Valuation -0.22

Panel D: Multivariate model based on benchmark + news characteristics
Volatility 0.68 3.90 1.97 3.05 1.28 0.65 2.57 4.33 4.05 2.06 1.84 0.54 0.04 4.83
Crowding -3.75
Momentum -0.80
Spread 27.34
Valuation 7.29
wSENT𝑡𝑑,3 12.87

Panel E: Multivariate cherry-picking model
Spread 24.48 4.04 2.36 3.05 1.33 0.78 3.04 5.30 4.22 2.46 1.92 0.60 0.25 3.58
Valuation 6.47
wSENT𝑡𝑑,3 11.08

This table gives estimation results and performance statistics of univariate and multivariate parametric portfolio policies based on
news-related and benchmark factor characteristics. The performance statistics are based on the out-of-sample period from January
2007 to December 2017. The second column gives the estimated coefficients of the PPP, highlighted in bold if significant at a 5%
level or better. Annualized returns are calculated using the arithmetic average of simple returns. Standard deviation and Sharpe ratio
are annualized through multiplication by

√
12. The information ratio uses arithmetic active returns of factor timing over the 1/N

benchmark. Annualized turnover is stated as two-way turnover. All performance statistics are given as percentages, except for Sharpe
ratio and 𝑡-statistic.

factor valuation, factor volatility, factor momentum and factor spread. Similar to the
univariate results, we only document a significant coefficient for the spread characteristic,
accompanied by a decline in performance. With a return of 3.39% at 3.22% volatility this
multivariate timing allocation exhibits worse performance statistics than the associated
univariate strategies, resulting in a negative information ratio net of transaction costs (-0.12).
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A second multivariate PPP adds the news sentiment characteristic wSENT𝑡𝑑,3 to the set
of tilting characteristics (cf. Panel D of Table 1.8). Similar to the univariate results, we
find a significant coefficient for wSENT𝑡𝑑,3. The coefficient for spread remains statistically
significant, whereas the one for valuation now becomes significant. This is due to interaction
effects of the characteristics when utilizing the PPP. In the presence of the other characteristics,
valuation gains importance as it adds to the overall allocation framework. The utility of news
flow data for dynamic factor allocations is corroborated by improved performance statistics,
documented by a higher return (3.90%) at lower volatility (3.05%) and slightly positive
information ratio of 0.04 for the multivariate PPP that includes a news characteristic.

As transaction costs almost completely consume the benefits of the previous set of tilting
characteristics, one may wonder whether a cherry-picked set of characteristics would lead to
a more favorable outcome (cf. Dichtl, Drobetz, Lohre, et al., 2019). When focusing on the
three characteristics that proved statistically significant over the whole sample period (spread,
valuation and news), the dynamic factor allocation shows further increased performance
statistics (cf. Panel E of Table 1.8). We find a slightly increased excess return of 4.04% at
the same level of volatility, but document a substantially higher information ratio of 0.25 for
the cherry-picking timing model.

Overall, utilizing news sentiment to dynamically tilt factor allocations shows promising
results. It turns out that the news-related dynamic factor allocations are more profitable
than using comparable predictors tested in the literature. For instance, we document that
information extracted from news flow data may add value over and above a simple factor
momentum timing strategy. Similar to other timing strategies, turnover is a key differentiator.
Similar to one-month factor momentum, short-term news sentiment exhibits elevated turnover
figures and subsequently lower net information ratios. In contrast to factor momentum, our
results show that news sentiment entails information beyond the short-term window and
deems meaningful in timing factors even at longer horizons, like three and six months.

In a nutshell, our empirical evidence suggests that news sentiment information is valuable
for constructing multi-factor allocation strategies. Thus, our findings are in line with Uhl,
Pedersen, and Malitius (2015) and Tetlock (2007) who document that news sentiment is
useful for predicting future return movements and still hold in the context of predicting
future factor returns.

1.5. Conclusion

This paper contributes to the literature on news analytics by investigating its relevance for
the cross-section of stock returns and its ability to enhance multi-factor investment strategies.
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Studying the cross-sectional characteristics of a broad set of indicators generated from news
flow data suggests that the insights gathered from firm-specific news sentiment analysis
can find their way into implementable trading strategies in a manner that adds over and
above common drivers of equity returns. Passing a rigorous research protocol that includes
multiple testing hurdles, long-short portfolios based on news sentiment indicators seem to
be particularly profitable in a global and European stock universes, while results for US and
Japanese equity markets are rather moderate.

Assessing the information embedded in news flow data in simple and dynamic factor
allocation strategies reveals the relevance for practical equity factor investing. An equally
weighted portfolio as well as minimum-variance and risk parity strategies benefit from adding
news sentiment-related equity factors to a portfolio of common global equity factors. Building
on these insights, we explore the benefits of active factor allocation when incorporating
information stemming from news flow data. Utilizing parametric portfolio policies, we
document that news sentiment-related factor characteristics help explaining the cross-section
of factor returns, given that the news data entail information on a factor’s attractiveness
itself. Associated factor timing strategies generate statistically significant and economically
relevant results, stressing the relevance of news analytics for dynamic factor allocation
strategies.
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Appendix 1.A The set of news indicators

This section describes how we construct indicators based on news flow data from RavenPack
News Analytics. All indicators are filtered using the relevance score (REL), the event
relevance score (EVR) and the event similarity days score (ESD). Unless otherwise indicated,
we require all scores to be above the conventional level of 90 (cf. Hafez, 2010; Kolasinski,
Reed, and Ringgenberg, 2013; Dang, Moshirian, and Zhang, 2015; Beschwitz, Keim, and
Massa, 2020).

Let 𝐸𝑖 be the 𝑖th news event for a specific firm in a given time horizon, as classified by
the RavenPack taxonomy. The publication date of a news event is denoted as 𝜏(·). Then, the
news volume indicator at time 𝑡, VOL𝑡 , is computed as the number of news events within
time horizon ℎ, i.e.

VOL𝑡,ℎ =
∑︁
𝑖∈𝐼
1{𝜏(𝐸𝑖)∈[𝑡−ℎ,𝑡]}, (1.4)

where 𝐼 ⊂ N captures all news events for a specific firm and 1(·) denotes the indicator
function. In the empirical study, we calculate VOL using two filter settings: A less restrictive
setting (REL > 75) to cover a firm’s overall media presence and the standard setting
(REL > 90, EVR > 90, ESD > 90) to focus on major events and thus only analyze a firm’s
meaningful media presence.

Further, let 𝐸𝑆𝑆(·) be the event sentiment score of a news event. Then, the average
firm-specific news sentiment indicator SENT is given by

SENT𝑡,ℎ =
∑
𝑖∈𝐼 1{𝜏(𝐸𝑖)∈[𝑡−ℎ,𝑡]}𝐸𝑆𝑆(𝐸𝑖)∑

𝑖∈𝐼 1{𝜏(𝐸𝑖)∈[𝑡−ℎ,𝑡]}
. (1.5)

The robust version of the news sentiment indicator, rSENT, is calculated as follows

rSENT𝑡,ℎ =
∑
𝑖∈𝐼 1{𝜏(𝐸𝑖)∈[𝑡−ℎ,𝑡] | 𝐸𝑆𝑆(𝐸𝑖)>𝑢} −

∑
𝑖∈𝐼 1{𝜏(𝐸𝑖)∈[𝑡−ℎ,𝑡] | 𝐸𝑆𝑆(𝐸𝑖)<𝑙}∑

𝑖∈𝐼 1{𝜏(𝐸𝑖)∈[𝑡−ℎ,𝑡] | 𝐸𝑆𝑆(𝐸𝑖)>𝑢, 𝐸𝑆𝑆(𝐸𝑖)<𝑙}
, (1.6)

where 𝑙 and 𝑢 are lower and upper thresholds defining the range for the ESS. We use two
threshold settings: first, we differentiate between positive and negative news by setting
𝑢 = 𝑙 = 0. Second, we further exclude sentiment scores that are close to zero, i.e. 𝑢 = 0.1
and 𝑙 = −0.1.

When constructing the weighted sentiment indicators wSENT, we resort to two different
weighting schemes. The first one puts larger weight on more recent sentiment scores (i.e.
those that are closer to the end of time horizon ℎ). Specifically, we first compute the average
ESS for each day according to the SENT indicator. Subsequently, we weight these daily
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average sentiment scores within the look-back window using a linear decay function. Thus,
the temporal decay (td) weighted sentiment factor is constructed as follows:

wSENT𝑡𝑑,(𝑡,ℎ) =
∑𝑁𝐷

𝑖=1 SENT𝑖,one-day · 𝑖∑𝑁𝐷

𝑗=1 𝑗
(1.7)

where 𝑁𝐷 denotes the number of days in the look-back window [𝑡 − ℎ, 𝑡] and ℎ is measured
in months.

The second weighting scheme is based on the empirical observation that the market
reaction to negative news is generally stronger than the reaction to positive news (Hafez,
Guerrero-Colon, and Duprey, 2015). For this purpose, we utilize a weighting function from
prospect theory (cf. Tversky and Kahneman, 1992) that is able to account for the asymmetric
reaction of the stock market to the nature of news events. The asymmetrically weighted (as)
news sentiment indicator is therefore given by:

wSENT𝑎𝑠,(𝑡,ℎ) =
∑
𝑖∈𝐼

(
1{𝐸𝑆𝑆(𝐸𝑖)>0|𝜏(𝐸𝑖)∈[𝑡−ℎ,𝑡]}𝐸𝑆𝑆(𝐸𝑖)𝛼 − 1{𝐸𝑆𝑆(𝐸𝑖)<0|𝜏(𝐸𝑖)∈[𝑡−ℎ,𝑡]}𝜆(−𝐸𝑆𝑆(𝐸𝑖))𝛽

)∑
𝑖∈𝐼

(
1{𝐸𝑆𝑆(𝐸𝑖)>0|𝜏(𝐸𝑖)∈[𝑡−ℎ,𝑡]} + 1{𝐸𝑆𝑆(𝐸𝑖)<0|𝜏(𝐸𝑖)∈[𝑡−ℎ,𝑡]}𝜆

) .

(1.8)

with 𝛼 ≈ 𝛽 ≈ 0.88 and 𝜆 ≈ 2.25, chosen according to Tversky and Kahneman (1992). The
parameter 𝜆 captures the extend to which negative news receive a higher weight compared to
positive news.

The news sentiment momentum indicator SENTMOM is constructed similar to the
methodology of Uhl, Pedersen, and Malitius (2015). Based on the SENT indicator, we first
calculate two moving average time series of different time horizons using a rolling window
approach and then calculate the difference of these two time series (that is, for ℎ = 1 and
ℎ = 12 we get SENT𝑡,1 − SENT𝑡,12). Subsequently, we apply the cumulative sum (CUSUM)
filter to this time series (see Uhl, Pedersen, and Malitius, 2015, for details). Finally, the
indicator series is normalized to be bound by +1 and -1.

Another way to calculate a trend indicator for news sentiment is to standardize a crossing
moving average time series (e.g. for ℎ = 1 and ℎ = 3, see previous paragraph) by its sample
standard error instead of applying the CUSUM filter. Specifically, the aSENTMOM indicator
is computed as follows

aSENTMOM𝑡,ℎ =
SENT𝑡,1 − SENT𝑡−ℎ√︃

𝜎2
𝑡,1/𝑉𝑂𝐿𝑡,1 − 𝜎

2
𝑡,ℎ
/𝑉𝑂𝐿𝑡,ℎ

, (1.9)
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where the sample variance 𝜎2
𝑡,ℎ

is given by

𝜎2
𝑡,ℎ =

∑
𝑖∈𝐼 1{𝜏(𝐸𝑖)∈[𝑡−ℎ,𝑡]}

(
𝐸𝑆𝑆(𝐸𝑖) − SENT𝑡,ℎ

)2(∑
𝑖∈𝐼 1{𝜏(𝐸𝑖)∈[𝑡−ℎ,𝑡]}

)
− 1

. (1.10)

The third news trend indicator, REG, is simply based on the 𝑡-statistic from regressing the
cumulative sum of the ESS on the time index within time horizon ℎ.

Among the alternative news concept indicators, NEWSBETA measures the responsiveness
of a firm’s stock return to an aggregate market news sentiment within a specific horizon.
Specifically, the indicator value is calculated as the 𝑡-statistic from regressing a firm’s stock
return on a market capitalization-weighted average of the ESS across all firms in the universe.

The news significance indicator SIG measures the significance of the ESS (similar to a
𝑡-statistic) and thus captures mean and variation in the ESS. Specifically, it is given by

SIG𝑡,ℎ =
SENT𝑡,ℎ√︃
𝜎2
𝑡,ℎ
/𝑉𝑂𝐿𝑡,ℎ

. (1.11)

The news dispersion indicator measures the variation in the ESS and is computed as

DISP𝑡,ℎ =

√︃
𝜎2
𝑡,ℎ

SENT𝑡,ℎ
. (1.12)

All indicators except SENTMOM and the regression-based indicators are computed for
ℎ = 1, 3, 6, where ℎ is measured in months. While SENTMOM uses multiple time horizons
by definition, REG is calculated for ℎ = 6, 12 due to sample size requirements for time-series
regressions. For the NEWSBETA indicator, we employ an expanding window estimation,
with an initial window of ℎ = 12. In a final step, we standardize all indicators by company
size and industry classification.
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Appendix 1.B Tables

Table 1.B.1: Equity Factor Description

This table describes how we define common equity factors. In particular, we adopt the definitions of Dichtl,
Drobetz, Lohre, et al. (2019). The necessary data are sourced from the Worldscope database.

Factor Description Related studies

Value Cash flow yield is used as value factor. It is
constructed as a zero-investment trading strategy
that is long in stocks with high cash flow-to-price
ratio and short in stocks with low cash flow-to-
price ratio. Cash flows are measured as the sum
of funds from operations, extraordinary items and
funds from other operating activities

Sloan (1996), Da and Warachka
(2009), Hou, Karolyi, and Kho
(2011)

Quality Profitability is employed as quality factor. This
factor is constructed as a zero-investment trading
strategy that is long in stocks with robust oper-
ating profitability and short in stocks with weak
profitability. Profitability is measured by annual
revenues less cost of goods sold and interest and
other expenses, divided by the book value for the
last fiscal year-end.

Haugen and Baker (1996), Co-
hen, Gompers, and Vuolteenaho
(2002), Fama and French (2006),
Novy-Marx (2013), Fama and
French (2016)

Momentum We use 12-month price momentum that captures
a medium-term continuation effect in returns by
buying recent winners and selling recent losers.
We control for the short-term reversal effect by
excluding the most recent month (𝑡 − 1) at time 𝑡.

Jegadeesh (1990), Jegadeesh and
Titman (1993)

Size The size factor builds on the observation that
stocks with larger market capitalization tend to
underperform stocks with smaller market capi-
talization. It is constructed as a zero-investment
trading strategy that is long in stocks with small
market capitalization and short in stocks with
high market capitalization.

Banz (1981), Fama and French
(1992), Sloan (1996), Da and
Warachka (2009), Hou, Karolyi,
and Kho (2011)

Short-term reversal This factor captures the short-term reversal effect
in the cross-section of stock returns. It is con-
structed as a zero-investment trading strategy that
is long in stocks with weak previous month per-
formance and short in stocks with high previous
month performance.

Jegadeesh (1990), Lehmann
(1990)
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Appendix 1.C Figures

Figure 1.C.1: A schematic view of RavenPack’s News Analytics

This figure shows a schematic view of RavenPack’s news analytics data, including RavenPack’s event taxonomy.
Source: RavenPack (2016).
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Figure 1.C.2: Return correlation of news equity factors

This figure shows the correlation among news equity factors and common equity factors. Equity factors are
derived from monthly return data for the global stock universe over the sample period from January 2001 to
December 2017 and are grouped according to their concept category: news volume (A), news sentiment (B),
news trend (c), alternative news concepts (D) and common equity factors (E).
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2.1. Introduction

Tail risk hedging strategies are of vital interest to many market participants to protect
investment portfolios against extreme negative market moves. An obvious protection is
the purchase of a put option. However, such a strategy can be expensive, since the option
premium is payable each investment period, although the protection could prove unnecessary
in the majority of periods. A possible alternative are dynamic asset allocation strategies,
which aim to improve the downside risk profile of an investment strategy without jeopardizing
its long-term return potential by dynamically shifting between a risky asset (or portfolio)
and a risk-free asset.

Risk targeting strategies1 are one such possibility (Hocquard, Ng, and Papageorgiou,
2013; Perchet et al., 2015; Bollerslev, Hood, et al., 2018a). A risk targeting strategy controls
portfolio risk over time by taking advantage of the negative relationship between risk and
return. Specifically, the investment exposure of the portfolio is adjusted according to updated
risk forecasts in order to keep the ex-ante risk at a constant target level. A stricter way to
limit downside risk is to apply portfolio insurance strategies, such as the constant proportion
portfolio insurance (CPPI) strategy (Perold, 1986; Black and Jones, 1987, 1988; Perold
and Sharpe, 1988), where the investor defines a minimum capital level to be preserved at
the end of the investment period. The key element in determining the investment exposure
to the risky asset is the so-called multiplier. This represents the inverse of the maximum
sudden loss of the risky asset, so that a given risk budget will not be fully consumed and the
portfolio value will not fall below the protection level. Initially, the multiplier was assumed
to be static and unconditional (e.g. Bertrand and Prigent, 2002; Balder, Brandl, and Mahayni,
2009; Cont and Tankov, 2009). However, given the empirical characteristics of financial
assets, such as time-varying volatility or volatility clustering (cf. Longin and Solnik, 1995;
Andersen et al., 2006), other studies (e.g. Hamidi, Maillet, and Prigent, 2014) propose to
model the multiplier as time-varying and conditional. The corresponding strategy is known
as dynamic proportion portfolio insurance (DPPI).2

The success of both dynamic tail risk protection strategies strongly depends on the success
of forecasting tail risk (Perchet et al., 2015). Given a plethora of available risk models, we
contribute to the existing literature on tail risk protection strategies by investigating suitable
risk models for timely management of the investment exposure in dynamic tail risk protection
strategies. At the same time, we contribute to the literature on risk model evaluation by

1Risk targeting strategies are also known as constant risk, target risk or inverse risk weighting strategies.
2For a comprehensive literature review on portfolio insurance and CPPI/DPPI multipliers, see Benninga

(1990), Black and Perold (1992), Basak (2002), Dichtl and Drobetz (2011), and Hamidi, Maillet, and Prigent
(2014), among others.
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assessing not only its statistical performance but also its economical relevance when testing
the risk forecasts in a relevant portfolio application.

Risk targeting strategies have been extensively backtested using historical data, and are
known to show superior performance compared to a simple buy-and-hold strategy (Cooper,
2010; Kirby and Ostdiek, 2012; Ilmanen and Kizer, 2012; Giese, 2012). Hallerbach (2012,
2015) demonstrates that the Sharpe ratio increases, even if the portfolio mean return is
constant over time. Constant volatility portfolios not only deliver higher Sharpe ratios than
their passive counterpart but also reduce drawdowns (Hocquard, Ng, and Papageorgiou,
2013). Similar to the risk targeting strategy that we apply, the dynamic value-at-risk (VaR)
portfolio insurance strategy of Jiang, Ma, and An (2009) aims to control the exposure of a
risky asset such that a specified VaR is not violated. However, their strategy can only be
applied to parametric location-scale models, while the one we apply is compatible with any
type of risk model. In a similar vein, Bollerslev, Hood, et al. (2018a) use a risk targeting
strategy to compare realized volatility models to more conventional procedures that do not
incorporate the information in high-frequency intraday data.

The literature on DPPI puts forward various ways to model the conditional time-varying
multiplier. While Ben Ameur and Prigent (2007, 2014) employ generalized autoregressive
conditional heteroskedasticity (GARCH) type models, Hamidi, Jurczenko, and Maillet
(2009) and Hamidi, Maillet, and Prigent (2009) define the multiplier as a function of a
dynamic autoregressive quantile model of the VaR according to Engle and Manganelli
(2004). In contrast, Chen et al. (2008) propose a multiplier framework based on genetic
programming. More recently, Hamidi, Maillet, and Prigent (2014) employ a dynamic
autoregressive expectile (DARE) model to estimate the conditional multiplier.3 All these
papers provide evidence that the DPPI strategy, based on a time-varying conditional risk
estimate, outperforms the traditional CPPI strategy.

We are particularly interested in comparing different ways to determine the risky
investment exposure of dynamic tail risk protection strategies, assessing various models to
estimate a portfolio’s downside risk measured by VaR and expected shortfall (ES). While the
literature suggests a myriad of VaR and ES models—Andersen et al. (2006, 2013), Kuester,
Mittnik, and Paolella (2006), and Righi and Ceretta (2015) provide thorough summaries on
market risk modeling—practitioners still only use a limited number of them. This discrepancy
might be due to complexity, (computational) efficiency or the perception that the incremental
benefit of implementing a highly sophisticated model is minor. Therefore, we examine

3Hamidi, Maillet, and Prigent (2014) model the multiplier as a function of the expected shortfall determined
by a combination of quantile functions in order to reduce the potential model error. Specifically, they combine
the historical simulation approach, three methods based on distributional assumptions, and four methods based
on expectiles and conditional autoregressive specifications into the DARE approach.
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simple methods that are common among practitioners as well as more involved methods to
predict VaR and ES. Specifically, we consider: historical simulation (HS), Cornish-Fisher
approximation (CFA), RiskMetrics, quantile and expectile regressions, extreme value theory,
copula-GARCH and recent generalized autoregressive score (GAS) models (including one
and two-factor GAS models as well as the hybrid GAS/GARCH model).

The primary issue of these (standalone) risk models is that their performance and reliability
in accurately predicting risk often depend heavily on the data. While a parsimonious model
can perform well in stable markets, it might fail during a volatile period. Likewise,
highly parameterized models can be adequate during periods of high volatility, but might
be easily outperformed by simpler approaches in less turbulent times (cf. Bayer, 2018).
Hence, it is often beneficial to combine predictions originating from various approaches.
Reviewing forecasting combinations, Timmermann (2006) provides three arguments in favor
of combining forecasts to enhance the predictive performance relative to standalone models.
First, there are diversification gains arising from the combination of forecasts computed from
different assumptions, specifications or information sets. Second, combination forecasts
tend to be robust against structural breaks. Third, the influence of potential misspecification
biases and measurement errors of the individual models is reduced due to averaging over a
set of forecasts derived from several models.

While there exist various approaches to combine VaR predictions (see Bayer, 2018, for
a summary), the literature is lacking methods that combine ES predictions. This shortage
relates to the fact that ES is not “elicitable”, that is, there does not exist a loss function such
that the correct ES forecast is the solution to minimizing the expected loss (cf. Gneiting,
2011). This lack of elicitability makes the estimation and backtesting of ES challenging
(see Acerbi and Szekely, 2014; Embrechts and Hofert, 2014; Emmer, Kratz, and Tasche,
2015). As a remedy, Fissler and Ziegel (2016) recently introduced a class of loss functions
that overcome the lack of elicitability for ES by jointly modeling ES and VaR. Drawing on
their results, we propose a novel ES (and VaR) forecast combination approach.4

Based on a global multi-asset data set consisting of stock, bond, commodity and
currency indices, our empirical study documents a clear superiority of the proposed forecast
combination approach over both sophisticated and more naive standalone models using a state-
of-the-art ES and VaR backtesting framework (Kupiec, 1995; Christoffersen, 1998; McNeil
and Frey, 2000; Christoffersen and Pelletier, 2004; Engle and Manganelli, 2004; Berkowitz,
Christoffersen, and Pelletier, 2011; Nolde and Ziegel, 2017; Bayer and Dimitriadis, 2020;
Patton, Ziegel, and Chen, 2019). In the combination of ES (and VaR) forecasts, complexity

4In recent independent work, Taylor (2020) uses the same class of loss functions to combine VaR and ES
predictions. While his methods for combining forecasts are in the spirit of Bates and Granger (1969) and Shan
and Yang (2009), our methodology follows the approach of Halbleib and Pohlmeier (2012) and Bayer (2018).
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seems to actually pay off as the proposed forecast combination approach outperforms a
simple average forecast. Among the standalone models, sophisticated risk models such as
the extreme value theory or the copula-GARCH approach outperform simple approaches
in terms of historical accuracy and statistical fit. When subsequently feeding the risk
forecasts in the tail risk protection framework, our findings are twofold. For the risk targeting
strategy, we observe a clear outperformance of the more intricate methods, confirming
the results from the statistical analysis. For the DPPI strategy, we likewise show that the
use of more sophisticated risk models helps to protect investors from downside risk. Yet,
more naive approaches do not fall short of providing downside protection. Given that the
portfolio insurance strategy automatically reduces investment exposure when approaching
the protection level, the less sophisticated methods’ weaknesses seem to be compensated by
this second line of defense.

The remainder of the paper is structured as follows. Section 2.2 discusses the tail risk
protection strategies employed. Section 2.3 briefly presents the different models to estimate
portfolio risk, including the novel forecast combination technique based on Fissler-Ziegel
loss functions. In Section 2.4 we carry out the empirical study using a global multi-asset
data set to compare the performance of dynamic tail risk protection strategies based on the
different risk models. Section 2.5 concludes.

2.2. Tail risk protection strategies

We consider a risk-averse investor who aims to limit the downside risk of his investment
over an investment horizon of 𝐻 time steps. Let 𝑡 = 1, 2, ..., 𝑇 be the time index of portfolio
rebalancing and 𝐼(𝑡) = 𝑡 − (⌈𝑡/𝐻⌉ − 1) 𝐻 a subindex for each investment period ⌈𝑡/𝐻⌉,
so that the latter runs from 1 to 𝐻 in each investment period. At the beginning of each
investment period ⌈𝑡/𝐻⌉, that is, at 𝐼(𝑡) = 1, the investor determines a risk target that should
be achieved at the end of the period, that is, at 𝐼(𝑡) = 𝐻. The management of the protected
portfolio follows a dynamic portfolio allocation. In particular, the value of the protected
portfolio, denoted by 𝑉𝑡 , is invested in a risky asset (or portfolio) and a non-risky asset in
such a way that the given risk target will not be violated. The price of the risky asset at
time 𝑡 is denoted as 𝑃𝑡 , so that the logarithmic return from 𝑡 to 𝑡 + 1 is 𝑟𝑡+1 = log(𝑃𝑡+1/𝑃𝑡).
Accordingly, the price and return of the non-risky asset are denoted by 𝐵𝑡 and 𝑟 𝑓 ,𝑡 . To
explicitly determine the exposure to the risky asset 𝑒𝑡 , we need to forecast the downside risk
of the risky asset over the next day, quantified by a risk measure 𝜌(·).
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2.2.1. Risk targeting strategies

A risk targeting strategy systematically adjusts exposure to a given asset (or portfolio)
conditional on its current risk (forecast) in order to maintain a pre-specified target risk level.
Specifically, if a portfolio’s current risk is higher than the target level, one would lower the
investment exposure by shifting towards the risk-free asset, and vice versa if the current risk
is lower than the target level. The rationale for maintaining a constant risk level is twofold
(see Hocquard, Ng, and Papageorgiou, 2013). First, most significant market corrections have
been preceded by an increase in risk. By conditioning their exposure on market risk, investors
can dampen the impact of a market correction. Second, empirical evidence suggests that
asset returns tend to be greater during periods of low risk. Consequently, investors should
maximize asset exposure during these periods, taking advantage of a favorable risk-reward
tradeoff. Conversely, they should decrease asset exposure when risk increases to maintain
the desired risk level.

Given the level of ex ante risk of the underlying risky asset 𝜌𝑡(𝑟𝑡+1) and the predefined
target risk 𝜌, the allocation to the risky asset 𝑒𝑡 is simply 𝜌/𝜌𝑡(𝑟𝑡+1). As 𝜌𝑡(𝑟𝑡+1) is unknown,
we utilize a forecast based on the information available at time 𝑡, F𝑡 :

𝑒𝑡 ≡
𝜌

�̂�𝑡(𝑟𝑡+1 |F𝑡)
. (2.1)

Correspondingly, the weight of the risk-free asset is given by 1 − 𝑒𝑡 .

2.2.2. Constant and Dynamic Proportion Portfolio Insurance

The constant proportion portfolio insurance (CPPI) strategy (see Perold, 1986; Black and
Jones, 1987, 1988; Perold and Sharpe, 1988) dynamically shifts between the risky and
non-risky asset to guarantee that the investor at least recovers a given proportion of her initial
capital. At the beginning of each investment period ⌈𝑡/𝐻⌉, that is, at 𝐼(𝑡) = 1, the investor
determines this minimum portfolio value, or floor 𝐹⌈𝑡/𝐻⌉ , that should be preserved at the
end of the period, that is, at 𝐼(𝑡) = 𝐻. The corresponding risk capital, called the cushion, is
derived as the difference of portfolio value, 𝑉𝑡 , and the discounted floor (i.e. the net present
value, NPV(·), of the floor):

𝐶𝑡 = 𝑉𝑡 − NPV𝑡

(
𝐹⌈𝑡/𝐻⌉

)
. (2.2)

The cushion represents a certain amount of the portfolio value to absorb potential market
shocks before the portfolio manager can rebalance the portfolio. In order to avoid a breach
of the discounted floor, the investment exposure to the risky asset, defined as 𝐸𝑡 = 𝑒𝑡𝑉𝑡 ,
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should be set such that the cushion at 𝑡 is at least as high as the maximum sudden drop in the
portfolio value between the rebalancing dates 𝑡 and 𝑡 + 1, that is

𝐶𝑡 ≥ 𝑉𝑡
����inf

(
log

(
𝑉𝑡+1

𝑉𝑡

))���� . (2.3)

As the portfolio consists of the risky and the non-risky asset, Equation (2.3) can be simplified
to

𝐶𝑡 ≥ 𝑒𝑡𝑉𝑡
����inf

(
log

(
𝑃𝑡+1

𝑃𝑡

))���� . (2.4)

Rearranging Equation (2.4) then yields the (total) exposure to the risky asset as

𝐸𝑡 ≤ 𝐶𝑡 |inf(𝑟𝑡+1)|−1= 𝐶𝑡𝑚, (2.5)

where𝑚 ≡ |inf(𝑟𝑡+1)|−1 is the multiplier.5 The multiplier indicates how often a given cushion
can be invested in the risky asset without breaching the floor. Thus, it reflects the investor’s
risk tolerance. The higher the multiplier, the more the investor will participate in upward
market movements of the underlying. But the higher the multiplier, the faster the portfolio
will reach the floor when there is a sustained decrease in the price of the underlying. In order
to allow for the highest possible participation in the underlying risky asset, it is common to
set 𝐸𝑡 such that equality holds in Equation (2.5). The remainder is invested in the risk-free
asset.

If rebalancing were continuous and price movements sufficiently smooth, the CPPI
allocation rule would ensure that the portfolio does not fall below the floor (Cont and Tankov,
2009; Balder, Brandl, and Mahayni, 2009; Hamidi, Hurlin, et al., 2015; Ardia, Boudt,
and Wauters, 2016). However, with discrete rebalancing and jumps in prices, there is a
non-negligible probability that the floor is breached. This risk of losing more than the
cushion between two rebalancing dates and thus failing to ensure the protection at the end of
the investment period is called gap risk. A common way to minimize gap risk is to employ the
minimum return of the risky asset over the sample history, that is, inf(𝑟𝑡+1) = min(𝑟1, ..., 𝑟𝑡+1).
Then, the CPPI strategy is based on a static unconditional multiplier, often reflecting a
constant worst-case scenario. Although such a conservative stance would have meaningfully
addressed catastrophic drawdowns during extreme market turmoil, it would also have unduly
capped upside potential over the long term. Dynamic proportion portfolio insurance (DPPI)

5We follow Benninga (1990) and restrict the participation ratio to vary between 0% and 100% of the
risky asset in order to rule out short positions. This approach leads to a slightly different exposure definition:
𝐸𝑡 = max[min(𝐶𝑡𝑚,𝑉𝑡 ), 0].
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is designed to introduce more flexibility. Instead of using a static multiplier, the risk budget
adapts dynamically to changes in a risk forecast, measured by �̂�(·). Thus, the exposure
changes to

𝐸𝑡 = 𝐶𝑡 | �̂�𝑡(𝑟𝑡+1 |F𝑡)|−1= 𝐶𝑡𝑚𝑡 , (2.6)

where the risk forecast �̂�𝑡+1 is based on information F𝑡 and measures the risk when the risky
asset price 𝑃 evolves from 𝑡 to 𝑡 + 1. The dynamic multiplier is therefore given by

𝑚𝑡 = | �̂�𝑡(𝑟𝑡+1 |F𝑡)|−1. (2.7)

In this way, the portfolio’s exposure to the risky asset reacts to changes in the risk forecast,
ensuring that it does not remain artificially low as a result of a constant conservative risk
assumption. For this to work in practice, the risk model must be capable of quickly homing
in on volatility spikes, and just as quickly readjusting to a normalization of market volatility.

The advantage of the CPPI and DPPI strategy, respectively, is the simple practical
implementation that does not call for forecasting the returns of the risky asset. Major
drawbacks are the strategies’ path dependencies as well as the lock-in effect. Depending on
the underlying portfolio return path, the CPPI/DPPI strategy can deliver a wide range of
outcomes. In general, the more volatile the risky asset, the lower the average participation
ratio. While the CPPI strategy is fully exposed to the problem of path dependency, the
DPPI strategy can mitigate this problem at least to some extent by quickly reacting to market
changes. The lock-in effect occurs when the cushion is entirely consumed by portfolio losses.
The CPPI/DPPI strategy is then fully invested in the risk-free asset until the end of the
investment period and no participation in subsequent upward movements is possible.

2.3. Portfolio risk modeling

Given the vast amount of available risk models (see Kuester, Mittnik, and Paolella, 2006;
Nadarajah, Zhang, and Chan, 2014), we focus on a few distinct approaches, ranging from
rather simple models that are widely used by practitioners to more intricate, state-of-the-art
models in the academic literature. We consider both portfolio-level (aggregated, “top-down”)
and asset-level (disaggregated, “bottom-up”) risk modeling. In addition, we propose a new
VaR and ES forecast combination approach based on a loss function that overcomes the
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lack of elicitability for ES by jointly modeling ES and VaR. Following the description of
downside risk measurement, we summarize the various methods in this section.6

2.3.1. Conditional risk measurement

The literature suggests various ways to quantify market risk of financial assets. As we are
particularly interested in protecting risky portfolios against extreme market losses, we resort
to the most common downside risk measures, value-at-risk (VaR) and expected shortfall (ES).
VaR measures the maximum potential portfolio loss at a given confidence level.7 Therefore,
the VaR forecast from 𝑡 to 𝑡 + 1 is simply the negative 𝑝-quantile of the conditional return
distribution at 𝑡 + 1, that is,

VaR𝑝

𝑡+1|𝑡 = 𝑄𝑝(𝑟𝑡+1 |F𝑡) = inf
𝑥
{𝑥 ∈ R : 𝑃 (𝑟𝑡+1 ≤ 𝑥 |F𝑡) ≥ 𝑝}, (2.8)

where 𝑝 ∈ (0, 1) is the probability level, 𝑄𝑝(·) denotes the quantile function, 𝑟𝑡 reflects the
return of the asset (portfolio) in period 𝑡 and F𝑡 represents the information available at time 𝑡.

Although VaR is still the risk measure of choice in the financial industry, it has been
criticized for disregarding outcomes beyond the specified VaR-quantile. Moreover, VaR is
not a subadditive risk measure. This property posits that the total portfolio risk should not
be greater than the sum of the risks of its constituents (see Artzner et al., 1999; Acerbi and
Tasche, 2002; Taylor, 2008). Expected shortfall, also known as conditional VaR or expected
tail loss, is a risk measure that overcomes these weaknesses by aggregating information
about the tail of the portfolio return distribution. It is defined as the conditional expectation
of the return given that VaR is exceeded (see Yamai and Yoshiba, 2002), specifically

ES𝑝
𝑡+1|𝑡 = 𝑝−1

∫ 𝑝

0
VaR𝑠

𝑡+1|𝑡 𝑑𝑠. (2.9)

Throughout this paper, we focus on the probability level p = 1%, taking a conservative stance
for the tail risk protection strategies.

6For a rigorous discussion of the risk models analyzed, see Kuester, Mittnik, and Paolella (2006), Andersen
et al. (2013) and Righi and Ceretta (2015). Note that we do not impose the same estimate of the standard
deviation in all location-scale risk models. We intentionally consider simple methods (such as historical
simulation, Cornish-Fisher approximation and RiskMetrics) in a way that practitioners would often use them
to compute VaR and ES forecasts. These models are then contrasted with more sophisticated methods popular
in the academic literature, which we construct consistent with the original studies.

7The literature commonly uses low-probability terminology, hence we are speaking of a 1% VaR rather
than a 99% VaR.



Chapter 2. Estimating Portfolio Risk for Tail Risk Protection Strategies 57

2.3.2. Conditional portfolio-level risk models

Generally, there are two classes of risk modeling, depending on the aggregation level.
Portfolio-level analysis, as discussed in this section, requires only a univariate model based
on aggregated portfolio returns. The latter can easily be constructed using portfolio holdings
w𝑡 =

[
𝑤1,𝑡 , 𝑤2,𝑡 , ..., 𝑤𝑁,𝑡

]′ and the individual asset returns r𝑡 =
[
𝑟1,𝑡 , 𝑟2,𝑡 , ..., 𝑟𝑁,𝑡

]′:
𝑟PF,𝑡 =

𝑁∑︁
𝑖=1

𝑤𝑖,𝑡𝑟𝑖,𝑡 = w′
𝑡r𝑡 , 𝑡 = 1, 2, ..., 𝑇 . (2.10)

While aggregation generally entails the loss of information, Andersen et al. (2013) argue
that there is no reason why a parsimonious dynamic model should not be estimated for
portfolio-level returns. If one is interested in the portfolio return distribution, one may
model it directly rather than via aggregation based on a larger, and almost inevitably less
well-specified, multivariate model.8

Historical simulation

The simplest way to estimate VaR and ES is to use the sample quantile function based on
historic return data, which is referred to as historical simulation (HS). Let 𝑟PF,(1) ≤ 𝑟PF,(2) ≤
... ≤ 𝑟PF,(𝑡) denote the order statistics in ascending order corresponding to the original
historical pseudo portfolio returns 𝑟PF,1, 𝑟PF,2, ..., 𝑟PF,𝑡 . Then, the HS-VaR for 𝑡 + 1 is simply
the empirical 100𝑝th quantile or the 𝑡 𝑝th order statistic, that is,

VaR𝑝

𝑡+1|𝑡 = 𝑟PF,(⌈𝑡 𝑝⌉). (2.11)

Correspondingly, the ES estimate for 𝑡 + 1 can be computed as

ES𝑝
𝑡+1|𝑡 =

(
𝑡∑︁

𝑖=⌈𝑡 𝑝⌉
𝑟PF,(𝑖)

)
(𝑡 − ⌈𝑡 𝑝⌉)−1 . (2.12)

The main advantage of the HS approach is its computational simplicity and non-parametric
dimension, that is, VaR and ES do not rely on any distributional assumptions. In contrast, the
HS approach cannot properly incorporate conditionality (see Andersen et al., 2006).9 This
deficiency of the conventional HS approach is oftentimes highlighted by a clustering of VaR
violations in time, reflecting a failure to properly account for persistent changes in market

8In contrast to Andersen et al. (2013), some studies (e.g. Santos, Nogales, and Ruiz, 2012) take an opposite
view regarding the validity of aggregation at portfolio level when estimating portfolio risk. They argue that
univariate models are often misspecified if the true return generating process is multivariate.

9For a rigorous discussion of several serious issues of the HS approach, see Pritsker (2006).
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volatility. The only source of dynamics in the HS risk estimates is the evolving window used
to construct historical pseudo portfolio returns. Nevertheless, the choice of the window size
is crucial: too few observations will lead to sampling error, whereas too many observations
will slow down the reaction to changes in the true return distribution. Moreover, the risk
estimates can jump when large negative returns either enter or exit the estimation window.

Cornish-Fisher approximation

Another simple approach is the Cornish-Fisher Approximation (CFA) method (Zangari,
1996), where the VaR is modeled as a Taylor series type expansion (cf. Cornish and Fisher,
1938) around the VaR of a normal distribution. Specifically, the CFA-VaR is an extension of
the normal quantile function by accounting for skewness 𝛾 and kurtosis 𝛿, and is calculated
as

VaR𝑝

𝑡+1|𝑡 = 𝜇𝑡 + 𝜎𝑡𝐹−1
𝐶𝐹(𝑝), (2.13)

where

𝐹−1
𝐶𝐹(𝑝) ≡ Φ−1

𝑝 +
(
[Φ−1

𝑝 ]2 − 1
) 𝛾

6
+

(
[Φ−1

𝑝 ]3 − 3Φ−1
𝑝

) 𝛿 − 3
24

−
(
2[Φ−1

𝑝 ]3 − 5Φ−1
𝑝

) 𝛾2

36

and Φ(·) is the standard normal cumulative distribution function. Moreover, 𝜇𝑡 and 𝜎𝑡 are
computed by the sample mean and sample standard deviation, respectively.

Boudt, Peterson, and Croux (2008) show how the Edgeworth and Cornish-Fisher
expansions of the density and quantile functions can be used to obtain an estimator for ES
that delivers accurate downside risk estimates even in the presence of non-normal returns.
The modified or Cornish-Fisher ES is thus computed as

ES𝑝
𝑡+1|𝑡 = 𝜇𝑡 + 𝜎𝑡E𝐹𝐶𝐹

[
𝑧 |𝑧 ≤ 𝐹−1

𝐶𝐹(𝑝)
]

(2.14)

where

E𝐹𝐶𝐹

[
𝑧 |𝑧 ≤ 𝐹−1

𝐶𝐹(𝑝)
]

= − 1
𝑝

(
𝜙(𝐹−1

𝐶𝐹(𝑝)) +
𝛿

24
[
𝐼4 − 6𝐼2 + 3𝜙(𝐹−1

𝐶𝐹(𝑝))
]

+
𝛾

6
[
𝐼3 − 3𝐼1

]
+
𝛾2

72
[
𝐼6 − 15𝐼4 + 45𝐼2 − 15𝜙(𝐹−1

𝐶𝐹(𝑝))
] )
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with

𝐼𝑞 =



𝑞/2∑︁
𝑖=1

©«
∏𝑞/2

𝑗=1 2 𝑗∏𝑖
𝑗=1 2 𝑗

ª®¬ 𝑔2𝑖
𝑝 𝜙(𝑔𝑝) +

(
𝑞/2∏
𝑗=1

2 𝑗

)
𝜙(𝑔𝑝) for 𝑞 even

𝑞∗∑︁
𝑖=0

©«
∏𝑞∗

𝑗=0(2 𝑗 + 1)∏𝑖
𝑗=0(2 𝑗 + 1)

ª®¬ 𝑔2𝑖+1
𝑝 𝜙(𝑔𝑝) −

(
𝑞∗∏
𝑗=0

2( 𝑗 + 1)

)
𝜙(𝑔𝑝) for 𝑞 odd

and 𝑞∗ = (𝑞 − 1)/2, 𝑔𝑝 = 𝐹−1
𝐶𝐹

(𝑝). 𝜙(·) denotes the standard normal probability density
function.

The main advantage of the CFA method is its ability to account for fat tails. However,
the CFA-VaR is not necessarily monotone, that is, the 1% VaR might be smaller than the 5%
VaR. Martin and Arora (2017) also document that the CFA-VaR and CFA-ES suffer in terms
of statistical efficiency.

Quantile/Expectile regression

As VaR and ES are directly linked to quantiles and expectiles, a natural approach to risk
modeling employs quantile and expectile regressions. The basic idea of quantile regression
is to directly model the conditional quantile rather than the whole distribution of portfolio
returns. More precisely, the conditional 𝑝-quantile, 𝑄𝑝(𝑟𝑃𝐹,𝑡 |F𝑡−1) = −VaR𝑡 |𝑡−1, is modeled
as a parametric function of the information F𝑡−1:

VaR𝑝

𝑡 |𝑡−1 ≡ 𝑔𝑝
(
F𝑡−1; 𝛽𝑝

)
, (2.15)

where 𝑔(·, ·) and the parameter vector 𝛽 explicitly depend on 𝑝. Following Koenker and
Bassett (1978), the conditional sample 𝑝-quantile can be found as the solution to

min
𝛽𝑝


∑︁

𝑟PF,𝑡≥VaR𝑝

𝑡 |𝑡−1

𝑝 |𝑟PF,𝑡 − VaR𝑝

𝑡 |𝑡−1 |+
∑︁

𝑟PF,𝑡<VaR𝑝

𝑡 |𝑡−1

(1 − 𝑝)|𝑟PF,𝑡 − VaR𝑝

𝑡 |𝑡−1 |
 , (2.16)

where we determine VaR𝑝
𝑡 by the conditional autoregressive value-at-risk (CAViaR) speci-

fication of Engle and Manganelli (2004). In particular, we adopt their asymmetric slope
CAViaR model,10 given by

VaR𝑝

𝑡 |𝑡−1 = 𝛽0 + 𝛽1 VaR𝑝

𝑡−1|𝑡−2 +𝛽2 max
[
𝑟PF,𝑡−1, 0

]
+ 𝛽3max

[
−𝑟PF,𝑡−1, 0

]
. (2.17)

10For the sake of simplicity, we focus on one CAViaR model. Particularly, we choose the asymmetric slope
specification because of its ability to accommodate the leverage effect.
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In a similar fashion, we can use expectile regression to estimate ES. In particular, we
employ the conditional autoregressive expectile (CARE) model of Taylor (2008). First,
we suppose that the population 𝜏𝑝 expectile of 𝑟PF,𝑡 is the parameter 𝜇𝜏𝑝 that minimizes
the function E

[
|𝜏𝑝 − 1(𝑟PF,𝑡 − 𝜇𝜏𝑝 )|(𝑟PF,𝑡 − 𝜇𝜏𝑝 )2] . Hence, we can represent the conditional

expectile as a parametric function of past information, that is, 𝜇𝜏𝑝 (𝑟PF,𝑡) ≡ ℎ𝜏𝑝
(
F𝑡−1; 𝛾𝜏𝑝

)
.

The parameters 𝛾𝜏𝑝 can be estimated using asymmetric least squares (cf. Newey and Powell,
1987), that is,

min
𝛾𝜏𝑝

{∑︁
𝑟PF,𝑡

|𝜏𝑝 − 1(𝑟PF,𝑡 < ℎ𝜏𝑝

(
F𝑡−1; 𝛾𝜏𝑝

)
)|
(
𝑟PF,𝑡 − ℎ𝜏𝑝

(
F𝑡−1; 𝛾𝜏𝑝

))2
}
, (2.18)

where 1(·) denotes the indicator function. Similar to the asymmetric slope CAViaR model,
we assume the conditional expectile to have an asymmetric slope specification. The ES can
then be computed as the product of a correction term and the conditional expectile, that is,

ES𝑝
𝑡 |𝑡−1 =

(
1 +

𝜏𝑝(
1 − 2𝜏𝑝

)
𝑝

) (
𝛾0 + 𝛾1𝜇𝜏𝑝 (𝑟PF,𝑡−1) + 𝛾2max

[
𝑟PF,𝑡−1, 0

]
+ 𝛽3max

[
−𝑟PF,𝑡−1, 0

] )
.

(2.19)

The quantile and expectile regression approach are appealing because no explicit distributional
assumption for the time series behavior of returns is needed, thus reducing the risk of model
misspecification. The main drawback of the CAViaR modeling strategy is that it might
generate out-of-order quantiles similar to the CFA method. Also, estimation of model
parameters is challenging.11

Extreme value theory

As we are primarily interested in the tails of the portfolio distribution, it seems natural to
resort to extreme value theory (EVT) which estimates the tails based on extrapolating from
available observations. McNeil and Frey (2000) propose a semi-parametric framework based
on extreme value theory to describe the tail of the conditional distribution. The first step is to
employ pseudo-maximum-likelihood fitting of GARCH(1,1) models to estimate conditional
volatility forecasts �̂�𝑡+1 (Engle, 1982; Bollerslev, 1986; Taylor, 1986). In a second step, we
resort to EVT to estimate the tail of the innovation distribution of the GARCH(1,1) model.
In particular, we use the peak-over-threshold method where a generalized Pareto distribution

11We thank James Taylor for providing the Gauss code for his CARE models.
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(GPD) is fitted to the negative of portfolio returns over a specified threshold.12 The quantile
𝑧𝑝 can then be estimated as

𝑧𝑝 = 𝑢 +
𝛽

𝜉

[(
1 − 𝑝
𝑛𝑢/𝑛

)−𝜉
− 1

]
, (2.20)

where 𝛽 and 𝜉 are the GPD estimates and 𝑛𝑢 is the number of observations above threshold
𝑢. Consequently, the VaR and ES forecasts can be computed as

VaR𝑝

𝑡+1|𝑡 = �̂�𝑡+1𝑧𝑝, (2.21)

ES𝑝
𝑡+1|𝑡 = �̂�𝑡+1𝑧𝑝

(
1

1 − 𝜉
+

𝛽 − 𝜉𝑢
(1 − 𝜉)𝑧𝑝

)
. (2.22)

The GARCH fitting in the first step enables us to capture certain stylized facts such as
time-varying volatility, fat tails and volatility clustering. Then, EVT is particularly suitable
to estimate the tails of the distribution. The crucial assumption of EVT is, however, that one
is in the tail of the distribution. Hence, the difficulty is the determination of the threshold. If
the threshold is too low, then the approximation can hardly be justified and the associated
risk estimates may be biased. If the threshold is too high, there are too few observations over
the threshold, resulting in highly volatile estimates.

GAS Models

Patton, Ziegel, and Chen (2019) propose dynamic VaR and ES models drawing on recent
results from statistical decision theory that overcome the lack of elicitability13 for ES by
jointly modeling ES and VaR (cf. Fissler and Ziegel, 2016).14 These models are semi-
parametric in that they impose parametric structures for the dynamics of ES and VaR
according to the “generalized autoregressive score” (GAS) framework proposed by Creal,
Koopman, and Lucas (2013) and Harvey (2013), but are completely agnostic about the
conditional distribution of returns (aside from regularity conditions required for estimation
and inference).

12We follow McNeil and Frey (2000) when determining the thresholds. See their paper for details.
13A statistical functional (e.g. a risk measure) is said to be “elicitable” if there exists a loss function such that

the correct forecast of the functional is the solution to minimizing the expected loss (cf. Gneiting, 2011; Fissler
and Ziegel, 2016; Patton, Ziegel, and Chen, 2019). For example, the mean is elicitable using the quadratic loss
function, and VaR is elicitable using the piecewise-linear or “tick” loss function.

14Similar to the approach of Patton, Ziegel, and Chen (2019), Taylor (2019) proposes using the asymmetric
Laplace distribution to jointly estimate dynamic models for VaR and ES.
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Two-factor GAS model

The two-factor GAS(1,1) model allows ES and VaR to evolve as two separate, correlated
processes: [

VaR𝑝

𝑡+1|𝑡
ES𝑝

𝑡+1|𝑡

]
= v + B

[
VaR𝑝

𝑡 |𝑡−1

ES𝑝
𝑡 |𝑡−1

]
+ AH−1

𝑡 ∇𝑡 (2.23)

where v is a 2 × 1-vector and B and A are 2 × 2-matrices. The forcing variable in this
model is a function of the derivative, ∇𝑡 , and the Hessian, H𝑡 , of the “FZ loss function” (see
Section 2.3.4 for details on this loss function):

H−1
𝑡 ∇𝑡 =

[
−1
𝑘 𝑝
𝜆VaR,𝑡

−1
𝑝

(
𝜆VaR,𝑡 + 𝑝𝜆ES,𝑡

) ] , (2.24)

where 𝑘 𝑝 is a constant with the same sign as VaR𝑡 and

𝜆VaR,𝑡 ≡ −VaR𝑝

𝑡 |𝑡−1

(
1

(
𝑟PF,𝑡 ≤ VaR𝑝

𝑡 |𝑡−1

)
− 𝑝

)
, (2.25)

𝜆ES,𝑡 ≡
1
𝑝
1

(
𝑟PF,𝑡 ≤ VaR𝑝

𝑡 |𝑡−1

)
VaR𝑝

𝑡 |𝑡−1 −ES𝑝
𝑡 |𝑡−1 . (2.26)

As the second term in the model is a linear combination of the two elements of the forcing
variable, and since the forcing variable is premultiplied by a coefficient matrix, say Ã, we
can equivalently use

ÃH−1
𝑡 ∇𝑡 = A𝜆𝜆𝜆𝑡 , (2.27)

where 𝜆𝜆𝜆𝑡 ≡
[
𝜆VaR,𝑡 , 𝜆ES,𝑡

]′
. (2.28)

One-factor GAS model

As a simpler variant, Patton, Ziegel, and Chen (2019) introduce the one-factor GAS model,
where both VaR and ES are driven only by a single variable, 𝜅𝑡 ,

VaR𝑝

𝑡+1|𝑡 = 𝑎 exp(𝜅𝑡+1), (2.29)

ES𝑝
𝑡+1|𝑡 = 𝑏 exp(𝜅𝑡+1), (2.30)
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where 𝑏 < 𝑎 < 0 and

𝜅𝑡 = 𝜔 + 𝛽𝜅𝑡−1 + 𝛾
1

𝑏 exp
(
ES𝑝

𝑡−1|𝑡−2

) (
1
𝑝
1

(
𝑟PF,𝑡−1 ≤ 𝑎 exp

(
VaR𝑝

𝑡−1|𝑡−2

))
𝑟PF,𝑡−1

−𝑏 exp
(
ES𝑝

𝑡−1|𝑡−2

))
.

(2.31)

As 𝜔, 𝑎 and 𝑏 are not separably identifiable we set 𝜔 = 0.

Hybrid GAS/GARCH model

The hybrid GAS/GARCH model of Patton, Ziegel, and Chen (2019) is a direct combination
of the forcing variable suggested by a GAS structure for a one-factor model of returns,
described in Equation (2.31), with the successful GARCH model for volatility:

𝑟𝑡+1 = exp(𝜅𝑡+1) 𝜂𝑡+1, 𝜂𝑡 ∼ F𝜂(0, 1) (2.32)

where the log-volatility 𝜅𝑡 is specified as follows:

𝜅𝑡 = 𝜔 + 𝛽𝜅𝑡−1 + 𝛾
1

ES𝑝
𝑡−1|𝑡−2

(
1
𝑝
1

(
𝑟𝑡−1 ≤ VaR𝑝

𝑡−1|𝑡−2

)
𝑟𝑡−1 − ES𝑝

𝑡−1|𝑡−2

)
+ 𝛿 log|𝑟PF,𝑡−1 |.

(2.33)

As the latent variable in this model is log-volatility, the authors use the lagged log absolute
return rather than the lagged squared return, so that the units remain in line for the evolution
equation for 𝜅𝑡 .

Similar to quantile and expectile regressions, the semi-parametric approach of the
proposed GAS models eliminates the need to specify and estimate a conditional density.
While removing the possibility of a model misspecification, there might be a loss of efficiency
compared with a correctly specified density model. Unlike GARCH models, GAS models
generate a smoother time series of VaR and ES estimates. While GARCH estimates are
driven by lagged squared returns, and can thus be quite volatile, GAS model estimates only
use information from returns when the VaR is violated, and revert deterministically to the
long-run mean on other days.

2.3.3. Conditional asset-level risk models

The above models focus on dynamic risk modeling of univariate return time series. In
contrast, conditional asset-level risk analysis is based on a multivariate model that additionally
enables us to account for the dependence structure of the portfolio’s assets.
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The RiskMetrics approach

The RiskMetrics (RM) model is arguable the most simple and common approach among
finance practitioners for estimating time-varying covariance matrices. It utilizes an expo-
nentially weighted moving average filter that implicitly assumes a very tight parametric
specification by incorporating conditionality via the exponential smoothing of individual
squared returns and cross products. The estimate for the 𝑁 × 𝑁 covariance matrix at time
𝑡 + 1, Σ̂𝑡+1, is then defined by

Σ̂𝑡+1 = 𝜆Σ̂𝑡 + (1 − 𝜆)r𝑡r
′
𝑡 , (2.34)

where 𝜆 < 1 is known as the decay factor.15 The VaR and ES are then simply obtained as

VaR𝑝

𝑡+1|𝑡 =
(
w

′
𝑡Σ̂𝑡+1w𝑡

)1/2
Φ−1
𝑝 , (2.35)

ES𝑝
𝑡+1|𝑡 =

(
w

′
𝑡Σ̂𝑡+1w𝑡

)1/2 𝜙
(
Φ−1
𝑝

)
𝑝

. (2.36)

The RM model is appealing because no parameters need to be estimated, thanks to the
implicit assumption of zero mean returns, a fixed smoothing parameter and conditional
normality. At the same time, the RM approach is very restrictive, imposing the same degree
of smoothness on all elements of the covariance matrix. Moreover, the RM model tends to
underestimate VaR and ES under the normality assumption. We therefore employ a Student’s
𝑡-distribution instead.

The copula-GARCH approach

The copula-GARCH (CG) approach proposed by Jondeau and Rockinger (2006) and Patton
(2006) is based on the concept of inference from margins, that is, dependencies between the
marginal distributions are captured by a copula. In the first step, univariate GARCH(1,1)
models are fitted to the underlying return series. Assuming a return process (𝑟𝑖,𝑡)𝑖 ∈N,𝑡 ∈ Z, the
mean and variance equations are given by

𝑟𝑖,𝑡 = 𝜇𝑖 + 𝜀𝑖,𝑡 , (2.37)

𝜀𝑖,𝑡 = 𝑧𝑖,𝑡
√︃
𝜎2
𝑖,𝑡
, (2.38)

𝑧𝑖,𝑡 ∼ D𝑖(0, 1, 𝜉𝑖, 𝜈𝑖), (2.39)

𝜎2
𝑖,𝑡 = 𝜔𝑖 + 𝛼𝑖𝜀2

𝑖,𝑡−1 + 𝛽𝑖𝜎2
𝑖,𝑡−1, (2.40)

15In practice, 𝜆 is typically fixed at a preset value of 0.94 when using daily returns.
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where 𝜔𝑖 > 0, 𝛼𝑖 ≥ 0 and 𝛽𝑖 ≥ 0, 𝑖 = 1, ..., 𝑁 . Moreover, 𝑟𝑖,𝑡 are the returns of the 𝑖th
portfolio asset at time 𝑡, and D𝑖 reflects the skewed 𝑡-distribution with skewness parameter
𝜉𝑖 and shape parameter 𝜈𝑖 according to Hansen (1994).

In the second step, we use a time-varying copula to estimate the marginal distributions of
the asset returns together with the dependence structure. In particular, the joint distribution
of the 𝑁 GARCH return processes can be expressed depending on an 𝑁-dimensional copula
𝐶:

𝐹𝑡
(
r𝑡 |𝜇𝜇𝜇𝑡 , 𝜎𝜎𝜎𝑡

)
= 𝐶𝑡

(
𝐹1,𝑡(𝑟1,𝑡 |𝜇1,𝑡 , 𝜎1,𝑡), ..., 𝐹𝑁,𝑡(𝑟𝑁,𝑡 |𝜇𝑁,𝑡 , 𝜎𝑁,𝑡)|F𝑡−1

)
, (2.41)

where 𝐹1(·), ..., 𝐹𝑁(·) are the conditional marginal distributions of the return processes.
The dependence structure of the margins is assumed to follow a Student’s 𝑡-copula with
conditional correlation R𝑡 and constant shape parameter 𝜂. We opt for the Student’s 𝑡-copula
for modeling the dependence of financial assets since the normal copula cannot account for
tail dependence. The conditional density of the Student’s 𝑡-copula at time 𝑡 is given by

𝑐𝑡
(
𝑢𝑖,𝑡 , ..., 𝑢𝑁,𝑡 |R𝑡 , 𝜂

)
=
𝑓𝑡

(
𝐹−1
𝑖,𝑡

(𝑢𝑖,𝑡 |𝜂), ..., 𝐹−1
𝑖,𝑡

(𝑢𝑁,𝑡 |𝜂)|R𝑡 , 𝜂

)
𝑛∏
𝑖=1

𝑓𝑖

(
𝐹−1
𝑖,𝑡

(𝑢𝑖,𝑡 |𝜂)|𝜂
) , (2.42)

where 𝑢𝑖,𝑡 = 𝐹𝑖,𝑡(𝑟𝑖,𝑡 |𝜇𝑖,𝑡 , 𝜎𝑖,𝑡 , 𝜉𝑖, 𝜈𝑖) is the probability integral transformation of each series
by its conditional distribution 𝐹𝑖,𝑡 estimated via the first-stage GARCH process, 𝐹−1

𝑖,𝑡
(𝑢𝑖,𝑡 |𝜂)

represents the quantile transformation of the uniform margins subject to the common
shape parameter of the multivariate density, 𝑓𝑡(·|R𝑡 , 𝜂) is the multivariate density of the
Student’s 𝑡-distribution with conditional correlation R𝑡 and shape parameter 𝜂 and 𝑓𝑖(·|𝜂)
is the univariate margins of the multivariate Student’s 𝑡-distribution with common shape
parameter 𝜂. Furthermore, we allow the parameters of the conditional copula to vary with
time in a manner analogous to a GARCH model for conditional variance (e.g. Patton, 2006).
Specifically, we assume the dynamics of R𝑡 to follow an asymmetric generalized dynamic
conditional correlation (AGDCC) model according to Cappiello, Engle, and Sheppard
(2006).

Based on the copula estimates, we then generate 𝑁 sets of random pseudo-uniform
variables and transform these into corresponding realizations of the error processes by using
the quantile function of the margins. These simulated numbers are then used together with
the conditional volatility forecast of the GARCH models to derive a Monte Carlo set of
returns for each asset. By means of the portfolio’s weight vector we can then compute a
distribution of portfolio returns for 𝑡 + 1 which allows us to calculate VaR and ES forecasts.
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The copula-GARCH model has several advantages over more simplistic approaches.
The GARCH models with skewed 𝑡-distribution applied in the first stage capture the main
empirical characteristics of financial asset returns. Moreover, the use of copulas in the
second stage helps overcome the deficiency of the Pearson correlation that merely captures
linear relationships. In particular, copulas allow dependencies of portfolio assets to be
modeled in a more flexible way. Given the associated computational effort and complexity,
however, most practitioners resort to simpler methods.

2.3.4. Risk forecast combination

The forecasting literature (e.g. Timmermann, 2006) generally argues that combining fore-
casts may enhance the predictive performance relative to standalone models because of
diversification benefits, robustness against structural breaks and a reduction of the dangers of
model misspecifications. While there exist various approaches to combine VaR predictions
(see Bayer, 2018, for a summary), the literature is lacking a method that combines ES
predictions. In this section, we propose a new technique for the combination of ES (and
VaR) forecasts based on a loss function of Fissler and Ziegel (2016).

Let VaR𝑝

𝑚,𝑡+1|𝑡 and ES𝑝
𝑚,𝑡+1|𝑡 be the VaR and ES forecast for day 𝑡+1 of model𝑚 = 1, ..., 𝑀

based on the information available at 𝑡 and VaR𝑝

𝑡+1|𝑡 =
[
VaR𝑝

1,𝑡+1|𝑡 , ...,VaR𝑝

𝑀,𝑡+1|𝑡

]′
and

ES𝑝
𝑡+1|𝑡 =

[
ES𝑝1,𝑡+1|𝑡 , ...,ES𝑝

𝑀,𝑡+1|𝑡

]′
be the vectors of all forecasts. The linear combination of

the 𝑀 forecasts is then given by

VaR𝑝

comb,𝑡+1|𝑡 =
𝑀∑︁
𝑚=1

𝛽VaR
𝑚,𝑡 VaR𝑝

𝑚,𝑡+1|𝑡 =
(
VaR𝑝

𝑡+1|𝑡

)′
𝛽𝛽𝛽VaR
𝑡 , (2.43)

ES𝑝comb,𝑡+1|𝑡 =
𝑀∑︁
𝑚=1

𝛽ES
𝑚,𝑡 ES𝑝

𝑚,𝑡+1|𝑡 =
(
ES𝑝

𝑡+1|𝑡

)′
𝛽𝛽𝛽ES
𝑡 , (2.44)

where 𝛽𝛽𝛽VaR
𝑡 and 𝛽𝛽𝛽ES

𝑡 are the combination weight vectors.

Simple average

The most naive combination approach would simply average the forecasts of all standalone
models. The corresponding combination weights are given by

𝛽𝛽𝛽𝑚,𝑡 =
1
𝑀
, ∀ 𝑚 = 1, ..., 𝑀. (2.45)
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According to the mean forecasting literature (see Timmermann, 2006), this approach
is empirically successful and hard to beat by more sophisticated combination methods.
Therefore, we consider the simple average as a benchmark approach.

FZ loss forecast combination

Given that parsimonious models often perform well in stable markets, whereas highly
parameterized models show their strengths during periods of high volatility we are concerned
that the simple average combination approach fails to leverage the time-dependent benefits
satisfactorily. Therefore, we propose a new technique for the combination of ES (and VaR)
forecasts that incorporates the most recent information into the model parameters.

In order to determine the optimal combination weights, we resort to the class of loss
functions proposed by Fissler and Ziegel (2016). Similar to Patton, Ziegel, and Chen (2019),
we choose the parameters of the function class in such a way that the loss differences of
two forecasts are homogeneous of degree zero, given that VaR and ES are strictly negative.
While Patton, Ziegel, and Chen (2019) use the FZ loss function for creating standalone risk
models, we use it for the purpose of risk forecast combination. The FZ loss function is given
by

𝐿𝐹𝑍 (𝑟,VaR,ES, 𝑝) = − 1
𝑝 ES

1 (𝑟 ≤ VaR) (VaR−𝑟) +
VaR
ES

+ log(−ES) − 1. (2.46)

Fissler and Ziegel (2016) show consistency of this loss function, implying that the true VaR
and ES predictions minimize the expected loss. Equipped with a consistent loss function,
the optimal forecast combination weights consequently minimize the expected loss of the FZ
loss function,((
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(2.47)

Consistent and asymptotically normal estimators of the combination weights can be obtained
by minimizing the average FZ loss,16
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16A proof of consistency and asymptotic normality of the presented estimators is similar to that in Patton,
Ziegel, and Chen (2019).
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which can then be used to form the combined forecast

V̂aR
𝑝

comb,𝑡+1|𝑡 =
(
VaR𝑝

𝑡+1|𝑡

)′
𝛽𝛽𝛽

VaR
𝑡 , (2.49)

ÊS
𝑝

comb,𝑡+1|𝑡 =
(
ES𝑝

𝑡+1|𝑡

)′
𝛽𝛽𝛽

ES
𝑡 . (2.50)

Hence, our approach allows the combination weights to differ for VaR and ES predictions,
which is favorable as the quality of a method’s VaR and ES may differ. Following the forecast
combination literature (Timmermann, 2006; Hansen, 2008), we impose convexity on the
combination weights as this restriction typically improves upon the unconstrained estimator
in terms of predictive performance. Convex weights are non-negative and sum to unity, that
is, 0 ≤ 𝛽𝑚 ≤ 1 for 𝑚 = 1, ..., 𝑀 and ∑𝑀

𝑚=1 𝛽𝑚 = 1.17

2.4. Empirically validating risk models for tail risk protection

In this section we describe the design and the results of the empirical study to compare the
various methods for portfolio risk modeling using tail risk protection strategies.

2.4.1. Data and return synchronization

We use a global multi-asset data set, encompassing four major market risk factors: equity,
fixed income, commodities and exchange rates. In particular, we utilize the following
representative assets: Nikkei 225, EURO STOXX 50, FTSE 100, S&P 500 and MSCI EM
equity futures; JGB 10Y, Euro Bund, UK Gilt and US 10Y bond futures; total return indices
for the commodities oil, gold and copper; and JPY/USD, EUR/USD, GBP/USD spot market
foreign exchange rates. The money market investment is based on the 3-month US Treasury
Bill. We retrieve all data from Bloomberg. All asset prices are in local currency. Portfolio
returns (and associated portfolio risk figures) are computed from the perspective of a US
investor who is hedging any currency exposure. The sample spans the period from January
2, 1991 to March 31, 2017, giving rise to 6847 daily return observations for each series.

To calculate portfolio risk figures, we assume a few static strategic allocations of portfolio
weights. Alternatively, we could consider a dynamic weight structure driven by a tactical asset
allocation component, complicating the determination of whether an increase in performance

17We use an optimization procedure similar to that of Engle and Manganelli (2004). We first generate 105

vectors of parameters from a uniform random number generator such that the convex weight restriction is
fulfilled. For each of these vectors, we compute the average loss from the FZ loss function and select the 10
vectors that produce the lowest average loss as initial values for the optimization routine. Using the augmented
Lagrange multiplier method with a sequential quadratic programming interior algorithm according to Ye
(1987), we minimize the average loss for each of the 10 resulting vectors and select the vector producing the
lowest average loss as the final parameter vector.
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is due to superior risk forecasts or due to predictability of the tactical component. As
a base case we use a broadly diversified, conservative multi-asset portfolio, but we also
investigate four alternative allocations: a pure equity portfolio, a pure bond portfolio, a 30/70
equity/bond portfolio and 60/40 equity/bond portfolio. Table 2.1 reports the corresponding
allocation of portfolio weights as well as the descriptive statistics of the log returns of each
asset and portfolio: all time series exhibit the typical features of financial assets such as fat
tails and non-normality.

Table 2.1: Descriptive statistics and test portfolio allocations

Portfolio weights

Mean Med Min Max Sd Skew Kurt MA EQ BO 30/70 60/40

Individual assets

Stocks
Nikkei 225 -0.00 0.00 -14.0 18.82 1.51 -0.20 119.32 5 9.8 0 2.9 5.9
Euro STOXX 50 0.03 0.05 -9.44 11.38 1.39 -0.12 88.46 5 12.5 0 3.8 7.5
MSCI EM 0.02 0.08 -9.99 10.07 1.14 -0.52 108.25 5 15.2 0 4.6 9.1
FTSE 100 0.02 0.00 -9.70 9.58 1.13 -0.15 86.28 5 9.9 0 3.0 5.9
S&P 500 0.02 0.03 -10.4 13.20 1.13 -0.15 142.71 15 52.6 0 15.8 31.6

Bonds
JGB 10Y 0.01 0.00 -1.55 2.18 0.25 -0.28 82.85 10 0 10 7 4
Euro Bund 0.02 0.01 -1.73 1.96 0.33 -0.19 48.7 10 0 20 14 8
UK Gilt 0.01 0.00 -2.34 3.65 0.41 0.06 62.65 10 0 10 7 4
US 10Y 0.01 0.00 -2.63 3.53 0.37 -0.10 62.63 10 0 40 28 16

Commodities
Oil 0.00 0.00 -38.4 13.34 2.16 -0.95 206.1 5 0 0 0 0
Gold 0.02 0.00 -9.81 8.84 1.01 -0.17 112.25 5 0 0 0 0
Copper 0.02 0.00 -11.7 11.65 1.61 -0.19 76.55 5 0 0 0 0

Foreign exchange rates
EUR/USD -0.00 0.00 -3.38 3.93 0.62 0.04 52.18 15 0 20 14 8
GBP/USD -0.01 0.00 -7.94 5.24 0.60 -0.49 113.7 15 0 10 7 4
JPY/USD 0.00 0.00 -4.07 7.06 0.68 0.46 83.9 15 0 10 7 4

Asset portfolios

Multi-asset 0.02 0.03 -3.83 3.67 0.46 -0.27 93.07 - - - - -
Equity 0.02 0.06 -8.42 10.24 0.93 -0.32 130.9 - - - - -
Bond 0.02 0.02 -1.93 1.98 0.36 -0.12 47.99 - - - - -
30/70 0.02 0.03 -2.72 2.76 0.34 -0.15 79.18 - - - - -
60/40 0.02 0.04 -5.12 6.04 0.55 -0.24 124.77 - - - - -

3-M US T-Bill 0.01 0.01 -0.00 0.02 0.01 0.06 13.86 - - - - -

This table reports the descriptive statistics of the daily log returns of the individual assets and test portfolios over the period from
January 2, 1991 to March 31, 2017 (including 6847 observations). The following statistics are reported: mean, median (Med),
minimum (Min), maximum (Max), standard deviation (Sd), skewness (Skew) and kurtosis (Kurt). All statistics are given as percentages,
except skewness and kurtosis. In addition, we provide the static weights of the test portfolio allocations (multi-asset (MA), equity
(EQ), bond (BO), 30/70 equity/bond (30/70), 60/40 equity/bond (60/40)) as percentages in the last five columns.
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When modeling risk using international daily return data, one has to properly account
for different market closing times.18 Even worse, for some markets trading times do not
overlap at all, as is the case for the USA and Japan. Obviously, these differences will make
equity markets appear less (cor)related than they actually are. As a result, portfolio risk
estimates will overstate the diversification benefit attached to investing across these assets
(see Scholes and Williams, 1977; Lo and MacKinlay, 1990a; Burns, Engle, and Mezrich,
1998; Scherer, 2013). Ideally, daily returns can be computed for all series using the same
time-stamp. This approach, however, is hardly feasible, even when using high-frequency
data. Instead, the literature suggests synchronizing daily returns by extrapolating asset prices
for those markets that close earlier, based on information from markets that close latest.
While Burns, Engle, and Mezrich (1998) use a first-order vector moving average model with
a multivariate GARCH covariance matrix to estimate synchronized returns, Audrino and
Bühlmann (2004) employ a simple first-order vector autoregressive model (see Appendix
2.A for details on the return synchronization methodology). We follow the latter approach
due to its computational efficiency.

Based on our sample, we compare the synchronized daily returns to the original ones.
Table 2.2 shows the descriptive statistics of the original and synchronized daily returns. We
observe that differences in the mean are only marginal, whereas volatilities are slightly higher
when synchronizing. Thus, the return characteristics of the original data are maintained.

Table 2.2: Synchronized vs. original daily returns

Nikkei
225

JGB10Y Euro
Bund

UK Gilt EURO
STOXX 50

FTSE 100

Original returns
Mean -0.0035 0.0136 0.0165 0.0149 0.0305 0.0178
Standard deviation 1.5109 0.2486 0.3341 0.4098 1.3875 1.1306
First-order autocorrelation -5.3639 -3.3298 0.2096 0.9714 -2.6876 -2.1746

Synchronized returns
Mean -0.0034 0.0136 0.0165 0.0149 0.0307 0.0179
Standard deviation 1.6338 0.2561 0.3581 0.4386 1.5829 1.2916
First-order autocorrelation -13.7891 -6.314 -6.3808 -5.5118 -12.9119 -12.8367

This table reports descriptive statistics for the synchronized and original daily returns. As we anchor the
synchronization of daily returns in US markets, the US time series remain unchanged and are thus not
reported. Non-US data are forecasted to the closing time of the US market by the VAR(1). All figures are
given as percentages.

18The opening times of the markets in our sample are as follows: Japanese markets are open from 19:00(-1)
to 1:00 ET, EU/UK markets from 3:00 to 11:30 ET, and US markets open from 09:30 to 16:15 ET.
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To check the effectiveness of synchronization, we have identified the correlation matrices
of both return types (not shown). For the synchronized daily returns, the chosen VAR(1)
model is successfully re-correlating the within-asset class correlations. While equity
correlations are no longer underestimated, equity-bond correlations tend to be more negative
when using synchronized returns. Hence, the improved equity-bond diversification could
mitigate the pick-up in equity risk. However, we learn that the latter effect dominates, and
unreported results evidence an average increase of 15% in portfolio risk figures for the
conservative multi-asset portfolio.19 These findings are in line with Scholes and Williams
(1977) and Lo and MacKinlay (1990a).

2.4.2. Estimating portfolio risk

The empirical study considers one day-ahead estimation of the conditional VaR and ES at
a 1% confidence level, consistent with the portfolio rebalancing frequency of the tail risk
protection strategies considered. Like Kuester, Mittnik, and Paolella (2006) and Taylor
(2008), we use a moving window of 1000 observations to re-estimate parameters for the
various standalone risk methods on a daily basis. Similarly, forecast combination weights
are re-estimated daily using a moving window of 500 observations. Unreported results show
that the combination weights are robust to the window length. Given this decision, the
out-of-sample estimation period ranges from October 2, 1996 to March 31, 2017, consisting
of 5348 daily VaR and ES forecasts for each method (standalone and combination) and
portfolio.

Standalone risk forecasts

Figure 2.1 presents the predicted 1% VaR and associated ES figures of the standalone
risk models for the multi-asset portfolio over the whole out-of-sample period. The figures
show that the average ES was estimated at around -2%, rising to some -0.7% in the mid
2000s, and attaining extreme values around -12% during the financial crisis in late 2008.
Corresponding VaR figures are greater by construction. Like volatility, ES and VaR fluctuate
substantially over time. We further observe that simple methods like historical simulation
and Cornish-Fisher approximation produce forecasts that take some time to adjust to current
market conditions, whereas more flexible risk models are more sensitive and quicker to react
to the prevailing risk environment.

19Note that the synchronized returns are used for estimating and forecasting VaR and ES, but not for
out-of-sample evaluation. Instead, we use the original returns for assessing the statistical validity of the risk
forecasts as well as their performance in the tail risk protection strategies.
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Figure 2.1: Standalone VaR and ES forecasts over time. This figure shows the daily 1% VaR forecasts
(in black) and associated ES forecasts (in blue) of the different standalone risk models as well as the realized
returns of the multi-asset portfolio (grey dots) over the period from October 2, 1996 to March 31, 2017. VaR
violations are marked in red. At a confidence level of 1%, a total of 53 violations are expected over the model
period.

Combination weights and combination risk forecasts

To foster intuition with regard to how the FZ loss combination approach estimates the
combination weights and selects the standalone models, Figure 2.2 shows the combination
weights for ES and VaR forecasts. Figure 2.2a exhibits the time evolution of the out-of-sample
weights for the multi-asset portfolio. ES and VaR weights are not restricted to be identical,
and we indeed observe different weight patterns over the sample period. While we document
an average weight overlap of 64.1% when comparing ES and VaR combination weights
through time, we note that we still can observe periods with zero overlap. Although the
composition of the estimated weights is sensitive to the current market conditions for both
risk measures, VaR weights are slightly less volatile than ES weights. On average, this
difference translates to a daily weight change of 8.8% for the ES weights and 7.4% for the
VaR weights. In terms of weight composition, we find the copula-GARCH model to be the
most important component in the FZ loss combination approach, see Figure 2.2b giving
the average weights for all portfolios over the out-of-sample period. The average ES weight
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Figure 2.2: Forecast combination. This figure illustrates the weights and forecasts of the FZ loss combination
approach for the multi-asset portfolio. Panel (a) shows the estimated ES and VaR combination weights over the
sample period from 1996 to 2017. Panel (b) illustrates the mean of ES and VaR combination weights for all
portfolios. Panel (c) and (d) show the daily 1% VaR forecasts (in black) and associated ES forecasts (in blue)
from the FZ loss and the simple average combination approaches. Realized returns of the multi-asset portfolio
and VaR violations are marked in grey and red, respectively.

for the copula-GARCH approach ranges from 27% for the bond portfolio to 51% for the
multi-asset portfolio. Another important component is the RiskMetrics forecast, even though
it does not perform well individually (see Section 2.4.3). Given an estimation error of zero,
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the RiskMetrics model serves as a stabilizing component. On average, the ES estimation
weights for all other standalone models lie between 1% and 20%. We also see that the model
weights differ across portfolios, suggesting that a data-driven selection of the standalone
models may offer advantages compared to a simple average forecast.

In addition to the characteristics of the combination weights, Figure 2.2 also gives
the forecasts of the FZ loss (Figure 2.2c) and the simple average combination approach
(Figure 2.2d) over time. As expected, the FZ loss combination forecasts are slightly more
sensitive to the prevailing risk environment compared to the average forecast as less weight
is, on average, given to simple methods such as historical simulation and Cornish-Fisher
approximation.

2.4.3. Statistical validity of risk forecasts

To assess forecasting performance from an econometric perspective we perform various VaR
and ES tests proposed in the literature. The objective of such statistical tests is to consider
the ex ante portfolio risk forecasts from a specific model and compare them with the ex post
realized portfolio returns.

Value-at-Risk tests

Testing VaR forecasts boils down to evaluating the distribution of VaR violations. That
is, one needs to count and investigate those realized return observations that fall below
the predicted VaR level for a given estimation period. For instance, there should be 2.5
violations in a set of 250 forecasts of daily 1% VaRs per year. The test for unconditional
coverage (UC) of Kupiec (1995) assesses whether the frequency of violations is consistent
with the quantile of loss that the VaR measure is intended to reflect. However, this test
does not account for serial independence of the number of violations. In this vein, the
conditional coverage (CC) test of Christoffersen (1998) offers a remedy by jointly testing
the frequency as well as the independence of violations, assuming that VaR violations
are modeled with a first-order Markov chain. This test could reject a VaR model that
generates too many clustered violations. As the original likelihood ratio test of Christoffersen
(1998) has inferior size and power properties compared to more recent alternatives (see
Berkowitz, Christoffersen, and Pelletier, 2011), we also consider the dynamic quantile (DQ)
test of Engle and Manganelli (2004). Specifically, the authors propose a regression-based
test that checks whether VaR estimates satisfy the criteria of unbiasedeness, independent
violations and independence of the quantile estimates. To account for clustering of extremes
we further consider the duration (DU) test of Christoffersen and Pelletier (2004), which
examines the duration between violations by testing the null hypothesis that the duration
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between violations is exponentially distributed against a Weibull alternative. More recently,
Patton, Ziegel, and Chen (2019) proposed the generalized residual (GR) test. It is based
on simple regressions of standardized versions of the “generalized residuals” (as given in
Equation (2.25)), on elements of the information set available at the time the forecast was
made. As these standardized generalized residuals are conditionally mean zero under the
correct specification, forecast optimality can be assessed by testing wether all parameters in
these regressions are zero, against a two-sided alternative.

Expected Shortfall tests

The GR test is also applicable to test ES predictions, because the generalized residuals are
derived from the FZ loss function, which incorporates both VaR and ES (see Equation (2.26)).
A close cousin of the GR test is the ES regression test (ESR) of Bayer and Dimitriadis (2020)
which, in contrast, only needs ES forecasts as input parameters. It is based on a regression
framework modeling the conditional ES as a linear function, where returns are used as the
response variable and ES forecasts as the explanatory variable including an intercept term.
For correct ES forecasts, the intercept and slope parameters should be equal to zero and one,
respectively. A Wald statistic is then employed to test for these parameter values.

One of the first and most frequently used ES tests is the exceedance residual (ER) test of
McNeil and Frey (2000). This testing procedure is based on the ES residuals that exceed VaR,
𝑒𝑟𝑡 = (𝑟PF,𝑡 − ÊS𝑡)1(𝑟PF,𝑡 ≤ V̂aR𝑡), which should have zero mean under the null hypothesis
of a correctly specified risk model. Using a bootstrap hypothesis test, it is tested whether
the expected value of the exceedance residuals, E[𝑒𝑟𝑡], is zero. In addition, we consider the
conditional conditional calibration (CAL) test of Nolde and Ziegel (2017) for testing ES.
This approach is based on a Wald-type test statistic that uses moment functions of VaR and
ES.20

Empirical evidence

Table 2.3 presents the 𝑝-values from the above VaR and ES tests. Entries greater than 0.10
indicate no evidence against optimality at the 10% significance level. Our main findings
are as follows. First, we find the simple methods, including HS, CFA and RiskMetrics to
struggle in most of the tests. Although the HS and CFA methods show a conclusive number
of violations over whole the sample period (close to the expected number of 53 violations)
and therefore pass the UC test, they fail the remainder of VaR tests because the violations
are not occurring independently, but rather in clusters. Given that a correctly specified VaR

20See Bayer and Dimitriadis (2020) for a rigorous discussion of most of the ES tests in use.
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model is the basis of estimating ES, the subsequent ES tests may be considered useless. The
RiskMetrics approach fails most tests due to the large deviation from the expected number
of violations (72 realized violations).

Table 2.3: VaR and ES backtesting

VaR tests ES tests

Viol FZ Tick UC CC DQ DU GR ER CAL ESR GR

Standalone models
Historical Simulation 57 60.11 1.91 0.63 0.00 0.00 0.00 0.00 0.40 0.44 0.10 0.02
Cornish-Fisher-Approximation 44 58.15 1.87 0.18 0.00 0.00 0.00 0.00 0.07 0.01 0.21 0.00
RiskMetrics 72 38.84 1.51 0.02 0.01 0.00 0.83 0.01 0.12 0.00 0.01 0.01
CARE 58 46.67 1.58 0.54 0.75 0.81 0.03 0.00 0.03 0.67 0.02 0.00
Extreme Value Theory 44 36.25 1.51 0.18 0.28 0.08 0.24 0.27 0.46 0.35 0.49 0.25
Copula-GARCH 71 34.79 1.48 0.02 0.05 0.00 0.15 0.16 0.38 0.11 0.13 0.14
One-Factor-GAS 54 41.83 1.57 0.94 0.57 0.03 0.30 0.00 0.88 0.99 0.29 0.00
Two-Factor-GAS 64 46.66 1.62 0.16 0.05 0.00 0.02 0.25 0.45 0.28 0.06 0.18
Hybrid-GAS/GARCH 55 40.90 1.55 0.83 0.85 0.40 0.79 0.03 0.36 0.93 0.15 0.10

Combination models
Average 49 38.96 1.54 0.53 0.64 0.00 0.01 0.10 0.89 0.68 0.32 0.13
FZ loss 56 28.11 1.41 0.73 0.83 0.42 0.83 0.94 0.83 0.80 0.90 0.98

This table reports the results of VaR and ES tests for evaluating 1% VaR and 1% ES predictions based
on the 11 forecasting models applied to the multi-asset portfolio over the out-of-sample period from
October 2, 1996 to March 31, 2017. For testing VaR we include the unconditional coverage (UC), the
conditional coverage (CC), the dynamic quantile (DQ) and the duration (DU) test. For testing ES we resort
to the exceedance residual (ER), the conditional calibration (CAL) and the ES regression (ESR) test. The
generalized residual (GR) test allows us to test both VaR and ES. We report 𝑝-values in bold if greater than
0.10, indicating no evidence against optimality at the 10% significance level. Values between 0.05 and 0.10
are in italics. We further report the number of realized VaR violations (second column) and the average
loss using the FZ loss function (third column) and the tick loss function (fourth column), the latter two
being scaled by 100. The lowest average loss in each column is highlighted in bold, the second-lowest in
italics. The expected number of violations is 53 over the whole out-of-sample period.

Second, we find the more sophisticated standalone models (except for the CARE approach)
to pass most of the VaR and ES tests. Notably, none of the models passes all tests at the 10%
significance level. Among the combination models, we provide evidence that the simple
average approach delivers decent results, passing most of the tests. The newly proposed FZ
loss approach is, however, even more convincing: it is the only model clearly passing all
VaR and ES tests.

In addition to the number of violations and the 𝑝-values from the various tests, we show
the average out-of-sample losses, based on the FZ loss function from Equation (2.46) and the
piecewise-linear or “tick” loss function (only appropriate for VaR forecast evaluation), see
the third and fourth column of Table 2.3. The FZ loss forecast combination approach is the
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preferred model, exhibiting the lowest value for both loss function. As expected, the HS and
CFA models are the worst models. While average losses are useful to eyeball out-of-sample
forecast performance, we still need to investigate whether the gains are statistically significant.
Table 2.4 presents 𝑡-statistics of modified Diebold-Mariano (DM) tests on the loss differences
using the FZ loss function, according to Diebold and Mariano (1995), Harvey, Leybourne,
and Newbold (1997), and Patton, Ziegel, and Chen (2019).21 The tests are conducted and
repeated as “row model minus column model”, such that a positive number indicates that the
column model outperforms the row model. All entries for the FZ loss forecast combination
approach are positive, showing that this model outperforms all competing models. Also, this
outperformance is highly significant for all comparisons, with DM 𝑡-statistics between 2.91
and 6.65. The second and third best model according to the DM tests are the copula-GARCH
model and the EVT approach. The two are not statistically different from each other and are
dominated by the FZ loss combination approach only. In a nutshell, we thus find that the FZ
loss forecast combination approach dominates both the more sophisticated standalone risk
models and the simple mean combination approach.22

Table 2.4: Diebold-Mariano tests

HS CFA RM CARE EVT CG 1F-GAS 2F-GAS Hyb-GAS Average FZ

HS 0.33 1.91 1.32 2.19 2.26 1.83 1.37 1.98 2.12 2.91
CFA -0.33 2.94 1.97 3.62 3.69 3.21 2.14 3.47 3.95 5.01
RM -1.91 -2.94 -1.72 1.25 1.40 -0.95 -2.00 -0.69 -0.04 3.74
CARE -1.32 -1.97 1.72 2.64 2.95 1.39 0.00 1.68 2.32 5.08
EVT -2.19 -3.62 -1.25 -2.64 0.61 -2.37 -3.00 -1.93 -1.49 5.09
CG -2.26 -3.69 -1.40 -2.95 -0.61 -2.65 -3.44 -2.34 -1.70 3.20
1F-GAS -1.83 -3.21 0.95 -1.39 2.37 2.65 -1.86 0.63 1.94 6.65
2F-GAS -1.37 -2.14 2.00 0.00 3.00 3.44 1.86 2.48 3.14 5.84
Hyb-GAS -1.98 -3.47 0.69 -1.68 1.93 2.34 -0.63 -2.48 1.19 5.51

Average -2.12 -3.95 0.04 -2.32 1.49 1.70 -1.94 -3.14 -1.19 6.48
FZ -2.91 -5.01 -3.74 -5.08 -5.09 -3.20 -6.65 -5.84 -5.51 -6.48

This table reports 𝑡-statistics from modified Diebold–Mariano tests according to Harvey, Leybourne, and Newbold (1997) comparing
the average losses using the FZ loss function over the out-of-sample period from October 2, 1996 to March 31, 2017 for the 11 risk
models based on the multi-asset portfolio. The first nine rows correspond to the standalone models: historical simulation (HS),
RiskMetrics (RM), Cornish-Fisher approximation (CFA), conditional autoregressive expectile model (CARE), extreme value theory
(EVT), copula-GARCH (CG), one-factor GAS (1F-GAS), two-factor GAS (2F-GAS) and hybrid-GAS/GARCH (Hyb-GAS) model.
The last two rows correspond to the combination models: the simple average forecast (Average) and the proposed FZ loss approach
(FZ). A positive value indicates that the row model’s average loss is higher than that for the column model. Values greater than 1.96 in
absolute value indicate that the average loss difference is significantly different from zero at the 95% confidence level. Values along
the main diagonal are all identically zero and are omitted for interpretability.

21The outcomes of the different VaR and ES tests represent good examples of a problem highlighted in Nolde
and Ziegel (2017). All of the more sophisticated models pass most of the goodness-of-fit tests, complicating
the discussion of their relative performance. The comparative Diebold-Mariano tests are therefore an important
element of the overall testing framework.

22Note that the testing results and rankings for the other portfolios are qualitatively similar to those for the
multi-asset portfolio discussed here.
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2.4.4. The economic relevance of risk forecasting for tail risk protection

We consider two steps when evaluating the various risk models in the tail risk protection
framework. First, we analyze the historical path of each strategy. That is, assessing how each
strategy would have performed when implemented over the whole out-of-sample period. For
this, we assume an investment horizon of one calendar year—a typical choice of institutional
and private investors alike (see Benartzi and Thaler, 1995). For the DPPI strategy, the floor
is then adjusted to the current portfolio value at the start of each year to initialize the cushion.
This procedure helps to mitigate the lock-in effect.

Analyzing the historical path suffers from path dependency; therefore, we additionally
conduct a historical block-bootstrap analysis23 in the second step. Following Annaert,
Van Osselaer, and Verstraete (2009), Bertrand and Prigent (2011), Dichtl and Drobetz (2011)
and Dichtl, Drobetz, and Wambach (2017), we draw blocks of 250 subsequent daily portfolio
and risk-free returns on a rolling window basis and implement the tail risk protection
strategies in each draw. Thus, we obtain 5597 overlapping yearly returns as a basis for the
comparison of our methods. Intuitively, this historical block-bootstrap approach enables
us to assess a strategy’s robustness with respect to alternative entry dates. Moreover, the
available data is used in the most efficient way while preserving all dependency effects in the
series, such as autocorrelation and conditional heteroskedasticity (see Dichtl and Drobetz,
2011).

As the objective of tail risk protection strategies is twofold—providing downside
protection while still enjoying the upside potential of the risky portfolio—the performance
should be evaluated accordingly. Alongside standard measures like the Sharpe ratio and
maximum drawdown we therefore employ specific downside risk measures commonly used
in the portfolio insurance literature such as the Calmar, Sortino and Omega ratios (see
Bertrand and Prigent, 2011).24

We implement the tail risk protection strategies without short sales or leverage and
assume round-trip transaction costs of 10 basis points. To avoid portfolio shifts triggered by
rather small market movements, we also apply a trading filter of 2%, acting only on exposure
changes in excess of 2% (cf. Dichtl, Drobetz, and Wambach, 2017).

23This method is sometimes referred to as historical simulation, see Dichtl and Drobetz (2011).
24While the Calmar ratio is defined as the ratio of annualized return over the absolute value of the maximum

drawdown, the Sortino ratio is the difference between mean return and minimum acceptable return (here, zero)
divided by downside deviation (which measures the variability of underperformance below a minimum target
rate). The Omega ratio is calculated by dividing the upper partial moment of degree one by the lower partial
moment of degree one. Lower (upper) partial moments indicate the return potential below (above) a predefined
threshold return. See Bertrand and Prigent (2011) for details on these performance risk measures.
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Tail risk protection via risk targeting

Figure 2.3 illustrates the performance of the ES targeting strategy for the historical path and
the historical block-bootstrap, based on the 1% ES of the FZ loss combination approach.25

The underlying is the multi-asset portfolio and we target an ES level of 1.5%, which is a
reasonable assumption given the conservative underlying. Figure 2.3a shows the evolution of
the protected portfolio, the underlying multi-asset strategy and a money market investment
over the out-of-sample period from 1994 to 2017. We observe a decrease in exposure of
the ES targeting strategy during the financial market crisis in 2008, thus avoiding the huge
drawdowns of the underlying but also reducing upside participation at the end of the sample
period.

Figure 2.3b shows the distribution of simulated yearly returns of the protected portfolio
in comparison with a pure buy-and-hold portfolio investment strategy. We see that the
distribution of the ES targeting strategy is shifted to the right, thus reducing the mass in the
left tail. However, this reduction comes at the cost of some return potential in the upper right
tail.

Table 2.5 complements Figure 2.3 with the estimation results of the ES targeting strategy
based on all different 1% ES forecasts for the historical path and the historical block-bootstrap.
Panel A reports the results for the historical path. We find a similar size of risk-adjusted
returns (cf. Sharpe ratio), but lower maximum drawdowns and thus higher Calmar ratios
for all risk methods compared to the underlying. These figures confirm the ability of
the ES targeting strategy to reduce downside risk. Comparing across risk models, we
observe the best risk-adjusted performance (measured in Sharpe ratio) and downside risk
measures (measured in Calmar ratio) for the copula-GARCH (CG), the hybrid GAS/GARCH
(Hyb-GAS) and the FZ loss approach (FZ). Thus, our results indicate that the ES targeting
strategy is more profitable when using these more flexible methods. This finding is confirmed
by the historical block-bootstrap analysis shown in Panel B. We observe higher Omega ratios
for CG, Hyb-GAS and FZ (5.22, 5.07 and 5.25); comparing these figures to 4.45 for the HS
method, for example.26 Also in terms of Sharpe and Sortino ratios, these three approaches
outperform all other risk models.

As the results of the ES targeting strategy may be sensitive to the choice of portfolio
allocation and risk target, we also investigate the strategy using different underlying portfolios

25Note that volatility or VaR targeting strategies deliver similar results. To be consistent with the DPPI
strategy that is based on ES we only report the results for the ES targeting strategy.

26Note that we rely on the Omega ratio rather than the mean of the yearly Calmar ratios in the historical
block-bootstrap analysis. While the Calmar ratio is based on daily returns (and thus needs to be transformed
via the mean), the Omega ratio is usually calculated for longer-horizon returns such as yearly returns and is
therefore more appropriate in the historical block-bootstrap analysis (see Bertrand and Prigent, 2011; Dichtl,
Drobetz, and Wambach, 2017).



Chapter 2. Estimating Portfolio Risk for Tail Risk Protection Strategies 80

100

200

300

400

0.00

0.25

0.50

0.75

1.00

1998 2001 2004 2007 2010 2013 2016

P
or

tfo
lio

 v
al

ue E
xposure

Risk targeting Underlying Money market

(a) Historical path

0.00

0.02

0.04

−20 0 20

Return (in %)

Risk targeting

Buy−and−hold

(b) Historical block-bootstrap

Figure 2.3: Historical path and historical block-bootstrap of risk targeting. This chart illustrates the
performance of the ES targeting strategy with multi-asset underlying portfolio (35% equities, 40% fixed
income, 15% commodities, 45% currencies). Panel (a) shows the historical path of the protected portfolio
(red line) over the sample period 1996–2017. Exposure is calculated based on the 1% ES of the FZ loss
combination approach. The target level is a 1.5% ES. For comparison, we include the performance of the
underlying multi-asset portfolio (blue line) and a money market investment (black line). Panel (b) shows the
distribution of simulated yearly returns of the protected portfolio (red shading) and that of a buy-and-hold
portfolio invested in the simulated multi-asset underlying (blue shading).

(a pure equity, a pure bond, a 30/70 equity/bond and a 60/40 equity/bond portfolio in addition
to the multi-asset portfolio) at various ES target levels (1%, 1.25%, 1.5%, 1.75%, 2%).
Table 2.6 reports the corresponding results. Assuming appropriate portfolio-specific ES
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Table 2.5: Risk targeting for multi-asset portfolio

Method Return SD Sharpe MDD Calmar Sortino Omega Part TO ES

Panel A: Historical path

Underlying portfolio 6.36 7.73 0.55 -31.80 0.20 0.07 1.16 100 0 -1.86
Money market 2.13 0.17 0.00 0.00 - - - 0 0 0.00
Historical Simulation 5.50 6.33 0.53 -25.82 0.21 0.08 1.16 87.41 0.04 -1.47
Cornish-Fisher 5.59 6.24 0.55 -25.58 0.22 0.08 1.17 86.78 0.05 -1.43
RiskMetrics 5.31 6.13 0.52 -19.68 0.27 0.08 1.15 90.34 0.81 -1.29
CARE 5.61 6.46 0.54 -21.80 0.26 0.08 1.16 92.36 2.79 -1.34
Extreme Value Theory 5.54 6.34 0.54 -21.87 0.25 0.08 1.16 92.05 1.01 -1.34
Copula-GARCH 5.96 6.64 0.58 -21.63 0.28 0.08 1.16 95.67 0.75 -1.36
One-Factor-GAS 5.67 6.44 0.55 -21.21 0.27 0.08 1.16 92.44 1.47 -1.34
Two-Factor-GAS 5.30 6.41 0.49 -24.23 0.22 0.07 1.15 91.81 2.18 -1.38
Hybrid-GAS/GARCH 5.79 6.43 0.57 -20.96 0.28 0.08 1.16 93.24 1.36 -1.34
Average 5.64 6.32 0.55 -22.00 0.26 0.08 1.16 91.82 0.65 -1.33
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FZ loss 5.92 6.60 0.57 -21.39 0.28 0.08 1.16 95.30 0.85 -1.35

Panel B: Historical block-bootstrap

Underlying portfolio 6.15 9.41 0.43 -7.49 1.51 1.23 4.81 100 0 -28.56
Money market 2.10 2.07 0.00 0.00 - - - 0 0 0.02
Historical Simulation 5.27 8.63 0.37 -6.32 1.50 1.15 4.45 86.78 0.37 -24.04
Cornish-Fisher 5.36 8.56 0.38 -6.24 1.52 1.18 4.62 86.15 0.37 -23.97
RiskMetrics 5.08 8.02 0.37 -6.36 1.39 1.39 4.59 89.92 1.17 -17.36
CARE 5.43 8.29 0.40 -6.58 1.38 1.47 4.86 92.24 3.12 -18.82
Extreme Value Theory 5.32 8.23 0.39 -6.54 1.40 1.40 4.69 91.82 1.38 -19.28
Copula-GARCH 5.75 8.23 0.44 -6.68 1.43 1.56 5.22 95.48 1.13 -18.71
One-Factor-GAS 5.45 8.30 0.40 -6.49 1.44 1.43 4.89 92.13 1.86 -19.18
Two-Factor-GAS 5.08 8.47 0.35 -6.73 1.40 1.21 4.33 91.54 2.54 -22.72
Hybrid-GAS/GARCH 5.58 8.20 0.42 -6.46 1.47 1.51 5.07 92.94 1.75 -18.43
Average 5.42 8.22 0.40 -6.45 1.44 1.41 4.87 91.47 1.01 -19.63
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FZ loss 5.71 8.17 0.44 -6.65 1.44 1.59 5.25 95.11 1.24 -18.41

This table reports the backtesting results of the risk targeting strategy based on different 1% ES forecasts for the historical path (Panel
A) and the historical block-bootstrap (Panel B) over the sample period 1996–2017. For comparison, we include the performance of the
underlying multi-asset portfolio and the money market investment. We target an ES of 1.5% over the whole out-of-sample period. We
report the annualized mean return (Return), annualized standard deviation (SD), Sharpe ratio (SR), maximum drawdown (MDD),
Calmar ratio, Sortino ratio, Omega ratio, participation in the risky multi-asset portfolio (Part), turnover (TO) and the 1% ES. Return,
Sd, MDD, Part, TO and ES are given as percentages. For the historical path, the performance measures are calculated using the daily
returns resulting from the strategy. For the historical block-bootstrap, the performance measures are based on the simulated yearly
returns, except for MDD, Calmar ratio and participation. Those are based on the daily risky asset exposure of the corresponding draw
and show the yearly mean of the specific measure.

target levels,27 most portfolios benefit from the more flexible methods showing higher Calmar
ratios (historical path; see Panel A) and Omega ratios (historical block-bootstrap; see Panel
B), respectively. The same holds true for the robustness checks with respect to the risk target
level. For most levels and for both analyses, historical path and historical block-bootstrap,
we find superior performance of the sophisticated models (such as the FZ loss approach) in
terms of Calmar and Omega ratios.

27We choose the following portfolio-specific ES target levels: 1.5% for the multi-asset portfolio, 4% for the
pure equity portfolio, 1.5% for the pure bond portfolio, 1.5% for the 30/70 equity/bond portfolio and 2.5% for
the 60/40 equity/bond portfolio.
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Table 2.6: Risk targeting: Various portfolios and target levels

Portfolios Target levels

Multi-Asset Equity Bond 30-70 60-40 1% 1.25% 1.5% 1.75% 2%

Panel A: Historical path (Calmar ratio)

Historical Simulation 0.21 0.20 0.58 0.32 0.19 0.25 0.23 0.21 0.20 0.20
Cornish-Fisher 0.22 0.20 0.57 0.35 0.20 0.25 0.23 0.22 0.21 0.21
RiskMetrics 0.27 0.21 0.66 0.36 0.22 0.30 0.28 0.27 0.27 0.27
CARE 0.26 0.21 0.64 0.16 0.19 0.28 0.26 0.26 0.25 0.25
Extreme Value Theory 0.25 0.20 0.64 0.33 0.23 0.28 0.26 0.25 0.25 0.25
Copula-GARCH 0.28 0.20 0.64 0.37 0.23 0.31 0.29 0.28 0.27 0.25
One-Factor-GAS 0.27 0.20 0.64 0.35 0.27 0.30 0.27 0.27 0.26 0.26
Two-Factor-GAS 0.22 0.21 0.65 0.37 0.23 0.23 0.21 0.22 0.22 0.21
Hybrid-GAS/GARCH 0.28 0.21 0.60 0.42 0.24 0.30 0.27 0.28 0.28 0.27
Average 0.26 0.21 0.64 0.36 0.24 0.30 0.27 0.26 0.26 0.25
FZ loss 0.28 0.20 0.64 0.36 0.23 0.33 0.29 0.28 0.27 0.25

Panel B: Historical block-bootstrap (Omega ratio)

Historical Simulation 4.45 2.13 25.29 12.04 3.86 5.62 4.88 4.45 4.29 4.33
Cornish-Fisher 4.62 2.21 24.65 12.05 4.00 5.80 5.05 4.62 4.42 4.56
RiskMetrics 4.59 2.47 24.43 12.17 4.74 4.77 4.33 4.59 5.15 5.32
CARE 4.86 2.44 20.28 3.79 3.82 5.28 4.75 4.86 5.10 5.38
Extreme Value Theory 4.69 2.27 23.70 11.57 4.31 5.15 4.70 4.69 4.98 5.28
Copula-GARCH 5.22 2.31 24.96 14.41 4.49 4.95 4.75 5.22 5.39 5.36
One-Factor-GAS 4.89 2.45 21.81 12.94 5.22 5.49 4.88 4.89 5.18 5.25
Two-Factor-GAS 4.33 2.34 21.24 12.60 4.65 4.38 4.04 4.33 4.58 4.67
Hybrid-GAS/GARCH 5.07 2.30 22.42 17.33 4.70 5.16 4.64 5.07 5.40 5.49
Average 4.87 2.32 25.53 12.95 4.76 5.84 4.94 4.87 5.18 5.28
FZ loss 5.25 2.39 23.86 13.06 4.36 5.74 5.02 5.25 5.49 5.46

This table reports the backtesting results of the risk targeting strategy based on different risk forecasts for the historical path and the
historical block-bootstrap over the sample period 1996–2017 using various portfolios and various target levels. To benchmark the
results of the ES targeting strategy based on the multi-asset portfolio we estimate the ES targeting strategy also for four different test
portfolio allocations. We choose a pure equity portfolio (4% ES target), a pure bond portfolio (1.5% ES target), a 30/70 equity/bond
portfolio (1.5% ES target) and a 60/40 equity/bond portfolio (2.5% ES target) as underlyings for the ES targeting strategy. Moreover,
we check the robustness of the multi-asset results with respect to the chosen ES target level (1%, 1.25%, 1.5%, 1.75% and 2%). We
base our comparison on the Calmar ratio for the historical path and on the Omega ratio for the historical block-bootstrap.

Tail risk protection via DPPI

While the ES targeting strategy is able to mitigate downside risk to some extent, it falls short
in clearly reducing maximum drawdown. A stricter way to limit downside risk is the DPPI
strategy. Figure 2.4a illustrates how the mechanism of a DPPI strategy generally works.
The chart shows the performance of the conservative multi-asset portfolio using the DPPI
strategy in relation to the floor over time. The investment exposure is mainly driven by
two components: the floor and the multiplier. If the portfolio value of the underlying risky
investment approaches the floor from above, that is, the cushion shrinks, the investment
exposure is reduced by shifting into the risk-free asset. Similarly, the exposure is reduced if
risk estimates predict too high (overnight) risk, that is, the multiplier decreases, given that
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Figure 2.4: Historical path and historical block-bootstrap of DPPI. This chart illustrates the performance
of the DPPI strategy with multi-asset underlying portfolio (35% equities, 40% fixed income, 15% commodities,
45% currencies). Panel (a) shows the historical path of the protected portfolio (red line) in relation to the floor
(green line) over the sample period from 1996–2017. Exposure is calculated based on the 1% ES of the FZ
loss combination approach. The floor level of the DPPI strategy is 95%. For comparison, we include the
performance of the underlying multi-asset portfolio (blue line) and a money market investment (black line).
Panel (b) shows the distribution of simulated yearly returns of the protected portfolio (red shading) and that of
a buy-and-hold portfolio invested in the simulated multi-asset underlying (blue shading).

the distance to the floor is not excessive. In this example, the conditional multiplier is based
on the 1% ES of the FZ loss combination approach.28

28In order to reflect the preferences of risk-averse investors, we follow Soupé, Heckel, and De Carvalho
(2014) and scale the risk forecast by a term consisting of an investor’s risk aversion parameter and the expected
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Examining the whole sample period, the DPPI strategy did indeed prevent severe
drawdowns. With the onset of the global financial crisis, investment exposure drops to zero,
so that the portfolio value at the end of 2008 is equal to the floor. Even in the subsequent
V-shaped return pattern (sudden decline followed by a rapid recovery) in early 2009—a
major impediment for portfolio insurance—the DPPI portfolio does not end up in a “cash
lock”. It partly participates in the subsequent recovery. On the whole, the DPPI portfolio
has an average investment exposure of approximately 60% to 90%, depending on the chosen
risk method, and delivers slightly lower returns compared to the pure multi-asset portfolio
(cf. Table 2.7). However, the risk-adjusted results are clearly in favor of the DPPI portfolio.
This relative advantage remains when considering downside risk measures. The lower
maximum drawdown of the DPPI portfolio evidences that downside protection is effective,
irrespective of the choice of risk method. Comparing the performance of the DPPI portfolio
across risk models yields less clear-cut results. Panel A of Table 2.7 shows the corresponding
results. In terms of returns, we observe a 76bp difference between the best-performing
risk model, the copula-GARCH model, and the weakest model, the two-factor GAS model.
However, in terms of risk-adjusted returns, this spread is diminished, resulting in marginal
differences across models. In particular, the Sharpe ratios range from 0.53 to 0.63. The same
conclusions can be drawn in terms of maximum drawdown. Evaluating the risk models
on the basis of the Calmar, Sortino and Omega ratios shows only marginal differences as
well. The respective ranges are from 0.34 to 0.42 (Calmar), around 0.09 (Sortino), and
from 1.17 to 1.19 (Omega) and suggest that even rather naive approaches did not fail to
provide downside protection in the context of DPPI. This finding can be rationalized as
follows. In general, few allocation changes are necessary to protect from downside risks if
the DPPI strategy is reasonably calibrated. In particular, the investment exposure is reduced
when approaching the floor, irrespective of the underlying risk forecast. This embedded
line of defense is most likely preventing less accurate risk forecasts from impeding overall
performance. As a result, any DPPI strategy dominates the underlying risky portfolio when
evaluating Calmar, Sortino and Omega ratios.

Similar to several studies (Bertrand and Prigent, 2002; Ben Ameur and Prigent, 2007;
Hamidi, Jurczenko, and Maillet, 2009; Ben Ameur and Prigent, 2014; Hamidi, Maillet, and
Prigent, 2014), we also benchmark the DPPI performance with multipliers based on the
different risk models against the CPPI performance based on a static unconditional multiplier.
In particular, the latter is calculated as the maximum loss of the underlying over the whole
sample period, resulting in a multiplier of 8. In terms of downside measures, the CPPI

Sharpe ratio given a constant relative risk aversion utility function of the investor. Specifically, assuming a
risk-averse investor, we set the risk aversion parameter to 0.15 and the expected Sharpe ratio to 0.6.
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Table 2.7: DPPI for multi-asset portfolio

Method Return SD Sharpe MDD Calmar Sortino Omega Part TO ES

Panel A: Historical path

Underlying portfolio 6.36 7.73 0.55 -31.80 0.20 0.07 1.16 100 0 -1.86
Money market 2.13 0.17 0.00 0.00 - - - 0 0 0.00
CPPI (m=8) 4.64 4.23 0.59 -9.92 0.47 0.10 1.21 58.91 0.94 -0.93
Historical Simulation 5.80 5.83 0.63 -13.91 0.42 0.09 1.19 83.46 0.88 -1.25
Cornish-Fisher 5.83 5.88 0.63 -14.27 0.41 0.09 1.19 84.49 0.96 -1.27
RiskMetrics 5.94 6.09 0.62 -14.66 0.41 0.09 1.18 87.46 0.87 -1.33
CARE 5.62 6.13 0.57 -16.48 0.34 0.08 1.17 86.68 1.96 -1.34
Extreme Value Theory 5.86 6.14 0.61 -14.18 0.41 0.09 1.18 87.74 0.90 -1.33
Copula-GARCH 6.06 6.25 0.63 -14.68 0.41 0.09 1.18 89.05 0.89 -1.36
One-Factor-GAS 5.92 6.10 0.62 -14.25 0.42 0.09 1.18 86.79 1.23 -1.32
Two-Factor-GAS 5.30 5.97 0.53 -14.17 0.37 0.08 1.17 85.16 1.43 -1.31
Hybrid-GAS/GARCH 5.94 6.15 0.62 -14.53 0.41 0.09 1.18 87.70 1.15 -1.33
Average 5.88 6.08 0.62 -14.25 0.41 0.09 1.18 86.89 1.02 -1.31

D
PP

I

FZ loss 6.04 6.22 0.63 -14.60 0.41 0.09 1.18 88.79 0.92 -1.35

Panel B: Historical block-bootstrap

Underlying portfolio 6.15 9.41 0.43 -7.49 1.51 1.23 4.81 100 0 -28.56
Money market 2.10 2.07 0.00 0.00 - - - 0 0 0.02
CPPI (m=8) 5.17 6.84 0.45 -4.54 1.30 2.86 8.16 70.57 1.16 -7.87
Historical Simulation 5.87 8.05 0.47 -5.77 1.38 2.23 5.78 88.37 0.93 -9.03
Cornish-Fisher 5.91 8.07 0.47 -5.80 1.39 2.25 5.79 88.58 0.93 -9.07
RiskMetrics 5.78 8.06 0.46 -5.82 1.37 2.15 5.49 88.83 0.97 -8.30
CARE 5.72 8.12 0.45 -5.87 1.36 2.10 5.33 89.01 1.56 -8.40
Extreme Value Theory 5.79 8.04 0.46 -5.84 1.37 2.18 5.57 89.07 0.95 -8.34
Copula-GARCH 5.87 8.12 0.46 -5.91 1.38 2.14 5.47 89.71 0.95 -8.43
One-Factor-GAS 5.90 8.09 0.47 -5.80 1.39 2.23 5.71 89.54 1.11 -8.43
Two-Factor-GAS 5.52 8.10 0.42 -5.87 1.33 2.05 5.14 88.26 1.35 -8.43
Hybrid-GAS/GARCH 5.82 8.09 0.46 -5.85 1.38 2.18 5.53 89.34 1.11 -8.47
Average 5.86 8.04 0.47 -5.82 1.38 2.22 5.68 89.25 1.00 -8.47

D
PP

I

FZ loss 5.85 8.11 0.46 -5.89 1.38 2.17 5.51 89.62 0.99 -8.40

This table reports the backtesting results of the multi-asset DPPI strategy with conditional multipliers based on different 1% ES
forecasts for the historical path (Panel A) and the historical block-bootstrap (Panel B) over the sample period 1996–2017. For
comparison, we include a static multiplier (CPPI) based on the maximum portfolio loss (resulting in 𝑚 = 8) as well as the performance
of the underlying multi-asset portfolio and the money market investment. In each calendar year, a floor of 95% of the initial portfolio
value is installed. We report the annualized mean return (Return), annualized standard deviation (SD), Sharpe ratio (SR), maximum
drawdown (MDD), Calmar ratio, Sortino ratio, Omega ratio, participation in the risky multi-asset portfolio (Part), turnover (TO)
and the 1% ES. Return, Sd, MDD, Part, TO and ES are given as percentages. For the historical path, the performance measures are
calculated using the daily returns resulting from the strategy. For the historical block-bootstrap, the performance measures are based
on the simulated yearly returns, except for MDD, Calmar ratio and participation, which are based on the daily risky asset exposure of
the corresponding draw and show the yearly mean of the specific measure.

shows slightly better results than the competing DPPI strategies (Calmar ratio of 0.47 versus
approximately 0.41) owing to a rather defensive investment exposure (approximately 60%).
As a result, there is a severe performance drag relative to the DPPI strategies: the static
multiplier underperforms in terms of mean return (4.6% versus approximately 6.0%). In
turn, the CPPI strategy embeds a severely higher insurance premium compared to the DPPI
strategy which is unfavorable from an investor’s perspective.

The analysis of the historical block-bootstrap confirms these findings. Figure 2.4b shows
the distribution of the simulated yearly returns of the DPPI strategy. For comparison, we
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also include the return distribution of a pure buy-and-hold portfolio investment strategy.
The chart clearly highlights the effect of portfolio insurance. The left tail of the return
distribution is shifted towards the floor level such that downside risk is reduced, albeit at
the expense of some return potential in the right tail. Panel B in Table 2.7 reports the
corresponding performance statistics. Compared to the historical path, we obtain slightly
different results. Concerning the performance of the underlying, Sortino and Omega ratios
increase substantially for all strategies. This finding can be explained by the fact that the
massive drawdown year 2008 loses weight when performing the historical block-bootstrap.
In other words, the crisis year 2008 is “averaged out” to some extent. Again, we detect only
marginal differences across risk models. In essence, the results support the conclusion drawn
from the historical path analysis. DPPI strategies building on sophisticated risk models do
a good job in protecting investors from downside risk. Given that the mechanics of the
portfolio insurance strategy automatically reduce investment exposure when approaching
the protection level, a less sophisticated risk forecast is mainly benefiting from this second
line of defense.

Again, we provide robustness checks with respect to the choice of portfolio allocation and
floor level. We use the same portfolios as in the robustness check of the ES targeting strategy
and employ the following floor levels: 93%, 94%, 95%, 96% and 97%. The corresponding
results are shown in Table 2.8. Assuming appropriate portfolio-specifc floor levels,29 we
find no significant differences across the risk models for most portfolios when analyzing
the historical path (Panel A). Only for the bond and the 30/70 equity/bond portfolio we do
document an outperformance of the more flexible methods, such as the copula-GARCH
and the FZ loss approach (in terms of Calmar ratio). Conversely, we cannot observe a clear
pattern which risk method dominates for the historical block-bootstrap analysis (Panel B).
Analyzing robustness with respect to the floor level delivers similar results. Notably, we
observe that the less sophisticated HS and CFA risk models are superior for higher floor
levels. This finding can be explained by the fact that the DPPI strategy hardly acts on the risk
forecasts for tighter floor levels and thus favors more conservative methods. Overall, these
robustness checks confirm our findings for the DPPI strategy for the multi-asset portfolio.

29Here, we choose the following portfolio-specific floor levels: 95% for the multi-asset portfolio, 80% for
the pure equity portfolio, 95% for the pure bond portfolio, 95% for the 30/70 equity/bond portfolio and 90%
for the 60/40 equity/bond portfolio.



Chapter 2. Estimating Portfolio Risk for Tail Risk Protection Strategies 87

Table 2.8: DPPI: Various portfolios and floors

Portfolios Floors

Multi-Asset Equity Bond 30-70 60-40 93% 94% 95% 96% 97%

Panel A: Historical path (Calmar ratio)

Historical Simulation 0.42 0.17 0.53 0.55 0.25 0.37 0.38 0.42 0.48 0.57
Cornish-Fisher 0.41 0.17 0.51 0.57 0.26 0.37 0.38 0.41 0.47 0.54
RiskMetrics 0.41 0.14 0.60 0.65 0.20 0.37 0.39 0.41 0.39 0.34
CARE 0.34 0.19 0.51 0.49 0.24 0.36 0.36 0.34 0.37 0.39
Extreme Value Theory 0.41 0.17 0.60 0.60 0.23 0.37 0.39 0.41 0.42 0.42
Copula-GARCH 0.41 0.15 0.60 0.70 0.24 0.38 0.39 0.41 0.40 0.46
One-Factor-GAS 0.42 0.17 0.57 0.60 0.24 0.38 0.39 0.42 0.45 0.49
Two-Factor-GAS 0.37 0.16 0.57 0.54 0.23 0.34 0.36 0.37 0.37 0.35
Hybrid-GAS/GARCH 0.41 0.16 0.56 0.59 0.24 0.38 0.39 0.41 0.42 0.43
Average 0.41 0.17 0.59 0.61 0.25 0.37 0.39 0.41 0.44 0.43
FZ loss 0.41 0.18 0.59 0.65 0.24 0.37 0.39 0.41 0.44 0.47

Panel B: Historical block-bootstrap (Omega ratio)

Historical Simulation 5.78 2.56 13.61 14.21 4.36 5.39 5.58 5.78 6.07 6.44
Cornish-Fisher 5.79 2.58 13.26 14.54 4.47 5.41 5.59 5.79 6.06 6.44
RiskMetrics 5.49 2.39 13.51 14.33 4.00 5.29 5.38 5.49 5.61 5.70
CARE 5.33 2.87 9.88 9.70 4.18 5.29 5.31 5.33 5.38 5.39
Extreme Value Theory 5.57 2.62 14.42 14.59 4.12 5.36 5.45 5.57 5.69 5.78
Copula-GARCH 5.47 2.51 12.74 16.37 4.10 5.31 5.38 5.47 5.59 5.70
One-Factor-GAS 5.71 2.85 12.43 15.19 4.71 5.52 5.64 5.71 5.80 5.93
Two-Factor-GAS 5.14 2.71 11.33 12.72 4.57 5.21 5.20 5.14 5.09 5.13
Hybrid-GAS/GARCH 5.53 2.69 12.00 15.69 4.72 5.37 5.45 5.53 5.68 5.86
Average 5.68 2.67 13.27 14.84 4.40 5.41 5.53 5.68 5.84 5.98
FZ loss 5.51 2.78 12.81 14.83 4.18 5.34 5.43 5.51 5.66 5.79

This table shows the backtesting results of the DPPI strategy with conditional multipliers based on different risk forecasts for the
historical path and the historical block-bootstrap over the sample period 1996–2017 using various portfolios and various floor levels.
To benchmark the results of the DPPI strategy based on the multi-asset portfolio we also backtest the DPPI strategy for four different
test portfolio allocations. To this end, we choose a pure equity portfolio (80% floor), a pure bond portfolio (95% floor), a 30/70
equity/bond portfolio (95% floor) and a 60/40 equity/bond portfolio (90% floor) as underlying for the DPPI strategy. Moreover, we
check the robustness of the results of the multi-asset DPPI strategy with respect to the chosen floor level (93%, 94%, 95%, 96% and
97%. We base our comparison on the Calmar ratio for the historical path and on the Omega ratio for the historical block-bootstrap.

2.5. Conclusion

Tail risk protection strategies are an effective way to limit downside risk of a given investment
portfolio while maintaing most of its upside return potential. Given the limitations of
option-based hedging strategies, dynamic asset allocations strategies such as risk targeting
and dynamic proportion portfolio insurance are popular choices among practitioners. As the
success of both dynamic strategies strongly depends on the success of forecasting (tail) risk,
this paper investigates a number of forecasting models to generate portfolio risk estimates
that are especially suitable in timely managing the investment exposure of these strategies.
To this end, we analyze risk models both prominent in the academic literature and popular
among practitioners, including simple historical simulation, the RiskMetrics approach, the
Cornish-Fisher Approximation, quantile/expectile regressions, extreme value theory, the
copula-GARCH approach and dynamic GAS models. In addition to standalone models, we
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propose a novel ES (and VaR) forecast combination approach based on a loss function that
overcomes the lack of elicitability for ES by jointly modeling ES and VaR.

Empirically, we build our analysis on a global multi-asset return data set including
stocks, bonds, commodities and foreign exchange rates. To take account of different market
closing times we apply a return synchronization technique by extrapolating prices of closed
markets, based on information from markets which close later. It turns out that the forecasts
of the proposed forecast combination approach dominates both sophisticated and more
naive standalone models as well as a simple average combination approach in modeling the
tail of the portfolio return distribution using a comprehensive VaR/ES testing framework.
When feeding the forecasts of the different risk models into the risk targeting strategy, we
show that the more flexible methods, such as the copula-GARCH, the hybrid GAS/GARCH
and the FZ loss combination approach, outperform more naive methods. For the DPPI
strategy, however, our results are less clear-cut. We provide evidence that dynamic portfolio
insurance strategies building on sophisticated risk models are capable of protecting investors
from downside risk. However, more naive approaches are also able to provide downside
protection. Given that portfolio insurance only leads to a few allocation changes, simple risk
models might simply have been lucky. Going forward, the more accurate FZ loss forecast
combination approach appears to be more likely to help mitigate the next downturn.
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Appendix 2.A Return synchronization

In this section we describe the return synchronization methodology that we apply to the global
multi-asset data set (see Audrino and Bühlmann, 2004). Let 𝑆𝑡𝑖 ,𝑖 denote the continuous time
price of asset 𝑖 (𝑖 = 1, ..., 𝑁), where time 𝑡𝑖 is the closing time of market 𝑖 measured in local
time of the base market, that is, the market with which to synchronize. The corresponding
synchronized price 𝑆𝑠

𝑡,𝑖
is then defined as

log
(
𝑆𝑠𝑡,𝑖

)
= S

[
log

(
𝑆𝑡,𝑖

)
|F𝑡

]
= E

[
log

(
𝑆𝑡𝑖+1,𝑖

)
|F𝑡

]
, 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖 + 1 (𝑡 ∈ N), (2.51)

where 𝑡 = 𝑡1 andF𝑡 is the complete information of all recorded prices up to time 𝑡. Logarithms
are used for consistency with continuously compounded returns. Clearly, if the closing price
𝑆 is observed at time 𝑡 ∈ N, its conditional expectation given F𝑡 is the observed price. This is
the case for the assets from the base market. If the market closes before 𝑡, its past prices and
all the other markets may be useful in predicting 𝑆 at time 𝑡. As a simplifying approximation,
the authors therefore assume that, given the information F𝑡 , the best predicted log-prices
at 𝑡 and at the nearest succeeding closing time 𝑡𝑖 + 1 remain the same, meaning that future
changes up to 𝑡𝑖 + 1 are unpredictable.

Then we denote by 𝑟𝑡 the vector of log-returns in different markets using the multi-index
𝑡 = (𝑡1, 𝑡2, · · · , 𝑡𝑁 ) and define the synchronized returns 𝑟 𝑠𝑡 as the change in the logarithms of
the synchronized prices:

𝑟𝑡 =


log
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...

log
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. (2.52)

In order to estimate the relationship between the individual asset markets, the authors employ
a simple “auxiliary” VAR(1) model:

𝑟𝑡 = A𝑟𝑡−1 + 𝜀𝑡 , (2.53)
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where the innovations 𝜀𝑡 are independent and identically normally distributed with mean
zero and variance-covariance Σ, independent of {𝑟𝑠; 𝑠 < 𝑡}, and A is the matrix of VAR
coefficients. We can then derive the synchronized returns as follows

𝑟 𝑠𝑡 = log
(
S𝑠𝑡

)
− log

(
S𝑠𝑡−1

)
= E [log (S𝑡+1) |F𝑡] − E [log (S𝑡) |F𝑡−1]

= E [log (S𝑡+1) − log (S𝑡) |F𝑡] − E [log (S𝑡) − log (S𝑡−1) |F𝑡−1] + log
(

S𝑡
S𝑡−1

)
= E [𝑟𝑡+1 |F𝑡] − E [𝑟𝑡 |F𝑡−1] + 𝑟𝑡
= A𝑟𝑡 − A𝑟𝑡−1 + 𝑟𝑡
= 𝑟𝑡 + A(𝑟𝑡 − 𝑟𝑡−1). (2.54)

That is, any synchronized return 𝑟 𝑠𝑡 is still anchored in the actual realized return 𝑟𝑡 plus an
anticipated innovation according to the estimated VAR relation as captured in matrix A. The
“missing” dynamics of markets closing early in the day are thus proxied according to the
short-term relationship with respect to those markets closing later that day.

Sorting markets according to their closing times enables us to readily formulate a
restriction matrix for the VAR model such that markets are explained only by those markets
with a later closing time. Given that US markets are the last to close in our sample, we
anchor our synchronization of daily returns in US markets. Thus, the US time series remain
unchanged but are still included in the VAR model to serve as explanatory variables, that is,
the final set of synchronized daily returns does not build on forecasted time series for the
USA but uses their original daily returns. Non-US data are forecasted to the closing time of
the US market by the VAR(1).
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3.1. Introduction

Extreme events such as the recent COVID-19 pandemic and its economic consequences or
the global financial crisis of 2007-2008 stress the importance of measuring and forecasting
market risk for financial applications such as asset allocation, hedging or risk management.
To assess financial market risks, expected shortfall (ES) is a highly relevant metric due to its
ability to mitigate problems of the popular value-at-risk (VaR) measure, such as ignoring
the tail of the distribution and the lack of sub-additivity (see Artzner et al., 1999; Acerbi
and Tasche, 2002). Specifically, ES gives the average return of a risky asset below a given
quantile of its return distribution, thus summarizing the tail risk information beyond the VaR.

Given their prominence, there exists an extensive literature on estimating and predicting
VaR and ES (Andersen et al., 2006, 2013; Kuester, Mittnik, and Paolella, 2006; Louzis,
Xanthopoulos-Sisinis, and Refenes, 2014; Righi and Ceretta, 2015; Nieto and Ruiz, 2016;
Happersberger, Lohre, and Nolte, 2020). The primary challenge with VaR and ES forecasting
is, however, that the models’ performance and reliability in accurately predicting the risk
often heavily depends on the data. While a parsimonious model can perform well in stable
markets, it might fail during a volatile period. Likewise, highly parameterized models can
be adequate during periods of high volatility, but might be easily outperformed by simpler
approaches in less turbulent times (Bayer, 2018). If the best model is unknown or likely to
change over time, a promising alternative is to combine the predictions originating from
various models (Bates and Granger, 1969). Timmermann (2006) puts forward three main
arguments in favor of combining forecasts to enhance the predictive performance relative to
standalone models. First, there are diversification gains arising from the combination of
forecasts computed from different assumptions, specifications or information sets. Second,
combination forecasts tend to be robust against structural breaks. Third, the influence of
potential misspecification biases and measurement errors of the individual models is reduced
due to averaging over a set of forecasts derived from various models (Bayer, 2018).

While the literature offers a number of methods for combining VaR forecasts (see Bayer,
2018, for a summary), there is a lack of ES forecast combination methods. This relates
to the fact that ES is not “elicitable”, that is, there does not exist a loss function such that
the correct ES forecast is actually minimizing the expected loss (cf. Gneiting, 2011). This
lack of elicitability renders the estimation and backtesting of ES challenging (see Acerbi
and Szekely, 2014; Embrechts and Hofert, 2014; Emmer, Kratz, and Tasche, 2015). As a
remedy, Fissler and Ziegel (2016) introduced a class of loss functions that overcome the lack
of elicitability for ES by jointly modeling ES and VaR. There exist two approaches that draw
on these results to form linear ES (and VaR) combination forecasts. Happersberger, Lohre,
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and Nolte (2020) simply estimate the optimal forecast combination weights by minimizing
the average loss of the FZ loss function using a linear combination of the individual forecasts
for both VaR and ES. Taylor (2020)’s approach slightly differs in the sense that it does not
combine ES forecasts, but instead combines forecasts of the difference between ES and VaR.

In this paper, we extend these simple combination approaches utilizing machine learning1

techniques to increase prediction accuracy and allowing for non-linear forecast combinations.
In particular, we examine the merits of using shrinkage and neural network models to form
VaR and ES combination forecasts.

Simple linear ES (and VaR) combination schemes may suffer from multicollinearity, if we
combine a large number of forecasts that are based on the same data or similar mathematical
approaches. Indeed, in our empirical application we observe high pairwise correlations
among ES and VaR forecasts of the individual models, indicating the presence of pronounced
multicollinearity. Also, highly correlated forecasts may lead to overfitting. That is, we may
find a model that fits the in-sample data well, but fails to properly generalize to new data
(Hastie, Tibshirani, and Friedman, 2011; Bayer, 2018). In this situation, the approaches of
Happersberger, Lohre, and Nolte (2020) or Taylor (2020) may produce unstable estimates of
the combination weights. An obvious solution is to focus on combining forecasts that exhibit
small to moderate cross-correlations. However, we aim to avoid manually selecting models;
instead, we utilize shrinkage models that are able to handle high correlations among the
input variables. Specifically, we consider the popular least shrinkage and selection operator
(LASSO) of Tibshirani (1996), the ridge penalty of Hoerl and Kennard (1970a,b) and the
elastic net penalty proposed by Zou and Hastie (2005) that linearly combines the penalties
of the LASSO and ridge methods. According to Bayer (2018), the latter shrinkage model
is particularly appealing for forecast combination, as it produces stable weight estimates,
reduces overfitting and automatically selects the individual forecasts.

In addition, we consider the egalitarian LASSO model and related variants proposed by
Diebold and Shin (2019). The authors suggest that simple averages are a natural shrinkage
direction when combining forecasts, given that simple average combinations are frequently
found to perform well (despite being theoretically sub-optimal). In this vein, they propose
LASSO-based procedures that shrink combination weights towards equal weights instead of

1The definition of “machine learning” is inchoate and often context-specific (cf. Gu, Kelly, and Xiu, 2020).
We use the term to describe a diverse collection of high-dimensional models that computers use for making and
improving statistical predictions from a given data set. Among the collection of machine learning models, we
focus on supervised machine learning in this paper. This type of machine learning concentrates on prediction
problems, where we have a data set for which we already know the outcome of interest and want to learn to
predict the outcome for new data. More precisely, the machine learning algorithm learns a model by estimating
parameters (like weights, as in our case) or learning structures and is guided by a loss function that is minimized
(cf. Molnar, 2019).
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shrinking towards zero. They put forward the partially-egalitarian LASSO as the optimal
solution, which uses the standard LASSO to select the appropriate forecasts in the first step
and then shrink these towards equal weights by applying the egalitarian ridge, the egalitarian
LASSO or the simple average in the second step.

Although shrinkage combination models are able to handle a large number of (potentially)
highly correlated individual forecasts, they still assume linear relationships between the
individual forecasts and the target combination forecast. However, linear combinations may
not be optimal in terms of prediction accuracy if the models that generate the individual
forecasts are non-linear or if the target forecast’s true underlying expectation is a non-linear
function of the information sets on which the individual forecasts are based (Donaldson and
Kamstra, 1996). As neural networks have the ability to meaningfully approximate whatever
functional form best characterizes the data, they could be well-suited for forecast combination
when the optimal combination of individual forecasts is potentially non-linear. Donaldson
and Kamstra (1996) successfully apply the class of neural networks to volatility forecasting.
They demonstrate that a neural network-based combination model dominates traditional
linear combining procedures. However, the quality of ES and VaR predictions can only be
assessed with the help of relative rare events, and therefore the amount of relevant data is
limited. Thus, introducing too much flexibility into the forecast combination model might
result in poor out-of-sample results. In this spirit, we investigate whether the complexity
of applying simple feed-forward neural networks to ES and VaR forecast combination is
actually beneficial.

In the empirical part of this paper, we assess the performance of the proposed shrinkage
and neural network combination models applied to a data set that encompasses 12 major
equity indices over a period of 30 years. Combining is most promising when the individual
methods use different information or use information in different ways. Hence, we resort to a
diverse set of individual VaR and ES models, including non-parametric, parametric and semi-
parametric techniques as well as methods capturing intraday volatility: historical simulation,
weighted historical simulation, CAViaR, dynamic GAS and various location-scale models
with GARCH, RiskMetrics, realized GARCH and HAR volatility processes and innovation
processes based on filtered historical simulation and extreme value theory. For forecast
evaluation we employ a comprehensive VaR and ES backtesting framework comprising
methods based on calibration tests (Kupiec, 1995; Christoffersen, 1998; McNeil and Frey,
2000; Christoffersen and Pelletier, 2004; Nolde and Ziegel, 2017; Bayer and Dimitriadis,
2020) and loss functions (Diebold and Mariano, 1995; Hansen, Lunde, and Nason, 2011;
Patton, Ziegel, and Chen, 2019). Our empirical results indicate that the machine-learned
VaR and ES forecasts outperform a set of existing combination approaches in terms of
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statistical accuracy. While all combination approaches exhibit high passing rates of the
calibration tests (across equity indices and multiple probability levels), machine learning
methods show a better forecasting accuracy than the (majority of) competing combination
approaches when comparing the models with relative tests such as the model confidence set
or average loss ranking. Specifically, egalitarian shrinkage models such as the egalitarian
ridge or partially-egalitarian LASSO models are well-suited for combining VaR and ES
predictions. When splitting the evaluation sample into calm and recession periods, the
egalitarian models emerge as particularly well-performing in calm periods, whereas the
neural network combination model dominates in recession periods. When evaluating the
combination forecasts during the recent COVID-19 period, we observe lower VaR violation
rates than in the global financial crisis, suggesting that the combination models have learned
from previous recessions.

In addition to assessing the statistical accuracy of the combination forecasts, we investigate
their relevance in a portfolio management application. In particular, we implement a risk
targeting strategy that controls portfolio risk over time by systematically adjusting the
investment exposure according to its current risk (forecast) in order to keep the ex ante risk
at a constant target level. In terms of downside risk measures we find the best performance
for the egalitarian shrinkage models as well as for the simple average combination approach.

Our work extends the empirical literature on ES and VaR modeling in two ways: To the
best of our knowledge, this study is the first to apply machine learning techniques to ES
forecast combination. While Bayer (2018) already uses standard shrinkage methods in the
context of combining VaR forecasts, egalitarian shrinkage and neural network models are
new to the VaR and ES forecast combination literature. Also, the variety of non-parametric
combination approaches has not been used for combining ES forecasts before, allowing
for a thorough comparison of available combination methods. In addition, we are the first
to investigate the performance of VaR and ES (combination) forecasts in the prevailing
COVID-19 period.

The remainder of the paper is structured as follows. In Section 3.2 we present the
shrinkage and neural network models applied to ES (and VaR) forecast combination.
Section 3.3 outlines the data, the models to be combined, the set of competing combination
techniques and the forecast evaluation methodology. Section 3.4 presents the results of the
empirical application. Section 3.5 summarizes and concludes the paper.
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3.2. Forecast combination based on machine learning

This section describes the set of machine learning methodologies implemented for combining
VaR and ES forecasts. We start with the statistical framework that includes the definition of
VaR and ES, corresponding combination forecasts and a consistent loss function for VaR
and ES that is the basis for the estimation procedure of all proposed combination methods.
What follows is a detailed description of the individual machine learning-based combination
techniques. As most of these methods require tuning of hyperparameters, we conclude the
section with details on corresponding calibration procedures.

3.2.1. Risk measures and loss function

Let 𝑟𝑡 be the daily log return of a single financial asset at time 𝑡, with conditional (on
information set F𝑡−1) distribution 𝐹𝑡 , which we assume to be strictly increasing with finite
mean. Then, the VaR forecast for period 𝑡 + 1 is simply the 𝛼-quantile of the conditional
return distribution at 𝑡 + 1, that is,

VaR𝑡+1|𝑡(𝛼) ≡ 𝑄𝛼 (𝑟𝑡+1 |F𝑡) = inf{𝑥 ∈ R : 𝑃 (𝑟𝑡+1 ≤ 𝑥 |F𝑡) ≥ 𝛼}, (3.1)

where 𝛼 ∈ (0, 1) is the probability level,𝑄𝛼(·) denotes the quantile function and F𝑡 represents
the information available at time 𝑡. The corresponding ES forecast for period 𝑡 + 1 is defined
as the expected return conditional on the return being below its VaR, specifically,

ES𝑡+1|𝑡(𝛼) ≡ E
[
𝑟𝑡+1 |𝑟𝑡+1 ≤ VaR𝑡+1|𝑡 ,F𝑡

]
=

1
𝛼

∫𝛼

0
VaR𝑡+1|𝑡(𝑠)𝑑𝑠. (3.2)

Throughout the paper, we suppress the probability level 𝛼 to keep the notation simple.
In the following, we assume that the forecaster has a set of individual methods at hand

that each produces a forecast for VaR and ES. Specifically, we define VaR𝑚,𝑡+1|𝑡 and ES𝑚,𝑡+1|𝑡

to be the VaR and ES forecast of model 𝑚 = 1, ..., 𝑀 for day 𝑡 + 1 based on the information
available at 𝑡. When combining the forecasts from the individual methods we generally
allow the combination forecasts for VaR to depend also on the individual ES forecasts and
the combination forecasts for ES to depend also on the individual VaR forecasts. In addition,
we allow the combination weights for VaR and ES, denoted by 𝛽VaR

𝑚,𝑡 and 𝛽ES
𝑚,𝑡 , to differ as the
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quality of a method’s VaR and ES forecasts may differ. Thus, the combination forecasts for
VaR and ES, denoted by VaR𝑐,𝑡+1|𝑡 and ES𝑐,𝑡+1|𝑡 , are given by

VaR𝑐,𝑡+1|𝑡 = �̃�1

(
VaR𝑡+1|𝑡 ,ES𝑡+1|𝑡 ; �̃�𝛽𝛽

VaR
𝑡,1 , �̃�𝛽𝛽

ES
𝑡,1

)
, (3.3)

ES𝑐,𝑡+1|𝑡 = �̃�2

(
VaR𝑡+1|𝑡 ,ES𝑡+1|𝑡 ; �̃�𝛽𝛽

VaR
𝑡,2 , �̃�𝛽𝛽

ES
𝑡,2

)
, (3.4)

where �̃�1(·) and �̃�2(·) are some functions that may be linear or non-linear in the weight
vectors, 𝛽𝛽𝛽VaR

𝑡,1 , 𝛽𝛽𝛽ES
𝑡,1 and 𝛽𝛽𝛽VaR

𝑡,2 , 𝛽𝛽𝛽ES
𝑡,2 , in the vectors of the 𝑀 individual forecasts, VaR𝑡+1|𝑡 and

ES𝑡+1|𝑡 , or both.2

Despite different combination schemes, i.e. different specifications of the function 𝑔(·),
all methods share the basic objective of minimizing the same class of loss functions (or
“scoring rules”). While there exists a consistent loss function for VaR, ES is only elicitable
jointly with VaR.3 Fissler and Ziegel (2016) show that the following class of loss functions
is consistent for VaR and ES, if both VaR and ES are strictly negative and ES is smaller than
VaR (which follows naturally from the definition of VaR and ES). That is, minimizing the
expected loss using any of these loss functions returns the true VaR and ES:

𝐿(𝑟,VaR,ES, 𝛼, 𝐺1, 𝐺2) = (1{𝑟 ≤ VaR} − 𝛼)
(
𝐺1(VaR) − 𝐺1(𝑟) +

1
𝛼
𝐺2(ES) VaR

)
− 𝐺2(ES)

(
1
𝛼
1{𝑟 ≤ VaR} 𝑟 − ES

)
− G2(ES),

(3.5)

where the function 𝐺1 is weakly increasing, the function 𝐺2 is strictly increasing and strictly
positive, and G′

2 = 𝐺2. Similar to Patton, Ziegel, and Chen (2019), we choose the parameters
of the function class in such a way that the loss differences of two forecasts are homogeneous
of degree zero, given that VaR and ES are strictly negative, i.e. 𝐺1(𝑥) = 0 and 𝐺2(𝑥) = −1/𝑥.
The resulting loss function, which we call “FZ loss function” in the following, is then given
by

𝐿𝐹𝑍 (𝑟,VaR,ES, 𝛼) = − 1
𝛼 ES

1{𝑟 ≤ VaR} (VaR−𝑟) +
VaR
ES

+ log(−ES) − 1. (3.6)

Given its strict consistency, we can use the FZ loss function as objective function for
estimating the optimal combination weights (see Gneiting and Raftery, 2007).

2Note that we omit the corresponding index of 𝛽𝛽𝛽VaR
𝑡 ,1 and 𝛽𝛽𝛽ES

𝑡 ,2 if VaR𝑐,𝑡+1 |𝑡 only depends on VaR𝑡+1 |𝑡 and
ES𝑐,𝑡+1 |𝑡 only depends on ES𝑡+1 |𝑡 .

3See Taylor (2020) for more details on loss functions for VaR and ES.
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3.2.2. Minimum loss

A simple way to estimate the optimal forecast combination weights is to minimize the average
loss of the FZ loss function using a linear combination of the 𝑀 individual forecasts (see
Happersberger, Lohre, and Nolte, 2020):(

𝛽𝛽𝛽
VaR
𝑡 , 𝛽𝛽𝛽

ES
𝑡

)
= arg min
𝛽𝛽𝛽

𝑉𝑎𝑅

𝑡 , 𝛽𝛽𝛽
𝐸𝑆

𝑡

1
𝑡

𝑡−1∑︁
𝜏=0

𝐿𝐹𝑍

(
𝑟𝜏+1,

(
VaR𝜏+1|𝜏

)′
𝛽𝛽𝛽VaR
𝑡 ,

(
ES𝜏+1|𝜏

)′
𝛽𝛽𝛽ES
𝑡

)
. (3.7)

Following the forecast combination literature (Timmermann, 2006; Hansen, 2008; Hap-
persberger, Lohre, and Nolte, 2020) we impose convexity on the combination weights as
this restriction typically improves upon the non-constrained estimator in terms of predictive
performance. Convex weights are non-negative and sum to one, i.e. 0 ≤ 𝛽𝑥𝑚,𝑡 ≤ 1 for
𝑚 = 1, ..., 𝑀 and ∑𝑀

𝑚=1 𝛽
𝑥
𝑚,𝑡 = 1, 𝑥 ∈ {VaR,ES}.

To estimate the combination weights we use an optimization procedure similar to that
of Engle and Manganelli (2004) and Happersberger, Lohre, and Nolte (2020). First, we
generate vectors of parameters from a uniform random number generator such that the convex
weight restriction is fulfilled. Subsequently, we compute the average loss from the FZ loss
function for each of these vectors and select the ten vectors that produce the lowest average
loss as initial values for the optimization routine. Finally, we minimize the average loss for
each of the ten resulting vectors utilizing the augmented Lagrange multiplier method with a
sequential quadratic programming interior algorithm according to Ye (1987) and select the
vector producing the lowest average loss as the final parameter vector (cf. Happersberger,
Lohre, and Nolte, 2020). The optimization procedure includes the restriction that both VaR
and ES are negative and ES is always below VaR.

3.2.3. Shrinkage methods

When combining a large number of ES (or VaR) forecasts, there is a high chance that
some forecasts will be largely redundant, given that they might be based on the same
information and possibly resort to similar mathematical approaches. This phenomenon is
called multicollinearity. If there is multicollinearity among the set of individual forecasts,
the simple minimum loss approach will deliver unstable weight estimates: small variations
in the data can lead to large changes in the estimated combination weights. Likewise, the
minimum loss approach may suffer from the problem of overfitting in the presence of highly
correlated ES (or VaR) forecasts. This is not problematic from an in-sample perspective,
because the estimated coefficients still minimize the loss function. However, such imprecisely
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estimated parameters can be harmful for out-of-sample purposes, because the model may fail
to properly generalize to new data (cf. Hastie, Tibshirani, and Friedman, 2011; Bayer, 2018).

A simple and common solution is to append a penalty to the objective function (i.e. the
average loss function) in order to favor more robust and parsimonious specifications:

L𝑡
(
𝛽𝛽𝛽VaR
𝑡 , 𝛽𝛽𝛽ES

𝑡 ; ·
)

=

(
1
𝑡

𝑡−1∑︁
𝜏=0

𝐿𝐹𝑍

(
𝑟𝜏+1,

(
VaR𝜏+1|𝜏

)′
𝛽𝛽𝛽VaR
𝑡 ,

(
ES𝜏+1|𝜏

)′
𝛽𝛽𝛽ES
𝑡

))
+ 𝜙

(
𝛽𝛽𝛽VaR
𝑡 , 𝛽𝛽𝛽ES

𝑡 ; ·
)
,

(3.8)

where 𝜙(·) is the penalty function. The model’s in-sample performance suffers from this
regularization of the estimation problem, which, however, usually improves the out-of-sample
performance in terms of parameter stability. This improvement will be achieved if the
penalization manages to increase the model’s signal-to-noise ratio by reducing the noise
(Gu, Kelly, and Xiu, 2020).

Elastic net, ridge and LASSO

We first consider the popular elastic net penalty of Zou and Hastie (2005), which is a
convex combination of the ridge penalty of Hoerl and Kennard (1970a,b) and the LASSO of
Tibshirani (1996). Given the parameter vector 𝛽, its most general form presents as follows:

𝜙(𝛽;𝜆, 𝛿) = 𝜆
𝑀∑︁
𝑚=1

(
𝛿 |𝛽𝑚 |+

1
2

(1 − 𝛿)𝛽2
𝑚

)
, (3.9)

where 𝜆 is the non-negative regularization parameter, which controls the amount of regular-
ization, and 𝛿 ∈ [0, 1] balances the ridge and the LASSO term. The case 𝛿 = 0 corresponds
to the ridge penalty, which shrinks the parameter coefficients by imposing a penalty on their
size. In particular, coefficients are shrunk towards zero (and each other), without being set
exactly equal to zero. The case 𝛿 = 1 corresponds to the LASSO, which also shrinks the
coefficients but additionally selects variables by setting sufficiently small coefficients exactly
to zero. This variable selection feature leads to simpler and more interpretable combination
models (compared to the ridge), given that only a subset of the predictors are involved
(see Hastie, Tibshirani, and Friedman, 2011). For intermediate values of 𝛿, the elastic net
combines the strengths of both approaches so that Zou and Hastie (2005) interpret the elastic
net as a stabilized version of the LASSO penalization.

Given the two-dimensional parameter space, i.e. 𝛽VaR and 𝛽ES, we need to adjust the
standard elastic net penalty to our framework. For this purpose, we append the objective
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function by a separate elastic penalty term for both VaR and ES. Thus, the FZ loss estimator
with elastic net penalization is given by(

𝛽𝛽𝛽
VaR
𝑡 , 𝛽𝛽𝛽

ES
𝑡

)
= arg min
𝛽𝛽𝛽

𝑉𝑎𝑅

𝑡 , 𝛽𝛽𝛽
𝐸𝑆

𝑡

1
𝑡

𝑡−1∑︁
𝜏=0

𝐿𝐹𝑍

(
𝑟𝜏+1,

(
VaR𝜏+1|𝜏

)′
𝛽𝛽𝛽VaR
𝑡 ,

(
ES𝜏+1|𝜏

)′
𝛽𝛽𝛽ES
𝑡

)
+ 𝜆VaR

𝑡

𝑀∑︁
𝑚=1

(
𝛿VaR
𝑡 |𝛽VaR

𝑚,𝑡 |+
1
2

(1 − 𝛿VaR
𝑡 )

(
𝛽VaR
𝑚,𝑡

)2
)

+ 𝜆ES
𝑡

𝑀∑︁
𝑚=1

(
𝛿ES
𝑡 |𝛽ES

𝑚,𝑡 |+
1
2

(1 − 𝛿ES
𝑡 )

(
𝛽ES
𝑚,𝑡

)2
)
.

(3.10)

As suggested by Hastie, Tibshirani, and Friedman (2011) and Bayer (2018), we only estimate
𝜆VaR
𝑡 and 𝜆ES

𝑡 and consider pre-selected values of and 𝛿VaR
𝑡 and 𝛿ES

𝑡 . In particular, we consider
the three cases of 𝛿VaR

𝑡 = 𝛿ES
𝑡 = 0 (ridge), 𝛿VaR

𝑡 = 𝛿ES
𝑡 = 1 (LASSO) and 𝛿VaR

𝑡 = 𝛿ES
𝑡 = 0.5

(elastic net) in our empirical application.

Egalitarian LASSO and its relatives

Although theoretically sub-optimal, simple-average combinations are frequently found to
perform well and even outperform more sophisticated combination methods—a finding often
referred to as the forecast combination “equal weights puzzle” (see Clemen, 1989; Diebold,
1989; Stock and Watson, 2004).4 Therefore, Diebold and Shin (2019) suggest that simple
averages (equal weights) are a natural shrinkage direction when combining forecasts. In this
vein, they propose LASSO-based procedures that shrink combination weights towards equal
weights instead of shrinking towards zero.

The egalitarian ridge (“eRidge”) penalty is a modified ridge penalty that centers around
1/𝑀:

𝜙(𝛽;𝜆) =
1
2
𝜆

𝑀∑︁
𝑚=1

(
𝛽𝑚 − 1

𝑀

)2
. (3.11)

Although it shrinks towards equality, the eRidge does not select variables, similar to the
standard ridge penalty.

The egalitarian LASSO (“eLASSO”) penalty changes the standard LASSO to

𝜙(𝛽;𝜆) = 𝜆
𝑀∑︁
𝑚=1

����𝛽𝑚 − 1
𝑀

���� . (3.12)

4The theoretical sub-optimality of equal weights is for example shown by Diebold and Shin (2019).
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That is, instead of shrinking the weights towards zero, it shrinks the deviations from equal
weights towards zero. Like the standard LASSO, the eLASSO shrinks and selects, but
whereas the standard LASSO shrinks towards zero and selects to zero, the eLASSO shrinks
towards equality and selects to equality.

In a similar vein, we can construct the egalitarian elastic net penalty (“eElasticNet”):

𝜙(𝛽;𝜆, 𝛿) = 𝜆
𝑀∑︁
𝑚=1

(
𝛿 |𝛽𝑚 − 1

𝑀
|+1

2
(1 − 𝛿)

(
𝛽𝑚 − 1

𝑀

)2
)
, (3.13)

where 𝛿 ∈ [0, 1] balances the eRidge and the eLASSO term.
Still, according to Diebold and Shin (2019) the optimal solution is to set some combination

weights to zero (i.e. select to zero) and shrink the remaining weights towards equality. For
this purpose, they put forward the partially-egalitarian LASSO (“peLASSO”), which fulfills
both requirements. As difficult to optimize in one step, the authors propose a two-step
implementation. In a first step, one selects 𝑘 forecasts from among the full set of 𝑀 forecasts
using the standard LASSO. In a second step, one shrinks the combination weights of the 𝑘
forecasts that survive step 1 towards 1/𝑘 . For the second step, one can use both the eRidge
or the eLASSO. The only difference is that the eLASSO sets some of the surviving weights
to exactly 1/𝑘 and shrinks the rest towards 1/𝑘 , whereas the eRidge shrinks all surviving
weights towards 1/𝑘 . A simple alternative for the second step is to average the surviving 𝑘
forecasts, thus avoiding a second optimization step.

3.2.4. Neural network combination model

Inspired by the organization and functioning of biological neurons, neural networks represent
a class of flexible non-linear models that have been developed in different fields, such as
biostatistics, image processing, neuroscience and artificial intelligence. The distinguishing
feature of neural networks is that they are universal function approximators for any smooth
predictive association (Hornik, Stinchcombe, White, et al., 1989; Cybenko, 1989). That
means, they do not restrict the shape of the distribution or the relationship between the
distribution’s shape and the inputs that it is conditioned on. Instead, they are able to
meaningfully approximate whatever functional form best characterizes the data. In particular,
they learn the intrinsic relationship in the data through a number of interconnected processing
elements, called neurons, spread in different layers (Friedman, Hastie, and Tibshirani, 2001).
Thus, neural networks are ideally suited to the problem of forecast combination when the
optimal combination of individual forecasts is potentially non-linear.

We focus our analysis on traditional feed-forward networks, also called multi-layer
perceptrons. Given that we already model temporal dependencies within the individual
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VaR and ES forecasting methods, we refrain from employing more complex, sequential
data compatible network structures such as recurrent neural networks, convolutional neural
networks or long-short term memory networks for the combination of forecasts. Simple
feed-forward neural networks generally consist of an input layer of raw predictors, one or
more hidden layers that interact and non-linearly transform the predictors, and an output
layer that aggregates hidden layers into an ultimate outcome prediction. Analogous to axons
in a biological brain, layers of the networks represent groups of “neurons” with each layer
connected by “synapses” that transmit signals (i.e. the sample information) among neurons of
different layers (see Gu, Kelly, and Xiu, 2020). Thus, in this type of architecture information
is passed “forward” from the input layer through the hidden layers to the output layer without
feedback.

VaR1

VaR2

VaR3

ES1

ES2

ES3

VaR𝑐

ES𝑐

Hidden
layer

Input
layer

Output
layer

Figure 3.1: Neural network schematic. This figure shows the schematic of a single hidden layer, feed-forward
neural network. The green circles represent the input variables, which are the individual VaR and ES models in
our case. The blue circles represent the fully connected neurons in the hidden layer. The red circles represent
the output variables consisting of the combined VaR and ES predictions.

Figure 3.1 illustrates the architecture of a single hidden layer, feed-forward neural network
as implemented in our empirical analysis. The green circles represent the input variables,
which are the individual VaR and ES models in our case. The blue circles represent the
fully connected neurons in the hidden layer. The red circles represent the output variables
consisting of the combined VaR and ES predictions, given the two dimensions of the FZ loss
function that we use for combining VaR and ES forecasts. This architecture is in contrast to
most applications of neural networks in finance, which usually use a standard mean-squared
error loss function and therefore require only a single output variable.



Chapter 3. Combining VaR and ES Forecasts using Machine Learning Techniques 108

Formally, we define the neural network for our application of combining VaR and ES
forecasts in the following. Note that we estimate such a neural network at every time step, but
suppress the time index 𝑡 for simplicity. Let 𝐾𝑙 be the number of neurons (or units) in each
hidden layer 𝑙 = 1, ..., 𝐿. Moreover, we denote the output of neuron 𝑘 in layer 𝑙 as 𝑧𝑘,𝑙 and the
vector of outputs for this layer, augmented to include a constant,5 as z𝑙 =

(
1, 𝑧𝑙,1, ..., 𝑧𝑙,𝐾𝑙

)′. To
initialize the network, we similarly define the input layer, which contains the raw predictors,
in our case the individual VaR and ES forecasts, as z0 = (1,VaR1, ...,VaR𝑀 ,ES1, ...,ES𝑀)′.
Each neuron 𝑘 in layer 𝑙 linearly aggregates information from all of the units in the layer
below and then applies the univariate non-linear “activation function” 𝜙𝑙 before sending its
output 𝑧𝑙,𝑘 to the next layer.6 Hence, the recursive output formula for the neural network at
each neuron 𝑘 in layer 𝑙 > 0 is given by

𝑧𝑙,𝑘 = 𝜙𝑙
(
z′𝑙−1𝜃𝜃𝜃𝑙−1,𝑘

)
, (3.14)

where 𝜃𝜃𝜃𝑙,𝑘 =
(
𝜃

(0)
𝑙,𝑘
, 𝜃

(1)
𝑙,𝑘
, ..., 𝜃

(𝐾𝑙)
𝑙,𝑘

)′
denotes the vector of connection weights between neuron

𝑘 in layer 𝑙 and all 𝐾𝑙−1 neurons in the layer below. The final network output then takes the
form

VaR𝑐 = 𝑔1 (VaR,ES; 𝜃𝜃𝜃) = z′𝐿𝜃𝜃𝜃𝐿,1, (3.15)

ES𝑐 = 𝑔2 (VaR,ES; 𝜃𝜃𝜃) = z′𝐿𝜃𝜃𝜃𝐿,2, (3.16)

where 𝜃𝜃𝜃 summarizes the complete set of model parameters to be estimated. The activation
function in the output layer is set as the identity function, so that the two final outputs enjoy
the freedom of assuming any real value.

5The constant term, also known as bias term, adds flexibility to the hidden nodes and the output-node
responses (activations) in a way similar to the constant term in linear regression models (cf. Kuan and White,
1994).

6Activation plays a key role within neural networks. Similar to biologic neurons in the human brain,
neurons (or nodes) receive inputs from adjacent neurons. When the information in these inputs accumulate
beyond a certain threshold the neuron is “activated” suggesting that there is a signal.
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To put it differently, a neural network is just a hierarchical model of the form

𝑔 𝑗 (VaR,ES; 𝜃𝜃𝜃) = z′𝐿𝜃𝜃𝜃𝐿, 𝑗 , ∀ 𝑗 = 1, 2 (Output layer)

𝑧𝐿,𝑘 = 𝜙𝐿
(
z′𝐿−1𝜃𝜃𝜃𝐿−1,𝑘

)
, ∀ 𝑘 = 1, ..., 𝐾𝐿 (Hidden layer 𝐿)

𝑧𝐿−1,𝑘 = 𝜙𝐿−1
(
z′𝐿−2𝜃𝜃𝜃𝐿−2,𝑘

)
, ∀ 𝑘 = 1, ..., 𝐾𝐿−1 (Hidden layer 𝐿 − 1)

...

𝑧1,𝑘 = 𝜙1
(
z′0𝜃𝜃𝜃0,𝑘

)
, ∀ 𝑘 = 1, ..., 𝐾1 (Hidden layer 1)

z0 = (1,VaR1, ...,VaR𝑀 ,ES1, ...,ES𝑀)′ . (Input layer)

The number of weight parameters in each hidden layer 𝑙 is 𝐾𝑙(1+𝐾𝑙−1), plus another 3(1+𝐾𝐿)
weights for the output layer.

Model implementation

The network architecture, comprising the number of layers (“model depth”) and neurons
(“model width”) as well as the activation function, is crucial for the predictive performance
of neural networks. The more layers and neurons we add the more opportunities for new
features and patterns to be learned (commonly referred to as the model’s capacity). However,
higher complexity comes with higher computational burden and greater risk of overfitting
the data, resulting in poor generalization. For this reason, we focus on a simple network
architecture with a single hidden layer, which is usually sufficient for many applications. As
common in the neural network literature (see Goodfellow et al., 2016), we choose the number
of neurons in accordance with the number of input units. All nodes are fully connected, so
that each neuron receives an input from all units in the input layer.

We use the popular rectified linear unit (ReLU) as activation function at all nodes within
the hidden layer. The ReLu is defined as 𝜙(𝑥) = max(𝑥, 0) and has some advantageous
characteristics compared to other common activation functions such as the hyperbolic tangent
or sigmoid functions. Specifically, the ReLU encourages sparsity in the number of active
neurons, is computationally attractive and avoids vanishing gradient problems (cf. Gu, Kelly,
and Xiu, 2020; Bianchi, Büchner, and Tamoni, 2021).
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Each neural network specification is trained by minimizing the FZ loss function, in its
simplest form given by:7

�̂�𝜃𝜃 = arg min
𝜃𝜃𝜃

1
𝑡

𝑡−1∑︁
𝜏=0

𝐿𝐹𝑍
(
𝑟𝜏+1,VaR𝑐

(
VaR𝜏+1|𝜏,ES𝜏+1|𝜏; 𝜃𝜃𝜃

)
,ES𝑐

(
VaR𝜏+1|𝜏,ES𝜏+1|𝜏; 𝜃𝜃𝜃

) )
.

(3.17)

The estimates of the model parameters �̂�𝜃𝜃 are solutions of a non-convex optimization problem,
making brute force optimization highly computationally intensive. Therefore, conventional
estimation procedures of neural networks rely on stochastic optimization routines such as the
stochastic gradient descent (SGD) algorithm. In contrast to the standard descent algorithm
that utilizes the whole training sample to evaluate the loss function at each iteration of the
optimization process, SGD evaluates the loss function based on a small randomly selected
subset of the data and iteratively approaches the (local) minimum through back propagation.
This stochastic approximation usually results in smoother and much faster convergence, with
the cost of sacrificing some accuracy (see Goodfellow et al., 2016; Gu, Kelly, and Xiu,
2020; Bianchi, Büchner, and Tamoni, 2021). We implement two common extensions of
the standard SGD. First, the “learning rate shrinkage” algorithm of Kingma and Ba (2015),
called Adam, uses an adaptive learning rate8, which shrinks the learning rate towards zero
as the gradient approaches zero. Thus, it is more accurate than the standard SGD, while also
providing faster convergence. Second, the RMSprop alogrithm developed by Hinton (2012)
is also an adaptive learning rate method that divides the learning rate by an exponentially
decaying average of squared gradients.

To reduce the risk of overfitting the data, we place constraints on the model’s complexity
using a variety of regularization techniques. Similar to the ridge combination model, we use
an L2 penalty to add a cost to the size of the node weights, called weight decay in the context
of neural networks. Regularizing the weights will force small signals (noise) to have weights
nearly equal to zero and only allow consistently strong signals to have larger weights. In
addition to the L2 penalization of the weight parameters, we use three other regularization
techniques in our estimation procedure: dropout, early stopping and ensembling.

Dropout regularizes the choice of the number of nodes in a hidden layer (see Hinton and
Salakhutdinov, 2006; Srivastava et al., 2014). This is achieved by randomly dropping out
nodes in each layer at each iteration. That is, temporarily removing a fraction of neurons

7The optimization procedure is subject to a selected set of hyperparameters. See Section 3.2.5.
8The learning rate controls the step size of the descent.
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from the network, along with all its incoming and outgoing connections with a certain
probability.9

The “early stopping” procedure reduces the risk of overfitting by terminating the training
algorithm when the loss on the validation sample has not improved for a pre-specified
number of consecutive iterations. This approach is also useful to improve the computational
efficiency as the training process may be stopped far before the maximum number of
iterations is reached (see Goodfellow et al., 2016; Bianchi, Büchner, and Tamoni, 2021).

Finally, we use ensemble averaging when training our neural networks (see Hansen and
Salamon, 1990; Dietterich, 2000). In particular, we train the same neural network model
using different starting values (generated by multiple random seeds) and then construct a
final prediction by averaging forecasts from all separately trained models. This approach
reduces the prediction variance, as different starting values may produce different forecasts,
given the stochastic nature of the optimization process. In addition, ensembling increases
the overall robustness of the model since the impact of a local fit that is only sub-optimal is
reduced (cf. Gu, Kelly, and Xiu, 2020).

All algorithms of the neural network combination model are implemented in R using the
Keras interface to the TensorFlow library (see Chollet et al., 2015).

3.2.5. Hyperparameter tuning

Both the shrinkage and the neural network combination models rely on a choice of
hyperparameters. These may have a crucial impact on a model’s prediction accuracy as
they define its structure and behavior.10 While the shrinkage models restrict to a maximum
of two hyperparameters—the balancing parameter for the elastic net (which we pre-select)
and the regularization parameter—neural networks rely on a variety of hyperparameters
by construction. These include, for example, the dropout rate, the regularization rate, the
learning rate, the number of epochs or the batch size.

Generally, there is little theoretical guidance for how to tune hyperparameters, that is,
finding the best set of hyperparameters for our data. Hence, we determine the hyperparameters
adaptively from the data via cross-validation (CV), which is the standard approach in the
machine learning literature. The general idea of cross-validation is to minimize the out-of-
sample loss by evaluating the model on unseen data, i.e. data that were not used to train the
model. Given the dependence in financial return data (and derived VaR and ES predicitions)

9Given that dropout and batch normalization, another regularization technique, are similar in spirit, we
omit the usually weaker batch normalization.

10Parameters controlling the learning rate and a model’s complexity are called hyperparameters (or,
synonymously, “tuning parameters”) to distinguish them from model parameters that are estimated on the
training data set.
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we cannot apply common cross-validation methods such as leave-𝜈-out or 𝐾-fold CV (see
Arlot, Celisse, et al., 2010).11 We therefore resort to the time-series cross-validation method
of Hart (1994) that accounts for the dependence in the data.12

As common in cross-validation, the estimation sample is divided into two disjoint time
periods (at each estimation step 𝑡) that maintain the temporal ordering of the data. The first,
or “training”, sub-sample is used to estimate (i.e. “train”) the model parameters, e.g. the
connection weights in a neural network, and is subject to a specific set of hyperparameter
values. The second, or “validation”, sub-sample is used for tuning the hyperparameters.
In particular, we construct pseudo out-of-sample forecasts for data points in the validation
sample based on the estimated model from the training sample.13 We then calculate the
average FZ loss associated to these forecasts. The “cross-validation loss” of the times-series
CV method, denoted by CV𝑡 , is therefore given by

CV𝑡 (ΩΩΩ) =
1

𝑡 − 𝑛min

𝑡−1∑︁
𝜏=𝑛min

𝐿𝐹𝑍
(
𝑟𝜏+1,VaR𝑐,𝜏+1|𝜏 (ΩΩΩ) ,ES𝑐,𝜏+1|𝜏 (ΩΩΩ)

)
, (3.18)

where ΩΩΩ is a given vector of hyperparameter values. VaR𝑐,𝜏+1|𝜏 and ES𝑐,𝜏+1|𝜏 denote the
combined VaR and ES prediction for 𝜏 + 1 estimated from the training sample (i.e. based on
information available up to 𝜏), which follows an expanding window scheme with 𝑛min as the
minimum number of observations. Similarly, the validation sample is also expanding, which
means that it gradually includes more recent observations but also retains the entire history
in the validation sample.14 The entire approach ensures that only past information is used to
generate forecasts, thus entailing robustness with respect to autocorrelation in the data (see
Hart and Lee, 2005).

From a pre-specified multi-dimensional hyperparameter space, we choose the subset
of hyperparameter values that minimizes the CV loss. For the shrinkage combination
models, which only require the selection of one tuning parameter, we create a simple grid
of hyperparameter values and evaluate every position in the grid. However, this procedure,
known as grid search, is computationally inefficient for methods with many hyperparameters
and a huge search space. For the neural network combination models, we therefore resort

11Applying standard cross-validation methods to financial return data results in a violation of the fundamental
assumption of cross-validation, which states that estimation and evaluation samples need to be independent
(Arlot, Celisse, et al., 2010).

12The time-series cross-validation method of Hart (1994) is also known as temporal order approach.
13The predictions in the validation set cannot be considered as truly out-of-sample as they are employed to

tune the hyperparameters, which are then used to estimate the final model (cf. Bianchi, Büchner, and Tamoni,
2021).

14We tested different specifications of the size of training and validation samples and set 𝑛min to 1000 days
in our application.
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to the random search approach of Bergstra and Bengio (2012), which is a technique that
randomly samples points from the hyperparameter grid to find the best solution for the built
model. The authors show that random search is empirically and theoretically more efficient
for hyperparameter optimization than grid search, given a large set of parameters to be tuned.

As the time-series cross-validation method of Hart (1994) is computationally very
expensive (especially for more complex models such as neural networks) we slightly adjust
the methodology and refrain from cross-validating at each estimation step. Instead, we
periodically tune the set of hyperparameters every few years (depending on the model
complexity) and use the optimized vector of hyperparameters for fitting and predicting over
the subsequent year(s). In particular, we find a tuning horizon of one year to be a suitable
choice for the shrinkage combination models, balancing performance and computational
burden. By contrast, we tune the neural network models every four years, given the advanced
model complexity. Unreported results show that the corresponding hyperparameters are
stable over the full sample period for this tuning horizon. Additionally, we randomly tested
other tuning horizons without any significant enhancements.

3.3. Research design

In the empirical application, we compare the predictions of the proposed machine learning
based combination approaches with forecasts of a large range of competing combination
approaches. This section outlines the corresponding research design, including the data,
the models to be combined, the set of competing combination techniques and the forecast
evaluation methodology. The empirical results are presented in Section 3.4.

3.3.1. Data description and estimation setup

We use daily price data of 12 major developed equity markets. In particular, we retrieve
the daily closing, high and low prices for the following equity indices from Bloomberg:
AEX (Netherlands), CAC 40 (France), DAX (Germany), FTSE 100 (UK), Hang Seng
(Hongkong), IBEX 35 (Spain), KOSPI (Korea), Nikkei 225 (Japan), OMX 30 (Sweden),
SMI (Switzerland), S&P 500 (US) and S&P/ASX 200 (Australia). The daily closing prices
are used to compute daily log returns, whereas high and low prices are employed for deriving
the realized range estimator (see Section 3.3.2). The sample spans the period from May 11,
1992 to May 7, 2021, giving rise to a total of 7706 trading days for each stock index.

Table 3.1 presents full-sample summary statistics on the daily return series of all stock
indices. Average annualized returns range from 1.57% for the Nikkei 225 to 8.38% for the
OMX 30, and annualized standard deviations range from 16.35% (S&P/ASX 200) to 24.41%
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(Hang Seng). We observe mild negative skewness (around -0.30) for most of the equity
indices. All return series exhibit substantial kurtosis (between 7.77 and 21.40).

Table 3.1: Descriptive statistics of the daily return data

Mean Sd Min Max Skewness Kurtosis

AEX 5.38 20.85 -11.38 10.03 -0.26 10.44
CAC 40 3.77 21.72 -13.10 10.59 -0.20 9.02
DAX 7.27 22.26 -13.05 10.80 -0.24 8.93
FTSE 100 3.21 17.68 -11.51 9.38 -0.31 10.90
Hang Seng 5.44 24.41 -14.73 17.25 0.00 12.90
IBEX 35 3.99 22.28 -15.15 13.48 -0.31 10.62
KOSPI 5.59 25.45 -12.80 11.28 -0.18 9.46
Nikkei 225 1.57 22.71 -12.11 13.23 -0.24 8.90
OMX 30 8.38 22.39 -11.17 11.02 -0.00 7.77
SMI 5.83 17.81 -10.13 10.79 -0.30 10.30
S&P 500 7.75 18.18 -12.77 10.96 -0.43 14.98
S&P/ASX 200 5.86 16.35 -13.18 11.29 -1.00 21.40

This table reports the descriptive statistics of the daily log-returns spanning the period from May 11, 1992
to May 7, 2021. We report the annualized mean, annualized standard deviation (Sd), minimum (Min),
maximum (Max), skewness and kurtosis in percentage points.

Figure 3.1 complements the summary statistics by depicting the daily log-return series
of the 12 stock indices. All series show the typical stylized facts of financial return series,
including periods of volatility clustering. Notably, we indicate periods of recession, as
determined by the National Bureau of Economic Research (NBER). Our sample includes the
dot-com bubble (April 2001 to December 2001), the global financial crisis (January 2008 to
July 2009) and the still prevalent COVID-19 crisis (March 2020 to sample end). Strikingly,
all equity indices did not experience their minimum return in the global financial crisis but
in the recent COVID-19 crisis. From a tail risk modeling and management perspective it is
therefore of particular interest to take a closer look at the commonalities and differences of
the considered models in these two extreme recessions, see Section 3.4.5.

For predicting one-day-ahead VaR and ES we follow common convention and consider
1% and 5% probability levels (e.g. Kuester, Mittnik, and Paolella, 2006). Additionally, we
include the 2.5% probability level because it is the new standard according to the third Basel
Accord (Basel Committee on Banking Supervision, 2016). As we require data to estimate
the individual models, to estimate the set of hyperparameters and to combine the forecasts,
we split our data as follows. First, we use a rolling window of 1000 days, which we move
forward by one day at a time, to re-estimate the parameters of the individual forecasting
methods. Then, we are left with 6706 daily VaR and ES forecasts per stock index that serve
as input to the estimation of the combination weights. Following Bayer (2018), who shows
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Figure 3.1: Daily return series over time. This figure shows the daily log-returns series for the 12 equity
indices. The sample spans the period from May 11, 1992 to May 7, 2021. The grey areas indicate recessions
as determined by the National Bureau of Economic Research: the dot-com bubble (April 2001 to December
2001), the global financial crisis (January 2008 to July 2009) and the still prevalent COVID-19 crisis (March
2020 to sample end).

that it is reasonable to use all available information15, we implement a recursively expanding
window approach with 1000 days as starting size for this combination exercise.

For all combination methods that require hyperparameter tuning, we adopt the time-series
cross-validation approach using 200 iterations of grid search (shrinkage models) or random
search (neural networks), with the full search grid documented in Table 3.A.1. As described
in Section 3.2.5, we tune the shrinkage models once per year and the neural networks every
four years. In every tuning step, we divide the in-sample data into a training and a validation
sample, which both recursively increase by one (four) year(s) with every tuning step.

In the non-tuning periods, we refit the models using the last tuned hyperparameters.
As machine learning models generally require a large sample size to estimate the model
parameters due to their rich parametrization, we pool the individual VaR and ES forecasts
from all stock indices in the machine learning combination models. We argue that the
index-specific information is already captured by the individual methods. Unreported results

15Bayer (2018) evaluates the out-of-sample predictive performance of VaR combination forecasts using
penalized quantile regressions for a recursively expanding window and rolling windows of the sizes 250, 500,
1000 and 1500. The author documents that it is reasonable to use all available information for the estimation of
the combination weights and therefore recommends to use the recursively expanding window approach.
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show that the pooled estimation is even more effective, given that more data and thus more
information can be used.

For a fair comparison, we apply the same expanding window of data to all combination
methods that do not require hyperparameter tuning. Thus, we obtain an out-of-sample
evaluation period that ranges from June 3, 1999 to May 7, 2021, consisting of 5706 daily
VaR and ES forecasts for each combination method and index series.

3.3.2. Description of the individual methods

Combining is most promising when the individual methods use different pieces of information
or use information in different ways. Hence, we consider a large collection of different
methods. The selected methods cover frequently used parametric, semi-parametric and
non-parametric techniques and include methods capturing intraday volatility. We follow the
implementation of the authors of the original paper (if possible). Moreover, we omit detailed
descriptions of each estimator in the interest of space, and instead refer the interested reader
to the original papers.

Historical simulation

The historical simulation (HS) approach predicts the next day’s VaR by the empirical
𝛼-quantile, 𝑄𝛼(·), of the past 𝑤 returns and the next day’s ES by the average of the returns
beyond the VaR:

V̂aR𝑡+1|𝑡 = 𝑄𝛼
(
{𝑟𝜏}𝑡𝜏=𝑡−𝑤+1

)
, (3.19)

ÊS𝑡+1|𝑡 =
1
𝛼𝑤

𝑡∑︁
𝜏=𝑡−𝑤+1

𝑟𝜏 1{𝑟𝜏 ≤ VaR𝑡+1|𝑡}. (3.20)

Weighted historical simulation

While the standard HS gives the same weights to all past returns, the weighted historical
simulation (WHS) technique of Boudoukh, Richardson, and Whitelaw (1998) employs a
geometrically declining weighting scheme, giving higher importance to more recent returns.
Specifically, each of the most recent 𝑤 returns is associated with a weight, which is computed
as 𝜂𝑖 = 𝜂𝑖−1(1 − 𝜂)/(1 − 𝜂𝑤) for return 𝑖. We set 𝜂 = 0.99. After ordering the returns in
ascending order, we sum the corresponding weights until 𝛼 is reached, starting from the
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lowest return. The VaR is then the return corresponding to the last weight used in the
previous sum:

V̂aR𝑡+1|𝑡 =
𝑡∑︁

𝜏=𝑡−𝑤+1
𝑟𝜏 1

{
𝑤∑︁
𝑖=1

𝜂𝑖1{𝑟𝑡+1−𝑖 ≤ 𝑟𝜏} = 𝛼

}
. (3.21)

As for historical simulation, the ES is computed as the average of the returns beyond the
VaR (cf. Equation 3.20).

Location-scale models

The probably most prominent and flexible approach to estimate and predict VaR and ES is
the class of location-scale models. The underlying assumption of this class of models is
that returns can be decomposed into 𝑟𝑡 = 𝜇𝑡 + 𝜎𝑡𝑧𝑡 , where 𝜇𝑡 is the mean of the conditional
distribution of 𝑟𝑡 , 𝜎𝑡 is the volatility process and 𝑧𝑡 is an independent and identically
distributed innovation term with mean zero and unit variance. Assuming that returns are not
predictable we set the conditional mean to zero. Then, corresponding VaR and ES forecasts
can be computed as

V̂aR𝑡+1|𝑡 = �̂�𝑡+1|𝑡𝑄𝛼(𝑧𝑡), (3.22)

ÊS𝑡+1|𝑡 = �̂�𝑡+1|𝑡ẼS𝛼(𝑧𝑡), (3.23)

where 𝜎𝑡+1|𝑡 is the one-step-ahead volatility forecast, 𝑄𝛼(𝑧𝑡) is the unconditional 𝛼-quantile
of the innovations and ẼS𝛼(𝑧𝑡) is the unconditional 𝛼-ES of the innovations.

Given the vast amount of volatility models, we concentrate on the most prominent models,
which we divide into three broad categories similar to Louzis, Xanthopoulos-Sisinis, and
Refenes (2014). First, among the classical GARCH-type models we implement the standard
GARCH(1,1) of Bollerslev (1987) and the GJR-GARCH(1,1) of Glosten, Jagannathan,
and Runkle (1993), which additionally accounts for the leverage effect by responding
asymmetrically with respect to positive and negative returns. As widely used among
practitioners (due to its simple implementation), we also include the exponential smoothing
RiskMetrics method (RiskMetrics Group, 1996). These interday models take the form

GARCH(1, 1) 𝜎2
𝑡 = 𝜔 + 𝛾𝜀2

𝑡−1 + 𝛽𝜎2
𝑡−1, (3.24)

GJR-GARCH(1, 1) 𝜎2
𝑡 = 𝜔 + 𝛾𝜀2

𝑡−1 + 𝛽𝜎2
𝑡−1 + 𝛿𝜀2

𝑡−11{𝜀𝑡−1 < 0}, (3.25)

RiskMetrics 𝜎2
𝑡 = (1 − 𝜆)𝑟2

𝑡−1 + 𝜆𝜎2
𝑡−1 with 𝜆 = 0.94, (3.26)

where 𝜀𝑡 = 𝜎𝑡𝑧𝑡 .
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The second and third category of volatility models were developed to exploit the informa-
tion content of high-frequency intraday data and thus require us to estimate intraday volatility.
The most common estimator in the literature is the realized variance estimator, calculated
as the sum of squared intraday returns (see Liu, Patton, and Sheppard, 2015). However, as
intraday data can be expensive and given the ready availability of daily high and low prices,
an alternative way of capturing intraday volatility is to use the realized range estimator
(Parkinson, 1980; Alizadeh, Brandt, and Diebold, 2002; Brownlees and Gallo, 2010; Gerlach
and Chen, 2015; Taylor, 2020), which takes the form RV𝑡 = 1/(4 ln(2))

(
𝑝high,𝑡 − 𝑝low,𝑡

)2,
where 𝑝high,𝑡 is the largest log-price and 𝑝low,𝑡 is the lowest log-price between open- and
close-of-day 𝑡.

The second category of volatility models consists of the realized GARCH model of
Hansen, Huang, and Shek (2012). This model retains a GARCH-type structure but instead of
utilizing squared interdaily returns, it employs realized volatility measures, denoted by RV𝑡 :

ln(𝜎2
𝑡 ) = 𝜔 + 𝛽 ln(𝜎2

𝑡−1) + 𝛾LRV𝑡−1, (3.27)

LRV𝑡 = 𝜓 + 𝜑 ln(𝜎2
𝑡 ) + 𝜋(𝑧𝑡) + 𝑢𝑡 , (3.28)

where LRV𝑡 = ln(RV𝑡). The term 𝜋(𝑧𝑡) = 𝜋1𝑧𝑡 + 𝜋2(𝑧2𝑡 − 1) captures the asymmetric impact
of negative shocks on the volatility process and 𝑢𝑡 ∼ i.i.d.(0, 𝜎2

𝑢 ) is mutually independent
with 𝑧𝑡 . For further details on the realized GARCH model, see Hansen, Huang, and Shek
(2012) or Louzis, Xanthopoulos-Sisinis, and Refenes (2014).

The third category of volatility models comprises heterogeneous autoregressive (HAR)
realized volatility models (Corsi, 2009; Corsi and Renò, 2012; Louzis, Xanthopoulos-Sisinis,
and Refenes, 2012), which account for the long-memory property of the realized volatility
measures and fat tails. In particular, we implement the leverage HAR model of Corsi and
Renò (2012), which extends the basic HAR structure by accounting for leverage effects:

LRV𝑡 = 𝑐 + 𝛾(𝑑)LRV(𝑑)
𝑡−1 + 𝛾(𝑤)LRV(𝑤)

𝑡−1 + 𝛾(𝑚)LRV(𝑚)
𝑡−1

+ 𝜑(𝑑)𝜐
(𝑑)
𝑡−1 + 𝜑(𝑤)𝜐

(𝑤)
𝑡−1 + 𝜑(𝑚)𝜐

(𝑚)
𝑡−1 + 𝑢𝑡 ,

(3.29)

where 𝑢𝑡 ∼ i.i.d.𝑁(0, 𝜎2
𝑢 ). Furthermore, LRV(ℎ)

𝑡−1 and the leverage component 𝜐(ℎ)
𝑡−1 are aver-

aged over the common frequencies (h=d=1 for daily, h=d=5 for weekly, h=d=22 for monthly).
That means, LRV(ℎ)

𝑡−1 = 1/ℎ∑ℎ
𝑗=1 LRV𝑡− 𝑗 and 𝜐(ℎ)

𝑡−1 = min
(
1/ℎ∑ℎ

𝑗=1 r𝑡− 𝑗 , 0
)
. As realized

volatility and returns are not jointly modeled within HAR models, we implement the two-step
approach of Giot and Laurent (2004). The first step is to calculate the conditional expectation
of the realized volatility using the transformation RV𝑡 |𝑡−1 = exp

(
LRV𝑡 − �̂�𝑡 + 1

2 �̂�
2
𝑢

)
, where

𝑢𝑡 refers to the estimated residual and the residual variance �̂�2
𝑢 is modeled as a GARCH(1,1)
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process (Louzis, Xanthopoulos-Sisinis, and Refenes, 2014). The final step then models the
daily conditional variance as a linear function of the estimated conditional realized volatility
forecast: 𝜎2

𝑡 = 𝜔1 + 𝜔2 RV𝑡 |𝑡−1.
For estimating the quantile and the ES of the innovation process 𝑧𝑡 (denoted by 𝑄(𝑧𝑡)

and ẼS(𝑧𝑡)), we assume three alternative approaches: First, we implement fully parametric
methods given by the normal (N) and the skewed 𝑡-distribution (SSTD). Second, we
employ the semi-parametric filtered historical simulation (FHS) method of Barone-Adesi,
Giannopoulos, and Vosper (1999), which applies the historical simulation approach, described
in Section 3.3.2, to the standardized residuals 𝑧𝑡 . Third, we use extreme value theory (EVT)
and apply the peak-over-threshold method to the tail of the innovation distribution (cf. McNeil
and Frey, 2000). For details on these tail models see e.g. Louzis, Xanthopoulos-Sisinis, and
Refenes (2012) or Happersberger, Lohre, and Nolte (2020).

Combining the five variance processes with the four assumptions on the innovations
yields a total of 20 location-scale models. Given the (from a machine learning perspective)
small sample we have at hand, we do not use all combinations in our empirical study and
pre-select a few models. In particular, we restrict to models that are successfully applied
in other studies in the VaR and ES literature or that are popular among practitioners in the
finance industry.

CAViaR-EVT

The conditional autoregressive VaR (CAViaR) class of models introduced by Engle and
Manganelli (2004) directly models the conditional quantile rather than the whole return
distribution by means of quantile regression. Although modeling VaR directly has some
advantages—no explicit distributional assumption for the time series behavior of returns is
needed—it does not consider on how model ES. This limitation is addressed by Manganelli
and Engle (2004). The first step of their approach is to estimate a CAViaR model for a tail
quantile that is not as extreme as the VaR of interest (as Manganelli and Engle we choose
the 7.5% quantile). Specifically, we adopt the asymmetric slope CAViaR model due to its
ability to accommodate the leverage effect:

𝑞𝜃𝑡 = 𝛽0 + 𝛽1𝑞
𝜃
𝑡−1 + 𝛽2 max [𝑟𝑡−1, 0] + 𝛽3 max [−𝑟𝑡−1, 0] , (3.30)

where 𝑞𝜃𝑡 denotes the less extreme 𝜃 quantile.
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In the second step, peak-over-threshold EVT is applied to the exceedances beyond the
𝜃-quantile after standardizing the exceedances by the corresponding quantile estimates.
Based on the fitted extreme value distribution we can then compute the VaR and ES forecasts:

V̂aR𝑡+1|𝑡 = 𝑞𝜃
𝑡+1|𝑡 (1 + 𝑧𝑡) , (3.31)

ÊS𝑡+1|𝑡 = 𝑞𝜃
𝑡+1|𝑡

(
1 + 𝛾 − 𝜉𝑢

1 − 𝜉

)
, (3.32)

where 𝑧𝑡 denotes the EVT estimate of the quantile of the standardized residuals, 𝛾 and 𝜉 are
EVT parameters and 𝑢 is the extreme value threshold.

GAS

Patton, Ziegel, and Chen (2019) leverage “generalized autoregressive score” (GAS) models
and the FZ loss function to estimate semi-parametric VaR and ES forecasts. Their models
are semi-parametric in that they impose parametric structures for the dynamics of ES and
VaR according to the GAS framework proposed by Creal, Koopman, and Lucas (2013) and
Harvey (2013), but are completely agnostic about the conditional distribution of returns
(aside from regularity conditions required for estimation and inference). We adopt the
one-factor GAS model, in which both VaR and ES are driven only by a single variable, 𝜅𝑡 ,

V̂aR𝑡+1|𝑡 = 𝑎 exp(𝜅𝑡+1), (3.33)

ÊS𝑡+1|𝑡 = 𝑏 exp(𝜅𝑡+1), (3.34)

where 𝑏 < 𝑎 < 0 and

𝜅𝑡 = 𝛽𝜅𝑡−1 + 𝛾
1

𝑏 exp
(
ES𝑡−1|𝑡−2

) (
1
𝛼
1{𝑟𝑡−1 ≤ 𝑎 exp

(
VaR𝑡−1|𝑡−2

)
}𝑟𝑡−1 − 𝑏 exp

(
ES𝑡−1|𝑡−2

) )
.

3.3.3. Competing combination approaches

This section outlines a range of competing forecast combination approaches. Most approaches
are easy to implement, only the difference spacing and relative score method require a proper
dynamic optimization procedure. All approaches induce convex weights, i.e. their weights
are non-negative and sum to one.
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Average

The most naive combination approach simply averages all individual methods’ forecasts.
The corresponding combination weights are given by

𝛽VaR
𝑚,𝑡 = 𝛽ES

𝑚,𝑡 =
1
𝑀
, ∀ 𝑚 = 1, ..., 𝑀. (3.35)

Trimmed average

Timmermann (2006) proposes the trimmed average combination approach, which uses the
individual model’s relative rankings to discard the models with the worst performance by
setting the corresponding weights to zero. This method is found to be more robust than
the simple average, since only the best performing models are included in the combination
forecast (Bayer, 2018). The corresponding weights take the form

𝛽VaR
𝑚,𝑡 = 𝛽ES

𝑚,𝑡 =


1

⌊𝜂𝑀⌋ , if 𝑅𝑚,𝑡 ≤ 𝜂𝑀

0, else
∀ 𝑚 = 1, ..., 𝑀, (3.36)

where 𝑅𝑚,𝑡 is the rank of model 𝑚 at time 𝑡 with respect to the average FZ loss up to time
𝑡, given by ∑𝑡−1

𝜏=0 𝐿𝐹𝑍
(
𝑟𝜏+1,VaR𝑚,𝜏+1|𝜏,ES𝑚,𝜏+1|𝜏

)
. We set 𝜂 = 0.25, which means that we

average over the forecasts of the four best models of the history up to time 𝑡.

Trimmed best-average

The trimmed best-average method according to Diebold and Shin (2019) follows the first
step of the trimmed average method by trimming the models with the worst performance. In
a second step, it computes the average weights of each combination of the remaining models
and selects the combination with the best historical performance.

Inverse loss

Timmermann (2006) suggests to weight the forecasts inversely proportional to the historical
losses of the individual models,

𝛽VaR
𝑚,𝑡 = 𝛽ES

𝑚,𝑡 =
(𝐿𝑚,𝑡)−1∑𝑀
𝑛=1(𝐿𝑛,𝑡)−1

, ∀ 𝑚 = 1, ..., 𝑀. (3.37)
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Inverse rank

A more robust alternative to the inverse loss weighting scheme is the inverse rank approach16,
which weights the forecasts inversely proportional to their rank instead of the losses directly,
since ranks are expected to be less sensitive to outliers than losses (see Timmermann, 2006;
Bayer, 2018),

𝛽VaR
𝑚,𝑡 = 𝛽ES

𝑚,𝑡 =
(𝑅𝑚,𝑡)−1∑𝑀
𝑛=1(𝑅𝑛,𝑡)−1

, ∀ 𝑚 = 1, ..., 𝑀. (3.38)

Difference spacing

Taylor (2020) proposes a similar combination approach to the minimum loss method of
Happersberger, Lohre, and Nolte (2020), described in Section 3.2.2. The only difference
is that Taylor (2020) does not combine ES forecasts, but instead combines forecasts of the
difference between ES and VaR. This allows us to clearly distinguish the VaR accuracy from
the ES accuracy, given that the ES depends on the VaR as being the mean of the exceedances
beyond the VaR. The corresponding combination weights can be obtained as follows,(

𝛽𝛽𝛽
VaR
𝑡 , 𝛽𝛽𝛽

ES
𝑡

)
= arg min
𝛽𝑉𝑎𝑅
𝑡 , 𝛽𝐸𝑆

𝑡

1
𝑡

𝑡−1∑︁
𝜏=0

𝐿𝐹𝑍

(
𝑟𝜏+1,VaR𝑐,𝜏+1|𝜏

(
𝛽𝛽𝛽VaR
𝑡

)
,ES𝑐,𝜏+1|𝜏

(
𝛽𝛽𝛽VaR
𝑡 , 𝛽𝛽𝛽ES

𝑡

))
,

(3.39)

where

VaR𝑐,𝜏+1|𝜏
(
𝛽𝛽𝛽VaR
𝑡

)
=

(
V̂aR𝜏+1|𝜏

)′
𝛽𝛽𝛽VaR
𝑡 , (3.40)

ES𝑐,𝜏+1|𝜏
(
𝛽𝛽𝛽VaR
𝑡 , 𝛽𝛽𝛽ES

𝑡

)
=

(
V̂aR𝜏+1|𝜏

)′
𝛽𝛽𝛽VaR
𝑡 +

(
ÊS𝜏+1|𝜏 − V̂aR𝜏+1|𝜏

)′
𝛽𝛽𝛽ES
𝑡 . (3.41)

Relative score

Following Bates and Granger (1969) and Shan and Yang (2009), Taylor (2020) suggests to
combine VaR and ES forecasts by setting the combination weights to be inversely proportional
to the (individual) models’ relative historical performance, that is,

𝛽VaR
𝑚,𝑡 = 𝛽ES

𝑚,𝑡 = 𝛽𝑚,𝑡 =
exp

(
−𝜆∑𝑡−1

𝜏=0 𝐿𝐹𝑍

(
𝑟𝑡 , V̂aR𝑚,𝜏+1|𝜏, ÊS𝑚,𝜏+1|𝜏

))
∑𝑀
𝑛=1 exp

(
−𝜆∑𝑡−1

𝜏=0 𝐿𝐹𝑍

(
𝑟𝑡 , V̂aR𝑛,𝜏+1|𝜏, ÊS𝑛,𝜏+1|𝜏

)) , ∀ 𝑚 = 1, ..., 𝑀,

(3.42)

16The inverse rank approach is also called triangular weighting scheme (see Timmermann, 2006).
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where 𝜆 is a tuning parameter that controls how much the weights rely on the loss performance.
High values of 𝜆 entail using the best performing individual models, whereas values of
𝜆 close to zero reduce the method to the simple average. We optimize 𝜆 following the
hyperparameter tuning approach as described in Section 3.2.5.

Shrinkage-to-equal

Stock and Watson (2004) propose shrinkage towards the average of forecasts. Let 𝛽VaR
𝑚,𝑡 and

𝛽ES
𝑚,𝑡 be the minimum loss estimates of the weight on the 𝑚-th model. Then, the combination

weights considered by the authors take the form

𝛽VaR
𝑚,𝑡 = 𝜓𝛽VaR

𝑚,𝑡 + (1 − 𝜓)/𝑀, (3.43)

𝛽ES
𝑚,𝑡 = 𝜓𝛽ES

𝑚,𝑡 + (1 − 𝜓)/𝑀, (3.44)

𝜓 = max (0, 1 − 𝜅𝑀/(𝑇 − 𝑀 − 2)) , (3.45)

where 𝜅 regulates the strength of shrinkage. Similar to Stock and Watson (2004) we focus
on 𝜅 = 0.5. If the in-sample size 𝑇 rises relative to 𝑀, the minimum loss estimate gets a
larger weight.

Single best

This combination method simply uses the best model from the previous period, that means

𝛽VaR
𝑚,𝑡 = 𝛽ES

𝑚,𝑡 =


1 if 𝑅𝑚,𝑡 = 1

0, else
∀ 𝑚 = 1, ..., 𝑀. (3.46)

3.3.4. Forecast evaluation

To assess the forecasting performance of the proposed ES and VaR combination approaches
we adopt the backtesting framework of Happersberger, Lohre, and Nolte (2020). That means,
we first employ various VaR and ES tests that are popular in the literature to gauge the
forecasts’ statistical accuracy.17 In a second step, we investigate the forecasts’ performance
in a simple risk targeting strategy to check their relevance from a portfolio management
perspective.

17See Bayer and Dimitriadis (2020) and Happersberger, Lohre, and Nolte (2020) for a summary of the
applied VaR and ES tests and the corresponding original papers for a detailed description.
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Backtesting VaR and ES forecasts with calibration tests

Traditionally, VaR and ES forecasts are evaluated using backtests that Nolde and Ziegel
(2017) classify as unconditional and conditional calibration tests. The objective of such tests
is to consider the ex ante risk forecasts from a specific model and compare them with the ex
post realized returns.

We consider four common VaR calibration tests that are based on evaluating the
distribution of VaR violations. That means, counting and analyzing those realized return
observations that fall below the predicted VaR level for a given estimation period. (1) The
test for unconditional coverage of Kupiec (1995) examines the frequency of violations, which
shall be consistent with the quantile of loss that the VaR measure is intended to reflect.
However, Kupiec’s likelihood ratio test does not account for serial independence of the
number of violations. (2) The conditional coverage test of Christoffersen (1998) offers a
remedy by jointly testing the frequency as well as the independence of violations, assuming
that VaR violations are modeled with a first-order Markov chain. This test could reject a VaR
model that generates too many clustered violations. To account for clustering of extremes
we further consider (3) the duration test of Christoffersen and Pelletier (2004), which
examines the duration between violations by testing the null hypothesis that the duration
between violations is exponentially distributed against a Weibull alternative. A more recent
alternative is (4) the generalized residual test proposed by Patton, Ziegel, and Chen (2019),
which allows to test both VaR and ES because it is derived from the FZ loss function.
Here, standardized versions of the generalized residuals, given by 1{𝑟𝜏 ≤ V̂aR𝑡} − 𝛼 and
1
𝛼
1{𝑟𝜏 ≤ V̂aR𝑡} 𝑟𝑡

ÊS𝑡

− 1, are simply regressed on elements of the information set available at
the time the forecast was made. As these standardized generalized residuals are conditionally
mean zero under the correct specification, forecast optimality can be assessed by testing that
all parameters in these regressions are zero, against a two-sided alternative.

In addition to the generalized residual test we consider three other ES calibration tests.
First, the ES regression test of Bayer and Dimitriadis (2020) adopts a similar approach to
that of Patton, Ziegel, and Chen (2019), with the difference of only needing ES forecasts as
input parameters. The idea of this Wald-type test is to regress the realized returns on the
conditional ES forecasts. Intercept and slope parameters are then evaluated, required to be
zero and one for correct ES forecasts. Second, the exceedance residual test of McNeil and
Frey (2000) relies on the ES residuals that exceed VaR, given by (𝑟𝑡 − ÊS𝑡)1{𝑟𝑡 ≤ V̂aR𝑡},
which should have zero mean under the null hypothesis of a correctly specified risk model. A
bootstrap hypothesis test then checks whether the expected value of the exceedance residuals
is zero. Finally, we perform the conditional calibration test of Nolde and Ziegel (2017),
which uses a Wald-type test statistic based on the moment functions of VaR and ES.
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Relative evaluation of VaR and ES forecasts

As sophisticated VaR and ES forecasting methods often pass the majority of calibration tests,
it is important to consider tests that allow for relative comparisons between the different
methods. To this end, we evaluate the relative precision of the forecasts by comparing the FZ
losses by means of the model confidence set (MCS) testing framework of Hansen, Lunde,
and Nason (2011), similar to Bernardi and Catania (2016), Bayer (2018) or Taylor (2020).
The MCS procedure consists of a sequence of equivalence tests (cf. Diebold and Mariano,
1995), which allows to construct a set of “superior” models. In particular, at each iteration
we evaluate the null hypothesis of equal predictive ability (EPA), given by E[𝑑𝑖 𝑗 ] = 0 for all
𝑖, 𝑗 = 1, ..., 𝑀 , where 𝑑𝑖 𝑗 is the loss differential between the forecasts of model 𝑖 and model 𝑗 .
Whenever the hypothesis of EPA among all forecasts can be rejected, the worst performing
model is discarded and the MCS algorithm starts again. The iterative procedure stops if
the null hypothesis is accepted for each model in the set. Then, we are left with a set of
models that statistically cannot be further distinguished at a pre-specified significance level
(Bernardi and Catania, 2016; Bayer, 2018). We follow Hansen, Lunde, and Nason (2011)
and implement the MCS at the 75% confidence level.

Backtesting VaR and ES forecasts with risk targeting strategies

Risk targeting, also known as constant risk, target risk, or inverse risk weighting, is a widely
applied asset allocation strategy in the investment management industry if the aim is to
protect an investment against extreme negative market moves. Taking advantage of the
negative relationship between risk and return, this strategy controls portfolio risk over time by
dynamically shifting between a risky and a risk-free asset (Hocquard, Ng, and Papageorgiou,
2013; Perchet et al., 2015; Bollerslev, Hood, et al., 2018b). The exposure to the risky asset
is systematically adjusted conditional on its current risk (forecast) in order to maintain a
predefined target risk level. Specifically, the exposure simply calculates as 𝜌/𝜌𝑡(𝑟𝑡+1), where
𝜌(·) is a risk measure, typically VaR or ES, 𝜌 is the predefined target risk level and 𝜌𝑡(𝑟𝑡+1)
is the level of ex-ante risk of the risky asset. As the latter is unknown at time 𝑡, we utilize a
forecast based on the information available at time 𝑡. This makes the risk targeting strategy
perfectly suited for evaluating the forecasting performance of VaR and ES methods from a
portfolio management perspective.18

18See Happersberger, Lohre, and Nolte (2020) for further details on the risk targeting strategy.
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3.4. Empirical analysis

This section presents the forecasting results of the empirical study outlined in the previous
section, including the evaluation of the predictors’ relative importance, statistical backtesting
and a portfolio management application.19

3.4.1. Relative importance of the individual methods

In order to obtain some intuition on how the combination methods select their predictors and
estimate the corresponding weights, Figure 3.1 shows importance scores of the individual
methods for all forecast combination methods at the 1% probability level. For the shrinkage
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Figure 3.1: Individual methods’ importance. This figure shows the importance of the individual methods
for all combination approaches at the 1% probability level. The figures are the average ES combination weights
for the shrinkage and competing models across time and all 12 equity indices over the period from June 3,
1999 to May 7, 2021. For the neural network combination models, the figures are the mean of the permutation
feature importance scores calculated every four years. The darker the red tone, the higher the importance. The
right part of the figure shows the total importance of each individual method; the bars represent the sum of
scores across all combination approaches.

and competing combination methods we report the average ES combination weights across
time and equity indices over the out-of-sample period covering 5706 daily observations.
For the neural network combination models we compute permutation feature importance

19We provide details on both the individual and combination risk forecasts in the appendix. Table 3.A.2 and
Table 3.A.3 report the summary statistics of and correlations between the different individual 5% ES forecasts
for the S&P500. Figure 3.B.1, Figure 3.B.2, Figure 3.B.3 and Figure 3.B.4, Figure 3.B.5, Figure 3.B.6 show
the VaR and ES forecasts over time for both the individual and combination methods at all three probability
levels, illustrated for the S&P500.
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scores20 every four years and report the corresponding average. The right part of the chart
summarizes the total importance of the individual methods by summing up the average scores
across the combination methods. We observe a dominance of the realized range methods,
which may be explained by their informational advantage: they process slightly more price
information than the standard forecasting methods (daily high and low prices versus closing
prices only). Among the realized range estimators, the Range-HAR-SSTD turns out to be
the most important predictor. In contrast, the methods with the lowest importance scores
are the GARCH-N, HS and GAS method, which even negatively contribute to VaR and ES
forecasts for some combination approaches. These findings hold true for most combination
approaches and across all probability levels (see Figure 3.B.7 in the appendix for the 2.5%
and 5% probability level).

As the typical features of shrinkage models are not completely visible in Figure 3.1 (due
to netting effects that occur because of averaging), we examine Figure 3.2, showing the
temporal course of the 1% ES combination weights for the S&P 500 as an illustration.21

When evaluating the estimated weights of the ridge for that particular stock (Figure 3.2a) we
find very similar weights for the different individual models (except for the GAS, HS and
WHS). This finding reveals the grouping effect of the ridge penalty: the coefficients of highly
correlated variables are shrunk towards each other. In contrast, the LASSO model (Figure
3.2c) sets the weights of many individual methods to zero: from the common methods
only the CAViaR-EVT and the GJR-GARCH model have significant positive contributions
over time. The relevance of the CAViaR-EVT method is particularly interesting, as this
method does not perform well individually in the statistical backtests (see Table 3.A.4). This
finding shows that an individually weak performing method may still positively contribute
to combination forecasting and thus stresses the advantage of data-driven model selection
instead of manually deciding on the model components. The elastic net penalty equally
combines the shrinkage feature from the ridge and the selection characteristic from the
LASSO, as can be seen in Figure 3.2c. The egalitarian versions show similar features as
their standard counterparts with the exception that they do not select and/or shrink towards
zero but towards equal weights.

20Permutation feature importance is a model-agnostic ML interpretation method that measures a feature’s (or
predictor’s) importance by calculating the increase in the prediction error after permuting the feature (Molnar,
2019). See Breiman (2001) and Fisher, Rudin, and Dominici (2019) for further details.

21The temporal course of the 2.5% and 5% ES combination weights of the shrinkage models for the S&P
500 are given in Figure 3.B.8 and Figure 3.B.9, respectively.
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(a) Ridge (b) eRidge

(c) LASSO (d) eLASSO

(e) Elastic net (f) eElasticNet

(g) peLASSO (eRidge) (h) peLASSO (eLASSO)

(i) peLASSO (Average) (j) Minimum loss

Figure 3.2: Shrinkage combination weights over time. This figure shows the estimated combination weights
for the shrinkage methods’ 1% ES forecasts over the period from June 3, 1999 to May 7, 2021. Given that the
shrinkage methods are estimated pooled over all equity indices, the presented combination weights are the
same for all 12 equity indices.
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In contrast to the shrinkage models, the neural network combination model favors the
standard forecasting methods, with highest importance scores for the GJR-GARCH-SSTD
method. Still, the importance scores of the NN-1HL model have to be taken with a pinch of
salt given the weaknesses of the permutation feature importance method22 and the fact that
we only calculate these scores ever four years (due to computational restrictions).

Overall, we document that the estimated importance scores of the machine learning
combination models differ across time, suggesting that a data-driven selection of the
individual models may offer advantages compared to a simple average forecast.

3.4.2. VaR and ES calibration backtests

We start evaluating the VaR and ES combination forecasts’ accuracy by means of the
unconditional and conditional calibration tests as outlined in Section 3.3.4.23 Since
presenting the detailed results of the 8 VaR and ES backtests for all 12 equity indices and
three probability levels is not feasible, we condense the results by presenting the average
VaR violation rates, the average passing rates of the calibration tests and the corresponding
average 𝑝-values at the three probability levels, see Table 3.1.24 The VaR violation rate
divides the number of VaR violations by the sample size, whereas a calibration test counts
as passed if the p-value is greater than 0.10, indicating no evidence against optimality at the
10% significance level.

Our main findings are as follows: First, we find the VaR violation rates of almost
all methods close to the respective expected probability level. The best model differs by
probability level: the LASSO and relative score methods are the closest to the expectation
at the 1% level (0.98%), the ridge at the 2.5% level (2.50%) and the peLASSO (Average),
trimmed average and trimmed best average at the 5% level (4.99% 5.01%, 5.01%). Second
and more importantly, we document high test passing rates of over 70% across most methods
and probability levels. This finding applies to both the machine learning and the competing
combination methods. Nonetheless, LASSO, Elastic Net and Shrinkage-to-equal stay slightly
behind for the VaR tests at the 1% probability level (64%, 67%, 64%). In a similar vein, the
average combination model is slightly off for the VaR tests at the 5% level (62%). Third, the
corresponding average 𝑝-values of around 0.5 or higher indicate that most of the VaR and

22See Molnar (2019) for details.
23We report the results of the calibration backtests for the individual VaR and ES methods in Table 3.A.4 in

the appendix.
24Note that we do include the generalized residual test of Patton, Ziegel, and Chen (2019) at the 1%

probability level. Our findings indicate the test has low power at this probability level due to the low number of
tail events.
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Table 3.1: VaR and ES calibration backtesting

1% probability level 2.5% probability level 5% probability level

Viol VaR 𝑝VaR ES 𝑝ES Viol VaR 𝑝VaR ES 𝑝ES Viol VaR 𝑝VaR ES 𝑝ES

ML combination methods
Minimum loss 0.97 97 0.55 100 0.69 2.51 94 0.54 99 0.60 4.97 88 0.50 97 0.55

Ridge 0.92 86 0.51 88 0.55 2.50 94 0.54 100 0.58 4.84 69 0.41 94 0.53
LASSO 0.98 64 0.29 80 0.41 2.53 81 0.44 93 0.46 4.84 69 0.39 90 0.46
ElasticNet 0.94 67 0.39 87 0.51 2.52 85 0.55 94 0.55 4.81 77 0.42 93 0.50
eRidge 0.89 89 0.49 93 0.63 2.48 90 0.54 99 0.61 4.83 83 0.44 85 0.45
eLASSO 0.92 81 0.50 93 0.57 2.57 94 0.54 99 0.65 4.76 73 0.39 79 0.38
eElasticNet 0.95 94 0.51 92 0.60 2.55 92 0.55 99 0.60 4.79 77 0.40 81 0.40
peLASSO (eRidge) 0.92 94 0.54 100 0.68 2.43 92 0.55 99 0.60 4.83 83 0.44 93 0.48
peLASSO (eLASSO) 0.93 92 0.55 98 0.67 2.44 94 0.52 99 0.55 4.82 81 0.47 90 0.50
peLASSO (Average) 0.95 89 0.53 98 0.74 2.44 94 0.54 97 0.55 4.99 88 0.52 97 0.57

NN-1HL 0.90 81 0.54 88 0.65 2.41 88 0.44 89 0.56 4.73 77 0.41 90 0.47

Competing combination methods
Average 0.87 92 0.43 98 0.73 2.31 85 0.40 96 0.56 4.76 62 0.29 83 0.41
Trimmed average 1.03 97 0.53 97 0.59 2.51 81 0.49 94 0.52 5.01 88 0.51 93 0.52
Trimmed best-average 1.04 94 0.47 95 0.57 2.54 88 0.47 94 0.51 5.01 83 0.44 93 0.49
Inverse loss 0.88 92 0.45 98 0.73 2.32 90 0.45 99 0.61 4.77 71 0.31 88 0.46
Inverse rank 0.93 92 0.53 95 0.70 2.39 92 0.53 100 0.68 4.87 92 0.51 99 0.60
Difference spacing 0.97 94 0.60 95 0.63 2.53 94 0.50 96 0.57 4.96 88 0.51 96 0.57
Relative score 0.98 92 0.58 95 0.64 2.49 94 0.50 97 0.63 4.92 92 0.53 99 0.60
Shrinkage-to-equal 1.11 64 0.35 92 0.52 2.68 79 0.37 89 0.42 5.14 85 0.40 92 0.40
Single best 1.03 100 0.50 95 0.56 2.56 90 0.46 92 0.51 5.04 90 0.44 90 0.47

This table reports the results of the calibration backtests for evaluating the VaR and ES predictions calculated over the out-of-sample
period from June 3, 1999 to May 7, 2021. Viol is the average VaR violation rate over all equity indices as percentages. VaR and ES are
the average percentage of VaR and ES tests passed and 𝑝VaR and 𝑝ES are the corresponding average 𝑝-values over all VaR/ES tests
and equity indices.

ES tests are not passed scarcely but with sufficiently large buffer, so that a change in the test
significance level would not affect the results substantially.

3.4.3. Relative comparison of the combination approaches

In the previous section we have seen that the majority of (combination) methods pass most of
the calibration tests—a finding often documented in the corresponding literature (see Nolde
and Ziegel, 2017). Hence, this type of evaluation hardly helps to decide for a particular
forecasting method. Instead, they primarily help to get confidence about the forecast accuracy
in general. It is therefore of great importance to apply evaluation methods that allow for
direct forecast comparison in order to be able to differentiate between various methods.

Table 3.2 presents the results of the relative comparison between the different forecast
combination approaches.25 Again, it is not feasible to present the detailed results of all
equity indices. Hence, we aggregate the results and present averages or sums calculated
over all equity indices. First, we assess the forecasts’ accuracy using average realized losses,

25We report the results of the relative comparison between all forecasting methods in Table 3.A.5.
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Table 3.2: Relative comparison of the forecast combination approaches

1% probability level 2.5% probability level 5% probability level

rank best DM SSM 𝑝MCS rank best DM SSM 𝑝MCS rank best DM SSM 𝑝MCS

ML combination methods
Minimum loss 10.4 1 0.6 12 0.93 9.2 0 1.3 12 0.99 7.7 0 1.3 12 1.00

Ridge 7.3 1 2.1 12 0.98 8.2 1 2.6 12 1.00 11.2 0 0.6 12 0.99
LASSO 12.8 1 0.5 11 0.74 12.9 0 0.5 12 0.87 10.8 0 0.2 12 0.90
Elastic net 11.4 1 0.7 10 0.80 9.4 0 1.4 12 0.94 7.0 1 1.3 12 0.98
eRidge 7.9 1 1.6 12 1.00 7.8 0 2.3 12 1.00 3.5 4 3.0 12 1.00
eLASSO 9.5 0 0.7 12 1.00 16.2 0 0.2 11 0.69 10.0 0 0.6 12 0.90
eElasticNet 14.2 0 0.3 11 0.79 14.8 0 0.3 12 0.89 8.5 0 1.0 12 0.99
peLASSO (eRidge) 7.4 1 1.4 12 0.99 5.3 1 2.8 12 1.00 6.2 1 0.8 12 1.00
peLASSO (eLASSO) 9.2 1 0.8 12 1.00 7.5 0 1.6 12 1.00 9.8 0 0.6 12 1.00
peLASSO (Average) 10.2 0 0.8 12 0.95 3.2 4 2.9 12 1.00 6.7 1 1.1 12 1.00

NN-1HL 8.2 3 1.5 12 0.96 9.0 0 0.7 12 0.94 11.4 1 0.2 11 0.86

Competing combination methods
Average 14.4 0 0.3 11 0.74 15.5 0 0.0 10 0.65 18.0 0 0.0 10 0.64
Trimmed average 11.3 0 0.3 12 0.92 14.2 0 0.4 10 0.78 15.5 0 0.2 12 0.81
Trimmed best-average 11.6 0 0.4 12 0.86 14.1 0 0.3 10 0.75 16.7 0 0.1 11 0.77
Inverse loss 12.4 0 1.1 12 0.87 13.0 0 0.9 10 0.74 16.3 0 1.0 10 0.77
Inverse rank 5.5 0 2.3 12 1.00 5.8 3 2.4 12 0.99 8.3 1 1.9 12 1.00
Difference spacing 11.0 0 0.8 12 0.97 10.0 0 0.8 12 0.97 7.6 1 1.3 12 1.00
Relative score 6.8 1 1.4 12 1.00 4.4 3 2.0 12 1.00 4.3 2 1.8 12 1.00
Shrinkage-to-equal 16.4 0 0.0 9 0.62 16.2 0 0.0 11 0.71 13.5 0 0.2 12 0.95
Single best 12.0 1 0.6 12 0.90 13.1 0 0.2 10 0.76 17.0 0 0.1 10 0.64

This table reports the results of the relative comparison between the different forecast combination approaches over all 12 equity
indices. rank is the average rank based on the average FZ loss and best is the number of times a method is the best method. DM is the
average percentage of how often a specific method significantly outperforms another using pairwise modified Diebold-Mariano tests
based on the FZ loss function. Averages are calculated over all equity indices. SSM is the number of indices a method is included in
the superior set of models at the 75% level and 𝑝MCS is the average over the 12 individual MCS 𝑝-values based on the Tmax statistics
using 1000 iterations of the moving block bootstrap. The sample spans the period from June 3, 1999 to May 7, 2021.

similar to Taylor (2020) and Dimitriadis and Halbleib (2021). For each equity index, we rank
the methods according to their average FZ loss and report the average rank across equity
indices as well as the number of times a method is the best method. At the 1% probability
level, the inverse rank method has the highest average rank and the NN-1HL model is the
best model (i.e. with rank one) for three indices. Strong methods are also the ridge, eRidge
and peLASSO (eRidge) from the shrinkage combination methods as well as the relative
score approach from the competing methods. At the 2.5% probability level, the peLASSO
(Average) is the best method according to these performance methods, with similar strong
candidates as before: eRidge, peLASSO (eRidge), peLASSO (eLASSO), inverse rank and
relative score. At the 5% probability level, the best method is again one of the shrinkage
models. The eRidge method clearly dominates the other combination methods. Notably, for
8 of the 12 indices, one of the ML models is the best method.

Following Patton, Ziegel, and Chen (2019), we perform pairwise (modified) Diebold-
Mariano (DM) tests based on the FZ loss function as a second performance measure.
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Table 3.2 reports the average number of indices for which a specific method significantly
outperforms another method (based on the DM tests). For instance, the eRidge significantly
outperforms three methods (out of 19) on average at the 5% probability level, which is the
highest number at this level. Other strong methods are those candidates that are already
mentioned: ridge, eRidge, peLASSO (Average), peLASSO (eRidge), inverse rank.

Finally, we investigate the results of the model confidence set (MCS). Specifically, Table
3.2 reports the number of indices for which a method is included in the superior set of models
(SSM) at the 75% confidence level and the corresponding average MCS 𝑝-values. Given the
12 equity indices we consider in our study, the best possible value for each probability level
is 12. Similar to Bernardi and Catania (2016) and Bayer (2018), we can only eliminate a
small number of models using the MCS testing framework. Nevertheless, we can document
a slight superior performance of the ML combination methods. While the ML methods are
included in the SSM for almost all of the 12 equity indices, the competing models show only
similar results at the 1% probability level. This finding is corroborated by the average MCS
𝑝-values. These are generally higher for the ML combination methods, thus indicating a
higher probability of these methods to be included in the SSM.

The relative comparisons between the different combination approaches reveal some
further relevant insights, which we summarize in no particular order in the following:

(i) For each probability level, most shrinkage combination models outperform the
unpenalized minimum loss method, which we consider as the benchmark for the
shrinkage models.

(ii) The neural network combination model performs better than the majority of competing
models. Also, it is among the best ML models at the 1% and 2.5% probability level, but
is slightly trailing behind with respect to the shrinkage models at the 5% probability.

(iii) Non-parametric trimming methods show a poorer performance than data-driven
selection via LASSO.

(iv) There is no clear winner combination method, but rather a small selection of models
that are convincing. From the shrinkage models, the peLASSO models and the eRidge
consistently stand out across equity indices and probability levels. Likewise, the
inverse rank and relative score models from the competing combination methods are
also performing consistently well.

Summing up the main results from the relative comparison, we find that the shrinkage
combination models consistently exhibit a good relative accuracy in addition to convincing
calibration backtest results. Also, neural network combination models show a good
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performance with a few exemptions. Still, the excellent performance of the shrinkage models
questions whether the additional complexity of the neural network models needs to be taken.

3.4.4. Forecasting performance in calm and recessionary periods

In this section, we investigate the forecasting performance during different market phases.
Calm and recession periods are determined according to the National Bureau of Economic
Research (NBER). Thus, recession periods comprise the dot-com bubble (April 2001 to
December 2001), the global financial crisis (January 2008 to July 2009) and the COVID-19
crisis (March 2020 to sample end). Calm periods cover the remaining periods of the sample.

Table 3.3 shows the results of the calibration backtests as well as the relative comparison
between the various forecasting methods for the calm and recession periods, summarized
over all indices and probability levels. Similar to other studies (e.g. Halbleib and Pohlmeier,
2012), we find more VaR violations in recession than in calm periods across all forecasting
methods. Together with the fact that the violations in recession periods predominately appear
in clusters, this finding induces lower passing ratios of the VaR tests in recession periods.
Strikingly, ES tests are not affected substantially: they exhibit higher ES passing ratios in
recession periods. Evaluating the MCS reveals that all combination methods are (almost)
always included in the 75% SSM for both calm and recession periods. Except for the average
and the single best combination model, all methods are included the maximum of 36 times
in the SSM. Hence, there are no significant differences between ML and the competing
combination models. Among the individual methods, only Range-HAR models are always
included in the 75% SSM. With some exceptions also Range-RGARCH and GJR-GARCH
models show a good performance. Comparing across all methods, we document that the
peLASSO (Average), Range-HAR-SSTD and eRidge are the best methods in calm periods,
whereas the NN-1HL is the best model in recession periods.

3.4.5. Tail risk forecasting in the COVID-19 period

In this section, we take a closer look at how the VaR and ES forecasts behave in the still
prevalent COVID-19 crisis period (March 1, 2020 to May 7, 2021). Figure 3.3a exhibits the
corresponding temporal course of the 5% VaR and ES forecasts of the peLASSO (Ridge)
combination method for the S&P 500 as an illustration. It is striking that the risk forecasting
of the sharp slump at the beginning of the COVID-19 period worked reasonably well,
although the drop came abruptly without a longer phase of announcement. This is evident
from the fact that we do not observe a cluster of VaR violations around this tail event. Still,
this abrupt drop results in the lowest VaR and ES figures over the full sample period (see
Figure 3.3c), even lower than the minimum VaR and ES in the global financial crisis of
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Table 3.3: Forecasting performance in calm and recessionary periods

Calm periods Recession periods

rel.Viol VaR ES rank best SSM rel.Viol VaR ES rank best SSM

ML combination methods
Minimum loss 1.0 91 88 11.1 1 36 1.2 70 90 11.4 2 36
Ridge 0.9 80 89 9.5 3 36 1.2 75 95 13.4 1 36
LASSO 0.9 70 81 14.8 2 36 1.4 71 92 15.8 2 36
Elastic net 0.9 74 85 11.3 2 36 1.3 68 92 13.9 1 36
eRidge 0.9 80 82 6.6 6 36 1.2 75 91 12.7 0 36
eLASSO 0.9 76 78 15.1 0 36 1.2 81 93 14.0 3 36
eElasticNet 0.9 84 81 15.1 0 36 1.2 83 93 14.4 1 36
peLASSO (eRidge) 0.9 84 84 6.9 1 36 1.2 75 92 13.5 0 36
peLASSO (eLASSO) 0.9 84 83 10.6 1 36 1.2 72 90 11.6 0 36
peLASSO (Average) 0.9 86 86 7.6 7 36 1.2 66 93 12.6 0 36
NN-1HL 0.9 78 73 14.5 1 36 1.1 75 91 7.2 6 36

Competing combination methods
Average 0.9 67 79 19.7 0 35 1.2 79 94 17.9 0 36
Trimmed average 1.0 84 87 16.2 0 36 1.2 72 87 15.4 0 36
Trimmed best-average 1.0 84 85 16.9 0 36 1.2 66 85 15.0 1 36
Inverse loss 0.9 69 84 16.9 0 36 1.2 78 94 15.9 1 36
Inverse rank 0.9 87 90 7.5 0 36 1.1 72 92 9.6 1 36
Difference spacing 1.0 89 85 11.6 1 36 1.2 68 91 11.6 1 36
Relative score 1.0 88 90 6.1 3 36 1.2 66 91 10.4 1 36
Shrinkage-to-equal 1.0 83 75 18.5 0 36 1.3 66 90 16.4 1 36
Single best 1.0 86 83 18.1 0 36 1.2 68 88 13.6 1 36

Individual methods
HS 0.8 9 18 34.9 0 0 3.1 2 8 35.0 0 7
WHS 1.0 37 25 33.0 0 0 1.1 45 74 33.8 0 5
RiskMetrics-N 1.6 2 1 33.6 0 0 1.6 39 21 31.9 0 26
GARCH-N 1.3 36 3 30.6 0 2 1.9 33 16 31.6 0 13
GJR-GARCH-SSTD 1.0 81 80 20.4 0 34 1.4 49 79 26.5 0 33
GJR-GARCH-FHS 1.0 78 77 22.9 0 33 1.4 55 81 25.2 0 34
GJR-GARCH-EVT 0.9 74 69 23.7 0 32 1.3 60 83 24.2 0 34
CAViaR-EVT 1.0 72 24 30.2 0 13 1.5 50 64 29.7 1 32
GAS 1.1 58 56 32.2 0 0 1.9 25 64 31.5 0 17
Range-RGARCH-SSTD 1.0 61 74 26.9 0 31 1.2 71 90 16.5 3 35
Range-RGARCH-FHS 1.0 62 72 25.8 0 34 1.1 74 89 16.1 3 36
Range-RGARCH-EVT 1.0 62 73 24.8 0 34 1.1 75 91 15.3 2 36
Range-HAR-SSTD 1.0 91 88 10.2 7 36 1.3 67 89 16.6 2 36
Range-HAR-FHS 1.0 89 95 13.8 0 36 1.2 73 90 15.8 0 36
Range-HAR-EVT 0.9 91 91 12.5 1 36 1.2 72 91 14.1 2 36

This table reports the results of the calibration backtests as well as the relative comparison between the various forecasting methods
for calm and recession periods. Recession periods comprise the dot-com bubble (April 2001 to December 2001), the global financial
crisis (January 2008 to July 2009) and the COVID-19 crisis (March 2020 to sample end). Calm periods cover the remaining periods of
the sample. rel.Viol is the average relative VaR violation rate calculated as the number of realized divided by number of expected VaR
violations. VaR and ES are the average percentage of VaR and ES tests passed. rank is the average rank based on the average FZ loss
and best is the number of times a method is the best method. SSM is the number of indices a method is included in the superior set of
models at the 75% level. Averages are calculated over the 12 equity indices and the three probability levels. For best and SSM, the
maximum is 36.

2007-2008 (see Figure 3.3b). For this particular index and method, the minimum 5% ES is
-31.5%, compared to -25.5% in the global financial crisis. In the phase after the initial shock
we see that VaR and ES figures remain very volatile. Subsequently, we document further
predicted tail events, which are, however, less severe that the initial one. These probably
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Figure 3.3: Tail risk forecasting in the COVID-19 period. This figure shows the daily 5% VaR forecasts (in
black) and associated ES forecasts (in blue) of the peLASSO (eRidge) combination method as well as the
realized returns of the S&P 500 (light-grey dots) over the COVID-19 period (March 1, 2020 to May 7, 2021).
VaR violations are marked in red. At a probability level of 5%, a total of 15 violations are expected over the
COVID-19 period. We document 17 realized violations when using the peLASSO (eRidge) method. For the
purpose of comparison we also show the corresponding forecasts for the global financial crisis and the full
sample period.

show the uncertainty in the stock market due to restrictions to the daily life (and thus also
the economy) intended to stop the spreading of the virus.

In the evaluation of the tail risk forecasts during the COVID-19 period we cannot resort
to the statistical backtesting framework as applied in Section 3.4.2 and 3.4.3. Given the
small number of observations in this period (309 return observations) and correspondingly
little tail events—3 at the 1% and 15 at the 5% probability level, respectively—VaR and
ES backtests have too little power and are thus not reliable. Still, we can examine the VaR
violation rates, which give an indication on the forecast accuracy of the different forecasting
methods. Figure 3.4 shows the average VaR violation rates (over all equity indices) in the
COVID-19 period as well as in the global financial crisis and the full sample period for
comparative purposes. While the VaR violation rates in the full sample period are mostly in
line with expectation (as shown in Section 3.4.2), they are elevated in the two crisis periods.
Interestingly, the violation rates in the COVID-19 period are higher mainly for the individual
methods, whereas this exceedance holds for all methods in the global financial crisis. A
potential explanation for this finding is that the combination methods have learned from the
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global financial crisis through the expanding window estimation and thus use this historical
information when estimating the forecasts in the COVID-19 period.
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Figure 3.4: VaR violations in the COVID-19 period. This figure shows the average VaR violation rates for
the 5% VaR forecasts across all 12 equity indices for the COVID-19 period, the global financial crises and the
full sample period. The black dashed line indicate the theoretically expected VaR violation rate.
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3.4.6. Risk models in action: Quantifying the benefits from combination forecasts

From a practitioner’s point of view it is a relevant question whether the superior statistical
accuracy of the sophisticated combination forecasts also translates into a superior portfolio
performance. To analyze this question we apply the different ES forecasts to a risk targeting
strategy, outlined in Section 3.3.4. We start with analyzing the historical backtest of such a
risk targeting strategy. That means, we assess how the risk targeting strategy would have
performed when implemented over the whole out-of-sample period.
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Figure 3.5: Evaluating ES combination forecasts in risk targeting strategies. This chart illustrates the
performance of the ES targeting strategy with the S&P 500 as equity underlying. Specifically, we show
the historical path of the protected portfolio (red line) over the sample period 1999–2021. Exposure is
calculated based on the 5% ES of the peLASSO (Average) combination model. The target level is a 3% ES.
For comparison, we include the performance of the underlying equity index (blue line) and a money market
investment (black line; based on the US 3-month treasury bill).

Figure 3.5 illustrates the historical performance of the risk targeting strategy based
on the peLASSO (eRidge) method over the out-of-sample period from 1999 to 2021.26

The underlying in this example is the S&P 500 and we target an ES level of 3%, which is
a reasonable assumption for tail risk-averse investors.27 We observe a sharp decrease in
exposure of the ES targeting strategy during the financial market crisis in 2008 and during the
recent COVID-19 pandemic in early 2020, thus avoiding huge drawdowns of the underlying.

26Similar to Happersberger, Lohre, and Nolte (2020) and Dichtl and Drobetz (2011) we implement the risk
targeting strategy without short sales or leverage and assume round-trip transaction costs of 10 basis points. To
avoid portfolio shifts triggered by rather small market movements, we also apply a trading filter of 2%, which
means that we act only on exposure changes in excess of 2%.

27Unreported results show that the results of the risk targeting strategies are robust to the ES target level and
the probability level of the ES forecasts.
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However, this comes with the cost of reducing upside participation at the end of the sample
period.

Table 3.4: Combination forecasts in risk targeting strategies

Method Return SD ES MDD Sharpe Calmar Sortino Ret/ES Part TO

Risk targeting based on ML combination methods
Minimum loss 5.01 16.65 -2.46 -56.72 0.21 0.10 0.43 2.08 92.59 1.72

Ridge 5.05 16.78 -2.48 -56.98 0.21 0.10 0.42 2.08 92.91 1.39
LASSO 5.01 16.85 -2.49 -57.70 0.21 0.10 0.42 2.05 93.14 1.54
Elastic net 5.03 16.80 -2.48 -57.36 0.21 0.10 0.42 2.07 93.01 1.50
eRidge 4.97 16.48 -2.43 -55.93 0.21 0.10 0.43 2.09 92.15 1.55
eLASSO 5.03 16.53 -2.44 -55.71 0.21 0.10 0.43 2.11 92.21 1.45
eElasticNet 5.01 16.52 -2.44 -55.78 0.21 0.10 0.43 2.10 92.20 1.46
peLASSO (eRidge) 5.04 16.55 -2.44 -56.06 0.21 0.10 0.43 2.11 92.34 1.50
peLASSO (eLASSO) 5.06 16.57 -2.44 -56.06 0.21 0.10 0.43 2.11 92.36 1.45
peLASSO (Average) 5.11 16.69 -2.46 -56.35 0.21 0.10 0.43 2.12 92.64 1.31

NN-1HL 4.96 16.66 2.46 -56.56 0.20 0.10 0.42 2.05 92.64 1.57

Risk targeting based on competing combination methods
Average 5.11 16.75 -2.47 -56.15 0.21 0.10 0.43 2.11 92.69 1.21
Trimmed average 4.95 16.69 -2.46 -57.22 0.21 0.09 0.42 2.05 92.61 2.05
Trimmed best-average 4.94 16.69 -2.46 -57.27 0.21 0.09 0.42 2.05 92.61 2.04
Inverse loss 5.11 16.74 -2.47 -56.14 0.21 0.10 0.43 2.11 92.68 1.24
Inverse rank 5.02 16.69 -2.46 -56.64 0.21 0.10 0.43 2.08 92.66 1.63
Difference spacing 5.00 16.68 -2.46 -56.73 0.21 0.10 0.42 2.07 92.68 1.61
Relative score 4.99 16.66 -2.45 -56.77 0.21 0.10 0.42 2.07 92.62 1.77
Shrinkage-to-equal 4.97 16.61 -2.45 -56.98 0.21 0.10 0.42 2.07 92.49 1.96
Single best 4.93 16.70 -2.46 -57.10 0.20 0.10 0.42 2.05 92.63 2.08

Benchmarks investments
Equity underlying 5.70 21.37 -3.26 -66.94 0.19 0.09 0.37 1.76 100 0
Money market 1.63 0.14 -0.00 -0.00 0.00 – – – 0 0

This table reports the backtesting results of the risk targeting strategy based on the various 5% ES combination forecasts over the
out-of-sample period from June 3, 1999 to May 7, 2021. We target an ES of 3% over the whole out-of-sample period and report the
average of the following performance measures over the 12 equity indices: the annualized mean return (Return), annualized standard
deviation (SD), 5% ES, maximum drawdown (MDD), Sharpe ratio (SR), Calmar ratio, Sortino ratio, return-to-ES ratio, participation
in the risky equity index (Part) and turnover (TO). Return, Sd, ES, MDD, Part and TO are given as percentages. For comparison, we
include the average performance of the underlying equity indices and the performance of a money market investment (based on the US
3-month treasury bill).

Table 3.4 shows the corresponding estimation results. As before, we average all
performance measures over all equity indices. As the objective of a risk targeting strategy
is twofold—providing downside protection while still enjoying the upside potential of the
risky underlying—the performance should be evaluated accordingly. Alongside standard
measures like the Sharpe ratio and maximum drawdown, we therefore employ specific
downside risk measures such as Calmar and Sortino ratios as well as the ratio of annualized
return to absolute ES. Similar to Happersberger, Lohre, and Nolte (2020), we find that
risk-targeting strategies based on all risk methods outperform the equity underlying. This
is reflected in higher risk-adjusted returns (measured by the Sharpe ratio), higher Calmar,
Sortino and return-to-ES ratios as well as lower maximum drawdowns and higher ES figures.
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These results confirm the ability of the risk targeting strategy to reduce downside risk. This,
however, comes with an insurance fee of between 59 and 92 basis points, depending on the
used risk methods. Comparing across risk models, we observe the best performance for the
egalitarian shrinkage models. In particular, the peLASSO (Average) method exhibits the
highest average return-to-ES ratio (2.12). Other well performing methods are the average
and the inverse loss methods (with average return-to-ES ratios of 2.11). Lowest risk figures
are also found for the egalitarian shrinkage models (standard deviation of around 16.55%
and 5% ES of around -2.44%). Given the superiority of the egalitarian models over the
standard shrinkage models and the strong performance of the average combination method,
we conclude that models related to averaging are particularly well-suited for their use in risk
targeting strategies. A further observation is that the machine learning methods exhibit lower
average turnovers figures than the competing combination approaches (except for average
and inverse loss), which makes them appealing for their use in asset allocation strategies.

Given that analyzing the historical performance may suffer from path dependency,
we additionally conduct a historical block-bootstrap analysis as robustness check.28 The
corresponding results can be found in Table 3.A.6. In a nutshell, the results of the block-
bootstrap analysis corroborate our findings from the historical backtest. Tail risk models that
help investors to achieve more accurate VaR and ES forecasts are associated with a (slightly)
superior portfolio performance.

3.5. Conclusion

In this paper, we propose the combination of VaR and ES forecasts with machine learning
techniques. In particular, we assess whether shrinkage and neural network combination
models improve the predictive accuracy relative to a large set of competing combination
approaches. The primary advantage of shrinkage models is that they are able to reduce
overfitting caused by high multicollinearity of the individual predictors. Through their
shrinkage and variable selection properties, these methods also stabilize the estimates of
the combination weights and thereby improve VaR and ES forecasts. Neural networks are
probably the most flexible machine learning models and thus well-suited to the problem of

28Following Annaert, Van Osselaer, and Verstraete (2009), Bertrand and Prigent (2011), Dichtl and Drobetz
(2011), Dichtl, Drobetz, and Wambach (2017) and Happersberger, Lohre, and Nolte (2020), we draw blocks of
250 subsequent daily portfolio and risk-free returns on a rolling window basis and implement the risk targeting
strategies in each draw. We thus obtain 5607 overlapping yearly returns as a basis for the comparison of our
methods. Intuitively, this historical block-bootstrap approach enables us to assess a strategy’s robustness with
respect to alternative entry dates. Furthermore, the available data are used in the most efficient way while
preserving all dependency effects in the series, such as autocorrelation and conditional heteroskedasticity (see
Dichtl and Drobetz, 2011; Happersberger, Lohre, and Nolte, 2020).
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forecast combination when the optimal combination of individual forecasts is potentially
non-linear.

In the empirical application, we combine VaR and ES forecasts from 15 individual
methods for a broad data set of 12 major equity indices over a period of 30 years. For
training and hyperparameter tuning of the machine learning models, we use loss functions
that overcome the lack of elicitability for ES by jointly modeling ES and VaR. Using a
comprehensive VaR and ES backtesting framework, it turns out that the machine learning
combination approaches dominate the set of competing combination approaches in modeling
the tail of the return distribution. In particular, we demonstrate that egalitarian shrinkage
models such as the egalitarian ridge or partially-egalitarian LASSO models exhibit an
excellent forecasting performance in terms of statistical accuracy as well as economical
relevance in risk targeting strategies. As for the neural network combination model, the
results are less clear-cut. We provide evidence that this highly flexible machine learning
method is able to outperform the majority of competing combination approaches, with
particularly convincing results in periods of recessions. Still, the excellent performance of
the shrinkage models questions whether the additional complexity of the neural network
models needs to be taken. The overall success of machine learning techniques for combining
VaR and ES predictions can be explained by the general advantages of forecast combinations,
such as diversification gains or the robustness to structural breaks and misspecification risk.

When evaluating the combination forecasts during the recent COVID-19 period, we
observe lower VaR violation rates than in the global financial crisis, indicating that the
combination models have learned from previous recessions.

In future work, it would be interesting to consider other machine learning techniques
such as random forests or gradient boosting for combining VaR and ES forecasts. An
interesting extension would also be to investigate the use of machine learning techniques
for multi-step-ahead VaR and ES prediction. In the spirit of Audrino, Sigrist, and Ballinari
(2020b) one could also analyze whether the forecast accuracy may be further improved by
expanding the predictor set by conditioning variables that could carry additional information
for predicting short-term risk, such as news flow or index options data. Neural network
models are particularly well-suited for this task as they avoid to specify a complex functional
form to integrate a broad information set.
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Appendix 3.A Tables

Table 3.A.1: The set of hyperparameters

This table reports the set of hyperparameters used to tune the shrinkage and neural network models.

Shrinkage NN-1HL

Number of nodes — {32}
Activation function — {ReLu}
Optimizer — {RMSprop, Adam}
Dropout rate — {0.1, 0.2, 0.3}
Regularization rate

[
10−5, 102] {1e-01, 1e-02, 1e-03, 1e-04, 1e-05}

Number of epochs — {10, 20, 30, 40, 50, 75, 100}
Batch size — {32, 64, 128, 256}
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Table 3.A.2: Summary statistics of the individual ES forecasts

This table reports the summary statistics of the 5% ES forecasts of the individual models for the S&P500.
Specifically, we report the mean, standard deviation (Sd), minimum (Min), maximum (Max), skewness and
kurtosis in percentage points. Mean and standard deviation are annualized for the daily return data. The sample
spans the period from July 28, 1995 to May 7, 2021.

Mean Sd Min Max Skewness Kurtosis

HS -2.60 0.89 -4.57 -1.26 -0.79 2.83
WHS -2.69 1.26 -8.20 -1.00 -1.94 7.74
RiskMetrics-N -2.12 1.27 -11.02 -0.60 -2.93 15.78
GARCH-N -2.12 1.23 -18.74 -0.87 -3.84 28.27
GJR-GARCH-FHS -2.46 1.65 -26.58 -0.89 -4.18 34.37
GJR-GARCH-EVT -2.47 1.66 -26.88 -0.88 -4.19 34.69
GJR-GARCH-SSTD -2.40 1.58 -24.52 -0.86 -3.99 30.96
CAViaR-EVT -2.47 1.77 -33.59 -0.30 -5.56 58.92
GAS -2.45 1.61 -31.63 -0.86 -4.66 42.37
Range-RGARCH-
SSTD

-2.33 1.33 -14.05 -0.59 -2.87 16.99

Range-RGARCH-FHS -2.34 1.32 -14.04 -0.63 -2.86 17.12
Range-RGARCH-EVT -2.37 1.33 -14.12 -0.63 -2.84 16.94
Range-HAR-SSTD -2.41 2.13 -54.30 -0.63 -9.98 167.69
Range-HAR-FHS -2.46 2.21 -58.76 -0.66 -10.33 180.23
Range-HAR-EVT -2.47 2.23 -59.09 -0.67 -10.29 179.23
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Table 3.A.3: Correlation between the individual ES forecasts

This table presents a sub-set of the correlation matrix of the 5% ES forecasts for the S&P 500, derived from the
15 different individual models considered in this paper. The estimators in the columns correspond to standard
choices in the extant literature (HS, WHS, GJR-GARCH-EVT, CAViar-EVT, GAS) as well as some models
based on the realized range (Range-RGARCH-FHS, Range-HAR-SSTD). Given the estimation window of
1000 days, the ES forecasts range from July 28, 1995 to May 7, 2021.

HS WHS GJR-GARCH-EVT CAViaR-EVT GAS Range-RGARCH-FHS Range-HAR-SSTD

HS 1 0.68 0.28 0.36 0.34 0.34 0.23
WHS 0.68 1 0.67 0.67 0.72 0.72 0.54
RiskMetrics-N 0.31 0.80 0.87 0.81 0.81 0.88 0.70
GARCH-N 0.33 0.72 0.96 0.92 0.90 0.94 0.82
GJR-GARCH-SSTD 0.30 0.68 0.99 0.95 0.92 0.93 0.86
GJR-GARCH-FHS 0.28 0.67 0.99 0.95 0.93 0.93 0.86
GJR-GARCH-EVT 0.28 0.67 1 0.95 0.93 0.93 0.86
CAViaR-EVT 0.36 0.67 0.95 1 0.88 0.87 0.82
GAS 0.34 0.72 0.93 0.88 1 0.85 0.80
Range-RGARCH-SSTD 0.37 0.74 0.92 0.87 0.85 0.99 0.81
Range-RGARCH-FHS 0.34 0.72 0.93 0.87 0.85 1 0.80
Range-RGARCH-EVT 0.35 0.73 0.93 0.87 0.85 0.99 0.80
Range-HAR-SSTD 0.23 0.54 0.86 0.82 0.80 0.80 1
Range-HAR-FHS 0.22 0.53 0.86 0.83 0.80 0.80 0.99
Range-HAR-EVT 0.22 0.53 0.86 0.83 0.81 0.80 0.99
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Table 3.A.4: VaR and ES calibration backtesting of individual methods

This table reports the results of the calibration backtests for evaluating the VaR and ES predictions from the
individual methods calculated over the out-of-sample period from June 3, 1999 to May 7, 2021. Viol is the
average VaR violation rate over all equity indices in percentage points. VaR and ES are the average percentage
of VaR and ES tests passed and 𝑝VaR and 𝑝ES are the corresponding average 𝑝-values over all VaR/ES tests
and equity indices.

1% probability level 2.5% probability level 5% probability level

Viol VaR 𝑝VaR ES 𝑝ES Viol VaR 𝑝VaR ES 𝑝ES Viol VaR 𝑝VaR ES 𝑝ES

HS 1.29 11 0.05 47 0.21 2.81 12 0.04 33 0.16 5.20 17 0.06 35 0.14
WHS 1.09 47 0.27 100 0.67 2.51 25 0.19 76 0.34 4.87 23 0.13 42 0.13
RiskMetrics-N 2.15 3 0.00 0 0.00 3.74 0 0.00 0 0.00 6.00 0 0.00 0 0.00
GARCH-N 1.76 22 0.12 0 0.00 3.31 21 0.09 0 0.00 5.54 42 0.14 0 0.00
GJR-GARCH-SSTD 1.02 97 0.47 98 0.55 2.56 79 0.49 86 0.46 5.19 79 0.44 82 0.45
GJR-GARCH-FHS 1.09 86 0.41 92 0.56 2.48 85 0.50 92 0.53 4.90 77 0.47 86 0.53
GJR-GARCH-EVT 0.95 92 0.49 92 0.55 2.37 73 0.40 83 0.44 4.92 75 0.48 83 0.46
CAViaR-EVT 1.15 72 0.25 50 0.18 2.77 54 0.22 22 0.10 5.28 65 0.33 36 0.16
GAS 1.43 28 0.08 47 0.23 2.79 48 0.26 61 0.28 5.23 65 0.27 83 0.36
Range-RGARCH-SSTD 1.10 69 0.34 98 0.51 2.63 60 0.26 82 0.36 5.18 50 0.22 71 0.32
Range-RGARCH-FHS 1.13 67 0.30 90 0.40 2.63 67 0.27 83 0.38 5.01 52 0.23 81 0.42
Range-RGARCH-EVT 1.03 72 0.42 95 0.49 2.55 62 0.25 83 0.41 5.00 56 0.24 82 0.41
Range-HAR-SSTD 1.04 92 0.49 95 0.58 2.62 90 0.53 97 0.53 5.15 92 0.49 96 0.52
Range-HAR-FHS 1.05 97 0.45 97 0.61 2.53 96 0.60 99 0.54 4.83 92 0.52 99 0.60
Range-HAR-EVT 0.97 97 0.57 97 0.62 2.47 96 0.53 100 0.57 4.97 96 0.61 99 0.60
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Table 3.A.5: Relative comparison of all forecasting approaches

This table reports the results of the relative comparison between the all VaR and ES predictions over all 12
equity indices. rank is the average rank based on the average FZ loss and best is the number of times a method
is the best method. DM is the average percentage of how often a specific method significantly outperforms
another using pairwise modified Diebold-Mariano tests based on the FZ loss function. Averages are calculated
over all equity indices. SSM is the number of indices a method is included in the superior set of models at the
75% level and 𝑝MCS is the average over the 12 individual MCS 𝑝-values based on the Tmax statistics using
1000 iterations of the moving block bootstrap. The sample spans the period from June 3, 1999 to May 7, 2021.

1% probability level 2.5% probability level 5% probability level

rank best DM MCS 𝑝MCS rank best DM MCS 𝑝MCS rank best DM MCS 𝑝MCS

Individual methods

HS 35.0 0 0.0 0 0.00 35.0 0 0.0 0 0.00 35.0 0 0.0 0 0.00
WHS 32.8 0 1.0 0 0.00 33.8 0 1.0 0 0.00 34.0 0 1.0 0 0.00
RiskMetrics-N 33.9 0 0.2 0 0.00 33.0 0 0.8 0 0.00 32.8 0 1.3 0 0.00
GARCH-N 30.8 0 2.5 0 0.00 30.7 0 3.2 0 0.00 30.6 0 3.1 0 0.00
GJR-GARCH-SSTD 25.2 0 5.3 11 0.76 24.0 0 5.8 10 0.75 24.2 0 5.9 11 0.74
GJR-GARCH-FHS 26.1 0 5.3 11 0.74 25.5 0 5.8 10 0.70 24.2 0 5.8 11 0.72
GJR-GARCH-EVT 26.0 0 5.3 11 0.74 25.2 0 5.9 10 0.73 24.8 0 5.9 11 0.73
CAViaR-EVT 29.7 0 2.7 6 0.23 30.3 0 2.3 2 0.06 30.9 0 2.3 1 0.05
GAS 32.2 0 0.9 0 0.00 31.9 0 1.5 0 0.00 31.7 0 2.2 0 0.00
Range-RGARCH-SSTD 24.8 0 5.4 12 0.93 27.5 0 5.1 10 0.70 27.3 0 5.1 10 0.61
Range-RGARCH-FHS 24.9 0 5.3 12 0.92 25.8 0 5.4 11 0.79 25.3 0 5.4 9 0.62
Range-RGARCH-EVT 23.7 0 5.5 12 0.94 25.5 0 5.3 11 0.77 25.5 0 5.5 10 0.67
Range-HAR-SSTD 7.6 3 9.4 12 1.00 12.1 1 7.2 12 1.00 17.0 0 6.8 12 0.95
Range-HAR-FHS 11.7 0 6.7 12 0.98 13.2 0 7.1 12 0.95 17.9 0 6.9 12 0.96
Range-HAR-EVT 8.9 1 7.8 12 1.00 14.5 0 6.8 12 0.97 15.2 0 7.2 12 0.96

ML combination methods

Minimum loss 12.7 1 7.0 12 1.00 10.3 0 8.6 12 1.00 8.1 0 9.8 12 1.00

Ridge 9.2 1 9.5 12 1.00 9.1 1 10.5 12 1.00 12.1 0 8.2 12 1.00
LASSO 15.8 1 6.9 12 0.87 14.7 0 7.3 12 0.96 11.8 0 7.9 12 0.97
Elastic net 14.2 0 7.2 11 0.86 10.9 0 8.7 12 0.95 7.6 1 9.7 12 1.00
eRidge 9.7 0 8.8 12 1.00 8.9 0 10.2 12 1.00 3.6 4 12.8 12 1.00
eLASSO 11.5 0 7.0 12 1.00 18.8 0 6.7 12 0.95 11.2 0 8.7 12 0.97
eElasticNet 16.8 0 6.3 12 0.96 16.7 0 6.9 12 1.00 9.2 0 9.3 12 1.00
peLASSO (eRidge) 9.2 1 8.2 12 1.00 5.8 1 11.4 12 1.00 6.5 1 9.7 12 1.00
peLASSO (eLASSO) 11.0 0 7.3 12 1.00 8.7 0 9.3 12 1.00 10.4 0 8.8 12 1.00
peLASSO (Average) 12.2 0 7.8 12 0.99 3.7 3 11.8 12 1.00 7.2 1 10.0 12 1.00

NN-1HL 10.2 3 8.7 12 0.99 10.6 0 8.0 12 0.95 12.7 1 8.2 11 0.91

Competing combination methods

Average 17.5 0 6.7 12 0.90 18.1 0 6.5 11 0.81 20.5 0 6.2 10 0.81
Trimmed average 13.8 0 6.9 12 0.99 17.2 0 7.3 12 0.93 18.2 0 6.8 12 0.99
Trimmed best-average 14.5 0 6.9 12 0.99 16.9 0 7.1 11 0.87 19.7 0 6.8 12 0.96
Inverse loss 15.1 0 7.9 12 0.97 15.3 0 8.1 11 0.85 18.4 0 8.0 11 0.87
Inverse rank 6.8 0 9.7 12 1.00 6.5 3 10.6 12 1.00 8.8 1 10.6 12 1.00
Difference spacing 13.1 0 7.3 12 1.00 10.9 0 8.0 12 1.00 8.1 1 9.8 12 1.00
Relative score 8.2 0 8.8 12 1.00 4.6 3 10.4 12 1.00 4.4 2 10.9 12 1.00
Shrinkage-to-equal 20.8 0 5.8 12 0.88 18.5 0 6.3 12 0.95 14.5 0 7.1 12 1.00
Single best 14.7 1 6.8 12 0.98 15.9 0 6.8 11 0.90 20.6 0 6.5 11 0.83
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Table 3.A.6: Combination forecasts in risk targeting strategies: Historical block-bootstrap

This table reports the results of the risk targeting strategy based on the various 5% ES combination forecasts for
the historical block-bootstrap over the out-of-sample period from June 3, 1999 to May 7, 2021. We target an
ES of 2.5% over the whole out-of-sample period and report the average of the following performance measures
over the 12 equity indices: the annualized mean return (Return), annualized standard deviation (Sd), 5% ES,
maximum drawdown (MDD), Sharpe ratio (SR), Calmar ratio, Sortino ratio, Omega ratio, return-to-ES ratio,
participation in the risky equity index (Part) and turnover (TO). Return, Sd, ES, MDD, Part and TO are given
in percentage points. The performance measures are based on the simulated yearly returns, except for MDD,
Calmar ratio and participation. Those are based on the daily risky asset exposure of the corresponding draw
and show the yearly mean of the specific measure. For comparison, we include the average performance of the
underlying equity indices and the performance of a money market investment.

Method Return Sd ES MDD Sharpe Calmar Sortino Omega Ret/ES Part TO

Risk targeting based on ML combination methods

Minimum loss 3.82 18.19 37.63 -17.99 0.13 0.78 0.38 1.86 0.11 92.52 2.05

Ridge 3.84 18.25 37.73 -18.11 0.13 0.79 0.38 1.86 0.11 92.84 1.73
LASSO 3.81 18.39 38.27 -18.22 0.13 0.78 0.37 1.85 0.11 93.07 1.87
Elastic net 3.82 18.33 38.02 -18.15 0.13 0.78 0.38 1.85 0.11 92.93 1.84
eRidge 3.78 18.04 37.01 -17.85 0.13 0.78 0.38 1.86 0.11 92.07 1.89
eLASSO 3.84 18.04 36.94 -17.90 0.13 0.78 0.39 1.87 0.12 92.14 1.79
eElasticNet 3.82 18.03 36.91 -17.91 0.13 0.78 0.38 1.87 0.12 92.13 1.80
peLASSO (eRidge) 3.85 18.09 36.91 -17.87 0.13 0.78 0.39 1.87 0.12 92.25 1.83
peLASSO (eLASSO) 3.87 18.10 36.98 -17.88 0.13 0.78 0.39 1.87 0.12 92.27 1.79
peLASSO (Average) 3.91 18.20 37.32 -17.95 0.13 0.79 0.39 1.88 0.12 92.55 1.65

NN-1HL 3.76 18.27 37.52 -18.06 0.12 0.78 0.37 1.82 0.11 92.56 1.91

Risk targeting based on competing combination methods

Average 3.91 18.15 37.44 -18.05 0.13 0.79 0.39 1.88 0.12 92.61 1.55
Trimmed average 3.76 18.32 38.13 -18.05 0.12 0.78 0.37 1.83 0.11 92.55 2.38
Trimmed best-average 3.75 18.31 38.09 -18.06 0.12 0.78 0.37 1.83 0.11 92.55 2.37
Inverse loss 3.90 18.13 37.38 -18.03 0.13 0.79 0.39 1.88 0.12 92.60 1.58
Inverse rank 3.83 18.22 37.70 -18.02 0.13 0.78 0.38 1.85 0.11 92.59 1.97
Difference spacing 3.80 18.20 37.59 -18.01 0.13 0.78 0.38 1.86 0.11 92.61 1.94
Relative score 3.79 18.22 37.81 -18.01 0.13 0.78 0.37 1.84 0.11 92.55 2.11
Shrinkage-to-equal 3.80 18.21 37.73 -17.97 0.13 0.78 0.38 1.86 0.11 92.44 2.29
Single best 3.74 18.35 38.21 -18.07 0.12 0.78 0.36 1.83 0.11 92.57 2.42

Benchmarks investments

Equity underlying 4.40 21.24 50.83 -21.54 0.14 0.85 0.35 1.86 0.10 100 0
Money market 1.60 1.71 -0.03 -0.00 0.00 – – – – 0 0
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Appendix 3.B Figures

Figure 3.B.1: Individual methods’ 1% VaR and ES forecasts over time

This figure shows the daily 1% VaR forecasts (in black) and associated ES forecasts (in blue) of the individual
methods as well as the realized returns of the S&P 500 (light-grey dots) over the period from July 28, 1995 to
May 7, 2021. The grey areas indicate recessions as determined by the National Bureau of Economic Research:
the dot-com bubble (April 2001 to December 2001), the global financial crisis (January 2008 to July 2009)
and the still prevalent COVID-19 crisis (March 2020 to sample end). VaR violations are marked in red. At a
confidence level of 1%, a total of 67 violations are expected over the model period.
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Figure 3.B.2: Individual methods’ 2.5% VaR and ES forecasts over time

This figure shows the daily 2.5% VaR forecasts (in black) and associated ES forecasts (in blue) of the individual
methods’ as well as the realized returns of the S&P 500 (light-grey dots) over the period from July 28, 1995 to
May 7, 2021. The grey areas indicate recessions as determined by the National Bureau of Economic Research:
the dot-com bubble (April 2001 to December 2001), the global financial crisis (January 2008 to July 2009)
and the still prevalent COVID-19 crisis (March 2020 to sample end). VaR violations are marked in red. At a
confidence level of 2.5%, a total of 167 violations are expected over the model period.
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Figure 3.B.3: Individual methods’ 5% VaR and ES forecasts over time

This figure shows the daily 5% VaR forecasts (in black) and associated ES forecasts (in blue) of the individual
methods as well as the realized returns of the S&P 500 (light-grey dots) over the period from July 28, 1995 to
May 7, 2021. The grey areas indicate recessions as determined by the National Bureau of Economic Research:
the dot-com bubble (April 2001 to December 2001), the global financial crisis (January 2008 to July 2009)
and the still prevalent COVID-19 crisis (March 2020 to sample end). VaR violations are marked in red. At a
confidence level of 5%, a total of 335 violations are expected over the model period.
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Figure 3.B.4: 1% VaR and ES ML combination forecasts over time

This figure shows the daily 1% VaR forecasts (in black) and associated ES forecasts (in blue) of the machine
learning combination methods as well as the realized returns of the S&P 500 (light-grey dots) over the period
from June 3, 1999 to May 7, 2021. The grey areas indicate recessions as determined by the National Bureau of
Economic Research: the dot-com bubble (April 2001 to December 2001), the global financial crisis (January
2008 to July 2009) and the still prevalent COVID-19 crisis (March 2020 to sample end). VaR violations are
marked in red. At a confidence level of 1%, a total of 57 violations are expected over the model period.
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Figure 3.B.5: 2.5% VaR and ES ML combination forecasts over time

This figure shows the daily 2.5% VaR forecasts (in black) and associated ES forecasts (in blue) of the machine
learning combination methods as well as the realized returns of the S&P 500 (light-grey dots) over the period
from June 3, 1999 to May 7, 2021. The grey areas indicate recessions as determined by the National Bureau of
Economic Research: the dot-com bubble (April 2001 to December 2001), the global financial crisis (January
2008 to July 2009) and the still prevalent COVID-19 crisis (March 2020 to sample end). VaR violations are
marked in red. At a confidence level of 2.5%, a total of 142 violations are expected over the model period.
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Figure 3.B.6: 5% VaR and ES ML combination forecasts over time

This figure shows the daily 5% VaR forecasts (in black) and associated ES forecasts (in blue) of the machine
learning combination methods as well as the realized returns of the S&P 500 (light-grey dots) over the period
from June 3, 1999 to May 7, 2021. The grey areas indicate recessions as determined by the National Bureau of
Economic Research: the dot-com bubble (April 2001 to December 2001), the global financial crisis (January
2008 to July 2009) and the still prevalent COVID-19 crisis (March 2020 to sample end). VaR violations are
marked in red. At a confidence level of 5%, a total of 285 violations are expected over the model period.
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Figure 3.B.7: Individual methods’ importance at the 2.5% and 5% probability level

This figure shows the importance of the individual methods for all combination approaches at the 2.5% and 5%
probability level. The figures are the average ES combination weights for the shrinkage and competing models
across time and all 12 equity indices over the period from June 3, 1999 to May 7, 2021. For the neural network
combination models, the figures are the mean of the permutation feature importance scores calculated every
four years. The darker the red tone, the higher the importance. The right part of the figure shows the total
importance of each individual method; the bars represent the sum of scores across all combination approaches.
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Figure 3.B.8: Shrinkage combination weights of 2.5% forecasts over time

This figure shows the combination weights for the shrinkage methods’ 2.5% ES forecasts over the period from
June 3, 1999 to May 7, 2021. Given that the shrinkage methods are estimated pooled over all equity indices,
the presented combination weights are the same for all 12 equity indices.

(a) Ridge (b) eRidge

(c) LASSO (d) eLASSO

(e) Elastic net (f) eElasticNet

(g) peLASSO (eRidge) (h) peLASSO (eLASSO)

(i) peLASSO (Average) (j) Minimum loss
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Figure 3.B.9: Shrinkage combination weights of 5% forecasts over time

This figure shows the combination weights for the shrinkage methods’ 5% ES forecasts over the period from
June 3, 1999 to May 7, 2021. Given that the shrinkage methods are estimated pooled over all equity indices,
the presented combination weights are the same for all 12 equity indices.

(a) Ridge (b) eRidge

(c) LASSO (d) eLASSO

(e) Elastic net (f) eElasticNet

(g) peLASSO (eRidge) (h) peLASSO (eLASSO)

(i) peLASSO (Average) (j) Minimum loss
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Appendix A
Supplementary Research Papers to
Chapter 2

This appendix consists of three research papers that supplement Chapter 2 of this dissertation.
All papers are joint work with colleagues from Invesco Quantitative Strategies and have
been published in Risk & Reward, Invesco’s flagship publication for genuine investment
research (Kolrep, Lohre, and Happersberger, 2017; Lohre, Happersberger, and Radatz, 2018;
Lohre, Happersberger, and Cherkezov, 2018).

In the first article, Theory and Practice of Portfolio Insurance, we analyze various
portfolio insurance strategies, contrasting dynamic portfolio insurance strategies such as
CPPI and DPPI (see Chapter 2.2.2) with the static stop-loss concept and option-based
strategies. Our findings suggest that an active approach on the basis of dynamic risk forecasts
is an effective contender.

The second article, Evaluating Risk Mitigation Strategies, discusses how to appropriately
calibrate and assess portfolio insurance strategies based on the ensuing return distribution to
best match a given client’s risk preferences.

Based on the proposed methodology, the third article, The Use of Equity Factor Investing
for Portfolio Insurance, shows that the choice of the equity underlying is important when
designing portfolio insurance strategies. In particular, low-volatility underlyings are to be
preferred, with other multi-factor propositions forming suitable alternatives when considering
additional elements of dynamic risk management.
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In brief
To limit the maximum loss of a portfolio, 
investment strategies can be enhanced by 
adding a portfolio insurance component. 
We have analyzed various portfolio insurance 
strategies – from the static stop-loss concept 
to option-based strategies and dynamic 
portfolio insurance strategies. The findings 
suggest that an active approach on the 
basis of dynamic risk forecasts is an 
effective alternative. 

Theory and practice of portfolio 
insurance
By Dr. Martin Kolrep, Dr. Harald Lohre and David Happersberger
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end of the year – precluding participation in the 
significant recovery that followed.

2. Option-based portfolio insurance
Another static portfolio insurance strategy is the 
purchase of a European put option.3 Unlike the   
stop-loss strategy, the put option ensures that the 
portfolio value will not breach the targeted floor 
at expiry. 

But such a strategy can be expensive, since the option 
premium is payable on a yearly basis, although the 
portfolio insurance proves unnecessary in the majority 

In order to achieve their performance goals, many 
investors are allocating towards more risky assets. 
In many cases, these investors can quickly find 
themselves in a tight spot if the risk budget is 
not expanded accordingly. This is where strict 
risk control via portfolio insurance can come 
into play. But, which portfolio insurance strategy 
proves to be most effective in historical 
simulations?

Investors’ objectives are generally expressed as 
a combination of risk and return targets. Defining 
the return target is usually relatively simple – but 
the definition of risk targets is less straightforward. 
One conventional approach is to consider “volatility”, 
that is, the average variation of portfolio return 
over time. For many investors, however, “maximum 
drawdown” is a more relevant statistic, as it points 
to the maximum loss of value. To limit the maximum 
drawdown, investors typically follow broadly 
diversified investment strategies that include a 
tactical asset allocation component designed to 
avoid losses as often as possible.

However, to effectively limit maximum drawdown, 
a given investment strategy could implement 
some form of portfolio insurance. Portfolio insurance 
strategies aim primarily to improve the downside 
risk profile of an investment without jeopardizing 
long-term return potential. In this article, we will 
present various portfolio insurance strategies and 
analyze their strengths and weaknesses.

1. Static portfolio insurance using “stop-loss” 
The stop-loss strategy is an example of a basic 
portfolio insurance strategy: when the portfolio value 
falls below a certain threshold (or floor), all risk 
positions are sold and replaced by risk-free assets 
(cf. Rubinstein, 1985). 

This can be illustrated by looking at a conservative 
multi-asset portfolio comprising 33.3% equities, 
16.7% commodities and 50% fixed income assets.1  
Despite this conservative allocation, with 3.9% 
annualized return and 6.4% annualized volatility in 
the sample period (July 2003 to November 2016), 
the maximum drawdown during the 2008 financial 
crisis was as much as -27.2% (see table 1 at the end 
of the article).2 To mitigate such losses, we added 
a stop-loss rule, setting the trigger at a floor of 
95% per calendar year (figure 1). 

If interest rates are positive, a buffer of more than 
5% can be implemented at the beginning of the 
relevant year; conversely, negative interest rates 
result in a smaller buffer. The targeted floor is 
marked by the purple line. It is easy to see that this 
floor would have been breached from 9 September 
2008 onwards – triggering a full reallocation of the 
portfolio to cash. 

This observation reveals a fundamental problem: 
would a timely exit really have been possible on 
reaching the 95% threshold in such a volatile period? 
Moreover, the simple nature of the stop-loss strategy  
does not envisage a re-entry to the market. In our 
model, we assume reinvestment at the beginning 
of the following year. And, although the trigger 
value is lowered, the marked declines in early 2009 
would mean that the portfolio was once again 
“stopped-out” from 17 February 2009 until the 

Figure 1
Performance and allocation of the stop-loss strategy

  Stop-loss   Multi asset portfolio 
  Floor   Cash •  Exposure (RHS)

Portfolio value Exposure, %
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The chart shows the performance of a conservative multi-asset portfolio using a stop-loss 
strategy (dark blue line) in relation to the floor (purple line) over time. If the portfolio value 
falls below the floor (here: 95% of the initial annual portfolio value), all risky assets are 
liquidated. The portfolio is reinvested, if necessary, at the start of the next year. At all events, 
the floor value is adjusted at the start of each year to accommodate investment. For 
comparison, we have included the performance of the underlying conservative multi-asset 
strategy (light blue line) and a money market investment (green line).
Sources: Bloomberg, Invesco. Period: 23 July 2003 to 22 November 2016; 23 July 2003 = 100.

Figure 2
Performance and allocation of the synthetic put strategy

  Synthetic put   Multi asset portfolio 
  Floor   Cash •  Exposure (RHS)

Portfolio value Exposure, %
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The chart shows the performance of a conservative multi-asset portfolio using a synthetic put 
strategy (dark blue line) in relation to the floor (purple line) over time. Participation in the risky 
asset’s performance is calculated using a classic Black-Scholes formula measuring the 
sensitivity of a synthetic put with a strike price matching the floor value (here: 95% of the 
initial annual portfolio value). For comparison, we have included the performance of the 
underlying conservative multi-asset strategy (light blue line) and a money market investment 
(green line).
Sources: Bloomberg, Invesco. Period: 23 July 2003 to 22 November 2016; 23 July 2003 = 100.
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of cases. Moreover, it is often not easy to find 
option contracts that fit the needs of the portfolio 
– particularly when it comes to complex investment 
vehicles like the proposed multi-asset portfolio. 
Yet, both of these problems can be addressed by 
synthetically replicating the necessary European 
put option, which ultimately consists in dynamically 
adjusting the investment exposure of the multi-asset 
portfolio.4 

Figure 2 charts the evolution of the synthetic put 
strategy over time. We note that the rate of 
investment (exposure) varies significantly, depending 
on the difference between the portfolio value and 
the strike price, as well as expected volatility.5 Unlike 
the stop-loss strategy, exposure would have been 
reduced early enough in 2008 to avoid a massive 
drawdown. Yet, it was still at 44% when the floor was 
first breached in 2008; by the end of the year, the 
portfolio value would have been 4% below the floor 
value. This demonstrates one weakness of a synthetic 
put strategy, which also has the disadvantage of 
frequent portfolio reallocation. Nonetheless, the 
synthetic put strategy would have made far better 
use of the subsequent market recovery than the 
stop-loss strategy. Ultimately, performance would 
have matched that of the underlying multi-asset 
portfolio – with substantially less volatility and a 
lower maximum drawdown.

3. CPPI and related dynamic portfolio insurance 
strategies
Given the shortcomings of option-based portfolio 
insurance, an alternative can be found in a dynamic 
variant of the classic CPPI (constant proportion 
portfolio insurance6) strategy. First, we will examine 
the CPPI concept itself, before looking deeper into 
dynamic portfolio insurance. 

3.1 CPPI
At the heart of the classic CPPI strategy is the so-
called cushion Ct, i.e. the difference between the 
invested capital (or wealth), Wt and the net present 
value of the floor NPV (FT):

(1) C W NPV Ft t T= − ( )
In order to avoid a breach of the floor, the risky 
investment Et = et × Wt (with investment exposure et) 
should be set such that:

(2) C W W

C e W risky asset

E
C

r

t t t

t t t

t
t

≥ × ( )
≥ × × ( )

≤

MaxLoss

MaxLoss

MaxLoss iisky asset
m Ct( )

= × 
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m
risky asset

:=
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1

MaxLoss
 

allows for a neat interpretation: it indicates how 
often a given cushion can be invested in the risky 
asset without breaching the floor assuming that the 
maximum loss assumption of the risky asset is not 
violated. 

The classic CPPI strategy is based on a static 
multiplier – often reflecting a constant worst-case 

scenario. Figure 3 illustrates the performance and 
exposure of a CPPI strategy, which assumes a 
constant maximum overnight loss of 3%, which is 
equivalent to the historically simulated expected 
shortfall (ES) of the multi-asset portfolio. Although 
this very conservative position would have prevented 
catastrophic drawdowns during the financial market 
crisis, it would also have left significant return 
potential unused over the long term. This is reflected 
in the average investment exposure of just 70.2% – 
pushing annualized returns down a full 75 bp to a 
mere 3.14% p.a. (see table 1 at the end of the 
article). 

3.2 DPPI
This is where dynamic proportion portfolio insurance 
(DPPI) proves its effectiveness. Instead of using a 
static multiplier, the risk budget adapts dynamically 
to changes in expected shortfall (ES). Exposure is set 
such that:

(3) E
C

risky asset
m Ct

t

t
t t≤

( )
= ×

MaxLoss

 
with the multiplier

m
ES risky asset

t
t

:
%

=
( )

1
99

 
 
 
In this way, the exposure of the portfolio reacts to 
changes in the risk forecast – ensuring that it does 
not remain artificially low as a result of a constant 
conservative risk assumption. For this to work in 
practice, the risk model must be capable of quickly 
homing in on volatility spikes, and just as quickly 
readjusting to a normalization of market volatility. 
To this end, a Copula-GARCH model is extremely 
useful for forecasting ES (see box: Risk forecasting 
for dynamic portfolio insurance strategies).

We start by setting the exposure in accordance with 
equation (3). Figure 4 shows that, although the DPPI 

Figure 3
Performance and allocation of the CPPI strategy

  CPPI strategy   Multi asset portfolio 
  Floor   Cash •  Exposure (RHS)

Portfolio value Exposure, %
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The chart shows the performance of a conservative multi-asset portfolio using a CPPI strategy 
(dark blue line) in relation to the floor (purple line) over time. Exposure is calculated using the 
cushion (difference between the portfolio value and the floor; here: 95% of the initial annual 
portfolio value) and the multiplier that is based on daily risk forecasts of the historically 
simulated ES of the multi-asset portfolio (3%). For comparison, we have included the 
performance of the underlying conservative multi-asset strategy (light blue line) and a money 
market investment (green line). 
Sources: Bloomberg, Invesco. Period: 23 July 2003 to 22 November 2016; 23 July 2003 = 100.
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strategy actively adjusts exposure, it fluctuates to 
a lesser degree than with the synthetic put. With 
the onset of the financial market crisis, exposure 
dropped to zero, so that the portfolio value at the 
end of 2008 was equal to the floor. Then, even with 
the V formation (steep decline followed by a rapid 
recovery) in early 2009, which is a major pitfall for 

portfolio insurance, the DPPI portfolio did not end 
up like the stop-loss in a “cash lock” within the 
money market. It participated in at least part of 
the subsequent recovery. 

On the whole, the DPPI strategy actually delivered 
a marginal excess return compared with the pure 

Modern risk modelling is guided by empirical patterns, 
which cannot be adequately captured using a 
conventional approach with an assumption of normal 
distributions. In particular, extreme events occur 
substantially more often than postulated by a normal 
distribution. Volatility and correlations are not 
constant, and volatility-clustering is not uncommon.

An effective method of understanding empirical 
risk is the Copula-GARCH model, as proposed by 
Patton (2006) or Jondeau and Rockinger (2006): 
the GARCH component measures the risk dynamics, 
while the copula estimation permits adequate 
modelling of the dependence structure. 

Another matter to consider, in addition to the 
structure of the model itself, is the question of 
an appropriate risk measure. Whereas many risk 
management approaches rely on value-at-risk 
(VaR), portfolio insurance strategies naturally lend 
themselves to using expected shortfall (ES) to 
measure risk. In the case of VaR, it indicates the 
maximum possible loss at a given confidence level 
(usually 95% or 99%). However, VaR is silent with 
respect to the losses beyond the VaR threshold. 
Conversely, the ES measures the expected loss in 
the event of a VaR violation.  

Validity of VaR and ES forecasts
The validity of Copula-GARCH risk forecasts can be 
demonstrated using various statistical tests. In order 
to have a sound basis for the estimated ES, the 
corresponding VaR quantile must be correctly 
specified. In a set of 260 forecasts of 1-day VaR 
(99% confidence) per year, there should theoretically 
be 2.6 violations. The upper panel of the chart shows 
a very simple VaR forecast as given by the empirical 
VaR over a sliding 1,000-day window. As expected, 
the majority of realized returns were higher than 
the forecasted VaR. In the sample period from 
July 2003 to November 2016, there were only 
32 violations (pink dots) – which is nearly the same 
as the 35 expected (= 1% of 3.479). 

An analysis of the VaR violations throughout time 
is sufficient to call into doubt the utility of the 
historically simulated VaR – given that nearly all of 
them occurred during the 2008 financial market crisis 
due to a latent underestimation of risk. Subsequently, 
the historically simulated VaR forecast was overly 
conservative, and there were no more violations 
for five years. Thus, a portfolio insurance strategy 
on this basis would have held investment exposure 
much too low over time.

This conclusion is confirmed by rigorous statistical 
testing. Using the unconditional coverage test 
(Kupiec, 1995), the historically simulated VaR does 
indeed deliver a conclusive number of violations 
over the entire period. But, based on the test for 

correct coverage and independence (Christoffersen, 
1998) and the duration test (Christoffersen and 
Pelletier, 2004), it is clear that the violations are not 
independently occurring, but rather appear in clusters.

The lower panel of the chart shows the VaR forecast 
on the basis of the Copula-GARCH model, which is 
much more sensitive and quick to react to the 
prevailing risk environment. The 35 violations over 
the entire period are precisely in line with the 
theoretical expectation; moreover, their occurrence 
is markedly less clustered – as confirmed by the 
statistical tests. And: the ES estimator corresponding 
to the Copula-GARCH VaR quantile also passes the 
so-called “zero mean” test proposed by McNeil and 
Frey (2000), i.e. the excess losses are independently 
distributed around a mean of zero.

Box 
Risk forecasting for dynamic portfolio insurance strategies

VaR-forecasts and realized returns of the  
multi-asset portfolio
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The chart shows the daily VaR forecasts (blue line) and realized 
returns of the multi-asset portfolio (grey dots) over time. VaR 
violations are marked in pink. At a confidence level of 99%, a 
total of 35 violations are expected over the model period. Both 
historically simulated VaR (above) and Copula-GARCH VaR (below) 
exhibit the expected number of violations on average – but only 
under the Copula-GARCH VaR forecast are these violations 
independent and non-clustered. Sources: Bloomberg, Invesco. 
Period: 23 July 2003 to 22 November 2016.
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multi-asset strategy (3.98% return; 4.69% volatility – 
see table 1 at the end of the article). Compared to the 
stop-loss and synthetic put, the maximum drawdown 
is significantly lower (by approx. 4 percentage points). 
Thus, the portfolio insurance can be achieved without 
the purchase or replication of an option, and can 
also be easily and flexibly adapted to accommodate 
changing investment demands.

4.  Dynamic portfolio insurance with a “ratchet 
floor”: the TIPP

A more conservative alternative to the CPPI strategy 
is the so-called TIPP (time invariant portfolio 
protection) strategy. In essence, it complements 
the CPPI strategy by locking in a portion of gains 
achieved with the portfolio. The floor is “ratcheted-
up” as soon as a new high is reached in portfolio 
value. Figure 5 shows the development of a dynamic 
TIPP strategy (dTIPP), based on the identical ES risk 
forecast as the DPPI strategy. Exposure over the 
entire period is roughly 10 percentage points lower 
than that of the DPPI strategy – a consequence of 
the floor always being closer to the portfolio value 
so that no additional cushion can be built up. This 
implies a clear reduction of returns vs. DPPI – but 
one that is less dramatic in risk-adjusted terms.

Conclusion
Our examination has shown that dynamic portfolio 
insurance could be useful in improving the risk-return 
profile of an investment (table 1). The most attractive 
alternative we have found was the DPPI strategy – 
an improvement on the classic CPPI strategy. 
Because DPPI works with a dynamic measure of risk, 
it adapts much more readily to the market environment 
than the CPPI approach with its constant multiplier. 
Moreover, in terms of the Sharpe ratio, maximum 
drawdown and investment exposure, the DPPI 
strategy outperformed the stop-loss, the synthetic 
put and the dTIPP strategy.

Figure 4
Performance and allocation of the DPPI strategy
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The chart shows the performance of a conservative multi-asset portfolio using a DPPI strategy 
in relation to the floor over time. Exposure is calculated using the cushion (difference between 
the portfolio value and the floor; here: 95% of the initial annual portfolio value) and the 
multiplier (based on daily risk forecasting; here: Copula-GARCH 99%-ES). For comparison, 
we have included the performance of the underlying conservative multi-asset strategy and a 
money market investment. 
Sources: Bloomberg, Invesco. Period: 23 July 2003 to 22 November 2016; 23 July 2003 = 100.

Figure 5
Performance and allocation of the dTIPP strategy
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The chart shows the performance of a conservative multi-asset portfolio using a dTIPP 
strategy in relation to the floor over time. Exposure is calculated using the cushion (difference 
between the portfolio value and the floor; here: 95% of the initial annual portfolio value each 
year) and the multiplier (based on daily risk forecasting; here: Copula-GARCH 99%-ES). The 
key characteristic of the dTIPP strategy lies in the “ratcheting-up” of the floor (95%) once a 
new high is achieved. For comparison, we have included the performance of the underlying 
conservative multi-asset strategy and a money market investment. 
Sources: Bloomberg, Invesco. Period: 23 July 2003 to 22 November 2016; 23 July 2003 = 100. 

Table 1
Figures for the conservative multi-asset portfolio with and without portfolio insurance

Multi asset portfolio Money market investment Stop loss Synthetic put DPPI dTIPP

Return p.a. (%) 3.89 1.23 3.65 3.89 3.98 3.45
Volatility p.a. (%) 6.40 0.11 5.04 4.71 4.69 4.05
Sharpe ratio 0.42 0.00 0.48 0.56 0.59 0.55
Maximum drawdown (%) -27.16 0.00 -14.49 -14.28 -10.43 -8.82
Exposure (%) 100.00 0.00 91.09 89.58 90.37 80.38

The table shows the performance figures for the various portfolio insurance strategies in combination with a multi asset portfolio: stop-loss, synthetic put, constant 
proportion portfolio insurance (CPPI), dynamic proportion portfolio insurance (DPPI) and dynamic time invariant portfolio protection (dTIPP). In each calendar year, a 
floor of 95% of the initial portfolio value is targeted. For comparison, we have included the performance figures for the underlying conservative multi-asset strategy 
and a money market investment. Sources: Bloomberg, Invesco. Period: 23 July 2003 to 22 November 2016.
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Notes
1  Throughout the article and in all figures and tables, the multi-asset data set consists of the 

following series (portfolio weights are given in parentheses): EuroStoxx 50 Future (5.8%), 
FTSE 100 Index Future (5.8%), S&P500 Future (15%), Nikkei 225 Future (6.7%), Euro-Bund 
Future (16.7%), US 10YR Note Future (16.7%), JPN 10Y Bond Future (16.7%), S&P GSCI 
Crude Oil (3.5%), S&P GSCI Gold (5.8%), Bloomberg Agriculture Subindex (3.8%), Bloomberg 
Copper Subindex (3.5%). For money market investments we use the 3-month US Treasury 
bill. All asset returns are in local currency. Portfolio returns and values are computed from 
the perspective of an U.S. investor who is hedging any currency exposure.  Furthermore, all 
simulations in this article are provided for illustrative purposes only and are subject to 
limitations. Unlike actual portfolio outcomes, the model outcomes do not reflect actual 
trading, liquidity constraints, fees, expenses, taxes and other factors that could impact future 
returns.

2  Table 1 at the end of the article shows the performance figures for all of the strategies 
presented.

3  A European option can only be exercised at expiry (unlike an American option, which can be 
exercised at any time during its term).

4  Delta, i.e. the sensitivity of the synthetic put option to changes in the underlying, is determined 
using the classic Black-Scholes model. The strike price is set to reflect the desired floor value 
(Rubinstein and Leland, 1981; Dichtl and Drobetz, 2011).

5  A volatility forecast is necessary to determine delta and we build on a Copula-GARCH model 
(see box: Risk forecasting for dynamic portfolio insurance).

6  For more on CPPI strategies, cf. Perold (1986), Black and Jones (1987, 1988), Perold and 
Sharpe (1988).
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In brief
Risk mitigation strategies seek to create 
an asymmetric risk-return profile. But 
benchmarking against the underlying 
investment is not a valid approach given 
the potentially stark difference in risk 
profiles. We discuss how to appropriately 
calibrate and assess portfolio insurance 
strategies based on the ensuing return 
distribution to better fit a given client’s 
risk preferences.

Evaluating risk mitigation 
strategies 
By Dr. Harald Lohre, David Happersberger and Erhard Radatz

In light of the sustained low yield environment, 
investors have increasingly taken on more risk 
to meet their return targets. Yet, their ability 
to cope with higher risk is limited, which is what 
makes strict risk management and suitable 
portfolio insurance techniques so important.  

In a previous article1, we discussed a variety of 
risk mitigation approaches for a given underlying 
investment strategy. In particular, we investigated 
portfolio insurance strategies ranging from static 
stop-loss techniques to option-based strategies 
and dynamic portfolio insurance techniques. We 
concluded that an active portfolio insurance strategy 
based on a dynamic risk forecast is a cost-effective 
way to limit a portfolio’s maximum loss at a high 
probability.

In this article we go further and explain how to 
calibrate such a strategy to individual risk preferences. 
Since portfolio insurance is meant to accommodate 
conservative clients’ need for an asymmetric return 
profile, adding a risk overlay ultimately boils down to 
reshaping the portfolio return distribution. Essentially, 
the aim is to significantly reduce the probability of 
suffering from severe tail events while sacrificing 
some of the underlying strategy’s upside potential.

The mechanics of dynamic portfolio insurance
Our preferred dynamic portfolio insurance strategy 
is rooted in the classic CPPI (constant proportion 
portfolio insurance2) strategy. It typically sets the 
exposure in a given risky underlying in such a way 
that a chosen floor level is not breached within a 
specified investment period. Thus, it is essential to 
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closely monitor the cushion Ct that represents the 
difference between the invested wealth Wt and the 
net present value of the floor NPV(FT):

(1) Ct  Wt  NPV(FT)

To effectively protect the floor,  
 
Ct  Wt MaxLoss(Wt) 
 
must hold true. With the investment exposure et 
and the corresponding risky investment Et  et Wt 
the above formula can be restated as 

(2) C e W risky asset
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risky asset
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This reformulation brings in the notion of the CPPI 
multiplier m. The multiplier indicates how often the 
cushion can be invested in the risky underlying 
without breaching the floor provided the maximum 
loss assumption holds. 

To be on the safe side, one could impose a static 
multiplier derived from a worst-case risk estimate. 
But, as we demonstrated in the previous article, such 
a conservative estimate would severely undermine 
participation in the underlying. To remedy this issue, 
we put forward the use of a dynamic forecast of 
maximum loss. That is, we make use of a dynamic 
multiplier  

m
ES risky assett

t

:
%

=
( )

1
99

 
labelling this type of risk mitigation DPPI (dynamic 
proportion portfolio insurance). In this setting, the 
risk budget and investment exposure dynamically 
adjust to changes in the estimated expected shortfall 
(ES) forecast. In particular, participation in the 
underlying is higher in calmer risk environments, while 
a pick-up in risk leads to a reduction of investment 
exposure. Obviously, it is essential to rely on risk 
estimates that allow for timely modelling of tail risk 
within the portfolio return distribution. 

Panel (a) of figure 1 charts the mechanics and 
evolution of a DPPI strategy applied to an S&P 500 
underlying at an 85% floor level.3 The dynamic 
adjustment of the time-varying multiplier mt follows the  
expected shortfall forecast derived from a GARCH(1,1)-
model. Clearly one can appreciate the role and 
interaction of floor and multiplier: if the underlying 
investment is far above the floor, the DPPI tends to 
have a high investment exposure more or less 
independent of the risk estimate. With less cushion, 
the DPPI strategy is more sensitive to risk changes, 
potentially leading to a complete de-investment. 

Over the course of the 32-year backtest, we only 
observe a few periods of de-investment, of which 
only four ended in a cash-lock position. While one 
seeks to avoid cash-lock through the adaptive 
positioning based on the risk forecast, the success 
of this approach depends on the specific nature of 
the corresponding market setbacks. For instance, 
the minimum daily return of the S&P 500 (–28.6% 
on 19 October 1987) fully consumed a seemingly 
comfortable cushion of more than 25%, and induced 

Figure 1
Performance and allocation of the DPPI strategy

Panel (a)
  DPPI           S&P 500           Floor           Cash         •  Exposure (RHS)
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Risk Exposure (RHS) Underlying Cash DPPI Floor
Panel (b) S&P 500 Money market DPPI

Return p.a. (%) 9.23 3.20 7.82

Volatility p.a. (%) 19.37 0.22 14.41

Sharpe ratio 0.31 0.00 0.32

Maximum drawdown (%) -61.17 0.00 -45.80

Expected shortfall 99% (%) -5.09 0.00 -3.66

Mean exposure (%) 100.00 0.00 86.18

The chart in Panel (a) shows the performance of an equity portfolio (S&P 500) using a DPPI 
strategy (blue line) in relation to the floor (green line) over time. Exposure is calculated using 
the cushion (difference between the portfolio value and the floor; here: 85% of the initial 
annual portfolio value) and the multiplier (based on daily risk forecasting; here: GARCH 99%-
ES). For comparison. we have included the performance of the underlying S&P 500 (pink line) 
and a money market investment (purple line). Panel (b) shows the corresponding performance 
measures. 
Period: 9 April 1986 to 9 April 2018; 9 April 1986 = 100. 
Sources: Bloomberg. Invesco. This is simulated past performance and past performance is not 
a guide to future returns.

switching from a 100% investment exposure to cash-
lock in just one day. However, in other periods of 
weak S&P 500 performance, market drawdowns 
evolved more gradually, allowing the DPPI portfolio 
time to de-invest and re-invest. The last complete de-
investment occurred during the global financial 
crisis. In the aftermath, interest rates have come 
down, implicitly elevating the floor level. During high 
volatility episodes in the equity market, we could 
observe similar de-risking events within the last 
decade. Yet these only served to reduce portfolio 
volatility given quick recoveries in the S&P 500. 

Examining the whole sample path, we learn that the 
DPPI strategy was indeed able to mitigate downside 
risk. Compared to the underlying investment, the 
maximum drawdown decreases by approximately 
15 percentage points, volatility by 5 percentage 
points and expected shortfall by 1.5 percentage 
points under the DPPI strategy (cf. panel (b)). 
Although these reductions come at the cost of some 
return potential – the DPPI portfolio earns 141bps 
less than the underlying – , risk-adjusted measures 
are in favour of the DPPI strategy. 

= ∗⇔ ≤

( )
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Designing DPPI strategies
The preceding example illustrates an important 
caveat in evaluating a given DPPI strategy, namely, 
its inherent path dependency. To avoid assessing 
the strategy based on just one historical path, we 
rather simulate a large number of alternative price 
paths and apply the given DPPI-setup. Hence, 
instead of just one risk and return combination, 
we obtain a full return distribution.4 Figure 2 shows 
portfolio return distributions of yearly returns based 
on 5,000 simulations, for the portfolio fully invested 
in the (simulated) underlying S&P 500 as well as for 
the corresponding DPPI strategy with an 85% floor. 
The risk estimates required for computation of the 
dynamic multiplier for the DPPI strategy are based 
on a simple GARCH(1,1)-model. This model captures 
the main empirical characteristics of asset returns, 
such as time-varying volatility, fat tails and volatility 
clustering.5 

We observe a left-skewed distribution for the 
simulated equity underlying. There is tail risk with 
a non-negligible probability of yearly returns being 
less than -15%. Applying DPPI results in significantly 
less tail risk. Yet, one has to note that there is still 
a small probability of breaching the floor level given 
that the strategy is adjusted at discrete (daily) intervals. 

More importantly, however, figure 2 clearly 
demonstrates that tail risk reduction, on average, 
comes at the cost of reduced upside potential.
While the historical backtest might suggest an 
outperformance of the DPPI strategy relative to its 
underlying, the simulated return distributions more 
readily articulate that portfolio insurance actually 
comes at an implicit insurance premium.

Judging by the mean yearly return difference of the 
two distributions, this premium would amount to 
some 1.8% (10.5%  8.7%  1.8%). At this premium, 
we can expect to avoid severe tail risk events, 29 of 
which could be worse than –40% (as simulated in our 
block-bootstrap analysis).

In the same vein, this framework clarifies the 
consequences of certain design choices (such as 
underlying and floor level) for the client’s expected 
portfolio return distribution. For instance, a common 
theme is that floor levels are set too tight relative 
to the riskiness of the underlying. Put differently, 
investors often favour riskier underlyings to achieve 
certain return targets. Yet, absent a higher risk 
budget, a riskier strategy will frequently be prevented 
from breathing freely given that the available cushion is 
easily consumed. This leads to frequent de-investments 
or even cash-lock situations triggered by the DPPI 
mechanism. 

To illustrate this issue, figure 3 shifts the floor level 
from 85% to 95%. As a result, the DPPI return 
distribution is massively distorted with a lot of return 
realizations around -5%, i.e. rather close to the floor 
level. Obviously, this is reminiscent of the fact that, 
under a too tight floor level, the DPPI strategy 
frequently de-invests or ends up in cash-lock, 
disabling it from participating to a meaningful extent 
in equity markets. The corresponding statistics in 
table 1 show that the mean exposure reduces to 
61%, leading to a significantly lower mean return 
(6.5% vs. 8.7%) and lower Sharpe ratio (0.24 vs. 0.35) 
when we shift the floor level from 85% to 95%.6

An alternative benchmark for DPPI strategies
Given the potential for considerable reshaping of 
the portfolio return distribution through portfolio 
insurance, it is evident that DPPI should not be 
benchmarked relative to its underlying. As an 
alternative, we construct a benchmark with similar 
risk characteristics. Because we are comparing an 
asymmetric distribution, a symmetric risk measure 
like volatility is not viable. Given that risk-averse 
investors are more concerned about the tails of 
a distribution, we will base our analysis on the 
expected shortfall (ES), using a 99% confidence  
level.

Figure 2
Comparing return distributions

  DPPI             S&P 500
Density
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(Floor) 10.58.7 Return in %

The chart shows the distribution of block-bootstrapped yearly returns (M = 5,000 simulations) 
of the DPPI portfolio (blue shade) and the one of a pure buy-and-hold portfolio invested in the 
corresponding simulated S&P 500 (pink shade). The floor level of the DPPI strategy is 85%. 
Below the two density plots we have added the corresponding support and the mean levels of 
the return distributions.
Sources: Bloomberg, Invesco.

Figure 3
Comparing return distributions: tight floor levels
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The chart shows the distribution of block-bootstrapped yearly returns of the DPPI portfolio (blue 
shade) and the one of a pure buy-and-hold portfolio invested in the corresponding simulated 
S&P 500 (pink shade). The floor level of the DPPI strategy is 95%. Below the two density plots 
we have added the corresponding support and the mean levels of the return distributions.
Sources: Bloomberg, Invesco.
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While there are numerous ways to create a benchmark 
with a given ES, we opt for an easy and replicable 
solution. We add cash to the underlying S&P 500 
investment to scale down its risk to the pre-defined 
ES limit of 15%, corresponding to the floor level 
of the DPPI strategy. We will call this portfolio  
“ES-target benchmark”.7 As a result, we are 
comparing two different strategies with similar risk 
profiles (as defined by their 99%-ES): a portfolio 
dynamically allocating between cash and the risky 
underlying (DPPI portfolio) and a static mix of cash 
and underlying that has an ES similar to the DPPI 
portfolio (ES-target portfolio).

To achieve an ES of 15% over the sample period, 
a 39/61 mix of S&P 500 and cash is needed to 
compute the ES-target benchmark. In figure 4, 
the ensuing portfolio return distribution is contrasted 
to that of the underlying S&P 500 and the DPPI 
strategy with a floor level of 85%. Obviously, the   
ES-target benchmark return distribution is a 
compressed version of the underlying S&P 500 
return distribution. Most importantly, although its 
mean return is smaller than the DPPI (6.4% vs. 
8.7%), there is still a small probability of significant 
tail events attached to this strategy (cf. figure 4 and 
table 1).

Conclusion
Many investors tend to benchmark the performance 
of their portfolio insurance strategy vis-à-vis the 
return of the underlying portfolio. Instead, we 
suggest the ES-target benchmark strategy. This tail  
risk-adjusted alternative transforms the underlying’s 
return distribution to better fit the client’s risk 
preferences. Of course, investigating the ensuing 
portfolio return distributions based on block-
bootstrap resampling sheds even more light on the 
effects of a given portfolio insurance application. 
We seek to apply this methodology in a future article 
to investigate the merits of different underlyings in 
a portfolio insurance framework. 

Figure 4
Comparing return distributions

  DPPI             S&P 500             ES−target benchmark
Density

0.00

-80 -40 0 40-15
(Floor) 10.5

8.7
Return in %6.4

0.02

0.04

0.06

The chart shows the distribution of block-bootstrapped yearly returns of the DPPI portfolio (blue 
shade) and the one of a pure buy-and-hold portfolio invested in the corresponding simulated 
S&P 500 (pink shade). The floor level of the DPPI strategy is 85%. The third return distribution 
applies to a partial investment in the underlying that adds cash such that the average risk level 
(in terms of the 99%-ES) conforms to the floor level of the DPPI strategy (green shade). Below 
the density plots we have added the corresponding support and the mean levels of the return 
distributions.
Sources: Bloomberg, Invesco.

Table 1
Performance of DPPI strategies vis-à-vis the ES-target benchmark

S&P 500 Money market   IPPD
(95% Floor)

  IPPD
(85% Floor)

ES-Target

Return p.a. (%) 10.49 3.81 6.45 8.71 6.43

Volatility p.a. (%) 15.95 0.96 10.93 14.09 6.30

Sharpe ratio 0.42 0.00 0.24 0.35 0.42

Maximum drawdown (mean, %) -14.98 0.00 -8.09 -11.77 -3.52

Expected shortfall 99% (%) -43.83 1.42 -7.85 -16.83 -15.00

Mean exposure (%) 100.00 0.00 61.14 87.28 39.18

The table shows performance measures of a block-bootstrapped DPPI strategy based on an equity portfolio (S&P 500) using different 
floor levels (85% and 95%). For comparison, we have included the performance measures of an ES-target strategy, targeting the same 
level of expected shortfall as the DPPI, alongside the underlying S&P 500 and a money market investment. Reported are the mean 
return, volatility, Sharpe ratio and expected shortfall of the simulated yearly returns, as well as the mean of the maximum drawdowns 
(which are computed for each simulated path) and mean exposure.
Period: 9 April 1986 to 9 April 2018; 9 April 1986 = 100. 
Sources: Bloomberg, Invesco. This is simulated past performance and past performance is not a guide to future returns.

Given the potential for 
considerable reshaping of the 
portfolio return distribution 
through portfolio insurance, 
it is evident that DPPI should 
not be benchmarked relative 
to its underlying.
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3  Throughout the article, and in all figures and tables, we employ the S&P 500 Future as 

equity investment. For money market investments we use the 3-month US Treasury bill. All 
asset returns are in local currency. All simulations in this article are provided for illustrative 
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the context of tail risk protection.
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In brief
Equity investments promise high expected 
returns, but not many investors can tolerate 
the associated risks. A possible solution may 
be to complement the equity strategy with a 
portfolio insurance element which ideally 
reduces the equity exposure whenever 
necessary to prevent the overall strategy 
from breaching a pre-defined floor. Based 
on a block-bootstrap methodology, we show 
that the choice of equity underlying is key in 
this context; in particular, low-volatility 
underlyings are to be preferred, with other 
multi-factor propositions forming suitable 
alternatives when considering additional 
elements of dynamic risk management.

The use of equity factor investing for 
portfolio insurance
By Dr Harald Lohre, David Happersberger and Alexandar Cherkezov

Portfolio insurance techniques such as CPPI 
(constant proportion portfolio insurance) are 
commonly used to protect investments from 
downside risk.1 This risk is obviously pronounced 
in the case of pure equity investments. We examine 
the interaction of CPPI with different equity 
underlyings, including standard market cap index, 
multi-factor and low-volatility investments.

To evaluate CPPI strategies for different equity 
underlyings, the usual way is to consider their 
historical performance. Yet, given the inherent path 
dependency of CPPI, any conclusion from this would 
be mostly anecdotal. Instead, we have earlier2 
suggested a block-bootstrap methodology which 
utilizes historical returns to simulate a large number of 
consistent alternative price paths and CPPI outcomes. 
Rather than evaluating just one price path, we base 
our analysis on the overall portfolio return distribution 
associated with a given portfolio insurance underlying. 
While the initial CPPI analysis is based on a static 
assumption for overnight risk (i.e. a constant multiplier) 
we go on to look for the incremental value of 
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Rather than evaluating just 
one price path, we base 
our analysis on the overall 
portfolio return distribution 
associated with a given 
portfolio insurance 
underlying.

including volatility targeting and dynamic risk forecast 
elements rendering the dynamic portfolio insurance 
dynamic (DPPI). 

case risk estimate could be imposed. In our initial 
analysis of CPPI for equity style underlyings, we have 
chosen a constant multiplier of 6, which corresponds 
to an overnight risk assumption of 16.7%.4 

Equity investing with style
Equity investments often closely follow broad market 
 cap-weighted indices. Yet there are investment styles 
that differ from simple index investing, such as the 
popular styles value and momentum. For instance, a 
value investor would prefer stocks that are relatively 
cheap according to some measure of intrinsic value 
and would avoid relatively expensive stocks. While a 
value investor ultimately relies on stocks reverting to 
their fundamental value, a momentum investor would 
bet on the stocks’ recent price momentum continuing. 
He would therefore be actively chasing recent winner 
stocks while cutting recent loser stocks. 

These two investment philosophies are particularly 
common amongst quantitative factor-oriented 
managers. Alongside value and momentum, there 
are many more stock characteristics deemed relevant 
in explaining the cross-section of equity returns. 
For the subsequent analysis, we are particularly 
interested in capturing the most salient equity styles 
and additionally consider a “quality” style as well as 
defensive “low-volatility” style. While quality would 
favour companies with healthy balance sheet ratios 
and/or sustainable investment and financing 
activities, the low-volatility style seeks to improve a 
portfolio’s risk-adjusted returns by avoiding highly 
volatile stocks.

Table 1 illustrates the performance of these various 
equity style investments for a European investment 
universe over the period 31 October 2006 to 
31 May 2018.5 As the sample period begins with 
the onset of the global financial crisis (GFC), the 
overall equity index performance is moderate. 
The MSCI Europe returned 3.25% p.a. at 19.4% 
annualized volatility while suffering a maximum 
drawdown of -58.5% over the course of the GFC. 
Yet the style returns differ considerably, ranging 
from 1.29% (value) to 6.53% (momentum). Notably, 
value investing was the most risky style over the 
sample period in terms of volatility (21.7%) and 
maximum drawdown (-65.1%). Quality and minimum 
volatility investments have been more resilient, 
as characterized by maximum drawdowns of 
-46.8% (quality) and -50.5% (minimum volatility). 

Table 1
Performance of various equity style investments

Index Cash Value Momentum Quality QMV Min-Vol Active 
Low-Vol

Return p.a. (%) 3.25 0.84 1.29 6.53 6.22 4.88 4.33 5.87

Volatility p.a. (%) 19.4 0.1 21.7 18.6 18.4 18.3 14.9 16.0

Sharpe ratio  0.12    0.02    0.31    0.29    0.22    0.24    0.32   

Maximum drawdown (%) -58.5 -65.1 -54.9 -46.8 -55.6 -50.5 -46.3

The table shows performance measures of equity style investments; for Index we use the MSCI Europe. Value, Momentum and Quality are the respective MSCI Europe 
Value, MSCI Europe Momentum and MSCI Europe Quality indices. QMV represents an equally-weighted combination of Quality, Value and Momentum based on the 
corresponding MSCI indices. Minimum volatility is the MSCI Europe Min Vol index. All MSCI indices give net total returns in EUR. Active Low-Vol is based on backtested 
returns of an integrated multi-factor equity portfolio optimized according to quality, momentum and value signals but targeting a considerably lower risk than the 
market. Cash returns are based on EONIA. Reported are the annualized return and volatility figures, the corresponding Sharpe ratios and maximum drawdowns.
Sources: MSCI, Bloomberg, Deutsche Bundesbank. Period: 31 October 2006 to 31 May 2018. This is simulated past performance and past performance is not a 
guide to future returns.

CPPI in a nutshell
For a given investment period, a CPPI3 strategy seeks 
to respect a pre-specified floor by actively managing 
the exposure to the risky underlying. A key ingredient 
is the cushion Ct – i.e. the difference between the 
invested wealth Wt and the net present value of the 
floor NPV(FT):

(1) C W NPV Ft t T= − ( )
To maintain the floor, 

(2) C W Wt t t≥ ∗ ( )MaxLoss

must hold. Introducing the investment exposure et 
the associated risky investment can be written as 
Et = et ∗ Wt so that the above condition (2) translates 
to 

(3) C e W risky asset

E
C

risky asset
m C

t t t

t
t

t

≥ ∗ ∗ ( )

⇔ ≤
( )

= ∗

MaxLoss

MaxLoss
 

This reformulation introduces a further key element: 
the CPPI multiplier m. It can be interpreted as the 
number of times the cushion can be invested in the 
risky underlying without risking a breach of the floor 
(provided the maximum loss assumption holds). To 
play it safe, a static multiplier derived from a worst-
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Nevertheless, quality investing comes with an 
annualized volatility of 18.4%, whereas minimum-
volatility investing actually has the smallest realized 
volatility of 14.9%, reducing volatility by at least 20%.

While these figures refer to the full sample 
performance, it is worthwhile to investigate equity 
style performance in two sub-periods. We thus 
divide the sample into two before and after 
investigate March 2009, when global equity markets 
reached their lows during the global financial crisis. 
In the volatile first sub-period, we find that quality 
and low-volatility faired particularly well compared to 
value which performed even worse than the market 
index (figure 1). Interestingly, value was also lagging 
in the subsequent bull market, again finishing last in 
the league table of equity style factors. Momentum 
was the best performing style from March 2009 
onwards, with quality coming in second place. 
Most interestingly, we find that minimum-volatility 
exhibited index-like returns, yet at a lower volatility. 

In quantitative investing, it is common to combine 
different investment styles to create a more diversified 
multi-factor portfolio.6 In that regard, a typical 
combination would include quality, momentum and 
value to obtain a core equity proposition with similar 
risk characteristics as the market index but potentially 
better returns. Indeed, a simple equal weighting 
of these three styles (labelled QMV in table 1) 
would have outperformed the MSCI Europe by 
1.63 percentage points p.a.

To further exploit the notion of defensive investing, 
we also consider an integrated multi-factor approach 
that optimizes an equity portfolio according to 
quality, momentum and value signals, but targeting 
a considerably lower risk target than the market 
(labelled Active Low-Vol in table 1). Such an active 
low-volatility proposition would indeed have been 
highly attractive, with a 5.87% return at 16.0% 
volatility (i.e. a Sharpe ratio of 0.32). Moreover, its 
maximum drawdown is even less than that of the 
quality style investment (-46.3%).

Factor investing and CPPI
In light of the stark differences in equity style 
performance, the corresponding CPPI strategies may 
also differ. Yet the bulk of the CPPI literature focuses 
on index investments as the equity underlying of 
choice. A notable exception is Ardia, Boudt and 
Wauters (2016), who provide a thorough treatment 
of the topic in question. In particular, they carefully 
examine CPPI strategies based on different equity 
underlyings, including standard market cap, 
fundamental and low-volatility weightings.

We follow Ardia, Boudt and Wouters (2016) in 
analyzing the equity style investments from the 
preceding section in the context of CPPI strategies. 
As in a previous article7, we do not base our analysis 
on the historical CPPI performance but on 5,000 
block-bootstrap samples.8 Given the inherent path 
dependency of CPPI, this setup is a meaningful 
improvement over standard analyses, as we can 
assess the probable portfolio return distribution of 
a given equity factor underlying.

Figure 2 shows the results for a floor of 85% and 
a static multiplier of 6. As for the chosen equity 
underlyings, we focus on the most relevant, i.e. 

Figure 1
Equity style investments over time
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The charts show performance of equity style investments over time; as index we use the MSCI 
Europe. Value, Momentum and Quality are the respective MSCI Europe Value, MSCI Europe 
Momentum and MSCI Europe Quality indices. Minimum-volatility is the MSCI Europe Min Vol. All 
MSCI indices give net total returns in EUR. Cash is EONIA. 
Sources: MSCI, Bloomberg. Data as at 31 May 2018. Past performance is not a guide to 
future returns.

index, multi-factor core (QMV), minimum-volatility 
and an active low-volatility investment.9 Needless to 
say, all equity underlyings exhibit significant tail risk,  
but this is less pronounced for the two low-volatility 
propositions. Interestingly, the post-CPPI return 
distributions are quite different across the board. 

To allow for a direct comparison of the return 
distributions, we have merged these into one chart 
(figure 3): for the index underlying, CPPI produces a 
relatively large number of outcomes rather close to 
the floor, for QMV this effect is less pronounced. 
Minimum-volatility or active low-volatility underlyings 
better transform the tail shape of the ensuing CPPI 
return distribution. These first-glance conclusions 
from figure 3 are by and large backed by the 
statistics in table 2: panel B for the static CPPI 
strategy clearly supports the above ranking from 
active low-volatility down to index investments, in 
terms of return, Sharpe ratio and Calmar ratio.

Appendix A. Supplementary Research Papers to Chapter 2 175



Risk & Reward, #3/2018   35

figure 3 visualizes the close alignment of the return 
distributions. Nevertheless, tail risk statistics are 
barely altered by the volatility adjustment. It is 
evident that the CPPI performance wedge is not only 
driven by the reduced volatility of the underlyings 
but also by the distinctive relative return pattern of 
low-volatility strategies in bearish markets. Given 
these results, it is straightforward to additionally 
consider a dynamic risk forecasting element which 
allows the investment exposure to be actively 
managed in order to further smooth tail risks.

What about adding a dynamic portfolio insurance 
element?
A conservative multiplier assumption might severely 
undermine participation in any given underlying. 
Alternatively, we consider a dynamic multiplier  

m m
ES risky asset

t
t

= =
( )

:
%

1
99  

Introducing a volatility target in equity factor 
underlyings
Ex ante, low-volatility underlyings are expected to 
outperform given the negative vega of the CPPI 
strategy. As the underlying’s volatility increases, the 
CPPI payoff declines, as shown in Black and Jones 
(1987). Thus, one may question whether it is merely 
the lower volatility of the low-volatility investments 
that makes CPPI so promising. Therefore, we will 
now investigate whether an explicit volatility 
targeting element can help index and multi-factor 
core investments to close the gap versus the low-
volatility underlyings. With volatility targeting, the 
exposure to index or multi-factor core investments 
is reduced while one dynamically replicates the 
volatility of the minimum-volatility strategy. 

Indeed, panel C of table 2 reveals that volatility 
targeting is beneficial for index and other core 
underlyings: we observe an increase in returns and 
a decrease in volatility, helping to reduce the gap 
in risk-adjusted performance. The middle chart in 

Figure 2
Factor investing and CPPI
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The chart shows the distribution of block-bootstrapped yearly returns of the CPPI portfolio (blue shading) and that of a pure buy-and-hold 
portfolio invested in the simulated equity underlying (pink shading). The floor level of the CPPI strategy is 85%. Below the two density 
plots we have added the corresponding support and the mean levels of the return distributions. The upper left is for the index 
investment, the upper right is for the equally weighted multi-factor investment in quality, momentum and value (QMV), the lower left is 
for minimum-volatility and the lower right is for the active low-volatility strategy.
Sources: MSCI, Bloomberg, Invesco.
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Table 2
Performance of simulated strategies

Underlying 
index

Underlying 
QMV

Underlying 
Min-Vol

Underlying 
Active Low-Vol

Panel A: Pure equity Return p.a. (%) 6.10 7.57 6.51 9.17

Volatility p.a. (%) 17.22 16.19 13.23 14.24

Sharpe ratio 0.31 0.42 0.43 0.58

Mean annual maximum drawdown (%) -18.79 -17.48 -14.24 -14.59

Mean annual Calmar ratio 0.75 0.87 0.90 1.08

Mean exposure (%) 100.00 100.00 100.00 100.00

Value-at-risk 99% (%) 39.45 34.38 26.81 25.95

Expected shortfall 99% (%) 46.62 41.49 32.17 32.32

Panel B: CPPI Return p.a. (%) 2.73 4.03 3.88 6.25

Volatility p.a. (%) 15.72 15.49 12.95 14.42

Sharpe ratio 0.12 0.21 0.23 0.37

Mean annual maximum drawdown (%) -14.34 -13.80 -11.69 -12.24

Mean annual Calmar ratio 0.44 0.57 0.65 0.83

Mean exposure (%) 72.41 74.95 78.97 80.83

Value-at-risk 99% (%) 17.83 17.60 16.25 15.98

Expected shortfall 99% (%) 18.14 17.97 16.97 16.77

Panel C: CPPI with  
volatility targeting

Return p.a. (%) 3.15 4.25 3.88 6.17

Volatility p.a. (%) 13.33 13.34 12.95 13.44

Sharpe ratio 0.17 0.26 0.23 0.40

Mean annual maximum drawdown (%) -12.50 -12.24 -11.69 -11.61

Mean annual Calmar ratio 0.60 0.72 0.65 0.89

Mean exposure (%) 63.34 66.66 78.97 76.70

Value-at-risk 99% (%) 17.64 17.37 16.25 15.88

Expected shortfall 99% (%) 17.98 17.84 16.97 16.68

Panel D: DPPI with  
volatility targeting

Return p.a. (%) 3.22 4.43 4.17 5.56

Volatility p.a. (%) 11.95 12.16 12.75 13.25

Sharpe ratio 0.20 0.29 0.26 0.36

Mean annual maximum drawdown (%) -11.33 -11.20 -11.45 -11.58

Mean annual Calmar ratio 0.58 0.72 0.69 0.84

Mean exposure (%) 64.43 68.16 84.95 78.98

Value-at-risk 99% (%) 15.36 15.23 15.63 15.65

Expected shortfall 99% (%) 15.82 15.75 16.11 16.01

The table shows average performance measures based on block-bootstrapped equity style investments (panel A), and variants thereof based on CPPI (panels B and C) 
and DPPI (panel D). The floor for both, CPPI and DPPI, is 85%. Reported are the mean return, volatility, Sharpe ratio and expected shortfall of the simulated yearly 
returns, as well as the mean of the maximum drawdowns (which are computed for each simulated path) and mean exposure.
Sources: MSCI, Bloomberg, Invesco. Block-bootstrapping period: 31 October 2006 to 31 May 2018. This is simulated past performance and past performance is 
not a guide to future returns.

governed by an estimate of the underlying’s expected 
shortfall. In such a DPPI (dynamic proportion portfolio 
insurance) setting, investment exposure will be higher 
in calmer periods, while more volatile episodes 
witness a reduction of investment exposure. Obviously, 
it is essential to rely on risk models that allow for 

timely modelling of tail risk within the portfolio return 
distribution, and we will build on expected shortfall 
forecasts derived from GARCH(1,1)-models.10  

From figure 3 (bottom chart) and panel D of table 2, 
we conclude that introducing a dynamic risk forecasting 
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element helps index and multi-factor core (QMV) 
strategies to reduce the remaining performance wedge 
relative to low-volatility alternatives. All three – 
index, QMV and minimum-volatility – experience a 
slight increase in average returns. Yet the relative 
reduction in volatility and downside risk is more 
pronounced for the index and QMV alternatives, 
leading to a closer alignment of risk-adjusted 
performance. Nevertheless, an active low-volatility 
approach with dynamic proportion portfolio 
insurance (DPPI) still produced the best outcome.  

Figure 3
CPPI and factor investing: the role of volatility targeting and DPPI
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The charts compare the distribution of block-bootstrapped yearly returns of portfolio insurance 
strategies based on index, multi-factor core, minimum-volatility, and active low-volatility 
underlyings. The floor level of the portfolio insurance strategies is 85%. The upper chart is for 
the static CPPI strategies with a multiplier of 6. The middle chart is for static CPPI with a 
multiplier of 6 where the underlying style factor investments are subject to targeting the 
volatility of the minimum-volatility index. The bottom chart considers these refined underlyings 
in a portfolio insurance strategy based on a dynamic multiplier (DPPI).
Sources: MSCI, Bloomberg, Invesco.

Introducing a dynamic risk 
forecasting element helps 
index and multi-factor core 
strategies to reduce the 
remaining performance 
wedge relative to low-
volatility alternatives.

Conclusion
The choice of equity underlying is important when 
designing portfolio insurance strategies, especially 
when simple protection mechanisms are applied. 
We have shown that low-volatility underlyings are 
particularly useful for downside protection 
mechanisms, given their lower volatility and more 
favourable relative return patterns in downside 
markets. Using a block-bootstrap methodology to 
simulate the portfolio return distribution, we show 
that volatility targeting and dynamic risk forecasting 
elements can improve the portfolio insurance results 
for index-like alternatives. Still, investing in an active 
low-volatility underlying while closely managing its 
investment exposure with suitable dynamic risk 
forecasts can be the method of choice.

Investing in an active low-
volatility underlying while 
closely managing its 
investment exposure with 
suitable dynamic risk 
forecasts can be the method 
of choice.
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